
解決！ Python
CSVファイル編
かわさきしんじ，Deep Insider編集部［著］

01.［解決！Python］CSVファイルの読み書きまとめ

06.［解決！Python］CSVファイルから読み込みを行うには（pandas編）

05.［解決！Python］CSVファイルに書き込みを行うには（NumPy編）

03.［解決！Python］CSVファイルに書き込みを行うには（csvモジュール編）

02.［解決！Python］CSVファイルから読み込みを行うには（csvモジュール編）

07.［解決！Python］CSVファイルに書き込みを行うには（pandas編）

04.［解決！Python］CSVファイルから読み込みを行うには（NumPy編）

3 →目次に戻る

csvモジュールを使った読み込み（csv.readerオブジェクト／ csv.DictReaderクラス）

csvモジュールを使って CSVファイルから 1行ずつ読み込む

import csv

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 for row in csvreader:

 print(row)

出力結果：

#[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’]

#[‘1920年 ’, ‘00000’, ‘ 全国 ’, ‘55963053’]

…… 省略 ……

#[‘2010年 ’, ‘00000’, ‘ 全国 ’, ‘128057352’]

#[‘2020年 ’, ‘00000’, ‘ 全国 ’, ‘126226568’]

タブ区切りの文字を読み込む

filename = ‘tabdelimiteddata.tsv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f, delimiter=’¥t’)

 for row in csvreader:

 print(row) # 出力結果は省略

CSVファイルの内容を 1つのリストにまとめる

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 content = [row for row in csvreader] # 各年のデータを要素とするリスト

 #content = []

［解決！Python］CSVファイルの読み書きまとめ
csvモジュール／ NumPy／ pandasを使って、CSVファイルを読み書きする方法を 1ペー
ジにまとめて紹介。

（2021年 09月 28日）

4 →目次に戻る

 #for row in csvreader:

 # content.append(row)

print(content)

出力結果：

#[[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’], [‘1920年 ’, ‘00000’, ‘ 全国 ’,

‘55963053’], …… , [‘2010年 ’, ‘00000’, ‘ 全国 ’, ‘128057352’], [‘2020年 ’,

‘00000’, ‘ 全国 ’, ‘126226568’]]

特定の列のデータ型を変換する

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 header = next(csvreader) # 見出し行は別扱い

 content = [[row[0], row[1], row[2], int(row[3])] for row in csvreader]

content.insert(0, header) # 最後にリストの先頭に見出し行を挿入

print(content)

出力結果：

#[[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’], [‘1920年 ’, ‘00000’, ‘ 全国 ’,

55963053], …… , [‘2010年 ’, ‘00000’, ‘ 全国 ’, 128057352], [‘2020年 ’,

‘00000’, ‘ 全国 ’, 126226568]]

数値フィールド以外はシングルクオートで囲まれていることを指示して

数値フィールドの値を全て浮動小数点数値に自動的に変換

filename = ‘sample.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f, quotechar=”’”, quoting=csv.QUOTE_NONNUMERIC)

 for row in csvreader:

 print(row)

出力結果

[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’]

[‘1920年 ’, ‘00000’, ‘ 全国 ’, 55963053.0]

…… 省略 ……

[‘2010年 ’, ‘00000’, ‘ 全国 ’, 128057352.0]

[‘2020年 ’, ‘00000’, ‘ 全国 ’, 126226568.0]

5 →目次に戻る

CSVファイルの内容から辞書形式のデータを作成

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.DictReader(f)

 content = [row for row in csvreader]

print(content[0])

出力結果：

#{‘ 年 ’: ‘1920年 ’, ‘ 地域コード ’: ‘00000’, ‘ 地域 ’: ‘ 全国 ’, ‘ 総人口 ’: ‘55963053’}

　上のサンプルコードは以下に示すCSVファイルからの読み込みを行う例である。

年 ,地域コード ,地域 ,総人口

1920年 ,00000,全国 ,55963053

1930年 ,00000,全国 ,64450005

1940年 ,00000,全国 ,73075071

1950年 ,00000,全国 ,84114574

1960年 ,00000,全国 ,94301623

1970年 ,00000,全国 ,104665171

1980年 ,00000,全国 ,117060396

1990年 ,00000,全国 ,123611167

2000年 ,00000,全国 ,126925843

2010年 ,00000,全国 ,128057352

2020年 ,00000,全国 ,126226568

出典：政府統計の総合窓口（e-Stat）
上記サイトの時系列表から得られる総人口のデータを加工して利用しています。

　csvモジュールを使ったCSVファイルからの読み込みについては「CSVファイルから読み込みを行うには（csv

モジュール編）」を参照のこと。

https://dashboard.e-stat.go.jp/
https://dashboard.e-stat.go.jp/timeSeriesResult?indicatorCode=0201010000000010000

6 →目次に戻る

csvモジュールを使った書き込み（csv.writerオブジェクトの
writerow／writerowsメソッド、csv.DictWriterクラス）

import csv

サンプルデータとテキストファイルの内容を出力する関数の準備

header = [‘name’, ‘age’, ‘tel’]

isshiki = [‘ 一色 ’, 25, ‘xxxx-yyyy’]

endo = [‘ 遠藤 ’, 45, ‘mmmm-nnnnn’]

kawasaki = [‘ かわさき ’, 80, ‘zzzz-aaaa’]

mylist = [isshiki, endo, kawasaki]

for row in mylist:

 print(row)

出力結果：

#[‘ 一色 ’, 25, ‘xxxx-yyyy’]

#[‘ 遠藤 ’, 45, ‘mmmm-nnnnn’]

#[‘ かわさき ’, 80, ‘zzzz-aaaa’]

from pathlib import Path

def print_lines():

 print(Path(‘test.csv’).read_text())

csvモジュールを使って 1行の内容を CSVファイルに書き込み

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(isshiki)

print_lines() # 一色 ,25,xxxx-yyyy

csvモジュールを使って複数行の内容を CSVファイルに書き込み

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerows(mylist)

7 →目次に戻る

print_lines()

出力結果：

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

ヘッダーを行頭に書き込む

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(header)

 writer.writerows(mylist)

print_lines()

出力結果：

#name,age,tel

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

区切り文字をカンマからタブに変更する

with open(‘test.tsv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, delimiter=’¥t’)

 writer.writerow(isshiki)

repr(Path(‘test.tsv’).read_text()) # “’ 一色 ¥¥t25¥¥txxxx-yyyy¥¥n’”

全てのフィールドを引用符で囲む（デフォルトはダブルクオート）

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_ALL)

 writer.writerow(isshiki)

print_lines() # “ 一色 ”,”25”,”xxxx-yyyy”

数値以外のフィールドをシングルクオートで囲む

with open(‘test.csv’, ‘w’, newline=’’) as f:

8 →目次に戻る

 writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

 writer.writerow(isshiki)

print_lines() # ‘ 一色 ’,25,’xxxx-yyyy’

辞書の要素を CSVファイルに書き込む

mydict_list = [dict(zip(header, row)) for row in mylist]

for items in mydict_list:

 print(items)

出力結果：

#{‘name’: ‘ 一色 ’, ‘age’: 25, ‘tel’: ‘xxxx-yyyy’}

#{‘name’: ‘ 遠藤 ’, ‘age’: 45, ‘tel’: ‘mmmm-nnnnn’}

#{‘name’: ‘ かわさき ’, ‘age’: 80, ‘tel’: ‘zzzz-aaaa’}

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.DictWriter(f, fieldnames=header)

 writer.writeheader()

 writer.writerows(mydict_list)

print_lines()

出力結果：

#name,age,tel

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

　csvモジュールを使ったCSVファイルへの書き込みについては「CSVファイルに書き込みを行うには（csvモ

ジュール編）」を参照のこと。

9 →目次に戻る

NumPyを使った読み込み（numpy.loadtxt／ np.genfromtxt関数）

import numpy as np

from pathlib import Path

numpy.loadtxt関数

読み込む CSVファイルの内容を確認

filename = ‘nptest0.csv’

print(Path(filename).read_text())

#0 1 2 # 数値が空白文字で区切られている

#3 4 5

#6 7 8

loadtxt関数の基本的な使い方

myarray = np.loadtxt(filename) # デフォルトでは空白文字が区切り文字

print(myarray) # デフォルトでは読み込んだ値は浮動小数点数値となる

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

データ型を指定

myarray = np.loadtxt(filename, dtype=int) # 全てのフィールドが整数と指定

print(myarray)

#[[0 1 2]

[3 4 5]

[6 7 8]]

読み込む CSVファイルの内容を確認

filename = ‘nptest1.csv’

print(Path(filename).read_text())

#0,1,2 # 数値がカンマで区切られている

#3,4,5

#6,7,8

10 →目次に戻る

区切り文字を指定

myarray = np.loadtxt(filename, delimiter=’,’) # 区切り文字としてカンマを指定

print(myarray)

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

myarray = np.loadtxt(filename) # ValueError：デフォルトは空白文字が区切り文字

読み込む CSVファイルの内容を確認

filename = ‘nptest2.csv’

print(Path(filename).read_text())

#col1 col2 col3 # ヘッダーあり。数値が空白文字で区切られている

#0 1 2

#3 4 5

#6 7 8

先頭行を読み飛ばす

myarray = np.loadtxt(filename, skiprows=1) # 先頭の 1行を読み飛ばす

print(myarray)

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

読み込む CSVファイルの内容を確認

filename = ‘nptest3.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#一色 25 170 # 文字列／数値／数値が空白文字で区切られている

#かわさき 80 168

読み込む列を指定する

myarray = np.loadtxt(filename, usecols=[1, 2], encoding=’utf8’)

print(myarray)

#[[25. 170.]

11 →目次に戻る

[80. 168.]]

列ごとに内容を取り出す（転置）

ages, heights = np.loadtxt(filename, unpack=True, usecols=[1, 2], encoding=’

utf8’)

print(ages) # [25. 80.]

print(heights) # [170. 168.]

numpy.genfromtxt関数

読み込む CSVファイルの内容を確認

filename = ‘nptest4.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#name age height # ヘッダーあり。文字列／数値／数値が空白文字で区切られている

#一色 25 170

#かわさき 80 168

基本的な読み込み

myarray = np.genfromtxt(filename, encoding=’utf8’)

print(myarray)

#[[nan nan nan] # 数値以外は nanとされている

[nan 25. 170.]

[nan 80. 168.]]

print(myarray.dtype) # float64

各フィールドの値からデータ型を判定

myarray = np.genfromtxt(filename, encoding=’utf8’, dtype=None)

print(myarray)

#[[‘name’ ‘age’ ‘height’]

[‘ 一色 ’ ‘25’ ‘170’]

[‘ かわさき ’ ‘80’ ‘168’]]

print(myarray.dtype) # <U6（全てが 6文字以下の文字列と判定された）

1行目をヘッダーとして扱い、各列のデータ型を明示的に指定

12 →目次に戻る

myarray = np.genfromtxt(filename, names=True, dtype=’U4,f,f’, encoding=’utf8’)

print(myarray) # [(‘ 一色 ’, 25., 170.) (‘ かわさき ’, 80., 168.)]

print(myarray.dtype) # [(‘name’, ‘<U4’), (‘age’, ‘<f4’), (‘height’, ‘<f4’)]

読み込む CSVファイルの内容を確認

filename = ‘nptest5.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#0,,2 # 各行に欠損している値がある

#,4,5

#6,,8

欠損値を nanで埋める

myarray = np.genfromtxt(filename, delimiter=’,’, encoding=’utf8’)

print(myarray)

#[[0. nan 2.] # 欠損している部分の値は nanになる

[nan 4. 5.]

[6. nan 8.]]

myarray = np.loadtxt(filename, delimiter=’,’, encoding=’utf8’) # ValueError

欠損値を埋める値を指定する

myarray = np.genfromtxt(filename, delimiter=’,’, filling_values=-1, encoding=’

utf8’)

print(myarray)

#[[0. -1. 2.]

[-1. 4. 5.]

[6. -1. 8.]]

　NumPyを使ったCSVファイルからの読み込みについては「CSVファイルから読み込みを行うには（NumPy

編）」を参照のこと。

13 →目次に戻る

NumPyを使った書き込み（numpy.savetxt関数）

import numpy as np

from pathlib import Path

x = np.random.randn(2, 3) # 以下の値は一例

print(x)

#[[-2.45567984 1.33310634 0.59013369]

[0.25731195 0.78458477 -0.64572527]]

基本的な使い方

np.savetxt(‘test.csv’, x)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

区切り文字を変更する

np.savetxt(‘test.csv’, x, delimiter=’,’) # 区切り文字をカンマ「,」に

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00,1.333106339746787494e+00,5.90133692284782185

3e-01

2 . 5 7 3 1 1 9 4 5 7 5 8 5 9 1 1 2 0 7 e - 0 1 , 7 . 8 4 5 8 4 7 6 9 6 4 5 3 2 3 3 1 0 0 e - 0 1 , -

6.457252711716952032e-01

書き出すフォーマットの指定

指数表記

np.savetxt(‘test.csv’, x, fmt=’%.8e’) # 小数点以下の精度を 8桁に

print(Path(‘test.csv’).read_text())

#-2.45567984e+00 1.33310634e+00 5.90133692e-01

#2.57311946e-01 7.84584770e-01 -6.45725271e-01

np.savetxt(‘test.csv’, x, fmt=’%18.8e’) # 最小の出力幅を指定

14 →目次に戻る

print(Path(‘test.csv’).read_text())

-2.45567984e+00 1.33310634e+00 5.90133692e-01

2.57311946e-01 7.84584770e-01 -6.45725271e-01

浮動小数点数値（指数表記をしない）

np.savetxt(‘test.csv’, x, fmt=’%12.8f’) # 精度の後に「f」を指定

print(Path(‘test.csv’).read_text())

-2.45567984 1.33310634 0.59013369

0.25731195 0.78458477 -0.64572527

左寄せ

np.savetxt(‘test.csv’, x, fmt=’%-18.8e’) # 「-」で左寄せを指定

print(Path(‘test.csv’).read_text())

#-2.45567984e+00 1.33310634e+00 5.90133692e-01

#2.57311946e-01 7.84584770e-01 -6.45725271e-01

符号を常に付加

np.savetxt(‘test.csv’, x, fmt=’%+18.8e’) # 「+」で符号を常に付加

print(Path(‘test.csv’).read_text())

-2.45567984e+00 +1.33310634e+00 +5.90133692e-01

+2.57311946e-01 +7.84584770e-01 -6.45725271e-01

0埋め

np.savetxt(‘test.csv’, x, fmt=’%018.8e’) # 「0」で 0埋めを指定

print(Path(‘test.csv’).read_text())

