
解決！ Python
ファイル操作編
かわさきしんじ，Deep Insider編集部［著］

01.テキストファイルの読み書きまとめ

05.テキストファイルを読み書き両用にオープンするには

03.テキストファイルを読み込むには

06.エンコーディングを指定して、シフト JISなどのファイルを読み書きするには

07.エテキストファイルのエンコーディングを調べて、その内容を読み込むには
　　（chardetパッケージ）

08.バイナリファイルを読み書きするには：文字列と整数編

09.バイナリファイルを読み書きするには：structモジュール編

10.バイナリファイルを読み書きするには：pickle編

11.バイナリファイルを読み書きするには：shelve編

04.テキストファイルに書き込むには

02.バイナリファイルの読み書きまとめ

※ 本 eBook の制作の都合上、Python コード中のシングルクオートやダブルクオート、バックスラッシュ（円マーク）などの記号類が、
コードの実行確認に使用したPython 処理系ではシングルクオートやダブルクオート、バックスラッシュなどとして解釈されない文字と
なっていることがあります。コードをコピー＆ペーストして使う際にはご注意ください。

3 →目次に戻る

　ここでは「解決！Python」でこれまでに紹介してきたテキストファイルの読み書きの方法をまとめる。詳しい解

説はコード例の後で紹介しているリンクを参照してほしい。

テキストファイルの読み込み

test.txtファイルの内容
#atmark IT
#
#deep insider

ファイルをオープンして、1行ずつその内容を読み込んで処理する
with open('test.txt') as f:
 for line in f:
 line = line.rstrip() # 読み込んだ行の末尾には改行文字があるので削除
 print(line)
出力結果（4行目に空行が表示されるときとされないときがあるのを除き、以下同じ）
#atmark IT
#
#deep insider

テキストファイルをオープンして、その内容を全て読み込み、クローズする
f = open('test.txt') # f = open('test.txt', 'rt'):
s = f.read() # ファイルの全内容が1つの文字列として返される
print(s)
f.close()

with文と組み合わせると使い終わったとき（ブロック終了時）や
例外が発生したときにファイルが自動的にクローズされる
with open('test.txt') as f:
 s = f.read()

print(s)

pathlibモジュールのPath.read_textメソッドを使う
from pathlib import Path

p = Path('test.txt') # s = Path('test.txt').read_text()
s = p.read_text() # ファイルのオープン、読み込み、クローズをまとめて実行
print(s)

改行を区切り文字として文字列を分割し、リストに格納

テキストファイルの読み書きまとめ
テキストファイルに対する読み込みと書き込み、テキストファイルを読み書き両用でオープンす
る方法、エンコーディングの指定や検出の方法をまとめて紹介する。

かわさきしんじ，Deep Insider編集部（2021年 06月 15日）

https://www.itmedia.co.jp/author/208386/

4 →目次に戻る

sl = s.split('¥n')
print(sl) # ['atmark IT', '', 'deep insider', '']
for line in sl:
 print(line)

readlineメソッドを使ってテキストファイルから1行ずつ内容を読み込む
with open('test.txt') as f:
 line = f.readline()
 while line:
 line = line.rstrip()
 print(line)
 line = f.readline()

Python 3.8以降なら代入式を使ってシンプルに書ける
with open('test.txt') as f:
 while line := f.readline():
 line = line.rstrip()
 print(line)

テキストファイルの内容をリストに読み込む
with open('test.txt') as f:
 sl = f.readlines()

print(sl) # ['atmark IT¥n', '¥n', 'deep insider¥n']

readlinesメソッドを使って各行を順次処理するループを形成
with open('test.txt') as f:
 for line in f.readlines():
 line = line.rstrip()
 print(line)

　テキストファイルの読み込みについては「テキストファイルを読み込むには」を参照のこと。

テキストファイルへの書き込み

ファイルを書き込み用にオープンして、ファイル先頭から文字列を書き込む
with open('test.txt', 'w') as f: # 「with open('test.txt', 'wt') as f:」と同じ
 f.write('this is a test.¥n') # 改行したければ改行文字を最後に付加
 sl = ['atmark IT¥n', 'deep insider¥n']
 f.writelines(sl) # 文字列リストはwritelinesメソッドで書き込む
 x = 1
 f.write(str(x) + '¥n') # テキストファイルに書き込めるのは文字列のみ

上で作成した内容の確認
from pathlib import Path

print(Path('test.txt').read_text(), end='')
出力結果：

5 →目次に戻る

#this is a test.
#atmark IT
#deep insider
#1

with文を使わない場合
f = open('test.txt', 'w')
f.write('this is a test.¥n') # 戻り値は書き込んだ文字数
f.close()

pathlibモジュールのPathクラスが提供するwrite_textメソッドを使用
p = Path('test.txt')
p.write_text('foo¥nbar¥nbaz¥n')

print(p.read_text(), end='')
出力結果：
#foo
#bar
#baz

ファイルを追記
with open('test.txt', 'a') as f:
 f.write('deep insider¥n')

print(Path('test.txt').read_text(), end='')
出力結果：
#foo
#bar
#baz
#deep insider

ファイルを排他的に作成してオープン
with open('test.txt', 'x') as f: # 既に存在しているのでFileExistsError例外
 pass

with open('test2.txt', 'x') as f:
 f.write('absolutely a new line!¥n')

print(Path('test2.txt').read_text(), end='') # absolutely a new line!

　テキストファイルへの読み込みについては「テキストファイルに書き込むには」を参照のこと。

6 →目次に戻る

テキストファイルを読み書き両用でオープン

with open('test.txt', 'w+') as f: # ファイルを読み書き両用でオープン
 f.write('deep insider¥n') # ファイル先頭から書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # deep insider：ファイル先頭から読み込んで表示

with open('test.txt', 'r+') as f: # 内容を削除せずに読み書き両用でオープン
 f.write('atmark IT') # ファイル先頭から書き込み（上書き）
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # atmark ITder：ファイル先頭から読み込んで表示

with open('test.txt', 'a+') as f:
 f.write('python¥n') # ファイル末尾に書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # ファイル先頭から読み込んで表示
出力結果：
#atmark ITder
#python

with open('test.txt', 'x+') as f: # FileExistsError例外
 pass

with open('moretest.txt', 'x+') as f: # OK
 f.write('atmark IT¥ndeep insider¥n') # ファイル先頭から書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # ファイル先頭から読み込んで表示
出力結果：
#atmark IT
#deep insider

open関数のモードに '+'を付加した場合の振る舞い

　テキストファイルを読み書き両用でオープンする方法については「テキストファイルを読み書き両用にオープンす

るには」を参照のこと。

7 →目次に戻る

エンコーディングを指定して、シフト JISなどのファイルを読み書きする

シフトJISエンコードのテキストファイルの読み込み
sjis.txtの内容：このファイルはシフトJISでエンコードされています
with open('sjis.txt', encoding='shift_jis') as f:
 s = f.read()

print(s.rstrip()) # このファイルはシフトJISでエンコードされています

UTF8エンコードのテキストファイルの読み込み
utf8.txtの内容：このファイルはUTF-8でエンコードされています
with open('utf8.txt', encoding='utf-8') as f:
 s = f.read()

print(s.rstrip()) # このファイルはUTF-8でエンコードされています

バイナリファイルとして読み込んだ後にエンコーディングを指定してデコード
with open('sjis.txt', 'rb') as f:
 b = f.read()

s = b.decode('shift_jis')
print(s.rstrip()) # このファイルはシフトJISでエンコードされています

シフトJISエンコードでテキストファイルに書き込み
with open('sjis-2.txt', 'w', encoding='shift_jis') as f:
 f.write('このファイルもシフトJISでエンコードされています¥n')

with open('sjis-2.txt', encoding='shift_jis') as f:
 print(f.read().rstrip())

UTF-8エンコードでテキストファイルに書き込み
with open('utf8-2.txt', 'w', encoding='utf-8') as f:
 f.write('このファイルもUTF-8でエンコードされています¥n')

with open('utf8-2.txt', encoding='utf-8') as f:
 print(f.read().rstrip())

　エンコーディングの指定については「エンコーディングを指定して、シフト JISなどのファイルを読み書きするに

は」を参照のこと。

テキストファイルのエンコーディングを調べて、その内容を読み込む

chardetによるエンコーディングの判定とテキストデータのデコード
sjis.txtの内容：このファイルはシフトJISでエンコードされています
from chardet import detect # 「pip install chardet」などでインストールしておく

8 →目次に戻る

with open('sjis.txt', 'rb') as f: # バイナリファイルとしてファイルをオープン
 b = f.read() # ファイルの内容を全て読み込む

print(b) # b'¥x82¥xb1¥x82¥xcc¥x83t¥x83@¥x83C……¥x82¥xdc¥x82¥xb7¥r¥n'
enc = detect(b) # chardet.detect関数を使ってエンコーディングを判定
print(enc)
出力結果：
{'encoding': 'shift_jis', 'confidence': 0.99, 'language': 'Japanese'}

得られたエンコーディング情報を使ってファイルをオープンし直す
with open('sjis.txt', encoding=enc['encoding']) as f:
 s = f.read()

print(repr(s)) # 'このファイルはシフトJISでエンコードされています¥n'

もしくは得られたエンコーディング情報を使ってバイト列をデコード
s = b.decode(encoding=enc['encoding'])
print(repr(s)) # 'このファイルはシフトJISでエンコードされています¥r¥n'

ファイルサイズが大きい場合
from chardet.universaldetector import UniversalDetector

with open('sjis.txt', 'rb') as f: # ファイルをバイナリファイルとしてオープン
 detector = UniversalDetector() # UniversalDetectorオブジェクトを生成
 for line in f: # 行末（¥n）またはEOFまでを読み込みながら、以下を繰り返す
 detector.feed(line) # 読み込んだデータをfeedメソッドに渡す
 if detector.done: # 判定できたらdone属性がTrueになるのでループを終了
 break
 detector.close() # ループ終了時にUniversalDetectorオブジェクトをクローズ

print(detector.result)
出力結果：
{'encoding': 'shift_jis', 'confidence': 0.99, 'language': 'Japanese'}

UniversalDetectorオブジェクトもまとめてwith文で取り扱う
from chardet.universaldetector import UniversalDetector
from contextlib import closing

with open('sjis.txt', 'rb') as f, closing(UniversalDetector()) as detector:
 for line in f:
 detector.feed(line)
 if detector.done:
 break

print(detector.result) # 結果を出力

　エンコーディングの検出と、それを利用したファイルの読み込みについては「テキストファイルのエンコーディン

グを調べて、その内容を読み込むには（chardetパッケージ）」を参照のこと。

9 →目次に戻る

　ここでは「解決！Python」でこれまでに紹介してきたバイナリファイルの読み書きの方法をまとめる。詳しい解

説はコード例の後で紹介しているリンクを参照してほしい。テキストファイルの読み書きについては「テキストファ

イルの読み書きまとめ」を参照されたい。

バイナリファイルの読み書き

文字列のバイナリファイルへの書き込み
with open('test.bin', 'wb') as f:
 s = 'ディープインサイダー'
 b = s.encode() # 文字列もバイト列にエンコードする必要がある
 f.write(b) # バイナリファイルにはバイト列しか渡せない

文字列のバイナリファイルからの読み込み
with open('test.bin', 'rb') as f:
 b = f.read()
 s = b.decode()

print(s) # ディープインサイダー

整数のバイナリファイルへの書き込みと読み込み
from sys import byteorder

print(byteorder) # littleもしくはbig
length = 4 # 4バイト長整数に変換する

with open('test.bin', 'wb') as f:
 n = 123456
 b = n.to_bytes(length, byteorder) # nを4バイト長の符号なし整数に変換
 f.write(b)

整数のバイナリファイルからの読み込み
with open('test.bin', 'rb') as f:
 b = f.read(length) # lengthだけバイナリファイルから読み込み
 n = int.from_bytes(b, byteorder) # バイト列を整数に変換する

print(f'read data: {n}') # read data: 123456

整数リストのバイナリファイルへの書き込みと読み込み
nlist = [1, 2, 3, 4, 5, 6]
length = 4 # 4バイト長整数

バイナリファイルの読み書きまとめ
バイナリファイルに対して文字列と整数を読み書きする方法、struct／ pickle／ shelveモ
ジュールを使ってバイナリファイルに各種データを読み書きする方法をまとめて紹介。

かわさきしんじ，Deep Insider編集部（2021年 06月 22日）

https://www.itmedia.co.jp/author/208386/

10 →目次に戻る

with open('test.bin', 'wb') as f:
 # 整数リストをバイト列リストに変換してファイルに書き込み
 blist = [n.to_bytes(length, byteorder) for n in nlist]
 f.writelines(blist)
 # 整数リストをバイト列に変換してファイルに書き込み
 #b = b''.join([n.to_bytes(length, byteorder) for n in nlist])
 #f.write(b)

バイナリファイルからの整数の連続読み込み
with open('test.bin', 'rb') as f:
 result = []
 b = f.read(length) # lengthだけバイナリファイルから読み込み
 while b: # データがあるだけ以下を繰り返す
 n = int.from_bytes(b, byteorder) # 読み込んだデータを整数に変換
 result.append(n) # リストに追加
 b = f.read(length) # lengthだけバイナリファイルから読み込み

print(result) # [1, 2, 3, 4, 5, 6]

バイト列を読み込んだ後にmemoryviewオブジェクトを得て、型変換を行う
with open('test.bin', 'rb') as f:
 b = f.read()

mv = memoryview(b)
result = mv.cast('i').tolist()
print(result) # [1, 2, 3, 4, 5, 6]

