THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Sun Feb 1 16:37:38 UTC 2026) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^136279841-1 41024320 MP1 2024 Mersenne 52? 2 2^82589933-1 24862048 G16 2018 Mersenne 51? 3 2^77232917-1 23249425 G15 2018 Mersenne 50 4 2^74207281-1 22338618 G14 2016 Mersenne 49 5 2^57885161-1 17425170 G13 2013 Mersenne 48 6e 2524190^2097152+1 13426224 L4245 2025 Generalized Fermat 7 2^43112609-1 12978189 G10 2008 Mersenne 47 8 2^42643801-1 12837064 G12 2009 Mersenne 46 9 516693^2097152-516693^1048576+1 11981518 L4561 2023 Generalized unique 10 465859^2097152-465859^1048576+1 11887192 L4561 2023 Generalized unique 11 2^37156667-1 11185272 G11 2008 Mersenne 45 12 2^32582657-1 9808358 G9 2006 Mersenne 44 13 10223*2^31172165+1 9383761 SB12 2016 14 2^30402457-1 9152052 G9 2005 Mersenne 43 15 4*5^11786358+1 8238312 A2 2024 Generalized Fermat 16 2^25964951-1 7816230 G8 2005 Mersenne 42 17 4052186*69^4052186+1 7451366 A61 2025 Generalized Cullen 18 69*2^24612729-1 7409172 A2 2024 19 2^24036583-1 7235733 G7 2004 Mersenne 41 20d 5336284^1048576+1 7054022 L5543 2025 Generalized Fermat 21 107347*2^23427517-1 7052391 A2 2024 22 3*2^23157875-1 6971216 L5171 2025 23 3843236^1048576+1 6904556 L6094 2024 Generalized Fermat 24 3*2^22103376-1 6653780 L6075 2024 25 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 26 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 27 202705*2^21320516+1 6418121 L5181 2021 28 2^20996011-1 6320430 G6 2003 Mersenne 40 29 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 30 3*2^20928756-1 6300184 L5799 2023 31 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 32 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 33 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 34 4*5^8431178+1 5893142 A2 2024 Generalized Fermat 35 168451*2^19375200+1 5832522 L4676 2017 36 69*2^19374980-1 5832452 L4965 2022 37 3*2^18924988-1 5696990 L5530 2022 38 69*2^18831865-1 5668959 L4965 2021 39 2*3^11879700+1 5668058 A2 2024 40 97139*2^18397548-1 5538219 L4965 2023 41 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 42 3*2^18196595-1 5477722 L5461 2022 43 4*3^11279466+1 5381674 A2 2024 Generalized Fermat 44 3*2^17748034-1 5342692 L5404 2021 45 123447^1048576-123447^524288+1 5338805 L4561 2017 Generalized unique 46 3622*5^7558139-1 5282917 L4965 2022 47 7*6^6772401+1 5269954 L4965 2019 48 2*3^10852677+1 5178044 L4965 2023 Divides Phi(3^10852674,2) 49 8508301*2^17016603-1 5122515 L4784 2018 Woodall 50 8*10^5112847-1 5112848 A19 2024 Near-repdigit 51 13*2^16828072+1 5065756 A2 2023 52 3*2^16819291-1 5063112 L5230 2021 53 5287180*3^10574360-1 5045259 A20 2024 Generalized Woodall 54 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 55 2329989*2^16309923-1 4909783 A20 2024 Generalized Woodall 56 69*2^15866556-1 4776312 L4965 2021 57 2036*3^10009192+1 4775602 A2 2024 58 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 59 1419499*2^15614489-1 4700436 A20 2024 Generalized Woodall 60 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 61 (10^2332974+1)^2-2 4665949 p405 2024 62 37*2^15474010+1 4658143 L4965 2022 63 93839*2^15337656-1 4617100 L4965 2022 64 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 65 13*2^15294536+1 4604116 A2 2023 66 6*5^6546983+1 4576146 L4965 2020 67 4788920*3^9577840-1 4569798 A20 2024 Generalized Woodall 68 31*2^15145093-1 4559129 A2 2025 69 69*2^14977631-1 4508719 L4965 2021 70 192971*2^14773498-1 4447272 L4965 2021 71 4*3^9214845+1 4396600 A2 2024 72 9145334*3^9145334+1 4363441 A6 2023 Generalized Cullen 73 4*5^6181673-1 4320805 L4965 2022 74 396101*2^14259638-1 4292585 A20 2024 Generalized Woodall 75 6962*31^2863120-1 4269952 L5410 2020 76 37*2^14166940+1 4264676 L4965 2022 77 99739*2^14019102+1 4220176 L5008 2019 78 69*2^13832885-1 4164116 L4965 2022 79 9562633#+1 4151498 p451 2025 Primorial 80 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 81 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 82 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 83 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 84 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 85 13*2^13584543-1 4089357 A2 2025 86 31*2^13514933-1 4068402 A2 2025 87 143332^786432-143332^393216+1 4055114 L4506 2017 Generalized unique 88 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 89 2^13466917-1 4053946 G5 2001 Mersenne 39 90 5778486*5^5778486+1 4038996 A6 2024 Generalized Cullen 91 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 92 206039*2^13104952-1 3944989 L4965 2021 93 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 94 5128*22^2919993+1 3919869 L5811 2024 95 19249*2^13018586+1 3918990 SB10 2007 96 2293*2^12918431-1 3888839 L4965 2021 97 81*2^12804541+1 3854553 L4965 2022 98 67612*5^5501582+1 3845446 A60 2025 99b 20221496^524288+1 3830351 L6307 2026 Generalized Fermat 100b 19409636^524288+1 3821021 L4249 2026 Generalized Fermat 101c 18703062^524288+1 3812577 L5974 2025 Generalized Fermat 102c 18529322^524288+1 3810452 L5974 2025 Generalized Fermat 103f 18099898^524288+1 3805113 x50 2025 Generalized Fermat 104d 17997078^524288+1 3803816 L5697 2025 Generalized Fermat 105e 17544674^524288+1 3798019 L5632 2025 Generalized Fermat 106e 17502532^524288+1 3797471 L5543 2025 Generalized Fermat 107e 17445908^524288+1 3796734 L5070 2025 Generalized Fermat 108e 17177670^524288+1 3793205 L5186 2025 Generalized Fermat 109 16211276^524288+1 3780021 L6006 2025 Generalized Fermat 110 15958750^524288+1 3776446 L5639 2025 Generalized Fermat 111 15852200^524288+1 3774921 L5526 2025 Generalized Fermat 112c 751882!/751879#+1 3765621 A85 2025 Compositorial 113 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 114 13520762^524288+1 3738699 L6221 2025 Generalized Fermat 115 13427472^524288+1 3737122 L5775 2025 Generalized Fermat 116 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 117 12900356^524288+1 3728004 L5639 2025 Generalized Fermat 118 12693488^524288+1 3724323 L6096 2025 Generalized Fermat 119 11937916^524288+1 3710349 L6080 2024 Generalized Fermat 120 7*2^12286041-1 3698468 L4965 2023 121 10913140^524288+1 3689913 L6043 2024 Generalized Fermat 122 69*2^12231580-1 3682075 L4965 2021 123 27*2^12184319+1 3667847 L4965 2021 124 9332124^524288+1 3654278 L5025 2024 Generalized Fermat 125 8630170^524288+1 3636472 L5543 2024 Generalized Fermat 126 863282*5^5179692-1 3620456 A20 2024 Generalized Woodall 127 670490*12^3352450-1 3617907 A20 2024 Generalized Woodall 128 4*3^7578378+1 3615806 A2 2024 Generalized Fermat 129 11*2^11993994-1 3610554 A2 2024 130 3761*2^11978874-1 3606004 L4965 2022 131 95*2^11954552-1 3598681 A29 2024 132 259072*5^5136295-1 3590122 A45 2024 133 3*2^11895718-1 3580969 L4159 2015 134 37*2^11855148+1 3568757 L4965 2022 135 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 136 763795*6^4582771+1 3566095 A6 2023 Generalized Cullen 137 5897794^524288+1 3549792 x50 2022 Generalized Fermat 138 3*2^11731850-1 3531640 L4103 2015 139 69*2^11718455-1 3527609 L4965 2020 140 8629*2^11708579-1 3524638 A2 2024 141 41*2^11676439+1 3514960 L4965 2022 142 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 143 81*2^11616017+1 3496772 L4965 2022 144 69*2^11604348-1 3493259 L4965 2020 145 4450871*6^4450871+1 3463458 L5765 2023 Generalized Cullen 146 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 147 3*2^11484018-1 3457035 L3993 2014 148 193997*2^11452891+1 3447670 L4398 2018 149 29914*5^4930904+1 3446559 A41 2024 150 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 151 9221*2^11392194-1 3429397 L5267 2021 152 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 153c 3328218^524288-3328218^262144+1 3419518 p453 2025 Generalized unique 154 5*2^11355764-1 3418427 L4965 2021 155 732050*6^4392301+1 3417881 L5765 2023 Generalized Cullen 156d 3268739^524288-3268739^262144+1 3415412 p453 2025 Generalized unique 157 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 158 632760!-1 3395992 A43 2024 Factorial 159 146561*2^11280802-1 3395865 L5181 2020 160 51208*5^4857576+1 3395305 A30 2024 161 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 162 4591*2^11270837-1 3392864 A2 2025 163 6929*2^11255424-1 3388225 L4965 2022 164 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 165 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 166 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 167c 2637072^524288-2637072^262144+1 3366518 p453 2025 Generalized unique 168 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 169 9271*2^11134335-1 3351773 L4965 2021 170 136804*5^4777253-1 3339162 A23 2024 171 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 172 987324*48^1974648-1 3319866 A20 2024 Generalized Woodall 173 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 174 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 175 27*2^10902757-1 3282059 L4965 2022 176 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 177 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 178 11*2^10797109+1 3250255 L4965 2022 179 7*2^10612737-1 3194754 L4965 2022 180 7351117#+1 3191401 p448 2024 Primorial 181 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 182 5*2^10495620-1 3159498 L4965 2021 183 3^6608603-3^3304302+1 3153105 L5123 2023 Generalized unique 184 5*2^10349000-1 3115361 L4965 2021 185 844833^524288-844833^262144+1 3107335 L4506 2017 Generalized unique 186 17*2^10248660-1 3085156 A2 2025 187 52922*5^4399812-1 3075342 A1 2023 188 712012^524288-712012^262144+1 3068389 L4506 2017 Generalized unique 189 177742*5^4386703-1 3066180 L5807 2023 190 4*3^6402015+1 3054539 A2 2024 191 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 192 475856^524288+1 2976633 L3230 2012 Generalized Fermat 193 2*3^6236772+1 2975697 L4965 2022 194 15*2^9830108+1 2959159 A2 2023 195 9*2^9778263+1 2943552 L4965 2020 196 198*558^1061348+1 2915138 A28 2024 197 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 198 356926^524288+1 2911151 L3209 2012 Generalized Fermat 199 341112^524288+1 2900832 L3184 2012 Generalized Fermat 200 213988*5^4138363-1 2892597 L5621 2022 201 43*2^9596983-1 2888982 L4965 2022 202 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 203 15*2^9482269-1 2854449 A2 2024 204 6533299#-1 2835864 p447 2024 Primorial 205 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 206 15*2^9312889+1 2803461 L4965 2023 207 97*2^9305542+1 2801250 A2 2025 208 93*2^9235048+1 2780029 A2 2025 209 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 210 6369619#+1 2765105 p445 2024 Primorial 211 27653*2^9167433+1 2759677 SB8 2005 212 6354977#-1 2758832 p446 2024 Primorial 213 90527*2^9162167+1 2758093 L1460 2010 214 6795*2^9144320-1 2752719 L4965 2021 215 31*2^9088085-1 2735788 A2 2024 216 75*2^9079482+1 2733199 L4965 2023 217 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 218 57*2^9075622-1 2732037 L4965 2022 219 10^2718281-5*10^1631138-5*10^1087142-1 2718281 p423 2024 Palindrome 220 63838*5^3887851-1 2717497 L5558 2022 221 13*2^8989858+1 2706219 L4965 2020 222e 271357*2^8943013-1 2692121 A33 2025 223 4159*2^8938471-1 2690752 L4965 2022 224 273809*2^8932416-1 2688931 L1056 2017 225 93*2^8898285+1 2678653 A2 2024 226 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 227 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 228 2038*366^1028507-1 2636562 L2054 2016 229 64598*5^3769854-1 2635020 L5427 2022 230 63*2^8741225+1 2631373 A2 2024 231 8*785^900325+1 2606325 L4786 2022 232 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 233 75898^524288+1 2558647 p334 2011 Generalized Fermat 234 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 235 39*2^8413422+1 2532694 L5232 2021 236 31*2^8348000+1 2513000 L5229 2021 237 27*2^8342438-1 2511326 L3483 2021 238 17*2^8330892-1 2507850 A2 2025 239 3687*2^8261084-1 2486838 L4965 2021 240 101*2^8152967+1 2454290 A2 2023 Divides GF(8152966,12) 241 9*2^8128075-1 2446796 L3345 2025 242 273662*5^3493296-1 2441715 L5444 2021 243 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 244 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 245 102818*5^3440382-1 2404729 L5427 2021 246 9*2^7979119-1 2401956 L3345 2025 247 11*2^7971110-1 2399545 L2484 2019 248 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 249 3177*2^7954621-1 2394584 L4965 2021 250 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 251 7*6^3072198+1 2390636 L4965 2019 252 3765*2^7904593-1 2379524 L4965 2021 253 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 254 5113*2^7895471-1 2376778 L4965 2022 255 861*2^7895451-1 2376771 L4965 2021 256 75*2^7886683+1 2374131 A2 2023 257c 3243959*2^7862047+1 2366719 L5327 2025 258 2661*2^7861390-1 2366518 A2 2024 259 21*2^7838882-1 2359740 A2 2025 260 30397*2^7838120+1 2359514 A71 2025 261 99*2^7830910+1 2357341 A2 2024 262 28433*2^7830457+1 2357207 SB7 2004 263 2589*2^7803339-1 2349043 L4965 2022 264 59*2^7792307+1 2345720 A2 2024 265 101*2^7784453+1 2343356 A2 2024 266 95*2^7778585+1 2341590 A2 2024 267 8401*2^7767655-1 2338302 L4965 2023 268 9693*2^7767343-1 2338208 A2 2023 269 5*2^7755002-1 2334489 L4965 2021 270 2945*2^7753232-1 2333959 L4965 2022 271 2*836^798431+1 2333181 L4294 2024 272 63*2^7743186+1 2330934 A2 2024 273 2545*2^7732265-1 2327648 L4965 2021 274 5539*2^7730709-1 2327180 L4965 2021 275 4817*2^7719584-1 2323831 L4965 2021 276 183*558^842752+1 2314734 A28 2024 277 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 278 9467*2^7680034-1 2311925 L4965 2022 279 45*2^7661004+1 2306194 L5200 2020 280 15*2^7619838+1 2293801 L5192 2020 281 3645*2^7610003-1 2290843 A2 2025 282 3597*2^7580693-1 2282020 L4965 2021 283 5256037#+1 2281955 p444 2024 Primorial 284e 38118498221*2^7552807+1 2273633 L5327 2025 285 3129*2^7545557-1 2271443 L4965 2023 286 7401*2^7523295-1 2264742 L4965 2021 287 45*2^7513661+1 2261839 L5179 2020 288 558640^393216-558640^196608+1 2259865 L4506 2017 Generalized unique 289 2739*2^7483537-1 2252773 A2 2025 290 9*2^7479919-1 2251681 L3345 2023 291 1875*2^7474308-1 2249995 L4965 2022 292 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 293 1281979*2^7447178+1 2241831 A8 2023 294 9107*2^7417464-1 2232884 A2 2025 295 4*5^3189669-1 2229484 L4965 2022 296 19*2^7383785-1 2222743 A2 2025 297 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 298 2653*2^7368343-1 2218096 A2 2024 299 21555*2^7364128-1 2216828 A11 2024 300 3197*2^7359542-1 2215447 L4965 2022 301 109838*5^3168862-1 2214945 L5129 2020 302 95*2^7354869+1 2214039 A2 2023 303 101*2^7345194-1 2211126 L1884 2019 304 85*2^7333444+1 2207589 A2 2023 305 15*2^7300254+1 2197597 L5167 2020 306e 6733*2^7285527-1 2193166 A2 2025 307 422429!+1 2193027 p425 2022 Factorial 308 1759*2^7284439-1 2192838 L4965 2021 309 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 310 737*2^7269322-1 2188287 L4665 2017 311 6909*2^7258896-1 2185150 A2 2024 312 93*2^7241494+1 2179909 A2 2023 313 118568*5^3112069+1 2175248 L690 2020 314 4215*2^7221386-1 2173858 A2 2024 315 40*257^901632+1 2172875 A11 2024 316 1685*2^7213108-1 2171366 A2 2025 317 580633*2^7208783-1 2170066 A11 2024 318 6039*2^7207973-1 2169820 L4965 2021 319f 1871*2^7207954-1 2169814 L6283 2025 320 502573*2^7181987-1 2162000 L3964 2014 321 402539*2^7173024-1 2159301 L3961 2014 322 3343*2^7166019-1 2157191 L1884 2016 323 4137*2^7132569-1 2147121 A2 2025 324 161041*2^7107964+1 2139716 L4034 2015 325 294*213^918952-1 2139672 L5811 2023 326 17*2^7101254-1 2137692 A2 2025 327 27*2^7046834+1 2121310 L3483 2018 328 1759*2^7046791-1 2121299 L4965 2021 329 327*2^7044001-1 2120459 L4965 2021 330 5*2^7037188-1 2118406 L4965 2021 331 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 332 625783*2^7031319-1 2116644 A11 2024 333 33661*2^7031232+1 2116617 SB11 2007 334 237804^393216-237804^196608+1 2114016 L4506 2017 Generalized unique 335 207494*5^3017502-1 2109149 L5083 2020 336 15*2^6993631-1 2105294 L4965 2021 337 8943501*2^6972593-1 2098967 L466 2022 338 6020095*2^6972593-1 2098967 L466 2022 339 2^6972593-1 2098960 G4 1999 Mersenne 38 340b 100206278^262144+1 2097387 x50 2026 Generalized Fermat 341b 100013182^262144+1 2097168 x50 2026 Generalized Fermat 342 273*2^6963847-1 2096330 L4965 2022 343 6219*2^6958945-1 2094855 L4965 2021 344 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 345 8*10^2084563-1 2084564 A2 2025 Near-repdigit 346 3323*2^6921196-1 2083492 A2 2024 347 238694*5^2979422-1 2082532 L5081 2020 348 4*72^1119849-1 2079933 L4444 2016 349 129*2^6900230+1 2077179 L5517 2025 350 33*2^6894190-1 2075360 L4965 2021 351 4778027#-1 2073926 p442 2024 Primorial 352 105*2^6884697+1 2072503 L5178 2025 353 2345*2^6882320-1 2071789 L4965 2022 354b 77784266^262144+1 2068550 L4729 2026 Generalized Fermat 355b 77708974^262144+1 2068440 L5452 2026 Generalized Fermat 356b 77662142^262144+1 2068372 L4591 2026 Generalized Fermat 357b 77586084^262144+1 2068260 L6304 2026 Generalized Fermat 358b 77412518^262144+1 2068005 L4387 2026 Generalized Fermat 359c 76013952^262144+1 2065929 L6299 2025 Generalized Fermat 360c 75810636^262144+1 2065624 L5639 2025 Generalized Fermat 361c 75753274^262144+1 2065538 L4943 2025 Generalized Fermat 362 57*2^6857990+1 2064463 A2 2023 363 146264*5^2953282-1 2064261 L1056 2020 364c 74732694^262144+1 2063994 L4387 2025 Generalized Fermat 365c 74716572^262144+1 2063970 L4387 2025 Generalized Fermat 366c 74399970^262144+1 2063486 L6261 2025 Generalized Fermat 367c 74336726^262144+1 2063389 L6015 2025 Generalized Fermat 368d 73597220^262144+1 2062251 L6284 2025 Generalized Fermat 369d 73589294^262144+1 2062239 L4387 2025 Generalized Fermat 370d 73465436^262144+1 2062047 L4477 2025 Generalized Fermat 371d 73116844^262144+1 2061505 L4387 2025 Generalized Fermat 372d 72862906^262144+1 2061109 L5186 2025 Generalized Fermat 373d 72752758^262144+1 2060937 L4659 2025 Generalized Fermat 374d 72718062^262144+1 2060883 L5697 2025 Generalized Fermat 375e 72071732^262144+1 2059866 L5543 2025 Generalized Fermat 376e 71737620^262144+1 2059337 L5543 2025 Generalized Fermat 377e 71380700^262144+1 2058770 L6015 2025 Generalized Fermat 378 69*2^6838971-1 2058738 L5037 2020 379 35816*5^2945294-1 2058677 L5076 2020 380e 71107798^262144+1 2058333 L5370 2025 Generalized Fermat 381 127*2^6836153-1 2057890 L1862 2018 382 105*2^6835099+1 2057572 L5517 2025 383f 70520422^262144+1 2057389 L5057 2025 Generalized Fermat 384f 70349734^262144+1 2057113 L4400 2025 Generalized Fermat 385 19*2^6833086+1 2056966 L5166 2020 386f 69844790^262144+1 2056293 L4387 2025 Generalized Fermat 387f 69810332^262144+1 2056237 L4387 2025 Generalized Fermat 388f 69290228^262144+1 2055386 L4387 2025 Generalized Fermat 389f 69170386^262144+1 2055189 L5700 2025 Generalized Fermat 390 68717884^262144+1 2054441 L6278 2025 Generalized Fermat 391 68000464^262144+1 2053246 L4670 2025 Generalized Fermat 392 67886950^262144+1 2053056 L6266 2025 Generalized Fermat 393 67673558^262144+1 2052698 L5755 2025 Generalized Fermat 394 67535128^262144+1 2052465 L5755 2025 Generalized Fermat 395 67433562^262144+1 2052293 L5697 2025 Generalized Fermat 396 67167678^262144+1 2051844 L5416 2025 Generalized Fermat 397 67141518^262144+1 2051799 L4477 2025 Generalized Fermat 398 67062340^262144+1 2051665 L5057 2025 Generalized Fermat 399 66498472^262144+1 2050704 L6085 2025 Generalized Fermat 400 66342922^262144+1 2050437 L5639 2025 Generalized Fermat 401 66266188^262144+1 2050305 L5127 2025 Generalized Fermat 402 65*2^6810465+1 2050157 A2 2023 403 40597*2^6808509-1 2049571 L3749 2013 404 283*2^6804731-1 2048431 L2484 2020 405 65136498^262144+1 2048348 L5639 2025 Generalized Fermat 406 64989720^262144+1 2048091 L4477 2025 Generalized Fermat 407 64074894^262144+1 2046477 L5696 2025 Generalized Fermat 408 64010198^262144+1 2046362 L5361 2025 Generalized Fermat 409 63833640^262144+1 2046047 L6006 2025 Generalized Fermat 410 8*10^2045966-1 2045967 A2 2025 Near-repdigit 411 63784742^262144+1 2045960 L4387 2025 Generalized Fermat 412 63558122^262144+1 2045555 L6255 2025 Generalized Fermat 413 63448958^262144+1 2045359 L5019 2025 Generalized Fermat 414 63286690^262144+1 2045068 L4387 2025 Generalized Fermat 415 62767176^262144+1 2044129 L5639 2025 Generalized Fermat 416 62747994^262144+1 2044095 L5639 2025 Generalized Fermat 417 1861709*2^6789999+1 2044000 L5191 2020 418 5781*2^6789459-1 2043835 L4965 2021 419 62311952^262144+1 2043301 L5156 2025 Generalized Fermat 420 62199610^262144+1 2043095 L5697 2025 Generalized Fermat 421 62152830^262144+1 2043010 L5639 2025 Generalized Fermat 422 62136706^262144+1 2042980 L5639 2025 Generalized Fermat 423 8435*2^6786180-1 2042848 L4965 2021 424 61238184^262144+1 2041322 L5526 2025 Generalized Fermat 425 119*2^6777781+1 2040318 L5517 2025 426 59145944^262144+1 2037364 L4591 2025 Generalized Fermat 427 58936230^262144+1 2036960 L5465 2025 Generalized Fermat 428 58870004^262144+1 2036832 L6238 2025 Generalized Fermat 429 58846688^262144+1 2036787 L4591 2025 Generalized Fermat 430 58333324^262144+1 2035789 L4591 2025 Generalized Fermat 431 58288282^262144+1 2035701 L4526 2025 Generalized Fermat 432 57643582^262144+1 2034435 L4772 2025 Generalized Fermat 433 57594478^262144+1 2034338 L5464 2025 Generalized Fermat 434 57478518^262144+1 2034108 L6085 2025 Generalized Fermat 435 57429230^262144+1 2034011 L5639 2025 Generalized Fermat 436 51*2^6753404+1 2032979 L4965 2020 437 93*2^6750726+1 2032173 A2 2023 438 56303352^262144+1 2031757 L4920 2025 Generalized Fermat 439 56295176^262144+1 2031740 L5378 2025 Generalized Fermat 440 55952434^262144+1 2031045 L5586 2025 Generalized Fermat 441 55892864^262144+1 2030923 L5948 2025 Generalized Fermat 442 69*2^6745775+1 2030683 L4965 2023 443 55702322^262144+1 2030535 L4772 2025 Generalized Fermat 444 55695224^262144+1 2030520 L4387 2025 Generalized Fermat 445 55169618^262144+1 2029441 L6236 2025 Generalized Fermat 446 55007338^262144+1 2029105 L4201 2025 Generalized Fermat 447 54852328^262144+1 2028784 L5375 2025 Generalized Fermat 448 54528918^262144+1 2028111 L5375 2025 Generalized Fermat 449 54044092^262144+1 2027094 L5069 2025 Generalized Fermat 450 53903472^262144+1 2026797 L5543 2025 Generalized Fermat 451 53750036^262144+1 2026473 L4309 2025 Generalized Fermat 452 53616962^262144+1 2026191 L4889 2025 Generalized Fermat 453 53311612^262144+1 2025540 L6235 2025 Generalized Fermat 454 4681*2^6728157-1 2025381 A2 2025 455 53008094^262144+1 2024890 L6036 2025 Generalized Fermat 456 52648144^262144+1 2024115 L5088 2025 Generalized Fermat 457 52599274^262144+1 2024009 L4776 2025 Generalized Fermat 458 52592976^262144+1 2023995 L5543 2025 Generalized Fermat 459 117*2^6719464+1 2022763 L5995 2025 460 51992174^262144+1 2022687 L5639 2025 Generalized Fermat 461 51852794^262144+1 2022382 L4387 2025 Generalized Fermat 462 51714136^262144+1 2022077 L4591 2025 Generalized Fermat 463 51283286^262144+1 2021124 L4884 2025 Generalized Fermat 464 51125138^262144+1 2020773 L5543 2025 Generalized Fermat 465 9995*2^6711008-1 2020219 L4965 2021 466 50454356^262144+1 2019269 L5543 2025 Generalized Fermat 467 50449664^262144+1 2019259 L5586 2025 Generalized Fermat 468 50366208^262144+1 2019070 L5275 2025 Generalized Fermat 469 50121532^262144+1 2018516 L4904 2025 Generalized Fermat 470 49536902^262144+1 2017180 L5639 2025 Generalized Fermat 471 49235348^262144+1 2016485 L5543 2025 Generalized Fermat 472 49209090^262144+1 2016424 L5275 2025 Generalized Fermat 473 48055302^262144+1 2013723 L5069 2025 Generalized Fermat 474 47707672^262144+1 2012896 L4939 2025 Generalized Fermat 475 39*2^6684941+1 2012370 L5162 2020 476 47351862^262144+1 2012044 L6204 2025 Generalized Fermat 477 47281922^262144+1 2011876 L5974 2025 Generalized Fermat 478 47255958^262144+1 2011813 L5948 2025 Generalized Fermat 479 6679881*2^6679881+1 2010852 L917 2009 Cullen 480 46831458^262144+1 2010786 L4456 2025 Generalized Fermat 481 46378776^262144+1 2009680 L6178 2025 Generalized Fermat 482 45073202^262144+1 2006429 L6129 2025 Generalized Fermat 483 45007104^262144+1 2006262 L5639 2025 Generalized Fermat 484 44819108^262144+1 2005786 L5632 2025 Generalized Fermat 485 44666524^262144+1 2005397 L5775 2025 Generalized Fermat 486 37*2^6660841-1 2005115 L3933 2014 487 44144624^262144+1 2004059 L5974 2024 Generalized Fermat 488 44030166^262144+1 2003764 L5974 2024 Generalized Fermat 489 43330794^262144+1 2001941 L5588 2024 Generalized Fermat 490 39*2^6648997+1 2001550 L5161 2020 491 42781592^262144+1 2000489 L5460 2024 Generalized Fermat 492 10^2000007-10^1127194-10^872812-1 2000007 p423 2024 Palindrome 493 10^2000005-10^1051046-10^948958-1 2000005 p423 2024 Palindrome 494 304207*2^6643565-1 1999918 L3547 2013 495 42474318^262144+1 1999668 L5416 2024 Generalized Fermat 496 69*2^6639971-1 1998833 L5037 2020 497 42006214^262144+1 1998406 L5512 2024 Generalized Fermat 498 6471*2^6631137-1 1996175 L4965 2021 499 40460760^262144+1 1994139 L5460 2024 Generalized Fermat 500 39896728^262144+1 1992541 L6047 2024 Generalized Fermat 501 39164812^262144+1 1990433 L6038 2024 Generalized Fermat 502 8*10^1990324-1 1990325 A2 2025 Near-repdigit 503 38786786^262144+1 1989328 L6035 2024 Generalized Fermat 504 38786700^262144+1 1989328 L4245 2024 Generalized Fermat 505 38738332^262144+1 1989186 L6033 2024 Generalized Fermat 506 9935*2^6603610-1 1987889 L4965 2023 507 38214850^262144+1 1987637 L5412 2024 Generalized Fermat 508 38108804^262144+1 1987321 L4764 2024 Generalized Fermat 509 37986650^262144+1 1986955 L6027 2024 Generalized Fermat 510 37787006^262144+1 1986355 L4622 2024 Generalized Fermat 511 37700936^262144+1 1986096 L5416 2024 Generalized Fermat 512 37689944^262144+1 1986063 L5416 2024 Generalized Fermat 513 37349040^262144+1 1985028 L5543 2024 Generalized Fermat 514 37047448^262144+1 1984105 L5746 2024 Generalized Fermat 515 36778106^262144+1 1983274 L5998 2024 Generalized Fermat 516 36748386^262144+1 1983182 L5998 2024 Generalized Fermat 517 36717890^262144+1 1983088 L4760 2024 Generalized Fermat 518 36210400^262144+1 1981503 L6006 2024 Generalized Fermat 519 35196086^262144+1 1978269 L5543 2024 Generalized Fermat 520 34443124^262144+1 1975807 L5639 2024 Generalized Fermat 521 33798406^262144+1 1973655 L4656 2024 Generalized Fermat 522 33491530^262144+1 1972617 L5030 2024 Generalized Fermat 523 33061466^262144+1 1971146 L5275 2024 Generalized Fermat 524 32497152^262144+1 1969186 L5586 2024 Generalized Fermat 525 32171198^262144+1 1968038 L4892 2024 Generalized Fermat 526 32067848^262144+1 1967672 L4684 2024 Generalized Fermat 527 31371484^262144+1 1965172 L5847 2024 Generalized Fermat 528 30941436^262144+1 1963601 L4362 2024 Generalized