#-0002.45567984e+00 00001.33310634e+00 00005.90133692e-01

#00002.57311946e-01 00007.84584770e-01 -0006.45725271e-01

整数値

nums = np.array([[111, 222, 333],

 [444, 555, 666]])

np.savetxt(‘test.csv’, nums, fmt=’%d’)

print(Path(‘test.csv’).read_text())

#111 222 333

15 →目次に戻る

#444 555 666

np.savetxt(‘test.csv’, nums, fmt=’%.5d’) # 0埋め

print(Path(‘test.csv’).read_text())

#00111 00222 00333

#00444 00555 00666

np.savetxt(‘test.csv’, nums, fmt=’%6d’) # 出力される最小の文字数を指定

print(Path(‘test.csv’).read_text())

111 222 333

444 555 666

np.savetxt(‘test.csv’, nums, fmt=’%6.4d’) # 数字の最小文字数を指定

print(Path(‘test.csv’).read_text())

0111 0222 0333

0444 0555 0666

改行文字を変更する

np.savetxt(‘test.csv’, x, newline=’¥n¥n’)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

#

ヘッダーを付加する

np.savetxt(‘test.csv’, x, header=’col1 col2 col3’)

print(Path(‘test.csv’).read_text())

col1 col2 col3

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

16 →目次に戻る

フッターを付加する

np.savetxt(‘test.csv’, x, footer=’generated: 2021/08/27’)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

generated: 2021/08/27

　NumPyを使ったCSVファイルへの書き込みについては「CSVファイルに書き込みを行うには（NumPy編）」

を参照のこと。

pandasを使った読み込み（pandas.read_csv関数）

import pandas as pd

from pathlib import Path

filepath = ‘pdtest0.csv’

print(Path(filepath).read_text())

#0.0,1.1,2.2

#3.3,4.4,5.5

#6.6,7.7,8.8

df = pd.read_csv(filepath)

print(df)

0.0 1.1 2.2

#0 3.3 4.4 5.5

#1 6.6 7.7 8.8

ヘッダー行がないことを指定

df = pd.read_csv(filepath, header=None)

print(df)

0 1 2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

17 →目次に戻る

#2 6.6 7.7 8.8

列名を指定

names = [‘col0’, ‘col1’, ‘col2’]

df = pd.read_csv(filepath, names=names)

print(df)

col0 col1 col2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

ヘッダー行がある場合

filepath = ‘pdtest1.csv’

print(Path(filepath).read_text())

#col0,col1,col2

#0.0,1.1,2.2

#3.3,4.4,5.5

#6.6,7.7,8.8

df = pd.read_csv(filepath)

print(df)

col0 col1 col2 # ヘッダー行から列名を推測してくれる

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

列名をヘッダー行から推測せずに、明示的に指定する

names = [‘foo’, ‘bar’, ‘baz’]

df = pd.read_csv(filepath, names=names, header=0)

print(df)

foo bar baz

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

18 →目次に戻る

区切り文字の指定

filepath = ‘pdtest2.csv’

print(Path(filepath).read_text())

#col0 col1 col2 # 空白文字で区切っている

#0.0 1.1 2.2

#3.3 4.4 5.5

#6.6 7.7 8.8

df = pd.read_csv(filepath, sep=’ ‘)

print(df)

col0 col1 col2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

読み込む列の指定

filepath = ‘pdtest1.csv’

df = pd.read_csv(filepath, usecols=[0, 2])

print(df)

col0 col2

#0 0.0 2.2

#1 3.3 5.5

#2 6.6 8.8

df = pd.read_csv(filepath, usecols=[‘col0’, ‘col2’])

print(df) # 出力は省略

df = pd.read_csv(filepath, usecols=lambda x: x in [‘col0’, ‘col2’])

print(df) # 出力は省略

行ラベル（インデックス）となる列の指定

filepath = ‘pdtest3.csv’

print(Path(filepath).read_text())

#,col1,col2,col3

#row0,0.0,1.1,2.2

19 →目次に戻る

#row1,3.3,4.4,5.5

#row2,6.6,7.7,8.8

df = pd.read_csv(filepath, index_col=0)

print(df)

col1 col2 col3

#IDX

#row0 0.0 1.1 2.2

#row1 3.3 4.4 5.5

#row2 6.6 7.7 8.8

df = pd.read_csv(filepath, index_col=’IDX’)

print(df) # 出力は省略

データ型の指定

filepath = ‘pdtest4.csv’

print(Path(filepath).read_text())

#area,tel,value

#tokyo,0312345678,1.0

#kanagawa,045678901,2.0

#chiba,043210987,3.0

df = pd.read_csv(filepath)

print(df)

area tel value # 電話番号が整数値になっている

#0 tokyo 312345678 1.0

#1 kanagawa 45678901 2.0

#2 chiba 43210987 3.0

df = pd.read_csv(filepath, dtype=str) # 全てのデータの型を strに

print(df)

area tel value

#0 tokyo 0312345678 1.0

#1 kanagawa 045678901 2.0

#2 chiba 043210987 3.0

20 →目次に戻る

df = pd.read_csv(filepath, dtype={0: str, 1: str, 2: float})

print(df) # 出力は省略

日付のパース

filepath = ‘pdtest5.csv’

print(Path(filepath).read_text())

#date,value0,value1

#2021/09/07,1.0,2.0

#2021/09/08,3.0,4.0

#2021/09/09,5.0,5.0

df = pd.read_csv(filepath, parse_dates=True, index_col=0)

print(df)

value0 value1

#date

#2021-09-07 1.0 2.0

#2021-09-08 3.0 4.0

#2021-09-09 5.0 5.0

df = pd.read_csv(filepath, parse_dates=[0])

print(df)

date value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 4.0

#2 2021-09-09 5.0 5.0

df = pd.read_csv(filepath, parse_dates=[‘date’])

print(df) # 出力は省略

filepath = ‘pdtest6.csv’

print(Path(filepath).read_text())

#year,month,day,value0,value1

#2021,9,7,1.0,2.0

#2021,9,8,3.0,5.0

#2021,9,9,4.0,6.0

21 →目次に戻る

dates = [[‘year’, ‘month’, ‘day’]]

df = pd.read_csv(filepath, parse_dates=dates)

print(df)

year_month_day value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 5.0

#2 2021-09-09 4.0 6.0

dates = {‘date’: [‘year’, ‘month’, ‘day’]}

df = pd.read_csv(filepath, parse_dates=dates)

print(df)

date value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 5.0

#2 2021-09-09 4.0 6.0

欠損値の扱い

filepath = ‘pdtest7.csv’

print(Path(filepath).read_text())

col0,col1,col2

,nan,1.0

2.0,N/A,null

NaN,3.0,--

df = pd.read_csv(filepath)

print(df)

col0 col1 col2

#0 NaN NaN 1.0

#1 2.0 NaN NaN

#2 NaN 3.0 -- # 「--」という文字列は欠損値としては扱われていない

df = pd.read_csv(filepath, na_values=[‘--’])

print(df)

col0 col1 col2 # デフォルトの欠損値と na_valuesに指定した値が欠損値

#0 NaN NaN 1.0

22 →目次に戻る

#1 2.0 NaN NaN

#2 NaN 3.0 NaN

df = pd.read_csv(filepath, keep_default_na=False, na_values=[‘--’])

print(df)

col0 col1 col2 # na_valuesに指定した値のみが欠損値として扱われる

#0 nan 1.0

#1 2.0 N/A null

#2 NaN 3.0 NaN

　pandasを使ったCSVファイルからの読み込みについては「CSVファイルから読み込みを行うには（pandas

編）」を参照のこと。

pandasを使った書き込み（pandas.DataFrame.to_csvメソッド）

import pandas as pd

import numpy as np

from pathlib import Path

data = {

 ‘name’: [‘isshiki’, ‘endo’, ‘kawasaki’],

 ‘age’: [20, 25, np.nan],

 ‘weight’: [55.44, 66.77, 123.456]

}

df = pd.DataFrame(data)

print(df)

name age weight

#0 isshiki 20.0 55.440

#1 endo 25.0 66.770

#2 kawasaki NaN 123.456

基本

fname = ‘test.csv’

df.to_csv(fname)

print(Path(fname).read_text())

23 →目次に戻る

#,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

区切り文字の変更

df.to_csv(fname, sep=’ ‘)

print(Path(fname).read_text())

name age weight

#0 isshiki 20.0 55.44

#1 endo 25.0 66.77

#2 kawasaki 123.456

欠損値の表現を指定する

df.to_csv(fname, na_rep=’nan’)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,nan,123.456

数値を文字列化する際の書式指定

df.to_csv(fname, float_format=’%+08.3f’)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,+020.000,+055.440

#1,endo,+025.000,+066.770

#2,kawasaki,,+123.456

ヘッダー行の指定

df.to_csv(fname, header=[‘col0’, ‘col1’, ‘col2’])

print(Path(fname).read_text())

#,col0,col1,col2

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

24 →目次に戻る

#2,kawasaki,,123.456

行インデックスの列名を指定

df.to_csv(fname, index_label=’idx’)

print(Path(fname).read_text())

#idx,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

行インデックスを出力しない

df.to_csv(fname, index=False)

print(Path(fname).read_text())

#name,age,weight

#isshiki,20.0,55.44

#endo,25.0,66.77

#kawasaki,,123.456

書き出す列の指定

df.to_csv(fname, columns=[‘name’, ‘weight’])

print(Path(fname).read_text())

#,name,weight

#0,isshiki,55.44

#1,endo,66.77

#2,kawasaki,123.456

クオートの指定

import csv

df.to_csv(fname, quoting=csv.QUOTE_ALL)

print(Path(fname).read_text())

#””,”name”,”age”,”weight”

#”0”,”isshiki”,”20.0”,”55.44”

#”1”,”endo”,”25.0”,”66.77”

#”2”,”kawasaki”,””,”123.456”

25 →目次に戻る

df.to_csv(fname, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

print(Path(fname).read_text())

#’’,’name’,’age’,’weight’

#0,’isshiki’,20.0,55.44

#1,’endo’,25.0,66.77

#2,’kawasaki’,’’,123.456

フィールドを囲むのに使う引用符自体がフィールドに含まれている場合の処理

data = {

 “name”: [“chak’n”, “and pop”],

 “value”: [100, 120]

}

df = pd.DataFrame(data)

print(df)

name value

#0 chak’n 100

#1 and pop 120

df.to_csv(fname, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

print(Path(fname).read_text())

#’’,’name’,’value’

#0,’chak’’n’,100

#1,’and pop’,120

df.to_csv(fname, sep=’ ‘, quoting=csv.QUOTE_NONE, escapechar=’¥¥’)

print(Path(fname).read_text())

name value

#0 chak’n 100

#1 and¥ pop 120

　pandasを使ったCSVファイルへの書き込みについては「CSVファイルに書き込みを行うには（pandas編）」

を参照のこと。

26 →目次に戻る

* 本稿は 2021年 08月 03日に公開された記事をPython 3.12.0で動作確認したものです（確認日：2023年 10月 04日）。

csvモジュールを使って CSVファイルから 1行ずつ読み込む

import csv

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 for row in csvreader:

 print(row)

出力結果：

#[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’]

#[‘1920年 ’, ‘00000’, ‘ 全国 ’, ‘55963053’]

…… 省略 ……

#[‘2010年 ’, ‘00000’, ‘ 全国 ’, ‘128057352’]

#[‘2020年 ’, ‘00000’, ‘ 全国 ’, ‘126226568’]

タブ区切りの文字を読み込む

filename = ‘tabdelimiteddata.tsv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f, delimiter=’¥t’)

 for row in csvreader:

 print(row) # 出力結果は省略

CSVファイルの内容を 1つのリストにまとめる

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 content = [row for row in csvreader] # 各年のデータを要素とするリスト

［解決！Python］CSVファイルから
読み込みを行うには（csvモジュール編）
pandasやNumpyを使わずに、Pythonに標準で付属する csvモジュールを使って、CSV
ファイルから読み込みを行う方法を紹介する。

（2023年 10月 04日）

27 →目次に戻る

 #content = []

 #for row in csvreader:

 # content.append(row)

print(content)

出力結果：

#[[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’], [‘1920年 ’, ‘00000’, ‘ 全国 ’,

‘55963053’], …… , [‘2010年 ’, ‘00000’, ‘ 全国 ’, ‘128057352’], [‘2020年 ’,

‘00000’, ‘ 全国 ’, ‘126226568’]]

特定の列のデータ型を変換する

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 header = next(csvreader) # 見出し行は別扱い

 content = [[row[0], row[1], row[2], int(row[3])] for row in csvreader]

content.insert(0, header) # 最後にリストの先頭に見出し行を挿入

print(content)

出力結果：

#[[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’], [‘1920年 ’, ‘00000’, ‘ 全国 ’,

55963053], …… , [‘2010年 ’, ‘00000’, ‘ 全国 ’, 128057352], [‘2020年 ’,

‘00000’, ‘ 全国 ’, 126226568]]

数値フィールド以外はシングルクオートで囲まれていることを指示して

数値フィールドの値を全て浮動小数点数値に自動的に変換

filename = ‘sample.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f, quotechar=”’”, quoting=csv.QUOTE_NONNUMERIC)

 for row in csvreader:

 print(row)

出力結果

[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’]

[‘1920年 ’, ‘00000’, ‘ 全国 ’, 55963053.0]

…… 省略 ……

[‘2010年 ’, ‘00000’, ‘ 全国 ’, 128057352.0]

28 →目次に戻る

[‘2020年 ’, ‘00000’, ‘ 全国 ’, 126226568.0]

CSVファイルの内容から辞書形式のデータを作成

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.DictReader(f)

 content = [row for row in csvreader]

print(content[0])