　バイナリファイルに対する読み書きについては「バイナリファイルを読み書きするには：文字列と整数編」を参

照のこと。

structモジュールを使ったバイナリファイルの読み書き

structモジュールを使ってバイナリファイルに書き込み
from struct import pack, unpack, calcsize, iter_unpack

person = ('かわさき', 120, 99.9)
fmt = '20sid' # 長さ20のバイト列（20s）、整数（i）、倍精度浮動小数点（d）
b = pack(fmt, person[0].encode(), person[1], person[2]) # fmtに従ってバイト列化

with open('data.bin', 'wb') as f:
 f.write(b)

データサイズの計算
data_size = calcsize(fmt)
print(data_size) # 32（このデータは32バイト長）

バイナリファイルから読み込んで、structモジュールを使って復元
with open('data.bin', 'rb') as f:

11 →目次に戻る

 b = f.read(data_size)

data = unpack(fmt, b)
data = (data[0].strip(b'¥x00').decode(), data[1], data[2])
print(data) # ('かわさき', 120, 99.9)

pathlibモジュールを使う
from pathlib import Path
p = Path('data2.bin')
b = pack(fmt, person[0].encode(), person[1], person[2])
p.write_bytes(b)

b = p.read_bytes()
data = unpack(fmt, b)
data = (data[0].strip(b'¥x00').decode(), data[1], data[2])
print(data) # ('かわさき', 120, 99.9)

複数のデータをバイナリファイルに書き込み
p_list = [('かわさき', 120, 99.9),
 ('えんどう', 60, 68.3),
 ('いっしき', 25, 65.2)]

fmt = '20sid'
with open('data.bin', 'wb') as f:
 b = [pack(fmt, p[0].encode(), p[1], p[2]) for p in p_list]
 f.writelines(b)

複数のデータをバイナリファイルから読み込み
data_size = calcsize(fmt)

with open('data.bin', 'rb') as f:
 b = f.read()

result = [(d[0].strip(b'¥x00').decode(), d[1], d[2]) for d in iter_unpack(fmt, b)]

print(result)

 structモジュールで使われる書式指定文字（抜粋）

12 →目次に戻る

　structモジュールを使ったバイナリファイルの読み書きについては「バイナリファイルを読み書きするには：struct

モジュール編」を参照のこと。

pickleモジュールを使ったバイナリファイルの読み書き

import pickle

favs = ['beer', 'sake']
mydata = {'name': 'かわさき', 'age': 999, 'weight': 123.4, 'favs': favs}

pickle化してファイルに書き込み
with open('pickled.pkl', 'wb') as f:
 pickle.dump(mydata, f)

非pickle化
with open('pickled.pkl', 'rb') as f:
 mydata2 = pickle.load(f)
 favs2 = mydata2['favs']

print(mydata2)
出力結果
{'name': 'かわさき', 'age': 999, 'weight': 123.4, 'favs': ['beer', 'sake']}

print(f'mydata2 == mydata: {mydata2 == mydata}') # mydata2 == mydata: True
print(f'mydata2 is mydata: {mydata2 is mydata}') # mydata2 is mydata: False

クラスのインスタンスのpickle化
class Foo:
 def __init__(self, name, age):
 self.name = name
 self.age = age

foo = Foo('かわさき', 999)

with open('pickled.pkl', 'wb') as f:
 pickle.dump(foo, f)

クラスのインスタンスの非pickle化
del foo # インスタンスを削除
with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # 復元

print(f'name: {foo.name}, age: {foo.age}') # name: かわさき, age: 999

関数オブジェクトとクラスオブジェクトのpickle化
def hello():
 print('hello')

13 →目次に戻る

with open('pickled.pkl', 'wb') as f:
 pickle.dump(Foo, f) # 一つのファイルに複数のオブジェクトをpickle化できる
 pickle.dump(hello, f)

with open('pickled.pkl', 'rb') as f:
 Bar = pickle.load(f) # FooクラスをBarクラスに復元
 greet = pickle.load(f) # hello関数をgreet関数に復元

bar = Bar('bar', 101)
print(f'name: {bar.name}, age: {bar.age}') # name: bar, age: 101
greet() # hello

Fooインスタンスの復元にはFooクラスが定義されている必要がある
foo = Foo('かわさき', 999)
with open('pickled.pkl', 'wb') as f:
 pickle.dump(foo, f)

del Foo, foo # Fooクラスとそのインスタンスであるfooを削除
with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # FooクラスがないのでAttributeError例外

class Foo: # 上とは別のFooクラスを定義してみる
 def __init__(self, a, b):
 self.a = a
 self.b = b

with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # 復元できてしまう

print(foo.a) # AttributeError例外（復元したfooにはa属性はない）

　pickleモジュールを使ったバイナリファイルの読み書きについては「バイナリファイルを読み書きするには：

pickle編」を参照のこと。

14 →目次に戻る

shelveモジュールを使ったバイナリファイルの読み書き

import shelve

data_file = 'mydata'
key = 'person_data'

person_data = [('kawasaki', 120), ('isshiki', 38)]

with shelve.open(data_file) as d:
 d[key] = person_data

with shelve.open(data_file) as d:
 data = d[key]
print(data) # [('kawasaki', 120), ('isshiki', 38)]
デフォルトでは読み書き両用でオープンされる
num_data = [1, 2, 3, 4, 5]

with shelve.open(data_file) as d:
 data = d[key] # 読み込み
 print(data) # [('kawasaki', 120), ('isshiki', 38)]
 d['num_data'] = num_data # 書き込み
 nums = d['num_data'] # 読み込み
 print(nums) # [1, 2, 3, 4, 5]

writeback=False
more_data = ('endo', 45)

with shelve.open(data_file) as d:
 data = d[key]
 data.append(more_data) # 読み出したデータに追加
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38)]
 d[key] = data # 反映するには元のキーの値を置き換える必要がある
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38), ('endo', 45)]

writeback=True
one_more_data = ('shimada', 50)

with shelve.open(data_file, writeback=True) as d:
 data = d[key]
 data.append(one_more_data) # Shelfオブジェクトへの操作はキャッシュされる
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38), ('endo', 45), ('shimada', 50)]
 # closeメソッドかsyncメソッドの呼び出しで、キャッシュの内容が書き込まれる。
 # キャッシュサイズが大きくなると書き戻しに時間がかかる点には注意

　shelveモジュールを使ったバイナリファイルの読み書きについては「バイナリファイルを読み書きするには：

shelve編」を参照のこと。

15 →目次に戻る

ファイルをオープンして、1行ずつその内容を読み込んで処理する
with open('test.txt') as f:
 for line in f:
 line = line.rstrip() # 読み込んだ行の末尾には改行文字があるので削除
 print(line)
出力結果（4行目に空行が表示されるときとされないときがあるのを除き、以下同じ）
#atmark IT
#
#deep insider

テキストファイルをオープンして、その内容を全て読み込み、クローズする
f = open('test.txt') # f = open('test.txt', 'rt'):
s = f.read() # ファイルの全内容が1つの文字列として返される
print(s)
f.close()

with文と組み合わせると使い終わったとき（ブロック終了時）や
例外が発生したときにファイルが自動的にクローズされる
with open('test.txt') as f:
 s = f.read()

print(s)

pathlibモジュールのPath.read_textメソッドを使う
from pathlib import Path

p = Path('test.txt') # s = Path('test.txt').read_text()
s = p.read_text() # ファイルのオープン、読み込み、クローズをまとめて実行
print(s)

改行を区切り文字として文字列を分割し、リストに格納
sl = s.split('¥n')
print(sl) # ['atmark IT', '', 'deep insider', '']
for line in sl:
 print(line)

readlineメソッドを使ってテキストファイルから1行ずつ内容を読み込む
with open('test.txt') as f:
 line = f.readline()
 while line:
 line = line.rstrip()
 print(line)

テキストファイルを読み込むには
open関数や pathlib.Pathクラスを使ってファイルをオープンし、その内容を読み込む方法、
with文と組み合わせる方法、テキストファイルを反復的に処理する基本パターンを紹介する。

かわさきしんじ，Deep Insider編集部（2021年 04月 13日）

https://www.itmedia.co.jp/author/208386/

16 →目次に戻る

 line = f.readline()

Python 3.8以降なら代入式を使ってシンプルに書ける
with open('test.txt') as f:
 while line := f.readline():
 line = line.rstrip()
 print(line)

テキストファイルの内容をリストに読み込む
with open('test.txt') as f:
 sl = f.readlines()

print(sl) # ['atmark IT¥n', '¥n', 'deep insider¥n']

readlinesメソッドを使って各行を順次処理するループを形成
with open('test.txt') as f:
 for line in f.readlines():
 line = line.rstrip()
 print(line)

テキストファイルを読み込む基本

　テキストファイルを読み込む基本的な流れは次のようになる。

1. テキストファイルをオープンする（open関数）

2. テキストファイルの内容を読み込み、利用する

3. テキストファイルをクローズする（closeメソッド）

　open関数の構文を以下に示す。以下の構文で省略されているパラメーターについてはPythonのドキュメント

「open()」を参照されたい。

open(file, mode='r')

　第 1引数には、読み込みたいテキストファイルのファイル名を指定する。文字列でカレントディレクトリからの相

対パスもしくは絶対パスでファイル名を指定するのが一般的だが、Pythonの pathlib.Pathオブジェクト（path-

like object）を渡してもよい。

　第 2引数には、ファイルをオープンするモードを指定する。省略した場合は「r」（読み込み）と「t」（テキスト

モード）が指定されたものとされる。そのため、テキストファイルを読み込み目的でオープンするのであれば、第

2引数の指定は省略して、ファイル名を指定するだけでよい。

　以下に「open関数」→「ファイルからの読み込み（ファイルの利用）」→「ファイルのクローズ」という大まか

な流れを示す。

https://docs.python.org/ja/3/library/functions.html#open
https://atmarkit.itmedia.co.jp/ait/articles/1910/29/news019.html
https://atmarkit.itmedia.co.jp/ait/articles/1910/29/news019.html

17 →目次に戻る

f = open('test.txt') # 「f = open('test.txt', 'rt')」と同じ
…… ファイルを利用 ……
f.close()

from pathlib import Path

filepath = Path('test.txt')
f = open(filepath) # path-like objectを使用
…… ファイルを利用 ……
f.close()

　ただし、ファイル操作時にはプログラム内外の現象を原因として例外が発生することもある。例外処理をきちん

としていないと、「open関数」→「ファイルからの読み込み」→「ファイルのクローズ」という流れの途中でプロ

グラムが終了してしまう可能性もある。with文と組み合わせてファイルを扱うと、ブロック内の処理の終了時やブ

ロック内で例外が発生したときには必ずファイルがクローズされるので、こちらを定型的に使うことをおすすめする。

with open('test.txt') as f: # test.txtファイルをオープンして、変数fで扱う
 # …… ファイルを利用 ……
 pass

with文が終われば、オープンしたファイルはクローズされる

　テキストファイルの処理とは、open関数でテキストファイルをオープンして、そのファイルを表すファイルオブ

ジェクトを取得し、今度はそのファイルオブジェクトから何らかの形で各行のデータを取得し、それらを使って何ら

かの処理を行うということだ。

　実は、ファイルオブジェクトはそれ自体が反復可能オブジェクトとなっているので、ファイルオブジェクトを for文

に与えるだけで、各行を反復的に処理できる。以下ではファイルオブジェクト自体を利用した反復処理、ファイル

オブジェクトが持つ read／ readline／ readlinesメソッドを使った処理を見ていく。このときには、以下のよう

な内容のテキストファイル「test.txt」を例に使う。

atmark IT

deep insider

18 →目次に戻る

テキストファイルから 1行ずつ内容を読み込む

　ファイルオブジェクトを反復可能オブジェクトとして for文に与えて、各行を反復的に処理する典型的なコード

を以下に示す。なお、以降はwith文と組み合わせたファイル読み込みのコードを示す。

with open('test.txt') as f:
 for line in f:
 line = line.rstrip()
 print(line)
出力結果：
#atmark IT
#
#deep insider

　この後に紹介する readメソッドや readlinesメソッドは、ファイルの内容を全てメモリに読み込むのに対して、

この方法では for文のループが実行されるたびにファイルから 1行だけがメモリへと読み込まれる。一度に全ての

内容を読み込む必要がなければ、基本的にはテキストファイルを行ごとに処理するには、この方法を使うのがよい

だろう。

　注意すべき点としては、読み込んだ行の末尾には改行文字が付加されている点だ。そのため、上のコードでは

文字列の rstripメソッドを使って改行文字を削除している。この処理を省略した場合は次のようになる。各要素の

末尾にある改行文字と print関数が自動的に付加する改行文字により、以下のような結果になる。

with open('test.txt') as f:
 for line in f:
 print(line)
出力結果
#atmark IT
#
#
#
#deep insider
#

　テキストファイルをオープンした場合、それを表すファイルオブジェクトには readlineメソッドがある。これは

ファイルから 1行だけを読み込むメソッドだ。これを使うと、上のコードは次のようにも記述できる。

19 →目次に戻る

with open('test.txt') as f:
 line = f.readline() # readlineメソッドで上と同じことを行う
 while line:
 line = line.rstrip()
 print(line)
 line = f.readline()

with open('test.txt') as f:
 while line := f.readline(): # 代入式でシンプルに（Python 3.8以降）
 line = line.rstrip()
 print(line)

