
解決！ Python
文字列チェック編
かわさきしんじ，Deep Insider編集部［著］

01.［解決！Python］文字列が大文字だけで構成されているか、小文字だけで
　　構成されているかを区別するには（isupperメソッド、islowerメソッド）

04.［解決！Python］文字列が数値へ変換可能かどうかを判定するには
　　（int／ float関数の例外、re.fullmatch関数）

02.［解決！Python］文字列が英数字（文字および数字）のみで
　　構成されているかどうかを判定するには（isalnum／ isasciiメソッド、正規表現）

05.［解決！Python］文字列が英字（文字）のみで構成されているかどうかを
　　判定するには（isalpha／ isasciiメソッド、re.match／ re.fullmatch関数）

03.［解決！Python］文字列が数字だけで構成されているかどうかを判定するには
　　（isdecimal／ isdigit／ isnumeric／ isasciiメソッド）

※ 本 eBookの制作の都合上、Pythonコード中のシングルクオートやダブルクオートなどの記号類が、コードの実行確認に使用した
Python処理系ではシングルクオートやダブルクオートなどとして解釈されない文字となっています。コードをコピー＆ペーストして使
う際にはご注意ください。

3 →目次に戻る

文字列が大文字のみで構成されているかどうかを調べる
s = ‘Python’
result = s.isupper()
print(result) # False

s = ‘PYTHON’ # s = s.upper()
result = s.isupper()
print(result) # True

s = ‘ +P=Y=T=H=O=N+ ‘ # 大文字小文字の区別がない文字は判定の対象とはならない
result = s.isupper()
print(result) # True

s = ‘012= =+’ # 大文字小文字の区別がない文字だけで構成されている場合
result = s.isupper()
print(result) # False

文字列が小文字のみで構成されているかどうかを調べる
s = ‘Python’
result = s.islower()
print(result) # False

s = ‘python’ # s = s.lower()
result = s.islower()
print(result) # True

s = ‘ +p=y=t=h=o=n+ ‘ # 大文字小文字の区別がない文字は判定の対象とはならない
result = s.islower()
print(result) # True

s = ‘012= =+’ # 大文字小文字の区別がない文字だけで構成されている場合
result = s.islower()
print(result) # False

 文字列の isupperメソッド／ islowerメソッド

［解決！Python］文字列が大文字だけで構成されているか、
小文字だけで構成されているかを区別するには
（isupperメソッド、islowerメソッド）
文字列の isupperメソッド／ islowerメソッドを使って、文字列が大文字だけで構成されてい
るか、あるいは小文字だけで構成されているかを調べる方法と考慮点を紹介する。

かわさきしんじ，Deep Insider編集部（2023年 11月 07日）

https://www.itmedia.co.jp/author/208386/

4 →目次に戻る

isupperメソッド：文字列が大文字のみで構成されているかどうかを調べる

　文字列が大文字のみで構成されているかどうかを調べるには、文字列の isupperメソッドを使用する。以下に

例を示す。

s = ‘Python’
result = s.isupper()
print(result) # False

s = ‘PYTHON’ # s = s.upper()
result = s.isupper()
print(result) # True

　1つ目の例では文字列 sは大文字と小文字で構成されている。そのため、isupperメソッドは Falseを返す。2

つ目の例では文字列 sは大文字だけで構成されているので、isupperメソッドは Trueを返している。

　文字列に大文字小文字の区別がない文字が含まれていた場合の扱いには注意すること。isupperメソッド（と

islowerメソッド）はそれらについては大文字小文字の判定には含まない。以下に例を示す。

s = ‘ +P=Y=T=H=O=N+ ‘ # 大文字小文字の区別がない文字は判定の対象とはならない
result = s.isupper()
print(result) # True

　この例では、文字列 sには大文字に加えて半角の空白文字など大文字小文字の区別がない文字が含まれている。

この場合、大文字小文字の区別がある文字だけが判定の対象となり、結果として isupperメソッドは Trueを返

している。

　では、大文字小文字の区別がない文字だけで文字列が構成されている場合はどうかというと、そのときには以

下に示すように Falseが返される。

s = ‘012= =+’ # 大文字小文字の区別がない文字だけで構成されている場合
result = s.isupper()
print(result) # False

5 →目次に戻る

islowerメソッド：文字列が小文字のみで構成されているかどうかを調べる

　同様に、文字列が小文字のみで構成されているかどうかを調べるには、文字列の islowerメソッドを使用する。

以下に例を示す。

s = ‘Python’
result = s.islower()
print(result) # False

s = ‘python’ # s = s.lower()
result = s.islower()
print(result) # True

　1つ目の例では、文字列 sには大文字と小文字が混在しているので判定結果は Falseとなる。2つ目の例では

文字列 sには小文字のみが含まれているので結果は Trueとなる。

　大文字小文字の区別がない文字が含まれているときの扱いは isupperメソッドと同様だ。区別のない文字は判

定の対象とはならず、区別のある文字だけを見て結果が決まる。

s = ‘ +p=y=t=h=o=n+ ‘ # 大文字小文字の区別がない文字は判定の対象とはならない
result = s.islower()
print(result) # True