出力結果：

#{‘ 年 ’: ‘1920年 ’, ‘ 地域コード ’: ‘00000’, ‘ 地域 ’: ‘ 全国 ’, ‘ 総人口 ’: ‘55963053’}

　本稿では、サンプルのCSVファイルの内容として以下を利用する。1行目は見出し行であり、各行には各年／

地域コード／地域／総人口の 4つのデータが含まれている。

年 ,地域コード ,地域 ,総人口

1920年 ,00000,全国 ,55963053

1930年 ,00000,全国 ,64450005

1940年 ,00000,全国 ,73075071

1950年 ,00000,全国 ,84114574

1960年 ,00000,全国 ,94301623

1970年 ,00000,全国 ,104665171

1980年 ,00000,全国 ,117060396

1990年 ,00000,全国 ,123611167

2000年 ,00000,全国 ,126925843

2010年 ,00000,全国 ,128057352

2020年 ,00000,全国 ,126226568

出典：政府統計の総合窓口（e-Stat）
上記サイトの時系列表から得られる総人口のデータを加工して利用しています。

https://www.e-stat.go.jp/
https://dashboard.e-stat.go.jp/timeSeries?fieldCode=02

29 →目次に戻る

csvモジュールを使ったCSVファイルの読み込み

　Pythonには csvモジュールが標準で添付されている。これをインポートすることで、CSVファイルの読み込み

が行える（ただし、CSVファイルの読み込みをより柔軟な形で行うのであれば、pandasやNumPyを使った方

がよいだろう）。

　その基本的な手順は次の通り。

1. CSVファイルを表すファイルオブジェクトを作成

2. そのファイルオブジェクトを、csv.reader関数に渡して、readerオブジェクトを取得

3. readerオブジェクトは反復処理可能なので、for文や内包表記などを使って、CSVファイルの内容を読み込む

　実際の例を以下に示す。

import csv

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 for row in csvreader:

 print(row)

出力結果：

#[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’]

#[‘1920年 ’, ‘00000’, ‘ 全国 ’, ‘55963053’]

…… 省略 ……

#[‘2010年 ’, ‘00000’, ‘ 全国 ’, ‘128057352’]

#[‘2020年 ’, ‘00000’, ‘ 全国 ’, ‘126226568’]

　この例では、open関数で本稿冒頭に示したサンプルのCSVファイルをオープンし、そのファイルオブジェクト

を csv.reader関数に渡して readerオブジェクトを取得している。その後は、for文に反復可能オブジェクトとし

て readerオブジェクトを渡して、CSVから 1行ずつ読み込みを行い、各行の内容を表示しているだけだ。

　なお、open関数の newline引数には空文字列を渡しているが、これは行末コードの変換を行わないことを意

味している。これは、CSVファイルのフィールド要素に改行が含まれている場合に、それらを適切に解釈するため

に推奨されている。

https://pandas.pydata.org/
https://numpy.org/

30 →目次に戻る

　カンマ「,」ではなく、タブ文字でフィールドが区切られている場合には、csv.reader関数の delimiter引数に

’¥t’を渡せば、タブ区切りのファイルからの読み込みも可能だ。

filename = ‘tabdelimiteddata.tsv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f, delimiter=’¥t’)

 for row in csvreader:

 print(row) # 出力結果は省略

内包表記を使って、CSVファイルの内容を 1つのリストに読み込む

　CSVから 1行ずつ読み込みを行って、逐次的に処理を行うのではなく、CSVファイルの内容を 1つのオブジェ

クトとして読み込んでしまうのであれば、リスト内包表記を使ってリストのリストを作成するのが簡単だ。

　以下に例を示す。

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 content = [row for row in csvreader] # 各年のデータを要素とするリスト

 #content = []

 #for row in csvreader:

 # content.append(row)

print(content)

出力結果：

#[[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’], [‘1920年 ’, ‘00000’, ‘ 全国 ’,

‘55963053’], …… , [‘2010年 ’, ‘00000’, ‘ 全国 ’, ‘128057352’], [‘2020年 ’,

‘00000’, ‘ 全国 ’, ‘126226568’]]

　この例では、open関数を呼び出して得たファイルオブジェクトから readerオブジェクトを作成したら、内包表

記を使って、各行の内容（年／地域コード／地域／総人口）を要素とするリストを作成している（コメントアウト

してあるのは、同様な処理を for文で書いたものだ）。

31 →目次に戻る

フィールドの型を変換する

　CSVファイルから読み込んだ内容は通常、全て文字列値となる。そのため、整数値や浮動小数点数値に変換

する必要があれば、以下のように内包表記の内部で型変換をするとよい。

　例えば、サンプルのCSVファイルでは各行には年／地域コード／地域／総人口の 4つのデータが含まれてい

る。最初の 3つは文字列が適切だが、最後の総人口は整数値となっていた方が扱いやすいだろう。そこで、以下

のようにして最後のフィールドだけ整数値に変換を行える。

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f)

 header = next(csvreader) # 見出し行は特別扱い

 content = [[row[0], row[1], row[2], int(row[3])] for row in csvreader]

content.insert(0, header) # 最後にリストの先頭に見出し行を挿入

print(content)

出力結果：

#[[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’], [‘1920年 ’, ‘00000’, ‘ 全国 ’,

55963053], …… , [‘2010年 ’, ‘00000’, ‘ 全国 ’, 128057352], [‘2020年 ’,

‘00000’, ‘ 全国 ’, 126226568]]

　この例では、最後のフィールドだけ int関数で総人口を整数値に変換している。このとき見出し行には数値デー

タが含まれていないので、特別扱いするのを忘れないようにしよう。

32 →目次に戻る

　また、CSVファイルのフォーマットによるが、数値以外のデータは全て引用符で囲まれているといった場合には、

quotingキーワード引数に csv.QUOTE_NONNUMERICを指定することで、引用符に囲まれていないデータを

全て浮動小数点数値に変換させることも可能だ。以下に例を示す。

filename = ‘sample.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.reader(f, quotechar=”’”, quoting=csv.QUOTE_NONNUMERIC)

 for row in csvreader:

 print(row)

出力結果

[‘ 年 ’, ‘ 地域コード ’, ‘ 地域 ’, ‘ 総人口 ’]

[‘1920年 ’, ‘00000’, ‘ 全国 ’, 55963053.0]

…… 省略 ……

[‘2010年 ’, ‘00000’, ‘ 全国 ’, 128057352.0]

[‘2020年 ’, ‘00000’, ‘ 全国 ’, 126226568.0]

　ここでは quoting引数に quoting=csv.QUOTE_NONNUMERICを指定して数値データ以外のフィールドは

全て引用符で囲まれていることと、quotechar引数に ”’”を指定してそれらのフィールドはシングルクオートで囲ま

れていることを指示している。最後のフィールドの値が浮動小数点数値になっている点に注目されたい。

33 →目次に戻る

CSVファイルの内容から辞書形式のデータを作成

　各行について、列名とその列のデータの組から成るデータを作成したいのであれば、csv.DictReaderクラスを

使用する。csv.reader関数と同じように、csv.DictReaderクラスのコンストラクタ呼び出しにファイルオブジェ

クトを渡し、csv.DictReaderオブジェクトを得たら、それを使って反復処理を行うだけだ。

　以下に例を示す。

filename = ‘populationdata.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 csvreader = csv.DictReader(f)

 content = [row for row in csvreader]

print(content[0])

出力結果：

#{‘ 年 ’: ‘1920年 ’, ‘ 地域コード ’: ‘00000’, ‘ 地域 ’: ‘ 全国 ’, ‘ 総人口 ’: ‘55963053’}

　ここで使用しているサンプルのCSVファイルでは 1行目が見出し行となっている。そのため、csv.DictReader

呼び出しにはファイルオブジェクトだけを渡している。このときには、1行目がフィールド名として解釈される。最

初の要素の出力を見ると、「{‘ 年 ’: ‘1920年 ’, ‘ 地域コード ’: ‘00000’, ‘ 地域 ’: ‘ 全国 ’, ‘ 総人口 ’: ‘55963053’}」

のように辞書になっていることが確認できる。

　CSVファイルに見出し行がないときには、以下のように、fieldnames引数に見出しを渡す。

filename = ‘noheader.csv’

with open(filename, encoding=’utf8’, newline=’’) as f:

 fieldnames = [‘ 年 ’,’ 地域コード ’,’ 地域 ’,’ 総人口 ’]

 csvreader = csv.DictReader(f, fieldnames=fieldnames)

 for row in csvreader:

 print(row)

34 →目次に戻る

import csv

サンプルデータとテキストファイルの内容を出力する関数の準備

header = [‘name’, ‘age’, ‘tel’]

isshiki = [‘ 一色 ’, 25, ‘xxxx-yyyy’]

endo = [‘ 遠藤 ’, 45, ‘mmmm-nnnnn’]

kawasaki = [‘ かわさき ’, 80, ‘zzzz-aaaa’]

mylist = [isshiki, endo, kawasaki]

for row in mylist:

 print(row)

出力結果：

#[‘ 一色 ’, 25, ‘xxxx-yyyy’]

#[‘ 遠藤 ’, 45, ‘mmmm-nnnnn’]

#[‘ かわさき ’, 80, ‘zzzz-aaaa’]

from pathlib import Path

def print_lines():

 print(Path(‘test.csv’).read_text())

csvモジュールを使って 1行の内容を CSVファイルに書き込み

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(isshiki)

print_lines() # 一色 ,25,xxxx-yyyy

csvモジュールを使って複数行の内容を CSVファイルに書き込み

with open(‘test.csv’, ‘w’, newline=’’) as f:

［解決！Python］CSVファイルに書き込みを行うには
（csvモジュール編）

pandasやNumPyを使わずに、Pythonに標準で付属する csvモジュールを使って、CSV
ファイルに書き込みを行う方法を紹介する。

（2021年 08月 17日）

35 →目次に戻る

 writer = csv.writer(f)

 writer.writerows(mylist)

print_lines()

出力結果：

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

ヘッダーを行頭に書き込む

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(header)

 writer.writerows(mylist)

print_lines()

出力結果：

#name,age,tel

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

区切り文字をカンマからタブに変更する

with open(‘test.tsv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, delimiter=’¥t’)

 writer.writerow(isshiki)

repr(Path(‘test.tsv’).read_text()) # “’ 一色 ¥¥t25¥¥txxxx-yyyy¥¥n’”

全てのフィールドを引用符で囲む（デフォルトはダブルクオート）

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_ALL)

 writer.writerow(isshiki)

print_lines() # “ 一色 ”,”25”,”xxxx-yyyy”

36 →目次に戻る

数値以外のフィールドをシングルクオートで囲む

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

 writer.writerow(isshiki)

print_lines() # ‘ 一色 ’,25,’xxxx-yyyy’

辞書の要素を CSVファイルに書き込む

mydict_list = [dict(zip(header, row)) for row in mylist]

for items in mydict_list:

 print(items)

出力結果：

#{‘name’: ‘ 一色 ’, ‘age’: 25, ‘tel’: ‘xxxx-yyyy’}

#{‘name’: ‘ 遠藤 ’, ‘age’: 45, ‘tel’: ‘mmmm-nnnnn’}

#{‘name’: ‘ かわさき ’, ‘age’: 80, ‘tel’: ‘zzzz-aaaa’}

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.DictWriter(f, fieldnames=header)

 writer.writeheader()

 writer.writerows(mydict_list)

print_lines()

出力結果：

#name,age,tel

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

37 →目次に戻る

csvモジュールを使ったCSVファイルの書き込み

　Pythonには csvモジュールが標準で添付されている。これをインポートすることで、リストなどの内容のCSV

ファイルへの書き込みが行える（ただし、CSV形式のデータの読み書きをより柔軟な形で行うのであれば、

pandasやNumPyを使った方がよいだろう）。

　その基本的な手順は次の通り。

1. CSVファイルを表すファイルオブジェクトを作成

2. そのファイルオブジェクトを、csv.writer関数に渡して、writerオブジェクトを取得

3. writerowメソッドを使って1行分のデータを、あるいはwriterowsメソッドを使って複数行分のデータをCSV

ファイルに書き込む

　ここでは、次のようなデータ（と、書き出したテキストファイルの内容を表示する関数）を使って、その方法を

見ていくことにする。

header = [‘name’, ‘age’, ‘tel’]

isshiki = [‘ 一色 ’, 25, ‘xxxx-yyyy’]

endo = [‘ 遠藤 ’, 45, ‘mmmm-nnnnn’]

kawasaki = [‘ かわさき ’, 80, ‘zzzz-aaaa’]

mylist = [isshiki, endo, kawasaki]

for row in mylist:

 print(row)

出力結果：

#[‘ 一色 ’, 25, ‘xxxx-yyyy’]

#[‘ 遠藤 ’, 45, ‘mmmm-nnnnn’]

#[‘ かわさき ’, 80, ‘zzzz-aaaa’]

from pathlib import Path

def print_lines():

 print(Path(‘test.csv’).read_text())

https://pandas.pydata.org/
https://numpy.org/

38 →目次に戻る

　上で紹介した手順で 1行分のデータをCSVファイルに書き込む簡単な例を以下に示す。

import csv

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(isshiki)

print_lines() # 一色 ,25,xxxx-yyyy

　この例では、test.csvファイルを書き込みモードでオープンし、そのファイルオブジェクトを csv.writer関数に

渡して、writerオブジェクトを取得している。次に、writerowメソッドを使って、リストの要素をCSVファイル

へ書き込んでいる。writerオブジェクトは、与えられたデータを区切り文字で区切った文字列に変換して、ファイ

ルに書き込みを行う。

　open関数の newline引数には空文字列を渡しているが、これは行末コードの変換を行わないことを意味して

いる。これはCSVファイルのフィールド要素に改行文字が含まれている場合に、それらを適切に解釈できるよう

にするためのものだ（csv.writer関数の説明でそうすることが推奨されている）。

　print_lines関数の出力結果を見ると、リストの要素がカンマ区切りで分割されて書き込まれていることが分かる。

　複数行のデータをまとめてCSVファイルに書き込むにはwriterowsメソッドを使用する。以下に例を示す。

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerows(mylist)

print_lines()

出力結果：

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

　ここでは、writerowsメソッドにリストを要素とするリスト（リストのリスト）を渡している。これにより、名前

／年齢／電話番号を格納しているリストが 1行分のデータとして書き込まれ、全体としては 3行分のデータの書

き込みが行われている。

https://docs.python.org/ja/3/library/csv.html#csv.writer

39 →目次に戻る

　CSVファイルにヘッダー行が必要であれば、データを書き込む前に別途ヘッダーを書き込めばよい。以下に例

を示す。

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(header)

 writer.writerows(mylist)

print_lines()

出力結果：

#name,age,tel

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

　辞書の内容をCSVファイルに書き込む場合には、DictWriterオブジェクトの作成時に fieldnames引数にヘッ

ダー情報を与えた上で、writeheaderメソッドを使ってもよい（後述）。

区切り文字をカンマからタブに変更する

　上で見たように、csv.writer関数によって得られるwriterオブジェクトはデフォルトでリストなどの反復可能オ

ブジェクトの要素をカンマで区切って、ファイルに書き出す。区切り文字を変更したいのであれば、csv.writer関

数の呼び出し時に delimiter引数に区切り文字を渡してやる。例えば、以下はタブを区切り文字にする例だ。

with open(‘test.tsv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, delimiter=’¥t’)

 writer.writerow(isshiki)

repr(Path(‘test.tsv’).read_text()) # “’ 一色 ¥¥t25¥¥txxxx-yyyy¥¥n’”

