
解決！ Python
（日付データ編）
かわさきしんじ，Deep Insider編集部［著］

01.［解決！Python］
　　 今日の日付や時刻を取得するには

04.［解決！Python］日付や時刻の文字列表現を strptimeメソッドで
　　 datetime型のオブジェクトに変換するには

02.［解決！Python］
　　 日付や時刻をYYMMDDhhmmssなどの形式に書式化するには

05.［解決！Python］
　　 日付から曜日を求めるには

03.［解決！Python］
　　 datetime型の日付や時刻と、ISO 8601形式の文字列とを相互変換するには

3 →目次に戻る

* 本稿は 2021年 11月 2日に公開された記事をPython 3.12.3で動作確認し、Python 3.12において datetime.datetime.utcnowクラス
メソッドが非推奨になったことを追記したものです（確認日：2024年 4月 12日）。

datetimeモジュールを使った現在の日付と時刻の取得
import datetime

dt = datetime.datetime.today() # ローカルな現在の日付と時刻を取得
print(dt) # 2021-10-29 15:58:08.356501

日付と時刻を構成する要素の取り出し
print(f‘year: {dt.year}, month: {dt.month}, day: {dt.day}’)
print(f‘hour: {dt.hour}, minute: {dt.minute}, second: {dt.second}’)
print(f‘micro second: {dt.microsecond}’)
出力例
#year: 2021, month: 10, day: 29
#hour: 15, minute: 58, second: 8
#micro second: 356501

datetimeオブジェクトから日付または時刻を取り出す
d = dt.date()
print(d) # 2021-10-29

t = dt.time()
print(t) # 15:58:08.356501

tdy = datetime.date.today() # 今日の日付の取得
print(tdy) # 2021-10-29

タイムゾーンを考慮する
dt = datetime.datetime.now() # タイムゾーンなしで現在の日付と時刻を取得
print(dt) # 2021-10-29 16:16:23.202059

dt = datetime.datetime.now(datetime.timezone.utc) # タイムゾーン付きで UTCを取得
print(dt) # 2021-10-29 07:23:14.464801+00:00
print(dt.tzinfo) # UTC

dt = datetime.datetime.utcnow() # タイムゾーンなしで UTCを取得
print(dt) # 2021-10-29 07:31:41.503042

［解決！Python］今日の日付や時刻を取得するには
Pythonに標準で付属する datetimeモジュールと timeモジュールを使って、現在の日付と時
刻を取得する方法を紹介する。

かわさきしんじ，Deep Insider編集部（2024年 04月 12日）

https://www.itmedia.co.jp/author/208386/

4 →目次に戻る

t_delta = datetime.timedelta(hours=9) # 9時間
JST = datetime.timezone(t_delta, ‘JST’) # UTCから 9時間差の「JST」タイムゾーン
dt = datetime.datetime.now(JST) # タイムゾーン付きでローカルな日付と時刻を取得
print(dt)

timeモジュールを使った現在の日付と時刻の取得
import time

t = time.time() # UNIX時間（1970/01/01 00:00:00からの経過時刻）を取得
dt_from_timestamp = datetime.datetime.fromtimestamp(t)
print(dt_from_timestamp) # 2021-10-29 16:59:04.741680

c_time = time.ctime(t) # UNIX時刻を文字列表現に変換
print(c_time) # Fri Oct 29 16:59:04 2021

local_time = time.localtime(t) # ローカル時刻を time.struct_time型として取得
print(local_time)
gm_time = time.gmtime(t) # UTC時刻を time.struct_time型として取得
print(gm_time)
出力例
#time.struct_time(tm_year=2021, tm_mon=10, tm_mday=29, tm_hour=16, tm_min=59,
tm_sec=4, tm_wday=4, tm_yday=302, tm_isdst=0)
#time.struct_time(tm_year=2021, tm_mon=10, tm_mday=29, tm_hour=7, tm_min=59,
#tm_sec=4, tm_wday=4, tm_yday=302, tm_isdst=0)

asc_time = time.asctime(local_time) # 上の local_timeを文字列表現に変換
print(asc_time) # Fri Oct 29 16:59:04 2021

dt = datetime.datetime.strptime(asc_time, ‘%a %b %d %H:%M:%S %Y’)
print(dt) # 2021-10-29 16:59:04

datetimeモジュールを使った現在の日付と時刻の取得

　Pythonで現在の日付と時刻を取得するには幾つかの方法がある。代表的なものとしては Pythonに標準で付

属するdatetimeモジュールまたは timeモジュールを使う方法が挙げられる。まずは datetimeモジュールを使う

方法を見てみよう。

import datetime

dt = datetime.datetime.today() # ローカルな現在の日付と時刻を取得
print(dt) # 2021-10-29 15:58:08.356501

　一番簡単な方法は上に示した、datetimeモジュールに含まれる datetimeクラスの todayクラスメソッドを呼

び出すことだ。todayクラスメソッドが返送するのは、datetime.datetime型のオブジェクトであり、以下のよう

に year／month／ day／ hour／minute／ second／microsecond属性によって日付や時刻を構成する

各要素にアクセスできる。

5 →目次に戻る

print(f‘year: {dt.year}, month: {dt.month}, day: {dt.day}’)
print(f‘hour: {dt.hour}, minute: {dt.minute}, second: {dt.second}’)
print(f‘micro second: {dt.microsecond}’)
出力例
#year: 2021, month: 10, day: 29
#hour: 15, minute: 58, second: 8
#micro second: 356501

　あるいは strftimeメソッドを呼び出して、日付と時刻を独自の書式でフォーマットすることも可能だが、これに

ついては「日付や時刻をYYMMDDhhmmssなどの形式に書式化するには」で紹介する。

　取得した datetimeクラスのオブジェクトには、その日付を取り出す dateメソッドと時刻を取り出す timeメソッ

ドもある。使用例を以下に示す。

d = dt.date()
print(d) # 2021-10-29

t = dt.time()
print(t) # 15:58:08.356501

　なお、今日の日付を取得するだけなら、以下のように datetimeモジュールに含まれる dateクラスの todayク

ラスメソッドを呼び出してもよい。

tdy = datetime.date.today()
print(tdy) # 2021-10-29

　dateメソッドの戻り値はdatetime.dateクラスのオブジェクトであり、timeメソッドの戻り値はdatetime.time

クラスのオブジェクトだ。これらには datetimeクラスのオブジェクトと同様、日付を構成する要素を表す属性と時

刻を構成する要素を表す属性がある（例は省略）。

　todayメソッドと同様に、datetimeクラスの nowクラスメソッドを呼び出しても現在の日付と時刻を取得できる。

dt = datetime.datetime.now() # タイムゾーンなしで現在の日付と時刻を取得
print(dt) # 2021-10-29 16:16:23.202059