Fermat 529 554051*2^6517658-1 1962017 L5811 2023 530 115*2^6515714+1 1961428 L5161 2025 531 29645358^262144+1 1958729 L5024 2023 Generalized Fermat 532 29614286^262144+1 1958610 L5870 2023 Generalized Fermat 533 1319*2^6506224-1 1958572 L4965 2021 534 3163*2^6504943-1 1958187 L4965 2023 535 29445800^262144+1 1957960 L4726 2023 Generalized Fermat 536 322498*5^2800819-1 1957694 L4954 2019 537 29353924^262144+1 1957604 L4387 2023 Generalized Fermat 538 99*2^6502814+1 1957545 A2 2023 539 29333122^262144+1 1957524 L5869 2023 Generalized Fermat 540 88444*5^2799269-1 1956611 L3523 2019 541 29097000^262144+1 1956604 L5375 2023 Generalized Fermat 542 28342134^262144+1 1953611 L5864 2023 Generalized Fermat 543 28259150^262144+1 1953277 L4898 2023 Generalized Fermat 544 68311*2^6487924+1 1953065 L5327 2025 545 28004468^262144+1 1952246 L5586 2023 Generalized Fermat 546 27789002^262144+1 1951367 L5860 2023 Generalized Fermat 547 13*2^6481780+1 1951212 L4965 2020 548 27615064^262144+1 1950652 L4201 2023 Generalized Fermat 549 21*2^6468257-1 1947141 L4965 2021 550 26640150^262144+1 1946560 L5839 2023 Generalized Fermat 551 26128000^262144+1 1944350 L5821 2023 Generalized Fermat 552 25875054^262144+1 1943243 L5070 2023 Generalized Fermat 553 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 554 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 555 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 556 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 557 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 558 138514*5^2771922+1 1937496 L4937 2019 559 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 560 33*2^6432160-1 1936275 L4965 2022 561 15*2^6429089-1 1935350 L4965 2021 562 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 563 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 564 398023*2^6418059-1 1932034 L3659 2013 565 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 566 3^4043119+3^2021560+1 1929059 L5123 2023 Generalized unique 567 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 568 141*2^6406088+1 1928427 L5783 2025 Divides GF(6406084,6) 569 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 570 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 571 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 572 55*2^6395254+1 1925166 A2 2023 573 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 574 4*3^4020126+1 1918089 A2 2024 Generalized Fermat 575 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 576 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 577 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 578 631*2^6359347-1 1914357 L4965 2021 579 4965*2^6356707-1 1913564 L4965 2022 580 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 581 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 582 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 583 1995*2^6333396-1 1906546 L4965 2021 584 1582137*2^6328550+1 1905090 L801 2009 Cullen 585 18395930^262144+1 1904404 x50 2022 Generalized Fermat 586 17191822^262144+1 1896697 x50 2022 Generalized Fermat 587 87*2^6293522+1 1894541 A2 2023 588 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 589 141*2^6286573+1 1892450 L5178 2025 590 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 591 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 592 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 593 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 594 3303*2^6264946-1 1885941 L4965 2021 595 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 596 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 597 4328927#+1 1878843 p442 2024 Primorial 598 165*2^6237224+1 1877594 L5178 2025 599 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 600 1344935*2^6231985+1 1876021 L161 2023 601 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 602 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 603 165*2^6213489+1 1870449 L5517 2025 604 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 605 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 606 8825*2^6199424-1 1866217 A2 2023 607 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 608 7*6^2396573+1 1864898 L4965 2019 609 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 610 69*2^6186659+1 1862372 L4965 2023 611 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 612 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 613 141*2^6175704+1 1859075 L5969 2025 614 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 615 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 616 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 617 119*2^6150335+1 1851438 L5178 2025 618 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 619 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 620 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 621 194368*5^2638045-1 1843920 L690 2018 622 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 623 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 624 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 625 66916*5^2628609-1 1837324 L690 2018 626 521921*2^6101122-1 1836627 L5811 2023 627 3*2^6090515-1 1833429 L1353 2010 628 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 629 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 630 8349*2^6082397-1 1830988 L4965 2021 631 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 632 71*2^6070943+1 1827538 L4965 2023 633 32*470^683151+1 1825448 L4064 2021 634 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 635 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 636 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 637 9999*2^6037057-1 1817340 L4965 2021 638 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 639 6285*2^6027986-1 1814609 A2 2024 640 33*2^6019138-1 1811943 L4965 2022 641 67*2^6018626+1 1811789 L4965 2023 642 122*123^865890+1 1809631 L4294 2024 643 6*10^1807300-1 1807301 A2 2025 Near-repdigit 644 1583*2^5989282-1 1802957 L4036 2015 645 55*2^5982526+1 1800922 L5554 2025 Divides GF(5982524,10) 646 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 647 91*2^5960816+1 1794387 L5969 2025 648 163*2^5945098+1 1789656 L5554 2025 649 189*2^5932506+1 1785865 L5995 2025 650 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 651 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 652 32*402^683113-1 1778983 A11 2025 653 327926*5^2542838-1 1777374 L4807 2018 654 81556*5^2539960+1 1775361 L4809 2018 655 179*2^5894939+1 1774556 L5261 2025 656 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 657 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 658 135*2^5854694+1 1762441 L5997 2025 659 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 660 93606^354294+93606^177147+1 1761304 p437 2023 Generalized unique 661 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 662 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 663 195*2^5841059+1 1758337 L5178 2025 664 183*2^5814122+1 1750228 L5612 2025 665 205*2^5805562+1 1747651 L5261 2025 666 99*2^5798449+1 1745510 L5517 2025 Divides Fermat F(5798447) 667 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 668 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 669 57*2^5785428+1 1741590 L5302 2025 670 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 671 7*2^5775996+1 1738749 L3325 2012 672 101*2^5774879+1 1738414 L5537 2025 673 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 674 13*2^5769387-1 1736760 L1862 2025 675 57*2^5759943+1 1733918 L5517 2025 676 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 677 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 678 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 679 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 680 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 681 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 682 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 683 1243*2^5686715-1 1711875 L1828 2016 684 65*2^5671355+1 1707250 L5294 2024 685 25*2^5658915-1 1703505 L1884 2021 686 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 687 41*2^5651731+1 1701343 L1204 2020 688 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 689 9*2^5642513+1 1698567 L3432 2013 690 165*2^5633373+1 1695817 L5178 2024 691 10*3^3550446+1 1693995 L4965 2020 692 2622*11^1621920-1 1689060 L2054 2015 693 141*2^5600116+1 1685806 L6089 2024 694 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 695 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 696 301562*5^2408646-1 1683577 L4675 2017 697 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 698 55599^354294+55599^177147+1 1681149 p437 2023 Generalized unique 699b 2533333^262144-2533333^131072+1 1678690 p453 2026 Generalized unique 700 171362*5^2400996-1 1678230 L4669 2017 701 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 702d 2507493^262144-2507493^131072+1 1677523 p453 2025 Generalized unique 703 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 704 163*2^5550632+1 1670909 L5517 2024 705 205*2^5532904+1 1665573 L5517 2024 706 191*2^5531015+1 1665004 L5517 2024 707 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 708 89*2^5519481+1 1661532 L5178 2024 709 252191*2^5497878-1 1655032 L3183 2012 710d 2044075^262144-2044075^131072+1 1654259 p453 2025 Generalized unique 711 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 712 8*10^1652593-1 1652594 A2 2025 Near-repdigit 713 247*2^5477512+1 1648898 L5373 2024 714 129*2^5453363+1 1641628 L6083 2024 715 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 716 258317*2^5450519+1 1640776 g414 2008 717 7*6^2104746+1 1637812 L4965 2019 718 91*2^5435752+1 1636327 L5214 2024 719 159*2^5432226+1 1635266 L6082 2024 720 193*2^5431414+1 1635021 L5214 2024 721 5*2^5429494-1 1634442 L3345 2017 722 77*2^5422903+1 1632459 A2 2024 Divides GF(5422902,12) 723 165*2^5416628+1 1630570 L5537 2024 724 147*2^5410159+1 1628623 L5517 2024 725 285*2^5408709+1 1628187 L5178 2024 726 43*2^5408183-1 1628027 L1884 2018 727 8*815^559138-1 1627740 A26 2024 728 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 729 245*2^5404089+1 1626796 L5282 2024 730 2*296598^296598-1 1623035 L4965 2022 731 127*2^5391378+1 1622969 L5178 2024 732 1349*2^5385004-1 1621051 L1828 2017 733 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 734f 1243041*2^5371459-1 1616977 L5327 2025 735 153*2^5369765+1 1616463 L5969 2024 736 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 737 84*730^560037+1 1603569 A12 2024 738 93*2^5323466+1 1602525 L5537 2024 739 237*2^5315983+1 1600273 L6064 2024 740 45*2^5308037+1 1597881 L4761 2019 741 5468*70^864479-1 1595053 L5410 2022 742 131*2^5298475+1 1595003 L5517 2024 743 237*2^5291999+1 1593053 L5532 2024 744 221*2^5284643+1 1590839 L5517 2024 745 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 746 9*10^1585829-1 1585830 A2 2025 Near-repdigit 747 1082083^262144-1082083^131072+1 1581846 L4506 2017 Generalized unique 748 247*2^5254234+1 1581685 L5923 2024 749 273*2^5242597+1 1578182 L5192 2024 750 7*2^5229669-1 1574289 L4965 2021 751 180062*5^2249192-1 1572123 L4435 2016 752 124125*6^2018254+1 1570512 L4001 2019 753 27*2^5213635+1 1569462 L3760 2015 754 227*2^5213195+1 1569331 L5517 2024 755 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 756 27*252^652196+1 1566186 A21 2024 757 149*2^5196375+1 1564267 L5174 2024 758 277*2^5185268+1 1560924 L5888 2024 759 308084!+1 1557176 p425 2022 Factorial 760 843575^262144-843575^131072+1 1553498 L4506 2017 Generalized unique 761 25*2^5152151-1 1550954 L1884 2020 762 125*2^5149981+1 1550301 L6042 2024 763 147*2^5146964+1 1549393 L5559 2024 764 53546*5^2216664-1 1549387 L4398 2016 765 773620^262144+1 1543643 L3118 2012 Generalized Fermat 766 39*2^5119458+1 1541113 L1204 2019 767 607*26^1089034+1 1540957 L5410 2021 768 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 769 223*2^5105835-1 1537012 L2484 2019 770 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 771 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 772 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 773 51*2^5085142-1 1530782 L760 2014 774 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 775 676754^262144+1 1528413 L2975 2012 Generalized Fermat 776 296024*5^2185270-1 1527444 L671 2016 777 181*2^5057960+1 1522600 L5178 2024 778 5359*2^5054502+1 1521561 SB6 2003 779 175*2^5049344+1 1520007 L5178 2024 780 183*2^5042357+1 1517903 L5178 2024 781 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 782 53*2^5019181+1 1510926 L4965 2023 783e 6*7^1786775-1 1510001 A2 2025 784 131*2^5013361+1 1509175 L5178 2024 785 13*2^4998362+1 1504659 L3917 2014 786e 136*859^512270+1 1502999 A11 2025 787 525094^262144+1 1499526 p338 2012 Generalized Fermat 788 92158*5^2145024+1 1499313 L4348 2016 789 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 790 357*2^4972628+1 1496913 L5783 2024 791 2127231*2^4972165-1 1496778 L5327 2025 792 77072*5^2139921+1 1495746 L4340 2016 793 175*2^4965756+1 1494844 L5888 2024 794 221*2^4960867+1 1493373 L5178 2024 795 375*2^4950021+1 1490108 L5178 2024 796 2*3^3123036+1 1490068 L5043 2020 797 75*2^4940218+1 1487156 L5517 2024 Divides GF(4940214,12) 798 95*2^4929067+1 1483799 L5172 2024 799 161*2^4928111+1 1483512 L5961 2024 800 51*2^4923905+1 1482245 L4965 2023 801 289*2^4911870+1 1478623 L5178 2024 Generalized Fermat 802 519397*2^4908893-1 1477730 L5410 2022 803 306398*5^2112410-1 1476517 L4274 2016 804 183*2^4894125+1 1473281 L5961 2024 Divides GF(4894123,3), GF(4894124,5) 805 39*684^519468-1 1472723 L5410 2023 806 195*2^4887935+1 1471418 L5261 2024 807 281*2^4886723+1 1471053 L5971 2024 808 281*2^4879761+1 1468957 L5961 2024 809 96*789^506568+1 1467569 A14 2024 810 243*2^4872108+1 1466654 L5178 2024 811 213*2^4865126+1 1464552 L5803 2024 812 265711*2^4858008+1 1462412 g414 2008 813 154222*5^2091432+1 1461854 L3523 2015 814 1271*2^4850526-1 1460157 L1828 2012 815 333*2^4846958-1 1459083 L5546 2022 816 357*2^4843507+1 1458044 L5178 2024 817 156*532^534754-1 1457695 L5410 2023 818 362978^262144-362978^131072+1 1457490 p379 2015 Generalized unique 819 361658^262144+1 1457075 p332 2011 Generalized Fermat 820 231*2^4836124+1 1455821 L5517 2024 821 7*10^1454508+1 1454509 p439 2024 822 303*2^4829593+1 1453855 L5706 2024 823 100186*5^2079747-1 1453686 L4197 2015 824 375*2^4824253+1 1452248 L5625 2024 825 288465!+1 1449771 p3 2022 Factorial 826 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 827 235*2^4799708+1 1444859 L5971 2024 828 347*2^4798851+1 1444601 L5554 2024 829 239*2^4795541+1 1443605 L5995 2024 830 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40, generalized unique 831b 1533*2^4789999-1 1441937 A2 2026 832 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 833 269*2^4777025+1 1438031 L5683 2024 834b 2319*2^4773769-1 1437052 A2 2026 835 1365*2^4768348+1 1435419 L6264 2025 836 653*10^1435026-1 1435029 p355 2014 837 197*2^4765318-1 1434506 L5175 2021 838b 1161*2^4763034-1 1433820 A2 2026 839 1401*2^4759435-1 1432736 L4965 2023 840 2169*2^4754343-1 1431204 L4965 2023 841 188*468^535963+1 1431156 L4832 2019 842 1809*2^4752792-1 1430737 L4965 2022 843 61*2^4749928+1 1429873 L5285 2024 844 2427*2^4749044-1 1429609 L4965 2022 845 303*2^4748019-1 1429299 L5545 2023 846 2259*2^4746735-1 1428913 L4965 2022 847 309*2^4745713-1 1428605 L5545 2023 848 44035*2^4743708+1 1428004 A68 2025 849 183*2^4740056+1 1426902 L5945 2024 850 2223*2^4729304-1 1423666 L4965 2022 851 1851*2^4727663-1 1423172 L4965 2022 852 1725*2^4727375-1 1423085 L4965 2022 853 1611*2^4724014-1 1422074 L4965 2022 854 1383*2^4719270-1 1420645 L4965 2022 855 1749*2^4717431-1 1420092 L4965 2022 856 321*2^4715725+1 1419578 L5178 2024 857 371*2^4715211+1 1419423 L5527 2024 858 2325*2^4713991-1 1419057 L4965 2022 859 3267113#-1 1418398 p301 2021 Primorial 860 291*2^4708553+1 1417419 L5308 2024 861 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 862 2337*2^4705660-1 1416549 L4965 2022 863 1229*2^4703492-1 1415896 L1828 2018 864 1425*2^4700603+1 1415026 L6264 2025 865 303*2^4694937+1 1413320 L5977 2024 866 3719*30^956044-1 1412197 L5410 2023 867 6*894^478421-1 1411983 L4294 2023 868 263*2^4688269+1 1411313 L5904 2024 869 155*2^4687127+1 1410969 L5969 2024 870 144052*5^2018290+1 1410730 L4146 2015 871 195*2^4685711-1 1410542 L5175 2021 872 9*2^4683555-1 1409892 L1828 2012 873 31*2^4673544+1 1406879 L4990 2019 874 34*993^469245+1 1406305 L4806 2018 875 197*2^4666979+1 1404903 L5233 2024 876 79*2^4658115-1 1402235 L1884 2018 877 39*2^4657951+1 1402185 L1823 2019 878 4*650^498101-1 1401116 L4294 2021 879 11*2^4643238-1 1397755 L2484 2014 880 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 881 68*995^465908-1 1396712 L4001 2017 882 7*6^1793775+1 1395830 L4965 2019 883 269*2^4636583+1 1395753 L5509 2024 884 117*2^4632990+1 1394672 L5960 2024 885b 1981*2^4629036+1 1393482 L1134 2026 886 213*2^4625484+1 1392412 L5956 2024 887 2*914^469757+1 1390926 A11 2025 888 1425*2^4618342+1 1390263 L1134 2024 889 4*7^1640811+1 1386647 A2 2024 890 192098^262144-192098^131072+1 1385044 p379 2015 Generalized unique 891 339*2^4592225+1 1382401 L5302 2024 892 6*10^1380098+1 1380099 L5009 2023 893 27*2^4583717-1 1379838 L2992 2014 894 221*2^4578577+1 1378292 L5710 2024 895 359*2^4578161+1 1378167 L5894 2024 896 3^2888387-3^1444194+1 1378111 L5123 2023 Generalized unique 897 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 898 67*2^4561350+1 1373105 L5614 2024 899 121*2^4553899-1 1370863 L3023 2012 900 231*2^4552115+1 1370326 L5302 2024 901 223*2^4549924+1 1369666 L5904 2024 902 46278*5^1957771+1 1368428 A69 2025 903 9473*2^4543680-1 1367788 L5037 2022 904 27*2^4542344-1 1367384 L1204 2014 905 29*2^4532463+1 1364409 L4988 2019 906 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 907d 241*24^980881-1 1353826 A80 2025 908 145310^262144+1 1353265 p314 2011 Generalized Fermat 909 2*3^2834778-1 1352534 A2 2024 910 479*2^4492481+1 1352375 L5882 2024 911 373*2^4487274+1 1350807 L5320 2024 912 527*2^4486247+1 1350498 L5178 2024 913d 23964*5^1931969-1 1350393 A81 2025 914 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 915 83*2^4479409+1 1348439 L5178 2024 916 417*2^4473466+1 1346651 L5178 2024 917 81*536^493229+1 1346106 p431 2023 918 303*2^4471002-1 1345909 L5545 2022 919 1425*2^4469783+1 1345542 L1134 2023 920 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 921 1-V(-2,-2,3074821)-2^3074821 1342125 p437 2024 922 447*2^4457132+1 1341734 L5875 2024 923 36772*6^1723287-1 1340983 L1301 2014 924 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 925 20*634^476756-1 1335915 L4975 2023 926 297*2^4432947+1 1334453 L5178 2023 927 85*2^4432870+1 1334429 L4965 2023 928e 1581*24^965869-1 1333107 A11 2025 929 151*2^4424321-1 1331856 L1884 2016 930 231*2^4422227+1 1331226 L5192 2023 931 131*2^4421071+1 1330878 L5178 2023 932 225*2^4419349+1 1330359 L5866 2023 933 1485*2^4416137+1 1329393 L1134 2024 934 469*2^4414802+1 1328991 L5830 2023 935b 62*905^449123+1 1327901 A68 2026 936 549*2^4411029+1 1327855 L5862 2023 937 445*2^4410256+1 1327622 L5537 2023 938 259*2^4395550+1 1323195 L5858 2023 939 219*2^4394846+1 1322983 L5517 2023 940 165*2^4379097+1 1318242 L5852 2023 941 183*2^4379002+1 1318214 L5476 2023 942 1455*2^4376470+1 1317452 L1134 2023 943 165*2^4375458+1 1317147 L5851 2023 944 195*2^4373994-1 1316706 L5175 2020 945 381*2^4373129+1 1316446 L5421 2023 946 2008551*2^4371904+1 1316081 g431 2025 947 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 948 49*2^4365175-1 1314051 L1959 2017 949 49*2^4360869-1 1312755 L1959 2017 950 253*2^4358512+1 1312046 L875 2023 951 219*2^4354805+1 1310930 L5848 2023 952 249*2^4351621+1 1309971 L5260 2023 953 159*2^4348734+1 1309102 L5421 2023 954 115*2^4347620+1 1308767 L5178 2023 955 533*2^4338237+1 1305943 L5260 2023 956 141*2^4337804+1 1305812 L5178 2023 957 363*2^4334518+1 1304823 L5261 2023 958 299*2^4333939+1 1304649 L5517 2023 959 13*2^4333087-1 1304391 L1862 2018 960c 1007*2^4332776-1 1304299 A46 2025 961 353159*2^4331116-1 1303802 L2408 2011 962 195*2^4330189+1 1303520 L5178 2023 963 145*2^4327756+1 1302787 L5517 2023 964 31*980^433853-1 1297754 A11 2025 965 9959*2^4308760-1 1297071 L5037 2022 966 195*2^4304861+1 1295895 L5178 2023 967 23*2^4300741+1 1294654 L4147 2019 968 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 969 141941*2^4299438-1 1294265 L689 2011 970 87*2^4297718+1 1293744 L4965 2023 971 22*905^437285-1 1292900 L5342 2024 972 435*2^4292968+1 1292315 L5783 2023 973 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 974d 1009*2^4282501-1 1289165 A46 2025 975 415*2^4280864+1 1288672 L5818 2023 976 79*2^4279006+1 1288112 L4965 2023 977 205*2^4270310+1 1285494 L5517 2023 978 483*2^4270112+1 1285435 L5178 2023 979 123*2^4266441+1 1284329 L5178 2023 980 612749*2^4254500-1 1280738 L5410 2022 981 3883403*2^4254462-1 1280728 L5327 2025 982 223*2^4252660+1 1280181 L5178 2023 983 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 984 38*380^495986-1 1279539 L5410 2023 985 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 986 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 987 3*2^4235414-1 1274988 L606 2008 988 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 989 93*2^4232892+1 1274230 L4965 2023 990 131*2^4227493+1 1272605 L5226 2023 991 45*436^481613+1 1271213 L5410 2020 992 109208*5^1816285+1 1269534 L3523 2014 993 435*2^4216447+1 1269280 L5178 2023 994 1091*2^4215518-1 1269001 L1828 2018 995 191*2^4203426-1 1265360 L2484 2012 996e 10666*24^916019-1 1264304 A63 2025 997 269*2^4198809+1 1263970 L5226 2023 998 545*2^4198333+1 1263827 L5804 2023 999 53*2^4197093+1 1263453 L5563 2023 1000 1259*2^4196028-1 1263134 L1828 2016 1001 329*2^4193199+1 1262282 L5226 2023 1002 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 1003 20219*24^914407+1 1262080 A70 2025 1004 325918*5^1803339-1 1260486 L3567 2014 1005 1160*745^438053-1 1258160 L4189 2025 1006 16723*820^431579+1 1257546 A11 2025 1007 345*2^4173969+1 1256493 L5226 2023 1008 161*2^4164267+1 1253572 L5178 2023 1009e 20611*24^908013-1 1253255 A11 2025 1010 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 1011 177*2^4162494+1 1253038 L5796 2023 1012 237*2^4153348+1 1250285 L5178 2023 1013 69*2^4151165+1 1249628 L4965 2023 1014 133778*5^1785689+1 1248149 L3903 2014 1015 201*2^4146003+1 1248074 L5161 2023 1016 15921*24^903076+1 1246440 A68 2025 1017 329*2^4136019+1 1245069 L5178 2023 1018 81*2^4131975+1 1243851 L4965 2022 1019 459*2^4129577+1 1243130 L5226 2023 1020 551*2^4126303+1 1242144 L5226 2023 1021b 1115*2^4124111+1 1241485 L5852 2026 1022 363*2^4119017+1 1239951 L5226 2023 1023 20731*24^897326+1 1238504 A11 2025 1024 105*2^4113039+1 1238151 L5178 2023 1025 204*532^454080-1 1237785 L5410 2023 1026 41*684^436354+1 1237090 L4444 2023 1027 17*2^4107544-1 1236496 L4113 2015 1028 261*2^4106385+1 1236148 L5178 2023 1029 24032*5^1768249+1 1235958 L3925 2014 1030 172*159^561319-1 1235689 L4001 2017 1031b 1077*2^4102616+1 1235014 L5226 2026 1032b 1115*2^4101159+1 1234575 L5616 2026 1033 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 1034 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 1035 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 1036 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 1037 67*2^4100746+1 1234450 L5178 2023 1038 191*2^4099097+1 1233954 L5563 2023 1039 325*2^4097700+1 1233534 L5226 2023 1040 519*2^4095491+1 1232869 L5226 2023 1041 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 1042 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 1043b 1019*2^4088075+1 1230637 L5969 2026 1044 64*425^467857-1 1229712 p268 2021 1045 1007*2^4084946-1 1229695 A46 2025 1046b 643*2^4082060+1 1228826 L5197 2026 1047 9721*24^890258+1 1228749 A68 2025 1048 8*558^447047+1 1227876 A28 2024 1049 163*778^424575+1 1227440 A11 2024 1050b 705*2^4075468+1 1226841 L5517 2026 1051 381*2^4069617+1 1225080 L5226 2023 1052b 569*2^4069283+1 1224979 L6253 2026 1053 9*10^1224889-1 1224890 A2 2025 Near-repdigit 1054 97*2^4066717-1 1224206 L2484 2019 1055b 1079*2^4066213+1 1224056 L5226 2026 1056 95*2^4063895+1 1223357 L5226 2023 1057 79*2^4062818+1 1223032 L5178 2023 1058b 987*2^4061658+1 1222684 L5517 2026 1059 1031*2^4054974-1 1220672 L1828 2017 1060b 723*2^4054404+1 1220501 L5226 2026 1061 309*2^4054114+1 1220413 L5178 2023 1062 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 1063b 1039*2^4051670+1 1219678 L5261 2026 1064b 585*2^4049347+1 1218978 L5226 2026 1065 37*2^4046360+1 1218078 L2086 2019 1066b 837*2^4044971+1 1217661 L5517 2026 1067 141*2^4043116+1 1217102 L5517 2023 1068 21744*5^1740189+1 1216345 A57 2025 1069c 807*2^4037587+1 1215438 L5226 2025 1070c 1031*2^4037201+1 1215322 L5783 2025 1071c 897*2^4035223+1 1214727 L5852 2025 1072 172*360^474814+1 1213771 A28 2025 1073 39653*430^460397-1 1212446 L4187 2016 1074 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 1075 141*2^4024411+1 1211471 L5226 2023 1076c 745*2^4023044+1 1211060 L6300 2025 1077 515*2^4021165+1 1210494 L5174 2023 1078c 605*2^4021103+1 1210476 L5226 2025 1079c 981*2^4018797+1 1209782 L6298 2025 1080 73*2^4016912+1 1209213 L5226 2023 1081c 873*2^4016748+1 1209165 L5517 2025 1082 40734^262144+1 1208473 p309 2011 Generalized Fermat 1083 235*2^4013398+1 1208156 L5178 2023 1084c 755*2^4010351+1 1207239 L5783 2025 1085 9*2^4005979-1 1205921 L1828 2012 1086 417*2^4003224+1 1205094 L5764 2023 1087c 567*2^4001998+1 1204725 L5214 2025 1088 18576*5^1723294+1 1204536 A68 2025 1089 12*68^656921+1 1203815 L4001 2016 1090c 921*2^3996981+1 1203215 L5969 2025 1091b 1926*187^529606-1 1203185 A28 2026 1092c 855*2^3996465+1 1203059 L6243 2025 1093 67*688^423893+1 1202836 L4001 2017 1094 221*2^3992723+1 1201932 L5178 2023 1095 213*2^3990702+1 1201324 L5216 2023 1096c 1003*2^3988048+1 1200526 L6297 2025 1097c 1185*2^3987910+1 1200484 L5916 2025 1098 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 1099 1429787556^131072+1 1200000 x54 2025 Generalized Fermat 1100 163*2^3984604+1 1199488 L5756 2023 1101 725*2^3983355+1 1199113 L5706 2023 1102 (146^276995+1)^2-2 1199030 p405 2022 1103 455*2^3981067+1 1198424 L5724 2023 1104 138172*5^1714207-1 1198185 L3904 2014 1105 50*383^463313+1 1196832 L2012 2021 1106 339*2^3974295+1 1196385 L5178 2023 1107 699*2^3974045+1 1196310 L5750 2023 1108 1202113^196608-1202113^98304+1 1195366 L4506 2016 Generalized unique 1109c 795*2^3969719+1 1195008 L5231 2025 1110c 855*2^3968567+1 1194661 L6296 2025 1111 29*2^3964697+1 1193495 L1204 2019 1112c 921*2^3964356+1 1193394 L6294 2025 1113 599*2^3963655+1 1193182 L5226 2023 1114 683*2^3962937+1 1192966 L5226 2023 1115 39*2^3961129+1 1192421 L1486 2019 1116 165*2^3960664+1 1192281 L5178 2023 1117 79*2^3957238+1 1191250 L5745 2023 1118c 1083*2^3956937+1 1191160 L5231 2025 1119 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 1120 163*2^3954818+1 1190522 L5178 2023 1121c 987*2^3954743+1 1190500 L6293 2025 1122 431*2^3953647+1 1190169 L5554 2023 1123 466542*355^466542-1 1189795 L6249 2025 Generalized Woodall 1124c 767*2^3949751+1 1188997 L5616 2025 1125 1110815^196608-1110815^98304+1 1188622 L4506 2016 Generalized unique 1126 127162!