
解決！ Python：
リスト（配列）編
かわさきしんじ，Deep Insider編集部［著］

01.リスト（配列）の使い方まとめ

04.リスト（配列）に要素を追加するには
　　（+演算子／ +=演算子／ append／ extend／ insertメソッド）

07.リスト（配列）をソートしたり、逆順にしたりするには
　　（sort／ reverseメソッド、sorted／ reversed関数）

02.リスト（配列）を初期化するには（[]、list関数、リスト内包表記）

05.リスト（配列）から要素を削除するには
　　（del文、remove／ clear／ popメソッド、リスト内包表記）

03.リスト（配列）の要素にインデックスやスライスを使ってアクセスするには

06.リスト（配列）から要素を検索するには
　　（in／ not in演算子、count／ indexメソッド、min／max関数）

3 →目次に戻る

　Pythonでは他の言語における配列と同等なデータ構造はリストとして実装されている。ここでは、リスト（配

列）の使い方をコード例を主体にまとめる。コード例の後には、それらを説明する章へのリンクもあるので、詳細

はそちらを参照されたい。

リストを初期化する

リスト（配列）の初期化：角かっこ「[]」で囲み、要素をカンマ「,」区切りで並べる

empty_list = [] # 空のリスト

print(empty_list) # []

int_list = [0, 1, 2] # 整数リスト（整数配列）

print(int_list) # [0, 1, 2]

mylist = [0, 'abc', 1, 'def'] # リスト（配列）には任意の型の要素を格納できる

print(mylist) # [0, 'abc', 1, 'def']

リスト（配列）の初期化：list関数を呼び出す

int_list = list() # 空のリスト（配列）

print(int_list) # []

int_list = list((4, 5, 6)) # タプルの要素を基にリスト（配列）が作成される

print(int_list) # [4, 5, 6]

int_list = list(range(5)) # rangeオブジェクトから整数リスト（整数配列）を作成

print(int_list) # [0, 1, 2, 3, 4]

str_list = list('python') # 文字列の各文字を要素とするリストを作成

print(str_list) # ['p', 'y', 't', 'h', 'o', 'n']

リスト（配列）の使い方まとめ
Pythonのリスト（配列）の初期化、要素へのアクセス、要素の追加、要素の削除、要素の検
索、要素の並べ替えを行う方法をまとめて紹介する。

（2020年 12月 25日）

4 →目次に戻る

リスト内包表記

int_list = [x for x in range(0, 10, 2)] # rangeオブジェクトからリストを作成

print(int_list) # [0, 2, 4, 6, 8]

int_list = [x for x in range(10) if x % 2 == 1] # if節を用いる例

print(int_list) # [1, 3, 5, 7, 9]

if else式を使うときには for節に続けずに、内包表記の先頭に記述する

str_list = [c.upper() if c.islower() else c.lower() for c in 'AbCdE']

print(str_list) # ['a', 'B', 'c', 'D', 'e']

リストのリスト（配列の配列）

mylist = [[0, 1, 2], [3, 4, 5]] # 2次元のリスト（配列）の作成

print(mylist) # [[0, 1, 2], [3, 4, 5]]

mul_tbl = [[x * y for x in range(1, 4)] for y in range(1, 5)]

print(mul_tbl) # [[1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12]]

　リストの初期化については「リスト（配列）を初期化するには（[]、list関数、リスト内包表記）」を参照

のこと。

リストの要素にアクセスする（インデックス）

mylist = list(range(10))

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

インデックスによるアクセス

n = mylist[1] # 正数は先頭からのインデックス。先頭の要素のインデックスが 0

print(n) # 1

n = mylist[-2] # 負数は末尾からのインデックス。末尾の要素のインデックスが -1

print(n) # 8

インデックスを使った要素の削除

del mylist[4]

print(mylist) # [0, 1, 2, 3, 5, 6, 7, 8, 9]

5 →目次に戻る

インデックスを使って要素を変更する

mylist[-1] = 90

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 90]

　リストの要素へのアクセスについては「リスト（配列）の要素にインデックスやスライスを使ってアクセスするに

は」を参照のこと。

リストの要素にアクセスする（スライス）

スライスによるアクセス

mylist = list(range(10))

s = mylist[0:5] # 0～ 4番目の 5要素を取り出す

print(s) # [0, 1, 2, 3, 4]

s = mylist[:] # 全要素を取り出す

print(s) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

s = mylist[5:] # 5番目以降の全要素を取り出す

print(s) # [5, 6, 7, 8, 9]

s = mylist[:5] # 0～ 4番目の 5要素を取り出す

print(s) # [0, 1, 2, 3, 4]

s = mylist[0:10:2] # 0、2、4、6、8番目の要素を取り出す

print(s) # [0, 2, 4, 6, 8]

s = mylist[::2] # 同上

print(s) # [0, 2, 4, 6, 8]

s = mylist[-4:] # -4番目から末尾までの全要素を取り出す

print(s) # [6, 7, 8, 9]

s = mylist[-1:-9:-1] # リスト末尾から逆順に要素を取り出す

print(s) # [9, 8, 7, 6, 5, 4, 3, 2]

6 →目次に戻る

スライスによる要素の削除

mylist = list(range(10))

del mylist[3:5] # 3番目と 4番目の要素を削除

print(mylist) # [0, 1, 2, 5, 6, 7, 8, 9]

del mylist[0::2] # 上の削除結果から、0、2、4、6番目の要素を削除

print(mylist) # [1, 5, 7, 9]

mylist[0:2] = [] # 上の削除結果から先頭の 2要素を削除

print(mylist) # [7, 9]

スライスを使って要素を変更する

mylist = list(range(10))

mylist[1:3] = [10, 20] # スライスの先頭と末尾を指定して要素を変更

print(mylist) # [0, 10, 20, 3, 4, 5, 6, 7, 8, 9]

mylist[1:3] = [1, 1.5, 2] # この場合はスライスと新しい値の要素数が異なってもOK

print(mylist) # [0, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9]

mylist = list(range(10))

mylist[1::2] = [10, 30, 50, 70, 90] # 先頭／末尾／増分を指定して要素を変更

print(mylist) # [0, 10, 2, 30, 4, 50, 6, 70, 8, 90]

mylist[0::2] = [0.0, 2.0, 4.0] # ValueError：このときには同じ要素数でないとダメ

　リストの要素へのアクセスについては「リスト（配列）の要素にインデックスやスライスを使ってアクセスするに

は」を参照のこと。

7 →目次に戻る

リストへ要素を追加する（+演算子／ +=演算子）

mylist = list(range(5))

print(mylist) # [0, 1, 2, 3, 4]

+演算子によるリストの結合（リストの末尾へのリストの追加）

tmp = mylist + [5, 6] # +演算子では新しいリストが作成される

print(tmp) # [0, 1, 2, 3, 4, 5, 6]

print(mylist) # [0, 1, 2, 3, 4]

mylist = mylist + 5 # TypeError：リストはリスト以外と結合できない

mylist = mylist + (5, 6) # TypeError：リストはリスト以外と結合できない

+=演算子によるリスト末尾への要素の追加

mylist += [5] # +=演算（累算代入）では元のリストが変更される

print(mylist) # [0, 1, 2, 3, 4, 5]

mylist += 6 # TypeError：リストへ累算代入できるのは反復可能オブジェクトのみ

mylist += (6, 7) # リスト末尾にタプルの個々の要素を追加

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7]

　リストへの要素の追加については「リスト（配列）に要素を追加するには（+演算子／ +=演算子／ append

／ extend／ insertメソッド）」を参照のこと。

リストへ要素を追加する（append／ extend／ insertメソッド）

mylist = list(range(5))

mylist.append(5) # リストの末尾に要素を追加

print(mylist) # [0, 1, 2, 3, 4, 5]

mylist.append(6, 7) # TypeError：appendメソッドの引数は 1つだけ

mylist.append([6, 7]) # リストの末尾に単一の要素として「リスト」を追加

8 →目次に戻る

print(mylist) # [0, 1, 2, 3, 4, 5, [6, 7]]

mylist.extend([8, 9]) # リストの末尾に反復可能オブジェクトの個々の要素を追加

print(mylist) # [0, 1, 2, 3, 4, 5, [6, 7], 8, 9]

mylist.extend(10) # TypeError：extendメソッドには反復可能オブジェクトのみ渡せる

mylist.extend({10: 'foo', 11: 'bar'}) # 反復可能オブジェクトなのでOK

print(mylist) # [0, 1, 2, 3, 4, 5, [6, 7], 8, 9, 10, 11]

mylist.insert(1, 0.5) # 指定したインデックスに要素を挿入

print(mylist) # [0, 0.5, 1, 2, 3, 4, 5, [6, 7], 8, 9, 10, 11]

　リストへの要素の追加については「リスト（配列）に要素を追加するには（+演算子／ +=演算子／ append

／ extend／ insertメソッド）」を参照のこと。

リストから要素を削除する（del文、インデックス／スライス）

インデックスを指定して del文で要素を削除

mylist = list(range(5)) # [0, 1, 2, 3, 4]

del mylist[0]

print(mylist) # [1, 2, 3, 4]

スライスを指定して del文で要素を削除

mylist = list(range(5)) # [0, 1, 2, 3, 4]

del mylist[1:4] # 1～ 3番目の要素を削除

print(mylist) # [0, 4]

mylist = list(range(5)) # [0, 1, 2, 3, 4]

del mylist[::2] # 0、2、4番目の要素を削除

print(mylist) # [1, 3]

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[1:7:3] # 1番目と 4番目の要素を削除

print(mylist) # [0, 2, 3, 5, 6, 7, 8, 9]

9 →目次に戻る

スライスで指定した範囲に空のリストを代入することで削除

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

mylist[4:8] = [] # 4～ 7番目の要素を削除

print(mylist) # [0, 1, 2, 3, 8, 9]

print('mylist[:]:', mylist[:]) # mylist[:]: [0, 1, 2, 3, 8, 9]

mylist[:] = [] # リストの全要素を削除

print(mylist) # []

mylist = list(range(5))

del mylist[:] # このようにも書ける

　リストからの要素の削除については「リスト（配列）から要素を削除するには（del文、remove／ clear／

popメソッド、リスト内包表記）」を参照のこと。

リストから要素を削除する（clear／ pop／ removeメソッド、リスト内包表記）

clearメソッドでリストの全要素を削除

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

mylist.clear()

print(mylist) # []

popメソッドで指定したインデックスにある要素をリストから削除して、その値を取得

mylist = list(range(10))

value = mylist.pop() # インデックスを指定しない場合は末尾の要素が削除される

print('popped value:', value) # popped value: 9

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 5, 6, 7, 8]

value = mylist.pop(5) # 5番目の要素を削除

print('popped value:', value) # popped value: 5

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 6, 7, 8]

removeメソッドで削除したい値を指定して、リストからその値を削除

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

10 →目次に戻る

mylist.remove(0) # リスト内の要素 0のうち先頭にあるものを削除

print(mylist) # [2, 6, 0, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # リスト内の要素 0のうち先頭にあるものを削除

