
解決！ Python
ファイルパス操作編
かわさきしんじ，Deep Insider編集部［著］

01.os.path.abspath関数で絶対パスを取得するには

05.os.pathモジュールの isdir／ isfile関数を使って
　 パスがディレクトリやファイルであるかどうかを調べるには

03.os.pathモジュールの exists関数を使ってパスが存在するかどうかを確認するには

06.パスがディレクトリやファイルであるかどうかを調べるには：pathlibモジュール編

07.os.path.join関数を使ってパスを結合するには

08.pathlib.Path.joinpathメソッドを使ってパスを結合するには

09.split関数でファイルパスを分割するには

10.splitext関数でファイルパスから拡張子を取得するには

11.splitroot関数でファイルパスをドライブ、ルート、それ以外に分割するには

12.splitdrive関数でファイルパスをドライブ文字とその他の部分に分割するには

04.Path.existsメソッドを使ってパスが存在するかどうかを確認するには

02.pathlib.Path.absolute／ resolveメソッドで絶対パスを取得するには

※ 本 eBook の制作の都合上、Python コード中のシングルクオートやダブルクオート、バックスラッシュ（円マーク）などの記号類が、
コードの実行確認に使用したPython 処理系ではシングルクオートやダブルクオート、バックスラッシュなどとして解釈されない文字と
なっていることがあります。コードをコピー＆ペーストして使う際にはご注意ください。

3 →目次に戻る

from os import getcwd, chdir
from os.path import abspath, join, normpath, realpath, islink

現在の作業ディレクトリを基点とした絶対パスを取得
cwd = getcwd()
print(cwd)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code
Windows：C:¥tmp¥pytips¥pytips_0198¥code

p = abspath('foo.txt')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥foo.txt

tmp = normpath(join(getcwd(), 'foo.txt'))
print(tmp)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥foo.txt
print(p == tmp) # True

p = abspath('../../pytips_0197/pytips_0197.txt')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0197/pytips_0197.txt
Windows：C:¥tmp¥pytips¥pytips_0197¥pytips_0197.txt

シンボリックリンクを含むパスの絶対パスを取得
print(islink('dir1')) # True
chdir('dir1')
print(getcwd())
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir0
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir1

p = abspath('../dir1/cdir')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir1/cdir
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir1¥cdir

os.path.abspath関数で絶対パスを取得するには
os.pathモジュールが提供する abspath関数で特定のパスの絶対パスを取得する方法や、
その際に注意する点、pathlib.Path.absoluteメソッドとの振る舞いの違いなどを紹介する。

かわさきしんじ，Deep Insider編集部（2024年 10月 08日）

https://www.itmedia.co.jp/author/208386/

4 →目次に戻る

pathlibモジュールのPath.absoluteメソッドとは挙動が異なることがある
from pathlib import Path

path = Path('../dir1/cdir')
p = path.absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir0/../dir1/cdir
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir1¥..¥dir1¥cdir

シンボリックリンクを含むパスから正規の絶対パスを取得
chdir(cwd)
p = realpath('dir1/cdir')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir0/cdir
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir0¥cdir

os.path.abspath関数による絶対パスの取得

　os.pathモジュールが提供する abspath関数を使うと、その関数に指定したパスの絶対パスを取得できる。こ

こではmacOSとWindowsを例として、その使い方を見ていく。

　macOSでは次のようなディレクトリ階層を作成した。

　　 macOSでサンプルとするディレクトリ階層

　このうち、dir1ディレクトリは dir0ディレクトリに対するシンボリックリンクになっている。Windowsでも同様

なディレクトリ階層を作成している。

5 →目次に戻る

 Windowsでサンプルとするディレクトリ階層

　こちらでも dir1ディレクトリは dir0ディレクトリに対するシンボリックリンクになっている（管理者権限でコマン

ドプロンプトを実行し、「mklink /D」コマンドで作成）。

　また、osモジュールおよび os.pathモジュールから以下の関数をインポートした。

from os import getcwd, chdir
from os.path import abspath, join, normpath, realpath, islink

　Pythonのスクリプトを実行する作業ディレクトリは pytips_0198/codeディレクトリとする（後でディレクトリ

を移動する）。

cwd = getcwd()
print(cwd)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code
Windows：C:¥tmp¥pytips¥pytips_0198¥code

　macOSの出力結果は「/private/tmp/pytips/pytips_0198/code」となっているが、これは「/tmp/……」と

読み替えてほしい（/tmpディレクトリが /private/tmpディレクトリへのシンボリックリンクになっているため）。

　既に述べたが、abspath関数は渡したパスの絶対パスを返す。簡単な例を以下に示す。

p = abspath('foo.txt')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥foo.txt

6 →目次に戻る

　ここでは pytips_0198/codeディレクトリに存在しないファイルのパス「foo.txt」を渡しているが問題はない。

この場合は、現在の作業ディレクトリ（os.getcwd関数で得られるパス）と、abspath関数に渡したパスを連結

したものが絶対パスとして戻される。

　os.path.abspath関数のドキュメントにもあるが、これは normpath(join(getcwd(), 'foo.txt'))を呼び出した

のと同じ結果になる。

tmp = normpath(join(getcwd(), 'foo.txt'))
print(tmp)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥foo.txt
print(p == tmp) # True

　ここで使っている normpath関数と join関数についても簡単に見ておこう。join関数は 1つ以上のパスを連結

した結果を返す関数だ。ただし、渡した引数の中でルートとなる要素があった場合、その要素よりも前の要素につ

いては捨てられる点には注意しよう。以下に例を示す。

p = join('foo', 'bar')
print(p)
出力結果：
macOS：foo/bar
Windows：foo¥bar

p = join('foo', '/bar', 'baz')
print(p)
出力結果：
macOS：/bar/baz
Windows：/bar¥baz

　Windows環境では異なるドライブ文字を含んだ場合も同様にそれ以前の要素は無視される（以下の例では先

頭の 'foo'はCドライブのカレントディレクトリにある 'foo'というパスを意味するが、次の要素が 'd:bar'なので無

視される。なお、この d:barはDドライブのカレントディレクトリにある barというパスを表すだけで、Dドライ

ブのルートディレクトリにある barというパスを表しているわけではないことにも注意）。

p = join('foo', 'd:bar', 'baz')
print(p) # d:bar¥baz

　normpath関数はパスを正規化する関数だ。ここでいう「正規化」とはカレントディレクトリを表すドット「.」

や親ディレクトリを表す 2つのドット「..」などを解決したり、連続するスラッシュを単一のスラッシュとしたりする

処理だと考えればよい。

https://docs.python.org/ja/3/library/os.path.html#os.path.abspath

7 →目次に戻る

p = normpath('foo//bar/../baz.txt')
print(p)
出力結果：
macOS：foo/baz.txt
Windows：foo¥baz.txt

　この例では fooと barの間のダブルスラッシュが単一のスラッシュに変換されるとともに、親ディレクトリを意味

する「..」が解決された結果、fooディレクトリの下にある baz.txtファイルを意味するパスが返された。

　normpath関数による正規化が行われるので、abspath関数に「..」を含むパスを与えるとそれが正規化され

たものが返される。以下に例を示す。

p = abspath('../../pytips_0197/pytips_0197.txt')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0197/pytips_0197.txt
Windows：C:¥tmp¥pytips¥pytips_0197¥pytips_0197.txt

　現在の作業ディレクトリは「/tmp/pytips/pytips_0198/code」ディレクトリなので、abspath関数に渡した「../../

pytips_0197/pytips_0197.txt」というパスは codeディレクトリの上の上のディレクトリ（pytipsディレクトリ）

にある pytips_0197ディレクトリにある pytips_0197.txtファイルを意味し、実際にそのパスが得られている。

　パスの一部（ディレクトリ）にシンボリックリンクが含まれている場合には注意が必要になる。冒頭で述べたよう

に dir1ディレクトリは dir0ディレクトリに対するシンボリックリンクとなっている。これを例に見てみよう。

print(islink('dir1')) # True
chdir('dir1')
print(getcwd())
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir0
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir1

　この例では os.path.islink関数で dir1ディレクトリがシンボリックリンクであることを確認し、そこに作業ディ

レクトリを移動している。macOSではその結果、リンク先である dir0ディレクトリに移動したことが分かる

（Windowsでは dir1ディレクトリが得られている。OSによる挙動の異なりであり、シンボリックリンクを扱う場

合には注意が必要になるかもしれない）。

　ここで親ディレクトリにある dir1ディレクトリ（とは現在の作業ディレクトリのことだ）にある cdirというパスの

絶対パスを得てみよう。

8 →目次に戻る

p = abspath('../dir1/cdir')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir1/cdir
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir1¥cdir

　「..」を含むパスが正規化され、ここでは dir0という要素が出てくることなく、dir1を含むパスが得られた。こ

れでも問題はないだろうが、シンボリックリンクを解決したパスが必要なときには以下で紹介する os.path.

realpath関数を使う必要がある。また、正規化を含む振る舞いは、pathlibモジュールの Pathクラスで同様な

処理を行うPath.absoluteメソッドとは異なる点にも注意すること。以下は同じことをPath.absoluteメソッド

で試した結果だ。

from pathlib import Path

path = Path('../dir1/cdir')
p = path.absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir0/../dir1/cdir
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir1¥..¥dir1¥cdir

　absoluteメソッドでは「..」が解決されずに、それを含んだままの絶対パスが戻されている。こちらの方が望ま

しい情報を含んでいるという場合には、abspath関数ではなく、Path.absoluteメソッドを使うのがよいだろう。

　最後にシンボリックリンクを含むパスから、それを解決した正規の絶対パスを realpath関数で取得する例も示

しておこう。

chdir(cwd)
p = realpath('dir1/cdir')
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0198/code/dir0/cdir
Windows：C:¥tmp¥pytips¥pytips_0198¥code¥dir0¥cdir

9 →目次に戻る

import os
from pathlib import Path

d = Path.cwd() # d = os.getcwd()
print(d)
出力結果：
macOS：/private/tmp/pytips/pytips_0199
Windows：C:¥tmp¥pytips¥pytips_0199

カレントディレクトリを基点とした相対パスを取得
p = Path('foo.txt').absolute()
print(p) # /private/tmp/pytips/pytips_0199/foo.txt
出力結果：
macOS：/private/tmp/pytips/pytips_0199/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥foo.txt
print(type(p))
出力結果：
macOS：<class 'pathlib.PosixPath'>／<class 'pathlib._local.PosixPath'>
Windows：<class 'pathlib.WindowsPath'>／<class 'pathlib._local.WindowsPath'>

Path.absoluteメソッドは「..」やシンボリックリンクなどを解決しないまま返す
p = Path('dir0/../pytips_0199.txt').absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir0/../pytips_0199.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir0¥..¥pytips_0199.txt

Path.resolveメソッドは「..」やシンボリックリンクを解決する
p = p.resolve()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/pytips_0199.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥pytips_0199.txt

シンボリックリンクの解決
print(Path('dir1').is_symlink()) # True

p = Path('dir1/foo.txt').absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir1/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir1¥foo.txt

pathlib.Path.absolute／ resolveメソッドで
絶対パスを取得するには
pathlibモジュールが提供するPathクラスの absoluteメソッドと resolveメソッドはどちらも
絶対パスを得るためのものである。その違いや使い分けについて紹介する。

かわさきしんじ，Deep Insider編集部（2024年 10月 15日）

https://www.itmedia.co.jp/author/208386/

10 →目次に戻る

os.chdir('dir1')
p = Path('foo.txt').absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir0/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir1¥foo.txt

os.chdir('..')