^2+1 1187715 p450 2025 1127c 997*2^3944690+1 1187474 L5231 2025 1128c 1085*2^3943263+1 1187044 L5214 2025 Divides Fermat F(3943261) 1129 341*2^3938565+1 1185629 L5554 2023 1130 503*2^3936845+1 1185112 L5706 2023 1131 717*2^3934760+1 1184484 L5285 2023 1132c 6555*2^3934018-1 1184262 A76 2025 1133d 759*2^3933042+1 1183967 L6168 2025 1134d 1003*2^3932090+1 1183681 L5517 2025 Divides GF(3932089,6) 1135 493*2^3929192+1 1182808 L5161 2023 1136 273*2^3929128+1 1182788 L5554 2023 1137 609*2^3928682+1 1182654 L5178 2023 1138 609*2^3928441+1 1182582 L5527 2023 1139 1334*7^1398969-1 1182270 A68 2025 1140 281*2^3926467+1 1181987 L5174 2023 1141d 867*2^3923783+1 1181180 L5226 2025 1142 153*2^3922478+1 1180786 L5554 2023 1143 69*2^3920863+1 1180300 L5554 2023 1144d 1017*2^3920512+1 1180195 L5952 2025 1145 273*2^3919321+1 1179836 L5706 2023 1146 531*2^3918985+1 1179735 L5706 2023 1147 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 1148 555*2^3916875+1 1179100 L5302 2023 1149 571*2^3910616+1 1177216 L5178 2023 1150d 913*2^3906468+1 1175968 L6056 2025 1151 421*2^3905144+1 1175569 L5600 2023 1152d 837*2^3902111+1 1174656 L5302 2025 1153d 807*2^3901696+1 1174531 L5888 2025 1154d 975*2^3900804+1 1174263 L5450 2025 1155 P1174253 1174253 p414 2022 1156 567*2^3897588+1 1173294 L5600 2023 1157 417*2^3895404+1 1172637 L5600 2023 1158 539*2^3894953+1 1172501 L5285 2023 1159d 817*2^3894442+1 1172347 L5264 2025 1160b 47*2^3894414-1 1172338 A77 2026 1161 645*2^3893849+1 1172169 L5600 2023 1162d 929*2^3893187+1 1171970 L5264 2025 1163 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 1164 22478*5^1675150-1 1170884 L3903 2014 1165 1199*2^3889576-1 1170883 L1828 2018 1166 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 1167 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 1168 711*2^3886480+1 1169950 L5320 2023 1169d 1099*2^3886398+1 1169926 L5226 2025 1170 375*2^3884634+1 1169394 L5600 2023 1171 445583*2^3883406-1 1169028 L5327 2025 1172d 885*2^3883077+1 1168926 L5783 2025 1173 94*872^397354+1 1168428 L5410 2019 1174 571140*111^571140+1 1168172 A67 2025 Generalized Cullen 1175d 1031*2^3877849+1 1167352 L5888 2025 1176 269*2^3877485+1 1167242 L5649 2023 1177e 111*2^3875095-1 1166522 A76 2025 1178d 1029*2^3874683+1 1166399 L5226 2025 1179 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 1180 1365*2^3872811+1 1165836 L1134 2023 1181 313*2^3869536+1 1164849 L5600 2023 1182d 1023*2^3868914+1 1164663 L5888 2025 1183b 95*2^3866678-1 1163989 A77 2026 1184 159*2^3860863+1 1162238 L5226 2023 1185 445*2^3860780+1 1162214 L5640 2023 1186 397*2^3859450+1 1161813 L5226 2023 1187 685*2^3856790+1 1161013 L5226 2023 1188 27*2^3855094-1 1160501 L3033 2012 1189d 937*2^3855022+1 1160481 L5825 2025 1190 537*2^3853860+1 1160131 L5636 2022 1191d 927*2^3853850+1 1160128 L6253 2025 1192 164*978^387920-1 1160015 L4700 2018 1193d 865*2^3853066+1 1159892 L5935 2025 1194 175*2^3850344+1 1159072 L5226 2022 1195 685*2^3847268+1 1158146 L5226 2022 1196 655*2^3846352+1 1157871 L5282 2022 1197 583*2^3846196+1 1157824 L5226 2022 1198 615*2^3844151+1 1157208 L5226 2022 1199 14772*241^485468-1 1156398 L5410 2022 1200 525*2^3840963+1 1156248 L5613 2022 1201 313*2^3837304+1 1155147 L5298 2022 1202e 1005*2^3837247+1 1155130 L5517 2025 1203 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 1204 431*2^3835247+1 1154528 L5161 2022 1205 97*2^3833722+1 1154068 L5226 2022 1206e 1003*2^3833686+1 1154058 L5517 2025 1207e 1167*2^3832603+1 1153732 L5888 2025 1208e 793*2^3832174+1 1153603 L6291 2025 1209e 957*2^3829576+1 1152821 L5888 2025 1210 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 1211 125*392^444161+1 1151839 L4832 2022 1212e 817*2^3826096+1 1151773 L6241 2025 1213 12969*24^834325+1 1151549 A62 2025 1214 255*2^3824348+1 1151246 L5226 2022 1215 30*514^424652-1 1151218 L4001 2017 1216 569*2^3823191+1 1150898 L5226 2022 1217 24518^262144+1 1150678 g413 2008 Generalized Fermat 1218e 959*2^3821971+1 1150531 L5261 2025 1219 563*2^3819237+1 1149708 L5178 2022 1220 345*2^3817949+1 1149320 L5373 2022 1221 700219^196608-700219^98304+1 1149220 L4506 2016 Generalized unique 1222 241*2^3815727-1 1148651 L2484 2019 1223 351*2^3815467+1 1148573 L5226 2022 1224 9*10^1148275-1 1148276 A2 2025 Near-repdigit 1225 109*980^383669-1 1147643 L4001 2018 1226 427*2^3811610+1 1147412 L5614 2022 1227 569*2^3810475+1 1147071 L5610 2022 1228 213*2^3807864+1 1146284 L5609 2022 1229e 765*2^3807519+1 1146181 L6253 2025 1230 87*2^3806438+1 1145854 L5607 2022 1231 369*2^3805321+1 1145519 L5541 2022 1232 123547*2^3804809-1 1145367 L2371 2011 1233 2564*75^610753+1 1145203 L3610 2014 1234 539*2^3801705+1 1144430 L5161 2022 1235 159*2^3801463+1 1144357 L5197 2022 1236 235*2^3801284+1 1144303 L5608 2022 1237 660955^196608-660955^98304+1 1144293 L4506 2016 Generalized unique 1238e 893*2^3800793+1 1144156 L5825 2025 1239 519*2^3800625+1 1144105 L5315 2022 1240e 779*2^3799613+1 1143801 L5302 2025 1241e 855*2^3798877+1 1143579 L6289 2025 1242 281*2^3798465+1 1143455 L5178 2022 1243e 1061*2^3798429+1 1143445 L6247 2025 1244 166*443^432000+1 1143249 L5410 2020 1245 85*2^3797698+1 1143223 L5161 2022 1246 326834*5^1634978-1 1142807 L3523 2014 1247e 873*2^3796065+1 1142733 L6209 2025 1248 459*2^3795969+1 1142704 L5161 2022 1249e 789*2^3795409+1 1142535 L5517 2025 1250 105*298^461505-1 1141866 L5841 2023 1251e 945*2^3786772+1 1139935 L6257 2025 1252e 963*2^3786073+1 1139725 L5302 2025 1253 447*2^3780151+1 1137942 L5596 2022 1254 345*2^3779921+1 1137873 L5557 2022 1255 477*2^3779871+1 1137858 L5197 2022 1256d 116778*5^1627724-1 1137736 A11 2025 1257e 1145*2^3778331+1 1137395 L5614 2025 1258 251*2^3774587+1 1136267 L5592 2022 1259e 1017*2^3774168+1 1136141 L6246 2025 1260 439*2^3773958+1 1136078 L5557 2022 1261 43*182^502611-1 1135939 L4064 2020 1262 415267*2^3771929-1 1135470 L2373 2011 1263 11*2^3771821+1 1135433 p286 2013 1264 427*2^3768104+1 1134315 L5192 2022 1265 1455*2^3768024-1 1134292 L1134 2022 1266 711*2^3767492+1 1134131 L5161 2022 1267e 765*2^3767432+1 1134113 L5178 2025 1268 250224!/250199#+1 1133656 p450 2025 Compositorial 1269 265*2^3765189-1 1133438 L2484 2018 1270 297*2^3765140+1 1133423 L5197 2022 1271 381*2^3764189+1 1133137 L5589 2022 1272 115*2^3763650+1 1132974 L5554 2022 1273 411*2^3759067+1 1131595 L5589 2022 1274f 1115*2^3758721+1 1131491 L5302 2025 Divides GF(3758718,5) 1275 405*2^3757192+1 1131031 L5590 2022 1276 1981*2^3754984+1 1130367 A24 2025 Divides GF(3754983,12) [GG] 1277f 817*2^3753850+1 1130025 L6013 2025 1278 938237*2^3752950-1 1129757 L521 2007 Woodall 1279c 484*198^491623-1 1129097 A88 2025 1280 21*2^3745951-1 1127645 L4881 2025 1281 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 1282 701*2^3744713+1 1127274 L5554 2022 1283a 397639580^131072+1 1127153 L5664 2026 Generalized Fermat 1284 207394*5^1612573-1 1127146 L3869 2014 1285 684*10^1127118+1 1127121 L4036 2017 1286b 396618722^131072+1 1127006 L6205 2026 Generalized Fermat 1287a 396547250^131072+1 1126996 L5234 2026 Generalized Fermat 1288b 395832914^131072+1 1126894 L4387 2026 Generalized Fermat 1289b 395761400^131072+1 1126883 L6207 2026 Generalized Fermat 1290b 395217344^131072+1 1126805 L4387 2026 Generalized Fermat 1291b 394904134^131072+1 1126760 L5668 2026 Generalized Fermat 1292b 393858560^131072+1 1126609 L4387 2026 Generalized Fermat 1293b 393815202^131072+1 1126603 L5332 2026 Generalized Fermat 1294a 393705078^131072+1 1126587 L5632 2026 Generalized Fermat 1295b 393104302^131072+1 1126500 L6205 2026 Generalized Fermat 1296b 393044214^131072+1 1126491 L6308 2026 Generalized Fermat 1297e 23964*5^1611569-1 1126443 A11 2025 1298b 392699186^131072+1 1126441 L6261 2026 Generalized Fermat 1299 535386^196608-535386^98304+1 1126302 L4506 2016 Generalized unique 1300b 391700942^131072+1 1126296 L4387 2026 Generalized Fermat 1301b 391599608^131072+1 1126282 L4943 2026 Generalized Fermat 1302b 391588232^131072+1 1126280 L4387 2026 Generalized Fermat 1303b 391427228^131072+1 1126256 L4387 2026 Generalized Fermat 1304b 390305940^131072+1 1126093 L6303 2026 Generalized Fermat 1305b 390084334^131072+1 1126061 L6306 2026 Generalized Fermat 1306b 390083254^131072+1 1126061 L5099 2026 Generalized Fermat 1307b 389880178^131072+1 1126031 L5130 2026 Generalized Fermat 1308b 389673716^131072+1 1126001 L5077 2026 Generalized Fermat 1309b 389336844^131072+1 1125952 L6269 2026 Generalized Fermat 1310b 389258800^131072+1 1125940 L5156 2026 Generalized Fermat 1311b 389000290^131072+1 1125902 L5617 2026 Generalized Fermat 1312b 388951342^131072+1 1125895 L4774 2026 Generalized Fermat 1313b 388753202^131072+1 1125866 L6303 2026 Generalized Fermat 1314b 388743508^131072+1 1125865 L6305 2026 Generalized Fermat 1315 104944*5^1610735-1 1125861 L3849 2014 1316b 388640174^131072+1 1125850 L5617 2026 Generalized Fermat 1317b 388412038^131072+1 1125816 L4387 2026 Generalized Fermat 1318b 388331252^131072+1 1125804 L6302 2026 Generalized Fermat 1319b 387944374^131072+1 1125748 L6301 2026 Generalized Fermat 1320b 387867148^131072+1 1125736 L4387 2026 Generalized Fermat 1321b 387714200^131072+1 1125714 L4387 2026 Generalized Fermat 1322b 387691402^131072+1 1125711 L4201 2026 Generalized Fermat 1323b 387623132^131072+1 1125701 L5457 2026 Generalized Fermat 1324b 387616664^131072+1 1125700 L6277 2026 Generalized Fermat 1325b 387616292^131072+1 1125700 L4387 2026 Generalized Fermat 1326 23451*2^3739388+1 1125673 L591 2015 1327b 387431392^131072+1 1125672 L4387 2026 Generalized Fermat 1328 78*622^402915-1 1125662 L5645 2023 1329b 386819266^131072+1 1125582 L4387 2026 Generalized Fermat 1330b 386720290^131072+1 1125568 L6281 2026 Generalized Fermat 1331b 386562830^131072+1 1125545 L4387 2026 Generalized Fermat 1332b 386550608^131072+1 1125543 L4201 2026 Generalized Fermat 1333b 386534292^131072+1 1125540 L4591 2026 Generalized Fermat 1334b 386267442^131072+1 1125501 L5457 2026 Generalized Fermat 1335b 386099812^131072+1 1125476 L4387 2026 Generalized Fermat 1336b 386026812^131072+1 1125466 L5051 2026 Generalized Fermat 1337f 907*2^3738564+1 1125423 L6018 2025 Divides GF(3738563,3) 1338b 385496362^131072+1 1125387 L4387 2026 Generalized Fermat 1339b 384834062^131072+1 1125289 L5416 2026 Generalized Fermat 1340b 384771488^131072+1 1125280 L5974 2026 Generalized Fermat 1341b 384647884^131072+1 1125262 L4387 2026 Generalized Fermat 1342b 384646530^131072+1 1125262 L5693 2026 Generalized Fermat 1343 615*2^3738023+1 1125260 L5161 2022 1344b 384565974^131072+1 1125250 L4371 2026 Generalized Fermat 1345b 384521718^131072+1 1125243 L6261 2026 Generalized Fermat 1346b 384493004^131072+1 1125239 L4387 2026 Generalized Fermat 1347b 384450036^131072+1 1125233 L5606 2026 Generalized Fermat 1348b 384369920^131072+1 1125221 L5051 2026 Generalized Fermat 1349 347*2^3737875+1 1125216 L5178 2022 1350c 384143768^131072+1 1125187 L5831 2025 Generalized Fermat 1351c 383637278^131072+1 1125112 L5865 2025 Generalized Fermat 1352b 383262398^131072+1 1125057 L5416 2026 Generalized Fermat 1353c 383074656^131072+1 1125029 L6129 2025 Generalized Fermat 1354c 383067358^131072+1 1125028 L4984 2025 Generalized Fermat 1355c 383001722^131072+1 1125018 L5639 2025 Generalized Fermat 1356c 382963992^131072+1 1125012 L5457 2025 Generalized Fermat 1357c 382521116^131072+1 1124946 L4387 2025 Generalized Fermat 1358c 382398560^131072+1 1124928 L4201 2025 Generalized Fermat 1359c 382386994^131072+1 1124926 L5051 2025 Generalized Fermat 1360c 382192798^131072+1 1124897 L5018 2025 Generalized Fermat 1361c 381956882^131072+1 1124862 L4201 2025 Generalized Fermat 1362c 381938134^131072+1 1124859 L5457 2025 Generalized Fermat 1363c 381838602^131072+1 1124845 L5457 2025 Generalized Fermat 1364c 381667286^131072+1 1124819 L5639 2025 Generalized Fermat 1365c 381368080^131072+1 1124774 L4909 2025 Generalized Fermat 1366c 381041624^131072+1 1124726 L6295 2025 Generalized Fermat 1367c 380969980^131072+1 1124715 L4760 2025 Generalized Fermat 1368c 380075660^131072+1 1124581 L5847 2025 Generalized Fermat 1369 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 1370c 379796278^131072+1 1124539 L5457 2025 Generalized Fermat 1371c 379787680^131072+1 1124538 L6245 2025 Generalized Fermat 1372c 379659564^131072+1 1124519 L6245 2025 Generalized Fermat 1373c 379652568^131072+1 1124518 L5847 2025 Generalized Fermat 1374c 379135698^131072+1 1124440 L4777 2025 Generalized Fermat 1375c 378967604^131072+1 1124415 L6281 2025 Generalized Fermat 1376c 378549186^131072+1 1124352 L6269 2025 Generalized Fermat 1377c 378447490^131072+1 1124337 L4726 2025 Generalized Fermat 1378c 378189120^131072+1 1124298 L4387 2025 Generalized Fermat 1379c 378073786^131072+1 1124281 L6261 2025 Generalized Fermat 1380c 377703722^131072+1 1124225 L6261 2025 Generalized Fermat 1381c 377680844^131072+1 1124221 L4387 2025 Generalized Fermat 1382d 377190902^131072+1 1124148 L4760 2025 Generalized Fermat 1383d 376770784^131072+1 1124084 L4760 2025 Generalized Fermat 1384d 376765124^131072+1 1124083 L4672 2025 Generalized Fermat 1385d 376282286^131072+1 1124010 L4387 2025 Generalized Fermat 1386d 376242888^131072+1 1124004 L4943 2025 Generalized Fermat 1387d 376091770^131072+1 1123981 L5457 2025 Generalized Fermat 1388d 375879964^131072+1 1123949 L4760 2025 Generalized Fermat 1389d 375844528^131072+1 1123944 L4387 2025 Generalized Fermat 1390d 375751988^131072+1 1123930 L4984 2025 Generalized Fermat 1391d 375631906^131072+1 1123912 L4371 2025 Generalized Fermat 1392d 375620420^131072+1 1123910 L5101 2025 Generalized Fermat 1393 375*2^3733510+1 1123902 L5584 2022 1394c 375119434^131072+1 1123834 L5416 2025 Generalized Fermat 1395 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 1396d 374354074^131072+1 1123718 L5416 2025 Generalized Fermat 1397 18576*5^1607646+1 1123701 A62 2025 1398d 373798848^131072+1 1123633 L4898 2025 Generalized Fermat 1399d 373746530^131072+1 1123625 L6129 2025 Generalized Fermat 1400d 373642010^131072+1 1123609 L4559 2025 Generalized Fermat 1401d 373331858^131072+1 1123562 L5782 2025 Generalized Fermat 1402d 372195620^131072+1 1123389 L4774 2025 Generalized Fermat 1403d 371709366^131072+1 1123314 L5664 2025 Generalized Fermat 1404d 371639716^131072+1 1123304 L5697 2025 Generalized Fermat 1405d 371582902^131072+1 1123295 L6282 2025 Generalized Fermat 1406 629*2^3731479+1 1123290 L5283 2022 1407d 371029718^131072+1 1123210 L6277 2025 Generalized Fermat 1408d 370773648^131072+1 1123171 L4672 2025 Generalized Fermat 1409d 370094662^131072+1 1123066 L5056 2025 Generalized Fermat 1410e 369881742^131072+1 1123034 L4387 2025 Generalized Fermat 1411e 369768362^131072+1 1123016 L4387 2025 Generalized Fermat 1412e 369286820^131072+1 1122942 L6086 2025 Generalized Fermat 1413d 369195802^131072+1 1122928 L6292 2025 Generalized Fermat 1414e 369042336^131072+1 1122904 L4672 2025 Generalized Fermat 1415e 368670150^131072+1 1122847 L5457 2025 Generalized Fermat 1416e 368603412^131072+1 1122837 L4387 2025 Generalized Fermat 1417e 367436176^131072+1 1122656 L4387 2025 Generalized Fermat 1418e 367403680^131072+1 1122651 L6092 2025 Generalized Fermat 1419e 366889726^131072+1 1122571 L6290 2025 Generalized Fermat 1420e 366390832^131072+1 1122494 L6281 2025 Generalized Fermat 1421e 366239240^131072+1 1122470 L4984 2025 Generalized Fermat 1422e 365995134^131072+1 1122432 L6277 2025 Generalized Fermat 1423e 365962846^131072+1 1122427 L4387 2025 Generalized Fermat 1424e 365233422^131072+1 1122314 L6288 2025 Generalized Fermat 1425e 365076078^131072+1 1122289 L4672 2025 Generalized Fermat 1426 113*2^3728113+1 1122276 L5161 2022 1427e 364868948^131072+1 1122257 L5457 2025 Generalized Fermat 1428e 364593526^131072+1 1122214 L4672 2025 Generalized Fermat 1429e 364500114^131072+1 1122199 L5755 2025 Generalized Fermat 1430e 364246694^131072+1 1122160 L6129 2025 Generalized Fermat 1431e 363776570^131072+1 1122086 L5457 2025 Generalized Fermat 1432e 363423146^131072+1 1122031 L5416 2025 Generalized Fermat 1433e 363276136^131072+1 1122008 L5101 2025 Generalized Fermat 1434f 939*2^3727057+1 1121959 L6246 2025 1435f 362256066^131072+1 1121848 L6272 2025 Generalized Fermat 1436f 362246504^131072+1 1121846 L6129 2025 Generalized Fermat 1437f 361913206^131072+1 1121794 L5816 2025 Generalized Fermat 1438f 361776104^131072+1 1121772 L6285 2025 Generalized Fermat 1439f 361544758^131072+1 1121736 L5639 2025 Generalized Fermat 1440f 361467126^131072+1 1121724 L6284 2025 Generalized Fermat 1441f 361402590^131072+1 1121714 L5850 2025 Generalized Fermat 1442e 361170018^131072+1 1121677 L5416 2025 Generalized Fermat 1443f 361129912^131072+1 1121671 L5755 2025 Generalized Fermat 1444f 360976084^131072+1 1121646 L5639 2025 Generalized Fermat 1445f 360926726^131072+1 1121639 L5755 2025 Generalized Fermat 1446f 360333892^131072+1 1121545 L5755 2025 Generalized Fermat 1447f 360331718^131072+1 1121545 L4726 2025 Generalized Fermat 1448f 360194030^131072+1 1121523 L5639 2025 Generalized Fermat 1449e 360172726^131072+1 1121519 L6287 2025 Generalized Fermat 1450f 360078180^131072+1 1121505 L5755 2025 Generalized Fermat 1451f 359903130^131072+1 1121477 L5755 2025 Generalized Fermat 1452 303*2^3725438+1 1121472 L5161 2022 1453f 359693996^131072+1 1121444 L5755 2025 Generalized Fermat 1454f 359533444^131072+1 1121418 L4726 2025 Generalized Fermat 1455f 359529844^131072+1 1121418 L4984 2025 Generalized Fermat 1456f 359511110^131072+1 1121415 L6282 2025 Generalized Fermat 1457f 359465736^131072+1 1121408 L4559 2025 Generalized Fermat 1458f 359012068^131072+1 1121336 L5639 2025 Generalized Fermat 1459f 358863220^131072+1 1121312 L4559 2025 Generalized Fermat 1460f 358747772^131072+1 1121294 L5755 2025 Generalized Fermat 1461f 358465776^131072+1 1121249 L5755 2025 Generalized Fermat 1462f 357751492^131072+1 1121136 L6281 2025 Generalized Fermat 1463f 357702788^131072+1 1121128 L6092 2025 Generalized Fermat 1464f 357575604^131072+1 1121108 L6281 2025 Generalized Fermat 1465 187*2^3723972+1 1121030 L5178 2022 1466f 357070956^131072+1 1121027 L4387 2025 Generalized Fermat 1467f 356295678^131072+1 1120903 L6090 2025 Generalized Fermat 1468 355982986^131072+1 1120853 L4753 2025 Generalized Fermat 1469 355489216^131072+1 1120774 L4898 2025 Generalized Fermat 1470 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 1471 355369712^131072+1 1120755 L6259 2025 Generalized Fermat 1472 355196086^131072+1 1120727 L5396 2025 Generalized Fermat 1473 354983678^131072+1 1120693 L5056 2025 Generalized Fermat 1474 354747846^131072+1 1120656 L6273 2025 Generalized Fermat 1475 354666958^131072+1 1120643 L6036 2025 Generalized Fermat 1476 354569968^131072+1 1120627 L6277 2025 Generalized Fermat 1477 353899590^131072+1 1120519 L6276 2025 Generalized Fermat 1478 353637166^131072+1 1120477 L6275 2025 Generalized Fermat 1479 353457578^131072+1 1120448 L4387 2025 Generalized Fermat 1480 353261310^131072+1 1120417 L4387 2025 Generalized Fermat 1481 353226578^131072+1 1120411 L4387 2025 Generalized Fermat 1482 353120152^131072+1 1120394 L6274 2025 Generalized Fermat 1483 352906026^131072+1 1120359 L4387 2025 Generalized Fermat 1484 352766996^131072+1 1120337 L4387 2025 Generalized Fermat 1485 352444404^131072+1 1120285 L5628 2025 Generalized Fermat 1486 352035688^131072+1 1120219 L4984 2025 Generalized Fermat 1487 351867654^131072+1 1120192 L4898 2025 Generalized Fermat 1488 351352524^131072+1 1120108 L4559 2025 Generalized Fermat 1489 350812044^131072+1 1120021 L6273 2025 Generalized Fermat 1490 105*2^3720512+1 1119988 L5493 2022 1491 350518526^131072+1 1119973 L5465 2025 Generalized Fermat 1492 349848992^131072+1 1119864 L6090 2025 Generalized Fermat 1493 349655888^131072+1 1119833 L4875 2025 Generalized Fermat 1494 349569992^131072+1 1119819 L5602 2025 Generalized Fermat 1495 348958392^131072+1 1119719 L5974 2025 Generalized Fermat 1496 348716246^131072+1 1119679 L5606 2025 Generalized Fermat 1497 348550920^131072+1 1119652 L6073 2025 Generalized Fermat 1498f 915*2^3719305+1 1119626 L5783 2025 1499 348331024^131072+1 1119616 L6272 2025 Generalized Fermat 1500 348138302^131072+1 1119585 L6271 2025 Generalized Fermat 1501 347869428^131072+1 1119541 L5974 2025 Generalized Fermat 1502 447*2^3719024+1 1119541 L5493 2022 1503 347654842^131072+1 1119506 L5974 2025 Generalized Fermat 1504 347652016^131072+1 1119505 L6270 2025 Generalized Fermat 1505 347642266^131072+1 1119504 L5634 2025 Generalized Fermat 1506 347533108^131072+1 1119486 L5974 2025 Generalized Fermat 1507 347218234^131072+1 1119434 L5974 2025 Generalized Fermat 1508 347205260^131072+1 1119432 L4898 2025 Generalized Fermat 1509 346910756^131072+1 1119384 L5974 2025 Generalized Fermat 1510f 1183*2^3718480+1 1119378 L5969 2025 1511 346785118^131072+1 1119363 L6269 2025 Generalized Fermat 1512 346590566^131072+1 1119331 L5782 2025 Generalized Fermat 1513 345832974^131072+1 1119207 L4984 2025 Generalized Fermat 1514 345735266^131072+1 1119191 L6036 2025 Generalized Fermat 1515 345526904^131072+1 1119156 L6268 2025 Generalized Fermat 1516 177*2^3717746+1 1119156 L5279 2022 1517 345277562^131072+1 1119115 L5205 2025 Generalized Fermat 1518 345222826^131072+1 1119106 L4659 2025 Generalized Fermat 1519 344953718^131072+1 1119062 L4899 2025 Generalized Fermat 1520 344920764^131072+1 1119056 L5974 2025 Generalized Fermat 1521 344891620^131072+1 1119052 L5755 2025 Generalized Fermat 1522 344632060^131072+1 1119009 L5755 2025 Generalized Fermat 1523 344487298^131072+1 1118985 L5755 2025 Generalized Fermat 1524 344261660^131072+1 1118948 L4387 2025 Generalized Fermat 1525 344203526^131072+1 1118938 L5697 2025 Generalized Fermat 1526 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 1527 123*2^3716758+1 1118858 L5563 2022 1528 313*2^3716716+1 1118846 L5237 2022 1529 342944058^131072+1 1118729 L4387 2025 Generalized Fermat 1530 342928514^131072+1 1118727 L5396 2025 Generalized Fermat 1531 342390794^131072+1 1118637 L4387 2025 Generalized Fermat 1532 342324252^131072+1 1118626 L6266 2025 Generalized Fermat 1533 342321746^131072+1 1118626 L4387 2025 Generalized Fermat 1534 342261232^131072+1 1118616 L4387 2025 Generalized Fermat 1535 342195906^131072+1 1118605 L4387 2025 Generalized Fermat 1536 342100874^131072+1 1118589 L4984 2025 Generalized Fermat 1537 341948210^131072+1 1118564 L6265 2025 Generalized Fermat 1538 341497492^131072+1 1118489 L4201 2025 Generalized Fermat 1539f 1093*2^3715306+1 1118422 L5226 2025 1540 340623306^131072+1 1118343 L6263 2025 Generalized Fermat 1541 340569992^131072+1 1118334 L4387 2025 Generalized Fermat 1542 340505972^131072+1 1118323 L6262 2025 Generalized Fermat 1543 340054480^131072+1 1118248 L6261 2025 Generalized Fermat 1544 339945476^131072+1 1118229 L4387 2025 Generalized Fermat 1545 339584204^131072+1 1118169 L4387 2025 Generalized Fermat 1546 339503122^131072+1 1118155 L4387 2025 Generalized Fermat 1547 339477102^131072+1 1118151 L4387 2025 Generalized Fermat 1548 339175788^131072+1 1118100 L4387 2025 Generalized Fermat 1549 339137184^131072+1 1118094 L5697 2025 Generalized Fermat 1550 338934862^131072+1 1118060 L4201 2025 Generalized Fermat 1551 338918848^131072+1 1118057 L5974 2025 Generalized Fermat 1552 338800734^131072+1 1118037 L6073 2025 Generalized Fermat 1553 338188646^131072+1 1117934 L4387 2025 Generalized Fermat 1554 337982668^131072+1 1117900 L4387 2025 Generalized Fermat 1555 337667556^131072+1 1117847 L6260 2025 Generalized Fermat 1556f 779*2^3713283+1 1117813 L5980 2025 1557 337377976^131072+1 1117798 L6259 2025 Generalized Fermat 1558 337239448^131072+1 1117774 L4387 2025 Generalized Fermat 1559 336909928^131072+1 1117719 L6256 2025 Generalized Fermat 1560 367*2^3712952+1 1117713 L5264 2022 1561 336776604^131072+1 1117696 L6080 2025 Generalized Fermat 1562 336659214^131072+1 1117676 L5467 2025 Generalized Fermat 1563 336511772^131072+1 1117651 L4387 2025 Generalized Fermat 1564f 1005*2^3712712+1 1117641 L5226 2025 1565 336225072^131072+1 1117603 L4387 2025 Generalized Fermat 1566 336163680^131072+1 1117593 L4387 2025 Generalized Fermat 1567 336061324^131072+1 1117575 L4387 2025 Generalized Fermat 1568 335827642^131072+1 1117536 L4201 2025 Generalized Fermat 1569 335774748^131072+1 1117527 L5697 2025 Generalized Fermat 1570 335651494^131072+1 1117506 L4387 2025 Generalized Fermat 1571 335493020^131072+1 1117479 L4387 2025 Generalized Fermat 1572 335369868^131072+1 1117458 L4387 2025 Generalized Fermat 1573 334704486^131072+1 1117345 L4387 2025 Generalized Fermat 1574 333992848^131072+1 1117224 L5639 2025 Generalized Fermat 1575 333867048^131072+1 1117202 L4387 2025 Generalized Fermat 1576 333848570^131072+1 1117199 L4387 2025 Generalized Fermat 1577 333782588^131072+1 1117188 L4387 2025 Generalized Fermat 1578 333605722^131072+1 1117158 L6237 2025 Generalized Fermat 1579 333589186^131072+1 1117155 L4387 2025 Generalized Fermat 1580 333291568^131072+1 1117104 L5697 2025 Generalized Fermat 1581 332896652^131072+1 1117037 L4387 2025 Generalized Fermat 1582 332642368^131072+1 1116993 L5639 2025 Generalized Fermat 1583 332518718^131072+1 1116972 L5639 2025 Generalized Fermat 1584 332328704^131072+1 1116939 L5767 2025 Generalized Fermat 1585 332234952^131072+1 1116923 L4387 2025 Generalized Fermat 1586 331873856^131072+1 1116861 L5639 2025 Generalized Fermat 1587 331689568^131072+1 1116830 L4201 2025 Generalized Fermat 1588 331213936^131072+1 1116748 L5416 2025 Generalized Fermat 1589 331012838^131072+1 1116714 L4899 2025 Generalized Fermat 1590 330733978^131072+1 1116666 L6036 2025 Generalized Fermat 1591 330629260^131072+1 1116648 L5606 2025 Generalized Fermat 1592 53*2^3709297+1 1116612 L5197 2022 1593 329898286^131072+1 1116522 L6252 2025 Generalized Fermat 1594f 861*2^3708816+1 1116468 L5226 2025 1595 329482500^131072+1 1116450 L4387 2025 Generalized Fermat 1596 329433542^131072+1 1116441 L4201 2025 Generalized Fermat 1597 329320574^131072+1 1116422 L5696 2025 Generalized Fermat 1598 329310030^131072+1 1116420 L4201 2025 Generalized Fermat 1599 329136932^131072+1 1116390 L4892 2025 Generalized Fermat 1600 328941060^131072+1 