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # ValueError：指定した値がリスト中にないと例外となる

リストから特定の条件に合致するものをまとめて削除

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

target = 0 # 要素 0をmylistから取り除きたい

mylist = [item for item in mylist if item != target] # 取り除く＝それ以外を残す

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

　リストからの要素の削除については「リスト（配列）から要素を削除するには（del文、remove／ clear／

popメソッド、リスト内包表記）」を参照のこと。

リストから要素を検索する（in／ not in演算子、count／ indexメソッド、min／max関数）

mylist = [2, 5, 11, 15, 1, 3, 18, 3, 19, 8] # 10個の整数値を要素とするリスト

指定した値がリストに含まれているか含まれていないかを調べる

result = 0 in mylist # 整数値 0がmylistに含まれているかを調べる

print(result) # False

result = 0 not in mylist # 整数値 0がmylistに含まれていないかを調べる

print(result) # True

指定した値がリストに何個含まれているかを調べる

cnt = mylist.count(3) # 整数値 3がmylistに何個含まれているかを調べる

print(cnt) # 2

指定した値がどのインデックスにあるかを検索

idx = mylist.index(3) # mylistに含まれる整数値 3の最小のインデックスを求める

print(idx) # 5

11 →目次に戻る

idx = mylist.index(3, 6, len(mylist)) # 検索範囲を指定

print(idx) # 7

idx = mylist.index(100) # ValueError：存在しない値を指定

リストの要素で最大／最小のものを求める

max_value = max(mylist) # 最大値を求める

print(max_value) # 19

min_value = min(mylist) # 最小値を求める

print(min_value) # 1

max_value = max([]) # ValueError：max関数／min関数に空のリストを渡すと例外

max_value = max([], default='none') # defalut引数は空リストを渡したときの戻り値

print(max_value) # none

max_value = max([0, 1], [4, 5], [2, 3]) # 複数のリストの中で最大のリストを取得

print(max_value) # [4, 5]

mylist = ['pYthon', 'pyThon', 'Python', 'PYTHON']

max_value = max(mylist, key=str.lower) # key引数を指定する例

print(max_value) # pYthon

　リストからの要素の検索については「リスト（配列）から要素を検索するには（in／ not in演算子、count／

indexメソッド、min／max関数）」を参照のこと。

12 →目次に戻る

リストの要素をソート／並べ替える（sort／ reverseメソッド、sorted／ reversed関数）

リストの要素をソートする（インプレース）

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

mylist.sort()

print(mylist) # [0, 1, 2, 5, 6, 7, 9, 15, 16, 18]

リストの要素をソートした新しいリストを作成する

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

newlist = sorted(mylist)

print('mylist:', mylist) # mylist: [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

print('newlist:', newlist) # newlist: [0, 1, 2, 5, 6, 7, 9, 15, 16, 18]

リストの要素をソートする（インプレース／逆順）

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

mylist.sort(reverse=True)

print(mylist) # [18, 16, 15, 9, 7, 6, 5, 2, 1, 0]

ソートに使用するキーを決定する関数を指定

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

mylist.sort(key=abs) # 絶対値順でソート

print(mylist) # [0.1, -1.5, -1.7, 4.5, -4.6]

ラムダ式を使って、リストのリストをソートする

mylist = [[0, 1, 2], [1, 2, 0], [2, 0, 1]]

mylist.sort(key=lambda x: x[1]) # 1番目の要素をキーとしてリストをソート

print(mylist) # [[2, 0, 1], [0, 1, 2], [1, 2, 0]]

keyキーワード引数と reverseキーワード引数を使用

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

mylist.sort(key=abs, reverse=True) # 絶対値を基に降順でソート

print(mylist) # [-4.6, 4.5, -1.7, -1.5, 0.1]

13 →目次に戻る

要素を逆順に並べ替える（インプレース）

mylist = list(range(5)) # [0, 1, 2, 3, 4]

mylist.reverse()

print(mylist) # [4, 3, 2, 1, 0]

要素を逆順に並べ替えた新しいイテレータを作成する

mylist = list(range(5)) # [0, 1, 2, 3, 4]

iterator = reversed(mylist) # reversed関数の戻り値はイテレータ

print(iterator) # <list_reverseiterator object at ...>

newlist = list(iterator) # イテレータからリストを作成

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4]

print('newlist:', newlist) # newlist: [4, 3, 2, 1, 0]

　リストの要素の並べ替えについては「リスト（配列）をソートしたり、逆順にしたりするには（sort／ reverse

メソッド、sorted／ reversed関数）」を参照のこと。

14 →目次に戻る

リスト（配列）の初期化：角かっこ「[]」で囲み、要素をカンマ「,」区切りで並べる

empty_list = [] # 空のリスト

print(empty_list) # []

int_list = [0, 1, 2] # 整数リスト（整数配列）

print(int_list) # [0, 1, 2]

mylist = [0, 'abc', 1, 'def'] # リスト（配列）には任意の型の要素を格納できる

print(mylist) # [0, 'abc', 1, 'def']

リスト（配列）の初期化：list関数を呼び出す

int_list = list() # 空のリスト（配列）

print(int_list) # []

int_list = list((4, 5, 6)) # タプルの要素を基にリスト（配列）が作成される

print(int_list) # [4, 5, 6]

int_list = list(range(5)) # rangeオブジェクトから整数リスト（整数配列）を作成

print(int_list) # [0, 1, 2, 3, 4]

str_list = list('python') # 文字列の各文字を要素とするリストを作成

print(str_list) # ['p', 'y', 't', 'h', 'o', 'n']

リスト内包表記

int_list = [x for x in range(0, 10, 2)] # rangeオブジェクトからリストを作成

print(int_list) # [0, 2, 4, 6, 8]

int_list = [x for x in range(10) if x % 2 == 1] # if節を用いる例

print(int_list) # [1, 3, 5, 7, 9]

リスト（配列）を初期化するには（[]、list関数、リスト内包表記）
Pythonでは配列は「リスト」というデータ構造として実装されている。list関数やリスト内包
表記などを使って、これを初期化する方法をまとめて紹介する。

（2020年 12月 04日）

15 →目次に戻る

if else式を使うときには for節に続けずに、内包表記の先頭に記述する

str_list = [c.upper() if c.islower() else c.lower() for c in 'AbCdE']

print(str_list) # ['a', 'B', 'c', 'D', 'e']

リストのリスト（配列の配列）

mylist = [[0, 1, 2], [3, 4, 5]] # 2次元のリスト（配列）の作成

print(mylist) # [[0, 1, 2], [3, 4, 5]]

mul_tbl = [[x * y for x in range(1, 4)] for y in range(1, 5)]

print(mul_tbl) # [[1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12]]

リスト（配列）の初期化

　多くのプログラミング言語における「配列」は、Pythonではリストとして実装されている。ここでは、リスト

（配列）を初期化する方法をまとめる。

　リスト（配列）を初期化するには、幾つかの方法がある。

• 角かっこ「[]」内に、その要素をカンマ「,」で区切って並べていく

• list関数にその要素となるものを格納している反復可能オブジェクトを与える

• リスト内包表記を使用する

　下の 2つは後で見るとして、まず角かっこを使用する方法を見ていこう。要素を持たない空のリスト（空の配

列）を作成するには、角かっこに何も含めないか、後で見る list関数に引数を指定しないで呼び出せばよい。

空のリスト（配列）の作成

empty_list = []

print(empty_list) # []

empty_list = list()

print(empty_list) # []

16 →目次に戻る

　リストに要素を含めるには、それらをカンマで区切って並べていく。

int_list = [1, 2, 3]

print(int_list) # [1, 2, 3]

str_list = ['foo', 'bar', 'baz']

print(str_list) # ['foo', 'bar', 'baz']

　その要素は、インデックスを用いてアクセスしたり、for文で列挙したりすることで使用できる。

print(int_list[0]) # 先頭要素にアクセス：1

print(str_list[-1]) # 末尾要素にアクセス：baz

for item in str_list:

 print(item) # foo、bar、bazが順番に表示される

　リストには異なる型の要素を混在させて、格納できる。他の言語では、例えば int型の配列には整数しか格納

できない、ということがよくあるが、Pythonのリストではそういうことはない。

mylist = [1, 'foo', 2, 'bar'] # 整数と文字列を要素とするリスト

　とはいえ、リストは繰り返し処理でその要素を扱ったり、要素を一括して処理したりすることを念頭に置いたデー

タ構造なので、例えば整数のみを含むリスト、あるいは複数の項目で構成されるタプルを要素とするリスト、さら

に構造化を進めて、何らかのクラスのインスタンスを要素とするリストのように、同種の項目の集まりを格納する

ために使用するのが好ましい。

https://docs.python.org/ja/3/library/stdtypes.html#lists

17 →目次に戻る

list関数

　リスト（配列）は、list関数を使っても作成できる。このときには、既に見たように引数を指定しなければ空の

リストが作成される。そうでないときには、リストの要素となるものを格納している反復可能オブジェクトを引数に

指定する。以下に例を示す。

empty_list = list() # 空のリスト（配列）の作成

int_tuple = (0, 1, 2)

int_list = list(int_tuple) # 反復可能オブジェクト（タプル）からリストを作成

print(int_list) # [0, 1, 2]

　連続する整数配列を作成するときには、range関数と list関数を組み合わせるのが一般的といえる。

int_list = list(range(5))

print(int_list) # [0, 1, 2, 3, 4]

　ただし、range関数が返す rangeオブジェクトは、リスト（配列）よりもメモリ消費の点で効率的である。整数

列をリストとして持っている必要がなければ、多くの場所では rangeオブジェクトを使った方がよいかもしれない。

　なお、文字列もまた反復可能オブジェクトである。よって、文字列を構成する各文字を要素とするリストは次の

ようにすることで簡単に作成できる。

my_str = 'python'

str_list = list(my_str)

print(str_list) # ['p', 'y', 't', 'h', 'o', 'n']