40 →目次に戻る

　テキストを読み込んで、repr関数でその表現を確認すると、カンマの区切りにタブ文字が使われているのが確

認できた。タブ区切りのデータを読み込む際には、もちろん区切り文字を指定する必要がある点には注意。

with open(‘test.tsv’, newline=’’) as f:

 reader = csv.reader(f, delimiter=’¥t’)

 for row in reader:

 print(row) # [‘ 一色 ’, ‘25’, ‘xxxx-yyyy’]

フィールドを引用符で囲む

　CSVの書き込みを行う際には、各フィールドを引用符で囲むこともできる。デフォルトでは、あるフィールドの

値として区切り文字が含まれている場合などに引用符で囲まれるようになっている。

tmp = [‘1, 2, 3’, ‘4, 5, 6’]

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f)

 writer.writerow(tmp)

print_lines() # “1, 2, 3”,”4, 5, 6”

　例えば、このコードでは文字列リストの要素に（デフォルトの区切り文字である）カンマが含まれている。その

ため、文字列要素をダブルクオートで囲んだものをカンマで区切って書き出している。

　csv.writer関数の呼び出し時には、quoting引数に引用符の使い方（引用符で囲む／囲まない／特定のフィー

ルドだけを囲むなど）を指定できる。指定できるのは以下の値だ。

• csv.QUOTE_ALL：全てのフィールドを引用符で囲む

• csv.QUOTE_MINIMAL：フィールドの値に特別な文字（区切り文字、引用符、改行文字など）が含まれて

いる場合にのみ引用符で囲む（デフォルト値）

• csv.QUOTE_NONNUMERIC：数値以外のフィールドは全て引用符で囲む

• csv.QUOTE_NONE：全てのフィールドを引用符で囲まない

41 →目次に戻る

　以下に例を示す。

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_ALL)

 writer.writerow(isshiki)

print_lines() # “ 一色 ”,”25”,”xxxx-yyyy”

　この例では、全てのフィールドを引用符で囲むように指定しているので、テキストファイルの内容を見ると、全て

が（デフォルトの引用符である）ダブルクオートで囲まれている。

　引用符を変更するには、csv.writer関数の呼び出し時に quotechar引数に引用符として使用する文字を指定する。

　以下の例では、引用符をシングルクオートに、また、数値以外のフィールドのみを引用符で囲むように指定して

いる。

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

 writer.writerow(isshiki)

print_lines() # ‘ 一色 ’,25,’xxxx-yyyy’

　引用符のデフォルトのダブルクオートから変更した場合には、そのファイルの内容を読み込むために csv.reader

関数で readerオブジェクトを作成する際にも、quotechar引数に引用符を指定するのを忘れないようにしよう

（コードは省略）。

with open(‘test.csv’, newline=’’) as f:

 reader = csv.reader(f, quotechar=”’”)

 for row in reader:

 print(row)

42 →目次に戻る

　フィールドに引用符が含まれている場合、デフォルトでは引用符が二重化される。

sample_data = [‘”foo’, ‘bar’, ‘baz’]

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_ALL)

 writer.writerow(sample_data)

print_lines() # “””foo”,”bar”,”baz”

　この例ではリストの先頭要素の値が「“foo」となっている。そして、quotechar引数に引用符を指定していない

ので、引用符はダブルクオートだ。そのため、「“foo」の先頭にあるダブルクオートが二重化されてファイルには

「“””foo”」として書き込まれるということだ。

　引用符の二重化をしたくないときには、csv.write関数呼び出しで doublequote引数に Falseを指定した上で、

escapechar引数に引用符のエスケープに使用する文字を指定する。以下に例を示す。

sample_data = [‘”foo’, ‘bar’, ‘baz’]

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.writer(f, quoting=csv.QUOTE_ALL,

 doublequote=False, escapechar=’¥¥’)

 writer.writerow(sample_data)

print_lines() # “¥”foo”,”bar”,”baz”

　詳細については、Pythonのドキュメント「Dialect クラスと書式化パラメータ」を参照されたい。

https://docs.python.org/ja/3/library/csv.html#dialects-and-formatting-parameters

43 →目次に戻る

辞書に格納されているデータをCSVファイルに書き込み

　csvモジュールでは、「キー : 値」の組が集まった辞書をCSVファイルに書き込むこともできる。これには、csv.

DictWriterクラスを使う。

　ここでは、以下のようにして、ヘッダーに記載されている各フィールドの名前とその値を基に辞書を作成して、

csv.DictWriterクラスのインスタンスを作ってみる。

mydict_list = [dict(zip(header, row)) for row in mylist]

for items in mydict_list:

 print(items)

出力結果：

#{‘name’: ‘ 一色 ’, ‘age’: 25, ‘tel’: ‘xxxx-yyyy’}

#{‘name’: ‘ 遠藤 ’, ‘age’: 45, ‘tel’: ‘mmmm-nnnnn’}

#{‘name’: ‘ かわさき ’, ‘age’: 80, ‘tel’: ‘zzzz-aaaa’}

　変数mydict_listには「‘name’: 名前」「‘age’: 年齢」「‘tel’: 電話番号」という 3つの要素を含んだ辞書を要

素とするリストが代入されている。

　この「辞書のリスト」を使って、各フィールドの値をCSVファイルに書き込む例を以下に示す。

with open(‘test.csv’, ‘w’, newline=’’) as f:

 writer = csv.DictWriter(f, fieldnames=header)

 writer.writeheader()

 writer.writerows(mydict_list)

print_lines()

出力結果：

#name,age,tel

#一色 ,25,xxxx-yyyy

#遠藤 ,45,mmmm-nnnnn

#かわさき ,80,zzzz-aaaa

　csv.DictWriterオブジェクトの作成時に指定するfieldnames引数は辞書の値がどのようにCSVファイルに書

き込まれるかを指定するものだ。この例では、変数 headerの値は「[‘name’, ‘age’, ‘tel’]」であり、名前、年齢、

電話番号の順にCSVに書き込まれるようになる。

44 →目次に戻る

　ヘッダーをCSVファイルに書き込むには、writeheaderメソッドを使用する。その後は、writerowsメソッド

に辞書を要素とするリストを渡すだけで、辞書の要素がCSVファイルに書き込まれる。

45 →目次に戻る

import numpy as np

from pathlib import Path

numpy.loadtxt関数

読み込む CSVファイルの内容を確認

filename = ‘test0.csv’

print(Path(filename).read_text())

#0 1 2 # 数値が空白文字で区切られている

#3 4 5

#6 7 8

loadtxt関数の基本的な使い方

myarray = np.loadtxt(filename) # デフォルトでは空白文字が区切り文字

print(myarray) # デフォルトでは読み込んだ値は浮動小数点数値となる

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

データ型を指定

myarray = np.loadtxt(filename, dtype=int) # 全てのフィールドが整数と指定

print(myarray)

#[[0 1 2]

[3 4 5]

[6 7 8]]

読み込む CSVファイルの内容を確認

filename = ‘test1.csv’

print(Path(filename).read_text())

［解決！Python］
CSVファイルから読み込みを行うには（NumPy編）
NumPyが提供する loadtxt関数と genfromtxt関数を使って、CSVファイルなどからデータ
を読み込む方法を紹介する。

（2021年 08月 24日）

46 →目次に戻る

#0,1,2 # 数値がカンマで区切られている

#3,4,5

#6,7,8

区切り文字を指定

myarray = np.loadtxt(filename, delimiter=’,’) # 区切り文字としてカンマを指定

print(myarray)

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

myarray = np.loadtxt(filename) # ValueError：デフォルトは空白文字が区切り文字

読み込む CSVファイルの内容を確認

filename = ‘test2.csv’

print(Path(filename).read_text())

#col1 col2 col3 # ヘッダーあり。数値が空白文字で区切られている

#0 1 2

#3 4 5

#6 7 8

先頭行を読み飛ばす

myarray = np.loadtxt(filename, skiprows=1) # 先頭の 1行を読み飛ばす

print(myarray)

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

読み込む CSVファイルの内容を確認

filename = ‘test3.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#一色 25 170 # 文字列／数値／数値が空白文字で区切られている

#かわさき 80 168

47 →目次に戻る

読み込む列を指定する

myarray = np.loadtxt(filename, usecols=[1, 2], encoding=’utf8’)

print(myarray)

#[[25. 170.]

[80. 168.]]

列ごとに内容を取り出す（転置）

ages, heights = np.loadtxt(filename, unpack=True, usecols=[1, 2], encoding=’

utf8’)

print(ages) # [25. 80.]

print(heights) # [170. 168.]

numpy.genfromtxt関数

読み込む CSVファイルの内容を確認

filename = ‘test4.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#name age height # ヘッダーあり。文字列／数値／数値が空白文字で区切られている

#一色 25 170

#かわさき 80 168

基本的な読み込み

myarray = np.genfromtxt(filename, encoding=’utf8’)

print(myarray)

#[[nan nan nan] # 数値以外は nanとされている

[nan 25. 170.]

[nan 80. 168.]]

print(myarray.dtype) # float64

各フィールドの値からデータ型を判定

myarray = np.genfromtxt(filename, encoding=’utf8’, dtype=None)

print(myarray)

#[[‘name’ ‘age’ ‘height’]

[‘ 一色 ’ ‘25’ ‘170’]

48 →目次に戻る

[‘ かわさき ’ ‘80’ ‘168’]]

print(myarray.dtype) # <U6（全てが 6文字以下の文字列と判定された）

1行目をヘッダーとして扱い、各列のデータ型を明示的に指定

myarray = np.genfromtxt(filename, names=True, dtype=’U4,f,f’, encoding=’utf8’)

print(myarray) # [(‘ 一色 ’, 25., 170.) (‘ かわさき ’, 80., 168.)]

print(myarray.dtype) # [(‘name’, ‘<U4’), (‘age’, ‘<f4’), (‘height’, ‘<f4’)]

読み込む CSVファイルの内容を確認

filename = ‘test5.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#0,,2 # 各行に欠損している値がある

#,4,5

#6,,8

欠損値を nanで埋める

myarray = np.genfromtxt(filename, delimiter=’,’, encoding=’utf8’)

print(myarray)

#[[0. nan 2.] # 欠損している部分の値は nanになる

[nan 4. 5.]

[6. nan 8.]]

myarray = np.loadtxt(filename, delimiter=’,’, encoding=’utf8’) # ValueError

欠損値を埋める値を指定する

myarray = np.genfromtxt(filename, delimiter=’,’, filling_values=-1, encoding=’

utf8’)

print(myarray)

#[[0. -1. 2.]

[-1. 4. 5.]

[6. -1. 8.]]

　NumPyには loadtxt関数と genfromtxt関数があり、これらを使うことでCSVファイル（あるいは任意の文

字を区切り文字としてフィールドを分割する形式のファイル）から読み込みを行える。

https://numpy.org/

49 →目次に戻る

　以下では、それら 2つの関数の基本的な使い方を紹介する。なお、本稿ではCSVファイル（または空白文字

を区切り文字とするファイル）の内容を表示してから、「このときにはこんな感じで関数を呼び出す」例を示すこと

にする。

numpy.loadtxt関数

　numpy.loadtxt関数（以下、loadtxt関数）は何らかの文字を区切り文字として、「数値」が並べられている

ファイルの内容を読み込んで、それをNumPyの配列（numpy.ndarray）として返送する。

　以下に numpy.loadtxt関数の構文を示す。ただし、指定可能なパラメーターはこれら以外にも多数あるので、

詳細については「numpy.loadtxt」を参照されたい。

numpy.loadtxt(fname, dtype, delimiter, skiprows, usecols, unpack)

　上に挙げた指定可能なパラメーターはおおよそ次のような意味を持つ。また、読み込むファイルには各行に同じ

数のデータが含まれている必要がある。ファイルのエンコーディングを指定するための encodingパラメーターも

あるが、これについては詳しくは触れない。

• fname：読み込むファイルの名前（またはジェネレータ）。必須

• dtype：返送する配列のデータ型（CSVファイルにはここで指定されたデータ型の値が記述されているものと

見なされる）。省略可。デフォルト値は float

• delimiter：区切り文字の指定。省略可。デフォルト値は空白文字

• skiprows：先頭から読み飛ばす行数。省略可。デフォルト値は「0」（読み飛ばさない）

• usecols：読み込みを行う列の指定（先頭列が 0、次の列が 1、……、となる）。整数値、もしくは整数値を

要素とするシーケンス（リストなど）。省略可。デフォルト値はNone（全ての列が読み込まれる）

• unpack：Trueなら読み込んだ配列を転置したものが返される。省略可。デフォルト値は False（読み込んだ

配列がそのまま返される）

https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html

50 →目次に戻る

　以下は最も基本的な呼び出しの例だ。

filename = ‘test0.csv’

print(Path(filename).read_text())

#0 1 2 # 数値が空白文字で区切られている

#3 4 5

#6 7 8

myarray = np.loadtxt(filename) # デフォルトでは空白文字が区切り文字

print(myarray) # デフォルトでは読み込んだ値は浮動小数点数値となる

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

print(type(myarray)) # <class ‘numpy.ndarray’>

　loadtxt関数を呼び出す前に、読み込むファイルの内容を確認すると、各行には 3つの数値が空白文字で区切

られて並べられていることが分かる。上で述べたように、loadtxt関数は delimiterパラメーターに区切り文字を

指定しない限り、空白文字が区切り文字として扱われるので、このようにしてある。

　その後、読み込むファイルの名前だけを指定して loadtxt関数を指定している。その戻り値は上に示した通り、

浮動小数点数値を 3つ含んだ NumPyの配列（numpy.ndarray）となっている。また、「0.」「1.」のように読

み込んだ値はデフォルトで浮動小数点数値となる点にも注意しよう。

データ型を指定
　ファイルに格納されているデータの型を指定するには dtypeパラメーターを使用する。以下の例では

「dtype=int」として整数値が含まれていることを示している。

myarray = np.loadtxt(filename, dtype=int) # 全てのフィールドが整数と指定

print(myarray)

#[[0 1 2]

[3 4 5]

[6 7 8]]

51 →目次に戻る

区切り文字を指定
　次に区切り文字を指定する方法を見る。上と同様に、読み込むファイルの内容を確認すると、今度は次のよう

にカンマ区切りとなっている。

filename = ‘test1.csv’

print(Path(filename).read_text())

#0,1,2 # 数値がカンマで区切られている

#3,4,5

#6,7,8

　区切り文字を指定するには、delimiterパラメーターを使用する。以下に例を示す。

myarray = np.loadtxt(filename, delimiter=’,’) # 区切り文字としてカンマを指定

print(myarray)

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

　結果は先ほどと同様である。なお、カンマを区切り文字として使っているファイルに対して、delimiterパラメー

ターを指定せずに loadtxt関数を呼び出すと以下のように例外が発生する。

myarray = np.loadtxt(filename) # ValueError：デフォルトは空白文字が区切り文字

先頭行を読み飛ばす
　以下のようにヘッダー行がある場合に、その行を読み飛ばすには skiprowsパラメーターに読み飛ばす行数を指

定すればよい。

filename = ‘test2.csv’

print(Path(filename).read_text())

#col1 col2 col3 # ヘッダーあり。数値が空白文字で区切られている

#0 1 2

#3 4 5

#6 7 8

52 →目次に戻る

　以下に例を示す。この場合は、読み飛ばす行は 1行でよいので、「skiprows=1」としている。

myarray = np.loadtxt(filename, skiprows=1) # 先頭の 1行を読み飛ばす

print(myarray)

#[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

読み込む列を指定する
　今度は次のように、文字列と数値が混在するCSVファイルから読み込んでみる。

filename = ‘test3.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#一色 25 170 # 文字列／数値／数値が空白文字で区切られている

#かわさき 80 168

　データ型を指定せずに読み込もうとすると次のように例外が発生する。

myarray = np.loadtxt(filename, encoding=’utf8’) # ValueError

　しかし、データ型を strに指定してもあまり意味はないだろう。loadtxt関数では、特定のフィールドが特定の

型という指定はできず、全てのデータがある型でなければならない。

myarray = np.loadtxt(filename, dtype=str, encoding=’utf8’)

print(myarray)

#[[‘ 一色 ’ ‘25’ ‘170’]

[‘ かわさき ’ ‘80’ ‘168’]]

53 →目次に戻る

　このようなときに、数値のみを含んだフィールドだけを読み込みたいのであれば、usecolsパラメーターに読み

込みたい列を指定する（先頭列が 0、次の列が 1、……のようになる）。以下は第 1列と第 2列の内容だけを読

み込むコードだ。

myarray = np.loadtxt(filename, usecols=[1, 2], encoding=’utf8’)

print(myarray)

#[[25. 170.]