1116356 L5974 2025 Generalized Fermat 1601 328110906^131072+1 1116212 L4387 2025 Generalized Fermat 1602 328048726^131072+1 1116202 L6250 2025 Generalized Fermat 1603 328036906^131072+1 1116200 L4201 2025 Generalized Fermat 1604 327703514^131072+1 1116142 L5974 2025 Generalized Fermat 1605 327549800^131072+1 1116115 L6129 2025 Generalized Fermat 1606 327476480^131072+1 1116102 L4201 2025 Generalized Fermat 1607 327239720^131072+1 1116061 L4984 2025 Generalized Fermat 1608f 1163*2^3707397+1 1116041 L5161 2025 1609 326302488^131072+1 1115898 L5722 2025 Generalized Fermat 1610 326104126^131072+1 1115863 L4684 2025 Generalized Fermat 1611 325957720^131072+1 1115838 L5186 2025 Generalized Fermat 1612 325927678^131072+1 1115832 L6245 2025 Generalized Fermat 1613 325913944^131072+1 1115830 L4387 2025 Generalized Fermat 1614 325084378^131072+1 1115685 L4201 2025 Generalized Fermat 1615 325043708^131072+1 1115678 L4201 2025 Generalized Fermat 1616 324844530^131072+1 1115643 L4939 2025 Generalized Fermat 1617 324830528^131072+1 1115640 L4599 2025 Generalized Fermat 1618 324563740^131072+1 1115594 L5639 2025 Generalized Fermat 1619 324342882^131072+1 1115555 L4201 2025 Generalized Fermat 1620 323718292^131072+1 1115445 L4201 2025 Generalized Fermat 1621 323626506^131072+1 1115429 L4201 2025 Generalized Fermat 1622 323033558^131072+1 1115325 L6073 2025 Generalized Fermat 1623 322955442^131072+1 1115311 L5767 2025 Generalized Fermat 1624 322525546^131072+1 1115235 L4201 2025 Generalized Fermat 1625 322451080^131072+1 1115222 L5452 2025 Generalized Fermat 1626 322434876^131072+1 1115219 L4201 2025 Generalized Fermat 1627 322396080^131072+1 1115212 L6237 2025 Generalized Fermat 1628 322011364^131072+1 1115144 L4201 2025 Generalized Fermat 1629 321847328^131072+1 1115115 L4387 2025 Generalized Fermat 1630 321745654^131072+1 1115097 L4201 2025 Generalized Fermat 1631 321738090^131072+1 1115096 L4760 2025 Generalized Fermat 1632 321725062^131072+1 1115094 L6090 2025 Generalized Fermat 1633 321586916^131072+1 1115069 L4201 2025 Generalized Fermat 1634 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39, generalized unique 1635 321054002^131072+1 1114975 L6092 2025 Generalized Fermat 1636 320959460^131072+1 1114958 L4774 2025 Generalized Fermat 1637 320925816^131072+1 1114952 L6229 2025 Generalized Fermat 1638 320693846^131072+1 1114911 L6230 2025 Generalized Fermat 1639 320244692^131072+1 1114831 L6227 2025 Generalized Fermat 1640 319727682^131072+1 1114739 L4477 2025 Generalized Fermat 1641 319569620^131072+1 1114711 L5156 2025 Generalized Fermat 1642 319473204^131072+1 1114694 L6085 2025 Generalized Fermat 1643 319461008^131072+1 1114692 L4760 2025 Generalized Fermat 1644 317844906^131072+1 1114403 L5069 2025 Generalized Fermat 1645 317488260^131072+1 1114339 L5069 2025 Generalized Fermat 1646 395*2^3701693+1 1114324 L5536 2022 1647 317365236^131072+1 1114317 L6036 2025 Generalized Fermat 1648 317303160^131072+1 1114306 L5707 2025 Generalized Fermat 1649 317185514^131072+1 1114285 L4201 2025 Generalized Fermat 1650 317005818^131072+1 1114252 L5069 2025 Generalized Fermat 1651 316699096^131072+1 1114197 L5234 2025 Generalized Fermat 1652 316650634^131072+1 1114189 L5698 2025 Generalized Fermat 1653 316586358^131072+1 1114177 L4747 2025 Generalized Fermat 1654 316525620^131072+1 1114166 L4835 2025 Generalized Fermat 1655 316291718^131072+1 1114124 L4835 2025 Generalized Fermat 1656 315974676^131072+1 1114067 L5069 2025 Generalized Fermat 1657 315889316^131072+1 1114052 L5234 2025 Generalized Fermat 1658 315747878^131072+1 1114026 L5989 2025 Generalized Fermat 1659 315608702^131072+1 1114001 L5577 2025 Generalized Fermat 1660 315329034^131072+1 1113950 L5378 2025 Generalized Fermat 1661 315314084^131072+1 1113948 L5718 2025 Generalized Fermat 1662 315134738^131072+1 1113915 L5697 2025 Generalized Fermat 1663 314548296^131072+1 1113809 L4774 2025 Generalized Fermat 1664 314518672^131072+1 1113804 L5720 2025 Generalized Fermat 1665 589*2^3699954+1 1113800 L5576 2022 1666 314283852^131072+1 1113761 L6220 2025 Generalized Fermat 1667 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 1668 313957156^131072+1 1113702 L4201 2025 Generalized Fermat 1669 313807832^131072+1 1113675 L4309 2025 Generalized Fermat 1670 313698494^131072+1 1113655 L4791 2025 Generalized Fermat 1671 313043470^131072+1 1113536 L4870 2025 Generalized Fermat 1672f 889*2^3699050+1 1113528 L5161 2025 1673 312959344^131072+1 1113521 L5989 2025 Generalized Fermat 1674 312907040^131072+1 1113512 L4835 2025 Generalized Fermat 1675 312372774^131072+1 1113414 L5732 2025 Generalized Fermat 1676 312306760^131072+1 1113402 L5782 2025 Generalized Fermat 1677 119*2^3698412-1 1113336 L2484 2018 1678f 1169*2^3698399+1 1113333 L5226 2025 1679 311769070^131072+1 1113304 L5378 2025 Generalized Fermat 1680 311345600^131072+1 1113227 L4201 2025 Generalized Fermat 1681 311340274^131072+1 1113226 L5234 2025 Generalized Fermat 1682 311041040^131072+1 1113171 L5974 2025 Generalized Fermat 1683 310877094^131072+1 1113141 L5378 2025 Generalized Fermat 1684f 1189*2^3697618+1 1113098 L5517 2025 1685 310324620^131072+1 1113040 L5069 2025 Generalized Fermat 1686 310092052^131072+1 1112997 L4201 2025 Generalized Fermat 1687 310040910^131072+1 1112988 L5989 2025 Generalized Fermat 1688 310039364^131072+1 1112987 L5452 2025 Generalized Fermat 1689 309765652^131072+1 1112937 L5069 2025 Generalized Fermat 1690 309739652^131072+1 1112932 L4201 2025 Generalized Fermat 1691 309664690^131072+1 1112919 L4904 2025 Generalized Fermat 1692 309512820^131072+1 1112891 L4672 2025 Generalized Fermat 1693 309489574^131072+1 1112886 L4285 2025 Generalized Fermat 1694 309442124^131072+1 1112878 L4763 2025 Generalized Fermat 1695 309322056^131072+1 1112856 L5763 2025 Generalized Fermat 1696 309290162^131072+1 1112850 L4984 2025 Generalized Fermat 1697 309274552^131072+1 1112847 L4870 2025 Generalized Fermat 1698 309198216^131072+1 1112833 L6220 2025 Generalized Fermat 1699 309023380^131072+1 1112801 L5586 2025 Generalized Fermat 1700 308604278^131072+1 1112723 L5814 2025 Generalized Fermat 1701 308406372^131072+1 1112687 L5069 2025 Generalized Fermat 1702 308191838^131072+1 1112647 L4411 2025 Generalized Fermat 1703 308154186^131072+1 1112640 L4672 2025 Generalized Fermat 1704 308065536^131072+1 1112624 L5617 2025 Generalized Fermat 1705 307819786^131072+1 1112579 L4733 2025 Generalized Fermat 1706 307711366^131072+1 1112558 L5375 2025 Generalized Fermat 1707 307525070^131072+1 1112524 L5234 2025 Generalized Fermat 1708 307305996^131072+1 1112483 L5871 2025 Generalized Fermat 1709 307211976^131072+1 1112466 L5234 2025 Generalized Fermat 1710 306999614^131072+1 1112427 L6215 2025 Generalized Fermat 1711 306293130^131072+1 1112295 L4252 2025 Generalized Fermat 1712 306021044^131072+1 1112245 L5029 2025 Generalized Fermat 1713 305985812^131072+1 1112238 L4672 2025 Generalized Fermat 1714 305909498^131072+1 1112224 L5869 2025 Generalized Fermat 1715 305710338^131072+1 1112187 L5155 2025 Generalized Fermat 1716 305485026^131072+1 1112145 L6217 2025 Generalized Fermat 1717 305470708^131072+1 1112142 L4245 2025 Generalized Fermat 1718 305377046^131072+1 1112125 L4775 2025 Generalized Fermat 1719 305014830^131072+1 1112057 L5041 2025 Generalized Fermat 1720 304591806^131072+1 1111978 L5069 2025 Generalized Fermat 1721 391*2^3693728+1 1111926 L5493 2022 1722 303660042^131072+1 1111804 L5548 2025 Generalized Fermat 1723 303569754^131072+1 1111787 L5041 2025 Generalized Fermat 1724 303297636^131072+1 1111736 L5069 2025 Generalized Fermat 1725 303057534^131072+1 1111691 L5797 2025 Generalized Fermat 1726 302824086^131072+1 1111647 L4252 2025 Generalized Fermat 1727 302491876^131072+1 1111585 L5273 2025 Generalized Fermat 1728 302240442^131072+1 1111537 L5375 2025 Generalized Fermat 1729 302186970^131072+1 1111527 L5030 2025 Generalized Fermat 1730 302150100^131072+1 1111520 L5586 2025 Generalized Fermat 1731 301715144^131072+1 1111438 L5234 2025 Generalized Fermat 1732 301702734^131072+1 1111436 L6205 2025 Generalized Fermat 1733 301006780^131072+1 1111304 L5375 2025 Generalized Fermat 1734 300951448^131072+1 1111294 L6092 2025 Generalized Fermat 1735 300789064^131072+1 1111263 L5041 2025 Generalized Fermat 1736 300359914^131072+1 1111182 L6207 2025 Generalized Fermat 1737 1089049*2^3691010+1 1111111 A51 2024 1738 299617962^131072+1 1111041 L6170 2025 Generalized Fermat 1739 299465954^131072+1 1111012 L5378 2025 Generalized Fermat 1740 299453316^131072+1 1111010 L6207 2025 Generalized Fermat 1741 299319324^131072+1 1110984 L5378 2025 Generalized Fermat 1742 298464340^131072+1 1110822 L5019 2025 Generalized Fermat 1743 298459970^131072+1 1110821 L4477 2025 Generalized Fermat 1744 297844594^131072+1 1110703 L5029 2025 Generalized Fermat 1745 297797756^131072+1 1110694 L6096 2025 Generalized Fermat 1746 297561734^131072+1 1110649 L5070 2025 Generalized Fermat 1747 297347764^131072+1 1110608 L4201 2025 Generalized Fermat 1748 297200042^131072+1 1110580 L5143 2025 Generalized Fermat 1749 296855808^131072+1 1110514 L6205 2025 Generalized Fermat 1750f 879*2^3688853+1 1110459 L5161 2025 1751 296366230^131072+1 1110420 L6019 2025 Generalized Fermat 1752 296322752^131072+1 1110412 L5462 2025 Generalized Fermat 1753 296139756^131072+1 1110377 L5696 2025 Generalized Fermat 1754 296013472^131072+1 1110352 L5156 2025 Generalized Fermat 1755 295817758^131072+1 1110315 L5974 2025 Generalized Fermat 1756 485*2^3688111+1 1110235 L5237 2022 1757 295265516^131072+1 1110208 L5391 2025 Generalized Fermat 1758 295158064^131072+1 1110188 L4201 2025 Generalized Fermat 1759 295116084^131072+1 1110179 L6202 2025 Generalized Fermat 1760 295038452^131072+1 1110164 L6201 2025 Generalized Fermat 1761 294901286^131072+1 1110138 L5880 2025 Generalized Fermat 1762 294581562^131072+1 1110076 L4933 2025 Generalized Fermat 1763 294287308^131072+1 1110019 L5029 2025 Generalized Fermat 1764 294282868^131072+1 1110018 L5069 2025 Generalized Fermat 1765 293950920^131072+1 1109954 L5019 2025 Generalized Fermat 1766 293846126^131072+1 1109934 L4387 2025 Generalized Fermat 1767 293634610^131072+1 1109893 L4659 2025 Generalized Fermat 1768 293593596^131072+1 1109885 L5457 2025 Generalized Fermat 1769 293229954^131072+1 1109814 L5069 2025 Generalized Fermat 1770 341*2^3686613+1 1109784 L5573 2022 1771 87*2^3686558+1 1109767 L5573 2022 1772 292906440^131072+1 1109752 L5069 2025 Generalized Fermat 1773 292462072^131072+1 1109665 L5586 2025 Generalized Fermat 1774f 965*2^3685969+1 1109591 L5161 2025 1775 291939158^131072+1 1109563 L5586 2025 Generalized Fermat 1776 291644784^131072+1 1109506 L4201 2025 Generalized Fermat 1777 291616626^131072+1 1109500 L5676 2025 Generalized Fermat 1778 291515852^131072+1 1109481 L5697 2025 Generalized Fermat 1779 291463322^131072+1 1109470 L5025 2025 Generalized Fermat 1780 291165334^131072+1 1109412 L5637 2025 Generalized Fermat 1781 290922092^131072+1 1109365 L5069 2025 Generalized Fermat 1782 290470932^131072+1 1109276 L5069 2025 Generalized Fermat 1783 290470146^131072+1 1109276 L5069 2025 Generalized Fermat 1784 290289574^131072+1 1109241 L5586 2025 Generalized Fermat 1785 290289300^131072+1 1109241 L5491 2025 Generalized Fermat 1786 290203860^131072+1 1109224 L4835 2025 Generalized Fermat 1787 290075834^131072+1 1109199 L5234 2025 Generalized Fermat 1788 289805958^131072+1 1109146 L5234 2025 Generalized Fermat 1789 289390778^131072+1 1109064 L5639 2025 Generalized Fermat 1790f 877*2^3684190+1 1109055 L6013 2025 1791 289176522^131072+1 1109022 L5041 2025 Generalized Fermat 1792 288601570^131072+1 1108909 L6189 2025 Generalized Fermat 1793 288168976^131072+1 1108823 L6187 2025 Generalized Fermat 1794 287625360^131072+1 1108716 L4747 2025 Generalized Fermat 1795 675*2^3682616+1 1108581 L5231 2022 1796 286460772^131072+1 1108485 L5069 2025 Generalized Fermat 1797 286434328^131072+1 1108480 L4904 2025 Generalized Fermat 1798 569*2^3682167+1 1108446 L5488 2022 1799 285803202^131072+1 1108354 L5473 2025 Generalized Fermat 1800 285447574^131072+1 1108283 L5586 2025 Generalized Fermat 1801 285446536^131072+1 1108283 L5687 2025 Generalized Fermat 1802 284918308^131072+1 1108178 L4201 2025 Generalized Fermat 1803 284831742^131072+1 1108160 L6085 2025 Generalized Fermat 1804 284805838^131072+1 1108155 L5025 2025 Generalized Fermat 1805 284753240^131072+1 1108145 L6185 2025 Generalized Fermat 1806 284745724^131072+1 1108143 L5869 2025 Generalized Fermat 1807e 57*2^3681002-1 1108094 A78 2025 1808 284001924^131072+1 1107994 L5416 2025 Generalized Fermat 1809 283824490^131072+1 1107959 L5470 2025 Generalized Fermat 1810 283699626^131072+1 1107934 L5234 2025 Generalized Fermat 1811 283216606^131072+1 1107837 L5711 2025 Generalized Fermat 1812f 765*2^3680091+1 1107821 L6280 2025 1813 282839136^131072+1 1107761 L4756 2025 Generalized Fermat 1814 281755198^131072+1 1107542 L5234 2025 Generalized Fermat 1815 281635050^131072+1 1107518 L5697 2025 Generalized Fermat 1816 330286*5^1584399-1 1107453 L3523 2014 1817 281238556^131072+1 1107438 L5041 2025 Generalized Fermat 1818 281131678^131072+1 1107416 L4584 2025 Generalized Fermat 1819 34*951^371834-1 1107391 L5410 2019 1820 280984376^131072+1 1107386 L5844 2025 Generalized Fermat 1821 280877312^131072+1 1107364 L6178 2025 Generalized Fermat 1822 280515348^131072+1 1107291 L5029 2025 Generalized Fermat 1823 280391126^131072+1 1107266 L5011 2025 Generalized Fermat 1824 280207586^131072+1 1107229 L5322 2025 Generalized Fermat 1825 279991058^131072+1 1107185 L5526 2025 Generalized Fermat 1826 279987304^131072+1 1107184 L5974 2025 Generalized Fermat 1827 279919024^131072+1 1107170 L4672 2025 Generalized Fermat 1828 45*2^3677787+1 1107126 L1204 2019 1829 279594222^131072+1 1107104 L5814 2025 Generalized Fermat 1830 279533226^131072+1 1107091 L6176 2025 Generalized Fermat 1831 279393398^131072+1 1107063 L5637 2025 Generalized Fermat 1832 279257150^131072+1 1107035 L6177 2025 Generalized Fermat 1833 278715552^131072+1 1106925 L6129 2025 Generalized Fermat 1834 278620322^131072+1 1106905 L5069 2025 Generalized Fermat 1835 278619282^131072+1 1106905 L5378 2025 Generalized Fermat 1836 278524906^131072+1 1106886 L4249 2025 Generalized Fermat 1837 278507178^131072+1 1106882 L5682 2025 Generalized Fermat 1838 278237250^131072+1 1106827 L6182 2025 Generalized Fermat 1839 278204564^131072+1 1106820 L5948 2025 Generalized Fermat 1840 278190840^131072+1 1106817 L6183 2025 Generalized Fermat 1841 277919980^131072+1 1106762 L5974 2025 Generalized Fermat 1842 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 1843 277256590^131072+1 1106626 L6170 2025 Generalized Fermat 1844 277085600^131072+1 1106591 L5974 2025 Generalized Fermat 1845 276836574^131072+1 1106540 L4760 2025 Generalized Fermat 1846 276775868^131072+1 1106527 L5549 2025 Generalized Fermat 1847 276740330^131072+1 1106520 L6166 2025 Generalized Fermat 1848 276607388^131072+1 1106492 L5782 2025 Generalized Fermat 1849 276446036^131072+1 1106459 L5011 2025 Generalized Fermat 1850 276329786^131072+1 1106435 L5718 2025 Generalized Fermat 1851 13*2^3675223-1 1106354 L1862 2016 1852 275170262^131072+1 1106196 L5378 2025 Generalized Fermat 1853 274919976^131072+1 1106144 L5378 2025 Generalized Fermat 1854 274816000^131072+1 1106123 L6163 2025 Generalized Fermat 1855 274753140^131072+1 1106110 L5974 2025 Generalized Fermat 1856 274535798^131072+1 1106065 L5816 2025 Generalized Fermat 1857 274280236^131072+1 1106012 L5070 2025 Generalized Fermat 1858 273579644^131072+1 1105866 L6129 2025 Generalized Fermat 1859 273503630^131072+1 1105850 L4309 2025 Generalized Fermat 1860 273438512^131072+1 1105837 L5718 2025 Generalized Fermat 1861 273327598^131072+1 1105813 L5512 2025 Generalized Fermat 1862 273306974^131072+1 1105809 L4892 2025 Generalized Fermat 1863 273272188^131072+1 1105802 L5543 2025 Generalized Fermat 1864 273237906^131072+1 1105795 L6159 2025 Generalized Fermat 1865 273140040^131072+1 1105774 L4210 2025 Generalized Fermat 1866 273036074^131072+1 1105753 L5069 2025 Generalized Fermat 1867 272998912^131072+1 1105745 L4245 2025 Generalized Fermat 1868f 947*2^3673183+1 1105742 L5614 2025 1869 272788310^131072+1 1105701 L4720 2025 Generalized Fermat 1870 272041540^131072+1 1105545 L5069 2025 Generalized Fermat 1871 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 1872 271370312^131072+1 1105404 L4591 2025 Generalized Fermat 1873 271135152^131072+1 1105355 L5718 2025 Generalized Fermat 1874 270979532^131072+1 1105322 L5639 2025 Generalized Fermat 1875 270832760^131072+1 1105292 L5027 2025 Generalized Fermat 1876 270822160^131072+1 1105289 L4726 2025 Generalized Fermat 1877 270789102^131072+1 1105282 L5051 2025 Generalized Fermat 1878 270682284^131072+1 1105260 L6129 2025 Generalized Fermat 1879 270581690^131072+1 1105239 L4870 2025 Generalized Fermat 1880 270284868^131072+1 1105176 L5027 2025 Generalized Fermat 1881 463*2^3671262+1 1105163 L5524 2022 1882 269993492^131072+1 1105115 L6129 2025 Generalized Fermat 1883 735*2^3670991+1 1105082 L5575 2022 1884 269812742^131072+1 1105077 L6129 2025 Generalized Fermat 1885 268685690^131072+1 1104838 L4898 2025 Generalized Fermat 1886 475*2^3670046+1 1104797 L5524 2022 1887 267783532^131072+1 1104647 L5974 2025 Generalized Fermat 1888 267768162^131072+1 1104644 L5974 2025 Generalized Fermat 1889 267416848^131072+1 1104569 L5707 2025 Generalized Fermat 1890 267414744^131072+1 1104569 L5771 2025 Generalized Fermat 1891 266639610^131072+1 1104403 L5069 2025 Generalized Fermat 1892 266330322^131072+1 1104337 L5707 2025 Generalized Fermat 1893 266249522^131072+1 1104320 L5069 2025 Generalized Fermat 1894 15*2^3668194-1 1104238 L3665 2013 1895 265866252^131072+1 1104238 L4591 2025 Generalized Fermat 1896 265837862^131072+1 1104232 L5069 2025 Generalized Fermat 1897 265643056^131072+1 1104190 L5069 2025 Generalized Fermat 1898 265621592^131072+1 1104186 L4201 2025 Generalized Fermat 1899 265478490^131072+1 1104155 L5069 2025 Generalized Fermat 1900 264860372^131072+1 1104022 L5639 2025 Generalized Fermat 1901 264624458^131072+1 1103971 L5416 2025 Generalized Fermat 1902 264541844^131072+1 1103954 L5332 2025 Generalized Fermat 1903 264360218^131072+1 1103915 L4875 2025 Generalized Fermat 1904 264269230^131072+1 1103895 L5526 2025 Generalized Fermat 1905 263861882^131072+1 1103807 L5639 2025 Generalized Fermat 1906 263506158^131072+1 1103730 L6102 2025 Generalized Fermat 1907 262824942^131072+1 1103583 L5586 2025 Generalized Fermat 1908 262754910^131072+1 1103568 L4774 2025 Generalized Fermat 1909 262470710^131072+1 1103506 L5974 2025 Generalized Fermat 1910 273*2^3665736+1 1103499 L5192 2022 1911 262298138^131072+1 1103469 L5864 2025 Generalized Fermat 1912 262041482^131072+1 1103413 L5457 2025 Generalized Fermat 1913 262005898^131072+1 1103405 L4774 2025 Generalized Fermat 1914 261858724^131072+1 1103373 L5639 2025 Generalized Fermat 1915 261114224^131072+1 1103211 L4939 2025 Generalized Fermat 1916 13*2^3664703-1 1103187 L1862 2016 1917 1486*165^497431+1 1103049 A11 2024 1918 260265300^131072+1 1103026 L5586 2024 Generalized Fermat 1919 260050122^131072+1 1102979 L5586 2024 Generalized Fermat 1920 259881684^131072+1 1102942 L4245 2024 Generalized Fermat 1921 259576262^131072+1 1102875 L4672 2024 Generalized Fermat 1922 250*859^375877+1 1102823 A11 2025 1923 406515^196608-406515^98304+1 1102790 L4506 2016 Generalized unique 1924 259130312^131072+1 1102777 L5156 2024 Generalized Fermat 1925 259042144^131072+1 1102758 L5457 2024 Generalized Fermat 1926f 111*2^3663234-1 1102746 A76 2025 1927 609*2^3662931+1 1102655 L5573 2022 1928 258337266^131072+1 1102603 L5457 2024 Generalized Fermat 1929 258336436^131072+1 1102602 L5586 2024 Generalized Fermat 1930 258197916^131072+1 1102572 L5473 2024 Generalized Fermat 1931 258109576^131072+1 1102552 L4672 2024 Generalized Fermat 1932 257401382^131072+1 1102396 L5586 2024 Generalized Fermat 1933 257047620^131072+1 1102318 L4892 2024 Generalized Fermat 1934 256963326^131072+1 1102299 L6093 2024 Generalized Fermat 1935 256943534^131072+1 1102295 L4892 2024 Generalized Fermat 1936 256089378^131072+1 1102105 L4892 2024 Generalized Fermat 1937 255856074^131072+1 1102053 L4747 2024 Generalized Fermat 1938 255812078^131072+1 1102044 L6091 2024 Generalized Fermat 1939 255666546^131072+1 1102011 L6092 2024 Generalized Fermat 1940 255648100^131072+1 1102007 L4245 2024 Generalized Fermat 1941 255555468^131072+1 1101986 L5639 2024 Generalized Fermat 1942 255339392^131072+1 1101938 L5707 2024 Generalized Fermat 1943 255189240^131072+1 1101905 L5782 2024 Generalized Fermat 1944 254954350^131072+1 1101852 L5467 2024 Generalized Fermat 1945 254731916^131072+1 1101803 L6090 2024 Generalized Fermat 1946 254713668^131072+1 1101799 L5782 2024 Generalized Fermat 1947 254450722^131072+1 1101740 L5620 2024 Generalized Fermat 1948 254193678^131072+1 1101682 L5634 2024 Generalized Fermat 1949 253875014^131072+1 1101611 L5707 2024 Generalized Fermat 1950 253866454^131072+1 1101609 L5457 2024 Generalized Fermat 1951 253210808^131072+1 1101462 L4968 2024 Generalized Fermat 1952 252934920^131072+1 1101400 L6036 2024 Generalized Fermat 1953 252637312^131072+1 1101333 L5526 2024 Generalized Fermat 1954 252545864^131072+1 1101312 L5467 2024 Generalized Fermat 1955 252369374^131072+1 1101272 L5452 2024 Generalized Fermat 1956 252171992^131072+1 1101228 L5639 2024 Generalized Fermat 1957 251361006^131072+1 1101044 L5127 2024 Generalized Fermat 1958 251085988^131072+1 1100982 L4201 2024 Generalized Fermat 1959 250775680^131072+1 1100912 L6073 2024 Generalized Fermat 1960 249754922^131072+1 1100679 L4898 2024 Generalized Fermat 1961 249751100^131072+1 1100679 L6088 2024 Generalized Fermat 1962 249735514^131072+1 1100675 L4201 2024 Generalized Fermat 1963 249634320^131072+1 1100652 L6087 2024 Generalized Fermat 1964 118*892^373012+1 1100524 L5071 2020 1965 248934378^131072+1 1100492 L5974 2024 Generalized Fermat 1966 248857694^131072+1 1100475 L6086 2024 Generalized Fermat 1967 248820272^131072+1 1100466 L5768 2024 Generalized Fermat 1968 248632632^131072+1 1100423 L5416 2024 Generalized Fermat 1969 248621940^131072+1 1100421 L5051 2024 Generalized Fermat 1970 248617468^131072+1 1100420 L5416 2024 Generalized Fermat 1971 33300*430^417849-1 1100397 L4393 2016 1972 247389350^131072+1 1100138 L6085 2024 Generalized Fermat 1973 247342010^131072+1 1100127 L6073 2024 Generalized Fermat 1974 247145256^131072+1 1100082 L4939 2024 Generalized Fermat 1975 246980946^131072+1 1100044 L4249 2024 Generalized Fermat 1976 246952054^131072+1 1100037 L6084 2024 Generalized Fermat 1977 246943520^131072+1 1100035 L5746 2024 Generalized Fermat 1978 (2^2976221-1)*(10^204068-1172064)+1 1100000 p449 2024 1979 246677978^131072+1 1099974 L5512 2024 Generalized Fermat 1980 246634478^131072+1 1099964 L5117 2024 Generalized Fermat 1981f 1175*2^3653893+1 1099935 L6243 2025 1982 246394910^131072+1 1099908 L6038 2024 Generalized Fermat 1983 246207020^131072+1 1099865 L5606 2024 Generalized Fermat 1984 246012578^131072+1 1099820 L5606 2024 Generalized Fermat 1985 245507802^131072+1 1099703 L5606 2024 Generalized Fermat 1986 245461196^131072+1 1099692 L6078 2024 Generalized Fermat 1987 655*2^3653008+1 1099668 L5574 2022 1988 244873604^131072+1 1099556 L6076 2024 Generalized Fermat 1989 244660242^131072+1 1099506 L6038 2024 Generalized Fermat 1990 244342390^131072+1 1099432 L5416 2024 Generalized Fermat 1991 244202408^131072+1 1099400 L4371 2024 Generalized Fermat 1992 291*268^452750-1 1099341 L5410 2022 1993 243786926^131072+1 1099303 L6073 2024 Generalized Fermat 1994 243427990^131072+1 1099219 L4892 2024 Generalized Fermat 1995 242973858^131072+1 1099113 L6072 2024 Generalized Fermat 1996 242950108^131072+1 1099107 L4387 2024 Generalized Fermat 1997 242933064^131072+1 1099103 L5782 2024 Generalized Fermat 1998 242926826^131072+1 1099102 L5826 2024 Generalized Fermat 1999 242855212^131072+1 1099085 L4591 2024 Generalized Fermat 2000 242494358^131072+1 1099000 L5416 2024 Generalized Fermat 2001 242295536^131072+1 1098953 L5205 2024 Generalized Fermat 2002 242161196^131072+1 1098922 L6070 2024 Generalized Fermat 2003 241765100^131072+1 1098829 L6067 2024 Generalized Fermat 2004 241550882^131072+1 1098778 L6065 2024 Generalized Fermat 2005f 869*2^3650049+1 1098778 L5161 2025 2006 241438172^131072+1 1098752 L4591 2024 Generalized Fermat 2007 241338084^131072+1 1098728 L4591 2024 Generalized Fermat 2008 241249426^131072+1 1098707 L5526 2024 Generalized Fermat 2009 33*2^3649810+1 1098704 L4958 2019 2010 241151312^131072+1 1098684 L4387 2024 Generalized Fermat 2011 241000970^131072+1 1098648 L5707 2024 Generalized Fermat 2012 240966866^131072+1 1098640 L4559 2024 Generalized Fermat 2013 240965802^131072+1 1098640 L6058 2024 Generalized Fermat 2014 240910640^131072+1 1098627 L5101 2024 Generalized Fermat 2015 240856112^131072+1 1098614 L4875 2024 Generalized Fermat 2016 240307734^131072+1 1098484 L4249 2024 Generalized Fermat 2017 240190808^131072+1 1098457 L5056 2024 Generalized Fermat 2018 239927858^131072+1 1098394 L4477 2024 Generalized Fermat 2019 239545562^131072+1 1098304 L4591 2024 Generalized Fermat 2020 239520486^131072+1 1098298 L5634 2024 Generalized Fermat 2021 262614*5^1571158-1 1098198 A11 2025 2022 238968056^131072+1 1098166 L4477 2024 Generalized Fermat 2023 238871106^131072+1 1098143 L6058 2024 Generalized Fermat 2024 238852190^131072+1 1098139 L5526 2024 Generalized Fermat 2025 238698190^131072+1 1098102 L5077 2024 Generalized Fermat 2026 238653710^131072+1 1098091 L6057 2024 Generalized Fermat 2027 238627390^131072+1 1098085 L5871 2024 Generalized Fermat 2028 238438430^131072+1 1098040 L5707 2024 Generalized Fermat 2029 238381768^131072+1 1098026 L5707 2024 Generalized Fermat 2030 238193230^131072+1 1097981 L4201 2024 Generalized Fermat 2031 238168282^131072+1 1097975 L4201 2024 Generalized Fermat 2032 238109742^131072+1 1097961 L4559 2024 Generalized Fermat 2033 237601644^131072+1 1097840 L5782 2024 Generalized Fermat 2034 237260908^131072+1 1097758 L4201 2024 Generalized Fermat 2035 237185928^131072+1 1097740 L5755 2024 Generalized Fermat 2036 237108488^131072+1 1097722 L5639 2024 Generalized Fermat 2037 236924362^131072+1 1097677 L5639 2024 Generalized Fermat 2038 236602468^131072+1 1097600 L6038 2024 Generalized Fermat 2039 236500052^131072+1 1097575 L5198 2024 Generalized Fermat 2040 236417078^131072+1 1097555 L5588 2024 Generalized Fermat 2041 236278180^131072+1 1097522 