18 →目次に戻る

リスト内包表記

　Pythonではリスト内包表記という方法でもリスト（配列）を初期化できる。その基本構文は次のようになって

いる。

[変数を使って要素の値を計算する式 for 変数 in 反復可能オブジェクト]

　実際にはこれは、以下の for文と同じ意味となる。

結果を保存するリスト = []

for 変数 in 反復可能オブジェクト :

 結果を保存するリスト .append(変数を使って要素の値を計算する式)

　以下に例を示す。

int_list = [x * 2 for x in range(5)]

print(int_list) # [0, 2, 4, 6, 8]

　上の for文での置き換えに従うと、これは次のコードと同等ということだ。

int_list = []

for x in range(5):

 int_list.append(x * 2)

print(int_list) # [0, 2, 4, 6, 8]

　リスト内包表記の for節には続けて if節を記述できる。これは反復可能オブジェクトから取り出した値が特定の条

件に合致するときにだけ、「変数を使って要素の値を計算する式」の評価を行うために使用する。以下に例を示す。

int_list = [x for x in range(10) if x % 2]

print(int_list) # [1, 3, 5, 7, 9]

19 →目次に戻る

　上記コード例の if節では「if x % 2」と条件を指定している。これは反復可能オブジェクトである range(10)オ

ブジェクトから変数 xに取り出した値が奇数のときにだけ、「変数を使って要素の値を計算する式」である「x」を

評価することを意味する（奇数であれば「if x % 2」の値は 1となり、Pythonでは 1は真と見なされるので、こ

こでは「== 1」という記述は省略している）。「x」という式は取り出した値そのものなので、ここでは「[1, 3, 5,

7, 9]」という結果が得られる。

　その一方で、変数 xに取り出した値が条件に合致しないときにも、何らかの値を算出したいという場合がある。

そうしたときには、for節に続けて if節を記述するのではなく、要素の値を計算する式の中で三項演算子（if式）

を記述する。

str_list = [c.upper() if c.islower() else c.lower() for c in 'AbCdE']

print(str_list) # ['a', 'B', 'c', 'D', 'e']

　ここでは、反復可能オブジェクトとして文字列 'AbCdE'を用いている。新しく作成するリストの要素の値を計算

する式は「c.upper() if c.islower() else c.lower()」だ。これは、文字列の個々の文字が小文字かどうかを調べ

て、小文字であればそれを upperメソッドで大文字化して、そうでなければ lowerメソッドで小文字化する。よっ

て、元の文字列とは大文字小文字が反転したものを要素とするリストが得られるということだ。

20 →目次に戻る

リストのリスト（配列の配列）

　最後にリストのリスト（配列の配列）、つまりリストを要素とするリストの初期化についても簡単に見ておく。と

いっても、難しいことはなく、角かっこの中にさらに角かっこを使って記述していくだけだ。あるいは、角かっこの

中に既存のリストを置いてもよい。

int_list_list = [[0, 1, 2], [3, 4, 5]]

print(int_list_list) # [[0, 1, 2], [3, 4, 5]]

l1 = [0, 1, 2]

l2 = [3, 4, 5]

int_list_list = [l1, l2]

print(int_list_list) # [[0, 1, 2], [3, 4, 5]]

　ただし、後者のように既存のリストを、新しいリストの要素とするときには注意が必要だ。以下のコードを見て

ほしい。

l1 = [0, 1, 2]

l2 = [3, 4, 5]

int_list_list = [l1, l2]

l1[0] = -1

print(int_list_list) # [[-1, 1, 2], [3, 4, 5]]

int_list_list[1][0] = 100

print(l2) # [100, 4, 5]

　ここでは変数 l1と l2に保存されているリストを要素として、リストのリストを作成しているが、l1の要素を書き

換えた結果が int_list_listに影響し、逆に int_list_listの要素を書き換えた結果が l2に影響している。これは、リ

ストの要素は他のオブジェクトへの参照となっているからだ。この点には注意が必要だ。

　リスト内包表記でリストのリストを作成するには、リスト内包表記の内部でもう一度リスト内包表記を使用する。

以下に例を示す。

21 →目次に戻る

mul_tbl = [[x * y for x in range(1, 5)] for y in range(1, 4)]

print(mul_tbl) # [[1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12]]

　上のコードと同等なコードを for文で書き下すと次のようになる。

mul_tbl = []

for y in range(1, 4):

 tmp = []

 for x in range(1, 5):

 tmp.append(x * y)

 mul_tbl.append(tmp)

print(mul_tbl) # [[1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12]]

　このコードを見ると、結果のリストのリストが 3行 4列となっている理由が分かるはずだ。つまり、最初の for

文では反復可能オブジェクトが range(1, 4)となっているので、1～ 3の各値が変数 yに代入される。外側の for

文は 3回実行されるということだ。内側の for文では反復可能オブジェクトは range(1, 5)なので、ループは 4回

実行される。

　よって、外側のループの 1回目では、リスト tmpには 1×1、1×2、1×3、1×4が追加されて、ループの終了時

にこの 4要素のリストがリストmul_tblに追加される。次のループでは 2×1、2×2、2×3、2×4を要素とするリ

ストがmul_tblに追加される。といった具合に処理が行われ、結果として 3行 4列のリストが作成される。

22 →目次に戻る

インデックスとスライスの基本

mylist = list(range(10))

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

インデックスによるアクセス

n = mylist[1] # 正数は先頭からのインデックス。先頭の要素のインデックスが 0

print(n) # 1

n = mylist[-2] # 負数は末尾からのインデックス。末尾の要素のインデックスが -1

print(n) # 8

スライスによるアクセス

mylist = list(range(10))

s = mylist[0:5] # 0～ 4番目の 5要素を取り出す

print(s) # [0, 1, 2, 3, 4]

　Pythonでは、他の言語における配列はリストとして実装されている。その要素には、インデックスやスライスと

いった機構を通じてアクセスできる。その基本は次のようになっている。

• インデックス：角かっこ「[]」内にアクセスしたい要素のインデックスを指定

• スライス：角かっこ「[]」内にアクセスしたい要素の範囲を「lower_bound:upper_bound:stride」の形で記

述する。lower_boundはリスト中でスライスの始まる位置を、upper_boundはスライスの終わる位置を、

strideは増分を表す（いずれも省略可能）

　スライスの場合、upper_boundに指定するインデックス位置にある要素はスライスの要素には含まれず、その

1つ手前の要素までがスライスに含まれることには注意が必要だ。詳細については「インデックスによるアクセス」

および「スライスによるアクセス」を参照されたい。

リスト（配列）の要素にインデックスやスライスを使って
アクセスするには
インデックスやスライスを使って、リスト（配列）の要素を取得、削除、変更する方法を紹介
する。

（2020年 12月 08日）

23 →目次に戻る

インデックスを使ったリストの操作

mylist = list(range(10))

インデックスを使った要素の取り出し

n = mylist[7]

print(n) # 7

インデックスを使った要素の削除

del mylist[4]

print(mylist) # [0, 1, 2, 3, 5, 6, 7, 8, 9]

インデックスを使った要素の変更

mylist[-1] = 90

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 90]

　インデックスを使って、要素を取り出すときにはその値が必要な場所で、「リスト [取り出したい要素のインデッ

クス]」と記述する。特定の要素の値を削除するには del文を使用して「del リスト [削除したい要素のインデック

ス]」のように書く。値を変更するには、代入文で「リスト [値を変更したい要素のインデックス] = 新しい値」の

ようにする。詳細については「インデックスによるアクセス」を参照のこと。

スライスを使ったリストの操作

スライスによるアクセス

mylist = list(range(10))

s = mylist[:] # 全要素を取り出す

print(s) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

s = mylist[5:] # 5番目以降の全要素を取り出す

print(s) # [5, 6, 7, 8, 9]

s = mylist[:5] # 0～ 4番目の 5要素を取り出す

print(s) # [0, 1, 2, 3, 4]

s = mylist[0:10:2] # 0、2、4、6、8番目の要素を取り出す

print(s) # [0, 2, 4, 6, 8]

24 →目次に戻る

s = mylist[::2] # 同上

print(s) # [0, 2, 4, 6, 8]

s = mylist[-4:] # -4番目から末尾までの全要素を取り出す

print(s) # [6, 7, 8, 9]

s = mylist[-1:-9:-1] # リスト末尾から逆順に要素を取り出す

print(s) # [9, 8, 7, 6, 5, 4, 3, 2]

スライスを使った要素の削除

mylist = list(range(10))

del mylist[3:5] # 3番目と 4番目の要素を削除

print(mylist) # [0, 1, 2, 5, 6, 7, 8, 9]

del mylist[0::2] # 上の削除結果から、0、2、4、6番目の要素を削除

print(mylist) # [1, 5, 7, 9]

mylist[0:2] = [] # 上の削除結果から先頭の 2要素を削除

print(mylist) # [7, 9]

スライスを使った要素の変更

mylist = list(range(10))

mylist[1:3] = [10, 20] # スライスの先頭と末尾を指定して要素を変更

print(mylist) # [0, 10, 20, 3, 4, 5, 6, 7, 8, 9]

mylist[1:3] = [1, 1.5, 2] # この場合はスライスと新しい値の要素数が異なってもOK

print(mylist) # [0, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9]

mylist = list(range(10))

mylist[1::2] = [10, 30, 50, 70, 90] # 先頭／末尾／増分を指定して要素を変更

print(mylist) # [0, 10, 2, 30, 4, 50, 6, 70, 8, 90]

mylist[0::2] = [0.0, 2.0, 4.0] # ValueError：このときには同じ要素数でないとダメ

25 →目次に戻る

　スライスを使って、リストから特定の範囲の要素を取り出すには、それらが必要となる部分で「リスト [開始位

置 :終了位置 :増分]」のように記述する。特定の範囲に含まれる要素を削除するには del文を使って「del リス

ト [開始位置 :終了位置 :増分]」と書くか、代入文で「リスト [開始位置 :終了位置 :増分] = []」のようにスラ

イスに空のリストを代入する。スライスに含まれる要素を変更するには、代入文で「リスト [開始位置 :終了位置 :

増分] = [新しい値を含んだリスト]」のようにする。ただし、注意点がある。詳細については「スライスによるア

クセス」を参照してほしい。

インデックスによるアクセス

　Pythonのリスト（配列）に格納される要素にアクセスしたり利用したりするには幾つかの方法がある。その中

でも基本的なのが、以下で紹介するインデックスやスライスを用いて、要素を取り出したり、変更したりすること

だ。以下では、まずインデックスによる要素の取得、削除、変更について見ていこう。

インデックスによる要素の取得
　インデックスによるアクセスでは、角かっこ「[]」内にアクセスしたい要素のインデックスを指定するだけだ（0

始まり）。以下に例を示す。なお、以下では数値のみを要素とするリスト（整数リスト、整数配列）を例とする。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