p = Path('dir1/foo.txt').resolve()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir0/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir0¥foo.txt

　以下では次のようなディレクトリ階層で pytips_0199ディレクトリが現在の作業ディレクトリとなっているもの

とする。macOSでは /tmp/pytipsディレクトリ以下に次のようなディレクトリ階層を作成した。dir1ディレクトリ

は dir0ディレクトリへのシンボリックリンクとなっている。

　　　 macOSでのサンプルのディレクトリ階層

　WindowsではC:¥tmp¥pytipsディレクトリ以下に次のようなディレクトリ階層を作成した。

11 →目次に戻る

 Windowsでのサンプルのディレクトリ階層

　macOSのサンプルディレクトリ階層と同様、dir1ディレクトリはdir0ディレクトリへのシンボリックリンクとなっ

ている（管理者権限でコマンドプロンプトを開き「mklink /D dir1 dir0」コマンドで作成）。

　また、事前に osモジュールをインポートし、pathlibモジュールからPathクラスもインポートしておく。

import os
from pathlib import Path

d = Path.cwd() # d = os.getcwd()
print(d)
出力結果：
macOS：/private/tmp/pytips/pytips_0199
Windows：C:¥tmp¥pytips¥pytips_0199

　macOSでの Path.cwdクラスメソッドの出力結果を見ると、「/tmp/…‥」ではなく「/private/tmp/…‥」と

なっているのは /tmpが /private/tmpへのシンボリックリンクとなっているからなので、以降ではこれを /tmpと読

み替えてほしい。

12 →目次に戻る

pathlib.Path.absoluteメソッドによる絶対パスの取得

　pathlibモジュールにはファイルパスを表すPathクラス（とその具象クラス）があり、そのメソッドとしてパス関

連の機能が用意されている。現在の作業ディレクトリを基点として、特定のパスの絶対パスを取得するにはそれら

のうちの absoluteメソッドを使用する。

　以下にシンプルな例を示す。

p = Path('foo.txt').absolute()
print(p) # /private/tmp/pytips/pytips_0199/foo.txt
出力結果：
macOS：/private/tmp/pytips/pytips_0199/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥foo.txt

　ここでは foo.txtというパスを表すオブジェクトを作成し、absoluteメソッドを呼び出している（現在の作業ディ

レクトリにはこのファイルは存在しないが、抽象的なパス操作をしている分には問題はない）。これにより、現在の

作業ディレクトリを基点とした foo.txtの絶対パスが返される。

　返されるのは Pathクラス（の具象クラス）のオブジェクトである（os.pathモジュールの関数は文字列を返す）。

print(type(p))
出力結果：
macOS：<class 'pathlib.PosixPath'>／<class 'pathlib._local.PosixPath'>
Windows：<class 'pathlib.WindowsPath'>／<class 'pathlib._local.WindowsPath'>

　なお、2025年 6月 30日の時点では、Python 3.13.5環境でこれを実行すると、pathlib._local.PosixPath

や pathlib._local.WindowsPathのように「_local」を間に含むようになる（Python 3.13では pathlibモジュー

ルに手が加えられた結果と思われる）。

　Path.absoluteメソッドは自身のパスに現在のディレクトリを表すドット「.」や親ディレクトリを表す「..」、シ

ンボリックリンクなどが含まれていても、それらを解決しない点には注意しよう。以下に例を示す。

p = Path('dir0/../pytips_0199.txt').absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir0/../pytips_0199.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir0¥..¥pytips_0199.txt

13 →目次に戻る

　この例ではカレントディレクトリの下にある dir0ディレクトリ、dir0の親ディレクトリを示す「..」、最後に

pytips_0199.txtという 3つの要素で構成されるパスを表すPathオブジェクトを作成して、absoluteメソッドを

呼び出している。このとき、「..」が解決されていれば、得られる絶対パスは「/private/tmp/pytips/pytips_0199/

pytips_0199.txt」「C:¥tmp¥pytips¥pytips_0199¥pytips_0199.txt」のようになるが、実際に得られるのは

「..」入りのパスとなる。

　このようなパスから「..」などを削除して、シンボリックリンクを解決した絶対パスを得たいのであれば、Path.

resolveメソッドを使用する。以下は「..」を含むパスからそれを削除する例だ。

p = p.resolve()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/pytips_0199.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥pytips_0199.txt

　次にシンボリックリンクを解決する例も見ておこう。既に述べた通り、dir1ディレクトリは dir0ディレクトリへのシ

ンボリックリンクである。そのため、そのパスに対して、Path.is_symlinkメソッドを呼び出すとTrueが返される。

print(Path('dir1').is_symlink()) # True

　このシンボリックリンクを含む Path('dir1/foo.txt')というパスに対して、absoluteメソッドを呼び出すと次のよ

うになる。

p = Path('dir1/foo.txt').absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir1/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir1¥foo.txt

　macOSでもWindowsでもシンボリックリンクは解決されずに、そのまま dir1として絶対パスが返されている。

　この状態で、dir1ディレクトリに移動して、そこにある foo.txtファイルを指すパスであるPath('foo.txt')で

absoluteメソッドを呼び出したのが以下だ。

os.chdir('dir1')
p = Path('foo.txt').absolute()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir0/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir1¥foo.txt

　macOSでは dir1ではなく、dir0が絶対パスに含まれるようになった。Windowsではシンボリックリンクであ

る dir1が絶対パスに含まれたままとなる（プラットフォームごとの挙動の異なり）。

14 →目次に戻る

　ここで、ディレクトリを元に戻して、Path('dir1/foo.txt')というパスに対して resolveメソッドを呼び出すと、今

度はシンボリックリンクが解決され、dir0を含む絶対パスが（macOSでもWindowsでも）取得できた。

os.chdir('..')

p = Path('dir1/foo.txt').resolve()
print(p)
出力結果：
macOS：/private/tmp/pytips/pytips_0199/dir0/foo.txt
Windows：C:¥tmp¥pytips¥pytips_0199¥dir0¥foo.txt

　普段は absoluteメソッドで絶対パスを取得すればよいだろうが、パスの正規化（「..」の削除など）が必要に

なったり、シンボリックリンクを解決したりする必要があるときには resolveメソッドを呼び出す必要がある。

15 →目次に戻る

import os
from os.path import exists, splitext, isdir, isfile

mydir = 'mydir'
myfile = 'myfile.txt'
nofile_or_dir = 'nofile_or_dir'

mydirディレクトリとmyfile.txtファイルを作成
os.mkdir(mydir)

with open(myfile, 'w'):
 pass

print(exists(mydir)) # True
print(exists(myfile)) # True
print(exists(nofile_or_dir)) # False

ディレクトリが存在しなければ作成する
if not exists(mydir):
 os.mkdir(mydir)
else:
 print(f'{mydir} already exists')

ファイルが存在していればバックアップを取り、書き込みを行う
if exists(myfile):
 newfile = splitext(myfile)[0] + '.bak'
 os.rename(myfile, newfile)

with open(myfile, 'w') as f:
 f.write('some text')

指定されたファイル／ディレクトリの存在確認の後、処理を振り分ける
def do_some_work(path):
 if not exists(path):
 res = input(f'{path} not exists. create it? (y/n)')
 if res == 'y':
 with open(path, 'w'):
 pass

 if isdir(path):
 print(f'{path} is a directory')

os.pathモジュールの exists関数を使ってパスが
存在するかどうかを確認するには
exists関数に渡したパスが実際に存在するかどうかを確認したり、isdir／ isfile関数と組み合
わせて処理を振り分けたりする方法を紹介する。

かわさきしんじ，Deep Insider編集部（2022年 10月 25日）

https://www.itmedia.co.jp/author/208386/

16 →目次に戻る

 elif isfile(path):
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')

paths = [mydir, myfile, nofile_or_dir]
for path in paths:
 do_some_work(path)

os.pathモジュールの exists関数

　os.pathモジュールの exists関数は引数に指定したパス（文字列または pathlibモジュールで定義されるPath

クラスのインスタンスなど）が実際に存在するディレクトリやファイルを指しているかどうかを調べるのに使える。パ

スが存在していれば Trueが、そうでなければ Falseが返される。

　以下に例を示す。

import os
from os.path import exists, splitext, isdir, isfile

mydir = 'mydir'
myfile = 'myfile.txt'
nofile_or_dir = 'nofile_or_dir'

mydirディレクトリとmyfile.txtファイルを作成
os.mkdir(mydir)

with open(myfile, 'w'):
 pass

print(exists(mydir)) # True
print(exists(myfile)) # True
print(exists(nofile_or_dir)) # False

　このコードではまずmydirディレクトリを osモジュールのmkdir関数を使って作成し、その後、myfile.txtファ

イルを作成している。変数 nofile_or_dirの値である「nofile_or_dir」という名前のファイルやディレクトリは存

在していない。なお、os.pthモジュールを使用したディレクトリの作成については「ディレクトリを作成／削除す

るには：osモジュール編」を、open関数を使ったファイルの作成については「ファイルを作成／削除するには」

を参照されたい。

　最後の 3行では exists関数を使って 3つのパス（mydir、mydir.txt、nofile_or_dir）についてディレクトリや

ファイルが存在しているかを試している。最初の2つについてはその上で作成しているのでTrueが、最後のnofile_

or_dirについてはそのような名前のディレクトリもファイルもないので Falseが返されている。

https://atmarkit.itmedia.co.jp/ait/articles/2206/21/news024.html
https://atmarkit.itmedia.co.jp/ait/articles/2206/21/news024.html
https://atmarkit.itmedia.co.jp/ait/articles/2207/05/news028.html

17 →目次に戻る

　osモジュールのmkdir関数は指定した名前のディレクトリ（またはファイル）が既に存在しているときには例外

を発生させる。これを回避するには、exists関数で指定したパスが存在するかどうかを確認するとよい。以下に

例を示す。

if not exists(mydir):
 os.mkdir(mydir)
else:
 print(f'{mydir} already exists')

　また、ファイルを新規に作成して、そこに何かを書き込みたいが、同名のファイルがあればそのファイルの拡張

子を「.bak」に変更する必要があるといった場合には次のようなコードが書ける。

if exists(myfile):
 newfile = splitext(myfile)[0] + '.bak'
 os.rename(myfile, newfile)

with open(myfile, 'w') as f:
 f.write('some text')

　最初の if文では exists関数で変数myfileが指すパスが存在しているかどうかを確認している。その名前のディ

レクトリまたはファイルが存在していれば、os.pathモジュールの splitext関数を使って変数myfileの値である

「myfile.txt」を拡張子とそれ以外の部分に分離し（splitext関数の戻り値は「(拡張子以外 , 拡張子)」というタ

プル）、拡張子以外の部分と '.bak'を結合してバックアップファイルの名前を作成して、os.rename関数で名前を

変更している。その後、元のファイル（myfile.txt）を書き込みモードでオープンしてテキストを書き込んでいる

（os.rename関数でファイル名を変更しているので、ファイルをオープンするまではmyfile.txtファイルは存在し

ていないことには注意）。

　このように「パスの存在確認」に続けて何かの処理を行うことはよくあるだろう。そのときには「os.pathモ

ジュールの isdir／ isfile関数を使ってパスがディレクトリやファイルであるかどうかを調べるには」で紹介した isdir

／ isfile関数と組み合わせることが考えられる。

18 →目次に戻る

　以下に例を示す。

def do_some_work(path):
 if not exists(path):
 res = input(f'{path} not exists. create it? (y/n)')
 if res == 'y':
 with open(path, 'w'):
 pass

 if isdir(path):
 print(f'{path} is a directory')
 elif isfile(path):
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')

paths = [mydir, myfile, nofile_or_dir]
for path in paths:
 do_some_work(path)