[80. 168.]]

　このようなときには、以下で紹介する genfromtxt関数を使うか、以降で紹介する pandasを使うのがよいだろう。

列ごとに内容を取り出す（転置）
　先頭列の内容からなる配列、次の列の内容からなる配列などがほしいときには、unpackパラメーターに True

を指定するとよい。以下に例を示す。

ages, heights = np.loadtxt(filename, unpack=True, usecols=[1, 2], encoding=’

utf8’)

print(ages) # [25. 80.]

print(heights) # [170. 168.]

numpy.genfromtxt関数

　loadtxt関数はシンプルな（全てのデータが同一の型を持つ）場合には便利に使えるかもしれないが、numpy.

genfromtxt関数（以下、genfromtxt関数）はもっと構造的なデータを扱える。また、読み込むファイルに欠損

値が含まれている場合に、その値を自動でセットすることもできる（デフォルトでは nan値）。ただし、より高度

な処理を行うのであれば、pandasを使う方がよいだろう。

　以下に genfromtxt関数の構文を示す。loadtxt関数と同じく、パラメーターは本稿で紹介するものだけを示し

ているので、詳細については「numpy.genfromtxt」を参照されたい。

numpy.genfromtxt(fname, dtype, names, filling_values)

https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html

54 →目次に戻る

　パラメーターは以下の通り。

• fname：読み込みを行うファイルの名前。必須。fnameにはファイル名以外も指定可能だが、本稿では取り

上げない

• dtype：返送する配列のデータ型。省略可。省略した場合のデータ型は float

• names：Trueの場合、CSVファイルの先頭行から各列の名前が決定される。文字列を要素とするリスト、列

名をカンマで区切った文字列を渡すことも可能。省略可。省略した場合はNoneを指定したものとされる（こ

の場合は、dtypeパラメーターで列名が指定されている場合には、それが使用される）

• filling_values：欠損値があった場合に、デフォルト値として使われる値を指定。省略可。省略時はNoneが

指定されたものとして扱われる（欠損している箇所には nanがセットされる）

　また、loadtxt関数と同様に delimiterパラメーターに区切り文字を、skip_headerパラメーターに skiprows

パラメーターと同じく先頭から読み飛ばす行数を指定できる。encodingパラメーターで読み込むファイルのエン

コーディングも指定できる。

　以下にシンプルな呼び出し例を示す。

filename = ‘test4.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#name age height # ヘッダーあり。文字列／数値／数値が空白文字で区切られている

#一色 25 170

#かわさき 80 168

myarray = np.genfromtxt(filename, encoding=’utf8’)

print(myarray)

#[[nan nan nan] # 数値以外は nanとされている

[nan 25. 170.]

[nan 80. 168.]]

print(myarray.dtype) # float64

　ここでは、上に示したようにヘッダーを持ち、文字列と数値が空白文字で区切られているファイルから読み込み

を行っている。

55 →目次に戻る

　genfromtxt関数にファイル名（とエンコーディング）だけを指定した場合、配列のデータ型はデフォルトの float

となる。そのため、文字列のデータについては全て nanとなる。

nanとは
　nanとは「Not a Number」つまり「非数」を表す値のこと。浮動小数点数値の演算で適正な値が得ら

れなかったことを表す値であり、IEEE 754で規定されている。PythonではNaNは float型の値であり、

以下のようにして得られる。

nan = float(‘nan’)

print(type(nan)) # <class ‘float’>

　nanは他の値、および自身との比較演算において常に Falseを返す。そのため、ある値が nanであるか

どうかを調べるには、NumPyやmathモジュールが提供する isnan関数を使用する。

import math

import numpy as np

print(f’{math.isnan(nan)=}’) # math.isnan(nan)=True

print(f’{np.isnan(nan)=}’) # np.isnan(nan)=True

各列の内容からデータ型を決定する
　dtypeパラメーターにNoneを指定すると、各フィールドの内容からデータ型が決定される。

myarray = np.genfromtxt(filename, encoding=’utf8’, dtype=None)

print(myarray)

#[[‘name’ ‘age’ ‘height’]

[‘ 一色 ’ ‘25’ ‘170’]

[‘ かわさき ’ ‘80’ ‘168’]]

print(myarray.dtype) # <U6（全てが 6文字以下の文字列と判定された）

56 →目次に戻る

　この場合は、全列のデータ型が最大で 6文字の文字列「<u6」と判定されている。これは恐らくヘッダー行を

読み込んでいるからだ。これを読み飛ばして、自動的にデータ型を決定するコード例を以下に示す。

myarray = np.genfromtxt(filename, encoding=’utf8’, skip_header=1, dtype=None)

print(myarray) # [(‘ 一色 ’, 25, 170) (‘ かわさき ’, 80, 168)]

print(myarray.dtype) # [(‘f0’, ‘<U4’), (‘f1’, ‘<i8’), (‘f2’, ‘<i8’)]

　これにより、列名が自動で付き（「f0」「f1」「f2」）、それぞれのデータ型が「<U4」「<i8」「<i8」と決定され

ている。

　あるいは、1行目をヘッダーとして扱い、各列のデータ型を明示的に指定することもできる。

myarray = np.genfromtxt(filename, names=True, dtype=’U4,f,f’, encoding=’utf8’)

print(myarray) # [(‘ 一色 ’, 25., 170.) (‘ かわさき ’, 80., 168.)]

print(myarray.dtype) # [(‘name’, ‘<U4’), (‘age’, ‘<f4’), (‘height’, ‘<f4’)]

　ここでは「dtype=’U4,f,f’」としているが、これは先頭列が「4文字以下の文字列」、他の 2列が浮動小数点数

型であることを意味している。

欠損値の補完
　次に欠損値の扱いについて簡単に見る。ここでは、以下のようなCSVファイルがあるとする。

filename = ‘test5.csv’

with open(filename, encoding=’utf8’) as f:

 print(f.read())

#0,,2 # 各行に欠損している値がある

#,4,5

#6,,8

　このようなファイルを loadtxt関数で読もうとすると例外が発生する。

myarray = np.loadtxt(filename, delimiter=’,’, encoding=’utf8’) # ValueError

57 →目次に戻る

　対して、genfromtxt関数では、以下のように欠損している箇所の値が「nan」となる。

myarray = np.genfromtxt(filename, delimiter=’,’, encoding=’utf8’)

print(myarray)

#[[0. nan 2.] # 欠損している部分の値は nanになる

[nan 4. 5.]

[6. nan 8.]]

　nanではなく、何らかの値を代わりに含めておきたいのであれば、filling_valuesパラメーターにその値を指定

する。

myarray = np.genfromtxt(filename, delimiter=’,’, filling_values=-1, encoding=’

utf8’)

print(myarray)

#[[0. -1. 2.]

[-1. 4. 5.]

[6. -1. 8.]]

　filling_valuesパラメーターには辞書を指定してもよい。辞書には欠損値があったときに代替する値を列ごとに

指定する。指定しなかった列で欠損値が見つかれば、そこは nanで代替される。

fillv = {1: -100, 2: -1000}

myarray = np.genfromtxt(filename, delimiter=’,’, filling_values=fillv, encoding=’

utf8’)

print(myarray)

#[[0. -100. 2.]

[nan 4. 5.]

[6. -100. 8.]]

58 →目次に戻る

import numpy as np

from pathlib import Path

x = np.random.randn(2, 3) # 以下の値は一例

print(x)

#[[-2.45567984 1.33310634 0.59013369]

[0.25731195 0.78458477 -0.64572527]]

基本的な使い方

np.savetxt(‘test.csv’, x)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

区切り文字を変更する

np.savetxt(‘test.csv’, x, delimiter=’,’) # 区切り文字をカンマ「,」に

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00,1.333106339746787494e+00,5.90133692284782185

3e-01

2 . 5 7 3 1 1 9 4 5 7 5 8 5 9 1 1 2 0 7 e - 0 1 , 7 . 8 4 5 8 4 7 6 9 6 4 5 3 2 3 3 1 0 0 e - 0 1 , -

6.457252711716952032e-01

書き出すフォーマットの指定

指数表記

np.savetxt(‘test.csv’, x, fmt=’%.8e’) # 小数点以下の精度を 8桁に

print(Path(‘test.csv’).read_text())

［解決！Python］CSVファイルに書き込みを行うには
（NumPy編）

NumPyが提供する savetxt関数関数を使って、CSVファイルなどにデータを書き込む方法
を紹介する。

（2021年 08月 31日）

59 →目次に戻る

#-2.45567984e+00 1.33310634e+00 5.90133692e-01

#2.57311946e-01 7.84584770e-01 -6.45725271e-01

np.savetxt(‘test.csv’, x, fmt=’%18.8e’) # 最小の出力幅を指定

print(Path(‘test.csv’).read_text())

-2.45567984e+00 1.33310634e+00 5.90133692e-01

2.57311946e-01 7.84584770e-01 -6.45725271e-01

浮動小数点数値（指数表記をしない）

np.savetxt(‘test.csv’, x, fmt=’%12.8f’) # 精度の後に「f」を指定

print(Path(‘test.csv’).read_text())

-2.45567984 1.33310634 0.59013369

0.25731195 0.78458477 -0.64572527

左寄せ

np.savetxt(‘test.csv’, x, fmt=’%-18.8e’) # 「-」で左寄せを指定

print(Path(‘test.csv’).read_text())

#-2.45567984e+00 1.33310634e+00 5.90133692e-01

#2.57311946e-01 7.84584770e-01 -6.45725271e-01

符号を常に付加

np.savetxt(‘test.csv’, x, fmt=’%+18.8e’) # 「+」で符号を常に付加

print(Path(‘test.csv’).read_text())

-2.45567984e+00 +1.33310634e+00 +5.90133692e-01

+2.57311946e-01 +7.84584770e-01 -6.45725271e-01

0埋め

np.savetxt(‘test.csv’, x, fmt=’%018.8e’) # 「0」で 0埋めを指定

print(Path(‘test.csv’).read_text())

#-0002.45567984e+00 00001.33310634e+00 00005.90133692e-01

#00002.57311946e-01 00007.84584770e-01 -0006.45725271e-01

整数値

nums = np.array([[111, 222, 333],

 [444, 555, 666]])

60 →目次に戻る

np.savetxt(‘test.csv’, nums, fmt=’%d’)

print(Path(‘test.csv’).read_text())

#111 222 333

#444 555 666

np.savetxt(‘test.csv’, nums, fmt=’%.5d’) # 0埋め

print(Path(‘test.csv’).read_text())

#00111 00222 00333

#00444 00555 00666

np.savetxt(‘test.csv’, nums, fmt=’%6d’) # 出力される最小の文字数を指定

print(Path(‘test.csv’).read_text())

111 222 333

444 555 666

np.savetxt(‘test.csv’, nums, fmt=’%6.4d’) # 数字の最小文字数を指定

print(Path(‘test.csv’).read_text())

0111 0222 0333

0444 0555 0666

改行文字を変更する

np.savetxt(‘test.csv’, x, newline=’¥n¥n’)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

#

ヘッダーを付加する

np.savetxt(‘test.csv’, x, header=’col1 col2 col3’)

print(Path(‘test.csv’).read_text())

col1 col2 col3

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

61 →目次に戻る

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

フッターを付加する

np.savetxt(‘test.csv’, x, footer=’generated: 2021/08/27’)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

generated: 2021/08/27

基本的な使い方

　NumPyが提供する numpy.savetxt関数（以下、savetxt関数）を使うと、NumPyの配列、リストなどの

値を、特定の文字で区切って、CSVファイルなどに出力できる。ただし、出力可能なのは 1次元または 2次元の

配列やリスト（array_likeオブジェクト）に限る。

　savetxt関数の構文を以下に示す。

numpy.savetxt(fname, x, fmt=’%.18e’, delimiter=’ ‘, newline=’¥n’, header=’’,

 footer=’’, comments=’# ‘, encoding=None)

　指定可能なパラメーターは次の通り。

• fname：書き込みを行うファイルの名前。必須

• x：書き込むデータ。必須

• fmt：xに格納されているデータを出力する際に使われる書式指定。省略可能。省略時は「%.18e」が指定さ

れたものと見なされる（精度が 18桁の指数表記）

• delimiter：区切り文字。省略可。省略時の区切り文字は空白文字となる

• newline：行末文字の指定。省略可。省略時は改行文字「‘¥n’」が指定されたものと見なされる

• header：ファイルの先頭に付加されるヘッダー行の指定。省略可。省略時にはヘッダーは付加されない

• footer：ファイルの末尾に付加されるフッター行の指定。省略可。省略時にはフッターは付加されない

https://numpy.org/

62 →目次に戻る

• comments：コメント行であることを示す文字列。この文字列に続けて、headerパラメーターと footerパラ

メーターで指定された文字列が書き込まれる。省略可。省略時には「# 」が指定されたものとして見なされる

• encoding：ファイルのエンコーディング指定

　最も基本的な使い方を以下に示す。

import numpy as np

from pathlib import Path

x = np.random.randn(2, 3)

print(x)