インデックスによる要素の読み出し

n = mylist[7] # 7番目の要素の取得（0始まり）

print(n) # 7

n = mylist[10] # IndexError：要素がないインデックスにアクセスすると例外

　範囲外へのアクセスは上のコード例に示した通り、IndexError例外となる。

　全ての要素に順次アクセスして、その値を使うために、次のようなコードを書きたくなるかもしれない。

for idx in range(len(mylist)):

 print(mylist[idx])

　このコードでは、リストmylistの要素数を len関数で取得して、range関数を用いてその数だけループを行っ

ている。だが、Pythonではリスト（配列）の値を使用するだけであれば、上のようなコードではなく、以下のよ

うなコードとするのが一般的だ。

https://atmarkit.itmedia.co.jp/ait/articles/2009/04/news012.html

26 →目次に戻る

for num in mylist:

 print(num)

　こちらのコードでは、リストmylistに格納されている要素をループ変数 numに列挙して、それをループ内で利

用している。この方がコードはシンプルで見やすくなるだろう。

　インデックスには負値も指定できる。このとき、-1は末尾の要素を表し、「-len(リスト)」が先頭の要素を表す。

n = mylist[-1]

print(n) # 9

n = mylist[-len(mylist)]

print(n) # 0

インデックスを使った要素の削除
　特定のインデックスの要素を削除するには、del文で「del リスト [インデックス]」と記述する。

idx = mylist.index(3) # mylist中で要素 3のインデックスを検索

del mylist[idx] # 要素 3を削除

print(mylist) # [0, 1, 2, 4, 5, 6, 7, 8, 9]

　リストの popメソッドにインデックスを渡しても同様な処理は可能だ。

インデックスを使った要素の値の変更
　インデックスを用いて、要素の値を変更するには、代入文で「リスト [インデックス] = 新しい値」と記述する。

mylist = list(range(10))

mylist[9] = 90

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 90]

27 →目次に戻る

　なお、for文を用いて、リストの要素を変更したいときには、以下のようなコードだとうまくいかない。

mylist = list(range(10))

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for num in mylist:

 num *= 2 # 各要素の値を 2倍したつもりだが……

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # 元のリストに変わりはない

　この例ではループのたびに、ループ変数 numが、対応するインデックスにあるmylistの要素を参照するように

なるが、その後の代入（num *= 2）により、numはmylistの要素とは別の値を参照するようになるからだ。for

ループを使って、リストの要素を変更したいのであれば、先ほどはお勧めしなかったインデックスをループ変数に

代入していく方法をとる。

for idx in range(len(mylist)):

 mylist[idx] *= 2

print(mylist) # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

参考：mylist = list(map(lambda x: x * 2, mylist))

　上記コードの最終行のコメントも参考にされたい（map関数を用いて、リストの各要素の値を 2倍した新しい

リストを作成している）。

28 →目次に戻る

スライスによるアクセス

　Pythonのリスト（配列）では「ここからここまでの要素」を指定できる。これをスライスと呼ぶ。スライスは

インデックスと同様に角かっこ「[]」で囲んで「[lower_bound:upper_bound:stride]」のように指定する。lower_

boundはスライスがリストのどの要素から始まるかを、upper_boundはスライスがリストのどの要素（の手前の

要素）で終わるかを、strideは増分を指定する。

　スライスの指定では、lower_bound／ upper_bound／ strideはいずれも省略可能だが、lower_boundに

続くコロン「:」だけは必須である。lower_bound／ strideを省略した場合、lower_boundの値は「0」と、

strideの値は「1」と見なされると考えられる。また、upper_boundを省略したときには、リストの末尾までが

範囲に含められるような指定を行ったものと考えられる。

　これらから、スライスを表す最低限の表記は「[:]」となり、その場合は「[0:末尾まで含む :1]」を指定したも

のと考えられる（先頭から末尾までの全要素。「末尾まで含む」までは便宜的な表現）。

　スライスに含まれる要素のインデックスを idxとすると、「idx＝ lower_bound＋ stride×i」（iは 0以上の整

数）として計算でき、その範囲は「lower_bound ≦ idx ＜ upper_bound」（strideが正値の場合）もしくは

「lower_bound ≧ idx ＞ upper_bound」（strideが負値の場合）となる。いずれにしても、upper_boundに指

定するインデックスの値は、スライスには含まれないことに注意。

スライスによる要素の取得
　以下にスライスを用いてリストの要素を取得する例を幾つか示す（コメントでは lower_boundを「lower」と、

upper_boundを「upper」と表記する）。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

s = mylist[:] # lower＝ 0、upper＝末尾まで、stride＝ 1：全要素

print(s) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

s = mylist[0:5] # lower＝ 0、upper＝ 5、stride＝ 1：0～ 4番目までの 5要素

print(s) # [0, 1, 2, 3, 4]

s = mylist[5:] # lower＝ 5、upper＝末尾まで、stride＝ 1：5番目から末尾までの要素

print(s) # [5, 6, 7, 8, 9]

29 →目次に戻る

s = mylist[:5] # lower=0、upper＝ 5、stride＝ 1：0～ 4番目までの 5要素

print(s) # [0, 1, 2, 3, 4]

s = mylist[0:10:2] # lower＝ 0、upper＝ 10、stride＝ 2：0、2、4、6、8番目の要素

print(s) # [0, 2, 4, 6, 8]

s = mylist[::2] # lower＝ 0、upper＝末尾まで、stride＝ 2：0、2、4、6、8番目の要素

print(s) # [0, 2, 4, 6, 8]

　最後の例のように、スライスの指定では lower_boundも upper_boundも（もちろん、strideも）省略できる

ことは覚えておこう。この例では、stride＝ 2としているので、その上のコード例と同じスライスが得られている。

　スライスの範囲の指定方法によっては、要素が存在しない範囲となることもある。

s = mylist[5:0] # lower＝ 5、upper＝ 0、strider＝ 1

print(s) # []

　この例では、lower_boundの値が 5、upper_boundの値が 0、strideの値が 1となる。先ほどの計算式か

らスライスに含まれる要素のインデックスは「idx＝ 5＋ 1×i」で、その範囲は「5 ≦ idx ＜ 0」となる。これに該

当する idxは存在しないので、スライスに含まれる要素も存在しない。このときには、スライスは []（空のリスト）

となる。

　スライスに負値を指定するときには、少し注意が必要だ。-1は末尾の要素を指すインデックスだが、これを

upper_boundに指定した場合、末尾の要素はスライスには含まれなくなる。以下に例を示す。

s = mylist[-4:-1] # lower＝ -4、upper＝ -1、stride＝ 1：-4～ -2番目までの 3要素

print(s) # [6, 7, 8]：ここでは -4番目の要素は 6番目の、-2番目の要素は 8番目の要素

s = mylist[-4:] # lower＝ -4、upper＝末尾まで、stride＝ 1：-4番目から末尾までの要素

print(s) # [6, 7, 8, 9]

　この 2つのスライス指定では、upper_boundに -1を指定しているかどうかが異なる点だが、1つ目のコード

では末尾の要素が含まれず、2つ目のコードでは末尾の要素が含まれている。「末尾まで」と思って -1を upper_

boundに指定するとビックリする結果となるかもしれない。

30 →目次に戻る

　strideに負値を指定すると、リストの末尾から順に要素が取り出されることも覚えておこう。以下に例を示す。

s = mylist[-1:-9:-1] # lower=-1、upper＝ -9、stride＝ -1：リスト末尾から逆順

print(s) # [9, 8, 7, 6, 5, 4, 3, 2]

　このときにも upper_boundに指定したインデックスの要素は取り出されるリストには含まれないので注意する

こと。この例では -9番目の要素とは、1番目の要素「1」であり、上の実行結果を見ると、これがスライスには

含まれていないことが分かる。

　スライスを使って逆順に全ての値を取り出すには次のように「-1×（要素数＋ 1）」を指定する必要がある（実際

には、reversed関数や reverseメソッドを使うのが一般的だと思われる）。

s = mylist[-1:-(len(mylist)+1):-1]

print(s) # [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

スライスを使った要素の削除
　スライスを用いることで、リスト（配列）に格納されている複数の要素をまとめて削除できる。これを行うには、

幾つかの方法がある。

　1つはスライスした範囲を del文で削除する方法だ。以下に例を示す。

mylist = list(range(10))

del mylist[3:5] # 3番目と 4番目の要素を削除

print(mylist) # [0, 1, 2, 5, 6, 7, 8, 9]

del mylist[0::2] # 上の削除結果から、0、2、4、6番目の要素を削除

print(mylist) # [1, 5, 7, 9]

　上の 1つ目の例では、連続する範囲を del文で削除している。2つ目の例では、1つ飛びの範囲を削除している。

　連続する範囲のスライスについては、次のように空リストを代入することでも要素を削除できる。

mylist[0:2] = [] # 上の削除結果から、最初の 2要素を削除

print(mylist) # [7, 9]

31 →目次に戻る

　ただし、元のリストの要素を飛び飛びに選択するように、strideを指定した場合、この方法では例外が発生する

（以下の「スライスを使った要素の値の変更」を参照のこと）。

mylist = list(range(10))

mylist[::2] = [] # ValueError

スライスを使った要素の値の変更
　スライスを使って、リストの要素の値を変更するには、代入文で「リスト [スライスの指定] = 新しい値」と記

述する。

mylist = list(range(10))

mylist[1:3] = [10, 20] # 1番目と 2番目の要素を変更

print(mylist) # [0, 10, 20, 3, 4, 5, 6, 7, 8, 9]

　このとき、スライスが連続する範囲となっていれば、代入する値の要素数が、スライスの要素数と異なっていて

も構わない。

mylist[1:3] = [1, 1.5, 2] # スライスの要素数＝ 2、代入する要素数＝ 3：OK

print(mylist) # [0, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9]

　両者の要素数が異なっていても大丈夫なので、上でも見たように空のリスト（[]）を代入することもできる。こ

の場合には、対応する要素は削除される。

　一方、元のリストの要素を飛び飛びに選択するように strideを指定したときには、スライスの要素数と、代入

する値の要素数が同じでなければならない点には注意が必要だ。

mylist = list(range(10))

mylist[1::2] = [10, 30, 50, 70, 90] # 両者の要素数が同じ：OK

print(mylist) # [0, 10, 2, 30, 4, 50, 6, 70, 8, 90]

mylist[0::2] = [0.0, 2.0, 4.0] # 両者の要素数が異なる：ValueError

32 →目次に戻る

+演算子／ +=演算子によるリスト（配列）末尾への要素の追加（結合）

mylist = list(range(5))

print(mylist) # [0, 1, 2, 3, 4]