　関数の先頭では、パスが存在するかどうかを確認し、存在していない場合はファイルを作成するかどうかを問い

合わせて、その返答に応じてファイルを作成するかどうかを決めている。その後、渡されたパスの種類に応じて、if

文で処理を切り分けるようにしている。

19 →目次に戻る

from pathlib import Path

mydir = Path('mydir')
myfile = Path('myfile.txt')
nofile_or_dir = Path('nofile_or_dir')

mydirディレクトリとmyfile.txtファイルを作成
mydir.mkdir(exist_ok=True)
myfile.touch()

existsメソッドはパスがディレクトリやファイルを指していればTrueを返す
print(mydir.exists()) # True
print(myfile.exists()) # True
print(nofile_or_dir.exists()) # False

ディレクトリが存在しなければ作成する
if not mydir.exists(): # d.mkdir(exist_ok=True)
 mydir.mkdir()

ファイルが存在していればバックアップを取ってから書き込みを行う
if myfile.exists():
 myfile.rename(myfile.stem + '.bak')
myfile.write_text('some text')

指定されたファイル／ディレクトリの存在確認の後、処理を振り分ける
def do_some_work(path):
 if not path.exists():
 res = input(f'{path} not exists. create it? (y/n)')
 if res == 'y':
 path.touch()

 if path.is_dir():
 print(f'{path} is a directory')
 elif path.is_file():
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')

paths = [mydir, myfile, nofile_or_dir]
for path in paths:
 do_some_work(path)

Path.existsメソッドを使って
パスが存在するかどうかを確認するには
pathlibモジュールの Pathクラスが持つ existsメソッドを使って、パスが実際に存在する
ディレクトリやファイルを参照しているかを確認する方法を紹介する。

かわさきしんじ，Deep Insider編集部（2022年 10月 18日）

https://www.itmedia.co.jp/author/208386/

20 →目次に戻る

Pathクラスの existsインスタンスメソッド

　pathlibモジュールのPathクラスには existsインスタンスメソッドが備わっている。existsメソッドは対象とな

るPathクラスのインスタンスがディレクトリかファイルを指していれば Trueを、そうでなければ Falseを返す（引

数はない）。

　以下に例を示す。

from pathlib import Path

mydir = Path('mydir')
myfile = Path('myfile.txt')
nofile_or_dir = Path('nofile_or_dir')

mydirディレクトリとmyfile.txtファイルを作成
mydir.mkdir(exist_ok=True)
myfile.touch()

existsメソッドはパスがディレクトリやファイルを指していればTrueを返す
print(mydir.exists()) # True
print(myfile.exists()) # True
print(nofile_or_dir.exists()) # False

　この例では、最初にPathクラスをインポートした後で、mydirディレクトリとmyfile.txtファイルを作成してい

る（ディレクトリの作成については「ディレクトリを作成／削除するには：pathlibモジュール編」を、ファイルの

作成については「ファイルを作成／削除するには」を参照のこと）。

　最後の 3行では存在しないパス「nofile_or_dir」への参照を含む、3つの Pathクラスのインスタンスについ

てexistsメソッドを呼び出している。mydirディレクトリとmyfile.txtファイルは存在しているのでTrueが、nofile_

or_dirについてはそのようなディレクトリもファイルも存在していないので Falseが返される。

　このメソッドは例えば、ユーザーが指定したり、設定ファイルから読み出したりしたパスが実際に存在するかど

うかを確認してから、何らかの処理を行う場合に使える。

　例えば、指定されたディレクトリがなければ作成し、既に存在していれば何もしないという場合には以下のよう

なコードが書けるだろう（上でも見たが、これは冗長であり、Path.mkdirインスタンスメソッドなら exist_ok引

数に Trueを指定した方がスマートである）。

if not mydir.exists(): # d.mkdir(exist_ok=True)
 mydir.mkdir()

https://atmarkit.itmedia.co.jp/ait/articles/2206/28/news028.html
https://atmarkit.itmedia.co.jp/ait/articles/2207/05/news028.html

21 →目次に戻る

　また、ファイルを新規に作成して、そこに何かを書き込みたいが、同名のファイルがあればそのファイルの拡張

子を「.bak」に変更する必要があるといった場合には次のようなコードが書ける。

if myfile.exists():
 myfile.rename(myfile.stem + '.bak')
myfile.write_text('some text')

　この例では existsメソッドでパスが存在しているかどうかを確認し、myfileが指すファイルの名前を rename

メソッドで「元ファイルのベース部分 .bak」に変更してから（この場合は「myfile.bak」になる）、myfile.txtファ

イルに「some text」を書き込んでいる（renameメソッドによりmyfileが指すファイルの名前は変わり、書き込

みを行うまでは、myfile自体は存在しないファイル「myfile.txt」を指していることに注意）。

　このように「パスの存在確認」に続けて何かの処理を行うことはよくあるだろう。そのときには「パスがディレ

クトリやファイルであるかどうかを調べるには：pathlibモジュール編」で紹介する is_dir／ is_fileメソッドと組

み合わせることが考えられる。

　以下に例を示す。do_some_work関数は Pathクラスのインスタンスを受け取り、そのパスが存在するかどう

かを確認した後に、is_dirメソッドと is_fileメソッドを使って処理を切り分けている。

def do_some_work(path):
 if path.exists():
 if path.is_dir():
 print(f'{path} is a directory')
 elif path.is_file():
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')
 else:
 print(f'{path} not exists')

paths = [mydir, myfile, nofile_or_dir]
for path in paths:
 do_some_work(path)

22 →目次に戻る

　このようなネストした if文を書いてしまいそうになるが（実際、筆者もこれでよいだろうとサンプルコードを書い

ていた）、is_dir／ is_fileメソッドは対象が存在しなければ Falseを返すので上のようにネストさせる必要はない。

以下のコードで十分な場合もあるだろう。

def do_some_work(path):
 if path.is_dir():
 print(f'{path} is a directory')
 elif path.is_file():
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')

paths = [mydir, myfile, nofile_or_dir]
for path in paths:
 do_some_work(path)

　existsメソッドを使った条件分岐は is_dir／ is_fileメソッドによる分岐からは独立させて「パスが存在しない

場合」にディレクトリやファイルを作成してから、その後の処理を続けるような使い方をするのがよいかもしれない。

def do_some_work(path):
 if not path.exists(): # パスが存在しなければファイルを作成するかを尋ねる
 res = input(f'{path} not exists. create it? (y/n)')
 if res == 'y':
 path.touch()

 if path.is_dir():
 print(f'{path} is a directory')
 elif path.is_file():
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')

paths = [mydir, myfile, nofile_or_dir]
for path in paths:
 do_some_work(path)

23 →目次に戻る

import os
from os.path import isdir, isfile, exists

テスト用にディレクトリとファイルを作成
d = 'mydir'
if not exists(d):
 os.mkdir(d)

f = 'myfile.txt'
with open(f, 'wt'):
 pass

if isdir(d):
 print(f'{d} is a directory')
else:
 print(f'{d} is not a directory')
出力結果：
#mydir is a directory

if isfile(f):
 print(f'{f} is a file')
else:
 print(f'{f} is not a file')
出力結果：
#myfile.txt is a file

os.scandir関数でカレントディレクトリにあるエントリを反復
for entry in os.scandir():
 if isdir(entry):
 print(f'{entry.name} is a directory')
 elif isfile(entry):
 print(f'{entry.name} is a file')
 else:
 print(f'{entry.name} is not a directory nor file')
出力結果：
#test.py is a file
#myfile.txt is a file
#mydir is a directory

isdir／isfile関数を使わずにDirEntryクラスのメソッドを使える
for entry in os.scandir():

os.pathモジュールの isdir／ isfile関数を使って
パスがディレクトリやファイルであるかどうかを調べるには
あるパスがディレクトリかどうかや、ファイルかどうかを調べるには os.pathモジュールの isdir
／ isfile関数が使える。その使い方や、os.scandir関数と組み合わせて使う方法を紹介する。

かわさきしんじ，Deep Insider編集部（2022年 10月 11日）

https://www.itmedia.co.jp/author/208386/

24 →目次に戻る

 if entry.is_dir():
 print(f'{entry.name} is a directory')
 elif entry.is_file():
 print(f'{entry.name} is a file')
 else:
 print(f'{entry.name} is not a directory nor file')
出力結果は上と同じ

os.listdir関数の場合はisdir／isfile関数を使う
for path in os.listdir():
 if isdir(path):
 print(f'{path} is a directory')
 elif isfile(path):
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')
出力結果は上と同じ

os.pathモジュールの isdir／ isfile関数

　os.pathモジュールには isdir関数と isfile関数があり、これらを使うことで、引数に指定したパスがディレクト

リかどうかや、ファイルかどうかを確認できる。

　ここではまず osモジュール、os.pathモジュールを使ってテスト用のディレクトリとファイルを作成しておこう。

import os
from os.path import exists

テスト用にディレクトリとファイルを作成
d = 'mydir'
if not exists(d):
 os.mkdir(d)

f = 'myfile.txt'
with open(f, 'wt'):
 pass

　ここではmydirディレクトリとmyfile.txtファイルを作成している。

　os.mkdir関数は指定されたディレクトリが既に存在している場合、FileExistsError例外を発生するので、ここ

では os.path.exists関数でファイルの存在確認を行うようにしている。pathlibモジュールの Path.mkdirインス

タンスメソッドでは exist_ok引数に Trueを指定することで例外の発生を抑止できるが、os.mkdir関数ではそう

はいかないことは覚えておこう。

25 →目次に戻る

　isdir関数は引数に指定されたパス（文字列、os.DirEntryクラスのインスタンス、Pathクラスのインスタンス）

がディレクトリを指していれば Trueを、そうでなければ Falseを返す。

　パス「mydir」がディレクトリかどうかを示す例を以下に示す。

from os.path import isdir, isfile

パスがディレクトリかどうかを調べる
if isdir(d):
 print(f'{d} is a directory')
else:
 print(f'{d} is not a directory')
出力結果：
#mydir is a directory

　ここではディレクトリ作成時に使用した文字列を isdir関数に渡しているので、その結果は Trueとなり「mydir

is a directory」と表示される。

　isfile関数も同様に、引数に指定されたパス（文字列、os.DirEntryクラスのインスタンス、Pathクラスのイン

スタンス）がファイルを指していれば Trueを、そうでなければ Falseを返す。

　以下に例を示す。ここでもファイルの作成に使った文字列を isfile関数に渡しているので、その結果は Trueと

なる。

if isfile(f):
 print(f'{f} is a file')
else:
 print(f'{f} is not a file')
出力結果：
#myfile.txt is a file

　osモジュールには scandir関数があり、これを使うと指定したディレクトリ（デフォルトはカレントディレクトリ）

にあるファイルやディレクトリを反復処理できる。このときには、isdir／ isfile関数などを用いて、反復されたディ

レクトリエントリオブジェクト（os.DirEntryクラスのインスタンス）が何を指しているかで処理を切り分けられる

（なお、以下のコードの出力結果に含まれている test.pyファイルはサンプルコードを記述したPythonファイルで

ある。以下、同様）。

26 →目次に戻る

　以下に例を示す。

for entry in os.scandir():
 if isdir(entry):
 print(f'{entry.name} is a directory')
 elif isfile(entry):
 print(f'{entry.name} is a file')
 else:
 print(f'{entry.name} is not a directory nor file')
出力結果：
#test.py is a file
#myfile.txt is a file
#mydir is a directory