#[[-2.45567984 1.33310634 0.59013369]

[0.25731195 0.78458477 -0.64572527]]

基本的な使い方

np.savetxt(‘test.csv’, x)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

　この例では、2行 3列のNumPy配列（numpy.ndarray）を作成して（その値はランダムであるため、読者

が本稿のコードを実行したときには、違う値の配列が得られる点には注意されたい）、それを savetxt関数に渡し

ているだけだ。出力されたファイルの内容を見ると、小数点以下の精度が 18桁の指数表記の値が空白文字で区

切られて出力されていることが分かる。これは fmtパラメーターのデフォルト値が「%.18e」（小数点以下の精度

が 18桁の指数表記）に、delimiterのデフォルト値が「‘ ‘」（空白文字）となっているからだ。

63 →目次に戻る

　なお、上記ではNumPy配列を扱っているが、例えば Pythonのリストもこの関数を使って書き出せる。

mylist = x.tolist()

np.savetxt(‘test.csv’, mylist)

print(Path(‘test.csv’).read_text())

#7.731030073194588015e-01 -1.741182180141600311e+00 9.348418996663322711e-

02

#4.149555709304568740e-01 -1.150815368506415970e+00 -7.909651117231002171e-

02

区切り文字を変更する

　区切り文字を変更するには、delimiterパラメーターに区切り文字を指定する。以下に例を示す。

np.savetxt(‘test.csv’, x, delimiter=’,’) # 区切り文字をカンマ「,」に

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00,1.333106339746787494e+00,5.90133692284782185

3e-01

2 . 5 7 3 1 1 9 4 5 7 5 8 5 9 1 1 2 0 7 e - 0 1 , 7 . 8 4 5 8 4 7 6 9 6 4 5 3 2 3 3 1 0 0 e - 0 1 , -

6.457252711716952032e-01

　ここでは、「delimiter=’,’」としているので、出力ファイルの内容を見ると、各値がカンマで区切られている。

書き出すフォーマットの指定

　fmtパラメーターには、各要素を出力時にどのように書式化するかを指定できる。その値は「%[flag][width]

[.precision]specifier」という形式で指定する。先頭の「%」と specifierに指定する値以外は省略可能だ。

• flag：書式化された値を左寄せにするか、符号を常に付加するか、0埋めするかを指定

• width：各値が最小で何文字を使って書式化されるかを指定

• .precision：specifierに「d」または「i」を指定したときには（整数）数字を使って出力される最小の文字

数を指定。specifierに「e」、「E」、「f」を指定したときには（実数）小数点以下の精度を指定、specifierに

「s」を指定したときには（文字列）文字列の最大文字数を指定

64 →目次に戻る

• specifier：各値を整数として書式化するときには「d」または「i」を指定する。実数として書式化するときに

は「e」「E」（指数表記）、または「f」（小数表記）を指定する。文字列として書式化するときには「s」を指

定する。specifierには他にも「g」「G」「o」「u」「x」「X」を指定できるが、本稿では取り上げない。詳細

についてはNumPyのドキュメント「numpy.savetxt」を参照のこと

　例えば、配列の要素を指数表記でCSVファイルに書き込むには次のようにする。

np.savetxt(‘test.csv’, x, fmt=’%.8e’) # 小数点以下の精度を 8桁に

print(Path(‘test.csv’).read_text())

#-2.45567984e+00 1.33310634e+00 5.90133692e-01

#2.57311946e-01 7.84584770e-01 -6.45725271e-01

　上の例では「%」の後には .precisionとして「.8」が、specifierとして「e」が記述されている（flagとwidth

は省略）。このため、小数点以下 8桁の指数表記の数値としてCSVファイルに書き込みが行われている。

np.savetxt(‘test.csv’, x, fmt=’%18.8e’) # 最小の出力幅を指定

print(Path(‘test.csv’).read_text())

-2.45567984e+00 1.33310634e+00 5.90133692e-01

2.57311946e-01 7.84584770e-01 -6.45725271e-01

　この例では、「%」に続けてwidthとして「18」が、他の要素については上と同じ値が指定されている。この結

果、全体としては各要素が 18文字の文字列として出力されている。このとき、符号に 1文字（ある場合）、整数

部に 1文字、小数点に 1文字、小数点以下に 8文字、指数表記に 4文字が使われて 15文字（または 14文字）

の文字列となるので、余った部分は空白文字で埋められている。

　以下は指数表記ではない小数表記を行う例だ。

np.savetxt(‘test.csv’, x, fmt=’%12.8f’) # 精度の後に「f」を指定

print(Path(‘test.csv’).read_text())

-2.45567984 1.33310634 0.59013369

0.25731195 0.78458477 -0.64572527

　この例では、「%」の後にwidthとして「12」が、.precisionとして「.8」が、最後に specifierとして「f」が

指定されている。

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html

65 →目次に戻る

　書式化された出力を左寄せでCSVファイルに出力するには flagに「-」を指定する。以下に例を示す。

np.savetxt(‘test.csv’, x, fmt=’%-18.8e’) # 「-」で左寄せを指定

print(Path(‘test.csv’).read_text())

#-2.45567984e+00 1.33310634e+00 5.90133692e-01

#2.57311946e-01 7.84584770e-01 -6.45725271e-01

　この例では、全体の文字数が 18文字で、精度は 8桁の指数表記（e）となっているものを左寄せしている。そ

のため、各値の後ろにパディングとしての空白文字が付加されている。

　書式化の際に常に符号を付加するには、flagに「+」を指定する。以下に例を示す。

np.savetxt(‘test.csv’, x, fmt=’%+18.8e’) # 「+」で符号を常に付加

print(Path(‘test.csv’).read_text())

-2.45567984e+00 +1.33310634e+00 +5.90133692e-01

+2.57311946e-01 +7.84584770e-01 -6.45725271e-01

　ここまでは全体の文字数に、書式化後の値の文字数が満たなかった場合に空白文字でパディングが行われてい

たが、0埋めをするのであれば、flagに「0」を指定する。以下に例を示す。

np.savetxt(‘test.csv’, x, fmt=’%018.8e’) # 「0」で 0埋めを指定

print(Path(‘test.csv’).read_text())

#-0002.45567984e+00 00001.33310634e+00 00005.90133692e-01

#00002.57311946e-01 00007.84584770e-01 -0006.45725271e-01

　整数を要素とする配列を書き込むときには、specifierに「d」を指定する。

nums = np.array([[111, 222, 333],

 [444, 555, 666]])

np.savetxt(‘test.csv’, nums, fmt=’%d’)

print(Path(‘test.csv’).read_text())

#111 222 333

#444 555 666

66 →目次に戻る

　このときには、.precisionは整数として初期化された文字の最小文字数を意味するようになる。

np.savetxt(‘test.csv’, nums, fmt=’%.5d’) # 0埋め

print(Path(‘test.csv’).read_text())

#00111 00222 00333

#00444 00555 00666

　この例では、.precisionとして「.5」が指定されているので、最小でも 5文字の文字列として各値が書式化さ

れるので、余った部分は 0埋めされている。

　一方、widthは書式化された値の最大の文字数を指定するものだ。以下の例ではwidthとして「6」を指定し

ている。

np.savetxt(‘test.csv’, nums, fmt=’%6d’) # 出力される最小の文字数を指定

print(Path(‘test.csv’).read_text())

111 222 333

444 555 666

　このときには、0埋めではなく、空白文字列を使ってパディングが行われている。以下はwidthに「6」を、.

precisionに「.4」を指定した例だ。

np.savetxt(‘test.csv’, nums, fmt=’%6.4d’) # 数字の最小文字数を指定

print(Path(‘test.csv’).read_text())

0111 0222 0333

0444 0555 0666

　このときには、全体は 6文字だが、数字として書式化する最小の文字数が 4なので「 0XXX」のようになって

いる。

67 →目次に戻る

　最後に fmtパラメーターは各列の書式化方法を個別に指定することもできる。詳しくは説明しないが、簡単に

例だけを示しておこう。

fmt1 = ‘%.4f %.6f %.2f’ # 書式指定を区切り文字で区切った文字列

np.savetxt(‘test.csv’, x, fmt=fmt1)

print(Path(‘test.csv’).read_text())

#-2.4557 1.333106 0.59

#0.2573 0.784585 -0.65

fmt2 = [‘%.4f’, ‘%.8f’, ‘%.2f’] # 書式指定を要素とするリスト

np.savetxt(‘test.csv’, x, fmt=fmt2)

print(Path(‘test.csv’).read_text())

上に同じ

改行文字を変更する

　改行文字を変更することはあまりないだろうが、newlineパラメーターを使って、変更可能だ。以下に例を示す。

np.savetxt(‘test.csv’, x, newline=’¥n¥n’)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

#

　この例では、「newline=’¥n¥n’」としているので、各行の後に空行ができている（numpy.loadtxt関数でこの

ファイルを読み込むことは確認した）。

68 →目次に戻る

ヘッダー／フッターを付加する

　CSVファイルにヘッダーやフッターを付加するには、headerパラメーターと footerパラメーターを指定する。

以下に例を示す。

ヘッダーを付加する

np.savetxt(‘test.csv’, x, header=’col1 col2 col3’)

print(Path(‘test.csv’).read_text())

col1 col2 col3

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

フッターを付加する

np.savetxt(‘test.csv’, x, footer=’generated: 2021/08/27’)

print(Path(‘test.csv’).read_text())

#-2.455679835942072398e+00 1.333106339746787494e+00 5.901336922847821853e-

01

#2.573119457585911207e-01 7.845847696453233100e-01 -6.457252711716952032e-

01

generated: 2021/08/27

　実際のヘッダーとフッターは「# 」で始まり、それに続けて headerパラメーターもしくは footerパラメーター

に指定した文字列が出力されている点に注意されたい。この文字列は commentsパラメーターを使って変更する

ことも可能だ（例は割愛する）。

69 →目次に戻る

import pandas as pd

from pathlib import Path

filepath = ‘test0.csv’

print(Path(filepath).read_text())

#0.0,1.1,2.2

#3.3,4.4,5.5

#6.6,7.7,8.8

df = pd.read_csv(filepath)

print(df)

0.0 1.1 2.2

#0 3.3 4.4 5.5

#1 6.6 7.7 8.8

ヘッダー行がないことを指定

df = pd.read_csv(filepath, header=None)

print(df)

0 1 2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

列名を指定

names = [‘col0’, ‘col1’, ‘col2’]

df = pd.read_csv(filepath, names=names)

print(df)

col0 col1 col2

#0 0.0 1.1 2.2

［解決！Python］
CSVファイルから読み込みを行うには（pandas編）
pandasが提供する read_csv関数を使って、CSVファイルなどからデータを読み込む方法を
紹介する。

（2021年 09月 07日）

70 →目次に戻る

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

ヘッダー行がある場合

filepath = ‘test1.csv’

print(Path(filepath).read_text())

#col0,col1,col2

#0.0,1.1,2.2

#3.3,4.4,5.5

#6.6,7.7,8.8

df = pd.read_csv(filepath)

print(df)

col0 col1 col2 # ヘッダー行から列名を推測してくれる

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

列名をヘッダー行から推測せずに、明示的に指定する

names = [‘foo’, ‘bar’, ‘baz’]

df = pd.read_csv(filepath, names=names, header=0)

print(df)

foo bar baz

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

区切り文字の指定

filepath = ‘test2.csv’

print(Path(filepath).read_text())

#col0 col1 col2 # 空白文字で区切っている

#0.0 1.1 2.2

#3.3 4.4 5.5

#6.6 7.7 8.8

71 →目次に戻る

df = pd.read_csv(filepath, sep=’ ‘)

print(df)

col0 col1 col2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

読み込む列の指定

filepath = ‘test1.csv’

df = pd.read_csv(filepath, usecols=[0, 2])

print(df)

col0 col2

#0 0.0 2.2

#1 3.3 5.5

#2 6.6 8.8

df = pd.read_csv(filepath, usecols=[‘col0’, ‘col2’])

print(df) # 出力は省略

df = pd.read_csv(filepath, usecols=lambda x: x in [‘col0’, ‘col2’])

print(df) # 出力は省略

行ラベル（インデックス）となる列の指定

filepath = ‘test3.csv’

print(Path(filepath).read_text())

#,col1,col2,col3

#row0,0.0,1.1,2.2

#row1,3.3,4.4,5.5

#row2,6.6,7.7,8.8

df = pd.read_csv(filepath, index_col=0)

print(df)

col1 col2 col3

#IDX

#row0 0.0 1.1 2.2

72 →目次に戻る

#row1 3.3 4.4 5.5

#row2 6.6 7.7 8.8

df = pd.read_csv(filepath, index_col=’IDX’)

print(df) # 出力は省略

データ型の指定

filepath = ‘test4.csv’

print(Path(filepath).read_text())

#area,tel,value

#tokyo,0312345678,1.0

#kanagawa,045678901,2.0

#chiba,043210987,3.0

df = pd.read_csv(filepath)

print(df)

area tel value # 電話番号が整数値になっている

#0 tokyo 312345678 1.0

#1 kanagawa 45678901 2.0

#2 chiba 43210987 3.0

df = pd.read_csv(filepath, dtype=str) # 全てのデータの型を strに

print(df)

area tel value

#0 tokyo 0312345678 1.0

#1 kanagawa 045678901 2.0

#2 chiba 043210987 3.0

df = pd.read_csv(filepath, dtype={0: str, 1: str, 2: float})

print(df) # 出力は省略

日付のパース

filepath = ‘test5.csv’

print(Path(filepath).read_text())

#date,value0,value1

73 →目次に戻る

#2021/09/07,1.0,2.0

#2021/09/08,3.0,4.0

#2021/09/09,5.0,5.0

df = pd.read_csv(filepath, parse_dates=True, index_col=0)

print(df)

value0 value1

#date

#2021-09-07 1.0 2.0

#2021-09-08 3.0 4.0

#2021-09-09 5.0 5.0

df = pd.read_csv(filepath, parse_dates=[0])

print(df)

date value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 4.0

#2 2021-09-09 5.0 5.0

df = pd.read_csv(filepath, parse_dates=[‘date’])

print(df) # 出力は省略

filepath = ‘test6.csv’

print(Path(filepath).read_text())