　todayメソッドを呼び出したり、nowメソッドを引数なしで呼び出したりした場合、得られる値はローカルな日

付と時刻となる。この場合、datetimeオブジェクトにはタイムゾーン情報が含まれない（こうしたオブジェクトの

ことを「naive」と呼ぶ。逆にタイムゾーンなどの情報を含むオブジェクトのことを「aware」と呼ぶ）。

6 →目次に戻る

　nowメソッドはタイムゾーンを指定して呼び出せる。その場合は、取得する日付と時刻は指定したタイムゾーン

のものに変換される。以下はUTC（協定世界時）をタイムゾーンに指定して nowメソッドを呼び出す例だ。

dt = datetime.datetime.now(datetime.timezone.utc) # タイムゾーン付きで UTCを取得
print(dt) # 2021-10-29 07:23:14.464801+00:00
print(dt.tzinfo) # UTC

　2つ目の出力ではタイムゾーンが「UTC」となっていること、その上の出力の最後にはそのことを裏付ける

「+00:00」があることに注目してほしい。

　なお、タイムゾーン情報なしでUTCを取得する utcnowメソッドもある（このメソッドは Python 3.12で非推

奨となり、「datetime.datetime.now(datetime.UTC)」のようにしてUTCを取得することが推奨されている）。

dt = datetime.datetime.utcnow() # タイムゾーンなしで UTCを取得
print(dt) # 2021-10-29 07:31:41.503042

　タイムゾーンを指定して nowメソッドを呼び出すには、datetime.timezoneクラスまたは datetime.tzinfoク

ラスの派生クラスのインスタンスを nowメソッドに渡す。以下は、JST（日本標準時。UTC+9）を表す timezone

クラスのインスタンスを作成して、それを nowメソッドに渡すことで JSTをタイムゾーンとするローカルな時刻を

取得する例だ。

t_delta = datetime.timedelta(hours=9) # 9時間
JST = datetime.timezone(t_delta, ‘JST’) # UTCから 9時間差の「JST」タイムゾーン
dt = datetime.datetime.now(JST) # タイムゾーン付きでローカルな日付と時刻を取得
print(dt) # 2021-10-29 16:44:02.888144+09:00

　datetimeクラスのオブジェクトにタイムゾーンを設定するには、astimezoneメソッドを使えるが、これについ

ては Pythonのドキュメントを参照されたい。

timeモジュールを使った現在の日付と時刻の取得

　次に timeモジュールを使っても現在の日付と時刻を取得する方法を見る。

　timeモジュールの time関数は、UNIX時間（1970年 1月 1日 0時 0分 0秒）からの経過時間を浮動小数

点数で取得する。これを datetimeモジュールの datetimeクラスが持つ fromtimestampクラスメソッドに渡す

と、これに対応するローカルな日付と時刻を表す datetimeオブジェクトが得られる。

https://docs.python.org/ja/3/library/datetime.html#datetime.datetime.astimezone

7 →目次に戻る

import time

t = time.time() # UNIX時間（1970/01/01 00:00:00からの経過時刻）を取得
dt_from_timestamp = datetime.datetime.fromtimestamp(t)
print(dt_from_timestamp) # 2021-10-29 16:59:04.741680

　time.time関数の戻り値を time.ctime関数に渡すと、その値に対応する日付と時刻を文字列で表現したものが

得られる。以下に例を示す。

c_time = time.ctime(t) # UNIX時刻を文字列表現に変換
print(c_time) # Fri Oct 29 16:59:04 2021

　time.time関数の戻り値を time.localtime関数に渡すと、その値に対応するローカルな日付と時刻を表す time.

struct_time型の値が得られる。また、time.gmtime関数に渡すと、その値に対応するUTCを表す time.struct_

time型の値が得られる（以下のコード例から分かるように、こちらはローカルな時刻からUTCへ変換が行われ

る）。なお、引数なしで localtime関数と gmtime関数を呼び出した場合は、呼び出し時点の時刻が使われる。

local_time = time.localtime(t) # ローカル時刻を time.struct_time型として取得
print(local_time)
gm_time = time.gmtime(t) # UTC時刻を time.struct_time型として取得
print(gm_time)
出力例
#time.struct_time(tm_year=2021, tm_mon=10, tm_mday=29, tm_hour=16, tm_min=59,
tm_sec=4, tm_wday=4, tm_yday=302, tm_isdst=0)
#time.struct_time(tm_year=2021, tm_mon=10, tm_mday=29, tm_hour=7, tm_min=59,
#tm_sec=4, tm_wday=4, tm_yday=302, tm_isdst=0)

　localtime関数や gmtime関数が返す struct_time型の値は、time.asctime関数に渡すことで、その文字列

表現が得られる。

asc_time = time.asctime(local_time) # 上の local_timeを文字列表現に変換
print(asc_time) # Fri Oct 29 16:59:04 2021

　最後に、time.ctime関数や time.asctime関数が返す文字列表現を、適切な表現と共に datetimeモジュール

の datetimeクラスが持つ strptime関数に渡すと、datetimeクラスのオブジェクトへとパースできる。

dt = datetime.datetime.strptime(asc_time, ‘%a %b %d %H:%M:%S %Y’)
print(dt) # 2021-10-29 16:59:04

8 →目次に戻る

* 本稿は 2021年 11月 9日に公開された記事をPython 3.11.5で動作確認したものです（確認日：2023年 9月 11日）。

datetimeモジュールを使用
import datetime

t_delta = datetime.timedelta(hours=9)
JST = datetime.timezone(t_delta, ‘JST’)
now = datetime.datetime.now(JST)
print(repr(now))
出力例
#datetime.datetime(2021, 11, 4, 17, 37, 28, 114417, tzinfo=datetime.timezone
#(datetime.timedelta(seconds=32400), ‘JST’))
print(now) # 2021-11-04 17:37:28.114417+09:00

YYYYMMDDhhmmss形式に書式化
d = now.strftime(‘%Y%m%d%H%M%S’)
print(d) # 20211104173728

d = f‘{now:%Y%m%d%H%M%S}’ # f文字列
d = format(now, ‘%Y%m%d%H%M%S’) # format関数
d = ‘{:%Y%m%d%H%M%S}’.format(now) # 文字列の formatメソッド
print(d) # 20211104173728

YYYY/MM/DD hh:mm:ss形式に書式化
d = now.strftime(‘%Y/%m/%d %H:%M:%S’)
print(d) # 2021/11/04 17:37:28