　ただし、反復される os.DirEntryクラスのインスタンスには is_dirメソッドと is_fileメソッドがあるので、実際

には isdir／ isfile関数を使うのではなく、上記メソッドを使って以下のようにも書ける。

for entry in os.scandir():
 if entry.is_dir():
 print(f'{entry.name} is a directory')
 elif entry.is_file():
 print(f'{entry.name} is a file')
 else:
 print(f'{entry.name} is not a directory nor file')

　コードを読むという観点では、こちらの方がスッと読めるはずだ（「if is file entry」よりも「if entry is file」の

方が流れがよいというくらいだが）。

　osモジュールにはやはり指定したディレクトリに含まれるエントリを反復する os.listdir関数もあるが、こちらが

反復するのはエントリの名前（文字列）である。そのため、こちらを使ってディレクトリの内容を反復するのであ

れば、osモジュールの isdir／ isfile関数を使う必要がある。

for path in os.listdir():
 if isdir(path):
 print(f'{path} is a directory')
 elif isfile(path):
 print(f'{path} is a file')
 else:
 print(f'{path} is not a directory nor file')

27 →目次に戻る

from pathlib import Path

テスト用にディレクトリとファイルを作成
d = Path('mydir')
d.mkdir(exist_ok=True)

f = Path('myfile.txt')
f.touch()

if d.is_dir():
 print(f'{d} is a directory')
else:
 print(f'{d} is not a directory')
出力結果：
#mydir is a directory

if f.is_file():
 print(f'{f} is a file')
else:
 print(f'{f} is not a file')
出力結果：
#myfile.txt is a file

for entry in Path('.').iterdir():
 if entry.is_dir():
 print(f'{entry} is a directory')
 elif entry.is_file():
 print(f'{entry} is a file')
 else:
 print(f'{entry} is not a directory nor file')
出力結果：
#test.py is a file
#myfile.txt is a file
#mydir is a directory

パスがディレクトリやファイルであるかどうかを
調べるには：pathlibモジュール編
Pathlibモジュールの Pathクラスが提供する is_dir／ is_fileメソッドを使って、特定のパス
がディレクトリ／ファイルを指しているかどうかを確認する方法を紹介する。

かわさきしんじ，Deep Insider編集部（2022年 10月 04日）

https://www.itmedia.co.jp/author/208386/

28 →目次に戻る

pathlibモジュールの Pathクラス

　pathlibモジュールの Pathクラスには is_dirインスタンスメソッドと is_fileインスタンスメソッドがある。これ

らを使うことで Pathクラスのインスタンスがディレクトリを参照しているのかどうかや、ファイルを参照しているの

かどうかを調べられる。is_dir／ is_fileインスタンスメソッドはどちらも引数を持たない。

　以下に簡単な例を示す。

from pathlib import Path

テスト用にディレクトリとファイルを作成
d = Path('mydir')
d.mkdir(exist_ok=True)

f = Path('myfile.txt')
f.touch()

パスがディレクトリかどうかを調べる
if d.is_dir():
 print(f'{d} is a directory')
else:
 print(f'{d} is not a directory')
出力結果：
mydir is a directory

　最初に行っているのは、Pathクラスのmkdirメソッドと touchメソッドを使ったディレクトリ／ファイルの作成

だ。これらについては「ディレクトリを作成／削除するには：pathlibモジュール編」と「ファイルを作成／削除す

るには」を参照のこと。

　is_dirメソッドはパスがディレクトリを参照しているときには Trueを、そうでなければ Falseを返す。上のコー

ドでは、ディレクトリの作成に使用したPathオブジェクトに対して is_dirメソッドを呼び出しているので Trueが

返される。

　is_fileメソッドも同様だ。パスがファイルを参照しているときには Trueを、そうでなければ Falseを返す。以

下のコード例でもファイル作成に使用したPathオブジェクトに対して is_fileメソッドを呼び出しているので、上と

同様に Trueが返される。

if f.is_file():
 print(f'{f} is a file')
else:
 print(f'{f} is not a file')
出力結果：
#myfile.txt is a file

https://atmarkit.itmedia.co.jp/ait/articles/2206/28/news028.html
https://atmarkit.itmedia.co.jp/ait/articles/2207/05/news028.html
https://atmarkit.itmedia.co.jp/ait/articles/2207/05/news028.html

29 →目次に戻る

　Pathクラスには指定したディレクトリに含まれるディレクトリやファイルを反復するための iterdirインスタンス

メソッドもある。これを使って、特定のディレクトリに含まれているディレクトリやファイルをその種類に応じて処理

するにも is_dir／ is_fileメソッドを使える。

　以下に例を示す。

for entry in Path('.').iterdir():
 if entry.is_dir():
 print(f'{entry} is a directory')
 elif entry.is_file():
 print(f'{entry} is a file')
 else:
 print(f'{entry} is not a directory nor file')
出力結果：
#test.py is a file
#myfile.txt is a file
#mydir is a directory

　この例では、カレントディレクトリの内容を反復するために「Path('.').iterdir()」として forループでカレントディ

レクトリに含まれているディレクトリ／ファイルをループ変数の entryに受け取っている（test.pyファイルはサンプ

ルコードが記述されているPythonスクリプト）。

　forループのボディーでは、is_dir／ is_fileメソッドを使って、反復されたパスがディレクトリかファイルかで処

理を切り分けている。

30 →目次に戻る

from os.path import join

UNIX系統のOSの場合
相対パスの結合
result = join('foo', 'bar', 'baz.txt')
print(result) # foo/bar/baz.txt

絶対パスの結合
result = join('/foo', 'bar', 'baz.txt')
print(result) # /foo/bar/baz.txt

引数の途中に絶対パスが含まれている場合
result = join('foo', '/bar', 'baz.txt')
print(result) # /bar/baz.txt

引数の最後を空文字列にすると区切り文字でパスが終わる
result = join('foo', 'bar', 'baz', '')
print(result) # foo/bar/baz/

data = 'data'
start_year = 2020
end_year = 2022
for year in range(start_year, end_year+1):
 for month in range(1, 13):
 path = join(data, f'{year}', f'{month:02}', '')
 # data/2020/01/、data/2020/02/などのパスを使って何らかの処理を行う
 print(path)

Windowsの場合
相対パスの結合
result = join('foo', 'bar', 'baz.txt')
print(result) # foo¥bar¥baz.txt

絶対パスの結合
result = join('¥¥foo', 'bar', 'baz.txt')
print(result) # ¥foo¥bar¥baz.txt

引数の途中に絶対パスが含まれている場合
result = join('foo', '¥¥bar', 'baz.txt')
print(result) # ¥bar¥baz.txt

絶対パスの結合（ドライブ文字を含む）
result = join('c:', '¥¥foo', 'bar', 'baz.txt')
print(result) # c:\foo\bar\baz.txt

os.path.join関数を使ってパスを結合するには
os.path.join関数を使って相対パスや絶対パスを結合する方法や、最後にパス区切り文字を
付加する方法、Windowsのドライブ文字の扱いなどについて紹介する。

かわさきしんじ，Deep Insider編集部（2022年 11月 22日）

https://www.itmedia.co.jp/author/208386/

31 →目次に戻る

ドライブ文字とパスだけを含む場合
result = join('d:', 'foo')
print(result) # d:foo

引数の最後を空文字列にすると区切り文字でパスが終わる
result = join('foo', 'bar', 'baz', '')
print(result) # foo¥bar¥baz¥

data = 'data'
start_year = 2020
end_year = 2022
for year in range(start_year, end_year+1):
 for month in range(1, 13):
 path = join(data, f'{year}', f'{month:02}', '')
 # data¥2020¥01¥、data¥2020¥02¥などのパスを使って何らかの処理を行う
 print(path)

パスの結合

　os.pathモジュールの join関数を使うと、パスを構成する各要素を結合できる（このとき、使用しているOS

で決められているパス区切り文字がパスとパスの間に挟み込まれる）。join関数には 1つ以上の文字列（または

Pathオブジェクトなど）を指定する。

　以下にmacOSで実行した例を示す。

result = join('foo', 'bar', 'baz.txt')
print(result) # foo/bar/baz.txt

　この例では、join関数に 'foo'、'bar'、'baz.txt'という 3つの文字列を渡している。その結果は、これらをパス

区切り文字であるスラッシュ「/」を使って結合した「foo/bar/baz.txt」となる。

　Windowsでは次のようになる。

result = join('foo', 'bar', 'baz.txt')
print(result) # foo¥bar¥baz.txt

　Windowsではパス区切り文字がバックスラッシュ「¥」になっているが、それ以外は同様だ。

　上の例は相対パスを結合したものだが、絶対パスであっても同様に結合できる。以下はその例だ（macOS）。

result = join('/foo', 'bar', 'baz.txt')
print(result) # /foo/bar/baz.txt

32 →目次に戻る

　パスを結合して、絶対パスにするには最初の引数をパス区切り文字で始めるのが簡単だ。だが、引数の中に絶

対パスを含めることも可能だ。この場合、その引数よりも前に置いたパス構成要素は無視され、引数に並べた絶

対パス以降の要素が結合される。

result = join('foo', '/bar', 'baz.txt')
print(result) # /bar/baz.txt

　この例では第 2引数がスラッシュ「/」で始まっている（つまり、これは絶対パス）。そのため、第 1引数は無視

されて、第 2引数と第 3引数を結合した結果が返されている。

　このことはWindowsでも同様だ。以下に例を示す。

result = join('¥¥foo', 'bar', 'baz.txt')
print(result) # ¥foo¥bar¥baz.txt

　注意してほしいのは、Windowsにはドライブ文字があるので、上の例の結果「¥foo¥bar¥baz.txt」はカレン

トドライブの絶対パスになるということだ。

　絶対パスを引数の途中に置いた場合の例は次の通り。

result = join('foo', '¥¥bar', 'baz.txt')
print(result) # ¥bar¥baz.txt

　既に述べたようにWindowsのパスにはドライブ文字という要素がある。ドライブ文字を含んだ絶対パスを結合

する例を以下に示す。

result = join('c:', '¥¥foo', 'bar', 'baz.txt')
print(result) # c:¥foo¥bar¥baz.txt

　この例ではドライブ文字を第 1引数に、ルートディレクトリを第 2引数に指定している。ちなみに、引数の途中

でドライブ文字を指定した場合は、絶対パスを途中で指定したときと同様に、それよりも前の引数は無視される。

result = join('¥¥foo', 'c:', 'bar')
print(result) # c:bar

　この例では第 1引数にルートディレクトリを意味する「'¥¥foo'」を指定しているが、その直後にドライブ文字を

指定している。そのため、「'¥¥foo'」は無視されて「c:bar」が返されている。この「c:bar」が意味するのは「C

ドライブのカレントディレクトリの下にある barというパス」である。「Cドライブのルートディレクトリの直下にあ

る barというパス」ではないことに注意しよう。

33 →目次に戻る

　よって、以下は「Dドライブのカレントディレクトリにある foo」というパスを示す。

ドライブ文字とパスだけを含む場合
result = join('d:', 'foo')
print(result) # d:foo

　パスの最後に区切り文字を含めたいときには引数の最後に空文字列を置けばよい。

UNIX系統のOSの例
result = join('foo', 'bar', 'baz', '')
print(result) # foo/bar/baz/

Windowsの例
result = join('foo', 'bar', 'baz', '')
print(result) # foo¥bar¥baz¥

　UNIX系統のOSとWindowsとで区切り文字が異なるが、最後にパス区切り文字が付加されていることに注

目されたい。

　join関数を使うと、例えば dataディレクトリの下に年ごと、月ごとにディレクトリが作成されていて、そこに何

らかのファイルがあり、それらを定型処理するといった場合に以下のようなコードが書けるだろう。

data = 'data'
start_year = 2020
end_year = 2022
for year in range(start_year, end_year+1):
 for month in range(1, 13):
 path = join(data, f'{year}', f'{month:02}', '')
 # data/2020/01/、data/2020/02/などのパスを使って何らかの処理を行う
 print(path)