　大文字小文字の区別がない文字だけで文字列が構成されているときも isupperメソッドと同様、判定結果は

Falseとなる。

s = ‘012= =+’ # 大文字小文字の区別がない文字だけで構成されている場合
result = s.islower()
print(result) # False

6 →目次に戻る

文字列が半角の英数字のみで構成されているかどうかを判定
def isalnum_ascii(s): # 文字列のメソッドを使用
 return True if s.isalnum() and s.isascii() else False

import re

def isalnum_ascii_re(s): # 正規表現を使用
 return True if re.fullmatch(r‘[¥d¥w]+’, s, re.ASCII) else False

s1 = ‘123abc’
s2 = ‘１２３ａｂｃ’
s3 = ‘123漢字ひらカタ ’

r1 = isalnum_ascii(s1)
r2 = isalnum_ascii(s2)
r3 = isalnum_ascii(s3)
print(f’{s1} isalnum_ascii: {r1}’) # 123abc isalnum_ascii: True
print(f’{s2} isalnum_ascii: {r2}’) # １２３ａｂｃ isalnum_ascii: False
print(f’{s3} isalnum_ascii: {r3}’) # 123漢字ひらカタ isalnum_ascii: False

r1 = isalnum_ascii_re(s1)
r2 = isalnum_ascii_re(s2)
r3 = isalnum_ascii_re(s3)
print(f’{s1} isalnum_ascii_re: {r1}’) # 123abc isalnum_ascii_re: True
print(f’{s2} isalnum_ascii_re: {r2}’) # １２３ａｂｃ isalnum_ascii_re: False
print(f’{s3} isalnum_ascii_re: {r3}’) # 123漢字ひらカタ isalnum_ascii_re: False

文字列が英数字（文字および数字）のみで構成されているかどうかを判定
s1 = ‘123abc’
s2 = ‘１２３ａｂｃ’
s3 = ‘123漢字ひらカタ ’

r1 = s1.isalnum()
r2 = s2.isalnum()
r3 = s3.isalnum()
print(f’{s1} isalnum: {r1}’) # 123abc isalnum: True
print(f’{s2} isalnum: {r2}’) # １２３ａｂｃ isalnum: True
print(f’{s3} isalnum: {r3}’) # 123漢字ひらカタ isalnum: True

［解決！Python］文字列が英数字（文字および数字）
のみで構成されているかどうかを判定するには
（isalnum／ isasciiメソッド、正規表現）

isalnumメソッドと isasciiメソッドと組み合わせて、あるいは正規表現を使って文字列が半角
英数字のみで構成されているかどうかを調べる方法を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 02月 26日）

https://www.itmedia.co.jp/author/208386/

7 →目次に戻る

文字列が英数字のみで構成されているかどうかを isalnumメソッドや正規表現を使って判定する

　Pythonの文字列には isalnumメソッドがある。このメソッドは「文字列中の全ての文字が英数字で、かつ 1

文字以上あるなら True を、そうでなければ False」を返す。実際には、このメソッドは文字列中の全ての文字が、

isalpha／ isdecimal／ isdigit／ isnumericのいずれかのメソッドで Trueを返すのであれば Trueを、そうで

なければ Falseを返す。このことから、このメソッドで「文字列が半角英数字のみで構成されているかどうか」を

判定する際には注意が必要となる。

　以下に例を示す。

s1 = ‘123abc’
s2 = ‘１２３ａｂｃ’
s3 = ‘123漢字ひらカタ ’

r1 = s1.isalnum()
r2 = s2.isalnum()
r3 = s3.isalnum()
print(f’{s1} isalnum: {r1}’) # 123abc isalnum: True
print(f’{s2} isalnum: {r2}’) # １２３ａｂｃ isalnum: True
print(f’{s3} isalnum: {r3}’) # 123漢字ひらカタ isalnum: True

　変数 s1、s2、s3にはそれぞれ半角英数字のみ、全角英数字のみ、半角数字と漢字／ひらがな／カタカナで構

成される文字列が代入されている。しかし、これらに対して isalnumメソッドを呼び出すと、その結果は全て True

となる。

　既に述べた通り、isalnumメソッドは文字列が isalpha／ isdecimal／ isdigit／ isnumericメソッドで True

と判定される文字だけで構成されているとTrueを返す。そして、これらのメソッドは全角英数字や漢字、ひらが

な、カタカナについても Trueを返すようになっている。以下は半角英数字、全角英数字、漢字、ひらがな、カタ

カナについて isalphaメソッドと isdecimalメソッドを呼び出した結果だ。

https://docs.python.org/ja/3/library/stdtypes.html#str.isalnum
https://docs.python.org/ja/3/library/stdtypes.html#str.isalnum