L5416 2024 Generalized Fermat 2042 236240868^131072+1 1097513 L6038 2024 Generalized Fermat 2043 235947986^131072+1 1097442 L4201 2024 Generalized Fermat 2044 235577802^131072+1 1097353 L5077 2024 Generalized Fermat 2045 235566676^131072+1 1097350 L5416 2024 Generalized Fermat 2046 235108160^131072+1 1097239 L4898 2024 Generalized Fermat 2047 234962380^131072+1 1097204 L4201 2024 Generalized Fermat 2048 234806100^131072+1 1097166 L5088 2024 Generalized Fermat 2049 234661134^131072+1 1097131 L5416 2024 Generalized Fermat 2050 234566344^131072+1 1097108 L5974 2024 Generalized Fermat 2051 234523400^131072+1 1097098 L4201 2024 Generalized Fermat 2052 234385314^131072+1 1097064 L4285 2024 Generalized Fermat 2053 234307964^131072+1 1097045 L4559 2024 Generalized Fermat 2054 234291722^131072+1 1097041 L4999 2024 Generalized Fermat 2055 233937376^131072+1 1096955 L6044 2024 Generalized Fermat 2056 233903532^131072+1 1096947 L4559 2024 Generalized Fermat 2057 233559012^131072+1 1096863 L5416 2024 Generalized Fermat 2058 233447012^131072+1 1096836 L4477 2024 Generalized Fermat 2059 233349574^131072+1 1096812 L5432 2024 Generalized Fermat 2060 233034976^131072+1 1096735 L5101 2024 Generalized Fermat 2061 232796676^131072+1 1096677 L6040 2024 Generalized Fermat 2062 232485778^131072+1 1096601 L4477 2024 Generalized Fermat 2063 232050760^131072+1 1096494 L5782 2024 Generalized Fermat 2064 295*2^3642206+1 1096416 L5161 2022 2065 231583998^131072+1 1096380 L4477 2024 Generalized Fermat 2066 231295516^131072+1 1096309 L5634 2024 Generalized Fermat 2067 230663736^131072+1 1096153 L4774 2024 Generalized Fermat 2068 230655072^131072+1 1096151 L5526 2024 Generalized Fermat 2069 230396424^131072+1 1096087 L4928 2024 Generalized Fermat 2070 230275166^131072+1 1096057 L6011 2024 Generalized Fermat 2071 230267830^131072+1 1096055 L6036 2024 Generalized Fermat 2072 989*2^3640585+1 1095929 L5115 2020 2073 567*2^3639287+1 1095538 L4959 2019 2074 227669832^131072+1 1095409 L5707 2024 Generalized Fermat 2075 79788*5^1567080-1 1095347 A11 2025 2076 227406222^131072+1 1095343 L4371 2024 Generalized Fermat 2077 227239620^131072+1 1095302 L4559 2024 Generalized Fermat 2078 227135580^131072+1 1095276 L5974 2024 Generalized Fermat 2079 227009830^131072+1 1095244 L4359 2024 Generalized Fermat 2080 226881840^131072+1 1095212 L5784 2024 Generalized Fermat 2081 226782570^131072+1 1095187 L6026 2024 Generalized Fermat 2082 226710488^131072+1 1095169 L5588 2024 Generalized Fermat 2083 226639300^131072+1 1095151 L5634 2024 Generalized Fermat 2084 226453444^131072+1 1095104 L4559 2024 Generalized Fermat 2085 226341130^131072+1 1095076 L4341 2024 Generalized Fermat 2086 226249042^131072+1 1095053 L5370 2024 Generalized Fermat 2087 226100602^131072+1 1095016 L4429 2024 Generalized Fermat 2088 225580118^131072+1 1094884 L5056 2024 Generalized Fermat 2089 225124888^131072+1 1094769 L4591 2024 Generalized Fermat 2090 224635814^131072+1 1094646 L4875 2024 Generalized Fermat 2091 224347630^131072+1 1094572 L5512 2024 Generalized Fermat 2092 224330804^131072+1 1094568 L6019 2024 Generalized Fermat 2093 224249932^131072+1 1094548 L4371 2024 Generalized Fermat 2094 224072278^131072+1 1094503 L5974 2024 Generalized Fermat 2095 639*2^3635707+1 1094460 L1823 2019 2096 223490796^131072+1 1094355 L5332 2024 Generalized Fermat 2097 223074802^131072+1 1094249 L5416 2024 Generalized Fermat 2098 223010262^131072+1 1094232 L6015 2024 Generalized Fermat 2099 222996490^131072+1 1094229 L5731 2024 Generalized Fermat 2100 222888506^131072+1 1094201 L5974 2024 Generalized Fermat 2101 222593516^131072+1 1094126 L6011 2024 Generalized Fermat 2102 222486400^131072+1 1094098 L5332 2024 Generalized Fermat 2103 221636362^131072+1 1093880 L4904 2024 Generalized Fermat 2104 221528336^131072+1 1093853 L5721 2024 Generalized Fermat 2105 221330854^131072+1 1093802 L6010 2024 Generalized Fermat 2106 221325712^131072+1 1093801 L4201 2024 Generalized Fermat 2107 221174400^131072+1 1093762 L4201 2024 Generalized Fermat 2108 221008432^131072+1 1093719 L5974 2024 Generalized Fermat 2109 220956326^131072+1 1093705 L5731 2024 Generalized Fermat 2110 220838206^131072+1 1093675 L5974 2024 Generalized Fermat 2111 220325976^131072+1 1093543 L5690 2024 Generalized Fermat 2112 220317996^131072+1 1093541 L5989 2024 Generalized Fermat 2113 220288248^131072+1 1093533 L5721 2024 Generalized Fermat 2114 219984494^131072+1 1093455 L6005 2024 Generalized Fermat 2115 219556482^131072+1 1093344 L5721 2024 Generalized Fermat 2116 219525472^131072+1 1093336 L4898 2024 Generalized Fermat 2117 219447698^131072+1 1093315 L4933 2024 Generalized Fermat 2118 219430370^131072+1 1093311 L4774 2024 Generalized Fermat 2119 219331584^131072+1 1093285 L5746 2024 Generalized Fermat 2120 753*2^3631472+1 1093185 L1823 2019 2121 2*205731^205731-1 1093111 L4965 2022 2122b 892*161^495304+1 1093053 A68 2026 2123 218012734^131072+1 1092942 L4928 2024 Generalized Fermat 2124 217820568^131072+1 1092892 L5690 2024 Generalized Fermat 2125 217559364^131072+1 1092823 L4898 2024 Generalized Fermat 2126 217458668^131072+1 1092797 L5989 2024 Generalized Fermat 2127 217423702^131072+1 1092788 L5998 2024 Generalized Fermat 2128 217176690^131072+1 1092723 L5637 2024 Generalized Fermat 2129 217170570^131072+1 1092722 L4371 2024 Generalized Fermat 2130 65531*2^3629342-1 1092546 L2269 2011 2131 1121*2^3629201+1 1092502 L4761 2019 2132 216307766^131072+1 1092495 L4387 2024 Generalized Fermat 2133 216084296^131072+1 1092436 L4201 2024 Generalized Fermat 2134 215*2^3628962-1 1092429 L2484 2018 2135 216039994^131072+1 1092425 L5880 2024 Generalized Fermat 2136 216027436^131072+1 1092421 L5277 2024 Generalized Fermat 2137 216018002^131072+1 1092419 L5586 2024 Generalized Fermat 2138 215949788^131072+1 1092401 L4537 2024 Generalized Fermat 2139 215945398^131072+1 1092400 L4245 2024 Generalized Fermat 2140 215783788^131072+1 1092357 L5711 2024 Generalized Fermat 2141 215717854^131072+1 1092340 L4245 2024 Generalized Fermat 2142 215462154^131072+1 1092272 L4387 2024 Generalized Fermat 2143 215237318^131072+1 1092213 L5693 2024 Generalized Fermat 2144 215004526^131072+1 1092151 L4928 2024 Generalized Fermat 2145 113*2^3628034-1 1092150 L2484 2014 2146 214992758^131072+1 1092148 L5974 2024 Generalized Fermat 2147 1009*2^3627911-1 1092114 A46 2025 2148 214814516^131072+1 1092101 L5746 2024 Generalized Fermat 2149 1175*2^3627541+1 1092002 L4840 2019 2150 214403112^131072+1 1091992 L4905 2024 Generalized Fermat 2151 214321816^131072+1 1091970 L5989 2024 Generalized Fermat 2152 214134178^131072+1 1091920 L5297 2024 Generalized Fermat 2153 214059556^131072+1 1091900 L4362 2024 Generalized Fermat 2154 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 2155 213879170^131072+1 1091852 L5986 2024 Generalized Fermat 2156 19116*24^791057-1 1091831 A44 2024 2157 213736552^131072+1 1091814 L4289 2024 Generalized Fermat 2158 213656000^131072+1 1091793 L4892 2024 Generalized Fermat 2159 213580840^131072+1 1091773 L4201 2024 Generalized Fermat 2160 213425082^131072+1 1091731 L4892 2024 Generalized Fermat 2161 213162592^131072+1 1091661 L4549 2024 Generalized Fermat 2162 213151104^131072+1 1091658 L4763 2024 Generalized Fermat 2163 212912634^131072+1 1091595 L5639 2024 Generalized Fermat 2164 212894100^131072+1 1091590 L5470 2024 Generalized Fermat 2165 212865234^131072+1 1091582 L5782 2024 Generalized Fermat 2166 212862096^131072+1 1091581 L4870 2024 Generalized Fermat 2167 212838152^131072+1 1091575 L5718 2024 Generalized Fermat 2168 212497738^131072+1 1091483 L5051 2024 Generalized Fermat 2169 212121206^131072+1 1091383 L4774 2024 Generalized Fermat 2170 211719438^131072+1 1091275 L4775 2024 Generalized Fermat 2171 211448294^131072+1 1091202 L5929 2024 Generalized Fermat 2172 211407740^131072+1 1091191 L4341 2024 Generalized Fermat 2173 211326826^131072+1 1091169 L5143 2024 Generalized Fermat 2174 210908700^131072+1 1091056 L5639 2024 Generalized Fermat 2175 210564358^131072+1 1090963 L5639 2024 Generalized Fermat 2176 210434680^131072+1 1090928 L4380 2024 Generalized Fermat 2177 210397166^131072+1 1090918 L4870 2024 Generalized Fermat 2178 210160342^131072+1 1090854 L5974 2024 Generalized Fermat 2179 210088618^131072+1 1090834 L5041 2024 Generalized Fermat 2180 209917216^131072+1 1090788 L5755 2024 Generalized Fermat 2181 209839940^131072+1 1090767 L5639 2024 Generalized Fermat 2182 209637998^131072+1 1090712 L4544 2024 Generalized Fermat 2183 951*2^3623185+1 1090691 L1823 2019 2184 209494470^131072+1 1090673 L5869 2024 Generalized Fermat 2185 209385420^131072+1 1090644 L5720 2024 Generalized Fermat 2186 209108558^131072+1 1090568 L5460 2024 Generalized Fermat 2187 209101202^131072+1 1090566 L5011 2024 Generalized Fermat 2188 208565926^131072+1 1090420 L5016 2024 Generalized Fermat 2189 208497360^131072+1 1090402 L5234 2024 Generalized Fermat 2190 208392300^131072+1 1090373 L5030 2024 Generalized Fermat 2191 208374066^131072+1 1090368 L5869 2024 Generalized Fermat 2192 208352366^131072+1 1090362 L5044 2024 Generalized Fermat 2193 208236434^131072+1 1090330 L5984 2024 Generalized Fermat 2194 208003690^131072+1 1090267 L5639 2024 Generalized Fermat 2195 207985150^131072+1 1090262 L5791 2024 Generalized Fermat 2196 207753480^131072+1 1090198 L5974 2024 Generalized Fermat 2197 207514736^131072+1 1090133 L4477 2024 Generalized Fermat 2198 207445740^131072+1 1090114 L5273 2024 Generalized Fermat 2199 29*920^367810-1 1090113 L4064 2015 2200 207296788^131072+1 1090073 L5234 2024 Generalized Fermat 2201 207264358^131072+1 1090064 L5758 2024 Generalized Fermat 2202 207213640^131072+1 1090050 L5077 2024 Generalized Fermat 2203 206709064^131072+1 1089911 L5639 2024 Generalized Fermat 2204 206640054^131072+1 1089892 L5288 2024 Generalized Fermat 2205 206594738^131072+1 1089880 L5707 2024 Generalized Fermat 2206 206585726^131072+1 1089877 L5667 2024 Generalized Fermat 2207 206473754^131072+1 1089846 L5855 2024 Generalized Fermat 2208 206230080^131072+1 1089779 L5143 2024 Generalized Fermat 2209 206021166^131072+1 1089722 L5639 2024 Generalized Fermat 2210 205990406^131072+1 1089713 L4755 2024 Generalized Fermat 2211 205963322^131072+1 1089706 L5844 2024 Generalized Fermat 2212 205339678^131072+1 1089533 L4905 2024 Generalized Fermat 2213 205160722^131072+1 1089483 L5639 2024 Generalized Fermat 2214 205150506^131072+1 1089480 L5543 2024 Generalized Fermat 2215 205010004^131072+1 1089441 L5025 2024 Generalized Fermat 2216 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 2217 204695540^131072+1 1089354 L4905 2024 Generalized Fermat 2218 485*2^3618563+1 1089299 L3924 2019 2219 204382086^131072+1 1089267 L4477 2024 Generalized Fermat 2220 204079052^131072+1 1089182 L4763 2024 Generalized Fermat 2221 204016062^131072+1 1089165 L5712 2024 Generalized Fermat 2222 203275588^131072+1 1088958 L5041 2024 Generalized Fermat 2223 203250558^131072+1 1088951 L4210 2024 Generalized Fermat 2224 203238918^131072+1 1088948 L5586 2024 Generalized Fermat 2225 202515696^131072+1 1088745 L4549 2024 Generalized Fermat 2226 202391964^131072+1 1088710 L4835 2024 Generalized Fermat 2227 202251688^131072+1 1088670 L5288 2024 Generalized Fermat 2228 202114688^131072+1 1088632 L5711 2024 Generalized Fermat 2229 202045732^131072+1 1088612 L4537 2024 Generalized Fermat 2230 201593074^131072+1 1088485 L5027 2024 Generalized Fermat 2231 201536524^131072+1 1088469 L5769 2024 Generalized Fermat 2232 201389466^131072+1 1088427 L4537 2024 Generalized Fermat 2233 201249512^131072+1 1088388 L5234 2024 Generalized Fermat 2234 201239624^131072+1 1088385 L5732 2024 Generalized Fermat 2235 200519642^131072+1 1088181 L5712 2024 Generalized Fermat 2236 200459670^131072+1 1088164 L5948 2024 Generalized Fermat 2237 200433382^131072+1 1088156 L5948 2024 Generalized Fermat 2238 200280100^131072+1 1088113 L4892 2024 Generalized Fermat 2239 200053318^131072+1 1088048 L5586 2024 Generalized Fermat 2240 199971120^131072+1 1088025 L5030 2024 Generalized Fermat 2241 95*2^3614033+1 1087935 L1474 2019 2242 199502780^131072+1 1087891 L5878 2024 Generalized Fermat 2243 198402358^131072+1 1087577 L5606 2024 Generalized Fermat 2244 198320982^131072+1 1087553 L5938 2024 Generalized Fermat 2245 198319118^131072+1 1087553 L4737 2024 Generalized Fermat 2246f 65*2^3612630-1 1087512 L2017 2025 2247 1005*2^3612300+1 1087414 L1823 2019 2248 197752702^131072+1 1087390 L5355 2024 Generalized Fermat 2249 197607368^131072+1 1087348 L5041 2024 Generalized Fermat 2250 197352408^131072+1 1087275 L4861 2024 Generalized Fermat 2251 861*2^3611815+1 1087268 L1745 2019 2252 197230100^131072+1 1087239 L4753 2024 Generalized Fermat 2253 197212998^131072+1 1087234 L6123 2024 Generalized Fermat 2254 197197506^131072+1 1087230 L4753 2024 Generalized Fermat 2255 197018872^131072+1 1087178 L4884 2024 Generalized Fermat 2256 1087*2^3611476+1 1087166 L4834 2019 2257 196722548^131072+1 1087093 L5782 2024 Generalized Fermat 2258 196703802^131072+1 1087087 L4742 2024 Generalized Fermat 2259 196687752^131072+1 1087082 L5051 2024 Generalized Fermat 2260 195950620^131072+1 1086869 L5929 2024 Generalized Fermat 2261 195834796^131072+1 1086835 L5070 2024 Generalized Fermat 2262 195048992^131072+1 1086606 L5143 2024 Generalized Fermat 2263 194911702^131072+1 1086566 L5948 2024 Generalized Fermat 2264 194819864^131072+1 1086539 L5690 2024 Generalized Fermat 2265 485767*2^3609357-1 1086531 L622 2008 2266 194730404^131072+1 1086513 L5782 2024 Generalized Fermat 2267 194644872^131072+1 1086488 L4720 2024 Generalized Fermat 2268 194584114^131072+1 1086470 L4201 2024 Generalized Fermat 2269 194263106^131072+1 1086376 L4892 2024 Generalized Fermat 2270 194202254^131072+1 1086359 L4835 2024 Generalized Fermat 2271 194159546^131072+1 1086346 L4387 2024 Generalized Fermat 2272 193935716^131072+1 1086280 L4835 2024 Generalized Fermat 2273 193247784^131072+1 1086078 L5234 2024 Generalized Fermat 2274 192866222^131072+1 1085966 L5913 2024 Generalized Fermat 2275 192651588^131072+1 1085902 L5880 2024 Generalized Fermat 2276 192606308^131072+1 1085889 L4476 2024 Generalized Fermat 2277 675*2^3606447+1 1085652 L3278 2019 2278 191678526^131072+1 1085614 L5234 2024 Generalized Fermat 2279 669*2^3606266+1 1085598 L1675 2019 2280 191567332^131072+1 1085581 L4309 2024 Generalized Fermat 2281 65077*2^3605944+1 1085503 L4685 2020 2282 191194450^131072+1 1085470 L4245 2024 Generalized Fermat 2283 1365*2^3605491+1 1085365 L1134 2022 2284 190810274^131072+1 1085356 L5460 2024 Generalized Fermat 2285 190309640^131072+1 1085206 L5880 2024 Generalized Fermat 2286 190187176^131072+1 1085169 L5470 2024 Generalized Fermat 2287 190144032^131072+1 1085156 L4341 2024 Generalized Fermat 2288 851*2^3604395+1 1085034 L2125 2019 2289 189411830^131072+1 1084937 L5578 2024 Generalized Fermat 2290 189240324^131072+1 1084885 L4892 2024 Generalized Fermat 2291 188766416^131072+1 1084743 L5639 2024 Generalized Fermat 2292 188655374^131072+1 1084709 L5842 2024 Generalized Fermat 2293 188646712^131072+1 1084706 L4905 2024 Generalized Fermat 2294 187961358^131072+1 1084499 L5881 2024 Generalized Fermat 2295 1143*2^3602429+1 1084443 L4754 2019 2296 187731580^131072+1 1084430 L5847 2024 Generalized Fermat 2297 187643362^131072+1 1084403 L5707 2024 Generalized Fermat 2298 187584550^131072+1 1084385 L5526 2024 Generalized Fermat 2299 187330820^131072+1 1084308 L5879 2024 Generalized Fermat 2300 1183*2^3601898+1 1084283 L1823 2019 2301 187231212^131072+1 1084278 L4550 2024 Generalized Fermat 2302 187184006^131072+1 1084263 L5051 2024 Generalized Fermat 2303 187007398^131072+1 1084210 L5604 2024 Generalized Fermat 2304 185411044^131072+1 1083722 L5044 2023 Generalized Fermat 2305 185248324^131072+1 1083672 L4371 2023 Generalized Fermat 2306 185110536^131072+1 1083629 L4559 2023 Generalized Fermat 2307 185015722^131072+1 1083600 L5723 2023 Generalized Fermat 2308 184855564^131072+1 1083551 L5748 2023 Generalized Fermat 2309 184835362^131072+1 1083545 L5416 2024 Generalized Fermat 2310 184814078^131072+1 1083538 L4559 2023 Generalized Fermat 2311 184653266^131072+1 1083488 L5606 2023 Generalized Fermat 2312 184523024^131072+1 1083448 L4550 2023 Generalized Fermat 2313 184317182^131072+1 1083385 L5863 2023 Generalized Fermat 2314 184310672^131072+1 1083383 L5863 2023 Generalized Fermat 2315 184119204^131072+1 1083324 L5863 2023 Generalized Fermat 2316 183839694^131072+1 1083237 L5865 2023 Generalized Fermat 2317 183591732^131072+1 1083160 L5586 2023 Generalized Fermat 2318 183392536^131072+1 1083098 L5044 2023 Generalized Fermat 2319 183383118^131072+1 1083096 L4371 2023 Generalized Fermat 2320 183157240^131072+1 1083025 L5853 2023 Generalized Fermat 2321 182252536^131072+1 1082744 L5854 2023 Generalized Fermat 2322 182166824^131072+1 1082717 L5854 2023 Generalized Fermat 2323 181969816^131072+1 1082655 L4591 2023 Generalized Fermat 2324 181913260^131072+1 1082637 L5853 2023 Generalized Fermat 2325 189*2^3596375+1 1082620 L3760 2016 2326 181302244^131072+1 1082446 L4550 2023 Generalized Fermat 2327 180680920^131072+1 1082251 L5639 2023 Generalized Fermat 2328 180455838^131072+1 1082180 L5847 2023 Generalized Fermat 2329 180111908^131072+1 1082071 L5844 2023 Generalized Fermat 2330 180084608^131072+1 1082062 L5056 2023 Generalized Fermat 2331 180045220^131072+1 1082050 L4550 2023 Generalized Fermat 2332 180002474^131072+1 1082036 L5361 2023 Generalized Fermat 2333 179913814^131072+1 1082008 L4875 2023 Generalized Fermat 2334 1089*2^3593267+1 1081685 L3035 2019 2335 178743858^131072+1 1081637 L5051 2023 Generalized Fermat 2336 178437884^131072+1 1081539 L4591 2023 Generalized Fermat 2337 178435022^131072+1 1081538 L5639 2023 Generalized Fermat 2338 178311240^131072+1 1081499 L5369 2023 Generalized Fermat 2339 178086108^131072+1 1081427 L4939 2023 Generalized Fermat 2340 178045832^131072+1 1081414 L5836 2023 Generalized Fermat 2341 177796222^131072+1 1081334 L5834 2023 Generalized Fermat 2342 177775606^131072+1 1081328 L5794 2023 Generalized Fermat 2343 177648552^131072+1 1081287 L5782 2023 Generalized Fermat 2344 177398652^131072+1 1081207 L4559 2023 Generalized Fermat 2345 177319028^131072+1 1081181 L5526 2023 Generalized Fermat 2346 177296064^131072+1 1081174 L5831 2023 Generalized Fermat 2347 177129922^131072+1 1081121 L4559 2023 Generalized Fermat 2348 176799404^131072+1 1081014 L4775 2023 Generalized Fermat 2349 176207346^131072+1 1080823 L5805 2023 Generalized Fermat 2350 176085282^131072+1 1080784 L5805 2023 Generalized Fermat 2351 175482140^131072+1 1080589 L5639 2023 Generalized Fermat 2352 175271418^131072+1 1080520 L5051 2023 Generalized Fermat 2353 19581121*2^3589357-1 1080512 p49 2022 2354 175200596^131072+1 1080497 L5817 2023 Generalized Fermat 2355 1101*2^3589103+1 1080431 L1823 2019 2356 174728608^131072+1 1080344 L5416 2023 Generalized Fermat 2357 174697724^131072+1 1080334 L4747 2023 Generalized Fermat 2358 174534362^131072+1 1080280 L5814 2023 Generalized Fermat 2359 174142738^131072+1 1080152 L4249 2023 Generalized Fermat 2360 174103532^131072+1 1080140 L4249 2023 Generalized Fermat 2361 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 2362 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 2363 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 2364 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 2365 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 2366 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 2367 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 2368 275*2^3585539+1 1079358 L3803 2016 2369 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 2370 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 2371 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 2372 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 2373 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 2374 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 2375 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 2376 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 2377 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 2378 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 2379 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 2380 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 2381 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 2382 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 2383 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 2384 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 2385 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 2386 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 2387 651*2^3579843+1 1077643 L3035 2018 2388 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 2389 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 2390 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 2391 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 2392 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 2393 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 2394 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 2395 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 2396 583*2^3578402+1 1077210 L3035 2018 2397 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 2398 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 2399 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 2400 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 2401 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 2402 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 2403 309*2^3577339+1 1076889 L4406 2016 2404 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 2405 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 2406 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 2407 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 2408 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 2409 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 2410 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 2411 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 2412 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 2413 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 2414 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 2415 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 2416 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 2417 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 2418 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 2419 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 2420 1185*2^3574583+1 1076060 L4851 2018 2421 251*2^3574535+1 1076045 L3035 2016 2422 1485*2^3574333+1 1075985 L1134 2022 2423 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 2424 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 2425 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 2426 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 2427 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 2428 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 2429 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 2430 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 2431 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 2432 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 2433 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 2434 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 2435 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 2436 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 2437 1019*2^3571635+1 1075173 L1823 2018 2438 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 2439 119*2^3571416-1 1075106 L2484 2018 2440 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 2441 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 2442 35*2^3570777+1 1074913 L2891 2014 2443 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 2444 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 2445 33*2^3570132+1 1074719 L2552 2014 2446 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 2447 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 2448 5*2^3569154-1 1074424 L503 2009 2449 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 2450 81*492^399095-1 1074352 L4001 2015 2451 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 2452 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 2453 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 2454 22934*5^1536762-1 1074155 L3789 2014 2455 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 2456 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 2457 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 2458 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 2459 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 2460 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 2461 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 2462 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 2463 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 2464 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 2465 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 2466 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 2467 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 2468 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 2469 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 2470 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 2471 3437687*2^3564664-1 1073078 L5327 2024 2472 265*2^3564373-1 1072986 L2484 2018 2473 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 2474 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 2475 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 2476 771*2^3564109+1 1072907 L2125 2018 2477 17665*820^368211+1 1072903 A11 2024 2478 381*2^3563676+1 1072776 L4190 2016 2479 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 2480 555*2^3563328+1 1072672 L4850 2018 2481 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 2482c 3342*198^466948-1 1072427 A89 2025 2483 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 2484 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 2485 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 2486 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 2487 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 2488 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 2489 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 2490 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 2491 1183*2^3560584+1 1071846 L1823 2018 2492 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 2493 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 