　だが、こうした記述をするのであれば、先ほどのようにファイルオブジェクトを反復オブジェクトとして使う方が

スッキリとするはずだ。なお、要素の末尾に改行文字が付加されるのが面倒に感じられるかもしれないが、テキス

トファイル中の空行には改行文字が付加される一方で、ファイル末尾以降を読み込もうとしたときには空文字列が

返される。こうすることで、ファイル末尾までを読み込んだかそうでないかを判断できることは覚えておこう（上の

コードを、よりシンプルにしようとして「f.readline().rstrip()」のようにすると、空行と空文字列の区別が付かな

くなる）。

20 →目次に戻る

テキストファイルをオープンして、その内容を全て読み込み、クローズする

　テキストファイルをオープンして、その内容を全て読み込み、クローズするときには readメソッドが使える。こ

のメソッドは、テキストファイルの内容を全て読み込んで、単一の文字列として返送する。以下に例を示す。

with open('test.txt') as f:
 s = f.read()

print(s)

　これにより、テキストファイルの内容全体が変数 sに代入される（改行文字を含む）。対話環境（REPLや

Jupyter Notebookなど）で変数 sの値を「s」のようにして評価すると、その値が見られる。

s # 'atmark IT¥n¥ndeep insider¥n'

　このように文字列全体の末尾にも改行文字があるので、「print(s)」のようにすると、最後に空行が表示される

点には注意してほしい。

　同様な処理は、pathlibモジュールの Pathクラスのインスタンスメソッド read_textを使っても行える。ファイ

ルのオープンやクローズを気にすることなく、テキストファイルの内容を読み込めるので、こちらの方法も覚えてお

くとよいかもしれない。

from pathlib import Path

p = Path('test.txt') # s = Path('test.txt').read_text()
s = p.read_text() # ファイルのオープン、読み込み、クローズをまとめて実行
print(s)

　どちらの方法にしても、単一の文字列としてファイルの内容が返送されるが、その内容を行ごとに扱いたいので

あれば、改行文字を区切り文字として文字列を分割する。

sl = s.split('¥n')
print(sl) # ['atmark IT', '', 'deep insider', '']
for line in sl:
 print(line)

　readメソッドで読み込んだ末尾に改行文字が付加されている場合、splitメソッドで分割した結果（リスト）の

最終要素が空文字列となる点には注意しよう。ただし、この手間を考えると最初に紹介した方法が簡潔だろう。各

行を反復的に処理したいのではなく、ファイル全体の内容をさらに何かの関数やメソッドに渡して、処理したいの

であれば、このメソッドを使うのがよい。

21 →目次に戻る

テキストファイルの内容をリストに読み込む

　上の readメソッドの例で見たような、テキストファイル全体を読み込んでから、各行を分割して、それらを要素

とするリストを作成したいのであれば、readlinesメソッドを使う。readlinesメソッドはまさにそうした処理をし

てくれる。

　以下に例を示す。

with open('test.txt') as f:
 sl = f.readlines() # 「sl = list(f)」でもよい（説明は省略）

print(sl) # ['atmark IT¥n', '¥n', 'deep insider¥n']

　readメソッドで得たファイル全体の内容を splitメソッドで分割したときには、改行文字が削除されていたが、こ

ちらでは各要素の末尾に改行がある点には注意しよう。必要があれば、文字列の rstripメソッドを呼び出すなどし

て、改行文字を削除する。

　readlinesメソッドの戻り値は各行を要素とするリストなので以下のように反復処理を行うことも可能だ。

with open('test.txt') as f:
 for line in f.readlines():
 line = line.rstrip()
 print(line)

　ただし、これについても基本的にはファイルオブジェクトに対して反復処理を行うことで、同じことを実現できる

ので、あまり使う場面はないかもしれない。

22 →目次に戻る

ファイルを書き込み用にオープンして、ファイル先頭から文字列を書き込む
with open('test.txt', 'w') as f: # 「with open('test.txt', 'wt') as f:」と同じ
 f.write('this is a test.¥n') # 改行したければ改行文字を最後に付加
 sl = ['atmark IT¥n', 'deep insider¥n']
 f.writelines(sl) # 文字列リストはwritelinesメソッドで書き込む
 x = 1
 f.write(str(x) + '¥n') # テキストファイルに書き込めるのは文字列のみ

上で作成した内容の確認
from pathlib import Path

print(Path('test.txt').read_text(), end='')
出力結果：
#this is a test.
#atmark IT
#deep insider
#1

with文を使わない場合
f = open('test.txt', 'w')
f.write('this is a test.¥n') # 戻り値は書き込んだ文字数
f.close()

pathlibモジュールのPathクラスが提供するwrite_textメソッドを使用
p = Path('test.txt')
p.write_text('foo¥nbar¥nbaz¥n')

print(p.read_text(), end='')
出力結果：
#foo
#bar
#baz

ファイルを追記
with open('test.txt', 'a') as f:
 f.write('deep insider¥n')

print(Path('test.txt').read_text(), end='')
出力結果：
#foo
#bar
#baz

テキストファイルに書き込むには
open関数でファイルを書き込み用にオープンし、ファイルに文字列を書き込む方法や書き込み
のモード、pathlib.Pathクラスを使う方法などを紹介する。

かわさきしんじ，Deep Insider編集部（2021年 04月 16日）

https://www.itmedia.co.jp/author/208386/

23 →目次に戻る

#deep insider

ファイルを排他的に作成してオープン
with open('test.txt', 'x') as f: # 既に存在しているのでFileExistsError例外
 pass

with open('test2.txt', 'x') as f:
 f.write('absolutely a new line!¥n')

print(Path('test2.txt').read_text(), end='') # absolutely a new line!

テキストファイルに書き込む基本

　テキストファイルに書き込みを行う基本的な流れを以下に示す。

1. テキストファイルを書き込み用にオープンする（open関数）

2. open関数で取得したファイルオブジェクトを介して書き込みを行う（write／ writelinesメソッド）

3. テキストファイルをクローズする（closeメソッド）

　open関数の構文を以下に示す。以下の構文で省略されているパラメーターについては、Pythonのドキュメン

ト「open()」を参照されたい。

open(file, mode)

　引数 fileには書き込みを行う対象となるテキストファイルのファイル名を指定する。文字列でカレントディレクト

リからの相対パスもしくは絶対パスでファイル名を指定するのが一般的だが、Pythonの pathlib.Pathオブジェク

ト（path-like object）を渡してもよい（Pathオブジェクトを open関数に渡す例については、読み込み目的の

オープンについての話ではあるが、「テキストファイルを読み込むには」を参照のこと）。

　引数modeには以下のいずれかを指定する。

• 'w'： 書き込み用にオープンする。既存のファイルをオープンしたときには、以前の内容は削除され、ファイル

の先頭から新たに書き込みが行われる

• 'a'： 書き込み用にオープンする。既存のファイルをオープンしたときには、以前の内容の末尾に追加で書き込

みが行われる

• 'x'： 書き込み用にファイルをゼロから新規に作成してオープンする。既存のファイルをオープンしようとしたと

きには、FileExistsError例外を発生させる

https://docs.python.org/ja/3/library/functions.html#open

24 →目次に戻る

　テキストファイルをオープンすることを意味する 't'を上記に付加してもよい（'wt'など）。ただし、これは省略可

能である（バイナリファイルをオープンするときの 'b'指定は必須）。

　以下に「open関数」→「ファイルへの書き込み」→「ファイルのクローズ」という大まかな流れを示す。

f = open('test.txt', 'w')
f.write('this is a test.¥n') # 戻り値は書き込んだ文字数
f.close()

　ただし、ファイルへの書き込み時には、プログラム内外の現象を要因として例外が発生して、（例外処理をきち

んとしていないと）ファイルをクローズする前にプログラムが終了してしまうこともある。特にファイル書き込み時

にこうなると、ファイルに保存したはずのデータが保存されていないといったことも起こるかもしれない。そのため、

with文を使って、with文のブロックの終了時やブロック内での例外発生時に必ずファイルがクローズされるように

することをおすすめする。

with open('test.txt', 'w') as f:
 # ファイルへの書き込みを行う
 pass

　open関数の戻り値は、書き込み対象のファイルを表すファイルオブジェクトであり、このオブジェクトを介して

ファイルに書き込みを行う。

　なお、本稿では、書き込んだファイルの内容を確認するのに、pathlibモジュールの Pathクラスが持つ read_

textメソッドを使用する（print関数の引数 endに空文字列を指定しているのは、本稿の例では基本的に、改行

文字付きでファイルに文字列を出力しているので、最後に余計な改行を表示しないようにするため）。

from pathlib import Path

print(Path('test.txt').read_text(), end='')

25 →目次に戻る

ファイルを書き込み用にオープンして、ファイル先頭から文字列を書き込む

　ファイルを書き込み用にオープンし、（既存のファイルであれば、以前の内容を空にして）ファイル先頭から文字

列を書き込むには、先ほども述べたように open関数の引数modeに 'w'（もしくは 'wt'）を指定して、ファイル

をオープンすればよい。ファイルオブジェクトを得たら、writeメソッドやwritelinesメソッドを使って書き込みを

行う。

　以下に例を示す。

with open('test.txt', 'w') as f:
 f.write('atmark IT¥n')

print(Path('test.txt').read_text(), end='')
出力結果：
#atmark IT

　この例では、writeメソッドでファイルに書き込みを行っている。writeメソッドは文字列を引数として受け取り、

ファイルに出力する。その戻り値は書き込みを行った文字数となる。上の例を見ると分かるが、writeメソッドによ

り自動で改行文字が追加されるようなことはないので、必要なところで自分で改行文字を追加する必要がある。

　複数の文字列をファイルに書き込むにはwritelinesメソッドを使用する。

sl = ['atmark IT', 'deep insider']
with open('test.txt', 'w') as f:
 f.writelines([w + '¥n' for w in sl]) # 末尾に改行文字を追加して書き込み

print(Path('test.txt').read_text(), end='')
出力結果：
#atmark IT
#deep insider

　この例では、2つの文字列を要素とするリストの内容をファイルに書き込んでいるが、元の文字列リストには改

行文字が付加されていないので、リスト内包表記を使って各要素の末尾に改行文字を追加している。

　テキストファイルへの書き込みで重要なのは、テキストファイルには文字列型の値しか書き込めないことだ。以

下の例では、整数値「1」をテキストファイルに書き込もうとしているが、これは文字列ではないので TypeError

例外が発生する。これらは何らかのロジックに従って文字列化してから書き込む必要がある（以下の 2つ目の例で

は単純に str関数で文字列化している）。

26 →目次に戻る

x = 1
with open('test.txt', 'w') as f:
 f.write(x) # TypeError例外

with open('test.txt', 'w') as f:
 f.write(str(x) + '¥n') # 文字列に変換して書き込み

　そうではなく、「1」というデータそのものをファイルに書き込みたいのであれば、バイナリファイルを使う必要が

ある（これについては「バイナリファイルを読み書きするには：文字列と整数編」を参照されたい）。

　なお、Pythonの pathlibモジュールが提供するPathクラスにはwrite_textというインスタンスメソッドがある。

これを使うと、ファイルのオープン／書き込み／クローズという処理をまとめて実行できるので、覚えておくとよい

かもしれない。

p = Path('test.txt')
p.write_text('foo¥nbar¥nbaz¥n')

print(p.read_text(), end='')
出力結果：
#foo
#bar
#baz

　write_textメソッドが受け取るのは文字列のみで、文字列以外の値（文字列リストや整数値など）を指定する

と例外となる。よって、これはファイルをオープンして、writeメソッドで書き込んで、クローズするという処理に

相当するものと考えておこう。複数の文字列を書き込みたければ、以下のように改行文字を区切り文字として、文

字列リストの要素を 1個の文字列に連結する。

sl = ['atmark IT', 'deep insider']
s = '¥n'.join(sl)
p = Path('test.txt')
p.write_text(s)

print(p.read_text())

　write_textメソッドを既存のファイルに対して呼び出した場合には、以前の内容は上書きされる。そのため、ファ

イルへの追記などの目的でこれを使用することはできない。

27 →目次に戻る

テキストファイルに追記

　テキストファイルに追記するときには、open関数の引数modeに 'a'（または 'at'）を指定して、ファイルをオー

プンする。その後の書き込みは上と同様、writeメソッドやwritelinesメソッドを使用する。

　以下に例を示す。

Path('test.txt').write_text('atmark IT¥n') # test.txtファイルに1行書き込み
print(Path('test.txt').read_text(), end='')
出力結果：
#atmark IT

with open('test.txt', 'a') as f: # 追記用にオープン
 f.write('deep insider¥n')

print(Path('test.txt').read_text(), end='')
出力結果：
#atmark IT
#deep insider

　この例では、最初にPathクラスのインスタンスに対してwrite_textメソッドを呼び出して、ファイルに書き込

みを行った後、引数modeに 'a'を指定して同じファイルをオープンし、そこに書き込みを行っている。writeメソッ

ドで書き込んだ内容が、追記されていることに注目しよう。

28 →目次に戻る

ファイルを排他的に作成して、書き込み用にオープン

　open関数の引数modeに 'x'を指定した場合には、ファイルを排他的に作成して、書き込み用にオープンする

ことを意味する。ここでいう「排他的」とは、ファイルを作成する場所に、そのファイルが存在していないというこ

とだ（それまでに存在しなかったものを独占的に作成する、といった意味）。そのため、引数modeに 'x'を指定

して、既存のファイルをオープンしようとすると、FileExistsError例外が発生する。

　以下に例を示す。

with open('test.txt', 'x') as f: # 既に存在しているのでFileExistsError例外
 pass

with open('test2.txt') as f: # 存在しないのでFileNotFoundError例外
 pass

with open('test2.txt', 'x') as f: # 上で存在していなかったのでOK
 f.write('absolutely a new file!¥n')

print(Path('test2.txt').read_text(), end='') # absolutely a new file!