8 →目次に戻る

s1 = ‘ABC’
s2 = ‘ＡＢＣ’
s3 = ‘ 漢字ひらがなカタカナ ’
s4 = ‘123’
s5 = ‘１２３’

r1 = s1.isalpha()
r2 = s2.isalpha()
r3 = s3.isalpha()
print(f’{s1} isalpha: {r1}’) # ABC isalpha: True
print(f’{s2} isalpha: {r2}’) # ＡＢＣ isalpha: True
print(f’{s3} isalpha: {r3}’) # 漢字ひらがなカタカナ isalpha: True

r4 = s4.isdecimal()
r5 = s5.isdecimal()
print(f’{s4} isdecimal: {r4}’) # 123 isdecimal: True
print(f’{s5} isdecimal: {r5}’) # １２３ isdecimal: True

　全角のアルファベットや漢字、ひらがな、カタカナについて isalphaメソッドが Trueを返していることと、全角

数字について isdecimalメソッドが Trueを返していることに注目されたい。こうしたことから、isalnumメソッド

だけでは、文字列が半角英数字のみで構成されているかどうかは分からない（もちろん、文字と数字でのみ文字

列が構成されているかどうかを調べるのであれば isalnumメソッドをそのまま使えばよい）。

　文字列が半角英数字のみで構成されているかどうかを判定するには、isalnumメソッドと isasciiメソッドを組

み合わせるとよい。isasciiメソッドは文字列を構成する全ての文字がASCIIの範囲に含まれるものであればTrue

を、そうでなければ Falseを返送する。isalnumメソッドの結果が Trueかつ isasciiメソッドの結果が Trueで

あれば、その文字列は半角英数字で構成されていると考えられるだろう。

　以下では、そうした判定を行う関数を定義している。

def isalnum_ascii(s): # 文字列のメソッドを使用
 return True if s.isalnum() and s.isascii() else False

s1 = ‘123abc’
s2 = ‘１２３ａｂｃ’
s3 = ‘123漢字ひらカタ ’

r1 = isalnum_ascii(s1)
r2 = isalnum_ascii(s2)
r3 = isalnum_ascii(s3)
print(f’{s1} isalnum_ascii: {r1}’) # 123abc isalnum_ascii: True
print(f’{s2} isalnum_ascii: {r2}’) # １２３ａｂｃ isalnum_ascii: False
print(f’{s3} isalnum_ascii: {r3}’) # 123漢字ひらカタ isalnum_ascii: False

9 →目次に戻る

　同様な判定は正規表現を使って次のようにも行える。

import re

def isalnum_ascii_re(s): # 正規表現を使用
 return True if re.fullmatch(r‘[¥d¥w]+’, s, re.ASCII) else False

s1 = ‘123abc’
s2 = ‘１２３ａｂｃ’
s3 = ‘123漢字ひらカタ ’

r1 = isalnum_ascii_re(s1)
r2 = isalnum_ascii_re(s2)
r3 = isalnum_ascii_re(s3)
print(f’{s1} isalnum_ascii_re: {r1}’) # 123abc isalnum_ascii_re: True
print(f’{s2} isalnum_ascii_re: {r2}’) # １２３ａｂｃ isalnum_ascii_re: False
print(f’{s3} isalnum_ascii_re: {r3}’) # 123漢字ひらカタ isalnum_ascii_re: False

　こちらのコードでは、正規表現の文字クラス「¥d」と「¥w」を使用している。前者はUnicodeのGeneral_

Categoryプロパティの値が「Nd」にあるものにマッチし、後者は単語を構成する文字にマッチする。re.fullmatch

関数にパターンとして「[¥d¥w]+」を渡すことで、文字列がそうした文字のみで構成されているかどうかを判定し、

戻り値があれば（全体が英数字のみで構成されていれば）Trueを、そうでなければ Falseを返すようにしている。

ただし、「¥d」「¥w」は ASCIIの範囲外にある文字についてもマッチするので（全角数字など）、ここでは第 3引

数に re.ASCIIフラグを指定している。

10 →目次に戻る

文字列が半角 10進数字のみで構成されているかどうかを判定する関数
def isascnum(s):
 return True if s.isdecimal() and s.isascii() else False

s1, s2, s3 = ‘123’, ‘１２３’, ‘123foo’

r1 = isascnum(s1)
r2 = isascnum(s2)
r3 = isascnum(s3)
print(f’{s1} isascnum: {r1}’) # 123 isascnum: True
print(f’{s2} isascnum: {r2}’) # １２３ isascnum: False
print(f’{s3} isascnum: {r3}’) # 123foo isascnum: False