#year,month,day,value0,value1

#2021,9,7,1.0,2.0

#2021,9,8,3.0,5.0

#2021,9,9,4.0,6.0

dates = [[‘year’, ‘month’, ‘day’]]

df = pd.read_csv(filepath, parse_dates=dates)

print(df)

year_month_day value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 5.0

74 →目次に戻る

#2 2021-09-09 4.0 6.0

dates = {‘date’: [‘year’, ‘month’, ‘day’]}

df = pd.read_csv(filepath, parse_dates=dates)

print(df)

date value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 5.0

#2 2021-09-09 4.0 6.0

欠損値の扱い

filepath = ‘test7.csv’

print(Path(filepath).read_text())

col0,col1,col2

,nan,1.0

2.0,N/A,null

NaN,3.0,--

df = pd.read_csv(filepath)

print(df)

col0 col1 col2

#0 NaN NaN 1.0

#1 2.0 NaN NaN

#2 NaN 3.0 -- # 「--」という文字列は欠損値としては扱われていない

df = pd.read_csv(filepath, na_values=[‘--’])

print(df)

col0 col1 col2 # デフォルトの欠損値と na_valuesに指定した値が欠損値

#0 NaN NaN 1.0

#1 2.0 NaN NaN

#2 NaN 3.0 NaN

df = pd.read_csv(filepath, keep_default_na=False, na_values=[‘--’])

print(df)

col0 col1 col2 # na_valuesに指定した値のみが欠損値として扱われる

75 →目次に戻る

#0 nan 1.0

#1 2.0 N/A null

#2 NaN 3.0 NaN

基本的な使い方

　pandasの read_csv関数を使うと、CSVファイルの内容を pandas.DataFrameオブジェクトに読み込める。

読み込んだ内容は pandasが提供するさまざまな機能を使って、参照したり加工したりできる。

　read_csv関数の構文を以下に示す。なお、記述しているパラメーターは本稿で取り上げるものだけだ。詳細

については pandasのドキュメント「read_csv関数」を参照されたい

pandas.read_csv(filepath, sep, header, names, index_col, usecols, dtype,

 keep_default_na, na_values, parse_date)

　これらのパラメーターについて簡単にまとめる。

• filepath：読み込むCSVファイルの名前。必須

• sep：区切り文字の指定（delimiterパラメーターも使える。ただし、両者を同時に指定することはできない）。

省略可。省略時はカンマ「,」が指定されたものとして扱われる

• header：ヘッダー行の指定。省略可。省略時は読み込んだ内容からヘッダー行と列名を推測する

• names：列名の指定。省略可

• index_col：行ラベル（行にアクセスするためのインデックス）となる列の指定。省略可。省略時は各行には

整数値でアクセスする

• usecols：読み込む列の指定。省略可。省略時は全ての列の内容が読み込まれる

• dtype：データ全体または特定列のデータのデータ型を指定。省略可。省略時はデータの内容に応じて自動

的にデータ型が推測される

• keep_default_na：na_valuesパラメーターに欠損値と見なされる値が指定された場合に、デフォルトで欠

損値として見なしている値を保持するかどうかの指定。省略可。省略時は Trueが指定されたものとして見な

される（デフォルトの欠損値を保持する）

• na_values：欠損値として見なされる値の追加指定。省略可

• parse_dates：日付としてパースするかどうかの指定

　最も基本的な使い方を以下に示す。なお、以下では読み込むCSVファイルの内容を示した後に、read_csv

関数を呼び出して、読み込んだ値を表示することにする。

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

76 →目次に戻る

import pandas as pd

from pathlib import Path

filepath = ‘test0.csv’

print(Path(filepath).read_text())

#0.0,1.1,2.2

#3.3,4.4,5.5

#6.6,7.7,8.8

df = pd.read_csv(filepath)

print(df)

0.0 1.1 2.2

#0 3.3 4.4 5.5

#1 6.6 7.7 8.8

　この例では、read_csv関数を使って 3行 3列のCSVファイルから読み込みを行っている。ただし、先頭行

（0.0,1.1,2.2）がヘッダー行と見なされてしまっている（その内容から列名が「0.0」「1.1」「2.2」と自動的に推

測されてもいる）。ヘッダー行がないことを知らせるには、次のようにする。

df = pd.read_csv(filepath, header=None)

print(df)

0 1 2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

　header=Noneを指定したことで、CSVファイルの先頭行がヘッダー行として扱われなくなり、ヘッダー行から

推測されていた列名の代わりに「0」「1」「2」という列名が付けられている。

77 →目次に戻る

　列名を明示的に指定するには、namesパラメーターにそれらを指定する。以下に例を示す。

names = [‘col0’, ‘col1’, ‘col2’]

df = pd.read_csv(filepath, names=names)

print(df)

col0 col1 col2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

　一方、CSVファイルにヘッダー行があるときには、既に見たように自動的にヘッダー行が認識され、列名が推

測される。

filepath = ‘test1.csv’

print(Path(filepath).read_text())

#col0,col1,col2

#0.0,1.1,2.2

#3.3,4.4,5.5

#6.6,7.7,8.8

df = pd.read_csv(filepath)

print(df)

col0 col1 col2 # ヘッダー行から列名を推測してくれる

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

78 →目次に戻る

　列名をヘッダー行の内容と異なるものにするのであれば、以下のようにヘッダー行を明示的に指定するととも

に、namesパラメーターに列名を与える。

names = [‘foo’, ‘bar’, ‘baz’]

df = pd.read_csv(filepath, names=names, header=0)

print(df)

foo bar baz

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

　この例では、「header=0」としてヘッダー行が先頭行であることを指定し、同時に namesパラメーターに [‘foo’,

‘bar’, ‘baz’]というリストを与えているので、列名がヘッダー行とは異なるものになっている。

　ヘッダー行が複数ある場合には、header=[0, 1]などと指定することも可能だ（この場合は、先頭行とその次

の行の値を要素とするタプルが列にアクセスするためのインデックスとなる）。

区切り文字の指定

　区切り文字を指定するには、sepパラメーターまたは delimiterパラメーターにそれを指定する。以下は、空白

文字を区切り文字とするファイルから読み込みを行う例だ。

filepath = ‘test2.csv’

print(Path(filepath).read_text())

#col0 col1 col2 # 空白文字で区切っている

#0.0 1.1 2.2

#3.3 4.4 5.5

#6.6 7.7 8.8

df = pd.read_csv(filepath, sep=’ ‘)

print(df)

col0 col1 col2

#0 0.0 1.1 2.2

#1 3.3 4.4 5.5

#2 6.6 7.7 8.8

79 →目次に戻る

　「sep=None」「engine=’python’」を指定することで、区切り文字の自動推測が可能になる。

df = pd.read_csv(filepath, sep=None, engine=’python’)

読み込む列の指定

　元のCSVファイルから特定の列の内容だけを読み込みたいときには、usecolsパラメーターに読み込みたい列

を指定する。以下に例を示す。

filepath = ‘test1.csv’

df = pd.read_csv(filepath, usecols=[0, 2])

print(df)

col0 col2

#0 0.0 2.2

#1 3.3 5.5

#2 6.6 8.8

　この例では、第 0列と第 2列の内容だけを読み込むように指定している。列名を usecolsパラメーターに指定

してもよい。

df = pd.read_csv(filepath, usecols=[‘col0’, ‘col2’])

print(df) # 出力は省略

　usecolsパラメーターにラムダ式を渡すこともできる。ラムダ式を渡した場合、そのラムダ式には列名が渡され、

それを使ったラムダ式の評価結果が Trueとなる列のみが読み込まれる。

df = pd.read_csv(filepath, usecols=lambda x: x in [‘col0’, ‘col2’])

print(df) # 出力は省略

　この例では、列名は ’col0’、’col1’、’col2’の 3つであり、それらがラムダ式に渡される。ラムダ式では「列名

in [‘col0’, ‘col2’]」が評価されるので、第 1列（‘col1’）以外の 2列が読み込まれる。

80 →目次に戻る

行ラベル（インデックス）となる列の指定

　行ラベル（行にアクセスするためのインデックス）として使用する列を指定するには、index_colパラメーター

にその値（整数、列名）を指定する。以下に例を示す。

filepath = ‘test3.csv’

print(Path(filepath).read_text())

#,col1,col2,col3

#row0,0.0,1.1,2.2

#row1,3.3,4.4,5.5

#row2,6.6,7.7,8.8

df = pd.read_csv(filepath, index_col=0)

print(df)

col1 col2 col3

#IDX

#row0 0.0 1.1 2.2

#row1 3.3 4.4 5.5

#row2 6.6 7.7 8.8

　あるいは列名を指定してもよい。

df = pd.read_csv(filepath, index_col=’IDX’)

print(df) # 出力は省略

81 →目次に戻る

データ型の指定

　CSVファイルに格納されているデータ全体、または特定の列のデータ型を指定するには、dtypeパラメーター

を使用する。

　例えば、以下のようなCSVファイルがあったとする。

filepath = ‘test4.csv’

print(Path(filepath).read_text())

#area,tel,value

#tokyo,0312345678,1.0

#kanagawa,045678901,2.0

#chiba,043210987,3.0

　第 0列は地域、第 1列は電話番号、第 2列は何らかの値を示すデータとなっている。これを、何も指定せずに

read_csv関数で読み込むと次のようになる。

df = pd.read_csv(filepath)

print(df)

area tel value

#0 tokyo 312345678 1.0

#1 kanagawa 45678901 2.0

#2 chiba 43210987 3.0

df.info()

#<class ‘pandas.core.frame.DataFrame’>

#RangeIndex: 3 entries, 0 to 2

#Data columns (total 3 columns):

Column Non-Null Count Dtype

#--- ------ -------------- -----

0 area 3 non-null object

1 tel 3 non-null int64 # 電話番号のはずが整数として扱われている

2 value 3 non-null float64

82 →目次に戻る

　ご覧の通り、電話番号としていたはずが整数値として扱われている（先頭の「0」がなくなっていることからも分

かるはずだ）。これを回避するには、幾つかの方法がある。例えば、全ての値を文字列としてしまうことが考えら

れる。

df = pd.read_csv(filepath, dtype=str) # 全てのデータの型を strに

print(df)

area tel value

#0 tokyo 0312345678 1.0

#1 kanagawa 045678901 2.0

#2 chiba 043210987 3.0

　「dtype=str」とすることで、全てのデータを文字列化したので、先頭の「0」が削除されなくなった。とはいえ、

列ごとにデータ型を指定できた方がよいだろう。その場合は、以下のように、各列のデータ型を指定できる。

df = pd.read_csv(filepath, dtype={0: str, 1: str, 2: float})

print(df) # 出力は省略

　ここでは、全ての列のデータ型を指定しているが、特定の列だけを指定してもよい。

日付のパース

　CSVファイルに日付データが含まれている場合には、parse_datesパラメーターを指定することで、日付型の

データへとパースできる。

　例えば、以下のようなデータがあったとする。

filepath = ‘test5.csv’

print(Path(filepath).read_text())

#date,value0,value1

#2021/09/07,1.0,2.0

#2021/09/08,3.0,4.0

#2021/09/09,5.0,5.0

　parse_datesパラメーターにはブール値、整数リスト、列名を要素とするリスト、辞書を渡せる。最初にこの

パラメーターに Trueを渡す例を示す。

83 →目次に戻る

df = pd.read_csv(filepath, parse_dates=True, index_col=0)

print(df)

value0 value1

#date

#2021-09-07 1.0 2.0

#2021-09-08 3.0 4.0

#2021-09-09 5.0 5.0

　「parse_dates=True」を指定すると、行インデックスとなる列の値が日付型に変換される（そのため、ここで

は「index_col=0」を指定している）。

　あるいは、変換したい列を表す整数値、または文字列（列名）を要素とするリストを渡してもよい。以下に例

を示す（変換したい列が 1つだけでもリストで渡す必要がある）。

df = pd.read_csv(filepath, parse_dates=[0])

print(df)

date value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 4.0

#2 2021-09-09 5.0 5.0

df = pd.read_csv(filepath, parse_dates=[‘date’])

print(df) # 出力は省略

　1つ目の例では「parse_dates=[0]」として、2つ目の例では「parse_dates=[‘date’]」として日付を含んだ

列を指定している。

　日付を表すデータが複数の列に分かれていることもあるかもしれない。その場合は、parse_datesパラメーター

に一つの日付を表す列をリストにまとめ、それをさらにリストの要素として渡すとよい。

84 →目次に戻る

　例えば、以下のように year列、month列、date列に分けて、日付のデータが格納されていたとする。

filepath = ‘test6.csv’

print(Path(filepath).read_text())

#year,month,day,value0,value1

#2021,9,7,1.0,2.0

#2021,9,8,3.0,5.0

#2021,9,9,4.0,6.0

　このときに、それらをまとめて日付型に変換するには以下のようにする。

dates = [[‘year’, ‘month’, ‘day’]]

df = pd.read_csv(filepath, parse_dates=dates)

print(df)

year_month_day value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 5.0

#2 2021-09-09 4.0 6.0

　列名が「year_month_day」と 3つの列をつなげたものになっている点に注意しよう。辞書を渡すと、次のよ

うに列名を指定できる。

dates = {‘date’: [‘year’, ‘month’, ‘day’]}

df = pd.read_csv(filepath, parse_dates=dates)

print(df)

date value0 value1

#0 2021-09-07 1.0 2.0

#1 2021-09-08 3.0 5.0

#2 2021-09-09 4.0 6.0

　この例では日付は 1つだけなので、辞書を使う意味が分からないかもしれないが、開始日と終了日など複数の

日付が含まれている場合に、「dates = {‘start_date’: [……], ‘end_date’: [……]}」などと書けることは覚えてお

こう。

85 →目次に戻る

欠損値の扱い

　CSVファイルには空文字列や「nan」「NA」などとして値がないことを示すデータが含まれているかもしれな

い。read_csv関数はデフォルトで、そうした値をNaNとして扱ってくれる（NaN値については「CSVファイル

から読み込みを行うには（NumPy編）」のコラムを参照）。

　例えば、次のようなCSVファイルがあったとする。

filepath = ‘test7.csv’

print(Path(filepath).read_text())

col0,col1,col2

,nan,1.0

2.0,N/A,null

NaN,3.0,--

　CSVファイルには「nan」「N/A」などが欠損値があるフィールドとして記述されている。これを read_csv関

数で読み込むと次のようになる。

df = pd.read_csv(filepath)

print(df)

col0 col1 col2

#0 NaN NaN 1.0

#1 2.0 NaN NaN

#2 NaN 3.0 -- # 「--」という文字列は欠損値としては扱われていない

　多くの値はNaNに変換されたが、CSVファイルにあった「--」というフィールドはそうはなっていない点に注

意。これも欠損値として扱いたければ、na_valuesパラメーターにそれを指定すればよい。

df = pd.read_csv(filepath, na_values=[‘--’])

print(df)

col0 col1 col2 # デフォルトの欠損値と na_valuesに指定した値が欠損値

#0 NaN NaN 1.0

#1 2.0 NaN NaN

#2 NaN 3.0 NaN

86 →目次に戻る

　pandasがデフォルトで欠損値として扱っている文字列を無効化するには、keep_default_naパラメーターに

Falseを指定する（以下の例では左下にも「NaN」があるが、これは文字列である）。

df = pd.read_csv(filepath, keep_default_na=False, na_values=[‘--’])

print(df)

col0 col1 col2 # na_valuesに指定した値のみが欠損値として扱われる

#0 nan 1.0

#1 2.0 N/A null

#2 NaN 3.0 NaN

87 →目次に戻る

import pandas as pd

import numpy as np

from pathlib import Path

data = {

 ‘name’: [‘isshiki’, ‘endo’, ‘kawasaki’],

 ‘age’: [20, 25, np.nan],

 ‘weight’: [55.44, 66.77, 123.456]