34 →目次に戻る

　これを実行すると以下のように機械的にパスを自動生成できる（Windowsではパス区切り文字が異なるが同様

な結果になる）。

>>> data = 'data'
>>> start_year = 2020
>>> end_year = 2022
>>> for year in range(start_year, end_year+1):
... for month in range(1, 13):
... path = join(data, f'{year}', f'{month:02}', '')
... # data/2020/01/、data/2020/02/などのパスを使って何らかの処理を行う
... print(path)
...
data/2020/01/
data/2020/02/
data/2020/03/
 # ……中略……
data/2022/10/
data/2022/11/
data/2022/12/

35 →目次に戻る

from pathlib import Path

UNIX系統のOSの場合
相対パスの結合
path = Path('foo')
result = path.joinpath('bar', Path('baz'))
print(result) # foo/bar/baz

絶対パスの結合
path = Path('/foo')
result = path.joinpath('bar', 'baz.txt')
print(result) # /foo/bar/baz.txt

引数の途中に絶対パスが含まれている場合
path = Path('foo')
result = path.joinpath('bar', '/baz', 'qux')
print(result) # /baz/qux

os.path.join関数とは異なり空文字列を最後においてもパス区切り文字は付加されない
from os.path import join
path = Path('foo')
result = join(path, '')
print(result) # foo/

result = path.joinpath(Path(''))
print(result) # foo

data = Path('data')
start_year = 2020
end_year = 2022
for year in range(start_year, end_year+1):
 for month in range(1, 13):
 path = data.joinpath(f'{year}', f'{month:02}')
 # data/2020/01、data/2020/02などのパスを使って何らかの処理を行う
 somefile = path.joinpath('somefile.txt')
 print(somefile)

Windowsの場合
相対パスの結合
path = Path('foo')
result = path.joinpath('bar', 'baz.txt')
print(result) # foo¥bar¥baz.txt

pathlib.Path.joinpathメソッドを使って
パスを結合するには
pathlibモジュールのPathクラスが提供する joinpathメソッドを使って相対パスや絶対パスを
結合する方法を紹介する。

かわさきしんじ，Deep Insider編集部（2022年 11月 29日）

https://www.itmedia.co.jp/author/208386/

36 →目次に戻る

絶対パスの結合
path = Path('¥¥foo')
result = path.joinpath('bar', 'baz.txt')
print(result) # ¥foo¥bar¥baz.txt

引数の途中に絶対パスが含まれている場合
path = Path('foo')
result = path.joinpath('bar', '¥¥baz', 'qux')
print(result) # ¥baz¥qux

絶対パスの結合（ドライブ文字を含む）
path = Path('c:')
result = path.joinpath('¥¥foo', 'bar', 'baz.txt')
print(result) # c:¥foo¥bar¥baz.txt

path = Path('c:')
result = path.joinpath('foo', '¥¥bar', 'baz.txt')
print(result) # c:¥bar¥baz.txt

ドライブ文字とパスだけを含む場合
path = Path('d:')
result = path.joinpath('foo')
print(result) # d:foo

os.path.join関数とは異なり空文字列を最後においてもパス区切り文字は付加されない
from os.path import join
path = Path('foo')
result = join(path, '')
print(result) # foo¥

result = path.joinpath(Path(''))
print(result) # foo

data = Path('data')
start_year = 2020
end_year = 2022
for year in range(start_year, end_year+1):
 for month in range(1, 13):
 path = data.joinpath(f'{year}', f'{month:02}')
 # data¥2020¥01、data¥2020¥02などのパスを使って何らかの処理を行う
 somefile = path.joinpath('somefile.txt')
 print(somefile)

37 →目次に戻る

pathlib.Pathクラスの joinpathメソッドを使ったパスの結合

　pathlibモジュールの Pathクラスのインスタンスには joinpathメソッドがある（実際には Pathクラスの基底ク

ラスであるPurePathクラスがこのメソッドを提供している）。このメソッドを使うと、Pathクラスのインスタンス

と引数に指定したパス構成要素を基に、新たなパスを表すPathオブジェクトを生成できる。

　このメソッドの動作は次のようになっている。

• joinpathメソッドの引数に絶対パスが含まれていない場合：Pathオブジェクトの値をパスのトップレベルとし

て、引数に指定したパス構成要素をつないだものを返送する

• joinpathメソッドの引数に絶対パスが含まれている場合：最後に指定された絶対パスとそれ以降に指定されて

いるパス構成要素をつないだものを返送する

　簡単な例を以下に示す（macOSで実行した例）。

from pathlib import Path

path = Path('foo')
result = path.joinpath('bar', Path('baz'))
print(result) # foo/bar/baz

　この例では joinpathメソッドの呼び出しに使用しているPathオブジェクトは「foo」という相対パスを表してい

る。また、joinpathメソッドの引数には 'bar'とPath('baz')の 2つの相対パスを表す値が渡されている（このよ

うに joinpathメソッドには文字列や Pathクラスのインスタンスを渡せることにも注目）。そのため、joinpathは

これらを結合した結果である「foo/bar/baz」を表すPathオブジェクトを返送する。

　これはWindowsでも同様だ。Windows上で実行した例を以下に示す。パス区切り文字が異なることを除け

ば同様な結果が得られている。

from pathlib import Path

path = Path('foo')
result = path.joinpath('bar', 'baz.txt')
print(result) # foo¥bar¥baz.txt

　絶対パスを結合するには次の 2つの方法がある。

• 絶対パスを参照するPathオブジェクトで joinpathメソッドを呼び出して、結合したいパスを指定する

• joinpathメソッドを呼び出して、その引数に絶対パスを含むパス構成要素を指定する

38 →目次に戻る

　前者の例を以下に示す（macOS）。

path = Path('/foo')
result = path.joinpath('bar', 'baz.txt')
print(result) # /foo/bar/baz.txt

　この例では変数 pathは「/foo」という絶対パスを参照している。そして、このオブジェクトで joinpathメソッ

ドを呼び出しているので、引数に指定した 2つのパス構成要素「bar」と「baz.txt」をパス区切り文字でつない

だものが戻り値となっている。

　以下は joinpathメソッドの引数に絶対パスを含めた例だ（macOS）。

path = Path('foo')
result = path.joinpath('bar', '/baz', 'qux')
print(result) # /baz/qux

　この例では、joinpathメソッドの呼び出しに使用しているPathオブジェクトは相対パスを参照しているが、引

数には「/baz」という絶対パスが含まれている。このような場合、呼び出しに使用したオブジェクトの値や絶対パ

スよりも前に指定されているパス構成要素は無視されて、（最後に指定された）絶対パスとそれ以降の構成要素を

つないだものが戻り値となる。そのため、戻り値の値は絶対パスである「/baz」とその後にある「qux」をつない

だ「/baz/qux」となっている。

　Windowsでもパス区切りがバックスラッシュ「¥」になることとそのエスケープが必要になることを除けば、基

本的な動作は同様だ（バックスラッシュではなく円マークを使ってUNIX系統のOSと同様な書き方をしてもよい）。

path = Path('¥¥foo')
result = path.joinpath('bar', 'baz.txt')
print(result) # ¥foo¥bar¥baz.txt

　この例は、バックスラッシュとそのエスケープを除けば、先ほどのmacOSの例と同様なコードであり、結果も

同様だ。以下は joinpathメソッドの引数に絶対パスを含んだ例だが、これも同様だ。

path = Path('foo')
result = path.joinpath('bar', '¥¥baz', 'qux')
print(result) # ¥baz¥qux

　ただし、Windowsにはドライブ文字という概念があるので、そこには注意が必要だ。以下はドライブ文字、ルー

トディレクトリ、サブディレクトリ、ファイルで構成されるパスを結合する例だ。

path = Path('c:')
result = path.joinpath('¥¥foo', 'bar', 'baz.txt')
print(result) # c:¥foo¥bar¥baz.txt

39 →目次に戻る

　ドライブ文字と絶対パスと他の構成要素を結合する例を以下に示す。

path = Path('c:')
result = path.joinpath('foo', '¥¥bar', 'baz.txt')
print(result) # c:¥bar¥baz.txt

　この場合、ドライブ文字である「c:」は有効だが、絶対パスである「¥¥bar」よりも前にある「foo」は無視さ

れて「c:¥bar¥baz.txt」というパスが得られている。

　以下はドライブ文字と相対パスを結合する例だ。

path = Path('d:')
result = path.joinpath('foo')
print(result) # d:foo

　この場合は、パスはあくまでもDドライブのカレントディレクトリにある fooというパスを表すことになる。

　joinpathメソッドを使うと、各種の要素で構成されるパスを機械的に扱って、処理対象のパスを自動的に生成

できる。例えば、dataディレクトリの下に年、月ごとに作成されたディレクトリがあり、さらにその下にあるファイ

ルを対象に何かの処理を行うとすると、以下のようなコードが書けるだろう。

data = Path('data')
start_year = 2020
end_year = 2022
for year in range(start_year, end_year+1):
 for month in range(1, 13):
 path = data.joinpath(f'{year}', f'{month:02}')
 # data/2020/01、data/2020/02などのパスを使って何らかの処理を行う
 somefile = path.joinpath('somefile.txt')
 print(somefile)

40 →目次に戻る

　これを実行すると、以下のようなパスを自動的に生成できる（Windowsではパス区切り文字が異なる以外は同

様な結果となる）。

>>> data = Path('data')
>>> start_year = 2020
>>> end_year = 2022
>>> for year in range(start_year, end_year+1):
... for month in range(1, 13):
... path = data.joinpath(f'{year}', f'{month:02}')
... # data/2020/01、data/2020/02などのパスを使って何らかの処理を行う
... somefile = path.joinpath('somefile.txt')
... print(somefile)
...
data/2020/01/somefile.txt
data/2020/02/somefile.txt
 # ……省略……
data/2022/11/somefile.txt
data/2022/12/somefile.txt

41 →目次に戻る

from os.path import split

p = '/tmp/foo/bar.txt'
result = split(p)
print(result) # ('/tmp/foo', 'bar.txt')

p = 'C:¥¥tmp¥¥foo¥¥bar.txt'
result = split(p)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥bar.txt')
Windows：('C:¥¥tmp¥¥foo', 'bar.txt')

Windows上で動作するPythonと同様なパス分割を行う
import ntpath

p = 'C:¥¥tmp¥¥foo¥¥bar.txt'
result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', 'bar.txt')

パスがセパレーターで終わっている場合
p = '/tmp/foo/'
result = split(p)
print(result) # ('/tmp/foo', '')

p = 'C:¥¥tmp¥¥foo¥¥'
result = split(p)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥')
Windows：('C:¥¥tmp¥¥foo', '')

result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', '')

p = '/tmp/foo' # fooはディレクトリかファイルか分からない
result = split(p)
print(result) # ('/tmp', 'foo')

os.path.split関数とos.path.isdir関数、os.path.isfile関数を組み合わせる

split関数でファイルパスを分割するには
os.pathモジュールの split関数はファイルパスを末尾の要素とそれ以外に分割する。その使い
方と注意点を紹介する。