文字列が 10進数字のみで構成されているかどうかを判定
s1, s2, s3 = ‘123’, ‘１２３’, ‘123foo’

r1 = s1.isdecimal()
r2 = s2.isdecimal() # 全角数字は Trueとなる
r3 = s3.isdecimal()
print(f’{s1} isdecimal: {r1}’) # 123 isdecimal: True
print(f’{s2} isdecimal: {r2}’) # １２３ isdecimal: True
print(f’{s3} isdecimal: {r3}’) # 123foo isdecimal: False

s1, s2 = ‘-1’, ‘1.23’
r1 = s1.isdecimal() # 符号が入っていると False
r2 = s2.isdecimal() # 小数点が入っていると False
print(f’{s1} isdecimal: {r1}’) # -1 isdecimal: False
print(f’{s2} isdecimal: {r2}’) # 1.23 isdecimal: False

isdecimal／ isdigit／ isnumericメソッドの違い
s = ‘123’ # 10進数字は全て True
r1 = s.isdecimal()
r2 = s.isdigit()
r3 = s.isnumeric()
print(f’{s} isdecimal: {r1}’) # 123 isdecimal: True
print(f’{s} isdigit: {r2}’) # 123 isdigit: True
print(f’{s} isnumeric: {r3}’) # 123 isnumeric: True

s = ‘¥u00b9¥u00b2¥u00b3’ # 上付き数字の 1、2、3は isdigit／ isnumericでは True

［解決！Python］文字列が数字だけで
構成されているかどうかを判定するには（isdecimal／
isdigit／ isnumeric／ isasciiメソッド）
isdecimalメソッドを使って、文字列が数字だけで構成されているかどうかを判定する方法を
紹介。isdigit／ isnumericメソッドとの違いも取り上げる。

かわさきしんじ，Deep Insider編集部（2021年 02月 12日）

https://www.itmedia.co.jp/author/208386/

11 →目次に戻る

r1 = s.isdecimal()
r2 = s.isdigit()
r3 = s.isnumeric()
print(f’{s} isdecimal: {r1}’) # 123 isdecimal: False
print(f’{s} isdigit: {r2}’) # 123 isdigit: True
print(f’{s} isnumeric: {r3}’) # 123 isnumeric: True

s = ‘ 二億四千万 ’ # 漢数字などは isnumericでのみ True
r1 = s.isdecimal()
r2 = s.isdigit()
r3 = s.isnumeric()
print(f’{s} isdecimal: {r1}’) # 二億四千万 isdecimal: False
print(f’{s} isdigit: {r2}’) # 二億四千万 isdigit: False
print(f’{s} isnumeric: {r3}’) # 二億四千万 isnumeric: True

文字列が 10進数字のみで構成されているかどうかを判定

　文字列の isdecimalメソッドを使うと、その文字列が 10進数字のみで構成されているかどうかを判定できる。

　以下に例を示す。

s1, s2, s3 = ‘123’, ‘１２３’, ‘123foo’

r1 = s1.isdecimal()
r2 = s2.isdecimal() # 全角数字は Trueとなる
r3 = s3.isdecimal()
print(f’{s1} isdecimal: {r1}’) # 123 isdecimal: True
print(f’{s2} isdecimal: {r2}’) # １２３ isdecimal: True
print(f’{s3} isdecimal: {r3}’) # 123foo isdecimal: False

　ただし、上記例を見ると分かるが、全角数字のみで構成される文字列 ’１２３’についても isdecimalメソッドは

Trueを返す。このメソッドは、UnicodeのGeneral_Categoryプロパティの値が ’Nd’であるものを 10進数字

として判定するようになっているからだ（Unicode Consortiumが提供しているUnicodeData.txtファイル）の

3番目のフィールドを参照）。これらの数字は int関数で整数値に変換可能でもある。

　このため、文字列が半角数字だけを含んでいるかどうかを知りたいときには、isasciiメソッドを組み合わせる必

要がある。

https://www.unicode.org/Public/13.0.0/ucd/UnicodeData.txt

12 →目次に戻る

s = ‘１２３’
if s.isdecimal() and s.isascii():
 print(f’{s} includes only ASCII digits’)
else:
 print(f’{s} includes decimal characters’)
出力結果：
１２３ include decimal characters

　これらを組み合わせて以下のような関数を定義してもよいだろう。

def isascnum(s):
 return True if s.isdecimal() and s.isascii() else False

s1, s2, s3 = ‘123’, ‘１２３’, ‘123foo’

r1 = isascnum(s1)
r2 = isascnum(s2)
r3 = isascnum(s3)
print(f’{s1} isascnum: {r1}’) # 123 isascnum: True
print(f’{s2} isascnum: {r2}’) # １２３ isascnum: False
print(f’{s3} isascnum: {r3}’) # 123foo isascnum: False