MM/DD/YY hh:mm:ss形式に書式化
d = now.strftime(‘%x %X’)
print(d) # 11/04/21 17:37:28

日付のみを書式化
d = now.date().strftime(‘%Y/%m/%d’)
print(d) # 2021/11/04

時刻のみを書式化
t = now.time().strftime(‘%X’)
print(t) # 17:37:28

西暦を 2桁に
d = now.strftime(‘%Y/%m/%d %H:%M:%S’)

［解決！Python］日付や時刻を
YYMMDDhhmmssなどの形式に書式化するには
datetimeモジュールと timeモジュールには、それらが提供する日付／時刻のデータを書式化
するために使える strftime関数／メソッドがある。それらの使い方を紹介する。

かわさきしんじ，Deep Insider編集部（2023年 09月 11日）

https://www.itmedia.co.jp/author/208386/

9 →目次に戻る

print(d) # 21/11/04 17:37:28

12時間制＋AM／ PM表示
d = now.strftime(‘%Y/%m/%d %I:%M(%p)’)
print(d) # 2021/11/04 05:37(PM)

曜日を含む日付
d = now.strftime(‘%Y年 %m月 %d日（%a）’)
print(d) # 2021年 11月 04日（Thu）

d_week = {‘Sun’: ‘ 日 ’, ‘Mon’: ‘ 月 ’, ‘Tue’: ‘ 火 ’, ‘Wed’: ‘ 水 ’,
 ‘Thu’: ‘ 木 ’, ‘Fri’: ‘ 金 ’, ‘Sat’: ‘ 土 ’}
key = now.strftime(‘%a’)
w = d_week[key]
d = now.strftime(‘%Y年 %m月 %d日 ’) + f‘（{w}）’ #f‘{now:%Y年 %m月 %d日 }（{w}）’
print(d) # 2021年 11月 04日（木）

d_week = ‘ 日月火水木金土日 ’ # インデックス 0の ‘日 ’ は使用されない
idx = now.strftime(‘%u’) # ‘%u’ では月曜日がインデックス ‘1’ となる
w = d_week[int(idx)]
d = now.strftime(‘%Y年 %m月 %d日 ’) + f‘（{w}）’
print(d) # 2021年 11月 04日（木）

タイムゾーン
d = now.strftime(‘%X%z(%Z)’)
print(d) # 17:37:28+0900(JST)

timeモジュールを使用
import time

now = time.localtime()
print(now)
出力例
#time.struct_time(tm_year=2021, tm_mon=11, tm_mday=4, tm_hour=19, tm_min=40,
#tm_sec=1, tm_wday=3, tm_yday=308, tm_isdst=0)

d = time.strftime(‘%Y%m%d%H%M%S’, now) # YYYYMMDDhhmmssに書式化
d = time.strftime(‘%Y/%m/%d %H:%M:%S’, now) # YYYY/MM/DD hh:mm:ssに書式化
d = time.strftime(‘%x %X’, now) # MM/DD/YY hh:mm:ssに書式化
d = time.strftime(‘%Y/%m/%d %H:%M:%S’, now) # YY/MM/DD hh:mm:ssに書式化
d = time.strftime(‘%Y/%m/%d %I:%M(%p)’, now) # 12時間制＋AM／ PM表示
d = time.strftime(‘%Y年 %m月 %d日（%a）’, now) # 曜日を含む日付

d_week = {‘Sun’: ‘ 日 ’, ‘Mon’: ‘ 月 ’, ‘Tue’: ‘ 火 ’, ‘Wed’: ‘ 水 ’,
 ‘Thu’: ‘ 木 ’, ‘Fri’: ‘ 金 ’, ‘Sat’: ‘ 土 ’}
key = time.strftime(‘%a’, now)
w = d_week[key]
d = time.strftime(‘%Y年 %m月 %d日 ’, now) + f‘（{w}）’
print(d) # 2021年 11月 04日（木）

10 →目次に戻る

datetimeモジュールを使用している場合

　datetimeモジュールが提供する datetimeクラス、dateクラス、timeクラスには strftimeメソッドがあり、こ

れらを使うことでそれぞれのインスタンスが表す日付や時刻を簡単に書式化できる。

　簡単な例を以下に示す。

import datetime

t_delta = datetime.timedelta(hours=9)
JST = datetime.timezone(t_delta, ‘JST’)
now = datetime.datetime.now(JST)
print(repr(now))
出力例
#datetime.datetime(2021, 11, 4, 17, 37, 28, 114417, tzinfo=datetime.timezone
#(datetime.timedelta(seconds=32400), ‘JST’))
print(now) # 2021-11-04 17:37:28.114417+09:00

YYYYMMDDhhmmss形式に書式化
d = now.strftime(‘%Y%m%d%H%M%S’)
print(d) # 20211104173728

　最初にタイムゾーン付きで datetimeクラスのオブジェクトを作成して、それを表示した後に、

YYYYMMDDhhmmss形式に書式化している。strftimeメソッドには、「now.strftime(‘%Y%m%d%H%M%S’)」

のように「書式コード」を含んだフォーマット文字列を指定する。なお、print関数の出力にある「2021-11-05

08:08:48.050345+09:00」のような表現が必要なら、「str(now)」のように str関数で文字列化するだけでよい。

11 →目次に戻る

　上の例では「%Y」「%m」「%d」「%H」「%M」「%S」という書式コードを使用している。これらと共に、本

稿で紹介する書式コードを以下に示す（全ての書式コードについては Pythonのドキュメント「strftime() と

strptime() の書式コード」を参照のこと）。

 datetimeモジュールの datetime／ dateクラス／ timeクラスの strftimeメソッドで使える書式コード（一部）

　なお、これらの書式コードを使って、f文字列／ format関数／文字列の formatメソッドで書式化を行うことも

可能だ。以下に例を示す。

d = f‘{now:%Y%m%d%H%M%S}’ # f文字列
d = format(now, ‘%Y%m%d%H%M%S’) # format関数
d = ‘{:%Y%m%d%H%M%S}’.format(now) # 文字列の formatメソッド
print(d) # 20211104173728

日付と時刻の書式化
　書式コードを含むフォーマット文字列には、書式コード以外も含めてよい。例えば、以下は先ほど取得した時刻

を「YYYY/MM/DD hh:mm:ss」形式に書式化する例だ。

d = now.strftime(‘%Y/%m/%d %H:%M:%S’)
print(d) # 2021/11/04 17:37:28

　日付を構成する要素の間にスラッシュを、時刻を構成する要素の間にコロンを入れて、それらを半角空白文字で

つなぐようにしている。

https://docs.python.org/ja/3/library/datetime.html#strftime-and-strptime-format-codes
https://docs.python.org/ja/3/library/datetime.html#strftime-and-strptime-format-codes