かわさきしんじ，Deep Insider編集部（2024年 03月 19日）

https://www.itmedia.co.jp/author/208386/

42 →目次に戻る

from pathlib import Path

Path('sample').mkdir(exist_ok=True)
Path('sample/foo').mkdir(exist_ok=True)
Path('sample/bar').mkdir(exist_ok=True)
Path('sample/foo.txt').touch(exist_ok=True)
Path('sample/bar.txt').touch(exist_ok=True)

import os

d = 'sample'
for item in os.listdir(d):
 p = d + '/' + item
 head, tail = split(p)
 if os.path.isdir(p):
 print(f'{tail} is a directory')
 elif os.path.isfile(p):
 print(f'{tail} is a file')

パスにセパレーターが含まれていない場合
p = 'foo.txt'
result = split(p)
print(result) # ('', 'foo.txt')

パスがファイルシステムのルートを参照する場合
p = '/'
result = split(p)
print(result)

Pathクラスのインスタンスをos.path.split関数に渡す
from pathlib import Path

p = Path('/tmp/foo/bar.txt')
result = split(p)
print(result) # ('/tmp/foo', 'bar.txt')

p = Path('C:¥¥tmp¥¥foo¥¥bar.txt')
result = split(p)
print(result) # UNIXとWindowsで結果が異なる

result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', 'bar.txt')

43 →目次に戻る

os.path.split関数

　os.pathモジュールにはパスを特定の条件で分割する関数が幾つかある。

• os.path.split関数：パスを「(パスの末尾より前 , パスの末尾)」という 2要素のタプルに分割する

• os.path.splitdrive関数：パスを「(ドライブ , それ以外)」という 2要素のタプルに分割する

• os.path.splitext関数：パスを「(拡張子以外の部分 , 拡張子)」という 2要素のタプルに分割する

• os.path.splitroot関数：パスを「(ドライブ , パスの末尾より前 , パスの末尾)」という 3要素のタプルに分割

する（Python 3.12以降）

　このうち、以下では os.path.split関数を使って、パスを末尾とそれ以外の部分に分割する方法を紹介する。

　以下に os.path.split関数の構文を示す。

os.path.splitext(path)

　os.path.split関数はパラメーターを 1つ持ち、これにパスを渡すと「(パスの末尾以外の要素 , 末尾要素)」と

いう 2つの要素からなるタプルが返される。ここでいう末尾以外の要素と末尾要素とは次のようなものだ。

• 末尾以外の要素：ディレクトリを区切る最後のセパレーターより前の要素

• 末尾要素：ディレクトリを区切る最後のセパレーターより後ろの要素

　セパレーターはUNIX系統のOSであればスラッシュ「/」であり、Windowsでは一般的にはバックスラッシュ

「¥」となる。

　基本的な例を以下に示す。

from os.path import split

p = '/tmp/foo/bar.txt'
result = split(p)
print(result) # ('/tmp/foo', 'bar.txt')

　ここではos.path.split関数に '/tmp/foo/bar.txt'という文字列を渡している。末尾以外の要素は最後のセパレー

ターよりも前なので「/tmp/foo」となり、末尾要素は最後のセパレーターより後ろなので「bar.txt」となっている

のが分かる。ただし、Windows形式のパスについては、実行しているOSによって結果が異なるので注意が必要

だ。以下に例を示す。

44 →目次に戻る

p = 'C:¥¥tmp¥¥foo¥¥bar.txt'
result = split(p)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥bar.txt')
Windows：('C:¥¥tmp¥¥foo', 'bar.txt')

　この例では 'C:¥¥tmp¥¥foo¥¥bar.txt'という文字列を os.path.split関数に渡しているが、筆者がmacOSと

Windowsで試したところでは、その戻り値はmacOSでは「('', 'C:¥¥tmp¥¥foo¥¥bar.txt')」に、Windowsで

は「('C:¥¥tmp¥¥foo', 'bar.txt')」となった。

　これは UNIX系統のOSでは os.pathモジュールの実体は posixpathモジュールであり、Windowsでは

os.pathモジュールの実体が ntpathモジュールとなっていて、それぞれのOS（のファイルシステム）で都合が良

くなるように処理が行われているからだ（os.pathモジュールは Pythonプログラムを実行しているOSによって、

ローカルのファイルパスを処理しやすいように切り替えられているということだ）。

　UNIX系統のOSでWindows上で動作しているPythonと同様にパスを分割したいのであれば、ntpathモ

ジュールをインポートして、その split関数を呼び出す。以下はその例だ。

import ntpath

p = 'C:¥¥tmp¥¥foo¥¥bar.txt'
result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', 'bar.txt')

　逆に、Windows上で UNIX系統のOSで動作している Pythonと同様にパスを分割したいのであれば、

posixpathモジュールをインポートして、その split関数を呼び出せばよい（例は省略）。

45 →目次に戻る

特殊なケース

　パスがディレクトリを区切るセパレーターで終わっている場合、戻り値であるタプルの第 1要素（2つ目の要素）

は空文字列になる。UNIX形式のパス、Windows形式のパス、ntpathモジュールの split関数のそれぞれで試

した例を以下に示す。

p = '/tmp/foo/'
result = split(p)
print(result) # ('/tmp/foo', '')

p = 'C:¥¥tmp¥¥foo¥¥'
result = split(p)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥')
Windows：('C:¥¥tmp¥¥foo', '')

result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', '')

　パスがセパレーターで終わっていなければ、パスの末尾がディレクトリかファイルかに関係なく、末尾要素とそれ

以外に分割される。

p = '/tmp/foo' # fooはディレクトリかファイルか分からない
result = split(p)
print(result) # ('/tmp', 'foo')

　パスが存在するかどうかは os.path.exists関数で、ディレクトリかどうかは os.path.isdir関数で、ファイルか

どうかは os.path.isfile関数で調べられるので、処理を切り分けるのであれば、そうした関数の使用を考えよう（あ

るいは os.scandir関数で反復されるDirEntryクラスの is_dir／ is_fileメソッドや、pathlib.Pathクラスの is_

dir／ is_fileメソッドでもよいだろう）。

46 →目次に戻る

　以下に例を示す（わざとらしい例だがご容赦願いたい）。

from pathlib import Path

Path('sample').mkdir(exist_ok=True)
Path('sample/foo').mkdir(exist_ok=True)
Path('sample/bar').mkdir(exist_ok=True)
Path('sample/foo.txt').touch(exist_ok=True)
Path('sample/bar.txt').touch(exist_ok=True)

import os

d = 'sample'
for item in os.listdir(d):
 p = d + '/' + item
 head, tail = split(p)
 if os.path.isdir(p):
 print(f'{tail} is a directory')
 elif os.path.isfile(p):
 print(f'{tail} is a file')

　この例ではカレントディレクトリに sampleディレクトリを作成して、その下にさらにディレクトリとファイルを幾

つか作成している。その後、sampleディレクトリを起点にファイル／ディレクトリを反復し、それがディレクトリか

ファイルかで処理を切り分けている。上のコードで os.listdir関数は sampleディレクトリからの相対パスを反復

するので、os.path.isdir関数や os.path.isfile関数でパスがディレクトリかファイルかを判定できるようにパスを

加工している。加工後のパスは、os.path.split関数で分割して、sampleディレクトリにあるファイルやディレク

トリの名前を取り出している（ここがわざとらしいところで、実際には「f'{item} is ……'」でよい）。

　また、パスにセパレーターが含まれていない場合（つまり、カレントディレクトリにあるファイルやディレクトリを

パスが参照している場合）には、戻り値であるタプルの第 0要素は常に空文字列となる。

パスにセパレーターが含まれていない場合
p = 'foo.txt'
result = split(p)
print(result) # ('', 'foo.txt')

　os.path.split関数が返すタプルの第 0要素は最後にセパレーターが付かないが、パスとしてルートを渡したと

きだけはセパレーターで終わる。

p = '/'
result = split(p)
print(result)

47 →目次に戻る

os.path.split関数と path-like object

　os.path.split関数は文字列以外にもpath-like objectを受け取れる。そうしたオブジェクトの典型例がpathlib

モジュールの Pathクラスだ。以下に os.path.split関数にPathクラスのインスタンスを渡す例を示す。

from pathlib import Path

p = Path('/tmp/foo/bar.txt')
result = split(p)
print(result) # ('/tmp/foo', 'bar.txt')

　ここではUNIX形式のファイルパスを渡しているので、その結果はUNIX形式のファイルパスを文字列として渡

したときと変わらない。なお、戻り値であるタプルの要素は Pathクラスのインスタンスではなく、文字列であるこ

とには注意しよう。

　Windows形式のファイルパスでもこれは同様だ（つまり、WindowsとUNIX系統のOSで分割結果が異な

る）。

p = Path('C:¥¥tmp¥¥foo¥¥bar.txt')
result = split(p)
print(result) # UNIXとWindowsで結果が異なる

result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', 'bar.txt')

　なお、Windows環境以外でWindows形式のパスからPathクラスのインスタンスを生成しようすると、実際

には pathlib.PosixPathクラスのインスタンスが生成されることには注意しよう（これに対して、Windows環境

でPathクラスのインスタンスを生成しようとすると、実際には pathlib.WindowsPathクラスのインスタンスが生

成される）。pathlibモジュールにはWindows形式のファイルパスを表すクラスとしてPureWindowsPathクラ

スがある。これはWindowsのファイルシステムとは関係なく、Windows形式のパスの操作を確認するために便

利に使える。

from pathlib import PureWindowsPath

p = PureWindowsPath('C:¥¥tmp¥¥foo¥¥bar.txt')
result = split(p)
print(result) # ('', 'C:¥¥tmp¥¥foo¥¥bar.txt')

result = ntpath.split(p)
print(result) # ('C:¥¥tmp¥¥foo', 'bar.txt')

　上の例を見ると分かるが、PureWindowsPathクラスはWindows形式のパスを表すものの、Windows環境

でのパス分割と同じ結果を得たいのであれば、加えて ntpathモジュールを使用する必要がある。

https://docs.python.org/ja/3/glossary.html#term-path-like-object

48 →目次に戻る

from os.path import splitext

os.path.splitext関数はパスを拡張子とそれ以外に分割する
w_file = 'C:¥¥tmp¥¥pytips¥¥foo.txt'
u_file = '/tmp/pytips/foo.txt'

result = splitext(w_file)
print(result) # ('C:¥¥tmp¥¥pytips¥¥foo', '.txt')
result = splitext(u_file)
print(result) # ('/tmp/pytips/foo', '.txt')

w_dir = 'C:¥¥tmp¥¥pytips¥¥'
u_dir = '/tmp/pytips/'

result = splitext(w_dir)
print(result) # ('C:¥¥tmp¥¥pytips¥¥', '')
result = splitext(u_dir)
print(result) # ('/tmp/pytips/', '')

PathクラスのインスタンスでもOK
from pathlib import Path

u_file = Path(u_file)
print(u_file) # /tmp/pytips/foo.txt
result = splitext(u_file)
print(result) # ('/tmp/pytips/foo', '.txt')

os.path.splitext関数は最後の拡張子以降を拡張子として扱う
f = '/tmp/foo/bar.tar.gz'
result = splitext(f)
print(result) # ('/tmp/foo/bar.tar', '.gz')

f = '/tmp/foo/readme'
result = splitext(f) # 拡張子がなければタプルの拡張子部分は空文字列
print(result) # ('/tmp/foo/readme', '')

拡張子に応じて何らかの処理を行う
準備
from pathlib import Path

d = Path('pytips/test')
d.mkdir(parents=True, exist_ok=True)

splitext関数でファイルパスから拡張子を取得するには
os.path.splitext関数は渡されたパスを拡張子とそれ以外の部分に分割する。その基本的な
使い方と注意点、拡張子ごとに処理を切り分けるサンプルコードを紹介する。