+演算子によるリストの結合（リストの末尾へのリストの追加）

tmp = mylist + [5, 6] # +演算子では新しいリストが作成される

print(tmp) # [0, 1, 2, 3, 4, 5, 6]

print(mylist) # [0, 1, 2, 3, 4]

mylist = mylist + 5 # TypeError：リストはリスト以外と結合できない

mylist = mylist + (5, 6) # TypeError：リストはリスト以外と結合できない

+=演算子によるリスト末尾への要素の追加

mylist += [5] # +=演算（累算代入）では元のリストが変更される

print(mylist) # [0, 1, 2, 3, 4, 5]

mylist += 6 # TypeError：リストへ累算代入できるのは反復可能オブジェクトのみ

mylist += (6, 7) # リスト末尾にタプルの個々の要素を追加

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7]

　Pythonでリスト（配列）に要素を追加するには幾つかの方法がある。+演算子を使って、「リスト 1 + リスト

2」とすると、リスト 1の末尾にリスト 2の内容が追加されたリストが新たに作成される。+=演算子を使って、「リ

スト 1 += リスト 2」とすると、リスト 1の末尾にリスト 2の内容が追加される。詳しくは、「+演算子または +=

演算子を使う方法」を参照。

リスト（配列）に要素を追加するには（+演算子／+=演算
子／append／extend／insertメソッド）
各種の演算子／メソッドを使って、リストの末尾に要素を追加したり、リスト内の指定した位置
に要素を挿入したりする方法を紹介する。

（2020年 12月 11日）

33 →目次に戻る

リストのメソッドを使用した要素の追加

mylist = list(range(5))

mylist.append(5) # リストの末尾に要素を追加

print(mylist) # [0, 1, 2, 3, 4, 5]

mylist.append(6, 7) # TypeError：appendメソッドの引数は 1つだけ

mylist.append([6, 7]) # リストの末尾に単一の要素として「リスト」を追加

print(mylist) # [0, 1, 2, 3, 4, 5, [6, 7]]

mylist.extend([8, 9]) # リストの末尾に反復可能オブジェクトの個々の要素を追加

print(mylist) # [0, 1, 2, 3, 4, 5, [6, 7], 8, 9]

mylist.extend(10) # TypeError：extendメソッドには反復可能オブジェクトのみ渡せる

mylist.extend({10: 'foo', 11: 'bar'}) # 反復可能オブジェクトなのでOK

print(mylist) # [0, 1, 2, 3, 4, 5, [6, 7], 8, 9, 10, 11]

mylist.insert(1, 0.5) # 指定したインデックスに要素を挿入

print(mylist) # [0, 0.5, 1, 2, 3, 4, 5, [6, 7], 8, 9, 10, 11]

　リストの末尾に要素を追加するメソッドとしては、appendメソッドとextendメソッドが使える。appendメソッ

ドは引数を 1つ受け取り、それをリストの末尾に単一の要素として追加する。extendメソッドは引数に反復可能オ

ブジェクトを 1つ受け取り、その個々の要素をリストの末尾に順次追加する（リストの拡張）。任意の位置に要素を

挿入するには、insertメソッドが使える。詳しくは「append／ extend／ insertメソッドを使う方法」を参照。

34 →目次に戻る

+演算子または +=演算子を使う方法

　Pythonでリスト（配列）の末尾に要素を追加したり、リスト同士を結合したりするには以下のような方法があ

る（この他にもスライスを使う方法もあるが、ここでは割愛する。スライスを用いたリストの要素へのアクセスにつ

いては「リスト（配列）の要素にインデックスやスライスを使ってアクセスするには」を参照されたい）。

• +演算子または +=演算子を使う

• リストが持つ append／ extend／ insertメソッドを使う

　以下ではまず、+演算子と +=演算子を使う方法から見ていこう。

　+演算子を使って「リスト 1 + リスト 2」とすると、2つのリストの内容を結合した新しいリストが作成される。

mylist = [0, 1] + [2, 3] # 1つ目のリストの末尾に 2つ目のリストの内容が追加される

print(mylist) # [0, 1, 2, 3]

tmp = mylist + [4, 5] # mylistと [4, 5]の要素から成る新しいリストが tmpに代入される

print(tmp) # [0, 1, 2, 3, 4, 5]

print(mylist) # mylistは以前のまま

　注意点としては、リストに結合できるのはリストだけである点だ。例えば、「リスト +整数値」のようにすると、

リストに整数値が要素として追加されるのではなく、TypeError例外が発生する。

mylist + 6 # TypeError

　+=演算子を使って「リスト 1 += リスト 2」とすると、リスト 1の末尾にリスト 2の内容が追加される（これを

「リストの拡張」などと呼ぶこともある）。+演算子とは異なり、新しいリストが作成されることはない。

mylist = [0, 1]

mylist += [2, 3] # mylistが拡張されて [0, 1, 2, 3]というリストになる

print(mylist) # [0, 1, 2, 3]

　+=演算子を使って、末尾に整数値などを追加できないのは、+演算子と同様だ。その一方で、+演算子とは

異なり、+=演算子を使うと、リスト以外の反復可能オブジェクトをリストの末尾に追加できる。

35 →目次に戻る

反復可能オブジェクト以外は +=演算子の右側には置けない

mylist += 4 # TypeError

タプルの要素をリスト末尾に追加

mylist += (4, 5)

print(mylist) # [0, 1, 2, 3, 4, 5]

辞書のキーをリスト末尾に追加

mylist += {6: 'foo', 7: 'bar'} # この場合はキーの値がmylistの末尾に追加される

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7]

文字列の要素をリスト末尾に追加

mylist += '89' # 文字列も反復可能オブジェクト

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, '8', '9']

　辞書も反復可能オブジェクトなので、上記のコードはエラーとはならない。上のコードでは、辞書のキーがリス

ト末尾に追加される。注意したいのは、文字列は反復可能オブジェクトなので、1つの文字列を単一の要素として

リストに追加しようとしても、+=演算子では文字列を構成する個々の文字が 1つ 1つの要素としてリストに追加

されてしまうところだ。文字列を単一の要素としてリストに追加するのであれば、後述の appendメソッドを使用

する。

36 →目次に戻る

append／ extend／ insertメソッドを使う方法

　Pythonではリストが持つ以下の 3つのメソッドを使っても、リスト（配列）に要素を追加できる。

• appendメソッド：引数に受け取った値を、単一の要素としてリスト末尾に追加

• extendメソッド：引数に受け取った反復可能オブジェクトの要素を、個別の要素としてリスト末尾に追加（リ

ストの拡張）

• insertメソッド：第 1引数で指定したインデックスに、第 2引数に渡した値を単一の要素として挿入する

　appendメソッドとextendメソッドはどちらも、受け取った値をリスト末尾に追加するがその方法が異なる。ま

ず appendメソッドから見てみよう。

mylist = [0, 1, 2]

mylist.append(3) # 要素 3を末尾に追加

print(mylist) # [0, 1, 2, 3]

mylist.append('45') # 文字列 '45'を末尾に追加

print(mylist) # [0, 1, 2, 3, '45']

mylist.append([6, 7]) # 要素 [6, 7]を末尾に追加

print(mylist) # [0, 1, 2, 3, '45', [6, 7]]

　1つ目の例では、appendメソッドに整数 3を指定している。このときには、これが単一の要素としてリスト

（mylist）に追加されているのが分かる。次の例では、文字列をリスト末尾に追加している。+=演算子の例とは

異なり、文字列全体が単一の要素としてリスト末尾に追加されているのが分かるはずだ。最後の例では、引数にリ

スト [4, 5]を指定している。このときには、引数に与えたリストがそのまま単一の要素として追加されている。

　そうではなく、[0, 1, 2, 3]というリストに [4, 5]というリストを与えて、[0, 1, 2, 3, 4, 5]というリストにしたい

のであれば、extendメソッドを使用する。以下に例を示す。

mylist = [0, 1, 2, 3]

mylist.extend([4, 5]) # リストの要素を末尾に追加

print(mylist) # [0, 1, 2, 3, 4, 5]

37 →目次に戻る

　こちらでは、引数に指定したリストに含まれる1つ 1つの要素が、mylistの末尾に順番に追加されている。このよ

うに、appendとextendの使い分けの大まかな方針はどのような形でリスト末尾に要素を追加したいかによる。

　なお、extendメソッドに渡せるのは反復可能オブジェクトだけである（+=演算子と同様）。1個の整数をextend

メソッドでリスト末尾に追加するのであれば、次のようにリスト（あるいは他の反復可能オブジェクト）の要素にし

て渡す必要がある。

mylist.extend(6) # TypeError

mylist.extend([6])

print(mylist) # [0, 1, 2, 3, 4, 5, 6]

　その一方で、extendメソッドではリスト以外の反復可能オブジェクトもリスト末尾に追加できる。

mylist = [0, 1, 2]

mylist.extend((3, 4)) # タプルの要素がリスト末尾に追加される

print(mylist) # [0, 1, 2, 3, 4]

mylist.extend({5: 'foo', 6: 'bar'}) # 辞書のキーがリスト末尾に追加される

print(mylist) # [0, 1, 2, 3, 4, 5, 6]

mylist.extend('78') # 文字列も反復可能オブジェクト

print(mylist) # [0, 1, 2, 3, 4, 5, 6, '7', '8']

　3つ目の例に示したように、文字列は反復可能オブジェクトなので、その文字列を構成する各文字がリストに 1

文字ごとに追加される点には注意しよう（これも +=演算子と同様）。文字列全体を単一要素としてリスト末尾に

追加したいのであれば、既に見たように、appendメソッドを使用する（か、文字列全体をリストの要素として、

appendメソッドに与える）。

　appendメソッドと extendメソッドはどちらもリストの末尾に要素を追加するものだが、insertメソッドはその

名の通り、リスト中の任意の位置に要素を追加するものだ。insertメソッドは第 1引数に挿入したい位置（イン

デックス）を、第 2引数に挿入したい値を指定して呼び出す。

38 →目次に戻る

mylist = list(range(5))

mylist.insert(3, 2.5) # インデックス 3に要素 2.5を追加

print(mylist) # [0, 1, 2, 2.5, 3, 4]

mylist.insert(5, [3.25, 3.5]) # 第 2引数に指定した値は単一の要素として挿入される

print(mylist) # [0, 1, 2, 2.5, 3, [3.25, 3.5], 4]

mylist.insert(-1, 3.75) # 負数のインデックスも指定可能

print(mylist) # [0, 1, 2, 2.5, 3, [3.25, 3.5], 3.75, 4]