12 →目次に戻る

　なお、日付が「MM/DD/YY」という形式でよければ、今見たように複数の書式コードを使わずに「%x」とい

う書式コードを書くだけでもよい。同様に、時刻が「hh:mm:ss」という形式であれば「%X」という書式コード

を使える。

d = now.strftime(‘%x %X’)
print(d) # 11/04/21 17:37:28

　この他にも、日付を書式化するコードとしては次のようなものが考えられる。

d = now.date().strftime(‘%Y/%m/%d’)
print(d) # 2021/11/04

　この例では datetimeクラスのインスタンスを基に dateクラスのインスタンスを作成して、その strftimeメソッ

ドを呼び出している。このときには「%H」などの書式コードを使用すると例外を発生せずに「00」という値が得

られることには注意されたい。

　「MM/DD/YY」以外の形式に書式化したいのであれば、datetime.datetime.strftimeメソッドと datetime.

date.strftimeメソッドのいずれを使うにせよ、「%Y」「%m」「%d」か、以下で紹介する「%y」を組み合わせ

て使うようにしよう。

　同様に、時刻だけを書式化するのであれば、先ほど紹介した「%X」に加えて、datetimeモジュールの time

クラスが持つ strftimeメソッドも使える。timeクラスには日付情報が含まれないので、「%Y」「%m」「%d」な

どの書式コードを使うと、1900年 01月 01日となるように書式化が行われることも覚えておこう。

t = now.time().strftime(‘%X’)
print(t) # 17:37:28

西暦を 2桁表示
　「%Y」は西暦を 4桁で書式化するが、「%y」は西暦の下 2桁を書式化する。

d = now.strftime(‘%Y/%m/%d %H:%M:%S’)
print(d) # 21/11/04 17:37:28

13 →目次に戻る

12時間制＋AM／ PM表示
　「%H」は 24時間制として時の初期化を行うが、「%I」は 12時間制として書式化する。このとき、AM／ PM

は「%p」で取り出せる。

d = now.strftime(‘%Y/%m/%d %I:%M(%p)’)
print(d) # 2021/11/04 05:37(PM)

曜日を含む日付
　曜日は「%a」か「%A」の書式コードで取り出せる。前者は短縮形を、後者はフルスペルで取り出す。以下は

その例だ。

d = now.strftime(‘%Y年 %m月 %d日（%a）’)
print(d) # 2021年 11月 04日（Thu）

　筆者がWindowsとmacOSの Python処理系で試したところ、「木」ではなく「Thu」と表示された。「木」

と表示したいのであれば、以下のような変換テーブル（辞書）を作って、それを使うことが考えられる。

d_week = {‘Sun’: ‘ 日 ’, ‘Mon’: ‘ 月 ’, ‘Tue’: ‘ 火 ’, ‘Wed’: ‘ 水 ’,
 ‘Thu’: ‘ 木 ’, ‘Fri’: ‘ 金 ’, ‘Sat’: ‘ 土 ’}
key = now.strftime(‘%a’)
w = d_week[key]
d = now.strftime(‘%Y年 %m月 %d日 ’) + f‘（{w}）’ #f‘{now:%Y年 %m月 %d日 }（{w}）’
print(d) # 2021年 11月 04日（木）

　これは strftimeメソッドにフォーマット文字列として「%a」のみを指定して、曜日（短縮形）を取得し、それ

を辞書のキーとして、漢字表記の曜日を取得するものだ。

　あるいは、フォーマット文字列に「%u」を指定すると、月曜日を 1、日曜日を 7とするインデックス（文字列）

が得られるので、これを使って以下のようなコードとすることも考えられる（こちらは Pythonの処理系によっては

使えない可能性がある）。

d_week = ‘ 日月火水木金土日 ’ # インデックス 0の ‘日 ’ は使用されない
idx = now.strftime(‘%u’) # ‘%u’ では月曜日がインデックス ’1’ となる
w = d_week[int(idx)]
d = now.strftime(‘%Y年 %m月 %d日 ’) + f‘（{w}）’
print(d) # 2021年 11月 04日（木）

14 →目次に戻る

タイムゾーン
　「%z」は現在のタイムゾーンのUTC（協定世界時）に対するオフセットを書式化するのに使用する。「%Z」は

タイムゾーンの名前を取得する。

d = now.strftime(‘%X%z(%Z)’)
print(d) # 17:37:28+0900(JST)

timeモジュールを使用している場合

　timeモジュールには strftime関数があり、この関数にこれまでに見てきたのと同様なフォーマット文字列と変

換したい値（time.localtime関数や time.gmtime関数が返す struct_timeクラスのインスタンス）の 2つを渡

すと、書式化した結果が返される。以下に例を示す。

　strftimeがメソッドではなく関数であり、引数に書式化対象の値を渡す以外の使い方は同じなので、コードの解

説は省略する。ただし、struct_timeクラスのインスタンスに関しては f文字列や format関数、文字列の format

メソッドによる書式化はできないことには注意されたい。

import time

now = time.localtime()
print(now)
出力例
#time.struct_time(tm_year=2021, tm_mon=11, tm_mday=4, tm_hour=19, tm_min=40,
#tm_sec=1, tm_wday=3, tm_yday=308, tm_isdst=0)

d = time.strftime(‘%Y%m%d%H%M%S’, now) # YYYYMMDDhhmmssに書式化
d = time.strftime(‘%Y/%m/%d %H:%M:%S’, now) # YYYY/MM/DD hh:mm:ssに書式化
d = time.strftime(‘%x %X’, now) # YY/MM/DD hh:mm:ssに書式化
d = time.strftime(‘%Y/%m/%d %H:%M:%S’, now) # MM/DD/YY hh:mm:ssに書式化
d = time.strftime(‘%Y/%m/%d %I:%M(%p)’, now) # 12時間制＋AM／ PM表示
d = time.strftime(‘%Y年 %m月 %d日（%a）’, now) # 曜日を含む日付

d_week = {‘Sun’: ‘ 日 ’, ‘Mon’: ‘ 月 ’, ‘Tue’: ‘ 火 ’, ‘Wed’: ‘ 水 ’,
 ‘Thu’: ‘ 木 ’, ‘Fri’: ‘ 金 ’, ‘Sat’: ‘ 土 ’}
key = time.strftime(‘%a’, now)
w = d_week[key]
d = time.strftime(‘%Y年 %m月 %d日 ’, now) + f‘（{w}）’
print(d) # 2021年 11月 04日（木）