29 →目次に戻る

　　with open('test.txt', 'w+') as f: # ファイルを読み書き両用でオープン

 f.write('deep insider¥n') # ファイル先頭から書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # deep insider：ファイル先頭から読み込んで表示

with open('test.txt', 'r+') as f: # 内容を削除せずに読み書き両用でオープン
 f.write('atmark IT') # ファイル先頭から書き込み（上書き）
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # atmark ITder：ファイル先頭から読み込んで表示

with open('test.txt', 'a+') as f:
 f.write('python¥n') # ファイル末尾に書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # ファイル先頭から読み込んで表示
出力結果：
#atmark ITder
#python

with open('test.txt', 'x+') as f: # FileExistsError例外
 pass

with open('test2.txt', 'x+') as f: # OK
 f.write('atmark IT¥ndeep insider¥n') # ファイル先頭から書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # ファイル先頭から読み込んで表示
出力結果：
#atmark IT
#deep insider

テキストファイルを読み書き両用にオープンするには
open関数のモードに '+'を付加すると、ファイルを読み書き両用にオープンできる。'+'を付加
したときの open関数の振る舞いやコード例を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 04月 20日）

https://www.itmedia.co.jp/author/208386/

30 →目次に戻る

テキストファイルに読み書き両用にオープンするには

　open関数でファイルをオープンするときには 'r'（読み込み）、'w'（書き込み）、'a'（追記）、'x'（排他的に書き

込み）のいずれかを指定するが、これに '+'を付加すると、「更新目的」として読み書き両用でファイルがオープン

される。例えば、'r'なら読み込み用にファイルがオープンされるが、'r+'なら読み込みに加えて、書き込みも行え

るということだ。

　なお、テキストファイルの読み込みについては「テキストファイルを読み込むには」を、テキストファイルへの書

き込みについては「テキストファイルに書き込むには」を参照されたい。

　'+'を付加した場合の open関数の振る舞いがどのようになるかを以下の表に示す。

　　　　open関数のモードに '+'を付加した場合の振る舞い

　以下に例を示す。

with open('test.txt', 'w+') as f: # ファイルを読み書き両用でオープン
 f.write('deep insider¥n') # ファイル先頭から書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # deep insider：ファイル先頭から読み込んで表示

　この例では、open関数のモードに 'w+'を指定してファイルをオープンしている。そのため、既存ファイルであ

ればその内容は削除され、ファイルポインタはファイル先頭を指すようになる。

　その後、writeメソッドで書き込みを行い、seekメソッドでファイルポインタを先頭に移動しているので、最後

の行の readメソッドではファイル先頭からファイルの内容が全て読み込まれる。その結果、ファイルに書き込んだ

'deep insider¥n'が画面に表示されている。

　このように '+'を付加することで、ファイルに書き込みをしたり、ファイルから読み込みをしたりすることが可能

になる。

https://docs.python.org/ja/3/library/functions.html#open

31 →目次に戻る

with open('test.txt', 'r+') as f: # 内容を削除せずに読み書き両用でオープン
 f.write('atmark IT') # ファイル先頭から書き込み（上書き）
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # atmark ITder：ファイル先頭から読み込んで表示

　この例では、open関数のモードに 'r+'を指定してファイルをオープンしている。このときには、ファイルの内容

は削除されず、ファイルポインタはファイル先頭を指している。そのため、ここで行っているように、'atmark IT'

をwriteメソッドで書き込もうとすると、ファイルの内容が先頭から上書きされる。

　その後、seekメソッドでファイルポインタを先頭に移動して、readメソッドで読み込みを行うと、'atmark ITder'

と以前の内容に上書きをした結果が得られる。

with open('test.txt', 'a+') as f:
 f.write('python¥n') # ファイル末尾に書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # ファイル先頭から読み込んで表示
出力結果：
#deep insider
#python

　この例では、open関数のモードに 'a+'を指定している。このときには、ファイルの内容は削除されず、ファイ

ルポインタはファイル末尾を指している。そのため、writeメソッドで書き込んだ内容は、ファイルの末尾に追記さ

れる。

with open('test.txt', 'x+') as f: # FileExistsError例外
 pass

　この例では、open関数のモードに 'x+'を指定して、既存のファイル（test.txt）をオープンしようとしている。

'x+'はファイルを「排他的にオープン」する（ファイルをオープンする場所に、その名前のファイルがない状態で

新規に作成する）ので、この場合は FileExistsError例外が発生する。

with open('test2.txt', 'x+') as f: # OK
 f.write('atmark IT¥ndeep insider¥n') # ファイル先頭から書き込み
 f.seek(0) # ファイル先頭にファイルポインタを移動
 print(f.read(), end='') # ファイル先頭から読み込んで表示
出力結果：
#atmark IT
#deep insider

　この例では、同じくopen関数のモードに 'x+'を指定して、今度は存在しないファイルの名前を指定している。

それまでファイルは存在していなかったので、ファイルのオープンに成功し、ファイルの内容が削除されるかどうか

は関係なく、ファイルポインタはファイル先頭（＝ファイル末尾）を指す。

32 →目次に戻る

* 本稿は 2021年 4月 27日に公開された記事をPython 3.12.4で動作確認したものです（確認日：2024年 7月 10日）。

シフトJISエンコードのテキストファイルの読み込み
with open('sjis.txt', encoding='shift_jis') as f:
 s = f.read()

print(s.rstrip()) # このファイルはシフトJISでエンコードされています

UTF8エンコードのテキストファイルの読み込み
with open('utf8.txt', encoding='utf-8') as f:
 s = f.read()

print(s.rstrip()) # このファイルはUTF-8でエンコードされています

バイナリファイルとして読み込んだ後にエンコーディングを指定してデコード
with open('sjis.txt', 'rb') as f:
 b = f.read()

s = b.decode('shift_jis')
print(s.rstrip()) # このファイルはシフトJISでエンコードされています

シフトJISエンコードでテキストファイルに書き込み
with open('sjis-2.txt', 'w', encoding='shift_jis') as f:
 f.write('このファイルもシフトJISでエンコードされています¥n')

with open('sjis-2.txt', encoding='shift_jis') as f:
 print(f.read().rstrip())

UTF-8エンコードでテキストファイルに書き込み
with open('utf8-2.txt', 'w', encoding='utf-8') as f:
 f.write('このファイルもUTF-8でエンコードされています¥n')

with open('utf8-2.txt', encoding='utf-8') as f:
 print(f.read().rstrip())

エンコーディングを指定して
シフト JISなどのファイルを読み書きするには
open関数のencodingパラメーターでテキストファイルのエンコーディング方式を明示して、デ
フォルトエンコーディング以外の形式で符号化されているファイルを読み書きする方法を紹介
する。

かわさきしんじ，Deep Insider編集部（2024年 07月 10日）

https://www.itmedia.co.jp/author/208386/

33 →目次に戻る

open関数とエンコーディング

　Pythonの open関数でテキストファイルをオープンする場合、特に指定をしない限り、コードを実行しようとし

ているプラットフォームごとに定められているエンコーディングを使って、そのファイルがオープンされる。例えば、

macOSならテキストファイルがUTF-8でエンコードされていると見なされ、Windows（日本語版）ならCP932

（≒シフト JIS）でエンコードされていると見なされる。

　そのため、macOSからPythonでシフト JISのテキストファイルを読み込もうとすると例外が発生するし、

Windows（日本語版）からPythonでUTF-8のテキストファイルを読み込もうとするとやはり例外が発生する。

以下はその例だ。

デフォルトのエンコーディングだと、macOSではシフト JISエンコードのテキストファイルを読み込めず、
WindowsではUTF-8エンコードのテキストファイルを読み込めない

34 →目次に戻る

　このように、手元のマシンとは別のマシンで作成されたテキストファイルが自分が普段使っているのとは異なるエ

ンコーディングになっていることはよくある。オープンしようとしているテキストファイルのエンコーディングが分

かっていれば、open関数の encodingパラメーターで、それを明示することで、デフォルトのエンコーディングと

は異なる形式のテキストファイルも読み込めるようになる。

　例えば、テキストファイルを読み込む際に、それがシフト JISでエンコードされていることを明示するには次のよ

うにする。

with open('sjis.txt', encoding='shift_jis') as f:
 s = f.read()

print(s.strip())

　これをmacOS上で実行した結果を以下に示す。

 　　　 macOSからシフト JISエンコーディングのテキストファイルをオープンできた

　同様にUTF-8エンコードされていることを明示して、ファイルをオープンするには次のようにする。

with open('utf8.txt', encoding='utf-8') as f:
 s = f.read()

print(s.strip())

35 →目次に戻る

　これをWindowsで実行した結果を以下に示す。

 WindowsからUTF-8エンコーディングのテキストファイルをオープンできた

　あるいはテキストファイルを「バイナリファイル」としてオープンした後に、エンコーディングを指定してデコード

する方法もある。以下に例を示す。

with open('sjis.txt', 'rb') as f:
 b = f.read()

s = b.decode('shift_jis')
print(s.rstrip())

　encodingパラメーターに指定できる値については「標準エンコーディング」を参照のこと。以下には一部を抜

粋する（ハイフンの代わりにアンダースコア、またはその逆を記述可能。大文字小文字の区別はない）。

 open関数でエンコーディングに指定可能な値（一部）

https://docs.python.org/ja/3/library/codecs.html#standard-encodings

36 →目次に戻る

　ファイルに書き込む場合も同様だ。以下に例を示す（実行結果は省略）。

with open('sjis-2.txt', 'w', encoding='shift_jis') as f:
 f.write('このファイルもシフトJISでエンコードされています¥n')

with open('sjis-2.txt', encoding='shift_jis') as f:
 print(f.read().rstrip())

with open('utf8-2.txt', 'w', encoding='utf-8') as f:
 f.write('このファイルもUTF-8でエンコードされています¥n')

with open('utf8-2.txt', encoding='utf-8') as f:
 print(f.read().rstrip())

　ただし、ファイルを追記するようなときには、必ずテキストファイルを適切なエンコーディングでオープンするよ

うにしよう。以下のようなコードは実行でき、ファイルを壊す。

UTF-8エンコーディングのテキストファイルにシフトJISで追記
with open('utf8-2.txt', 'a', encoding='shift_jis') as f:
 f.write('シフトJIS¥n')

with open('utf8-2.txt', encoding='shift_jis') as f:
 print(f.read().rstrip())

37 →目次に戻る

chardetによるエンコーディングの判定とテキストデータのデコード
sjis.txtの内容：このファイルはシフトJISでエンコーディングされています
from chardet import detect # 「pip install chardet」などでインストールしておく

with open('sjis.txt', 'rb') as f: # バイナリファイルとしてファイルをオープン
 b = f.read() # ファイルの内容を全て読み込む

print(b) # b'¥x82¥xb1¥x82¥xcc¥x83t¥x83@¥x83C……¥xa2¥x82¥xdc¥x82¥xb7¥r¥n'
enc = detect(b) # chardet.detect関数を使ってエンコーディングを判定
print(enc)
出力結果：
{'encoding': 'shift_jis', 'confidence': 0.99, 'language': 'Japanese'}

得られたエンコーディング情報を使ってファイルをオープンし直す
with open('sjis.txt', encoding=enc['encoding']) as f:
 s = f.read()

print(repr(s)) # 'このファイルはシフトJISでエンコーディングされています¥n'

もしくは得られたエンコーディング情報を使ってバイト列をデコード
s = b.decode(encoding=enc['encoding'])
print(repr(s)) # 'このファイルはシフトJISでエンコーディングされています¥r¥n'

ファイルサイズが大きい場合
from chardet.universaldetector import UniversalDetector

with open('sjis.txt', 'rb') as f: # ファイルをバイナリファイルとしてオープン
 detector = UniversalDetector() # UniversalDetectorオブジェクトを生成
 for line in f: # 行末（¥n）またはEOFまでを読み込みながら、以下を繰り返す
 detector.feed(line) # 読み込んだデータをfeedメソッドに渡す
 if detector.done: # 判定できたらdone属性がTrueになるのでループを終了
 break
 detector.close() # ループ終了時にUniversalDetectorオブジェクトをクローズ

print(detector.result)
出力結果：
{'encoding': 'shift_jis', 'confidence': 0.99, 'language': 'Japanese'}

UniversalDetectorオブジェクトもまとめてwith文で取り扱う
from chardet.universaldetector import UniversalDetector
from contextlib import closing