かわさきしんじ，Deep Insider編集部（2024年 03月 12日）

https://www.itmedia.co.jp/author/208386/

49 →目次に戻る

f0 = Path(d, 'foo.txt') # 'pytips/test/foo.txt'
f1 = d / Path('bar.csv') # 'pytips/test/bar.csv'
f2 = d / 'baz.tsv' # pytips/test/baz.tsv'

print(d) # pytips/test
print(f0) # pytips/test/foo.txt
print(f1) # pytips/test/bar.csv
print(f2) # pytips/test/baz.tsv

f0.touch()
f1.touch()
f2.touch()

Path.iterdirメソッドでディレクトリを走査する
for item in d.iterdir():
 root, ext = splitext(item)
 match(ext):
 case '.txt':
 print('processing a text file:', item)
 case '.csv' | '.tsv':
 print('processing a csv/tsv file:', item)
 case _:
 print('do nothing:', item)

os.scandir関数でディレクトリを走査する
import os
for item in os.scandir(d):
 root, ext = splitext(item) # DirEntryクラスのインスタンスでもOK
 if ext == '.txt':
 print('processing a text file:', item.name)
 elif ext == '.csv' or ext == '.tsv':
 print('processing a csv/tsv file:', item.name)
 else:
 print('do nothing:', item.name)

os.path.splitext関数

　os.pathモジュールにはパスを特定の条件で分割する関数が幾つかある。

• os.path.split関数：パスを「(パスの末尾より前 , パスの末尾)」という 2要素のタプルに分割する

• os.path.splitdrive関数：パスを「(ドライブ , それ以外)」という 2要素のタプルに分割する

• os.path.splitext関数：パスを「(拡張子以外の部分 , 拡張子)」という 2要素のタプルに分割する

• os.path.splitroot関数：パスを「(ドライブ , パスの末尾より前 , パスの末尾)」という 3要素のタプルに分割

する（Python 3.12以降）

50 →目次に戻る

　このうち、以下では os.path.splitext関数を使って、パスを拡張子とそれ以外の部分に分割する方法を紹介する。

　以下に os.path.splitext関数の構文を示す。

os.path.splitext(path)

　os.path.splitext関数はパラメーターを 1つ持ち、これにパスを渡すと「(拡張子以外の部分 , 拡張子)」とい

う 2つの要素からなるタプルが返される。

　基本的な例を以下に示す。

from os.path import splitext

os.path.splitext関数はパスを拡張子とそれ以外に分割する
w_file = 'C:¥¥tmp¥¥pytips¥¥foo.txt'
u_file = '/tmp/pytips/foo.txt'

result = splitext(w_file)
print(result) # ('C:¥¥tmp¥¥pytips¥¥foo', '.txt')
result = splitext(u_file)
print(result) # ('/tmp/pytips/foo', '.txt')

　変数 w_fileにはWindows形式のパス（テキストファイルを表している）が、変数 u_fileにはUnix形式のパ

ス（こちらもテキストファイルを表している）が代入されている。これらを os.path.splitext関数に渡すと結果は

「('C:¥¥tmp¥¥pytips¥¥foo', '.txt')」「('/tmp/pytips/foo', '.txt')」と拡張子以外の部分と拡張子を含んだタプル

が得られる。

　注意したいのは、拡張子の部分がピリオドで始まっている点だ。

　次のように拡張子を含まないパス（多くの場合はディレクトリやフォルダーを意味しているだろう）を渡すと、タ

プルの拡張子部分は空文字列となる。

w_dir = 'C:¥¥tmp¥¥pytips¥¥'
u_dir = '/tmp/pytips/'

result = splitext(w_dir)
print(result) # ('C:¥¥tmp¥¥pytips¥¥', '')
result = splitext(u_dir)
print(result) # ('/tmp/pytips/', '')

51 →目次に戻る

　ここまでパスとして文字列を渡していたが、os.path.splitext関数にはいわゆる「path-like object」を渡して

もよい。そうしたオブジェクトとして典型的なのが pathlibモジュールの Pathクラスのインスタンスだ。

from pathlib import Path

u_file = Path(u_file)
print(u_file) # /tmp/pytips/foo.txt
result = splitext(u_file)
print(result) # ('/tmp/pytips/foo', '.txt')

　この例では、文字列として表現されていたパスをPathクラスのインスタンスに変換し、それを os.path.splitext

関数に渡している。

　パスの最後の構成要素が複数のピリオドを含んでいる場合、os.path.splitext関数は最後のピリオド以降を拡

張子として扱う。以下に例を示す。

f = '/tmp/foo/bar.tar.gz'
result = splitext(f)
print(result) # ('/tmp/foo/bar.tar', '.gz')

　ここではパスは /tmp/fooディレクトリにある bar.tar.gzファイルを指しているが、これを os.path.splitext関数

に渡すと最後のピリオド以降の「.gz」が拡張子として扱われる。

　逆に拡張子がない場合は（先ほども見たが）、戻り値となるタプルの拡張子部分は空文字列になる。以下の例

では readmeファイルを指しているパスを os.path.splitext関数に渡しているが、戻り値であるタプルの拡張子部

分は空文字列になっている。

f = '/tmp/foo/readme'
result = splitext(f) # 拡張子がなければタプルの拡張子部分は空文字列
print(result) # ('/tmp/foo/readme', '')

https://docs.python.org/ja/3/glossary.html#term-path-like-object

52 →目次に戻る

拡張子に応じて何らかの処理を行う

　最後に、os.path.splitext関数で拡張子を取り出して、その種類に応じた処理を行う例を示す。その準備とし

て、ここではカレントディレクトリに pytipsディレクトリを作成し、その下にさらに testディレクトリを作成して、そ

こに 3つのファイルを配置している。

from pathlib import Path

d = Path('pytips/test')
d.mkdir(parents=True, exist_ok=True)

f0 = Path(d, 'foo.txt') # 'pytips/test/foo.txt'
f1 = d / Path('bar.csv') # 'pytips/test/bar.csv'
f2 = d / 'baz.tsv' # pytips/test/baz.tsv'

print(d) # pytips/test
print(f0) # pytips/test/foo.txt
print(f1) # pytips/test/bar.csv
print(f2) # pytips/test/baz.tsv

f0.touch()
f1.touch()
f2.touch()

　最初にPath.iterdirメソッドで pytips/testディレクトリを走査して、そこにある 3つのファイルの拡張子を得て、

match文で処理を分岐させる例だ。

for item in d.iterdir():
 root, ext = splitext(item)
 match(ext):
 case '.txt':
 print('processing a text file:', item)
 case '.csv' | '.tsv':
 print('processing a csv/tsv file:', item)
 case _:
 print('do nothing:', item)

　2つ目の caseブロックでは「case '.csv' | '.tsv':」として拡張子が '.csv'と '.tsv'の場合の処理をまとめている

（実際にはCSVファイルとTSVファイルでは内部で使用する列の区切り文字が異なるため、このように処理をま

とめるのは難しいかもしれない）。

53 →目次に戻る

　同じことを os.scandir関数と if文の組み合わせで行う例は以下の通りだ。

import os
for item in os.scandir(d):
 root, ext = splitext(item) # DirEntryクラスのインスタンスでもOK
 if ext == '.txt':
 print('processing a text file:', item.name)
 elif ext == '.csv' or ext == '.tsv':
 print('processing a csv/tsv file:', item.name)
 else:
 print('do nothing:', item.name)

　os.scandir関数で列挙されるのは DirEntryクラスのインスタンスだが、これも path-like objectなので、

os.path.splitext関数には問題なく渡せる点にも注意しよう。

54 →目次に戻る

from os.path import splitroot

up = '/tmp/foo/bar/baz.txt'
result = splitroot(up) # UNIX環境ではドライブ要素は常に空文字列
print(result) # ('', '/', 'tmp/foo/bar/baz.txt')

wp = 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitroot(wp) # Windows形式のパスは環境で結果が異なる
print(result)
出力結果：
macOS：('', '', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

import ntpath # Windowsと同じ結果を得るにはntpathモジュールを使う
result = ntpath.splitroot(wp)
print(result) # ('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

相対パス
up = 'tmp/foo/bar/baz.txt'
result = splitroot(up)
print(result) # ('', '', 'tmp/foo/bar/baz.txt')

wp = 'tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitroot(wp)
print(result) # ('', '', 'tmp¥¥foo¥¥bar¥¥baz.txt')

ドライブ文字付の相対パス
wp = 'D:tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitroot(wp)
print(result)
出力結果：
macOS：('', '', 'D:tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('D:', '', 'tmp¥¥foo¥¥bar¥¥baz.txt')

result = ntpath.splitroot(wp)
print(result) # ('D:', '', 'tmp¥¥foo¥¥bar¥¥baz.txt')

UNCパス
uncp = '¥¥¥¥server¥¥SharedFolders¥¥pytips'
result = splitroot(uncp)
print(result)

splitroot関数でファイルパスを
ドライブ、ルート、それ以外に分割するには
ファイルパスをドライブ、ルート、それ以降に分割するには os.pathモジュールの splitroot関
数を使える。その使い方、WindowsとUNIXでの動作の違い、Windowsと同様な分割結果
を得るための方法などを紹介する。

かわさきしんじ，Deep Insider編集部（2024年 04月 02日）

https://www.itmedia.co.jp/author/208386/

55 →目次に戻る

出力結果：
macOS：('', '', '¥¥¥¥server¥¥SharedFolders¥¥pytips')
Windows：('¥¥¥¥server¥¥SharedFolders', '¥¥', 'pytips')

result = ntpath.splitroot(uncp)
print(result) # ('¥¥¥¥server¥¥SharedFolders', '¥¥', 'pytips')

path-like object
from pathlib import Path

up = Path('/tmp/foo/bar/baz.txt')
result = splitroot(up)
print(result)
出力結果：
macOS：('', '/', 'tmp/foo/bar/baz.txt')
Windows：('', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

wp = Path('C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
result = splitroot(wp)
print(result)
出力結果：
macOS：('', '', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

result = ntpath.splitroot(wp)
print(result) # ('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

os.path.splitroot関数

　os.pathモジュールにはパスを特定の条件で分割する関数が幾つかある。

• os.path.split関数：パスを「(パスの末尾より前 , パスの末尾)」という 2要素のタプルに分割する

• os.path.splitdrive関数：パスを「(ドライブ , それ以外)」という 2要素のタプルに分割する

• os.path.splitext関数：パスを「(拡張子以外の部分 , 拡張子)」という 2要素のタプルに分割する

• os.path.splitroot関数：パスを「(ドライブ , パスの末尾より前 , パスの末尾)」という 3要素のタプルに分

割する（Python 3.12以降）

　このうち、以下では os.path.splitroot関数を使って、パスをドライブ（ドライブ文字）要素とルート要素、そ

れ以外の部分に分割する方法を紹介する。

　以下に os.path.splitroot関数の構文を示す。

os.path.splitroot(path)

56 →目次に戻る

　os.path.split関数はパラメーターを 1つ持ち、これにパスを渡すと「(ドライブ要素 , ルート要素 , その他の要

素)」という 3つの要素からなるタプルが返される。パスにドライブ文字が含まれるのはWindowsなので、UNIX

（POSIX）環境では戻り値の第 0要素は常に空文字列となる。

　UNIX環境では、os.path.splitroot関数は次のように振る舞う。

• ドライブ要素は常に空文字列

• ルート要素はシングルスラッシュ「/」もしくはダブルスラッシュ「//」、もしくは空文字列（相対パスの場合）

• ルート要素以降が最後の要素に含まれる

　Windows環境では次のように振る舞う。

• ドライブ要素はドライブ文字か、サーバ名と共有名（ファイル共有のUNCパスの場合）、もしくは空文字列（ド

ライブ指定がない場合）

• ルート要素はパスを区切るセパレーターか（絶対パスの場合）、空文字列（相対パスの場合）。セパレーター

は多くの場合バックスラッシュ「¥」が使われる

• ルート要素以降が最後の要素に含まれる

　基本的な例を以下に示す。

from os.path import splitroot

up = '/tmp/foo/bar/baz.txt'
result = splitroot(up) # UNIX環境ではドライブ要素は常に空文字列
print(result) # ('', '/', 'tmp/foo/bar/baz.txt')