15 →目次に戻る

import datetime

t_delta = datetime.timedelta(hours=9)
JST = datetime.timezone(t_delta, ‘JST’)
jst_datetime = datetime.datetime(2021, 11, 16, 12, 34, 56, tzinfo=JST)
naive_datetime = datetime.datetime.now()
print(repr(jst_datetime))
#出力例：
#datetime.datetime(2021, 11, 16, 12, 34, 56, tzinfo=datetime.timezone(datetime.
#timedelta(seconds=32400), ‘JST’))

print(f‘jst: {jst_datetime}, timezone: {jst_datetime.tzname()}’) #
print(f‘naive: {naive_datetime}, timezone: {naive_datetime.tzname()}’)
出力例
#jst: 2021-11-16 12:34:56+09:00, timezone: JST
#naive: 2021-11-12 13:36:27.275913, timezone: None

日付と時刻を ISOフォーマットに書式化
jst_date = jst_datetime.isoformat()
naive_date = naive_datetime.isoformat()
print(jst_date) # 2021-11-16T12:34:56+09:00
print(naive_date) # 2021-11-12T13:36:27.275913

日付と時刻を ISOフォーマットで書式化（時刻の要素として含めるものを指定）
jst_dt = jst_datetime.isoformat(timespec=‘minutes’)
print(jst_dt)
naive_dt = naive_datetime.isoformat(timespec=‘seconds’)
print(naive_dt)

ISOフォーマットから datetime.datetimeインスタンスを生成
mydatetime = datetime.datetime.fromisoformat(jst_dt)
print(repr(mydatetime))
出力結果：
#datetime.datetime(2021, 11, 16, 12, 34, tzinfo=datetime.timezone(datetime.
#timedelta(seconds=32400)))

mydatetime = datetime.datetime.fromisoformat(naive_dt)
print(repr(mydatetime))
出力結果：
#datetime.datetime(2021, 11, 12, 13, 36, 27)

［解決！Python］datetime型の日付や時刻と
ISO 8601形式の文字列とを相互変換するには
datetimeクラスの isoformatメソッドと fromisoformatクラスメソッドを使って、datetime
オブジェクトを ISO 8601形式の文字列表現に変換する方法と、その逆を行う方法を紹介する。

かわさきしんじ，Deep Insider編集部（2021年 11月 16日）

https://www.itmedia.co.jp/author/208386/

16 →目次に戻る

ISO 8601で定められている「YYYY-MM-DDThh:mm:ss」形式の文字列表現への変換

　Pythonに標準で付属の datetimeモジュールには日付や時刻を扱う datetimeクラスが含まれている。このク

ラスの isoformat（インスタンス）メソッドと fromisoformatクラスメソッドを使うと、ISO 8601で定められて

いる「YYYY-MM-DDThh:mm:ss」形式の文字列表現に変換したり、この形式の文字列から datetimeクラス

のオブジェクトを生成したりできる。

　以下に簡単な例を示す。ここでは以下のようにして、datetime型のオブジェクトを 2つ作ったものとしよう。

import datetime

t_delta = datetime.timedelta(hours=9)
JST = datetime.timezone(t_delta, ‘JST’)
jst_datetime = datetime.datetime(2021, 11, 16, 12, 34, 56, tzinfo=JST)
naive_datetime = datetime.datetime.now()
print(repr(jst_datetime))
#出力例：
#datetime.datetime(2021, 11, 16, 12, 34, 56, tzinfo=datetime.timezone(datetime.
#timedelta(seconds=32400), ‘JST’))

print(f‘jst: {jst_datetime}, timezone: {jst_datetime.tzname()}’) #
print(f‘naive: {naive_datetime}, timezone: {naive_datetime.tzname()}’)
出力例
#jst: 2021-11-16 12:34:56+09:00, timezone: JST
#naive: 2021-11-12 13:36:27.275913, timezone: None

　1つのタイムゾーンは JSTで、もう 1つはタイムゾーン情報を持たないナイーブなオブジェクトになっている。ま

た、後者は datetimeクラスの nowクラスメソッドで現在時刻を取得しているので、マイクロ秒単位でデータが得

られている。

　ISO 8601（の拡張形式）では、日付と時刻はセパレーター「T」を挟んで「YYYY-MM-DDThh:mm:ss」の

ように表現される。isoformatメソッドを呼び出すことで、上記の 2つの datetimeオブジェクトをこの形式の文

字列表現に変換できる。

jst_dt = jst_datetime.isoformat()
naive_dt = naive_datetime.isoformat()
print(jst_dt) # 2021-11-16T12:34:56+09:00
print(naive_dt) # 2021-11-12T13:36:27.275913

https://ja.wikipedia.org/wiki/ISO_8601

17 →目次に戻る

　タイムゾーン情報を持つ jst_datetimeオブジェクトを変換した結果では最後に「+09:00」が表示されている点

と、マイクロ秒単位の値を保持している naive_datetimeオブジェクトを変換した結果では秒の後にピリオドとマ

イクロ秒が追加されている点に注目しよう。マイクロ秒が 0の場合には、1つ目の例のようにその部分の表示は省

略される。

　isoformatメソッドでは、時刻をどの単位まで有効にするかを timespec引数に指定できる。以下に例を示す。

jst_dt = jst_datetime.isoformat(timespec=‘minutes’)
print(jst_dt) # 2021-11-16T12:34+09:00
naive_dt = naive_datetime.isoformat(timespec=‘seconds’)
print(naive_dt) # 2021-11-12T13:36:27

　1つ目の例では、timespec引数に ‘minutes’を指定しているので、分までの時間（12:34）が表示されている。

2つ目の例では、timespec引数に ‘seconds’を指定しているので、秒までの時間（13:36:27）が得られている、

つまりマイクロ秒単位のデータが切り捨てられているのが分かる。

　datetimeモジュールの dateクラスと timeクラスにも isoformatメソッドがある。date.isoformatメソッドは

日付のみを変換し、time.isoformatメソッドは時刻のみを変換することを除けば datetime.isoformatメソッドと

同様である（timespec引数があるのは time.isoformatメソッドのみとなる）。

「YYYY-MM-DDThh:mm:ss」形式の文字列から datetimeクラスのオブジェクトを生成する

　上とは逆に ISO 8601で定められている「YYYY-MM-DDThh:mm:ss」形式の文字列表現から、datetime

クラスのオブジェクトを生成するには、datetimeクラスの fromisoformatメソッドにその文字列表現を与えると

よい。

　以下に例を示す。

mydatetime = datetime.datetime.fromisoformat(jst_dt)
print(repr(mydatetime))
出力結果：
#datetime.datetime(2021, 11, 16, 12, 34, tzinfo=datetime.timezone(datetime.
#timedelta(seconds=32400)))
print(mydatetime) # 2021-11-16 12:34:00+09:00

mydatetime = datetime.datetime.fromisoformat(naive_dt)
print(repr(mydatetime))
出力結果：
#datetime.datetime(2021, 11, 12, 13, 36, 27)