}

df = pd.DataFrame(data)

print(df)

name age weight

#0 isshiki 20.0 55.440

#1 endo 25.0 66.770

#2 kawasaki NaN 123.456

基本

fname = ‘test.csv’

df.to_csv(fname)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

区切り文字の変更

df.to_csv(fname, sep=’ ‘)

print(Path(fname).read_text())

name age weight

［解決！Python］
CSVファイルに書き込みを行うには（pandas編）
pandas.DataFrameクラスの to_csvメソッドを使って、データフレームの内容をCSVファ
イルに書き込む方法を紹介する。

（2021年 09月 14日）

88 →目次に戻る

#0 isshiki 20.0 55.44

#1 endo 25.0 66.77

#2 kawasaki 123.456

欠損値の表現を指定する

df.to_csv(fname, na_rep=’nan’)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,nan,123.456

数値を文字列化する際の書式指定

df.to_csv(fname, float_format=’%+08.3f’)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,+020.000,+055.440

#1,endo,+025.000,+066.770

#2,kawasaki,,+123.456

ヘッダー行の指定

df.to_csv(fname, header=[‘col0’, ‘col1’, ‘col2’])

print(Path(fname).read_text())

#,col0,col1,col2

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

行インデックスの列名を指定

df.to_csv(fname, index_label=’idx’)

print(Path(fname).read_text())

#idx,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

89 →目次に戻る

行インデックスを出力しない

df.to_csv(fname, index=False)

print(Path(fname).read_text())

#name,age,weight

#isshiki,20.0,55.44

#endo,25.0,66.77

#kawasaki,,123.456

書き出す列の指定

df.to_csv(fname, columns=[‘name’, ‘weight’])

print(Path(fname).read_text())

#,name,weight

#0,isshiki,55.44

#1,endo,66.77

#2,kawasaki,123.456

クオートの指定

import csv

df.to_csv(fname, quoting=csv.QUOTE_ALL)

print(Path(fname).read_text())

#””,”name”,”age”,”weight”

#”0”,”isshiki”,”20.0”,”55.44”

#”1”,”endo”,”25.0”,”66.77”

#”2”,”kawasaki”,””,”123.456”

df.to_csv(fname, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

print(Path(fname).read_text())

#’’,’name’,’age’,’weight’

#0,’isshiki’,20.0,55.44

#1,’endo’,25.0,66.77

#2,’kawasaki’,’’,123.456

フィールドを囲むのに使う引用符自体がフィールドに含まれている場合の処理

data = {

 “name”: [“chak’n”, “and pop”],

90 →目次に戻る

 “value”: [100, 120]

}

df = pd.DataFrame(data)

print(df)

name value

#0 chak’n 100

#1 and pop 120

df.to_csv(fname, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

print(Path(fname).read_text())

#’’,’name’,’value’

#0,’chak’’n’,100

#1,’and pop’,120

df.to_csv(fname, sep=’ ‘, quoting=csv.QUOTE_NONE, escapechar=’¥¥’)

print(Path(fname).read_text())

name value

#0 chak’n 100

#1 and¥ pop 120

91 →目次に戻る

pandas.DataFrame.to_csvメソッド

　pandasが提供するDataFrameクラスには to_csvメソッドがあり、これを使うことでデータフレームに格納

されているデータをCSVファイルへと書き出せる。

　以下は本稿で紹介するパラメーターを含む、to_csvメソッドの基本的な構文だ。

pandas.DataFrame.to_csv(path, sep, na_rep, float_format, columns, header,

 index, index_label, quoting, quotechar)

　本稿では以下のパラメーターを紹介する。全てのパラメーターについては、pandasのドキュメント「pandas.

DataFrame.to_csv」を参照のこと。

• path：データフレームの内容を書き出すファイルの名前。必須

• sep：区切り文字。省略可。省略時はカンマ「,」が指定されたものとして扱われる

• na_rep：欠損値を表す文字列表現。省略可。省略時は空文字列「“”」が指定したものとして扱われる

• float_format：数値を文字列化してファイルに書き込む際に使われる書式化指定文字列。省略可。省略時は

元の値がそのまま文字列化される

• columns：どの列の値を書き込むかの指定。省略可。省略時は行インデックスに続いて、全ての列が書き込

まれる。

• header：ヘッダー行の指定。True／ False、文字列リストを指定可能。文字列リストを指定した場合は、そ

れらがデータフレームの列名の代わりにヘッダー行に使われる。Falseを指定した場合は、ヘッダー行は書き

込まれない。Trueを指定した場合は、データフレームの列名がヘッダー行に書き込まれる。省略可。省略時

は Trueが指定されたものとして扱われる

• index：行インデックスを書き込むかどうかを指定する（True／ False）。省略可。省略時は Trueが指定さ

れたものとして扱われる（行インデックスが書き込まれる）

• index_label：行インデックスの列名としてヘッダー行に書き込む値を指定する。headerパラメーターと index

パラメーターが Trueの場合に、index_labelパラメーターに渡した値が行インデックスの列名としてヘッダー

行に書き込まれる。省略可。省略時は行インデックスの列名は書き込まれない

• quoting：CSVファイルに書き込む各フィールドを何らかの引用符で囲むかどうかを指定する。指定可能なの

は、Pythonに標準で添付される csvモジュールで定義されている定数

• quotechar：各フィールドを囲む引用符の指定。長さ 1の文字。省略可。省略時はダブルクオート「“」が指

定されたものとして扱われる

https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://docs.python.org/ja/3/library/csv.html#csv.QUOTE_ALL

92 →目次に戻る

基本的な使い方

　以下では、次のコードで作成したデータフレームをCSVファイルに書き込むものとする。

import pandas as pd

import numpy as np

from pathlib import Path

data = {

 ‘name’: [‘isshiki’, ‘endo’, ‘kawasaki’],

 ‘age’: [20, 25, np.nan],

 ‘weight’: [55.44, 66.77, 123.456]

}

df = pd.DataFrame(data)

print(df)

name age weight

#0 isshiki 20.0 55.440

#1 endo 25.0 66.770

#2 kawasaki NaN 123.456

　一番簡単なのは、書き込むファイル名を指定して、このメソッドを呼び出すだけだ。以下に例を示す。

fname = ‘test.csv’

df.to_csv(fname)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

　出力結果を見ると、ヘッダー行の先頭には行インデックスの列名がない、各行の先頭に行インデックスがある、

区切り文字がカンマ「,」となっている、欠損値があれば空文字列が書き込まれることなどが分かるはずだ。

93 →目次に戻る

区切り文字の変更

　区切り文字を変更するには sepパラメーターに長さ 1の文字を指定する。以下に例を示す。

df.to_csv(fname, sep=’ ‘)

print(Path(fname).read_text())

name age weight

#0 isshiki 20.0 55.44

#1 endo 25.0 66.77

#2 kawasaki 123.456

　上の例では「sep=’ ‘」としているので半角空白文字で各フィールドが区切られている。

欠損値の表現を指定する

　欠損値を含むフィールドをCSVファイルに書き込む際に、どんな文字列表現とするかを指定するには na_rep

パラメーターにその値を指定する。以下に例を示す。

df.to_csv(fname, na_rep=’nan’)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,nan,123.456

　この例では、「na_rep=’nan’」としているので、CSVファイルの該当するフィールドには「nan」が書き込まれ

ている。

94 →目次に戻る

数値を文字列化する際の書式指定

　数値を文字列化してCSVファイルに書き込む際に、どのような形式に書式化するかは float_formatパラメー

ターで指定できる。以下に例を示す。

df.to_csv(fname, float_format=’%+08.3f’)

print(Path(fname).read_text())

#,name,age,weight

#0,isshiki,+020.000,+055.440

#1,endo,+025.000,+066.770

#2,kawasaki,,+123.456

　書式化指定文字列は「%」で始まり、その後に（符号の付加、左寄せなどを指定する）フラグとフィールドの

最小文字数、さらに「.」の後に小数点以下の精度と（整数、小数、指数表記などを示す）指定子が続く。

　上の例では「+」は常に符号を付加するフラグで、「0」は 0埋めを表すフラグ、「8」がフィールドの最小文字

数、「3」は小数点以下 3桁までを表示する指示、最後の「f」が小数点表示を意味している。CSVファイルの内

容と付き合わせてみてほしい。

ヘッダー行の指定

　データフレームの列名とCSVファイルのヘッダー行とを異なるものにしたければ、headerパラメーターにヘッ

ダー行の内容を指定する。以下に例を示す。

df.to_csv(fname, header=[‘col0’, ‘col1’, ‘col2’])

print(Path(fname).read_text())

#,col0,col1,col2

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

　なお、ヘッダー行を出力したくないときには、「header=False」とすればよい（例は省略）。

95 →目次に戻る

行インデックスの列名を指定

　行インデックスの列名をヘッダー行に含めたいときには、index_labelパラメーターを使用する。以下はその例だ。

df.to_csv(fname, index_label=’idx’)

print(Path(fname).read_text())

#idx,name,age,weight

#0,isshiki,20.0,55.44

#1,endo,25.0,66.77

#2,kawasaki,,123.456

　なお、このパラメーターは headerパラメーターが False以外のとき、かつ以下で紹介する indexパラメーター

が Trueのときにだけ機能する（つまり、ヘッダー行を出力し、行インデックスを出力するときだけ、このパラメー

ターに指定した列名も出力される）。

行インデックスを出力しない

　これまでに見てきた通り、to_csvメソッドはデフォルトで行インデックスを（行の先頭に）出力する。これをや

めたいときには、indexパラメーターに Falseを指定する。以下に例を示す。

df.to_csv(fname, index=False)

print(Path(fname).read_text())

#name,age,weight

#isshiki,20.0,55.44

#endo,25.0,66.77

#kawasaki,,123.456

96 →目次に戻る

書き出す列の指定

　特定の列だけをCSVファイルに書き込みたければ、その列名を要素とするリスト（シーケンス）を columns

パラメーターに指定する。以下に例を示す。

df.to_csv(fname, columns=[‘name’, ‘weight’])

print(Path(fname).read_text())

#,name,weight

#0,isshiki,55.44

#1,endo,66.77

#2,kawasaki,123.456

クオートの指定

　to_csvメソッドでは基本的には各フィールドを何らかの引用符でなるべく囲まないようにしている（Pythonに

標準添付される csvモジュールの csv.QUOTE_MINIMAL値に対応）。これを変更するには、quotingパラメー

ターに csvモジュールで定義されている値を指定する。

　以下の例では、全てのフィールドを囲むように指定している。

import csv

df.to_csv(fname, quoting=csv.QUOTE_ALL)

print(Path(fname).read_text())

#””,”name”,”age”,”weight”

#”0”,”isshiki”,”20.0”,”55.44”

#”1”,”endo”,”25.0”,”66.77”

#”2”,”kawasaki”,””,”123.456”

　デフォルトでは引用符にダブルクオート「“」が使われるので、上のような出力結果となる。引用符を変更するに

は、quotecharパラメーターに長さ 1の文字を指定する。

https://docs.python.org/ja/3/library/csv.html#csv.QUOTE_ALL

97 →目次に戻る

　以下は数値以外のフィールドをシングルクオート「‘」で囲むように指示する例だ。

df.to_csv(fname, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

print(Path(fname).read_text())

#’’,’name’,’age’,’weight’

#0,’isshiki’,20.0,55.44

#1,’endo’,25.0,66.77

#2,’kawasaki’,’’,123.456

　なお、フィールドを囲むのに使う引用符自体がフィールドに含まれていた場合には、それらは自動的に二重化さ

れる（その文字を二度繰り返す）。

　例えば、以下のようなデータフレームがあったとする。

data = {

 “name”: [“chak’n”, “and pop”],

 “value”: [100, 120]

}

df = pd.DataFrame(data)

print(df)

name value

#0 chak’n 100

#1 and pop 120

　これをCSVファイルに（数値以外のフィールドを）シングルクオートで囲んで出力するとしたらどうなるだろう。

「chak’n」というフィールドに注目されたい。

df.to_csv(fname, quoting=csv.QUOTE_NONNUMERIC, quotechar=”’”)

print(Path(fname).read_text())

#’’,’name’,’value’

#0,’chak’’n’,100

#1,’and pop’,120

　出力を見ると「chak’’n」とシングルクオートが二重化されていることが分かる。

98 →目次に戻る

　また、以下は区切り文字を空白文字として、CSVファイルに書き込みを行おうとするコードだが、今度は「and

pop」というフィールドに空白文字が含まれていることが分かる。二重化するのではなく、何らかの文字でエスケー

プしたいときには次のように escapecharパラメーターが使える。

df.to_csv(fname, sep=’ ‘, quoting=csv.QUOTE_NONE, escapechar=’¥¥’)

print(Path(fname).read_text())

name value

#0 chak’n 100

#1 and¥ pop 120

　escapecharパラメーターは、doublequoteパラメーターと組み合わせて使うこともできる。doublequoteパ

ラメーターは今見た二重化を制御するパラメーターでデフォルト値は True（二重化する）になっている。これを

Falseにして escapecharパラメーターと組み合わせた例も示しておこう。

df.to_csv(fname, quoting=csv.QUOTE_ALL, quotechar=”’”, doublequote=False,

escapechar=’¥¥’)

print(Path(fname).read_text())

#’’,’name’,’value’

#’0’,’chak¥’n’,’100’

#’1’,’and pop’,’120’