　この例ではUNIX形式の絶対パス（/tmp/foo/bar/baz.txt）を splitroot関数に渡している。既に述べたように、

UNIXではドライブ要素は常に空となる。この分割結果はWindows環境でも同じだ。

　Windows形式の絶対パスを分割する例を以下に示す。

wp = 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitroot(wp) # Windows形式のパスは環境で結果が異なる
print(result)
出力結果：
macOS：('', '', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

57 →目次に戻る

　こちらはコードを実行する環境によって結果が異なる。UNIX環境ではドライブ要素とルート要素が空文字列

で、パス全体が残りの要素に含まれる。Windows環境ではドライブ文字、ルートとなるバックスラッシュ、それ

以外の要素に分割される。UNIX環境でWindowsと同じ結果を得るには、ntpathモジュールの splitroot関数

を使用する。

import ntpath # Windowsと同じ結果を得るにはntpathモジュールを使う
result = ntpath.splitroot(wp)
print(result) # ('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

　相対パスを渡した場合は、ルート要素が空文字列になる。従って、UNIX環境ではこの場合、ドライブ要素と

ルート要素が空文字列になる。

up = 'tmp/foo/bar/baz.txt'
result = splitroot(up)
print(result) # ('', '', 'tmp/foo/bar/baz.txt')

　このことはWindowsでも基本的には同じだ。

wp = 'tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitroot(wp)
print(result) # ('', '', 'tmp¥¥foo¥¥bar¥¥baz.txt')

　ただし、Windowsでは相対パスにドライブ指定が付加されることがある。その場合は、ドライブ要素は空文字

列ではないが、ルート要素は空文字列になる。UNIX環境でそうした相対パスを処理すると、全てが残りの要素

に含まれる（Windows形式のパスは全てそうなる）。既に見たように、ntpath.splitroot関数を使えば同じ結果

が得られる。

wp = 'D:tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitroot(wp)
print(result)
出力結果：
macOS：('', '', 'D:tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('D:', '', 'tmp¥¥foo¥¥bar¥¥baz.txt')

result = ntpath.splitroot(wp)
print(result) # ('D:', '', 'tmp¥¥foo¥¥bar¥¥baz.txt')

58 →目次に戻る

　ファイル共有で使われるUNCパスをWindows環境で os.path.splitroot関数に渡すと、サーバ名と共有名

（とディレクトリのセパレーター）がドライブ要素に含まれる。ルート要素はディレクトリのセパレーターとなり、そ

れ以降が残りの要素に含まれる。以下に例を示す。

uncp = '¥¥¥¥server¥¥SharedFolders¥¥pytips'
result = splitroot(uncp)
print(result)
出力結果：
macOS：('', '', '¥¥¥¥server¥¥SharedFolders¥¥pytips')
Windows：('¥¥¥¥server¥¥SharedFolders', '¥¥', 'pytips')

result = ntpath.splitroot(uncp)
print(result) # ('¥¥¥¥server¥¥SharedFolders', '¥¥', 'pytips')

　最後に os.path.splitroot関数には path-like objectも渡せる。以下に例を示す（説明は不要だろう）。

from pathlib import Path

up = Path('/tmp/foo/bar/baz.txt')
result = splitroot(up)
print(result)
出力結果：
macOS：('', '/', 'tmp/foo/bar/baz.txt')
Windows：('', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

wp = Path('C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
result = splitroot(wp)
print(result)
出力結果：
macOS：('', '', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

result = ntpath.splitroot(wp)
print(result) # ('C:', '¥¥', 'tmp¥¥foo¥¥bar¥¥baz.txt')

https://docs.python.org/ja/3/glossary.html#term-path-like-object

59 →目次に戻る

from os.path import splitdrive

wp = 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitdrive(wp)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

UNIX形式のパスを渡すとドライブ要素は常に空文字列
up = '/tmp/foo/bar/baz.txt'
result = splitdrive(up)
print(result) # ('', '/tmp/foo/bar/baz.txt')

Windows上で動作するPythonと同様にパスを分割する
import ntpath

result = ntpath.splitdrive(wp)
print(result) # ('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

uncp = '¥¥¥¥server¥¥SharedFolders¥¥pytips'
result = splitdrive(uncp)
print(result)
macOS：('', '¥¥¥¥server¥¥SharedFolders¥¥pytips')
Windows：('¥¥¥¥server¥¥SharedFolders', '¥¥pytips')

uncp = '¥¥¥¥.¥¥z:¥¥pytips'
result = splitdrive(uncp)
print(result)
出力結果：
macOS：('', '¥¥¥¥.¥¥z:¥¥pytips')
Windows：('¥¥¥¥.¥¥z:', '¥¥pytips')

相対パス
up = 'foo/bar/baz.txt'
result = splitdrive(up)
print(result) # ('', 'foo/bar/baz.txt')

wp = 'D:foo¥¥bar¥¥baz.txt' # fooはDドライブのカレントディレクトリにある
result = splitdrive(wp)
print(result)

splitdrive関数でファイルパスを
ドライブ文字とその他の部分に分割するには
Windowsではファイルパスにドライブ文字が含まれる場合がある。os.pathモジュールの
splitdrive関数を使って、ドライブ文字とその他に分割する方法や、UNIXでこれと同様な処
理を行う方法などを紹介する。

かわさきしんじ，Deep Insider編集部（2024年 03月 26日 ）

https://www.itmedia.co.jp/author/208386/

60 →目次に戻る

出力結果：
macOS：('', 'D:foo¥¥bar¥¥baz.txt')
Windows：('D:', 'foo¥¥bar¥¥baz.txt')

path-like object
from pathlib import Path

wp = Path('C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
result = splitdrive(wp)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

result = ntpath.splitdrive(wp)
print(result) # ('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

os.path.splitdrive関数

　os.pathモジュールにはパスを特定の条件で分割する関数が幾つかある。

• os.path.split関数：パスを「(パスの末尾より前 , パスの末尾)」という 2要素のタプルに分割する

• os.path.splitdrive関数：パスを「(ドライブ , それ以外)」という 2要素のタプルに分割する

• os.path.splitext関数：パスを「(拡張子以外の部分 , 拡張子)」という 2要素のタプルに分割する

• os.path.splitroot関数：パスを「(ドライブ , パスの末尾より前 , パスの末尾)」という 3要素のタプルに分割

する（Python 3.12以降）

　このうち、以下では os.path.splitdrive関数を使って、パスをドライブ（ドライブ文字）とそれ以外の部分に分

割する方法を紹介する。

　以下に os.path.splitdrive関数の構文を示す。

os.path.splitextdrive(path)

　os.path.split関数はパラメーターを 1つ持ち、これにパスを渡すと「(パスのドライブ文字 , その他の要素)」

という 2つの要素からなるタプルが返される。パスにドライブ文字が含まれるのはWindowsなので、UNIX

（POSIX）環境では戻り値の第 0要素は常に空文字列となる。

61 →目次に戻る

　基本的な例を以下に示す。

from os.path import splitdrive

wp = 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt'
result = splitdrive(wp)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

　この例では、変数 wpにはWindows形式の絶対パスを代入している。これを os.path.splitdrive関数に渡す

と、戻り値はUNIXならドライブ部分は空文字列になり、残りの部分に関数へ渡したパスがそのまま含まれる。一

方、Windowsではドライブ文字とその他の部分が分割される。

　UNIX形式のパスではUNIXでも、Windowsでも戻り値のドライブ要素は空文字列となる。

up = '/tmp/foo/bar/baz.txt'
result = splitdrive(up)
print(result) # ('', '/tmp/foo/bar/baz.txt')

　UNIX環境でWindows形式のパスを操作する場合に、Windows環境と同様なパス分割をしたければ ntpath

モジュールをインポートして、その splitdrive関数を使用する。

import ntpath

result = ntpath.splitdrive(wp)
print(result) # ('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

　Windowsのファイル共有パス（UNCパス）を与えた場合、UNIX環境ではドライブ文字要素は空文字列に、

Windows環境ではドライブ文字要素にはサーバ名と共有名がドライブ文字要素になり、その他の部分と分割さ

れる。以下に例を示す。

uncp = '¥¥¥¥server¥¥SharedFolders¥¥pytips'
result = splitdrive(uncp)
print(result)
出力結果：
macOS：('', '¥¥¥¥server¥¥SharedFolders¥¥pytips')
Windows：('¥¥¥¥server¥¥SharedFolders', '¥¥pytips')

uncp = '¥¥¥¥.¥¥z:¥¥pytips'
result = splitdrive(uncp)
print(result)
出力結果：
macOS：('', '¥¥¥¥.¥¥z:¥¥pytips')
Windows：('¥¥¥¥.¥¥z:', '¥¥pytips')

62 →目次に戻る

　相対パスを指定した場合も、ドライブ文字が含まれていれば、分割される。

相対パス
up = 'foo/bar/baz.txt'
result = splitdrive(up)
print(result) # ('', 'foo/bar/baz.txt')

wp = 'D:foo¥¥bar¥¥baz.txt' # fooはDドライブのカレントディレクトリにある
result = splitdrive(wp)
print(result)
出力結果：
macOS：('', 'D:foo¥¥bar¥¥baz.txt')
Windows：('D:', 'foo¥¥bar¥¥baz.txt')

　最初の例はUNIX形式の相対パスなので、ドライブ文字要素は空文字列になる。次の例はWindows形式の

相対パスだが、パスの先頭に「D:」とドライブ文字がある点に注意。fooディレクトリはD:ドライブのカレントディ

レクトリにあるということだ。これを os.path.splitdrive関数に渡すと、UNIXではドライブ文字要素は空文字列

に、Windowsではドライブ文字と他の部分が分割される。

　path-like objectを渡すこともできる。簡単な例を以下に示す。

from pathlib import Path

wp = Path('C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
result = splitdrive(wp)
print(result)
出力結果：
macOS：('', 'C:¥¥tmp¥¥foo¥¥bar¥¥baz.txt')
Windows：('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

result = ntpath.splitdrive(wp)
print(result) # ('C:', '¥¥tmp¥¥foo¥¥bar¥¥baz.txt')

　なお、本稿冒頭ではUNIX（POSIX）環境ではドライブ文字要素は常に空文字列になると書いたが、これは

posixlib.splitdrive関数の実装が次のようになっているからだ。

def splitdrive(p):
 """Split a pathname into drive and path. On Posix, drive is always
 empty."""
 p = os.fspath(p)
 return p[:0], p

　os.fspath関数はパスのファイルシステム表現となる文字列またはバイト列を返す。そして、その先頭から 0番

目の要素の手前まで（つまり、空文字列か空のバイト列）と、パスのファイルシステム表現をタプルにまとめたも

のを戻り値とするようになっている。また、コメントにも「POSIXでは、drive要素は常に空」とある。そのため、

本稿でもそのように表現している。

https://docs.python.org/ja/3/glossary.html#term-path-like-object
https://github.com/python/cpython/blob/b3d25df8d38b79310587da54dbd88b06a16d4904/Lib/posixpath.py#L131