18 →目次に戻る

　1つ目の例ではタイムゾーン情報付きの文字列（‘2021-11-16T12:34+09:00’）を与えているので、これを考

慮した datetimeオブジェクトが得られている。この文字列を得る際には、timespec引数に ‘minutes’を指定し

て分単位の時間を取得したので、これを基にして生成した datetimeオブジェクトでは秒以下の単位はデフォルト

値（1990年 01月 01日 00:00:00）の日付／時刻の構成要素が流用される点にも注意されたい。

　2つ目の例ではタイムゾーン情報がないことと、秒単位の時間が得られるが、マイクロ秒単位については上と同

様に 0となっている。

　このとき、時刻やセパレーターは省略できるが、日付を省略して時刻のみを渡すと例外となる点には注意しよう

（上と同じく、足りない要素はデフォルトの値が流用される）。

mydatetime = datetime.datetime.fromisoformat(‘2022-01-01’) # OK
print(mydatetime) # 2022-01-01 00:00:00
mydatetime = datetime.datetime.fromisoformat(‘12:34:56’) # ValueError

　なお、このクラスメソッドはあくまで「YYYY-MM-DDThh:mm:ss」（とマイクロ秒やタイムゾーン情報）とい

う文字列表現から、datetimeクラスのインスタンスを生成するためのものであり、ISO 8601が定めているその

他の表現（経過時間など）に対応するものではない。

　最後に、isoformatメソッドと同じく、dateクラスと timeクラスにも fromisoformatクラスメソッドがある。

date.fromisoformatクラスメソッドは日付のみを受け取り、dateクラスのインスタンスを生成する。一方、time.

fromisoformatクラスメソッドは時刻のみを受け取り、timeクラスのインスタンスを生成する。

mydate = datetime.date.fromisoformat(‘2021-11-22’)
print(mydate) # 2021-11-22
mydate = datetime.date.fromisoformat(‘2021-11-22T00:11:22’) # ValueError

mytime = datetime.time.fromisoformat(‘12:34:56’)
print(mytime) # 12:34:56
mytime = datetime.time.fromisoformat(‘2021-11-22T01:23:45’) # ValueError

19 →目次に戻る

* 本稿は 2021年 11月 24日に公開された記事をPython 3.12.2で動作確認したものです（確認日：2024年 3月 1日）。

from datetime import datetime, timedelta, timezone

str_date = ‘2021/11/24 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S’)
print(mydate) # 2021-11-24 12:34:56

str_date = ‘2021年 11月 24日 12時 34分 56秒 ’
mydate = datetime.strptime(str_date, ‘%Y年 %m月 %d日 %H時 %M分 %S秒 ’)
print(mydate) # 2021-11-24 12:34:56

西暦 2桁
str_date = ‘21/11/24 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S’)
print(mydate) # 2021-11-24 12:34:56

12時間制
str_date = ‘2021/11/24 01:23:45(PM)’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %I:%M:%S(%p)’)
print(mydate) # 021-11-24 13:23:45

曜日付き
str_date = ‘2021/11/24(Wed) 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d(%a) %H:%M:%S’)
idx = mydate.weekday()
day_of_week = ‘ 月火水木金土日 ’
print(f‘{mydate} ({day_of_week[idx]})’) # 2021-11-24 12:34:56 (水)

タイムゾーン付き
str_date = ‘2021/11/24 12:34:56+0900(JST)’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S%z(%Z)’)
print(f‘{mydate} ({mydate.tzname()})’) # 2021-11-24 12:34:56+09:00 (JST)

Windowsでは上のコードでは例外が発生するので自前で処理
str_date = str_date.split(‘+’)[0]
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S’)
print(f‘{mydate} ({mydate.tzname()})’) # 2021-11-24 12:34:56 (None)

［解決！Python］
日付や時刻の文字列表現を strptimeメソッドで
datetime型のオブジェクトに変換するには
datetimeクラスの strptimeクラスメソッドを使って、文字列として表現されている日付や時刻
から datetime型のオブジェクトを作成する方法を紹介する。

かわさきしんじ，Deep Insider編集部（2024年 03月 01日）

https://www.itmedia.co.jp/author/208386/

20 →目次に戻る

jst_tdelta = timedelta(hours=+9)
JST = timezone(jst_tdelta, ‘JST’)
mydate = mydate.astimezone(JST)
print(f‘{mydate} ({mydate.tzname()})’) # 2021-11-24 12:34:56+09:00 (JST)

datetime.strptimeクラスメソッドによる日付／時刻の文字列表現のパース

　Pythonに標準で添付される datetimeモジュールが提供する datetimeクラスには strptimeメソッドがある。

このメソッドを使うと文字列として表現された日付や時刻から datetime型のオブジェクトを作成できる。なお、

ISO 8601で規定されている「YYYY-MM-DDThh:mm:ss」形式で表現された文字列から datetimeオブジェク

トを作成する方法については「datetime型の日付や時刻と、ISO 8601形式の文字列とを相互変換するには」を

参照されたい。

　以下に単純な例を示す。

from datetime import datetime, timedelta, timezone

str_date = ‘2021/11/24 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S’)
print(mydate) # 2021-11-24 12:34:56

str_date = ‘2021年 11月 24日 12時 34分 56秒 ’
mydate = datetime.strptime(str_date, ‘%Y年 %m月 %d日 %H時 %M分 %S秒 ’)
print(mydate) # 2021-11-24 12:34:56

　strptimeクラスメソッドには、datetime型のオブジェクトに変換したい文字列表現と、それをパースする際の

書式指定文字列を渡す。上の例では「2021/11/24 12:34:56」または「2021年 11月 24日 12時 34分 56秒」

という日付と時刻の文字列表現をそれぞれ「%Y/%m/%d %H:%M:%S」および「%Y年%m月%d日 %H時

%M分%S秒」という書式指定文字列を使ってパースして、datetimeオブジェクトを取得している。

https://docs.python.org/ja/3/library/datetime.html#datetime.datetime.strptime

21 →目次に戻る

　書式指定文字列には以下のような書式コードを記述できる（一部）。

datetimeモジュールの datetimeクラスの strptimeメソッドで使える書式コード（一部）

　以下ではこれらを使って日付や時刻をパースする例を幾つか紹介する。

西暦が 2桁で記述されている場合

　「21/11/24 12:34:56」のように、西暦が 2桁で表記されているときには、書式コードに「%Y」ではなく「%y」

を使用する。

str_date = ‘21/11/24 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S’)
print(mydate) # 2021-11-24 12:34:56