テキストファイルのエンコーディングを調べて
その内容を読み込むには（chardetパッケージ）
別環境で作られたテキストファイルの内容を読み込む際には、まずそのエンコーディングを調べ
る必要がある。chardetパッケージを使って、これを行う方法を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 05月 11日）

https://www.itmedia.co.jp/author/208386/

38 →目次に戻る

with open('sjis.txt', 'rb') as f, closing(UniversalDetector()) as detector:
 for line in f:
 detector.feed(line)
 if detector.done:
 break

print(detector.result) # 結果を出力

chardetパッケージを使ってエンコーディングを検出して、その内容を読み込む

　Pythonの open関数でテキストファイルをオープンする場合、特に指定をしない限り、コードを実行しようとし

ているプラットフォームごとに定められているエンコーディングを使って、そのファイルがオープンされる。

　ローカルマシンのハードディスクなどを対象として、決まったエンコーディングでファイルを読み書きしている分

には問題はないが、別のマシンで作られたテキストファイルを読み書きしたり、ネットワーク経由で手に入れたテキ

ストデータを扱ったりする際には、エンコーディングが手元のマシンのそれとは異なる場合がある。

　例えば、以下はシフト JISでエンコードされたテキストファイル（sjis.txt）の内容をmacOSで読み込もうとし

ているところだ（ファイルの内容は「このファイルはシフト JISでエンコーディングされています ¥n」）。

with open('sjis.txt') as f: # sjis.txtファイルはシフトJISでエンコードされている
 content = f.read()

　これを実行した結果を以下に示す。

シフト JIS形式のファイルの読み込みに失敗したところ

39 →目次に戻る

　この通り、macOS上で特に指定をせずにシフト JISエンコーディングのテキストファイルの内容を読み込もう

とすると失敗する（ファイルはオープンできるが、readメソッドで例外が発生する）。Windows環境（デフォルト

のエンコーディングは「cp932」≒シフト JIS）でUTF-8エンコーディングのテキストファイルの内容を読み込も

うとしたときにも同様なエラーが発生する。

　テキストファイルで使われているエンコーディングが分かっていれば、open関数の encodingパラメーターに

'shift_jis'（や 'utf-8'）などを渡すことでファイルの内容を読み込めるようになるが（「エンコーディングを指定して、

シフト JISなどのファイルを読み書きするには」を参照）、エンコーディングが分からないときには、それを判定す

る必要がある。

　chardetパッケージはまさにこれを行ってくれる。ただし、Pythonに標準で添付されるパッケージではないの

で、「pip install chardet」などとしてあらかじめインストールしておく必要がある。

　chardetパッケージの最も簡単な使い方は、エンコーディングが不明のテキストファイルを「バイナリファイルと

して」オープンして、それをこのパッケージが提供する detect関数に渡すことだ。以下に例を示す。

「pip install chardet」などを実行して、chardetパッケージをインストールしておく
from chardet import detect # chardetパッケージからdetect関数をインポート

with open('sjis.txt', 'rb') as f: # バイナリファイルとして読み込みオープン
 b = f.read() # ファイルから全データを読み込み
 enc = detect(b) # 読み込んだデータdetect関数に渡して判定する

print(enc)
出力結果：
#{'encoding': 'shift_jis', 'confidence': 0.99, 'language': 'Japanese'}

　detect関数の戻り値は辞書であり、この関数によって推測されたエンコーディングは 'encoding'キーの値となっ

ている。上の例を見ると分かる通り、確度（'confidence'キー）と言語（'language'キー）も戻される。この場

合は、エンコーディングはシフト JISで、その確度は 99％ということだ。

　エンコーディングが分かったら、それを open関数に指定して、テキストファイルを再度オープンすると、そのエ

ンコーディングを使ってファイルの読み書きが行われるようになる。

with open('sjis.txt', encoding=enc['encoding']) as f:
 s = f.read()

print(repr(s)) # 'このファイルはシフトJISでエンコーディングされています¥n'

40 →目次に戻る

　あるいは、全てのデータを既に読み込み済みなので、バイト列の decodeメソッドにエンコーディングを指定す

る方法もある。

s = b.decode(enc['encoding'])
print(repr(s)) # 'このファイルはシフトJISでエンコーディングされています¥r¥n'

　2つの方法の出力結果を見ると分かるが、バイト列として読み込んだテキストデータをdecodeメソッドでデコー

ドしたときには、改行文字がプラットフォーム固有の値のままである点には注意が必要だ（Windowsでは

「¥r¥n」、macOSや Linuxでは「¥n」）。そのため、後者の方法でデコードしたときには、文字列の replaceメ

ソッドなどで改行文字を変換する必要があるかもしれない（エンコーディングを指定してオープンし直した場合は、

デフォルトで改行コードは自動的に変換される）。

ファイルサイズが大きな場合

　ファイルサイズが大きな場合に、エンコーディングを調べるためだけに全ての内容を読み込むのは無駄が大きいと

考えるかもしれない。そのようなときには、chardetパッケージが提供するUniversalDetectorクラスを使用する。

　UniversalDetectorクラスには、feedというインスタンスメソッドと doneという属性がある。feedメソッドは

バイト列を引数に受け取り、上で見た detect関数と同様にエンコーディングの推定を行う。そして、ある程度の

確度で推定ができると、done属性を Trueにする。これらを次のような手順で使用して、エンコーディングを判

定できる。

1. テキストファイルをバイナリファイルとしてオープンする

2. UniversalDetectorオブジェクトを生成する

3. ファイルから行末またはファイル末尾（EOF）までをバイト列として読み込む

4. 読み込んだバイト列をUniversalDetectorオブジェクトの feedメソッドに渡す

5. UniversalDetectorオブジェクトの done属性をチェックする

6. done属性が Trueになる（判定できたと判断される）まで 3～ 5を繰り返す

7. UniversalDetectorオブジェクトの closeメソッドを呼び出す

8. ファイルをクローズする

9. 判定結果はUniversalDetectorオブジェクトの result属性に格納される

41 →目次に戻る

　これをコードにすると次のようになる。

from chardet.universaldetector import UniversalDetector

with open('sjis.txt', 'rb') as f: # ファイルをバイナリファイルとしてオープン
 detector = UniversalDetector() # UniversalDetectorオブジェクトを生成
 for line in f: # 行末またはEOFまでを読み込みながら、以下を繰り返す
 detector.feed(line) # 読み込んだデータをfeedメソッドに渡す
 if detector.done: # 判定できたらdone属性がTrueになるのでループを終了
 break
 detector.close() # ループ終了時にUniversalDetectorオブジェクトをクローズ

print(detector.result) # 結果を出力

　この例ではテキストファイルをバイナリファイルとしてオープンし、それを for文に反復可能オブジェクトとして渡

している。これにより行末またはファイル末尾（EOF）までを読み込みながら、for文のブロックが実行される（バ

イナリファイルでは、「¥n」が改行文字として扱われる）。そのブロックの中で読み込んだバイト列を feedメソッド

に渡して推測を行い、done属性の値をチェックする。これが Trueであれば、エンコーディングの推測が終わっ

たものとしてループを終了する。推測結果はUniversalDetectorオブジェクトの result属性に保存されている。そ

うではなくファイル末尾まで読み込んでも推測が終わらなかった場合も、ループ終了時点での推測結果が result属

性に保存されている。

　なお、このコードは contextlib.closingクラスを使って、次のようにも記述できる。

from chardet.universaldetector import UniversalDetector
from contextlib import closing

with open('sjis.txt', 'rb') as f, closing(UniversalDetector()) as detector:
 for line in f:
 detector.feed(line)
 if detector.done:
 break

print(detector.result)

　こうすることで、with文のブロックが実行完了した際に、あるいはブロック内で例外が発生したときに必ず

closingメソッドが呼び出されるようになる。

　1行分のデータではなく、決まったサイズのデータを feedメソッドに渡すのであれば、次のように書くことも可

能だ。

https://docs.python.org/ja/3/library/io.html#io.IOBase.readline
https://docs.python.org/ja/3/library/contextlib.html#contextlib.closing

42 →目次に戻る

from chardet.universaldetector import UniversalDetector
from contextlib import closing

with open('sjis.txt', 'rb') as f, closing(UniversalDetector()) as detector:
 size = 100 # 一度に読み込むデータのサイズ（バイト数）
 b = f.read(size) # 指定したサイズだけファイルから読み込み
 while b: # データがある間、以下を実行
 detector.feed(b)
 if detector.done:
 break
 b = f.read(size)

print(detector.result)

43 →目次に戻る

文字列のバイナリファイルへの書き込み
with open('test.bin', 'wb') as f:
 s = 'ディープインサイダー'
 b = s.encode() # 文字列もバイト列にエンコードする必要がある
 f.write(b) # バイナリファイルにはバイト列しか渡せない

文字列のバイナリファイルからの読み込み
with open('test.bin', 'rb') as f:
 b = f.read()
 s = b.decode()

print(s) # ディープインサイダー

整数のバイナリファイルへの書き込みと読み込み
from sys import byteorder

print(byteorder) # littleもしくはbig
length = 4 # 4バイト長整数に変換する

with open('test.bin', 'wb') as f:
 n = 123456
 b = n.to_bytes(length, byteorder) # nを4バイト長の符号なし整数に変換
 f.write(b)

整数のバイナリファイルからの読み込み
with open('test.bin', 'rb') as f:
 b = f.read(length) # lengthだけバイナリファイルから読み込み
 n = int.from_bytes(b, byteorder) # バイト列を整数に変換する

print(f'read data: {n}') # read data: 123456

整数リストのバイナリファイルへの書き込みと読み込み
nlist = [1, 2, 3, 4, 5, 6]

with open('test.bin', 'wb') as f:
 # 整数リストをバイト列リストに変換してファイルに書き込み
 blist = [n.to_bytes(length, byteorder) for n in nlist]
 f.writelines(blist)
 # 整数リストをバイト列に変換してファイルに書き込み
 #b = b''.join([n.to_bytes(length, byteorder) for n in nlist])
 #f.write(b)

バイナリファイルを読み書きするには：文字列と整数編
バイナリファイルを読み書きする基本と、文字列および整数をバイナリファイルに書き込む方法
を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 05月 18日）

https://www.itmedia.co.jp/author/208386/

44 →目次に戻る

バイナリファイルからの整数の連続読み込み
with open('test.bin', 'rb') as f:
 result = []
 b = f.read(length) # lengthだけバイナリファイルから読み込み
 while b: # データがあるだけ以下を繰り返す
 n = int.from_bytes(b, byteorder) # 読み込んだデータを整数に変換
 result.append(n) # リストに追加
 b = f.read(length) # lengthだけバイナリファイルから読み込み

print(result) # [1, 2, 3, 4, 5, 6]

バイト列を読み込んだ後にmemoryviewオブジェクトを得て、型変換を行う
with open('test.bin', 'rb') as f:
 b = f.read()

mv = memoryview(b)
result = mv.cast('i').tolist()
print(result) # [1, 2, 3, 4, 5, 6]

バイナリファイルを読み書きする基本

　バイナリファイルを読み書きする際には、open関数のmode引数に 'b'を付加する（読み込みなら 'rb'、書き

込みなら 'wb'）。

バイナリファイルを読み込みモードでオープンする
with open('filename', 'rb') as f:
 pass # ファイルを利用する

バイナリファイルを書き込みモードでオープンする
with open('filename', 'wb') as f:
 pass # ファイルを利用する

　オープンしたファイルに対しては、テキストファイルと同様に、readメソッドやwriteメソッドなどを呼び出せる。

　バイナリファイルを読み込み用にオープンしたときには、以下のように反復可能オブジェクトとして for文にファ

イルを渡すことも可能だ。

with open('filename', 'rb') as f:
 for data in f: # 行末（¥n）またはEOFまでを読み込んで以下を繰り返す
 pass # 何かの処理を行う

　上のような形でバイナリファイルから読み込むときには改行文字は常に「¥n」となる点は覚えておこう。

　特定のバイト数だけを読み込むのであれば、readメソッドに読み込みたいバイト数を指定する。

45 →目次に戻る

with open('filename', 'rb') as f:
 size = 32
 data = f.read(size)
 while data:
 # 何かの処理を行う
 data = f.read(size)

　バイナリファイルの読み込みを行うと、得られるのは「バイト列」（bytes型のオブジェクト）になっている点に

は注意しよう。それらは何らかの形で特定の型のオブジェクトに変換する必要がある。

　バイナリファイルを書き込み用にオープンしたときには、元のデータを「バイト列」に変換したものをwriteメ

ソッドなどで書き込んでいく。

with open('filename', 'wb') as f:
 s = 'hello'
 b = s.encode() # 文字列をバイト列に変換
 f.write(b) # 変換後のバイト列をバイナリファイルに書き込み

　以下では、バイナリファイルへの書き込みの例として、文字列と整数を取り上げる。これら以外のオブジェクト

は次回に説明をする structモジュールを使用することでバイナリファイルへの書き込みが比較的簡単に行えるよう

になる。

バイナリファイルに対して文字列を読み書きする

　文字列にはバイト列への変換を行う encodeメソッドがあり、バイト列には文字列への変換を行う decodeメ

ソッドがある。

　バイナリファイルに文字列を書き込む例を以下に示す。

with open('test.bin', 'wb') as f:
 s = 'ディープインサイダー'
 b = s.encode() # 文字列もバイト列にエンコードする必要がある
 f.write(b)