2494 415*2^3559614+1 1071554 L3035 2016 2495 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 2496 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 2497 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 2498 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 2499 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 2500 1103*2^3558176-1 1071121 L1828 2018 2501 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 2502 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 2503 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 2504 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 2505 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 2506 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 2507 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 2508 1379*2^3557072-1 1070789 L1828 2018 2509 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 2510 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 2511 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 2512 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 2513 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 2514 146520528^131072+1 1070321 L6123 2023 Generalized Fermat 2515 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 2516 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 2517 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 2518 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 2519 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 2520 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 2521 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 2522 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 2523 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 2524 681*2^3553141+1 1069605 L3035 2018 2525 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 2526 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 2527 599*2^3551793+1 1069200 L3824 2018 2528 55*2^3551791-1 1069198 L2017 2025 2529 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 2530 621*2^3551472+1 1069103 L4687 2018 2531 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 2532 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 2533 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 2534 773*2^3550373+1 1068772 L1808 2018 2535 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 2536 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 2537 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 2538 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 2539 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 2540 95*2^3548546-1 1068221 L2017 2025 2541 1199*2^3548380-1 1068172 L1828 2018 2542 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 2543 191*2^3548117+1 1068092 L4203 2015 2544 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 2545 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 2546 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 2547 867*2^3547711+1 1067971 L4155 2018 2548 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 2549 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 2550 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 2551 3^2237561+3^1118781+1 1067588 L3839 2014 Generalized unique 2552 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 2553 351*2^3545752+1 1067381 L4082 2016 2554 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 2555 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 2556 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 2557 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 2558 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 2559 93*2^3544744+1 1067077 L1728 2014 2560 26279*24^773017+1 1066932 A11 2025 2561 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 2562 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 2563 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 2564 1159*2^3543702+1 1066764 L1823 2018 2565 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 2566 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 2567 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 2568 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 2569 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 2570 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 2571 2*3^2234430-1 1066095 A2 2023 2572 178658*5^1525224-1 1066092 L3789 2014 2573 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 2574 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 2575 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 2576 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 2577 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 2578 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 2579 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 2580 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 2581 1085*2^3539671+1 1065551 L3035 2018 2582 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 2583 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 2584 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 2585 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 2586 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 2587 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 2588 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 2589 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 2590 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 2591 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 2592 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 2593 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 2594 465*2^3536871+1 1064707 L4459 2016 2595 1019*2^3536312-1 1064539 L1828 2012 2596 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 2597 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 2598 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 2599 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 2600 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 2601 1179*2^3534450+1 1063979 L3035 2018 2602 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 2603 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 2604 447*2^3533656+1 1063740 L4457 2016 2605 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 2606 1059*2^3533550+1 1063708 L1823 2018 2607 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 2608 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 2609 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 2610 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 2611 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 2612 345*2^3532957+1 1063529 L4314 2016 2613 553*2^3532758+1 1063469 L1823 2018 2614 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 2615 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 2616 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 2617 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 2618 543131*2^3529754-1 1062568 L4925 2022 2619 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 2620 141*2^3529287+1 1062424 L4185 2015 2621 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 2622 24950*745^369781-1 1062074 L4189 2024 2623 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 2624 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 2625 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 2626 13*2^3527315-1 1061829 L1862 2016 2627 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 2628 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 2629 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 2630 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 2631 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 2632 1393*2^3525571-1 1061306 L1828 2017 2633 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 2634 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 2635 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 2636 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 2637 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 2638 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 2639 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 2640 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 2641 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 2642 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 2643 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 2644 1071*2^3523944+1 1060816 L1675 2018 2645 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 2646 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 2647 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 2648 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 2649 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 2650 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 2651 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 2652 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 2653 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 2654 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 2655 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 2656 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 2657 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 2658 2220172*3^2220172+1 1059298 p137 2023 Generalized Cullen 2659 329*2^3518451+1 1059162 L1823 2016 2660 135*2^3518338+1 1059128 L4045 2015 2661 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 2662 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 2663 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 2664 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 2665 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 2666 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 2667 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 2668 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 2669 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 2670 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 2671 599*2^3515959+1 1058412 L1823 2018 2672 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 2673 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 2674 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 2675 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 2676 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 2677 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 2678 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 2679 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 2680 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 2681 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 2682 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 2683 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 2684 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 2685 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 2686 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 2687 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 2688 1135*2^3510890+1 1056887 L1823 2018 2689 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 2690 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 2691 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 2692 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 2693 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 2694 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 2695 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 2696 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 2697 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 2698 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 2699 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 2700 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 2701 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 2702 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 2703 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 2704 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 2705 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 2706 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 2707 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 2708 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 2709 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 2710 428639*2^3506452-1 1055553 L2046 2011 2711 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 2712 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 2713 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 2714 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 2715 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 2716 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 2717 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 2718 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 2719 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 2720 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 2721 104*383^408249+1 1054591 L2012 2021 2722 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 2723 555*2^3502765+1 1054441 L1823 2018 2724 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 2725 8300*171^472170+1 1054358 L5780 2023 2726 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 2727 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 2728 643*2^3501974+1 1054203 L1823 2018 2729 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 2730 1159*2^3501490+1 1054057 L2125 2018 2731 1001*2^3501038-1 1053921 A46 2024 2732 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 2733 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 2734b 126*178^468180+1 1053604 A68 2026 2735 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 2736 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 2737 1189*2^3499042+1 1053320 L4724 2018 2738 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 2739 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 2740 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 2741 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 2742 35*2^3498070-1 1053026 L1817 2025 2743 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 2744 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 2745 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 2746 609*2^3497474+1 1052848 L1823 2018 2747 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 2748 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 2749 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 2750 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 2751 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 2752 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 2753 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 2754 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 2755 87*2^3496188+1 1052460 L1576 2014 2756 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 2757 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 2758 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 2759 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 2760 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 2761 783*2^3494129+1 1051841 L3824 2018 2762 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 2763 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 2764 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 2765 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 2766 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 2767 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 2768 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 2769 51*2^3490971+1 1050889 L1823 2014 2770 1485*2^3490746+1 1050823 L1134 2021 2771 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 2772 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 2773 3609*24^761179+1 1050592 A11 2025 2774 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 2775 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 2776 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 2777 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 2778 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 2779 753*2^3488818+1 1050242 L1823 2018 2780 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 2781 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 2782 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 2783 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 2784 699*2^3487253+1 1049771 L1204 2018 2785 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 2786 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 2787 101915106^131072+1 1049656 L6123 2022 Generalized Fermat 2788 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 2789 1001*2^3486566-1 1049564 L4518 2024 2790 249*2^3486411+1 1049517 L4045 2015 2791 195*2^3486379+1 1049507 L4108 2015 2792 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 2793 4687*2^3485926+1 1049372 L5302 2023 2794 2691*2^3485924+1 1049372 L5302 2023 2795 6083*2^3485877+1 1049358 L5837 2023 2796 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 2797 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 2798 9757*2^3485666+1 1049295 L5284 2023 2799 8859*2^3484982+1 1049089 L5833 2023 2800 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 2801 59912*5^1500861+1 1049062 L3772 2014 2802 495*2^3484656+1 1048989 L3035 2016 2803 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 2804 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 2805 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 2806 4467*2^3484204+1 1048854 L5189 2023 2807 4873*2^3484142+1 1048835 L5710 2023 2808 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 2809 (3*2^1742059)^2-3*2^1742059+1 1048825 A3 2023 Generalized unique 2810 3891*2^3484099+1 1048822 L5260 2023 2811 7833*2^3484060+1 1048811 L5830 2023 2812 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 2813 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 2814 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 2815 3097*2^3483800+1 1048732 L5829 2023 2816 5873*2^3483573+1 1048664 L5710 2023 2817 2895*2^3483455+1 1048628 L5480 2023 2818 9029*2^3483337+1 1048593 L5393 2023 2819 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 2820 5531*2^3483263+1 1048571 L5825 2023 2821 323*2^3482789+1 1048427 L1204 2016 2822 3801*2^3482723+1 1048408 L5517 2023 2823 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 2824 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 2825 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 2826 8235*2^3482277+1 1048274 L5820 2023 2827 9155*2^3482129+1 1048230 L5226 2023 2828 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 2829 4325*2^3481969+1 1048181 L5434 2023 2830 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 2831 1149*2^3481694+1 1048098 L1823 2018 2832 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 2833 6127*2^3481244+1 1047963 L5226 2023 2834 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 2835 8903*2^3481217+1 1047955 L5226 2023 2836 3595*2^3481178+1 1047943 L5214 2023 2837 3799*2^3480810+1 1047832 L5226 2023 2838 6101*2^3480801+1 1047830 L5226 2023 2839 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 2840 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 2841 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 2842 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 2843 5397*2^3480379+1 1047703 L5226 2023 2844 5845*2^3479972+1 1047580 L5517 2023 2845 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 2846 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 2847 701*2^3479779+1 1047521 L2125 2018 2848 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 2849 813*2^3479728+1 1047506 L4724 2018 2850 7125*2^3479509+1 1047441 L5812 2023 2851 1971*2^3479061+1 1047306 L5226 2023 2852 1215*2^3478543+1 1047149 L5226 2023 2853 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 2854 5985*2^3478217+1 1047052 L5387 2023 2855 3093*2^3478148+1 1047031 L5261 2023 2856 2145*2^3478095+1 1047015 L5387 2023 2857 6685*2^3478086+1 1047013 L5237 2023 2858 9603*2^3478084+1 1047012 L5178 2023 2859 1315*2^3477718+1 1046901 L5316 2023 2860 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 2861 197*2^3477399+1 1046804 L2125 2015 2862 8303*2^3477201+1 1046746 L5387 2023 2863 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 2864 5925*2^3477009+1 1046688 L5810 2023 2865 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 2866 7825*2^3476524+1 1046542 L5174 2023 2867 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 2868 8197*2^3476332+1 1046485 L5174 2023 2869 8529*2^3476111+1 1046418 L5387 2023 2870 8411*2^3476055+1 1046401 L5783 2023 2871 4319*2^3475955+1 1046371 L5803 2023 2872 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 2873 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 2874 6423*2^3475393+1 1046202 L5174 2023 2875 2281*2^3475340+1 1046185 L5302 2023 2876 7379*2^3474983+1 1046078 L5798 2023 2877 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 2878 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 2879 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 2880 4737*2^3474562+1 1045952 L5302 2023 2881 2407*2^3474406+1 1045904 L5557 2023 2882 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 2883 491*2^3473837+1 1045732 L4343 2016 2884 2693*2^3473721+1 1045698 L5174 2023 2885 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 2886 3375*2^3473210+1 1045544 L5294 2023 2887 8835*2^3472666+1 1045381 L5178 2023 2888 5615*2^3472377+1 1045294 L5174 2023 2889 1785*2^3472229+1 1045249 L875 2023 2890 8997*2^3472036+1 1045191 L5302 2023 2891 9473*2^3471885+1 1045146 L5294 2023 2892 7897*2^3471568+1 1045050 L5294 2023 2893 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 2894 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 2895 1061*2^3471354-1 1044985 L1828 2017 2896 1913*2^3471177+1 1044932 L5189 2023 2897 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 2898 7723*2^3471074+1 1044902 L5189 2023 2899 4195*2^3470952+1 1044865 L5294 2023 2900 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 2901 5593*2^3470520+1 1044735 L5387 2023 2902 3665*2^3469955+1 1044565 L5189 2023 2903 3301*2^3469708+1 1044490 L5261 2023 2904 6387*2^3469634+1 1044468 L5192 2023 2905 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 2906 8605*2^3469570+1 1044449 L5387 2023 2907 1359*2^3468725+1 1044194 L5197 2023 2908 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 2909 7585*2^3468338+1 1044078 L5197 2023 2910 1781*2^3468335+1 1044077 L5387 2023 2911 6885*2^3468181+1 1044031 L5197 2023 2912 4372*30^706773-1 1043994 L4955 2023 2913 7287*2^3467938+1 1043958 L5776 2023 2914 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 2915 3163*2^3467710+1 1043889 L5517 2023 2916 6099*2^3467689+1 1043883 L5197 2023 2917 6665*2^3467627+1 1043864 L5174 2023 2918 4099*2^3467462+1 1043814 L5774 2023 2919 5285*2^3467445+1 1043809 L5189 2023 2920 1001*2^3467258-1 1043752 L4518 2024 2921 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 2922 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 2923 5935*2^3466880+1 1043639 L5197 2023 2924 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 2925 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 2926 8937*2^3466822+1 1043622 L5174 2023 2927 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 2928 8347*2^3466736+1 1043596 L5770 2023 2929 8863*2^3465780+1 1043308 L5766 2023 2930 3895*2^3465744+1 1043297 L5640 2023 2931 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 2932 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 2933 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 2934 8561*2^3465371+1 1043185 L5197 2023 2935 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 2936 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 2937 9971*2^3465233+1 1043144 L5488 2023 2938 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 2939 3801*2^3464980+1 1043067 L5197 2023 2940 3099*2^3464739+1 1042994 L5284 2023 2941 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 2942 641*2^3464061+1 1042790 L1444 2018 2943 6717*2^3463735+1 1042692 L5754 2023 2944 6015*2^3463561+1 1042640 L5387 2023 2945 57*2^3463424-1 1042597 L1817 2025 2946 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 2947 1667*2^3463355+1 1042577 L5226 2023 2948 2871*2^3463313+1 1042565 L5189 2023 2949 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 2950 6007*2^3463048+1 1042486 L5226 2023 2951 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 2952 9777*2^3462742+1 1042394 L5197 2023 2953 5215*2^3462740+1 1042393 L5174 2023 2954 8365*2^3462722+1 1042388 L5320 2023 2955 3597*2^3462056+1 1042187 L5174 2023 2956 2413*2^3461890+1 1042137 L5197 2023 2957 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 2958 453*2^3461688+1 1042075 L3035 2016 2959 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 2960 4401*2^3461476+1 1042012 L5197 2023 2961 9471*2^3461305+1 1041961 L5594 2023 2962 7245*2^3461070+1 1041890 L5449 2023 2963 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 2964 4365*2^3460914+1 1041843 L5197 2023 2965 4613*2^3460861+1 1041827 L5614 2023 2966 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 2967 5169*2^3460553+1 1041734 L5742 2023 2968 8395*2^3460530+1 1041728 L5284 2023 2969 5835*2^3460515+1 1041723 L5740 2023 2970 8059*2^3460246+1 1041642 L5350 2023 2971 571*2^3460216+1 1041632 L3035 2018 2972 6065*2^3460205+1 1041630 L5683 2023 2973 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 2974 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 2975 6237*2^3459386+1 1041383 L5509 2023 2976 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 2977 4029*2^3459062+1 1041286 L5727 2023 2978 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 2979 7055*2^3458909+1 1041240 L5509 2023 2980 7297*2^3458768+1 1041197 L5726 2023 2981 2421*2^3458432+1 1041096 L5725 2023 2982 7907*2^3458207+1 1041028 L5509 2023 2983 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 2984 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 2985 7839*2^3457846+1 1040920 L5231 2023 2986 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 2987 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 2988 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 2989 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 2990 5327*2^3457363+1 1040774 L5715 2023 2991 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 2992 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 2993 6059*2^3457001+1 1040665 L5197 2023 2994 8953*2^3456938+1 1040646 L5724 2023 2995 8669*2^3456759+1 1040593 L5710 2023 2996 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 2997 4745*2^3456167+1 1040414 L5705 2023 2998 8213*2^3456141+1 1040407 L5703 2023 2999 