　2つ目の例に示したように、第 2引数に指定した値は単一の要素として挿入されることは覚えておこう（append

メソッドと同様）。なお、要素が存在しない範囲をインデックスに指定した場合、リストの先頭または末尾に要素

が挿入される。

mylist = [0, 1, 2]

mylist.insert(10, 10)

print(mylist) # [0, 1, 2, 10]

mylist.insert(-5, -5)

print(mylist) # [-5, 0, 1, 2, 10]

39 →目次に戻る

インデックスやスライスを使って要素を削除する

インデックスを指定して del文で要素を削除

mylist = list(range(5)) # [0, 1, 2, 3, 4]

del mylist[0]

print(mylist) # [1, 2, 3, 4]

スライスを指定して del文で要素を削除

mylist = list(range(5)) # [0, 1, 2, 3, 4]

del mylist[1:4] # 1～ 3番目の要素を削除

print(mylist) # [0, 4]

mylist = list(range(5)) # [0, 1, 2, 3, 4]

del mylist[::2] # 0、2、4番目の要素を削除

print(mylist) # [1, 3]

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[1:7:3] # 1番目と 4番目の要素を削除

print(mylist) # [0, 2, 3, 5, 6, 7, 8, 9]

スライスで指定した範囲に空のリストを代入することで削除

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

mylist[4:8] = [] # 4～ 7番目の要素を削除

print(mylist) # [0, 1, 2, 3, 8, 9]

print('mylist[:]:', mylist[:]) # mylist[:]: [0, 1, 2, 3, 8, 9]

mylist[:] = [] # リストの全要素を削除

print(mylist) # []

mylist = list(range(5))

del mylist[:] # このようにも書ける

リスト（配列）から要素を削除するには（del文、remove
／clear／popメソッド、リスト内包表記）
インデックスやスライス、各種のメソッドを使用してリストから要素を削除する方法を紹介する。

（2020年 12月 15日）

40 →目次に戻る

　del文でリスト（配列）の要素を削除するには、「del リスト [インデックスまたはスライスの指定]」とする。イ

ンデックスを指定したときには、対応する要素が 1つ削除される。スライスを指定したときには、その範囲に含ま

れる要素が全て一括で削除される。あるいは、リストに対してスライスを指定して、そこに空のリストを代入しても

よい。詳しくは「インデックスやスライスを使う方法」を参照のこと。

clear／ pop／ removeメソッドを使って要素を削除する

clearメソッドでリストの全要素を削除

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

mylist.clear()

print(mylist) # []

popメソッドで指定したインデックスにある要素をリストから削除して、その値を取得

mylist = list(range(10))

value = mylist.pop() # インデックスを指定しない場合は末尾の要素が削除される

print('popped value:', value) # popped value: 9

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 5, 6, 7, 8]

value = mylist.pop(5) # 5番目の要素を削除

print('popped value:', value) # popped value: 5

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 6, 7, 8]

removeメソッドで削除したい値を指定して、リストからその値を削除

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # リスト内の要素 0のうち先頭にあるものを削除

print(mylist) # [2, 6, 0, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # リスト内の要素 0のうち先頭にあるものを削除

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # ValueError：指定した値がリスト中にないと例外となる

リストから特定の条件に合致するものをまとめて削除

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

target = 0 # 要素 0をmylistから取り除きたい

41 →目次に戻る

mylist = [item for item in mylist if item != target] # 取り除く＝それ以外を残す

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

#target = 0 # 上のリスト内包表記は以下と同値

#result = []

#for item in mylist:

if item != target:

result.append(item)

#

#mylist = result

　Pythonのリストには、全要素を削除する clearメソッド、指定したインデックスにある要素を削除してその値

を返送する popメソッド、指定した値を削除する removeメソッドがある。詳細については「clear／ pop／

removeメソッドを使う方法」を参照のこと。

インデックスやスライスを使う方法

　del文でリスト（配列）の要素を削除するには「del リスト [インデックスまたはスライスの指定]」と記述する。

インデックスを指定したときには、そのインデックスにある要素が削除される。スライスを指定したときには、その

範囲に含まれる要素が全て一括で削除される。「リスト [削除範囲の先頭 :削除範囲の最後] = []」とすることで

も要素を削除できる。

　まず、インデックスを指定した場合の例を以下に示す。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]

del mylist[0] # 0番目の要素を削除

print(mylist) # [1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[-1] # -1番目（末尾）の要素を削除

print(mylist) # [1, 2, 3, 4, 5, 6, 7, 8]

　インデックスには、正数と負数のいずれでも指定できる（-1は末尾の要素を、-2はその 1つ手前の要素を指

す）。要素が存在しない範囲を指定すると IndexError例外が発生する。

42 →目次に戻る

　次に、スライスを指定する場合の例を以下に示す。スライスを使ったリストの要素へのアクセスについては「リ

スト（配列）の要素にインデックスやスライスを使ってアクセスするには」も参照されたい。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[1:5] # 1～ 4番目の要素を削除

print(mylist) # [0, 5, 6, 7, 8, 9]

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[:] # [:]はリストの全要素を表すスライスなので、全要素が削除される

print(mylist) # []

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[5:] # 5番目以降の要素が全て削除される

print(mylist) # [0, 1, 2, 3, 4]

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[:7] # 0～ 6番目の要素が削除される

print(mylist) # [7, 8, 9]

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del mylist[0:5:2] # 0、2、4番目の要素が削除される

print(mylist) # [1, 3, 5, 6, 7, 8, 9]

　スライスの指定を「[削除範囲の先頭 :削除範囲の最後]」としたときには、その範囲にある要素が全て削除さ

れる（ただし、「削除範囲の最後」に指定したインデックスの要素はスライスには含まれない）。また、「[削除範

囲の先頭 :削除範囲の最後 :増分]」としたときには、「削除範囲の先頭＋増分 ×i」（iは 0以上の整数）という式

で算出されるインデックスにある要素が一括で削除される（この式で算出されるインデックスは「削除範囲の先頭」

と「削除範囲の最後」に含まれるものとする）。

43 →目次に戻る

　スライスに削除範囲の先頭と最後だけを指定した（増分を指定しなかった）場合には、del文ではなく、代入

文で空のリストをスライスに代入することでも対応する要素を削除できる。以下に例を示す。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

mylist[2:8] = [] # 2～ 7番目の要素を削除

print(mylist) # [0, 1, 8, 9]

print(mylist[0:3:2]) # [0, 8]

mylist[0:3:2] = [] # ValueError

　2つ目の例のように、先頭と最後、増分を指定したスライスでは空のリストを代入しての削除はできない。これ

は、とびとびのスライスに代入するには、代入先と代入元の要素数が同じでなければならないからだ。

clear／ pop／ removeメソッドを使う方法

　インデックスとスライス以外にも、以下の 3つのメソッドを使ってもリストから要素を削除できる。

• clearメソッド：全ての要素を削除

• popメソッド：指定したインデックスにある要素を削除して、その値を返送する。範囲外のインデックスを指定

すると例外となる

• removeメソッド：指定した値がリストにあれば、そのうち先頭（インデックスが最小）のものを削除する。な

ければ例外となる

　これらについて簡単に見ていこう。

　まずは clearメソッドからだ。このメソッドはリストに含まれる全要素を一括して削除する。引数はない。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(mylist) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

mylist.clear() # 全要素を削除

print(mylist) # []

参考：del mylist[:]、mylist[:] = []

44 →目次に戻る

　既に述べたが、「リスト [:]」というスライスはそのリストの全要素を表すので、要素の全削除は「del リスト [:]」

や「リスト [:] = []」のようにしても行える。

　popメソッドは、指定したインデックスにある要素を削除して、その値を戻り値として返送する。インデックスを

指定しなかった場合には、末尾のリストが取り除かれ、その値が返される。以下に例を示す。

mylist = list(range(10)) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

value = mylist.pop() # 末尾の要素を取り出して、削除

print('popped value:', value) # popped value: 9

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 5, 6, 7, 8]

value = mylist.pop(5) # 5番目の要素を取り出して、削除

print('popped value:', value) # popped value: 5

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 6, 7, 8]

value = mylist.pop(-2) # 最後から 2つ目の要素を取り出して、削除

print('popped value:', value) # popped value: 7

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4, 6, 8]

value = mylist.pop(10) # IndexError：範囲外のインデックスは指定できない

　上に示した通り、インデックスには負数も指定可能だ。また、範囲外のインデックスを指定すると IndexError

例外が発生する。

　最後の removeメソッドでは、インデックスではなく、削除したい値を指定する。指定した値がリストに複数格

納されているときには、その中で先頭（つまり、インデックスの値が最小）の要素が削除される。

45 →目次に戻る

　以下に例を示す。

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # リスト内の要素 0のうち先頭にあるものを削除

print(mylist) # [2, 6, 0, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # リスト内の要素 0のうち先頭にあるものを削除

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

mylist.remove(0) # ValueError：指定した値がリスト中にないと例外となる

　最初の removeメソッド呼び出しでは、インデックス 1にある要素 0が削除され、次の removeメソッド呼び

出しで（要素が 1つ削除された後の新しい）インデックス 2にある要素 0が削除されていることに注目してほしい。

2番目の removeメソッド呼び出しにより、mylistには要素 0が存在しなくなったので、最後の removeメソッ

ド呼び出しでは ValueError例外が発生している。

　最後に、リストから特定の条件に合致する値をまとめて削除することを考えてみよう。例えば、上の例では全て

の要素 0をリストから削除するのに removeメソッドを 2回呼び出している。この処理は、mylistに要素 0が 2

つあることと、それを削除するには 2回 removeメソッドを呼び出せばよいことを人の目で確認していたので、こ

のようになったと考えられる。しかし、こうした「リストから特定の条件に合致する値を削除」という処理を一般

化すると、次のようなコードになるだろう（この他にもwhile文を使うなど、さまざまな方法が考えられる）。

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

target = 0

result = []

for item in mylist:

 if item != target:

 result.append(item)

mylist = result

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

　このコードでは、forループでmylistから要素を取り出して、その要素の値が目的の値（target）と等しくなけ

れば、一時的なリストにその要素を追加して、ループ終了後にそれを元のリストに代入している。注意する点とし

ては、「特定の要素を削除する」ことを「特定の要素以外で構成されるリストを作成する」ことに置き換えている

点だ。

46 →目次に戻る

　そして、上記のコードは実はリスト内包表記にまとめることもできる。

mylist = [2, 0, 6, 0, 5, 7, 2, 1, 5, 5]

target = 0

mylist = [item for item in mylist if item != target]

print(mylist) # [2, 6, 5, 7, 2, 1, 5, 5]