　この例では、バイナリファイルを書き込みモードでオープンした後、文字列 sの encodeメソッドを呼び出して

バイト列にエンコードして、それをwriteメソッドで書き出している。なお、encodeメソッドの encoding引数に

エンコーディングを指定することも可能だ。

46 →目次に戻る

　次にバイナリファイルの読み込みの例を示す。

with open('test.bin', 'rb') as f:
 b = f.read()
 s = b.decode()

print(s) # ディープインサイダー

　このコードでは、バイナリファイルを読み込み用にオープンして、readメソッドで全ての内容を読み出して、取

得したバイト列を decodeメソッドで文字列にデコードしている。文字列の encodeメソッドと同様に、バイト列

の decodeメソッドでもエンコーディングを指定できる。

バイナリファイルに対して整数を読み書きする

　文字列とバイト列の変換には文字列の encodeメソッド／バイト列の decodeメソッドを使用したが、整数とバ

イト列の変換には整数型（int型）の to_bytesインスタンスメソッドと from_bytesクラスメソッドを使用する。

　to_bytesメソッドの構文は以下の通り。

int.to_bytes(length, byteorder, signed=False)

　length引数と byteorder引数は指定が必須で、signed引数は省略可能なキーワード専用引数である。length

引数は整数を何バイトのバイト列に変換するかを指定する。byteorder引数はバイトオーダーの指定で、signed

引数は 2の補数を使用するかどうかの指定となる（負数をバイト列に変換する場合には「signed=True」のよう

にキーワードを明示して指定）。

　整数をバイト列に変換する例を以下に示す。

from sys import byteorder # プログラムを実行するPCのバイトオーダー

print(byteorder) # littleもしくはbig
length = 4 # 4バイト長整数に変換する
n = 123456
b = n.to_bytes(length, byteorder)
print(b) # b'@¥xe2¥x01¥x00'もしくはb'¥x00¥x01¥xe2@'

47 →目次に戻る

　バイト列を整数に変換するのに使用する int.from_bytesメソッドの構文は次の通り。

int.from_bytes(bytes, byteorder, signed=False)

　bytes引数には整数へ変換したいバイト列を渡す。byteorder／ signed引数は to_bytesメソッドと同じである。

　上で変換したバイト列を整数に変換する例を以下に示す。

v = int.from_bytes(b, byteorder)
print(v) # 123456

　以上を踏まえて、整数のバイト列の変換とバイナリファイルへの書き込みの例を以下に示す。

from sys import byteorder

print(byteorder)
length = 4

with open('test.bin', 'wb') as f:
 n = 123456
 b = n.to_bytes(length, byteorder)
 f.write(b)

　ここでは、バイナリファイルを書き込みモードでオープンし、上で見た手順で整数をバイト列に変換し、それを

writeメソッドで書き込んでいる。

　バイト列に変換された値が書き込まれているバイナリファイルから、値を読み込む例を以下に示す。

with open('test.bin', 'rb') as f:
 b = f.read(length) # lengthだけバイナリファイルから読み込み
 n = int.from_bytes(b, byteorder) # バイト列を整数に変換する

print(f'read data: {n}') # read data: 123456

　重要なのは、書き込みを行った上のコードでは、整数値を 4バイト長の符号なし整数に変換していたところだ。

そのため、このコードではバイナリファイルから 4バイトだけデータを読み込むように readメソッドに読み込むバ

イト数をしている。読み込んだ後は、先ほど見たように int.from_bytesメソッドを使って整数値に変換するだけだ。

48 →目次に戻る

バイナリファイルに対して、複数の整数値を書き込む

　バイナリファイルに整数を 1つだけ書き込むのではなく、複数の整数値を書き込むには整数値を要素とするリス

ト（またはタプルなど）をバイト列のリストに変換して、それをwritelinesメソッドで書き込むのが簡単だろう。

　以下に例を示す。

nlist = [1, 2, 3, 4, 5, 6]

with open('test.bin', 'wb') as f:
 blist = [n.to_bytes(length, byteorder) for n in nlist]
 f.writelines(blist)
 #b = b''.join([n.to_bytes(length, byteorder) for n in nlist])
 #f.write(b)

　ここでは、整数値を要素とするリストを基に、上で見た to_bytesメソッドを使用して各要素をバイト列に変換

したバイト列リストを用意している。そして、それをwritelinesメソッドで一気にファイルに書き込んでいる。ただ

し、コメントアウトされている行のように、バイト列の joinメソッドを使って、バイト列のリストを 1つのバイト列

に連結し、それをwriteメソッドで書き込む方法もある。

　バイナリファイルから複数の整数値を読み込む例を以下に示す。

with open('test.bin', 'rb') as f:
 result = []
 b = f.read(length)
 while b:
 n = int.from_bytes(b, byteorder)
 result.append(n)
 b = f.read(length)

print(result) # [1, 2, 3, 4, 5, 6]

　この例では、上で見たように readメソッド呼び出し時に一度に読み込むサイズを指定して、バイナリファイルか

らバイト列を整数 1個分ずつ読み込んで、それを int.from_bytesメソッドで整数に変換したものをリストに追加

している。

49 →目次に戻る

　データを 1つずつ読み込むのではなく、一度に全てのデータを読み込んでから、それをmemoryviewオブジェ

クトの castメソッドと tolistメソッドを使って以下のようにしてもよいだろう（詳細な解説は省略する）。

with open('test.bin', 'rb') as f:
 b = f.read()

mv = memoryview(b)
result = mv.cast('i').tolist()
print(result)

　文字列だけ、あるいは整数値だけをバイナリファイルに書き込むには今見た方法でも十分だが、文字列や整数

以外の型のデータをバイナリファイルに対して読み書きしたり、一定の構造を持ったデータをバイナリファイルに対

して読み書きしたりするには次に紹介する structモジュールを使用するのがよい。

50 →目次に戻る

structモジュールを使ってバイナリファイルに書き込み
from struct import pack, unpack, calcsize, iter_unpack

person = ('かわさき', 120, 99.9)
fmt = '20sid' # 長さ20のバイト列（20s）、整数（i）、倍精度浮動小数点（d）
b = pack(fmt, person[0].encode(), person[1], person[2]) # fmtに従ってバイト列化

with open('data.bin', 'wb') as f:
 f.write(b)

データサイズの計算
data_size = calcsize(fmt)
print(data_size) # 32（このデータは32バイト長）

バイナリファイルから読み込んで、structモジュールを使って復元
with open('data.bin', 'rb') as f:
 b = f.read(data_size)

data = unpack(fmt, b)
data = (data[0].strip(b'¥x00').decode(), data[1], data[2])
print(data) # ('かわさき', 120, 99.9)

pathlibモジュールを使う
from pathlib import Path
p = Path('data2.bin')
b = pack(fmt, person[0].encode(), person[1], person[2])
p.write_bytes(b)

b = p.read_bytes()
data = unpack(fmt, b)
data = (data[0].strip(b'¥x00').decode(), data[1], data[2])
print(data) # ('かわさき', 120, 99.9)

複数のデータをバイナリファイルに書き込み
p_list = [('かわさき', 120, 99.9),
 ('えんどう', 60, 68.3),
 ('いっしき', 25, 65.2)]

fmt = '20sid'
with open('data.bin', 'wb') as f:
 b = [pack(fmt, p[0].encode(), p[1], p[2]) for p in p_list]
 f.writelines(b)

バイナリファイルを読み書きするには：structモジュール編
structモジュールを使って、一定の構造を持ったデータをバイナリファイルに対して読み書きす
る方法を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 05月 25日）

https://www.itmedia.co.jp/author/208386/

51 →目次に戻る

複数のデータをバイナリファイルから読み込み
data_size = calcsize(fmt)

with open('data.bin', 'rb') as f:
 b = f.read()

result = [(d[0].strip(b'¥x00').decode(), d[1], d[2]) for d in iter_unpack(fmt, b)]

print(result)

structモジュールを使ったバイナリファイルの読み書き

　「バイナリファイルを読み書きするには：文字列と整数編」では、バイナリファイルに対して文字列もしくは整数

を読み書きする方法を紹介した。しかし、これらが混合したデータをバイナリファイルに対して読み書きしたり、浮

動小数点数をバイナリファイルに対して読み書きしたり、一定の構造を持った（Cの構造体のような）データをバ

イナリファイルに対して読み書きしたりするには、Pythonが標準で提供する structモジュールを使うのが簡単だ。

　structモジュールには、バイナリファイルに対して読み書きするデータの構造（フォーマット）に従って、データ

をバイト列に変換する pack関数、バイト列からデータを復元する unpack関数、指定したフォーマットが何バイ

トのデータかを計算する calcsize関数、指定したフォーマットに従って復元したバイト列を反復する iter_unpack

関数などが含まれている。

　フォーマットの指定に使える書式指定文字を幾つか以下に抜粋する。詳細についてはPythonのドキュメント「書

式指定文字」を参照のこと。

 structモジュールで使われる書式指定文字（抜粋）

　これらの書式指定文字の前に、バイトオーダー（リトルエンディアンやビッグエンディアンなど）やアラインメン

トを指示する記号を付加できるが、これについては「バイトオーダ、サイズ、アラインメント」を参照のこと（省

略時は「@」つまりそのコードを実行するマシンにネイティブなバイトオーダーやアラインメントが指定されたもの

と見なされる）。

https://docs.python.org/ja/3.9/library/struct.html#format-characters
https://docs.python.org/ja/3.9/library/struct.html#format-characters
https://docs.python.org/ja/3.9/library/struct.html#byte-order-size-and-alignment

52 →目次に戻る

　Pythonでは整数や浮動小数点数にはサイズという概念がないが、これらをバイナリファイルに対して読み書き

するときには、それが何バイトのデータとなるかを指定する必要がある。例えば、'i'という書式指定文字を指定す

ると、対応する値は 4バイトの符号付き整数として取り扱われるということだ。なお、書式指定文字の前にはその

型のデータが連続する数を指定できる。例えば、「4i」は 4バイトの符号付き整数が 4つ連続することを意味する

（「iiii」と同じ）。

　バイナリファイルに対して文字列を読み書きするときには、文字列の encodeメソッドやバイト列の decodeメ

ソッドで文字列とバイト列の変換を行う必要がある。バイト列化した文字列を表現する書式指定文字は「s」とな

る。「s」は 1バイトの char型配列を、「3s」は 3バイトの char型配列を表すが、これでは Pythonの文字列を

特定のエンコーディングで変換したものを格納しきれない場合がある。

　例えば、UTF-8エンコードの日本語では多くの場合、1文字が 3バイトで表現される（一部、4バイトで表現

されるものもある）。

s = 'あ'
b = s.encode()
print(f'sizeof b: {len(b)}, b: {b}') # sizeof b: 3, b: b'¥xe3¥x81¥x82'

　そのため、'あ 'という 1文字をUTF-8エンコードでバイト列に変換したものをバイナリファイルに書き込むに

は、3バイトの領域が必要になる（終端文字のNULLを含めるのであれば、4バイトが必要になるだろう）。

バイナリファイルへの書き込み

　ここでは例として、次のようなデータ構造（名前、年齢、体重を要素とするタプル）を考える。

person = ('かわさき', 120, 99.9)

　これらをここでは「20バイトのバイト列」「4バイトの符号付き整数」「倍精度の浮動小数点数」としてバイト

列に変換したいとしよう。すると、上に示した書式指定文字を使って、このデータ構造は次のように書ける。

fmt = '20sid' # 長さ20のバイト列（20s）、整数（i）、倍精度浮動小数点（d）

　書式指定文字「20s」は 20バイトのバイト列を表す（ここには 6文字程度の日本語を格納できるだろう。余っ

た部分には b'¥x00'が埋め込まれる）。次の「i」は 120という整数値を 4バイトの符号付き整数として、最後の

「d」は 99.9という浮動小数点数値を倍精度の浮動小数点数値として取り扱うことを意味する。

　これを使って、タプルに格納されたデータをバイト列に変換するには structモジュールの pack関数を使用する。

53 →目次に戻る

pack(fmt, v1, v2, ……)

　第 1引数には上で見た書式指定文字を渡す。それに続けて、バイト列化したいもの（v1、v2、……）を列挙

すればよい。ここではタプル personに格納されているデータを渡せばよいが、文字列については事前に encode

メソッドでバイト列に変換しておく必要がある点には注意しよう。

　上のデータをバイト列に変換するコードを以下に示す（バイトオーダーは実行環境にネイティブ）。

from struct import pack, unpack, calcsize, iter_unpack

person = ('かわさき', 120, 99.9)
fmt = '20sid'
b = pack(fmt, person[0].encode(), person[1], person[2])
b = pack(fmt, person[0].encode(), *person[1:])
print(b) # b'¥xe3¥x81¥x8b¥xe3¥x82¥x8f……¥x00¥x9a¥x99¥x99¥x99¥x99¥xf9X@'

　このコードではタプルの先頭要素が文字列なので encodeメソッドを呼び出しているが、タプルなどに文字列を

含まないデータだけが格納されているのであれば、「b = pack(fmt, *data)」のように書ける。

　あとはこれをバイナリファイルに書き込むだけだ。これらをまとめると次のようになる。

from struct import pack, unpack, calcsize, iter_unpack

person = ('かわさき', 120, 99.9)
fmt = '20sid'
b = pack(fmt, person[0].encode(), person[1], person[2])

with open('data.bin', 'wb') as f:
 f.write(b)

　このデータがどのくらいのサイズになるかは、calcsize関数に書式指定文字を渡すことで計算できる。

data_size = calcsize(fmt)
print(data_size) # 32

54 →目次に戻る

バイナリファイルからの読み込み

　バイナリファイルに書き込んだデータを読み込むコードは次のようになる。

with open('data.bin', 'rb') as f:
 b = f.read(data_size)

　先ほどの書き込みコードではデータを 1つだけ書き込んでいるので、2行目では「b = f.read()」としても構わ

ないが、ここでは calcsize関数で計算したデータサイズだけのデータを読み込むようにしている。

　バイナリファイルから読み込んだデータ（バイト列）を復元するには、structモジュールの unpack関数を使用

する。

unpack(fmt, buffer)