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 3000 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 3001 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 3002 1155*2^3455254+1 1040139 L4711 2017 3003 37292*5^1487989+1 1040065 L3553 2013 3004 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 3005 5525*2^3454069+1 1039783 L5651 2023 3006 4235*2^3453573+1 1039633 L5650 2023 3007 6441*2^3453227+1 1039529 L5683 2023 3008 4407*2^3453195+1 1039519 L5650 2023 3009 9867*2^3453039+1 1039473 L5686 2023 3010 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 3011 4857*2^3452675+1 1039363 L5600 2023 3012 8339*2^3452667+1 1039361 L5651 2023 3013 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 3014 7079*2^3452367+1 1039270 L5650 2023 3015 5527*2^3452342+1 1039263 L5679 2023 3016 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 3017 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 3018 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 3019 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 3020 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 3021 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 3022 3719*2^3451667+1 1039059 L5294 2023 3023 6725*2^3451455+1 1038996 L5685 2023 3024 8407*2^3451334+1 1038959 L5524 2023 3025 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 3026 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 3027 4*10^1038890+1 1038891 L4789 2024 Generalized Fermat 3028 1623*2^3451109+1 1038891 L5308 2023 3029 8895*2^3450982+1 1038854 L5666 2023 3030 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 3031 2899*2^3450542+1 1038721 L5600 2023 3032 6337*2^3449506+1 1038409 L5197 2023 3033 4381*2^3449456+1 1038394 L5392 2023 3034 2727*2^3449326+1 1038355 L5421 2023 3035 2877*2^3449311+1 1038350 L5517 2023 3036 7507*2^3448920+1 1038233 L5284 2023 3037 3629*2^3448919+1 1038232 L5192 2023 3038 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 3039 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 3040 1273*2^3448551-1 1038121 L1828 2012 3041 1461*2^3448423+1 1038082 L4944 2023 3042 3235*2^3448352+1 1038061 L5571 2023 3043 4755*2^3448344+1 1038059 L5524 2023 3044 5655*2^3448288+1 1038042 L5651 2023 3045 4873*2^3448176+1 1038009 L5524 2023 3046 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 3047 8139*2^3447967+1 1037946 L5652 2023 3048 1065*2^3447906+1 1037927 L4664 2017 3049 1717*2^3446756+1 1037581 L5517 2023 3050 6357*2^3446434+1 1037484 L5284 2023 3051 1155*2^3446253+1 1037429 L3035 2017 3052 9075*2^3446090+1 1037381 L5648 2023 3053 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 3054 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 3055 1483*2^3445724+1 1037270 L5650 2023 3056 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 3057 2223*2^3445682+1 1037257 L5647 2023 3058 8517*2^3445488+1 1037200 L5302 2023 3059 2391*2^3445281+1 1037137 L5596 2023 3060 6883*2^3444784+1 1036988 L5264 2023 3061 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 3062 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 3063 8037*2^3443920+1 1036728 L5626 2023 3064 1375*2^3443850+1 1036706 L5192 2023 3065 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 3066 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 3067 943*2^3442990+1 1036447 L4687 2017 3068 7743*2^3442814+1 1036395 L5514 2023 3069 5511*2^3442468+1 1036290 L5514 2022 3070 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 3071 6329*2^3441717+1 1036064 L5631 2022 3072f 243*2^3441659-1 1036045 A76 2025 3073 3957*2^3441568+1 1036019 L5476 2022 3074 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 3075 4191*2^3441427+1 1035977 L5189 2022 3076 2459*2^3441331+1 1035948 L5514 2022 3077 4335*2^3441306+1 1035940 L5178 2022 3078 2331*2^3441249+1 1035923 L5626 2022 3079 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 3080 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 3081 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 3082 2363*2^3440385+1 1035663 L5625 2022 3083 5265*2^3440332+1 1035647 L5421 2022 3084 6023*2^3440241+1 1035620 L5517 2022 3085 943*2^3440196+1 1035606 L1448 2017 3086 6663*2^3439901+1 1035518 L5624 2022 3087 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 3088 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 3089 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 3090 5745*2^3439450+1 1035382 L5178 2022 3091 5889*24^750125+1 1035335 A32 2025 3092 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 3093 5109*2^3439090+1 1035273 L5594 2022 3094 543*2^3438810+1 1035188 L3035 2017 3095 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 3096 3325*2^3438506+1 1035097 L5619 2022 3097 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 3098 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 3099 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 3100 4775*2^3438217+1 1035011 L5618 2022 3101 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 3102 6963*2^3437988+1 1034942 L5616 2022 3103 74*941^348034-1 1034913 L5410 2020 3104 7423*2^3437856+1 1034902 L5192 2022 3105 6701*2^3437801+1 1034886 L5615 2022 3106 5741*2^3437773+1 1034877 L5517 2022 3107 488639*2^3437688-1 1034853 L5327 2024 3108 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 3109 5601*2^3437259+1 1034722 L5612 2022 3110 7737*2^3437192+1 1034702 L5611 2022 3111 113*2^3437145+1 1034686 L4045 2015 3112 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 3113 6387*2^3436719+1 1034560 L5613 2022 3114 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 3115 2921*2^3436299+1 1034433 L5231 2022 3116 9739*2^3436242+1 1034416 L5178 2022 3117 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 3118 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 3119 1147*2^3435970+1 1034334 L3035 2017 3120 4589*2^3435707+1 1034255 L5174 2022 3121 7479*2^3435683+1 1034248 L5421 2022 3122 2863*2^3435616+1 1034227 L5197 2022 3123 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 3124 9863*2^3434697+1 1033951 L5189 2022 3125 4065*2^3434623+1 1033929 L5197 2022 3126 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 3127 9187*2^3434126+1 1033779 L5600 2022 3128 9531*2^3434103+1 1033772 L5601 2022 3129 1757*2^3433547+1 1033604 L5594 2022 3130 1421*2^3433099+1 1033469 L5237 2022 3131 3969*2^3433007+1 1033442 L5189 2022 3132 6557*2^3433003+1 1033441 L5261 2022 3133 7335*2^3432982+1 1033435 L5231 2022 3134 7125*2^3432836+1 1033391 L5594 2022 3135 2517*2^3432734+1 1033360 L5231 2022 3136 911*2^3432643+1 1033332 L1355 2017 3137 5413*2^3432626+1 1033328 L5231 2022 3138 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 3139 3753*2^3432413+1 1033263 L5261 2022 3140 2164*24^748621+1 1033259 A62 2025 3141 2691*2^3432191+1 1033196 L5585 2022 3142 3933*2^3432125+1 1033177 L5387 2022 3143 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 3144 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 3145 5889*24^748409+1 1032967 A15 2025 3146 1435*2^3431284+1 1032923 L5587 2022 3147 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 3148 6783*2^3430781+1 1032772 L5261 2022 3149 8079*2^3430683+1 1032743 L5585 2022 3150 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 3151 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 3152 6605*2^3430187+1 1032593 L5463 2022 3153 3761*2^3430057+1 1032554 L5582 2022 3154 6873*2^3429937+1 1032518 L5294 2022 3155 8067*2^3429891+1 1032504 L5581 2022 3156 3965*2^3429719+1 1032452 L5579 2022 3157 3577*2^3428812+1 1032179 L5401 2022 3158 8747*2^3428755+1 1032163 L5493 2022 3159 9147*2^3428638+1 1032127 L5493 2022 3160 3899*2^3428535+1 1032096 L5174 2022 3161 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 3162 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 3163 8891*2^3428303+1 1032026 L5532 2022 3164 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 3165 2147*2^3427371+1 1031745 L5189 2022 3166 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 3167 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 3168 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 3169 1127*2^3427219+1 1031699 L3035 2017 3170 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 3171 3021*2^3427059+1 1031652 L5554 2022 3172 3255*2^3426983+1 1031629 L5231 2022 3173 1733*2^3426753+1 1031559 L5565 2022 3174 2339*2^3426599+1 1031513 L5237 2022 3175 4729*2^3426558+1 1031501 L5493 2022 3176 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 3177 5445*2^3425839+1 1031285 L5237 2022 3178 159*2^3425766+1 1031261 L4045 2015 3179 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 3180 3405*2^3425045+1 1031045 L5261 2022 3181 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 3182 1695*2^3424517+1 1030886 L5387 2022 3183 4715*2^3424433+1 1030861 L5557 2022 3184 5525*2^3424423+1 1030858 L5387 2022 3185 8615*2^3424231+1 1030801 L5261 2022 3186 5805*2^3424200+1 1030791 L5237 2022 3187 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 3188 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 3189 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 3190 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 3191 2109*2^3423797+1 1030669 L5197 2022 3192 4929*2^3423494+1 1030579 L5554 2022 3193 2987*2^3422911+1 1030403 L5226 2022 3194 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 3195 4843*2^3422644+1 1030323 L5553 2022 3196 5559*2^3422566+1 1030299 L5555 2022 3197 7583*2^3422501+1 1030280 L5421 2022 3198 1119*2^3422189+1 1030185 L1355 2017 3199 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 3200 2895*2^3422030+1 1030138 L5237 2022 3201 2835*2^3421697+1 1030037 L5387 2022 3202 3363*2^3421353+1 1029934 L5226 2022 3203 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 3204 9147*2^3421264+1 1029908 L5237 2022 3205 9705*2^3420915+1 1029803 L5540 2022 3206 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 3207 8919*2^3420758+1 1029755 L5226 2022 3208 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 3209 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 3210 5489*2^3420137+1 1029568 L5174 2022 3211 9957*2^3420098+1 1029557 L5237 2022 3212 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 3213 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 3214 1962*5^1472736-1 1029402 A11 2025 3215 7213*2^3419370+1 1029337 L5421 2022 3216 7293*2^3419264+1 1029305 L5192 2022 3217 975*2^3419230+1 1029294 L3545 2017 3218 4191*2^3419227+1 1029294 L5421 2022 3219 28080*745^358350-1 1029242 L4189 2024 3220 2393*2^3418921+1 1029202 L5197 2022 3221 999*2^3418885+1 1029190 L3035 2017 3222 2925*2^3418543+1 1029088 L5174 2022 3223 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 3224 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 3225 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 3226 7383*2^3418297+1 1029014 L5189 2022 3227 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 3228 907*2^3417890+1 1028891 L3035 2017 3229 5071*2^3417884+1 1028890 L5237 2022 3230 3473*2^3417741+1 1028847 L5541 2022 3231 191249*2^3417696-1 1028835 L1949 2010 3232 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 3233 3299*2^3417329+1 1028723 L5421 2022 3234 6947*2^3416979+1 1028618 L5540 2022 3235 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 3236 8727*2^3416652+1 1028519 L5226 2022 3237 8789*2^3416543+1 1028486 L5197 2022 3238 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 3239 7917*2^3415947+1 1028307 L5537 2022 3240 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 3241 2055*2^3415873+1 1028284 L5535 2022 3242 4731*2^3415712+1 1028236 L5192 2022 3243 2219*2^3415687+1 1028228 L5178 2022 3244 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 3245 5877*2^3415419+1 1028148 L5532 2022 3246 3551*2^3415275+1 1028104 L5231 2022 3247 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 3248 2313*2^3415046+1 1028035 L5226 2022 3249 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 3250 7637*2^3414875+1 1027984 L5507 2022 3251 2141*2^3414821+1 1027967 L5226 2022 3252 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 3253 3667*2^3414686+1 1027927 L5226 2022 3254 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 3255 6159*2^3414623+1 1027908 L5226 2022 3256 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 3257 4606*24^744714+1 1027867 A11 2025 3258 2586*24^744604+1 1027715 A11 2025 3259 4577*2^3413539+1 1027582 L5387 2022 3260 5137*2^3413524+1 1027577 L5261 2022 3261 8937*2^3413364+1 1027529 L5527 2022 3262 8829*2^3413339+1 1027522 L5531 2022 3263 7617*2^3413315+1 1027515 L5197 2022 3264 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 3265 3141*2^3413112+1 1027453 L5463 2022 3266 8831*2^3412931+1 1027399 L5310 2022 3267 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 3268 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 3269 5421*2^3412877+1 1027383 L5310 2022 3270 9187*2^3412700+1 1027330 L5337 2022 3271 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 3272 8243*2^3412577+1 1027292 L5524 2022 3273 1751*2^3412565+1 1027288 L5523 2022 3274 9585*2^3412318+1 1027215 L5197 2022 3275 9647*2^3412247+1 1027193 L5178 2022 3276 3207*2^3412108+1 1027151 L5189 2022 3277 479*2^3411975+1 1027110 L2873 2016 3278 245*2^3411973+1 1027109 L1935 2015 3279 177*2^3411847+1 1027071 L4031 2015 3280 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 3281 9963*2^3411566+1 1026988 L5237 2022 3282 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 3283 9785*2^3411223+1 1026885 L5189 2022 3284 5401*2^3411136+1 1026858 L5261 2022 3285 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 3286 9431*2^3411105+1 1026849 L5237 2022 3287 8227*2^3410878+1 1026781 L5316 2022 3288c 62616*115^498260-1 1026769 A86 2025 3289 4735*2^3410724+1 1026734 L5226 2022 3290 9515*2^3410707+1 1026730 L5237 2022 3291 6783*2^3410690+1 1026724 L5434 2022 3292 8773*2^3410558+1 1026685 L5261 2022 3293 4629*2^3410321+1 1026613 L5517 2022 3294 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 3295 113*2^3409934-1 1026495 L2484 2014 3296 5721*2^3409839+1 1026468 L5226 2022 3297 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 3298 6069*2^3409493+1 1026364 L5237 2022 3299 1981*910^346850+1 1026347 L1141 2021 3300 5317*2^3409236+1 1026287 L5471 2022 3301 7511*2^3408985+1 1026211 L5514 2022 3302 7851*2^3408909+1 1026188 L5176 2022 3303 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 3304 6027*2^3408444+1 1026048 L5239 2022 3305 59*2^3408416-1 1026038 L426 2010 3306 2153*2^3408333+1 1026014 L5237 2022 3307 9831*2^3408056+1 1025932 L5233 2022 3308 3615*2^3408035+1 1025925 L5217 2022 3309 6343*2^3407950+1 1025899 L5226 2022 3310 8611*2^3407516+1 1025769 L5509 2022 3311 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 3312 7111*2^3407452+1 1025750 L5508 2022 3313 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 3314 6945*2^3407256+1 1025691 L5507 2022 3315 6465*2^3407229+1 1025682 L5301 2022 3316 1873*2^3407156+1 1025660 L5440 2022 3317 7133*2^3406377+1 1025426 L5279 2022 3318 7063*2^3406122+1 1025349 L5178 2022 3319 3105*2^3405800+1 1025252 L5502 2022 3320 953*2^3405729+1 1025230 L3035 2017 3321 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 3322 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 3323 373*2^3404702+1 1024921 L3924 2016 3324 7221*2^3404507+1 1024863 L5231 2022 3325 6641*2^3404259+1 1024788 L5501 2022 3326 9225*2^3404209+1 1024773 L5250 2022 3327 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 3328 833*2^3403765+1 1024639 L3035 2017 3329 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 3330 2601*2^3403459+1 1024547 L5350 2022 3331 8835*2^3403266+1 1024490 L5161 2022 3332 7755*2^3403010+1 1024412 L5161 2022 3333 3123*2^3402834+1 1024359 L5260 2022 3334 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 3335 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 3336 1417*2^3402246+1 1024182 L5497 2022 3337 5279*2^3402241+1 1024181 L5250 2022 3338 6651*2^3402137+1 1024150 L5476 2022 3339 1779*2^3401715+1 1024022 L5493 2022 3340 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 3341 8397*2^3401502+1 1023959 L5476 2022 3342 4057*2^3401472+1 1023949 L5492 2022 3343 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 3344 4095*2^3401174+1 1023860 L5418 2022 3345 5149*2^3400970+1 1023798 L5176 2022 3346 4665*2^3400922+1 1023784 L5308 2022 3347 24*414^391179+1 1023717 L4273 2016 3348 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 3349 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 3350 1725*2^3400371+1 1023617 L5197 2022 3351 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 3352 9399*2^3400243+1 1023580 L5488 2022 3353 1241*2^3400127+1 1023544 L5279 2022 3354 1263*2^3399876+1 1023468 L5174 2022 3355 1167*2^3399748+1 1023430 L3545 2017 3356 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 3357 3526*24^741308+1 1023166 A66 2025 3358 7679*2^3398569+1 1023076 L5295 2022 3359 6447*2^3398499+1 1023054 L5302 2022 3360 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 3361 2785*2^3398332+1 1023004 L5250 2022 3362 611*2^3398273+1 1022985 L3035 2017 3363 2145*2^3398034+1 1022914 L5302 2022 3364 3385*2^3397254+1 1022679 L5161 2022 3365 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 3366 4463*2^3396657+1 1022500 L5476 2022 3367 2889*2^3396450+1 1022437 L5178 2022 3368 8523*2^3396448+1 1022437 L5231 2022 3369 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 3370 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 3371 3349*2^3396326+1 1022400 L5480 2022 3372 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 3373 4477*2^3395786+1 1022238 L5161 2022 3374 3853*2^3395762+1 1022230 L5302 2022 3375 2693*2^3395725+1 1022219 L5284 2022 3376 8201*2^3395673+1 1022204 L5178 2022 3377 255*2^3395661+1 1022199 L3898 2014 3378 1049*2^3395647+1 1022195 L3035 2017 3379 9027*2^3395623+1 1022189 L5263 2022 3380 2523*2^3395549+1 1022166 L5472 2022 3381 3199*2^3395402+1 1022122 L5264 2022 3382 342924651*2^3394939-1 1021988 L4166 2017 3383 3825*2^3394947+1 1021985 L5471 2022 3384 1895*2^3394731+1 1021920 L5174 2022 3385 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 3386 555*2^3393389+1 1021515 L2549 2017 3387 1865*2^3393387+1 1021515 L5237 2022 3388 4911*2^3393373+1 1021511 L5231 2022 3389 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 3390 5229*2^3392587+1 1021275 L5463 2022 3391 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 3392 609*2^3392301+1 1021188 L3035 2017 3393 9787*2^3392236+1 1021169 L5350 2022 3394 303*2^3391977+1 1021090 L2602 2016 3395 805*2^3391818+1 1021042 L4609 2017 3396 6475*2^3391496+1 1020946 L5174 2022 3397 67*2^3391385-1 1020911 L1959 2014 3398 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 3399 4639*2^3390634+1 1020687 L5189 2022 3400 5265*2^3390581+1 1020671 L5456 2022 3401 663*2^3390469+1 1020636 L4316 2017 3402 6945*2^3390340+1 1020598 L5174 2022 3403 5871*2^3390268+1 1020577 L5231 2022 3404 7443*2^3390141+1 1020539 L5226 2022 3405 5383*2^3389924+1 1020473 L5350 2021 3406 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 3407 9627*2^3389331+1 1020295 L5231 2021 3408 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 3409 8253*2^3388624+1 1020082 L5226 2021 3410 3329*2^3388472-1 1020036 L4841 2020 3411 4695*2^3388393+1 1020012 L5237 2021 3412 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 3413 7177*2^3388144+1 1019937 L5174 2021 3414 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 3415 9611*2^3388059+1 1019912 L5435 2021 3416 1833*2^3387760+1 1019821 L5226 2021 3417 9003*2^3387528+1 1019752 L5189 2021 3418 3161*2^3387141+1 1019635 L5226 2021 3419 7585*2^3387110+1 1019626 L5189 2021 3420 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 3421 453*2^3387048+1 1019606 L2602 2016 3422 5177*2^3386919+1 1019568 L5226 2021 3423 8739*2^3386813+1 1019537 L5226 2021 3424 2875*2^3386638+1 1019484 L5226 2021 3425 7197*2^3386526+1 1019450 L5178 2021 3426 1605*2^3386229+1 1019360 L5226 2021 3427 8615*2^3386181+1 1019346 L5442 2021 3428 3765*2^3386141+1 1019334 L5174 2021 3429 5379*2^3385806+1 1019233 L5237 2021 3430 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 3431 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 3432 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 3433 173198*5^1457792-1 1018959 L3720 2013 3434 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 3435 2109*2^3384733+1 1018910 L5261 2021 3436 7067*2^3384667+1 1018891 L5439 2021 3437 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 3438 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 3439 2077*2^3384472+1 1018831 L5237 2021 3440 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 3441 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 3442 9165*2^3383917+1 1018665 L5435 2021 3443 5579*2^3383209+1 1018452 L5434 2021 3444 8241*2^3383131+1 1018428 L5387 2021 3445 7409*2^3382869+1 1018349 L5161 2021 3446 4883*2^3382813+1 1018332 L5161 2021 3447 9783*2^3382792+1 1018326 L5189 2021 3448 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 3449 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 3450 8877*2^3381936+1 1018069 L5429 2021 3451 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 3452 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 3453 6675*2^3381688+1 1017994 L5197 2021 3454 2445*2^3381129+1 1017825 L5231 2021 3455 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 3456 3381*2^3380585+1 1017662 L5237 2021 3457 7899*2^3380459+1 1017624 L5421 2021 3458 5945*2^3379933+1 1017465 L5418 2021 3459 1425*2^3379921+1 1017461 L1134 2020 3460 4975*2^3379420+1 1017311 L5161 2021 3461 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 3462 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 3463 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 3464 9065*2^3378851+1 1017140 L5414 2021 3465 2369*2^3378761+1 1017112 L5197 2021 3466 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 3467 621*2^3378148+1 1016927 L3035 2017 3468 7035*2^3378141+1 1016926 L5408 2021 3469 2067*2^3378115+1 1016918 L5405 2021 3470 1093*2^3378000+1 1016883 L4583 2017 3471 9577*2^3377612+1 1016767 L5406 2021 3472 861*2^3377601+1 1016763 L4582 2017 3473 5811*2^3377016+1 1016587 L5261 2021 3474 2285*2^3376911+1 1016555 L5261 2021 3475 4199*2^3376903+1 1016553 L5174 2021 3476 6405*2^3376890+1 1016549 L5269 2021 3477 1783*2^3376810+1 1016525 L5261 2021 3478 5401*2^3376768+1 1016513 L5174 2021 3479 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 3480 2941*2^3376536+1 1016443 L5174 2021 3481 1841*2^3376379+1 1016395 L5401 2021 3482 6731*2^3376133+1 1016322 L5261 2021 3483 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 3484 8121*2^3375933+1 1016262 L5356 2021 3485 5505*2^3375777+1 1016214 L5174 2021 3486 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 3487 3207*2^3375314+1 1016075 L5237 2021 3488 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 3489 5307*2^3374939+1 1015962 L5392 2021 3490 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 3491 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 3492 208003!