　特定の条件に合致する値をまとめて削除するのであれば、このようなリスト内包表記の方が、removeメソッド

を使ったり、del文を使ったりして何度も要素を削除するよりも効率的で読みやすいコードになるだろう。

[残したい要素 for 残したい要素 in 元のリスト if 削除したい条件の否定（反転）]

47 →目次に戻る

mylist = [2, 5, 11, 15, 1, 3, 18, 3, 19, 8] # 10個の整数値を要素とするリスト

指定した値がリストに含まれているか含まれていないかを調べる

result = 0 in mylist # 整数値 0がmylistに含まれているかを調べる

print(result) # False

result = 0 not in mylist # 整数値 0がmylistに含まれていないかを調べる

print(result) # True

指定した値がリストに何個含まれているかを調べる

cnt = mylist.count(3) # 整数値 3がmylistに何個含まれているかを調べる

print(cnt) # 2

指定した値がどのインデックスにあるかを検索

idx = mylist.index(3) # mylistに含まれる整数値 3の最小のインデックスを求める

print(idx) # 5

idx = mylist.index(3, 6, len(mylist)) # 検索範囲を指定

print(idx) # 7

idx = mylist.index(100) # ValueError：存在しない値を指定

リストの要素で最大／最小のものを求める

max_value = max(mylist) # 最大値を求める

print(max_value) # 19

min_value = min(mylist) # 最小値を求める

print(min_value) # 1

リスト（配列）から要素を検索するには（in／not in演算
子、count／indexメソッド、min／max関数）
リスト（配列）に特定の値が含まれているか含まれていないか、特定の値が何個含まれている
か、特定の値がどこにあるか、最大値と最小値は何かを検索するための方法を紹介する。

（2020年 12月 18日）

48 →目次に戻る

max_value = max([]) # ValueError：max関数／min関数に空のリストを渡すと例外

max_value = max([], default='none') # defalut引数は空リストを渡したときの戻り値

print(max_value) # none

max_value = max([0, 1], [4, 5], [2, 3]) # 複数のリストの中で最大のリストを取得

print(max_value) # [4, 5]

mylist = ['pYthon', 'pyThon', 'Python', 'PYTHON']

max_value = max(mylist, key=str.lower) # key引数を指定する例

print(max_value) # pYthon

指定した値がリストに含まれているか含まれていないかを調べる

　リスト（配列）に特定の値が含まれているか含まれていないかを調べるだけであれば、in演算子／ not in演算

子を使える。in演算子はその左側に置いた被演算子が右側に置いた被演算子であるリストに含まれていればTrue

を、そうでなければ Falseを返す。not in演算子はその反対の動作をする。

mylist = [15, 8, 1, 0, 20, 19, 1, 2, 13, 7]

整数値 0がmylistに含まれているかどうかを調べる

result = 0 in mylist

print(result) # True

整数値 5がmylistに含まれているかどうかを調べる

result = 5 in mylist

print(result) # False

整数値 0がmylistに含まれていないかどうかを調べる

result = 0 not in mylist

print(result) # False

整数値 5がmylistに含まれていないかどうかを調べる

result = 5 not in mylist

print(result) # True

49 →目次に戻る

　最初の 2つの例は整数値 0または 5がリストmylistに含まれているかどうかを調べている。次の 2つの例は同

じ 2つの値が含まれていないかどうかを調べている。整数値 0について調べたとき、mylistにこれは含まれている

ので、in演算子の結果は Trueで、not in演算子の結果は Falseとなる。整数値 5はリストには含まれていない

ので、in演算子の結果は Falseで、not in演算子の結果は Trueとなっている。

　in演算子と not in演算子はあくまでも、リストに特定の要素が含まれているかどうか、つまり存在確認を行う

だけで、その値が何個含まれているかや、含まれているとしてどのインデックスに存在しているかなどまでを知るに

は、以下で紹介する countメソッドや indexメソッドを使用する。

指定した値がリストに何個含まれているかを調べる

　リスト（配列）に、ある要素が何個含まれているかを調べるには countメソッドを使用する。引数には、何個

含まれているかを調べたい値を 1つだけ指定する。

mylist = [15, 8, 1, 0, 20, 19, 1, 2, 13, 7]

cnt = mylist.count(1) # 整数値 1がmylistに何個含まれているかを調べる

print(cnt) # 2

cnt = mylist.count(100) # 指定した値が含まれていないと 0が返される

print(cnt) # 0

50 →目次に戻る

指定した値がどのインデックスにあるかを検索

　indexメソッドは、引数に指定した値がリストのどの位置（インデックス）にあるかを返す。その値がリストに存

在しない場合は ValueError例外が発生する。また、第 2引数と第 3引数には、検索を開始する位置と終了する

位置を指定できる。

　以下に例を示す。

mylist = [2, 5, 11, 15, 1, 3, 18, 3, 19, 8]

idx = mylist.index(3) # mylistに含まれている整数値 3の最小のインデックスを調べる

print(idx) # 5

idx = mylist.index(3, 6, len(mylist)) # 検索範囲を指定

print(idx) # 7

idx = mylist.index(100) # ValueError：存在しない値を指定

　最初の例では、リストmylistから整数値 3のインデックスを検索している。mylistには整数値 3が 2つ含まれ

ていて、そのインデックスは 5と 7だ。そして、indexメソッドの戻り値は 5となっている。indexメソッドは、リ

スト中で指定した値が最初に登場するインデックスの値を返す仕様になっている。

　次の例は、同じく整数値 3があるインデックスをmylistから検索しているが、今度は第 2引数と第 3引数に検

索開始位置と検索終了位置を指定している。ここでは末尾までを検索するように第 3引数に「リストの長さ」を指

定している（末尾までを検索するのであれば、第 3引数の指定は不要だが、ここでは検索終了位置を指定する例

として明示した）。

　最後の例は、リストには含まれないものを指定した場合だ。このときには、既に述べた通り、ValueError例外

が発生する。

　上で見た countメソッドと indexメソッドを使うと、リスト内にある特定の値のインデックスを列挙できる。

51 →目次に戻る

mylist = [2, 5, 11, 15, 1, 3, 18, 3, 19, 8]

tgt = 3

idx = -1

result = []

for cnt in range(mylist.count(tgt)):

 idx = mylist.index(tgt, idx+1)

 result.append(idx)

print(result) # [5, 7]

　リスト内包表記を使うと次のようになる。ただし、代入式を使っているので、このコードを実行できるのは

Python 3.8以降となる。

mylist = [2, 5, 11, 15, 1, 3, 18, 3, 19, 8]

idx = -1

tgt = 3

result = [idx := mylist.index(tgt, idx+1) for cnt in range(mylist.count(tgt))]

print(result) # [5, 7]

52 →目次に戻る

リストの要素で最大／最小のものを求める

　リスト（配列）に格納されている要素から最大値を検索するには Pythonに組み込みのmax関数を、最小値

を検索するにはmin関数を使用する。

　max関数とmin関数の基本的な使い方は、リストを 1つだけ渡すものだ。このとき、空のリストを渡すと

ValueError例外が発生することには注意しよう。以下の例では、空のリストを明示的に渡しているので、「こんな

ことをするはずがない」と思うだろうが、何かの関数を呼び出して得たリストをmax関数／min関数に渡すとい

うときには、それが空である可能性はある。

mylist = [2, 5, 11, 15, 1, 3, 18, 3, 19, 8] # 10個の整数値を要素とするリスト

vmax = max(mylist) # 最大値を求める

print(vmax) # 19

min_value = min(mylist) # 最小値を求める

print(min_value) # 1

max_value = max([]) # ValueError：空のリストを渡すと例外となる

min_value = min([]) # ValueError：空のリストを渡すと例外となる

　空のリストを渡してしまったときに、例外ではなく何らかの値を受け取りたいのであれば、defaultキーワード引

数を指定する。

max_value = max([], default='none') # defalut引数は空リストを渡したときの戻り値

print(max_value) # none

min_value = min([], default='none') # defalut引数は空リストを渡したときの戻り値

print(min_value) # none

　defaultキーワード引数の値をどうするかは難しい。というのは、Pythonではインデックスを表す整数には正値

でも 0でも負値でも使えるからだ。範囲外のインデックスとなるような値を使うのは一案かもしれないが、Python

3.8以降では defaultキーワード引数の値としてNone値を指定できるようになっているので、上の例では文字列

の 'none'としたが、None値を使うのがよいかもしれない。

53 →目次に戻る

　max関数とmin関数には複数のリストを渡すことも可能だ。この場合には、リスト同士で大小比較を行い最大

のリスト／最小のリストが決定される。

　以下に例を示す。

max_value = max([0, 1], [4, 5], [2, 3]) # 複数のリストの中で最大のリストを取得

print(max_value) # [4, 5]

min_value = min([0, 1], [4, 5], [2, 3]) # 複数のリストの中で最小のリストを取得

print(min_value) # [0, 1]

　最後に、max関数／min関数には keyキーワード引数を指定して、要素の大小比較に何らかのロジックを介

入させられる。keyキーワード引数には引数を 1つ持つ関数（やラムダ式）を指定する。これは例えば、英単語

を要素とするリストで、大文字／小文字を無視して大小比較を行うといったときに役立つ。

　以下に例を示す。

mylist = ['pYthon', 'pyThon', 'Python', 'PYTHON']

max_value = max(mylist) # 辞書式順序で最大の要素を検索

print(max_value) # pyThon

max_value = max(mylist, key=str.lower) # 全てを小文字化すると

print(max_value) # pYthon

min_value = min(mylist) # 辞書式順序で最小の要素を検索

print(min_value) # PYTHON

min_value = min(mylist, key=str.lower) # 全てを小文字化すると

print(min_value) # pYthon

　この例では、「python」という単語内で大文字／小文字を混在させたものを要素とするリストを対象に最大の

要素、最小の要素を調べている。Pythonでは文字列を比較する際に、大文字が小文字よりも小さく、アルファ

ベット順で前にあるものが後ろにあるものよりも小さくなる。

54 →目次に戻る

　そのため、keyキーワード引数を指定していない最初のmax関数呼び出しでは、大文字の「P」で始まるもの

よりも小文字の「p」で始まるものが大きくなり（「pYthon」か「pyThon」が最大）、さらに 2文字目の「Y」と

「y」の大小関係は小文字の方が大きいので、結果、「pyThon」が最大値となっている。

　これに対して、keyキーワード引数に str.lowerメソッドを指定して、全てを小文字化して大小比較を行ってい

る 2つ目のmax関数では全ての要素が「python」として比較される。このときには、全ての要素が等しくなるが、

そのときには等しい要素の中で先頭にあるものが戻り値となる（仕様）。そのため、戻り値は「pYthon」となって

いる。

　min関数でも同様なので、こちらについては説明を省略する。

55 →目次に戻る

リストの要素をソートする（インプレース）

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

mylist.sort()

print(mylist) # [0, 1, 2, 5, 6, 7, 9, 15, 16, 18]