　注意点としては、isdecimalメソッドは符号や小数点を含んだ文字列に対しては Falseを返すことが挙げられる。

s1 = ‘-12’
s2 = ‘1.23’
r1, r2 = s1.isdecimal(), s2.isdecimal()
print(f’{s1} isdecimal: {r1}’) # -12 isdecimal: False
print(f’{s2} isdecimal: {r2}’) # 1.23 isdecimal: False

　符号や小数点を含んだ文字列を数値に変換できるかどうかを判定する方法については「文字列が数値へ変換可

能かどうかを判定するには（int／ float関数の例外、re.fullmatch関数）」を参照されたい。

13 →目次に戻る

isdecimal／ isdigit／ isnumericメソッド

　通常は上で述べた isdecimalメソッドを使えば、おおよそ 10進数字として扱われるものを判定できる。しかし、

Pythonの文字列には isdigitメソッドと isnumericメソッドの 2つのメソッドがある。isdecimalメソッドを含む

これら 3つのメソッドの違いを以下にまとめる。

isdecimal／ isdigit／ isnumericメソッドの違い

　なお、UnicodeのGeneral_Category=Ndである文字とNumeric_Type=Decimalである文字は同一といっ

てよさそうであることから、上の isdecimalメソッドの説明にはその旨を記載してある（「UNICODE

CHARACTER DATABASE」の「UCD File Format Invariants」項が始まる直前の段落には「the set of

characters having General_Category=Nd will always be the same as the set of characters having

NumericType=de」とある）。

　つまり、これら 3つのメソッドでは Trueと判定する文字種が isdecimal→ isdigit→ isnumeircの順に

「Numeric_Type=Decimalのみ→Numeric_Type=Decimal＋Digit→Numeric_Type＝Decimal＋Digit

＋Numeric」のように増えていくということだ。各カテゴリに含まれる具体的な文字種については以下のリンクを

参照されたい。

• Numeric_Type=Decimal

• Numeric_Type=Digit

• Numeric_Type=Numeric

　手短にまとめると、Numeric_Type＝Decimal（General_Category＝Nd）には上で見たような 10進数

字が含まれる。Numeric_Type＝Digitには丸付き数字や上付き数字、下付き数字など（の一部）が含まれる。

Numeric_Type＝Numericには「零」「一」「壱」「千」「億」やローマ数字など数の概念を表す文字が含まれる。

https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/#File_Invariants
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Numeric_Type=Decimal:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Numeric_Type=Digit:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Numeric_Type=Numeric:]

14 →目次に戻る

　以下に例を示す。

s = ‘123’
r1 = s.isdecimal()
r2 = s.isdigit()
r3 = s.isnumeric()
print(f’{s} isdecimal: {r1}’) # 123 isdecimal: True
print(f’{s} isdigit: {r2}’) # 123 isdigit: True
print(f’{s} isnumeric: {r3}’) # 123 isnumeric: True

s = ‘¥u00b9¥u00b2¥u00b3’ # 上付き数字の 1、2、3
r1 = s.isdecimal()
r2 = s.isdigit()
r3 = s.isnumeric()
print(f’{s} isdecimal: {r1}’) # 123 isdecimal: False
print(f’{s} isdigit: {r2}’) # 123 isdigit: True
print(f’{s} isnumeric: {r3}’) # 123 isnumeric: True

s = ‘ 二億四千万 ’
r1 = s.isdecimal()
r2 = s.isdigit()
r3 = s.isnumeric()
print(f’{s} isdecimal: {r1}’) # 二億四千万 isdecimal: False
print(f’{s} isdigit: {r2}’) # 二億四千万 isdigit: False
print(f’{s} isnumeric: {r3}’) # 二億四千万 isnumeric: True

　どんな数字を判定したいかに応じて、これらのメソッドを使い分けられるが、多くの場合は isdecimalメソッド

を使えば十分だろう。正規表現を使って、文字列が数字だけで構成されているかどうかを判定することも可能だ。

これについては別稿で紹介する。

15 →目次に戻る

文字列が数値を表し、int／ float関数による変換が可能かどうかを判定
def isint(s): # 整数値を表しているかどうかを判定
 try:
 int(s, 10) # 文字列を実際に int関数で変換してみる
 except ValueError:
 return False
 else:
 return True

def isfloat(s): # 浮動小数点数値を表しているかどうかを判定
 try:
 float(s) # 文字列を実際に float関数で変換してみる
 except ValueError:
 return False
 else:
 return True

s1 = ‘123’
s2 = ‘123b’
r1 = isint(s1)
r2 = isint(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # 123: True, 123b: False

s1 = ‘1.23e-1’
s2 = ‘1.23e’
r1 = isfloat(s1)
r2 = isfloat(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # 1.23e-1: True, 1.23e: False