　第 1引数にはバイト列がどのような構造を持つかを示す書式指定文字を指定する。第 2引数には読み込んだバ

イト列を指定する。ここでは、上で書き込んだデータを復元するので、第 1引数にはこれまでと同じ '20sid'を、第

2引数にはバイナリファイルから読み込んだデータを指定すればよい。外部で作成されたデータを読み込むときに

は、バイナリデータがどのような構造になっているかを調べて、それに応じた書式指定文字を指定する必要がある。

　unpack関数は書式指定文字に従って、バイト列を復元し、復元した値を含んだタプルを返す。実際に復元し

たデータに文字列が含まれていれば、それはやはりdecodeメソッドで文字列化する必要がある。以下に実際の

コードを示す。

data = unpack(fmt, b)
data = (data[0].strip(b'¥x00').decode(), data[1], data[2])
print(data) # ('かわさき', 120, 99.9)

　ここではバイト列をデコードする前に「strip(b'¥x00')」メソッドを呼び出しているが、これはバイト列から不要

な部分を削除するためだ。

55 →目次に戻る

pathlibモジュールの Pathクラスを使用する

　open関数を使わずに pathlibモジュールが提供するPathクラスを使う方法もある。Pathクラスにはバイト列

を書き込むwrite_bytesメソッドと、バイト列を読み込む read_bytesメソッドがあるので、上で見た要領で pack

関数を使いバイト列化したデータをwrite_bytesメソッドで書き込んで、read_bytesメソッドで読み込んだバイ

ト列を unpack関数を使い復元するだけだ。

　以下に例を示す。

from pathlib import Path
p = Path('data2.bin')
b = pack(fmt, person[0].encode(), person[1], person[2])
p.write_bytes(b)

b = p.read_bytes()
data = unpack(fmt, b)
data = (data[0].strip(b'¥x00').decode(), data[1], data[2])
print(data) # ('かわさき', 120, 99.9)

複数のデータを読み書きする

　最後に複数のデータをバイナリファイルに対して読み書きする方法を見る。ここでは例として以下のようなタプ

ルを要素とするリストをバイナリファイルに保存したいとする。

p_list = [('かわさき', 120, 99.9),
 ('えんどう', 60, 68.3),
 ('いっしき', 25, 65.2)]

　個々のデータの構造は先ほどと同じなので、やることは文字列をエンコードして、他のデータとまとめてバイト

列に変換して、それをファイルに書き込むだけだ。実際のコードは以下の通り。

fmt = '20sid'
with open('data.bin', 'wb') as f:
 b = [pack(fmt, p[0].encode(), p[1], p[2]) for p in p_list]
 f.writelines(b)

　ここではリスト内包表記を使って、文字列をエンコードしたものと他のデータを pack関数でバイト列に変換し

たものを要素とするリストを作って、それをwritelinesメソッドでファイルに書き込むようにした。

56 →目次に戻る

　これらのデータを読み込むコードは例えば次のように書けるだろう。

data_size = calcsize(fmt)

with open('data.bin', 'rb') as f:
 result = []
 b = f.read(data_size)
 while b:
 tmp = unpack(fmt, b)
 result.append((tmp[0].strip(b'¥x00').decode(), tmp[1], tmp[2]))
 b = f.read(data_size)

print(result)
#出力結果：
[('かわさき', 120, 99.9), ('えんどう', 60, 68.3), ('いっしき', 25, 65.2)]

　このコードは、calcsize関数で計算したサイズだけ、データを読み込みながら、それを元のデータに復元して

いくものだ。しかし、structモジュールの iter_unpack関数を使うと、バイナリファイルから全てのデータを読み

込んで、それを書式指定文字に従って復元したものを列挙できる。これを使ったコードを以下に示す。

data_size = calcsize(fmt)

with open('data.bin', 'rb') as f:
 b = f.read()

result = [(d[0].strip(b'¥x00').decode(), d[1], d[2]) for d in iter_unpack(fmt, b)]

print(result) # 上と同じ結果

　iter_unpack関数とリスト内包表記を使うと、上と同じコードをより簡潔に記述できる。

57 →目次に戻る

* 本稿は 2021年 6月 1日に公開された記事をPython 3.12.2で動作確認したものです（確認日：2024年 3月 1日）。

import pickle

favs = ['beer', 'sake']
mydata = {'name': 'かわさき', 'age': 999, 'weight': 123.4, 'favs': favs}

pickle化してファイルに書き込み
with open('pickled.pkl', 'wb') as f:
 pickle.dump(mydata, f)

非pickle化
with open('pickled.pkl', 'rb') as f:
 mydata2 = pickle.load(f)
 favs2 = mydata['favs']

print(mydata2)
出力結果
{'name': 'かわさき', 'age': 999, 'weight': 123.4, 'favs': ['beer', 'sake']}

print(f'mydata2 == mydata: {mydata2 == mydata}') # mydata2 == mydata: True
print(f'mydata2 is mydata: {mydata2 is mydata}') # mydata2 is mydata: False

クラスのインスタンスのpickle化
class Foo:
 def __init__(self, name, age):
 self.name = name
 self.age = age

foo = Foo('かわさき', 999)

with open('pickled.pkl', 'wb') as f:
 pickle.dump(foo, f)

クラスのインスタンスの非pickle化
del foo # インスタンスを削除
with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # 復元

print(f'name: {foo.name}, age: {foo.age}') # name: かわさき, age: 999

関数オブジェクトとクラスオブジェクトのpickle化

バイナリファイルを読み書きするには：pickle編
pickleモジュールを使用して、Pythonのオブジェクトを直列化／復元（pickle化／非 pickle
化、シリアライズ／デシリアライズ）する方法と、その際の注意点を紹介する。

かわさきしんじ，Deep Insider編集部（2024年 03月 01日）

https://www.itmedia.co.jp/author/208386/

58 →目次に戻る

def hello():
 print('hello')

with open('pickled.pkl', 'wb') as f:
 pickle.dump(Foo, f) # 一つのファイルに複数のオブジェクトをpickle化できる
 pickle.dump(hello, f)

with open('pickled.pkl', 'rb') as f:
 Bar = pickle.load(f) # FooクラスをBarクラスに復元
 greet = pickle.load(f) # hello関数をgreet関数に復元

bar = Bar('bar', 101)
print(f'name: {bar.name}, age: {bar.age}') # name: bar, age: 101
greet() # hello

Fooインスタンスの復元にはFooクラスが定義されている必要がある
foo = Foo('かわさき', 999)
with open('pickled.pkl', 'wb') as f:
 pickle.dump(foo, f)

del Foo, foo # Fooクラスとそのインスタンスであるfooを削除
with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # FooクラスがないのでAttributeError例外

class Foo: # 上とは別のFooクラスを定義してみる
 def __init__(self, a, b):
 self.a = a
 self.b = b

with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # 復元できてしまう

print(foo.a) # AttributeError例外（復元したfooにはa属性はない）

pickleモジュールとは

　Pythonが標準で提供している「pickleモジュール」は、オブジェクトの直列化（シリアライズ）とその復元（デ

シリアライズ）を行うために使用できる。ここでいう直列化とは Pythonのオブジェクトをバイト列に変換する処

理のことで、復元とはバイト列をPythonのオブジェクトに変換する処理のことである。直列化によりバイト列に

変換されたデータはバイナリファイルに保存したり、バイト列として他のプログラムにネットワークを介して送信し

たりできる。なお、pickleモジュールでオブジェクトを直列化することを pickle化、復元することを非 pickle化

と呼ぶ。

https://docs.python.org/ja/3/library/pickle.html

59 →目次に戻る

　pickleモジュールを使って、pickle化を行うにはそのモジュールが提供する dump関数もしくは dumps関数

を呼び出す。前者は pickle化されたオブジェクトがバイナリファイルへ書き込まれ、後者は pickle化された結果

（バイト列）が戻り値となる。非 pickle化には load関数もしくは loads関数を呼び出す。前者はバイナリファイ

ルから pickle化されたデータを読み込んで非 pickle化するもので、後者はバイト列を受け取ってそれを非 pickle

化するものだ。

　以下に基本的な構文を示す。

pickle化
dump(obj, file, protocol=None)
dumps(obj, protocol=None)

非pickle化
load(file)
loads(data)

　dump／ dumps関数の第 1引数には pickle化するオブジェクトを指定する。dump関数では第 2引数に

pickle化した結果のバイト列を書き込むバイナリファイル（を表すファイルオブジェクト）を指定する。dump関

数の第 3引数と dumps関数の第 2引数には、pickle化の際に使用するプロトコルのバージョンを指定する。省

略時には、pickleモジュールのDEFAULT_PROTOCOL値が指定されたものと見なされる。

　2025年4月現在、pickle化／非pickle化に使われるプロトコルにはバージョン0～5の6種類があり、Python

3.0～ 3.7ではDEFAULT_PROTOCOLの値は 3、Python 3.8以降では 4となっている。プロトコルバージョ

ン 5は大きなサイズのデータを、余計なメモリコピーを行うことなく高速に pickle化／非 pickle化を実行するた

めに使われるものだ（本稿では扱わない）。

　load関数の第 1引数には非 pickle化するデータを格納しているバイナリファイル（を表すファイルオブジェク

ト）を、loads関数の第 1引数には非 pickle化するデータ（バイト列）を渡す。pickle化の時点で、使用してい

るプロトコルのバージョンが、pickle化されるデータストリームの先頭に書き込まれるため、load／ loads関数

ではこれを指定する必要はない。

60 →目次に戻る

　Pythonのオブジェクトを pickle化してバイナリファイルに書き込むコードの例を以下に示す。

import pickle

favs = ['beer', 'sake']
mydata = {'name': 'かわさき', 'age': 999, 'weight': 123.4, 'favs': favs}

pickle化してファイルに書き込み
with open('pickled.pkl', 'wb') as f:
 pickle.dump(mydata, f)

　ここでは文字列、整数値、浮動小数点数値、リスト、辞書を pickle化している（これらのオブジェクトが pickle

化可能であることを意味している）。dumps関数を使って、バイト列に変換するなら次のようになる。

b = pickle.dumps(mydata)
print(b) # b'¥x80¥x04¥x95O¥x00……¥x04beer¥x94¥x8c¥x04sake¥x94eu.'

　上のコードを実行してバイナリファイルに書き込まれたデータからPythonのオブジェクトを復元するコードの

例は次のようになる。

with open('pickled.pkl', 'rb') as f:
 mydata2 = pickle.load(f)
 favs2 = mydata['favs']

print(mydata2)
出力結果
{'name': 'かわさき', 'age': 999, 'weight': 123.4, 'favs': ['beer', 'sake']}

　バイト列へ pickle化したものを復元するには次のようになる。

mydata3 = pickle.loads(b)
print(mydata3) # 上と同じ出力結果

　以下を実行すると、復元されたオブジェクトは元のオブジェクトと同じ値を持つが、異なるオブジェクトであるこ

とが分かる。

print(f'mydata2 == mydata: {mydata2 == mydata}') # mydata2 == mydata: True
print(f'mydata2 is mydata: {mydata2 is mydata}') # mydata2 is mydata: False

61 →目次に戻る

pickle化できるもの

　Pythonのドキュメント「pickle 化、非 pickle 化できるもの」には pickle化／非 pickle化できるものとして

以下が挙げられている。

• None値、ブーリアン値（True／ False）

• 整数値、浮動小数点数値、複素数値

• 文字列、バイト列（bytesオブジェクト）、バイト配列（bytearrayオブジェクト）

• pickle化可能なオブジェクトだけを要素とするリスト、タプル、辞書、集合

• モジュールトップレベルで定義された組み込み関数、関数（ラムダ式を除く）、クラス

• __dict__属性の値がpickle化可能なクラスのインスタンス。または__getstate__メソッドの戻り値がpickle

化可能なクラスのインスタンス

　これら以外のオブジェクト（例えば、ファイルオブジェクトなど）は pickle化できない。

　def文で定義した関数（関数オブジェクト）や class文で定義したクラス自身（クラスオブジェクト）も pickle

化可能だ。ただし、関数やクラスのコードそのものが pickle化されるのではなく、完全修飾された名前参照（そ

れが定義されているモジュール名と関数名またはクラス名だけ）が pickle化される点には注意すること。簡単に

いうと、関数やクラスを pickle化した場合、それを非 pickle化する環境にはその関数やクラスを定義しているモ

ジュール（から対応する関数またはクラス）がインポートされている必要があるということだ。

　例として、クラスを定義して、そのインスタンスを pickle化してみよう（関数やクラスの pickle化はその後で見る）。

class Foo:
 def __init__(self, name, age):
 self.name = name
 self.age = age

foo = Foo('かわさき', 999)

with open('pickled.pkl', 'wb') as f:
 pickle.dump(foo, f)

del foo
with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # 復元

print(f'name: {foo.name}, age: {foo.age}') # name: かわさき, age: 999

https://docs.python.org/ja/3/library/pickle.html#what-can-be-pickled-and-unpickled

62 →目次に戻る

　このコードでは、Fooクラスを定義して、そのインスタンス fooを生成した後に pickle化している。その後、も

ともとのインスタンスを削除してから、バイナリファイルからデータを読み込んで非 pickle化している（ここでは

Fooクラスが定義されているので、問題なく非 pickle化できている）。

　次に、上で定義した Fooクラスに加えて、hello関数を定義して、今度はクラスと関数を pickle化してみよう。

実際のコードは次の通り。

def hello():
 print('hello')

with open('pickled.pkl', 'wb') as f:
 pickle.dump(Foo, f) # 一つのファイルに複数のオブジェクトをpickle化できる
 pickle.dump(hello, f)

with open('pickled.pkl', 'rb') as f:
 Bar = pickle.load(f) # FooクラスをBarクラスに復元
 greet = pickle.load(f) # hello関数をgreet関数に復元

bar = Bar('bar', 101)
print(f'name: {bar.name}, age: {bar.age}') # name: bar, age: 101
greet() # hello

　ここではwith文のブロック内で dump関数を二度呼び出して、1つのファイルに pickle化された複数のデータ

を書き込んでいる。このとき、Fooクラスは Barクラスに、hello関数は greet関数に復元した。Barクラスのイ

ンスタンス生成、greet関数が成功して、Fooクラスと hello関数と同じように振る舞っている点に注目されたい。

　pickle化では完全修飾の名前参照が用いられるので、__main__.Fooという完全修飾の名前参照を用いて復

元されたBarクラスは Fooクラスと同一のオブジェクトとなる。

print(f'Bar is Foo: {Bar is Foo}') # True

63 →目次に戻る

注意点

　ここで、Fooクラスを削除してから、インスタンス fooを非 pickle化してみよう（他の環境で pickled.pklファ

イルを非 pickle化することのシミュレートともいえる）。

foo = Foo('かわさき', 999)
with open('pickled.pkl', 'wb') as f:
 pickle.dump(foo, f)

del Foo, foo # Fooクラスとそのインスタンスであるfooを削除
with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # FooクラスがないのでAttributeError例外

　この場合、現在のモジュール（ここでは __main__モジュール）のトップレベルでは Fooクラス（__main__.