12時間制で時刻が記述されている

　時刻が 12時間制で記述されている場合には、書式コードに「%H」ではなく「%I」を使用する。また、「%p」

で午前／午後を示す文字列をパースできる。以下に例を示す。

str_date = ‘2021/11/24 01:23:45(PM)’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %I:%M:%S(%p)’)
print(mydate) # 021-11-24 13:23:45

　この例では、時刻の部分が「01:23:45(PM)」となっている。「PM」とあるから、これは「午後 1時 23分 45

秒」のことだ。そして、これを「%I:%M:%S(%p)」でパースした結果を見ると、確かに「13:23:45」となって

いる。

22 →目次に戻る

曜日を含んだ文字列表現

　文字列に曜日が含まれているときには、「%a」または「%A」でパースできる（前者は省略形、後者はフルスペ

ル）。以下に例を示す。

str_date = ‘2021/11/24(Wed) 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d(%a) %H:%M:%S’)
idx = mydate.weekday()
day_of_week = ‘ 月火水木金土日 ’
print(f‘{mydate} ({day_of_week[idx]})’) # 2021-11-24 12:34:56 (水)

　この例では、生成された datetimeオブジェクトのweekdayメソッドを呼び出して、その戻り値（月曜日を 0

とする整数値）をインデックスに使い、月曜日から日曜日のいずれかに当てはまるかを確認している。

　なお、これはパースをするだけで、実際の曜日は日付から自動的に設定されると思われる。例えば、以下は上

の例で日付はそのまま、曜日だけを「Thu」に変更したものだ。

str_date = ‘2021/11/24(Thu) 12:34:56’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d(%a) %H:%M:%S’)
idx = mydate.weekday()
day_of_week = ‘ 月火水木金土日 ’
print(f‘{mydate} ({day_of_week[idx]})’) # 2021-11-24 12:34:56 (水)

　この場合でも出力（つまり作成された曜日情報を保持する datetimeオブジェクトの値）は「2021-11-24

12:34:56 (水)」となる。このことからは「2021年 11月 24日（水）」のような文字列を変換するとしたら、正

規表現を利用するなどして、文字列から曜日部分を削除してしまうのが簡単な処理の方法と考えられる（コードは

省略）。

タイムゾーン付き

　文字列表現の中にUTCとのオフセット、タイムゾーン情報が含まれているときには「%z」（オフセット）と「%Z」

（タイムゾーン名）が使用できる。以下に例を示す。

str_date = ‘2021/11/24 12:34:56+0900(JST)’
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S%z(%Z)’)
print(f‘{mydate} ({mydate.tzname()})’) # 2021-11-24 12:34:56+09:00 (JST)

　ただし、このコードを筆者がWindows環境にインストールしたPython処理系で実行すると次のように例外が

発生する。

23 →目次に戻る

　　　　 「2021/11/24 12:34:56+0900(JST)」が「%Y/%m/%d %H:%M:%S%z(%Z)」にマッチしないため例外となった

　Pythonのドキュメントによれば、strptimeクラスメソッドで文字列をパースする際には、「%Z」は「使用して

いるマシンのロケールによる time.tznameの任意の値」か「ハードコードされた値 UTCまたはGMT」のいず

れかだけを受け入れるとある。そこで、Windows環境で time.tznameの値を調べると次のようになった。

 time.tznameの値

　ここにJSTが含まれていないことから、筆者がWindowsにインストールしているPython処理系ではうまくパー

スができなかったということだ（実際、上で示された「東京 (標準時)」を文字列に含めるとパースに成功した）。

24 →目次に戻る

　そのため、Windowsで同等な処理を行うには、例えば、以下のように文字列から一度オフセット情報やタイム

ゾーン名を削除した状態で naiveな datetimeオブジェクトを作成し、その後でそれらを補うように自前で処理を

する必要があるだろう。

str_date = str_date.split(‘+’)[0]
mydate = datetime.strptime(str_date, ‘%Y/%m/%d %H:%M:%S’)
print(f‘{mydate} ({mydate.tzname()})’) # 2021-11-24 12:34:56 (None)

jst_tdelta = timedelta(hours=+9)
JST = timezone(jst_tdelta, ‘JST’)
mydate = mydate.astimezone(JST)
print(f‘{mydate} ({mydate.tzname()})’) # 2021-11-24 12:34:56+09:00 (JST)

　これは例なのでシンプルに書けているが、汎用性を持たせようとすると大変になるかもしれない。

25 →目次に戻る

from datetime import datetime, date

day = date(2024, 6, 18) # 2024年 6月 18日

weekayメソッドは月曜日を 0として、日曜日を 6として返す
dow = day.weekday() # day of the week
print(dow) # 1

曜日名に変換する
day_name = [‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’,
 ‘Friday’, ‘Saturday’, ‘Sunday’]
print(day_name[dow]) # Tuesday

day_name = ‘ 月火水木金土日 ’ # day_name = list(‘ 月火水木金土日 ’)でも可
print(day_name[dow]) # 火

isoweekdayメソッドは月曜日を 1として、日曜日を 7として返す
dowiso = day.isoweekday() # day of the week (ISO形式)
print(dowiso) # 2
print(day_name[dowiso - 1]) # 火

datetime型のオブジェクトでも同様に曜日を求めることができる
dt = datetime(2024, 6, 18, 12, 34, 56)
dow = dt.weekday()
print(dow) # 1
print(day_name[dow]) # 火

dowiso = dt.isoweekday()
print(dowiso) # 2
print(day_name[dowiso - 1]) # 火

strftimeメソッドを使って曜日名を取得する
dow = day.strftime(‘%a’) # 完全な曜日名の取得
print(dow) # Tuesday

dow = dt.strftime(‘%a’) # 短縮形の曜日名の取得
print(dow) # Tue

ロケールを設定すれば日本語表記も取得できる
import locale

setting = locale.getlocale(locale.LC_TIME)

［解決！Python］日付から曜日を求めるには
datetimeモジュールの datetimeクラスや dateクラスの weekday／ isoweekday／
strftimeメソッド、calendarモジュールのweekday関数を使って日付から曜日を取得する方
法を紹介する。