正規表現を使う
import re

def isint2(s): # 正規表現を使って判定を行う
 p = r‘[-+]?¥d+’
 return True if re.fullmatch(p, s) else False

def isfloat2(s): # 正規表現を使って判定を行う
 p = r‘[-+]?(¥d+¥.?¥d*|¥.¥d+)([eE][-+]?¥d+)?’
 return True if re.fullmatch(p, s) else False

［解決！Python］文字列が数値へ変換可能かどうかを
判定するには
（int／ float関数の例外、re.fullmatch関数）
文字列の値を数値に変換する前に、それが変換できるかを調べる必要がある。例外を使ってこ
れを調べる方法と正規表現を使う方法の 2つを紹介する。

かわさきしんじ，Deep Insider編集部（2021年 02月 09日）

https://www.itmedia.co.jp/author/208386/

16 →目次に戻る

s1 = ‘123’
s2 = ‘123b’
r1 = isint2(s1)
r2 = isint2(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # 123: True, 123b: False

s1 = ‘1.23e-1’
s2 = ‘1.23e’
r1 = isfloat2(s1)
r2 = isfloat2(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # 1.23e-1: True, 1.23e: False

文字列が数値へ変換が可能かどうかを判定する

　input関数で入力された文字列を数値に変換するなど、文字列を数値に変換しなければならないことはよくあ

る。ただし、その際には文字列が数値に変換可能かどうかを前もって調べる必要もある。

　文字列を数値に変換可能かどうかを調べるには、実際に int関数や float関数にその文字列を渡してみるのが簡

単だ。例外が発生すれば変換できず、そうでなければ変換できる。このことを利用して、次のように isint関数や

isfloat関数を定義できるだろう。

def isint(s): # 整数値を表しているかどうかを判定
 try:
 int(s, 10) # 文字列を実際に int関数で変換してみる
 except ValueError:
 return False # 例外が発生＝変換できないので Falseを返す
 else:
 return True # 変換できたので Trueを返す

def isfloat(s): # 浮動小数点数値を表しているかどうかを判定
 try:
 float(s) # 文字列を実際に float関数で変換してみる
 except ValueError:
 return False # 例外が発生＝変換できないので Falseを返す
 else:
 return True # 変換できたので Trueを返す

17 →目次に戻る

　使用例を以下に示す。

s1 = ‘123’
s2 = ‘123b’
r1 = isint(s1)
r2 = isint(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # 123: True, 123b: False

s1 = ‘1.23e-1’
s2 = ‘1.23e’
r1 = isfloat(s1)
r2 = isfloat(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # 1.23e-1: True, 1.23e: False

　Pythonでは全角の 10進数字などでも数値への変換が可能なことは覚えておこう。以下に例を示す。ただし、

符号（＋／－）や小数点、指数表記の e／ Eなどは半角でなければならない。

s = ‘１２３’ # 全角の 10進数字でも変換可能
result = isint(s)
print(result) # True

s = ‘＋１２３’ # 符号が全角だと変換できない
result = isint(s)
print(result) # False

　半角の数字だけであるかまでを考慮に入れたいのであれば、以下の正規表現を使う方法を使う必要がある。

18 →目次に戻る

正規表現を使う

　正規表現を使って、次のような関数を定義してもよい。

import re

def isint2(s): # 正規表現を使って判定を行う
 p = r‘[-+]?¥d+’
 return True if re.fullmatch(p, s) else False

def isfloat2(s): # 正規表現を使って判定を行う
 p = r‘[-+]?(¥d+¥.?¥d*|¥.¥d+)([eE][-+]?¥d+)?’
 return True if re.fullmatch(p, s) else False

　isint2関数は「0個か 1個の符号」に続けて「1個以上の 10進数字」が並ぶパターンが文字列全体にマッチ

するかどうかを調べている。

　isfloat2関数は「0個か 1個の符号」の後に、「1個以上の 10進数字」「0個か 1個の小数点（.）」「0個以

上の 10進数字」という文字の並びあるいは「小数点（.）」「1個以上の 10進数字」が続き、最後に「指数表記

を表す eか E」「0個が 1個の符号」「1個以上の 10進数字」というパターンが、文字列全体にマッチするかど

うかを調べている。

　Pythonでは「1.23」「-1.」「1.e-2」など、さまざまな形で浮動小数点数値を表せる。例えば、「-1.」は「1

個の符号の後に、1個の 10進数字、1個の小数点、0個の 10進数字」であり上記パターンにマッチする。また、

「.1e1」は「0個の符号の後に、小数点、1個の 10進数字、指数表記を示す e、0個の符号、1個の 10進数

字」であり、こちらも上記のパターンにマッチする。

　これらのパターンをなるべく網羅したつもりだが、漏れているものや実際には浮動小数点数値に変換できないも

のがあるかもしれないので、上記のコードをそのまま使う場合にはテストを欠かさずに行ってほしい。

19 →目次に戻る

　以下に使用例を示す。

s1 = ‘-123’
s2 = ‘123b’
r1 = isint2(s1)
r2 = isint2(s2)
print(f’{s1}: {r1}, {s2}: {r2}’) # -123: True, 123b: False