リストの要素をソートした新しいリストを作成する

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

newlist = sorted(mylist)

print('mylist:', mylist) # mylist: [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

print('newlist:', newlist) # newlist: [0, 1, 2, 5, 6, 7, 9, 15, 16, 18]

リストの要素をソートする（インプレース／逆順）

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

mylist.sort(reverse=True)

print(mylist) # [18, 16, 15, 9, 7, 6, 5, 2, 1, 0]

ソートに使用するキーを決定する関数を指定

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

mylist.sort(key=abs) # 絶対値順でソート

print(mylist) # [0.1, -1.5, -1.7, 4.5, -4.6]

ラムダ式を使って、リストのリストをソートする

mylist = [[0, 1, 2], [1, 2, 0], [2, 0, 1]]

mylist.sort(key=lambda x: x[1]) # 1番目の要素をキーとしてリストをソート

print(mylist) # [[2, 0, 1], [0, 1, 2], [1, 2, 0]]

keyキーワード引数と reverseキーワード引数を使用

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

mylist.sort(key=abs, reverse=True) # 絶対値を基に降順でソート

リスト（配列）をソートしたり、逆順にしたりするには
（sort／reverseメソッド、sorted／reversed関数）

sortメソッドや sorted関数でリスト（配列）の要素をソートしたり、reverseメソッドや
reversed関数で要素を逆順に並べたりする方法を紹介する。

（2020年 12月 22日）

56 →目次に戻る

print(mylist) # [-4.6, 4.5, -1.7, -1.5, 0.1]

要素を逆順に並べ替える（インプレース）

mylist = list(range(5)) # [0, 1, 2, 3, 4]

mylist.reverse()

print(mylist) # [4, 3, 2, 1, 0]

要素を逆順に並べ替えた新しいイテレータを作成する

mylist = list(range(5)) # [0, 1, 2, 3, 4]

iterator = reversed(mylist) # reversed関数の戻り値はイテレータ

print(iterator) # <list_reverseiterator object at ...>

newlist = list(iterator) # イテレータからリストを作成

print('mylist:', mylist) # mylist: [0, 1, 2, 3, 4]

print('newlist:', newlist) # newlist: [4, 3, 2, 1, 0]

sortメソッドと sorted関数

　リスト（配列）の要素をソートするには、リストが持つ sortメソッドか Pythonに組み込みの sorted関数を使

う。前者はリストをインプレースに変更する。つまり、元のリストの要素が直接変更される。後者は、リストの要

素をソートした結果の新しいリストを作成する。

　以下に例を示す。

リストの要素をソートする（インプレース）

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

mylist.sort()

print(mylist) # [0, 1, 2, 5, 6, 7, 9, 15, 16, 18]

リストの要素をソートした新しいリストを作成する

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

newlist = sorted(mylist)

print('mylist:', mylist) # mylist: [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

print('newlist:', newlist) # newlist: [0, 1, 2, 5, 6, 7, 9, 15, 16, 18]

57 →目次に戻る

　1つ目の例ではリストmylistの sortメソッドを呼び出している。このため、リストの要素がインプレースで並べ

替えられている。対して、2つ目の例では sorted関数にリストmylistを渡しているので、元のリストでは要素は

以前のままで、sortedメソッドの戻り値である newlistでは要素がソートされている。

　sortメソッドや sorted関数を使ってソートを行う際には、内部的には <演算子を使ってそれぞれの要素の大小

関係が比較されている。このため、リストに含まれている全ての要素同士をこの演算子で比較できる必要がある。

例えば、整数と浮動小数点数の 2種類の値だけがリストの要素であれば、問題なくソートできる。

mylist = [3.0, 0, 1.1, 2]

mylist.sort() # 整数と浮動小数点数の比較はサポートされている

print(mylist) # [0, 1.1, 2, 3.0]

　これに対して、リストに文字列と整数値が含まれているというときには例外となる。

mylist = [3, 0, '1', 2]

mylist.sort() # TypeError：整数と文字列の比較はサポートされていない

　このようなときには、何らかの形で要素の型を互換性のあるものに統一できるのであれば、以下で紹介する key

キーワード引数に型変換するための関数を指定すれば、ソートすることは可能だ（そうした行為に意味があるかど

うかは時と場合によるだろう）。

mylist = [3, 0, '1', 2]

mylist.sort(key=int) # 文字列を整数値に。「key=str」も同様

print(mylist) # [0, '1', 2, 3]

　sortメソッドと sorted関数には reverseと keyという 2つのキーワード引数がある。

　reverseキーワード引数はソートを昇順／降順に行うかどうかを指定するものだ。これを Trueに指定すると、

ソートの結果は通常とは逆の順序（降順）になる。

58 →目次に戻る

　以下に例を示す。

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

mylist.sort(reverse=True)

print(mylist) # [18, 16, 15, 9, 7, 6, 5, 2, 1, 0]

mylist = [18, 0, 16, 6, 15, 7, 9, 1, 2, 5]

newlist = sorted(mylist, reverse=True)

print(newlist) # [18, 16, 15, 9, 7, 6, 5, 2, 1, 0]

　先ほども出てきたもう 1つの keyキーワード引数は、要素を比較する際のキーとなる値を決定するのに使う関

数を指定する。この関数は 1つの引数を受け取り、何らかの値を返すものである必要がある。

　以下に例を示す。

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

mylist.sort(key=abs) # 絶対値順でソート

print(mylist) # [0.1, -1.5, -1.7, 4.5, -4.6]

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

newlist = sorted(mylist, key=abs)

print(newlist) # [0.1, -1.5, -1.7, 4.5, -4.6]

　この例では、正負の浮動小数点数値がリストの要素となっている。そして、keyキーワード引数にPythonに組

み込みの abs関数を指定して、sortメソッドを呼び出している。そのためここでは、リストの各要素を abs関数

に渡した結果、つまり各要素の絶対値を基に要素の並べ替えが行われる。

　このように既存の関数（や自作の関数）を指定することもできるが、ラムダ式を使うことも可能だ。例として、リ

ストを要素とするリストで、要素となっているリストをソートすることを考える。keyキーワード引数を指定しなけ

れば、リストとリストが <演算子で比較されるが、簡単なラムダ式を書くだけで、要素となっているリストの何番

目かの要素を基にソートを行える。

59 →目次に戻る

mylist = [['isshiki', 175, 68], ['kawasaki', 172, 80], ['endo', 180, 75]]

mylist.sort() # キー関数を指定せずにソート

print(mylist) # [['endo', 180, 75], ['isshiki', 175, 68], ['kawasaki', 172, 80]]

mylist.sort(key=lambda x: x[1]) # 1番目の要素をキーとしてリストをソート

print(mylist) # [['kawasaki', 172, 80], ['isshiki', 175, 68], ['endo', 180, 75]]

newlist = sorted(mylist, key=lambda x: x[2]) # 2番目の要素をキーとしてソート

print(newlist) # [['isshiki', 175, 68], ['endo', 180, 75], ['kawasaki', 172, 80]]

　ここでは [名前 , 身長 , 体重]という要素で構成されるリストを要素とするリストがある。キー関数を指定せず

にソートを行ったのが一番上の例だ。次の例では、keyキーワード引数に「lambda x: x[1]」を指定してソート

をしているので、身長の低い順にリストがソートされている。最後の例では keyキーワード引数に「lambda x:

x[2]」を指定しているので、体重が少ない順にソートが行われている。

　最後に、2つのキーワード引数を使った例も示しておく。説明は不要だろう。

mylist = [-1.7, 0.1, 4.5, -1.5, -4.6]

mylist.sort(key=abs, reverse=True) # 絶対値を基に降順でソート

print(mylist) # [-4.6, 4.5, -1.7, -1.5, 0.1]

　なお、sorted関数にはリストだけではなく、任意の反復可能オブジェクトを与えられる（Pythonが標準で提

供している反復可能オブジェクトで、sortメソッドが定義されているのは list型のみ）。

t = ('foo', 'bar', 'baz')

mylist = sorted(t) # タプルの要素をソート（戻り値はリストになる）

print(mylist) # ['bar', 'baz', 'foo']

s = 'python'

mylist = sorted(s) # 文字列も反復可能オブジェクト

print(mylist) # ['h', 'n', 'o', 'p', 't', 'y']

t.sort() # AttributeError：タプルに sortメソッドはない（タプルは変更できない）

s.sort() # AttributeError：文字列に sortメソッドはない（文字列は変更できない）

60 →目次に戻る

reverseメソッドと reversed関数

　リストの reverseメソッドは、その要素をインプレースで逆順に並べ替えるものだ。

mylist = list(range(5)) # [0, 1, 2, 3, 4]

print(mylist) # [0, 1, 2, 3, 4]

mylist.reverse()

print(mylist) # [4, 3, 2, 1, 0]

　sortメソッドと同様に、reverseメソッドは元のリストの要素を並べ替える。そうではなく、要素を逆順にした

新しいリストが必要であれば、Pythonに組み込みの reversed関数を使用する。ただし、reversed関数はリス

トではなくイテレータを戻り値とする点には注意すること。

mylist = list(range(5)) # [0, 1, 2, 3, 4]

list_iter = reversed(mylist) # reversed関数の戻り値はイテレータ

print(list_iter) # <list_reverseiterator object at 0x...>

newlist = list(list_iter) # リストにするには list関数を使う

print(newlist) # [4, 3, 2, 1, 0]

　この例では、reversed関数に元のリストを渡して、要素を逆順に列挙するイテレータを取得した後、それを list

関数に渡して要素が逆順に並んだリストを手に入れている。