かわさきしんじ，Deep Insider編集部（2024年 06月 18日）

https://www.itmedia.co.jp/author/208386/

26 →目次に戻る

print(setting) # (None, None)
locale.setlocale(locale.LC_TIME, ‘ja_JP.UTF-8’) # 日付と時刻のロケールを設定

dow = day.strftime(‘%a’)
print(dow) # 火曜日

dow = day.strftime(‘%a’)
print(dow) # 火

locale.setlocale(locale.LC_TIME, setting) # ロケール設定を元に戻す

環境変数に従ったロケール設定
locale.setlocale(locale.LC_ALL, ‘’)

dow = day.strftime(‘%a’)
print(dow) # 火曜日

calendarモジュールを使って曜日を求める
from calendar import weekday, day_name

dow = weekday(2024, 6, 18)
print(dow) # 1
print(day_name[dow]) # 火曜日

format属性の値を変更して短縮形の曜日名を取得
day_name.format = ‘%a’
print(day_name[dow]) # 火

datetimeモジュールを使って日付から曜日を取得する

　Pythonに標準で付属する datetimeモジュールは日付や時刻に関する機能を提供する。このうち、datetime.

datetimeクラスと datetime.dateクラスにはweekdayメソッドと isoweekdayメソッドが備わっている。これ

らのメソッドを使って、datetimeオブジェクトや dateオブジェクトが表している日付から対応する曜日を取得する

方法を見ていこう。加えて、strftimeメソッドを使用する方法や calendarモジュールのweekday関数を使用す

る方法も紹介する。

　以下は dateクラスのインスタンスを作成して、その曜日を取得する例だ。

from datetime import datetime, date

day = date(2024, 6, 18) # 2024年 6月 18日

weekayメソッドは月曜日を 0として、日曜日を 6として返す
dow = day.weekday() # day of the week
print(dow) # 1

https://docs.python.org/ja/3/library/datetime.html

27 →目次に戻る

　weekdayメソッドは呼び出しに使用した dateオブジェクト（または datetimeオブジェクト）が表す日付から

対応する曜日を返す。戻り値は月曜日を 0、日曜日を 6とする昇順の値である。上の例では dateオブジェクトが

表す日付である 2024年 6月 18日は火曜日であることから、戻り値は 1となる。

　得られた数値から文字列表現の曜日を得るのであれば、次のように曜日を要素としたリストなどを作ればよい。

day_name = [‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’,
 ‘Friday’, ‘Saturday’, ‘Sunday’]
print(day_name[dow]) # Tuesday

day_name = ‘ 月火水木金土日 ’ # day_name = list(‘ 月火水木金土日 ’)でも可
print(day_name[dow]) # 火

　最初の2行は英語表記の曜日を要素とするリストを作成して、取得した値から文字列表記の曜日を得ている。次

の 2行では、得られた数値を文字列の要素に対するインデックスとして使用している。

　weekdayメソッドは月曜日を 0とするが、isoweekdayメソッドは月曜日を 1として日曜日を 7とする昇順の

値を返す。

dowiso = day.isoweekday() # day of the week (ISO形式)
print(dowiso) # 2
print(day_name[dowiso - 1]) # 火

　そのため、isoweekdayメソッドの戻り値をリストや文字列のインデックスとして使うときには調整が必要にな

る点には注意しよう。

　datetimeクラスのインスタンスでも同じことをする例を以下に示しておく。

dt = datetime(2024, 6, 18, 12, 34, 56)
dow = dt.weekday()
print(dow) # 1
print(day_name[dow]) # 火

dowiso = dt.isoweekday()
print(dowiso) # 2
print(day_name[dowiso - 1]) # 火

28 →目次に戻る

strftimeメソッドによる曜日名の取得

　datetimeクラス／ dateクラス（加えて timeクラス）には日付や時刻を書式化する strftimeメソッドがあり、

その書式を指定するディレクティブ「%A」と「%a」を使うことで日付から曜日を取得できる。「%A」は完全な

曜日名を、「%a」は短縮形の曜日名を得るのに使用する。以下に例を示す。

dow = day.strftime(‘%a’) # 完全な曜日名の取得
print(dow) # Tuesday

dow = dt.strftime(‘%a’) # 短縮形の曜日名の取得
print(dow) # Tue

　strftimeメソッドに「%A」を渡すと「Tuesday」と完全な曜日名が得られ、「%a」を渡すと「Tue」と短縮

形の曜日名が得られている点に注目されたい。

　このとき、localeモジュールの setlocale関数を使って日付／時刻のロケールを日本語（ja_JP.UTF-8）に設

定することで日本語表記の曜日も取得可能だ。

import locale

setting = locale.getlocale(locale.LC_TIME)
print(setting) # (None, None)
locale.setlocale(locale.LC_TIME, ‘ja_JP.UTF-8’) # 日付と時刻のロケールを設定

dow = day.strftime(‘%a’)
print(dow) # 火曜日

dow = day.strftime(‘%a’)
print(dow) # 火

locale.setlocale(locale.LC_TIME, setting) # ロケール設定を元に戻す

　こちらでは「%A」により「火曜日」が、「%a」により「火」が得られている。

　上の例では LC_TIMEカテゴリを「ja_JP.UTF-8」に設定したが、「setlocale(locale.LC_ALL, ‘’)」にこの

関数を呼び出すと現在の環境変数の設定に従ってロケールが設定される（setlocale関数はスレッドセーフではな

いので、マルチスレッドで何かをしようとするときには注意が必要だ）。

locale.setlocale(locale.LC_ALL, ‘’)

dow = day.strftime(‘%a’)
print(dow) # 火曜日

29 →目次に戻る

calendarモジュールを使って曜日を求める

　calendarモジュールのweekday関数を使うことで日付から曜日を取得できる。この関数に年、月、日の 3つ

の引数を渡すと曜日が返される（上で紹介したweekdayメソッドと同様に月曜日が 0、日曜日が 6となる）。以

下に例を示す。

from calendar import weekday, day_name

dow = weekday(2024, 6, 18)
print(dow) # 1

　この関数は datetimeクラスや dateクラスのインスタンスは受け付けないが、単に一時的に特定の日が何曜日

かを知りたいだけならこの関数を使うのが簡単だ。

　なお、calendarモジュールには day_name属性がある。これは現在のロケールに応じた曜日名を格納する配

列として使える。「calendar.day_name[1]」のようにすれば火曜日の曜日名が得られるということだ。以下に例

を示す（環境変数に対応したロケール設定を使用）。

locale.setlocale(locale.LC_ALL, ‘’)

print(day_name[dow]) # 火曜日

　day_name属性には format属性がある。この値を「%a」に変更すれば、短縮形の曜日名が得られる。

day_name.format = ‘%a’
print(day_name[dow]) # 火

　この例では、format属性の値を「%a」にしたので短縮形の「火」が得られた。