s_list = [‘1.23’, ‘-1.’, ‘1.e-2’, ‘1.23e’]
result = {s: isfloat(s) for s in s_list} # isfloat関数で判定
result2 = {s: isfloat2(s) for s in s_list} # isfloat2関数で判定
print(result) # {‘1.23’: True, ‘-1.’: True, ‘1.e-2’: True, ‘1.23e’: False}
print(result2) # {‘1.23’: True, ‘-1.’: True, ‘1.e-2’: True, ‘1.23e’: False}

　上記コードで使用している正規表現中の文字クラス「¥d」は、Unicodeで 10進数字としての属性が与えられ

ているもの（General_Categoryプロパティの値がNdのもの）を表す。よって、正規表現を使っていないコー

ドと同様に全角の10進数字なども変換可能と判定する。半角の10進数値のみを考慮の対象としたいのであれば、

fullmatch関数の第 3引数で re.ASCIIフラグを指定すること。

　以下に例を示す。

def isint3(s, flags=0):
 p = r‘[-+]?¥d+’
 return True if re.fullmatch(p, s, flags) else False

s = ‘１２３’
r1 = isint3(s)
r2 = isint3(s, re.ASCII)
print(f’without re.ASCII: {r1}, with re.ASCII: {r2}’)
出力結果：
without re.ASCII: True, with re.ASCII: False

　ここではフラグを受け取るパラメーターを持つ isint3関数を定義して、受け取ったフラグの値を re.fullmatch

関数の第 3引数に渡すようにした。re.ASCII値を与えることで動作が変わっていることを確認してほしい。

20 →目次に戻る

s = ‘Deep’
result = s.isalpha() # 英字（文字）のみで構成されているかどうかを判定
print(f’”{s}” is alpha:’, result) # “Deep” is alpha: True

s = ‘Deep Insider’
result = s.isalpha() # 空白文字は英字（文字）には含まれない
print(f’”{s}” is alpha:’, result) # “Deep Insider” is alpha: False

s = ‘AI初学者のためのサイト ’
result = s.isalpha() # ひらがな／カタカナ／漢字も文字として判定される
print(f’”{s}” is alpha:’, result) # “AI初学者のためのサイト” is alpha: True

isalphaメソッドと isasciiメソッドを組み合わせる
string_list = [‘Deep Insider’, ‘DeepInsider’, ‘AI初学者のためのサイト ’]
for item in string_list:
 if item.isalpha():
 if item.isascii():
 print(f’”{item}” includes only alphabets’)
 else:
 print(f’”{item}” includes letter characters’)
 else:
 print(f’”{item}” includes non-letter characters’)
出力結果：
“Deep Insider” includes non-letter characters
“DeepInsider” includes only alphabets
“AI初学者のためのサイト” includes letter characters

正規表現を使用する
import re

string_list = [‘Deep Insider’, ‘DeepInsider’, ‘AI初学者のためのサイト ’]
for item in string_list:
 if re.fullmatch(‘[a-zA-Z]+’, item): # re.match(‘^[a-zA-Z]+$’, ‘Deep’)
 print(f’”{item}” includes only alphabets’)
 else:
 print(f’”{item}” includes non-alphabetic characters’)
出力結果：
“Deep Insider” includes non-alphabetic characters
“DeepInsider” includes only alphabets
“AI初学者のためのサイト” includes non-alphabetic characters

［解決！Python］文字列が英字（文字）のみで
構成されているかどうかを判定するには（isalpha／
isasciiメソッド、re.match／ re.fullmatch関数）
文字列の isalphaメソッドを使うとそれが英字のみで構成されているかどうかを調べられる。そ
の使い方と注意点、正規表現を使って同様な処理を行う方法を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 02月 02日）

https://www.itmedia.co.jp/author/208386/

21 →目次に戻る

文字列が英字のみで構成されているかを判定する

　Pythonの文字列にはさまざまな文字種判定メソッドが用意されている。その中で、文字列が英字のみで構成さ

れているかどうかを判定するには isalphaメソッドが使える。これは文字列に含まれている全ての文字が英字（文

字）ならば Trueを返し、そうでなければ Falseを返す。

　以下に簡単な例を示す。

s = ‘Deep’
result = s.isalpha() # 英字（文字）のみで構成されているかどうかを判定
print(f’”{s}” is alpha:’, result) # “Deep” is alpha: True