Fooクラス）が定義されていないので、AttributeError例外となる。

　ここで上とは異なる Fooクラスを定義して、非 pickle化したらどうなるかを実験してみよう。

class Foo: # 上とは別のFooクラスを定義してみる
 def __init__(self, a, b):
 self.a = a
 self.b = b

with open('pickled.pkl', 'rb') as f:
 foo = pickle.load(f) # 復元できてしまう

print(foo.a) # AttributeError例外（復元したfooにはa属性はない）

　驚いたことに復元できてしまう（__main__.Fooというクラスが存在していれば、復元が可能だからだ）。つま

り、pickle化されたデータを扱う場合、全体的な整合性を取るのはプログラマーに任されるということだ。これ

以外にも、pickle化されたデータを改ざんして、任意のコードを実行させるようにすることも可能だ。

　こうしたことから、pickleモジュールは安全ではないことには注意すること。自分が知らないところで pickle化

されたファイルを安易に非 pickle化しないようにして、非 pickle化するときには pickle化したときと同じ環境を

整えるようにしよう。

　最後にラムダ式は pickle化できないことを確認するコードを示しておく。

fnc = lambda x: print(x)
fnc('hello') # hello

pickle.dumps(fnc) # PicklingError

64 →目次に戻る

import shelve

data_file = 'mydata'
key = 'person_data'

person_data = [('kawasaki', 120), ('isshiki', 38)]

with shelve.open(data_file) as d:
 d[key] = person_data

with shelve.open(data_file) as d:
 data = d[key]

print(data) # [('kawasaki', 120), ('isshiki', 38)]

デフォルトでは読み書き両用でオープンされる
num_data = [1, 2, 3, 4, 5]

with shelve.open(data_file) as d:
 data = d[key] # 読み込み
 print(data) # [('kawasaki', 120), ('isshiki', 38)]
 d['num_data'] = num_data # 書き込み
 nums = d['num_data'] # 読み込み
 print(nums) # [1, 2, 3, 4, 5]

writeback=False
more_data = ('endo', 45)

with shelve.open(data_file) as d:
 data = d[key]
 data.append(more_data) # 読み出したデータに追加
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38)]
 d[key] = data # 反映するには元のキーの値を置き換える必要がある
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38), ('endo', 45)]

writeback=True
one_more_data = ('shimada', 50)

with shelve.open(data_file, writeback=True) as d:
 data = d[key]
 data.append(one_more_data) # Shelfオブジェクトへの操作はキャッシュされる
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38), ('endo', 45), ('shimada', 50)]
 # closeメソッドかsyncメソッドの呼び出しで、キャッシュの内容が書き込まれる。
 # キャッシュサイズが大きくなると書き戻しに時間がかかる点には注意

バイナリファイルを読み書きするには：shelve編
shelveモジュールを使って、辞書と同じ使い勝手で外部ファイルにオブジェクトを永続化した
り、そこからオブジェクトを復元したりする方法を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 06月 08日）

https://www.itmedia.co.jp/author/208386/

65 →目次に戻る

shelveモジュールとは

　Pythonに標準で添付されている shelveモジュールを利用すると、Pythonの辞書と似た形式でオブジェクト

を永続化できる。つまり「shelveオブジェクト [キー] = 値」のようにして「値」に指定したオブジェクトを外部

ファイルに永続化したり、逆に「値 = shelveオブジェクト [キー]」として外部ファイルからオブジェクトを取り出

したりできる（「shelve」は「棚に何かを置く」といった意味）。

　このとき、「キー」には文字列を指定する。「値」には pickle化可能なオブジェクトなら何でも指定できる（内

部では pickleモジュールが使われているので、pickleモジュールと同様な安全でない操作が可能な点には注意）。

　shelveモジュールを使って、永続化を行う基本的な方法はその open関数を呼び出して、Shelfクラス（また

はそのサブクラス）のインスタンスを取得して、それを用いて辞書的なアクセスを行うことだ。以下に shelve.open

関数の構文を示す。

shelve.open(filename, flag='c', protocol='None', writeback=False)

　filenameには内部で使用するデータベースファイルを指定する（多くの場合は、filenameに指定した文字列に

何らかの拡張子が付いたものが実際のファイル名になるだろう）。flagにはファイルをオープンするモードを指定す

る。指定できるのは以下の値。

• 'r'：読み込み専用

• 'w'：書き込み専用

• 'c'：読み書き両用

• 'n'：新規作成

　指定を省略した場合には 'c'が指定されたものとして扱われ、ファイルは読み書き両用でオープンされる。

protocolは内部で使用する pickleのプロトコルバージョンである。writebackを Trueにすると、open関数で

取得したShelfオブジェクトに格納されているエントリ（キーと値の組）に対する操作がキャッシュされるようにな

る。キャッシュの内容は、closeメソッドか syncメソッドを呼び出したときに外部ファイルへ書き込まれる。デフォ

ルト値は Falseであり、キャッシュは行われない。それぞれの動作の違いについては後述）。

　open関数により取得したShelfオブジェクトには辞書的にアクセスして、オブジェクトの永続化や復元を行い、

Shelfオブジェクトの使用が終わったら closeメソッドを呼び出す。

https://docs.python.org/ja/3/library/shelve.html

66 →目次に戻る

shelveモジュールの使い方
import shelve

d = shelve.open('somefile') # shelve.open関数でShelfオブジェクトを取得
d[somekey] = somevalue # 書き込み（永続化）
somevalue = d[somekey] # 復元
d.close() # 使い終わったらcloseメソッドを呼び出す

　shelve.open関数はwith文と組み合わせて次のようにも書ける。

with文と組み合わせる
import shelve

with shelve.open('somefile') as d:
 d[somekey] = somevalue
 somevalue = d[somekey]

　これにより、closeメソッドを明示的に呼び出す必要がなくなるので、以下ではこちらの書き方でサンプルを示す。

67 →目次に戻る

shelveモジュールを使ったオブジェクトの永続化と復元

　以下に shelveモジュールを使ってオブジェクトの永続化と復元を行う例を示す。ここでは永続化先のファイル

名は「mydata」（mydata.db）として、永続化／復元を行うデータはタプルを要素とするリストにしてある。こ

れを 'person_data'というキーを使って永続化／復元する。

import shelve

data_file = 'mydata'
key = 'person_data'

person_data = [('kawasaki', 120), ('isshiki', 38)]

with shelve.open(data_file) as d:
 d[key] = person_data # 永続化

with shelve.open(data_file) as d:
 data = d[key] # 復元

print(data) # [('kawasaki', 120), ('isshiki', 38)]

　この例では、永続化（書き込み）と復元（読み込み）を別々のwith文で行っているが、先ほども述べた通り、

デフォルトでは shelve.open関数は読み書き両用でファイルをオープンする。そのため、実際には次のようなコー

ドも記述できる。

num_data = [1, 2, 3, 4, 5]

with shelve.open(data_file) as d:
 data = d[key] # 読み込み
 print(data) # [('kawasaki', 120), ('isshiki', 38)]
 d['num_data'] = num_data # 書き込み
 nums = d['num_data'] # 読み込み
 print(nums) # [1, 2, 3, 4, 5]

68 →目次に戻る

writebackパラメーターの値による動作の違い

　shelve.open関数のwritebackパラメーターの値を Trueにすると、Shelfオブジェクトに格納されているエン

トリの操作がキャッシュされる。一方、Falseにすると、キャッシュはされず、Shelfオブジェクトを介した読み込

み／書き込みは外部ファイルにすぐに反映される（デフォルト）。

　writebackパラメーターの値が Trueか Falseで、永続化と復元に関連する振る舞いが異なることがある。例

えば、以下はこのパラメーターの値が Falseのときの振る舞いの例だ。

more_data = ('endo', 45)

with shelve.open(data_file) as d:
 data = d[key]
 data.append(more_data) # 読み出したデータに追加
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38)]
 d[key] = data # 反映するには元のキーの値を置き換える必要がある
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38), ('endo', 45)]

　ここでは、先ほど書き込みを行った外部ファイルをオープンして、データを取得し（「data = d[key]」行）、そ

れに appendメソッドでデータを追加している。次の「print(d[key])」行では、直前に読み込みを行ったのと同

じキーの値を出力しているが、この結果は「[('kawasaki', 120), ('isshiki', 38)]」となる。つまり、データを追加

したことが外部ファイルには反映されていない。反映するには「d[key] = data」を実行する必要がある。

　一方、以下はwritebackパラメーターの値を Trueとした場合の振る舞いの例だ。

one_more_data = ('shimada', 50)

with shelve.open(data_file, writeback=True) as d:
 data = d[key]
 data.append(one_more_data) # Shelfオブジェクトへの操作はキャッシュされる
 print(d[key]) # [('kawasaki', 120), ('isshiki', 38), ('endo', 45), ('shimada', 50)]

　with文のブロックの先頭 3行では、同じ処理をしていることに注意されたい（追加しているデータ自体は異な

る）。だが、「print(d[key])」行の出力結果は「[('kawasaki', 120), ('isshiki', 38), ('endo', 45), ('shimada',

50)]」となる。つまり、「d[key] = data」行を実行しないでも、データが反映されている（ように見える）という

ことだ。これが、writeback=Trueにした場合に、操作がキャッシュされるということだ。実際には、外部ファイ

ルには反映はされておらず、キャッシュから適切な結果が得られるように shelveモジュールが取り計らってくれて

いる。

69 →目次に戻る

　writeback=Trueにした場合、Shelfオブジェクトを介して操作するデータを実際に扱うのではなく、そのキャッ

シュに対して操作を行うことになるので、最後に closeメソッドを呼び出すか（またはwith文のブロックが終了す

るか）、どこか適切なタイミングで syncメソッドを呼び出すまでは外部ファイルへのアクセスを抑制できる。上で

見たように、writeback=Falseとしたときには、永続化したデータを取得してそれを変更したら、それをどこかの

時点で（「d[key] = data」行で行っているように）明示的に書き戻さないといけないが、writeback=Trueでは

そうした処理を書かずにより直観的なコードを書けるようになる（と感じる人もいるだろう）。

　ただし、writeback=Trueとしたときには、上で見たような操作が全てキャッシュされるので、あまりに多くの

エントリを読み書きするとキャッシュサイズが大きくなり、外部ファイルへそれらを反映するための時間がかかるか

もしれない。キャッシュの有無で振る舞いが変わる（コードも変わる）ことと、外部ファイルへの反映にかかる時

間などを考慮して、キャッシュを使用するかどうかは決めるようにしよう。

　実際にどのような振る舞いになっているかは、次のようなコードからある程度は推測できる（説明は省略。コメ

ントを参照のこと）。

import shelve

mydict = {}
myshelf = shelve.Shelf(mydict, writeback=True) # 外部ファイルではなく辞書を使用

mydata = [0, 1]
key = 'key'

内部の辞書にデータが保存され、キャッシュされた
myshelf[key] = mydata
print(myshelf.dict) # {b'key': b'¥x80¥x03]q¥x00(K¥x00K¥x01e.'}
print(myshelf.cache) # {'key': [0, 1]}

操作の結果はキャッシュに反映されるが、辞書には反映されない
myshelf[key].append(2)
print(myshelf.dict) # {b'key': b'¥x80¥x03]q¥x00(K¥x00K¥x01e.'}
print(myshelf.cache) # {'key': [0, 1, 2]}

キーを指定して取得した値はキャッシュと同一のオブジェクト
mylist = myshelf[key]
print(mylist is myshelf.cache[key]) # True

syncメソッドにより辞書に内容が反映され、キャッシュがクリアされる
myshelf.sync()
print(myshelf.dict) # {b'key': b'¥x80¥x03]q¥x00(K¥x00K¥x01K¥x02e.'}
print(myshelf.cache) # {}

myshelf.close() # Shelfオブジェクトをクローズ