　この例では英語の大文字と小文字を含んだ ’Deep’という文字列で isalphaメソッドを呼び出している。その結

果はもちろん Trueとなる。

　これに対して、半角空白文字を含んだ ’Deep Insider’で isalphaメソッドを呼び出すと、以下に示すようにそ

の結果は Falseとなる。

s = ‘Deep Insider’
result = s.isalpha() # 空白文字は英字（文字）には含まれない
print(f’”{s}” is alpha:’, result) # “Deep Insider” is alpha: False

　isalphaメソッドは文字列に含まれるユニコード文字の中で、ユニコード文字データベースのGeneral_

Categoryプロパティの値が「Letter」に分類されるものを英字（alphabetic character）として判定する。具

体的には、このプロパティの値が「Lu（Uppercase_Letter）」「Ll（Lowercase_Letter）」「Lt（Titlecase_

Letter）」「Lm（Modifier_Letter）」「Lo（Other_Letter）」となっているものが該当する。空白文字のGeneral_

Categoryプロパティの値は「Zs（Space_Separator）」であるため、上のような結果となる。

　実は、日本語のひらがなやカタカナ、漢字の多くでは、General_Categoryプロパティの値は今述べた Letter

に分類されるものとなっている。そのため、以下のように英字ではない、日本語の文字についても isalphaメソッ

ドは Trueを返すことには注意が必要だ。

s = ‘AI初学者のためのサイト ’
result = s.isalpha() # ひらがな／カタカナ／漢字も文字として判定される
print(f’”{s}” is alpha:’, result) # “AI初学者のためのサイト” is alpha: True

　何らかの理由で、文字列全体が英大文字／小文字のみで構成されているかどうかを判定したい場合には、

isalphaメソッドと isasciiメソッドを組み合わせる方法が考えられる。

https://www.unicode.org/reports/tr44/#General_Category_Values
https://www.unicode.org/reports/tr44/#General_Category_Values

22 →目次に戻る

string_list = [‘Deep Insider’, ‘DeepInsider’, ‘AI初学者のためのサイト ’]
for item in string_list:
 if item.isalpha():
 if item.isascii():
 print(f’”{item}” includes only alphabets’)
 else:
 print(f’”{item}” includes letter characters’)
 else:
 print(f’”{item}” includes non-letter characters’)
出力結果：
“Deep Insider” includes non-letter characters
“DeepInsider” includes only alphabets
“AI初学者のためのサイト” includes letter characters

　あるいは、例えば、正規表現を扱う reモジュールのmatch関数や fullmatch関数を使う方法もある。fullmatch

関数は引数に指定したパターンが、マッチ対象の文字列にマッチしたときにはマッチした部分を表す re.Matchオ

ブジェクトを、マッチしなかったときには戻り値を返さない（Noneを返す）。このことを利用して、以下のような

コードを書けるだろう。

string_list = [‘Deep Insider’, ‘DeepInsider’, ‘AI初学者のためのサイト ’]
for item in string_list:
 if re.fullmatch(‘[a-zA-Z]+’, item): # re.match(‘^[a-zA-Z]+$’, ‘Deep’)
 print(f’”{item}” includes only alphabets’)
 else:
 print(f’”{item}” includes non-alphabetic characters’)
出力結果：
“Deep Insider” includes non-alphabetic characters
“DeepInsider” includes only alphabets
“AI初学者のためのサイト” includes non-alphabetic characters

　ここでは、正規表現として「[a-zA-Z]+」を使用しているが、これは「1文字以上の連続する英小文字と大文

字」を意味する。「単語を構成する文字」を表す文字クラス「¥w」を使ってもよさそうだが、これだと数字やアン

ダースコアも含まれるし、isalphaメソッドと同様に日本語の文字までマッチしてしまうので、その際にはmatch

関数や fullmatch関数の第 3引数に re.ASCIIフラグを指定して、ASCII範囲の文字のみをマッチの対象とする

などした方がよいかもしれない。

23 →目次に戻る

print(‘without re.ASCII flag’)
s = ‘AI初学者のためのサイト ’
if re.match(r’^¥w+$’, item):
 print(f’”{item}” includes only alphabets’)
else:
 print(f’”{item}” includes non-alphabetic characters’)

print(‘---’)

print(‘with re.ASCII flag’)
s = ‘AI初学者のためのサイト ’
if re.match(r’^¥w+$’, item, re.ASCII):
 print(f’”{item}” includes only alphabets’)
else:
 print(f’”{item}” includes non-alphabetic characters’)
出力結果：
without re.ASCII flag
“AI初学者のためのサイト” includes only alphabets
with re.ASCII flag
“AI初学者のためのサイト” includes non-alphabetic characters

　[]の中にはマッチさせたい任意の文字を含めることができるので、isalphaメソッドよりも柔軟に文字種の判定

を行えることは覚えておこう。