-1 1015843 p394 2016 Factorial 3493 6219*2^3374198+1 1015739 L5393 2021 3494 3777*2^3374072+1 1015701 L5261 2021 3495 9347*2^3374055+1 1015696 L5387 2021 3496 1461*2^3373383+1 1015493 L5384 2021 3497 6395*2^3373135+1 1015419 L5382 2021 3498 7869*2^3373021+1 1015385 L5381 2021 3499 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 3500 4905*2^3372216+1 1015142 L5261 2021 3501 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 3502 2839*2^3372034+1 1015087 L5174 2021 3503 7347*2^3371803+1 1015018 L5217 2021 3504 9799*2^3371378+1 1014890 L5261 2021 3505 4329*2^3371201+1 1014837 L5197 2021 3506 3657*2^3371183+1 1014831 L5360 2021 3507 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 3508 179*2^3371145+1 1014819 L3763 2014 3509 5155*2^3371016+1 1014781 L5237 2021 3510 7575*2^3371010+1 1014780 L5237 2021 3511 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 3512 9195*2^3370798+1 1014716 L5178 2021 3513 1749*2^3370786+1 1014711 L5362 2021 3514 8421*2^3370599+1 1014656 L5174 2021 3515 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 3516 4357*2^3369572+1 1014346 L5231 2021 3517 6073*2^3369544+1 1014338 L5358 2021 3518 839*2^3369383+1 1014289 L2891 2017 3519 65*2^3369359+1 1014280 L5236 2021 3520 8023*2^3369228+1 1014243 L5356 2021 3521 677*2^3369115+1 1014208 L2103 2017 3522 1437*2^3369083+1 1014199 L5282 2021 3523 9509*2^3368705+1 1014086 L5237 2021 3524 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 3525 4851*2^3368668+1 1014074 L5307 2021 3526 7221*2^3368448+1 1014008 L5353 2021 3527 5549*2^3368437+1 1014005 L5217 2021 3528 715*2^3368210+1 1013936 L4527 2017 3529 617*2^3368119+1 1013908 L4552 2017 3530 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 3531 1847*2^3367999+1 1013872 L5352 2021 3532 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 3533 17819*24^734523+1 1013802 A11 2025 3534 6497*2^3367743+1 1013796 L5285 2021 3535 2533*2^3367666+1 1013772 L5326 2021 3536 6001*2^3367552+1 1013738 L5350 2021 3537 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 3538 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 3539 777*2^3367372+1 1013683 L4408 2017 3540 9609*2^3367351+1 1013678 L5285 2021 3541 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 3542 2529*2^3367317+1 1013667 L5237 2021 3543 5941*2^3366960+1 1013560 L5189 2021 3544 5845*2^3366956+1 1013559 L5197 2021 3545 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 3546 9853*2^3366608+1 1013454 L5178 2021 3547 61*2^3366033-1 1013279 L4405 2017 3548 7665*2^3365896+1 1013240 L5345 2021 3549 8557*2^3365648+1 1013165 L5346 2021 3550 369*2^3365614+1 1013154 L4364 2016 3551 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 3552 8201*2^3365283+1 1013056 L5345 2021 3553 9885*2^3365151+1 1013016 L5344 2021 3554 5173*2^3365096+1 1012999 L5285 2021 3555 8523*2^3364918+1 1012946 L5237 2021 3556 3985*2^3364776+1 1012903 L5178 2021 3557 9711*2^3364452+1 1012805 L5192 2021 3558 7003*2^3364172+1 1012721 L5217 2021 3559 6703*2^3364088+1 1012696 L5337 2021 3560 7187*2^3364011+1 1012673 L5217 2021 3561 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 3562 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 3563 2345*2^3363157+1 1012415 L5336 2021 3564 6527*2^3363135+1 1012409 L5167 2021 3565 9387*2^3363088+1 1012395 L5161 2021 3566 8989*2^3362986+1 1012364 L5161 2021 3567 533*2^3362857+1 1012324 L3171 2017 3568 619*2^3362814+1 1012311 L4527 2017 3569 2289*2^3362723+1 1012284 L5161 2021 3570 7529*2^3362565+1 1012237 L5161 2021 3571 7377*2^3362366+1 1012177 L5161 2021 3572 4509*2^3362311+1 1012161 L5324 2021 3573 7021*2^3362208+1 1012130 L5178 2021 3574 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 3575 104*873^344135-1 1012108 L4700 2018 3576 4953*2^3362054+1 1012083 L5323 2021 3577 8575*2^3361798+1 1012006 L5237 2021 3578 2139*2^3361706+1 1011978 L5174 2021 3579 6939*2^3361203+1 1011827 L5217 2021 3580 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 3581 3^2120580-3^623816-1 1011774 CH9 2019 3582 8185*2^3360896+1 1011735 L5189 2021 3583 2389*2^3360882+1 1011730 L5317 2021 3584 2787*2^3360631+1 1011655 L5197 2021 3585 6619*2^3360606+1 1011648 L5316 2021 3586 2755*2^3360526+1 1011623 L5174 2021 3587 1445*2^3360099+1 1011494 L5261 2021 3588 2846*67^553905-1 1011476 L4955 2023 3589 8757*2^3359788+1 1011401 L5197 2021 3590 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 3591 5085*2^3359696+1 1011373 L5261 2021 3592 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 3593 6459*2^3359457+1 1011302 L5310 2021 3594 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 3595 6115*2^3358998+1 1011163 L5309 2021 3596 7605*2^3358929+1 1011143 L5308 2021 3597 2315*2^3358899+1 1011133 L5197 2021 3598 6603*2^3358525+1 1011021 L5307 2021 3599 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 3600 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 3601 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 3602 5893*2^3357490+1 1010709 L5285 2021 3603 6947*2^3357075+1 1010585 L5302 2021 3604 4621*2^3357068+1 1010582 L5301 2021 3605 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 3606f 104*468^378388-1 1010392 A11 2025 3607 1479*2^3356275+1 1010343 L5178 2021 3608 3645*2^3356232+1 1010331 L5296 2021 3609 1259*2^3356215+1 1010325 L5298 2021 3610 2075*2^3356057+1 1010278 L5174 2021 3611 4281*2^3356051+1 1010276 L5295 2021 3612 1275*2^3356045+1 1010274 L5294 2021 3613 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 3614 4365*2^3355770+1 1010192 L5261 2021 3615 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 3616 2183*2^3355297+1 1010049 L5266 2021 3617 3087*2^3355000+1 1009960 L5226 2021 3618 8673*2^3354760+1 1009888 L5233 2021 3619 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 3620 3015*2^3353943+1 1009641 L5290 2021 3621 6819*2^3353877+1 1009622 L5174 2021 3622 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 3623 6393*2^3353366+1 1009468 L5287 2021 3624 3573*2^3353273+1 1009440 L5161 2021 3625 4047*2^3353222+1 1009425 L5286 2021 3626 1473*2^3353114+1 1009392 L5161 2021 3627 1183*2^3353058+1 1009375 L3824 2017 3628 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 3629 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 3630 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 3631 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 3632 7123*2^3352180+1 1009111 L5161 2021 3633 2757*2^3352180+1 1009111 L5285 2021 3634f 243*2^3352138-1 1009097 A76 2025 3635 9307*2^3352014+1 1009061 L5284 2021 3636 2217*2^3351732+1 1008976 L5283 2021 3637 543*2^3351686+1 1008961 L4198 2017 3638 4419*2^3351666+1 1008956 L5279 2021 3639 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 3640 3059*2^3351379+1 1008870 L5278 2021 3641 7789*2^3351046+1 1008770 L5276 2021 3642 9501*2^3350668+1 1008656 L5272 2021 3643 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 3644 9691*2^3349952+1 1008441 L5242 2021 3645 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 3646 3209*2^3349719+1 1008370 L5269 2021 3647 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 3648 393*2^3349525+1 1008311 L3101 2016 3649 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 3650 5487*2^3349303+1 1008245 L5266 2021 3651 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 3652 2511*2^3349104+1 1008185 L5264 2021 3653 1005*2^3349046-1 1008167 L4518 2021 3654 7659*2^3348894+1 1008122 L5263 2021 3655 9703*2^3348872+1 1008115 L5262 2021 3656 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 3657 7935*2^3348578+1 1008027 L5161 2021 3658 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 3659 7821*2^3348400+1 1007973 L5260 2021 3660 7911*2^3347532+1 1007712 L5250 2021 3661b 1600*161^456616+1 1007676 A68 2026 Generalized Fermat 3662 8295*2^3347031+1 1007561 L5249 2021 3663 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 3664 4029*2^3346729+1 1007470 L5239 2021 3665 9007*2^3346716+1 1007466 L5161 2021 3666 8865*2^3346499+1 1007401 L5238 2021 3667 6171*2^3346480+1 1007395 L5174 2021 3668 6815*2^3346045+1 1007264 L5235 2021 3669 5*326^400785+1 1007261 L4786 2019 3670 5951*2^3345977+1 1007244 L5233 2021 3671 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 3672 1257*2^3345843+1 1007203 L5192 2021 3673 4701*2^3345815+1 1007195 L5192 2021 3674 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 3675 7545*2^3345355+1 1007057 L5231 2021 3676 5559*2^3344826+1 1006897 L5223 2021 3677 6823*2^3344692+1 1006857 L5223 2021 3678 4839*2^3344453+1 1006785 L5188 2021 3679 7527*2^3344332+1 1006749 L5220 2021 3680 7555*2^3344240+1 1006721 L5188 2021 3681 6265*2^3344080+1 1006673 L5197 2021 3682 1299*2^3343943+1 1006631 L5217 2021 3683 2815*2^3343754+1 1006574 L5216 2021 3684 5349*2^3343734+1 1006568 L5174 2021 3685 2863*2^3342920+1 1006323 L5179 2020 3686 7387*2^3342848+1 1006302 L5208 2020 3687 9731*2^3342447+1 1006181 L5203 2020 3688 7725*2^3341708+1 1005959 L5195 2020 3689 7703*2^3341625+1 1005934 L5178 2020 3690 7047*2^3341482+1 1005891 L5194 2020 3691 4839*2^3341309+1 1005838 L5192 2020 3692 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 3693 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 3694 8989*2^3340866+1 1005705 L5189 2020 3695 6631*2^3340808+1 1005688 L5188 2020 3696 1341*2^3340681+1 1005649 L5188 2020 3697 733*2^3340464+1 1005583 L3035 2016 3698 2636*138^469911+1 1005557 L5410 2021 3699 3679815*2^3340001+1 1005448 L4922 2019 3700 57*2^3339932-1 1005422 L3519 2015 3701 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 3702 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 3703 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 3704 3651*2^3339341+1 1005246 L5177 2020 3705 3853*2^3339296+1 1005232 L5178 2020 3706 8015*2^3339267+1 1005224 L5176 2020 3707 3027*2^3339182+1 1005198 L5174 2020 3708 9517*2^3339002+1 1005144 L5172 2020 3709 4003*2^3338588+1 1005019 L3035 2020 3710 6841*2^3338336+1 1004944 L1474 2020 3711 2189*2^3338209+1 1004905 L5031 2020 3712 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 3713 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 3714 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 3715 2957*2^3337667+1 1004742 L5144 2020 3716 1515*2^3337389+1 1004658 L1474 2020 3717 7933*2^3337270+1 1004623 L4666 2020 3718 1251*2^3337116+1 1004576 L4893 2020 3719 651*2^3337101+1 1004571 L3260 2016 3720 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 3721 8397*2^3336654+1 1004437 L5125 2020 3722 8145*2^3336474+1 1004383 L5110 2020 3723 1087*2^3336385-1 1004355 L1828 2012 3724 5325*2^3336120+1 1004276 L2125 2020 3725 849*2^3335669+1 1004140 L3035 2016 3726 8913*2^3335216+1 1004005 L5079 2020 3727 7725*2^3335213+1 1004004 L3035 2020 3728 611*2^3334875+1 1003901 L3813 2016 3729 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 3730 403*2^3334410+1 1003761 L4293 2016 3731 5491*2^3334392+1 1003756 L4815 2020 3732 6035*2^3334341+1 1003741 L2125 2020 3733 1725*2^3334341+1 1003740 L2125 2020 3734 4001*2^3334031+1 1003647 L1203 2020 3735 2315*2^3333969+1 1003629 L2125 2020 3736 6219*2^3333810+1 1003581 L4582 2020 3737 8063*2^3333721+1 1003554 L1823 2020 3738 9051*2^3333677+1 1003541 L3924 2020 3739 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 3740 4091*2^3333153+1 1003383 L1474 2020 3741 9949*2^3332750+1 1003262 L5090 2020 3742 3509*2^3332649+1 1003231 L5085 2020 3743 3781*2^3332436+1 1003167 L1823 2020 3744 4425*2^3332394+1 1003155 L3431 2020 3745 6459*2^3332086+1 1003062 L2629 2020 3746 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 3747 5257*2^3331758+1 1002963 L1188 2020 3748 2939*2^3331393+1 1002853 L1823 2020 3749 6959*2^3331365+1 1002845 L1675 2020 3750 8815*2^3330748+1 1002660 L3329 2020 3751 4303*2^3330652+1 1002630 L4730 2020 3752 8595*2^3330649+1 1002630 L4723 2020 3753 673*2^3330436+1 1002564 L3035 2016 3754 8163*2^3330042+1 1002447 L3278 2020 3755 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 3756 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 3757 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 3758 2829*2^3329061+1 1002151 L4343 2020 3759 5775*2^3329034+1 1002143 L1188 2020 3760 7101*2^3328905+1 1002105 L4568 2020 3761 7667*2^3328807+1 1002075 L4087 2020 3762 129*2^3328805+1 1002073 L3859 2014 3763 7261*2^3328740+1 1002055 L2914 2020 3764 4395*2^3328588+1 1002009 L3924 2020 3765 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 3766 143183*2^3328297+1 1001923 L4504 2017 3767 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 3768 9681*2^3327987+1 1001828 L1204 2020 3769 2945*2^3327987+1 1001828 L2158 2020 3770 5085*2^3327789+1 1001769 L1823 2020 3771 8319*2^3327650+1 1001727 L1204 2020 3772 4581*2^3327644+1 1001725 L2142 2020 3773 655*2^3327518+1 1001686 L4490 2016 3774 8863*2^3327406+1 1001653 L1675 2020 3775 659*2^3327371+1 1001642 L3502 2016 3776 3411*2^3327343+1 1001634 L1675 2020 3777 4987*2^3327294+1 1001619 L3924 2020 3778 821*2^3327003+1 1001531 L3035 2016 3779 2435*2^3326969+1 1001521 L3035 2020 3780 1931*2^3326850-1 1001485 L4113 2022 3781 2277*2^3326794+1 1001469 L5014 2020 3782 6779*2^3326639+1 1001422 L3924 2020 3783 31*2^3326149-1 1001273 L1862 2024 3784 6195*2^3325993+1 1001228 L1474 2019 3785 555*2^3325925+1 1001206 L4414 2016 3786 9041*2^3325643+1 1001123 L3924 2019 3787 1965*2^3325639-1 1001121 L4113 2022 3788 1993*2^3325302+1 1001019 L3662 2019 3789 6179*2^3325027+1 1000937 L3048 2019 3790 4485*2^3324900+1 1000899 L1355 2019 3791 3559*2^3324650+1 1000823 L3035 2019 3792 12512*13^898392-1 1000762 L2425 2024 3793 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 3794 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 3795 6927*2^3324387+1 1000745 L3091 2019 3796 9575*2^3324287+1 1000715 L3824 2019 3797 1797*2^3324259+1 1000705 L3895 2019 3798 4483*2^3324048+1 1000642 L3035 2019 3799 791*2^3323995+1 1000626 L3035 2016 3800 6987*2^3323926+1 1000606 L4973 2019 3801 3937*2^3323886+1 1000593 L3035 2019 3802 2121*2^3323852+1 1000583 L1823 2019 3803 1571*2^3323493+1 1000475 L3035 2019 3804 2319*2^3323402+1 1000448 L4699 2019 3805 2829*2^3323341+1 1000429 L4754 2019 3806 4335*2^3323323+1 1000424 L1823 2019 3807 8485*2^3322938+1 1000308 L4858 2019 3808 6505*2^3322916+1 1000302 L4858 2019 3809 597*2^3322871+1 1000287 L3035 2016 3810 9485*2^3322811+1 1000270 L2603 2019 3811 8619*2^3322774+1 1000259 L3035 2019 3812 387*2^3322763+1 1000254 L1455 2016 3813 1965*2^3322579-1 1000200 L4113 2022 3814 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 3815 6366*745^348190-1 1000060 L4189 2022 3816c 408132832455*2^3322000-1 1000034 A82 2025 3817d 332179935645*2^3322000-1 1000034 A82 2025 3818f 224331639195*2^3322000-1 1000033 A75 2025 3819 13841792445*2^3322000-1 1000032 L5827 2023 3820 5553507*2^3322000+1 1000029 p391 2016 3821 5029159647*2^3321910-1 1000005 L4960 2021 3822 5009522505*2^3321910-1 1000005 L4960 2021 3823 4766298357*2^3321910-1 1000005 L4960 2021 3824 4759383915*2^3321910-1 1000005 L4960 2021 3825 4635733263*2^3321910-1 1000005 L4960 2021 3826 4603393047*2^3321910-1 1000005 L4960 2021 3827 4550053935*2^3321910-1 1000005 L4960 2021 3828 4288198767*2^3321910-1 1000005 L4960 2021 3829 4229494557*2^3321910-1 1000005 L4960 2021 3830 4110178197*2^3321910-1 1000005 L4960 2021 3831 4022490843*2^3321910-1 1000005 L4960 2021 3832 3936623697*2^3321910-1 1000005 L4960 2021 3833 3751145343*2^3321910-1 1000005 L4960 2021 3834 3715773735*2^3321910-1 1000005 L4960 2021 3835 3698976057*2^3321910-1 1000005 L4960 2021 3836 3659465685*2^3321910-1 1000005 L4960 2020 3837 3652932033*2^3321910-1 1000005 L4960 2020 3838 3603204333*2^3321910-1 1000005 L4960 2020 3839 3543733545*2^3321910-1 1000005 L4960 2020 3840 3191900133*2^3321910-1 1000005 L4960 2020 3841 3174957723*2^3321910-1 1000005 L4960 2020 3842 2973510903*2^3321910-1 1000005 L4960 2019 3843 2848144257*2^3321910-1 1000005 L4960 2019 3844 2820058827*2^3321910-1 1000005 L4960 2019 3845 2611553775*2^3321910-1 1000004 L4960 2020 3846 2601087525*2^3321910-1 1000004 L4960 2019 3847 2386538565*2^3321910-1 1000004 L4960 2019 3848 2272291887*2^3321910-1 1000004 L4960 2019 3849 2167709265*2^3321910-1 1000004 L4960 2019 3850 2087077797*2^3321910-1 1000004 L4960 2019 3851 1848133623*2^3321910-1 1000004 L4960 2019 3852 1825072257*2^3321910-1 1000004 L4960 2019 3853 1633473837*2^3321910-1 1000004 L4960 2019 3854 1228267623*2^3321910-1 1000004 L4808 2019 3855 1148781333*2^3321910-1 1000004 L4808 2019 3856 1065440787*2^3321910-1 1000004 L4808 2019 3857 1055109357*2^3321910-1 1000004 L4960 2019 3858 992309607*2^3321910-1 1000004 L4808 2019 3859 926102325*2^3321910-1 1000004 L4808 2019 3860 892610007*2^3321910-1 1000004 L4960 2019 3861 763076757*2^3321910-1 1000004 L4960 2019 3862 607766997*2^3321910-1 1000004 L4808 2019 3863 539679177*2^3321910-1 1000004 L4808 2019 3864 425521077*2^3321910-1 1000004 L4808 2019 3865 132940575*2^3321910-1 1000003 L4808 2019 3866 239378138685*2^3321891+1 1000001 L5104 2020 3867 464253*2^3321908-1 1000000 L466 2013 3868 3^2095902+3^647322-1 1000000 x44 2018 3869 191273*2^3321908-1 1000000 L466 2013 3870 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 3871 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 3872 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 3873 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 3874 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 3875 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 3876 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 3877 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 3878 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 3879 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 3880 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 3881 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 3882 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 3883 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 3884 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 3885 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 3886 ((sqrtnint(10^999999,2048)+2)+7748134)^2048+1 1000000 A55 2025 Generalized Fermat 3887 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 3888 10^999999+10^840885+10^333333+1 1000000 p436 2023 3889 10^999999+308267*10^292000+1 1000000 CH10 2021 3890 10^999999-1022306*10^287000-1 999999 CH13 2021 3891 10^999999-1087604*10^287000-1 999999 CH13 2021 3892 531631540026641*6^1285077+1 999999 L3494 2021 3893 3139*2^3321905-1 999997 L185 2008 3894 702*507^369680+1 999991 A28 2024 3895 42550702^131072+1 999937 L4309 2022 Generalized Fermat 3896 42414020^131072+1 999753 L5030 2022 Generalized Fermat 3897 4847*2^3321063+1 999744 SB9 2005 3898 42254832^131072+1 999539 L5375 2022 Generalized Fermat 3899 42243204^131072+1 999524 L4898 2022 Generalized Fermat 3900 42230406^131072+1 999506 L5453 2022 Generalized Fermat 3901 42168978^131072+1 999424 L5462 2022 Generalized Fermat 3902 439*2^3318318+1 998916 L5573 2022 3903 201382*5^1428998+1 998833 A11 2024 3904 41688706^131072+1 998772 L5270 2022 Generalized Fermat 3905 41364744^131072+1 998327 L5453 2022 Generalized Fermat 3906 41237116^131072+1 998152 L5459 2022 Generalized Fermat 3907 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 3908 41102236^131072+1 997965 L4245 2022 Generalized Fermat 3909 41007562^131072+1 997834 L4210 2022 Generalized Fermat 3910 41001148^131072+1 997825 L4210 2022 Generalized Fermat 3911 975*2^3312951+1 997301 L5231 2022 3912 40550398^131072+1 997196 L4245 2022 Generalized Fermat 3913 11796*46^599707+1 997172 L5670 2023 3914 40463598^131072+1 997074 L4591 2022 Generalized Fermat 3915 689*2^3311423+1 996841 L5226 2022 3916 40151896^131072+1 996633 L4245 2022 Generalized Fermat 3917d 39997729^131072-39997729^65536+1 996414 p379 2025 Generalized unique 3918 593*2^3309333+1 996212 L5572 2022 3919 383*2^3309321+1 996208 L5570 2022 3920 49*2^3309087-1 996137 L1959 2013 3921 39746366^131072+1 996056 L4201 2022 Generalized Fermat 3922 139413*6^1279992+1 996033 L4001 2015 3923 1274*67^545368-1 995886 L5410 2023 3924 51*2^3308171+1 995861 L2840 2015 3925 719*2^3308127+1 995849 L5192 2022 3926 39597790^131072+1 995842 L4737 2022 Generalized Fermat 3927 39502358^131072+1 995705 L5453 2022 Generalized Fermat 3928 39324372^131072+1 995448 L5202 2022 Generalized Fermat 3929 245114*5^1424104-1 995412 L3686 2013 3930 39100746^131072+1 995123 L5441 2022 Generalized Fermat 3931 38824296^131072+1 994719 L4245 2022 Generalized Fermat 3932 38734748^131072+1 994588 L4249 2021 Generalized Fermat 3933 175124*5^1422646-1 994393 L3686 2013 3934 453*2^3303073+1 994327 L5568 2022 3935 856*75^530221-1 994200 A11 2024 3936 38310998^131072+1 993962 L4737 2021 Generalized Fermat 3937 531*2^3301693+1 993912 L5226 2022 3938 38196496^131072+1 993791 L4861 2021 Generalized Fermat 3939 38152876^131072+1 993726 L4245 2021 Generalized Fermat 3940 195*2^3301018+1 993708 L5569 2022 3941 341*2^3300789+1 993640 L5192 2022 3942 37909914^131072+1 993363 L4249 2021 Generalized Fermat 3943 849*2^3296427+1 992327 L5571 2022 3944 1611*22^738988+1 992038 L4139 2015 3945 36531196^131072+1 991254 L4249 2021 Generalized Fermat 3946 2017*2^3292325-1 991092 L3345 2017 3947 36422846^131072+1 991085 L4245 2021 Generalized Fermat 3948 36416848^131072+1 991076 L5202 2021 Generalized Fermat 3949 885*2^3290927+1 990671 L5161 2022 3950 36038176^131072+1 990481 L4245 2021 Generalized Fermat 3951 35997532^131072+1 990416 L4245 2021 Generalized Fermat 3952 35957420^131072+1 990353 L4245 2021 Generalized Fermat 3953 107970^196608-107970^98304+1 989588 L4506 2016 Generalized unique 3954 35391288^131072+1 989449 L5070 2021 Generalized Fermat 3955 35372304^131072+1 989419 L5443 2021 Generalized Fermat 3956 219*2^3286614+1 989372 L5567 2022 3957 61*2^3286535-1 989348 L4405 2016 3958 35327718^131072+1 989347 L4591 2021 Generalized Fermat 3959 35282096^131072+1 989274 L4245 2021 Generalized Fermat 3960 35141602^131072+1 989046 L4729 2021 Generalized Fermat 3961 35139782^131072+1 989043 L4245 2021 Generalized Fermat 3962 35047222^131072+1 988893 L4249 2021 Generalized Fermat 3963 531*2^3284944+1 988870 L5536 2022 3964 34957136^131072+1 988747 L5321 2021 Generalized Fermat 3965 301*2^3284232+1 988655 L5564 2022 3966 34871942^131072+1 988608 L4245 2021 Generalized Fermat 3967 34763644^131072+1 988431 L4737 2021 Generalized Fermat 3968 34585314^131072+1 988138 L4201 2021 Generalized Fermat 3969 311*2^3282455+1 988120 L5568 2022 3970 34530386^131072+1 988048 L5070 2021 Generalized Fermat 3971 833*2^3282181+1 988038 L5564 2022 3972 561*2^3281889+1 987950 L5477 2022 3973 34087952^131072+1 987314 L4764 2021 Generalized Fermat 3974 87*2^3279368+1 987191 L3458 2015 3975 965*2^3279151+1 987126 L5564 2022 3976 33732746^131072+1 986717 L4359 2021 Generalized Fermat 3977 33474284^131072+1 986279 L5051 2021 Generalized Fermat 3978c 240*135^462960-1 986262 A11 2025 3979 33395198^131072+1 986145 L4658 2021 Generalized Fermat 3980 427*2^3275606+1 986059 L5566 2022 3981 33191418^131072+1 985796 L4201 2021 Generalized Fermat 3982 337*2^3274106+1 985607 L5564 2022 3983 19861029*2^3273589-1 985456 A31 2025 3984 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 3985 1045*2^3273488+1 985422 L5192 2022 3986 32869172^131072+1 985241 L4285 2021 Generalized Fermat 3987 32792696^131072+1 985108 L5198 2021 Generalized Fermat 3988 1047*2^3272351+1 985079 L5563 2022 3989 32704348^131072+1 984955 L5312 2021 Generalized Fermat 3990 6781*24^713573-1 984886 A11 2024 3991 32608738^131072+1 984788 L5395 2021 Generalized Fermat 3992 75*2^3271125-1 984709 A38 2024 3993 933*2^3270993+1 984670 L5562 2022 3994 311*2^3270759+1 984600 L5560 2022 3995 32430486^131072+1 984476 L4245 2021 Generalized Fermat 3996 32417420^131072+1 984453 L4245 2021 Generalized Fermat 3997 65*2^3270127+1 984409 L3924 2015 3998 32348894^131072+1 984333 L4245 2021 Generalized Fermat 3999 579*2^3269850+1 984326 L5226 2022 4000 32286660^131072+1 984223 L5400 2021 Generalized Fermat 4001 32200644^131072+1 984071 L4387 2021 Generalized Fermat 4002 32137342^131072+1 983959 L4559 2021 Generalized Fermat 4003 32096608^131072+1 983887 L4559 2021 Generalized Fermat 4004 32055422^131072+1 983814 L4559 2021 Generalized Fermat 4005 31821360^131072+1 983397 L4861 2021 Generalized Fermat 4006 31768014^131072+1 983301 L4252 2021 Generalized Fermat 4007 335*2^3266237+1 983238 L5559 2022 4008 981493*2^3266031-1 983180 p420 2025 4009 1031*2^3265915+1 983142 L5364 2022 4010 31469984^131072+1 982765 L5078 2021 Generalized Fermat 4011 5*2^3264650-1 982759 L384 2013 4012 223*2^3264459-1 982703 L1884 2012 4013 1101*2^3264400+1 982686 L5231 2022 4014 483*2^3264181+1 982620 L5174 2022 4015 525*2^3263227+1 982332 L5231 2022 4016 31145080^131072+1 982174 L4201 2021 Generalized Fermat 4017 622*48^584089+1 981998 L5629 2023 4018 31044982^131072+1 981991 L5041 2021 Generalized Fermat 4019 683*2^3262037+1 981974 L5192 2022 4020 923*2^3261401+1 981783 L5477 2022 4021 30844300^131072+1 981622 L5102 2021 Generalized Fermat 4022 30819256^131072+1 981575 L4201 2021 Generalized Fermat 4023 9*2^3259381-1 981173 L1828 2011 4024 31*2^3259185-1 981114 L1862 2024 4025 1059*2^3258751+1 980985 L5231 2022 4026 6*5^1403337+1 980892 L4965 2020 4027 30318724^131072+1 980643 L4309 2021 Generalized Fermat 4028 30315072^131072+1 980636 L5375 2021 Generalized Fermat 4029 30300414^131072+1 980609 L4755 2021 Generalized Fermat 4030 30225714^131072+1 980468 L4201 2021 Generalized Fermat 4031 875*2^3256589+1 980334 L5550 2022 4032 30059800^131072+1 980155 L4928 2021 Generalized Fermat 4033 176268*5^1402258-1 980142 A11 2025 4034 30022816^131072+1 980085 L5273 2021 Generalized Fermat 4035 29959190^131072+1 979964 L4905 2021 Generalized Fermat 4036 968*75^522276-1 979303 A11 2024 4037 29607314^131072+1 979292 L5378 2021 Generalized Fermat 4038 779*2^3253063+1 979273 L5192 2022 4039 29505368^131072+1 979095 L5378 2021 Generalized Fermat 4040 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 4041 29169314^131072+1 978443 L5380 2021 Generalized Fermat 4042 417*2^3248255+1 977825 L5178 2022 4043b 1023*2^3248086-1 977775 A78 2026 4044 28497098^131072+1 977116 L4308 2021 Generalized Fermat 4045 28398204^131072+1 976918 L5379 2021 Generalized Fermat 4046 28294666^131072+1 976710 L5375 2021 Generalized Fermat 4047 28175634^131072+1 976470 L5378 2021 Generalized Fermat 4048 33*2^3242126-1 975979 L3345 2014 4049 27822108^131072+1 975752 L4760 2021 Generalized Fermat 4050 39*2^3240990+1 975637 L3432 2014 4051 27758510^131072+1 975621 L4289 2021 Generalized Fermat 4052 3706*103^484644+1 975514 A11 2024 4053 27557876^131072+1 975208 L4245 2021 Generalized Fermat 4054 27544748^131072+1 975181 L4387 2021 Generalized Fermat 4055c 62148*115^473137-1 974998 A11 2025 4056 27408050^131072+1 974898 L4210 2021 Generalized Fermat 4057 14275*60^548133-1 974668 x51 2024 4058 225*2^3236967+1 974427 L5529 2022 4059 27022768^131072+1 974092 L4309 2021 Generalized Fermat 4060 26896670^131072+1 973826 L5376 2021 Generalized Fermat 4061 1075*2^3234606+1 973717 L5192 2022 4062 26757382^131072+1 973530 L5375 2021 Generalized Fermat 4063 8091*24^705188+1 973313 A64 2025 4064 26599558^131072+1 973194 L4245 2021 Generalized Fermat 4065 6*5^1392287+1 973168 L4965 2020 4066 26500832^131072+1 972982 L4956 2021 Generalized Fermat 4067 325*2^3231474+1 972774 L5536 2022 4068 933*2^3231438+1 972763 L5197 2022 4069 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 4070 26172278^131072+1 972272 L4245 2021 Generalized Fermat 4071 697*2^3229518+1 972185 L5534 2022 4072 22598*745^338354-1 971810 L4189 2022 4073 385*2^3226814+1 971371 L5178 2022 4074 211195*2^3224974+1 970820 L2121 2013 4075 1173*2^3223546+1 970388 L5178 2022 4076 7*6^1246814+1 970211 L4965 2019 4077 25128150^131072+1 969954 L4738 2021 Generalized Fermat 4078 25124378^131072+1 969946 L5102 2021 Generalized Fermat 4079 1089*2^3221691+1 969829 L5178 2022 4080 35*832^332073-1 969696 L4001 2019 4081 600921*2^3219922-1 969299 g337 2018 4082 939*2^3219319+1 969115 L5178 2022 4083 24734116^131072+1 969055 L5070 2021 Generalized Fermat 4084 76896*5^1386360+1 969029 A42 2024 4085 24644826^131072+1 968849 L5070 2021 Generalized Fermat 4086 24642712^131072+1 968844 L5070 2021 Generalized Fermat 4087 24641166^131072+1 968840 L5070 2021 Generalized Fermat 4088 129*2^3218214+1 968782 L5529 2022 4089 24522386^131072+1 968565 L5070 2021 Generalized Fermat 4090 24486806^131072+1 968483 L4737 2021 Generalized Fermat 4091 811*2^3216944+1 968400 L5233 2022 4092 24297936^131072+1 968042 L4201 2021 Generalized Fermat 4093 1023*2^3214745+1 967738 L5178 2022 4094 187*2^3212152+1 966957 L5178 2022 4095 301*2^3211281-1 966695 L5545 2022 4096 6*409^369832+1 965900 L4001 2015 4097 23363426^131072+1 965809 L5033 2021 Generalized Fermat 4098 1165*2^3207702+1 965618 L5178 2022 4099 94373*2^3206717+1 965323 L2785 2013 4100 2751*2^3206569-1 965277 L4036 2015 4101 761*2^3206341+1 965208 L5178 2022 4102 23045178^131072+1 965029 L5023 2021 Generalized Fermat 4103 23011666^131072+1 964946 L5273 2021 Generalized Fermat 4104 911*2^3205225+1 964872 L5364 2022 4105 22980158^131072+1 964868 L4201 2021 Generalized Fermat 4106 22901508^131072+1 964673 L4743 2021 Generalized Fermat 4107 22808110^131072+1 964440 L5248 2021 Generalized Fermat 4108 22718284^131072+1 964215 L5254 2021 Generalized Fermat 4109 22705306^131072+1 964183 L5248 2021 Generalized Fermat 4110 113983*2^3201175-1 963655 L613 2008 4111 34*888^326732-1 963343 L4001 2017 4112 899*2^3198219+1 962763 L5503 2022 4113 22007146^131072+1 962405 L4245 2020 Generalized Fermat 4114 4*3^2016951+1 962331 L4965 2020 4115 21917442^131072+1 962173 L4622 2020 Generalized Fermat 4116 987*2^3195883+1 962060 L5282 2022 4117 21869554^131072+1 962048 L5061 2020 Generalized Fermat 4118 21757066^131072+1 961754 L4773 2020 Generalized Fermat 4119 68*828^329490-1 961464 A62 2025 4120 21582550^131072+1 961296 L5068 2020 Generalized Fermat 4121 21517658^131072+1 961125 L5126 2020 Generalized Fermat 4122 20968936^131072+1 959654 L4245 2020 Generalized Fermat 4123f 13*422^365511-1 959582 A11 2025 4124 671*2^3185411+1 958908 L5315 2022 4125 20674450^131072+1 958849 L4245 2020 Generalized Fermat 4126 1027*2^3184540+1 958646 L5174 2022 4127f 118*493^355898+1 958381 A68 2025 4128 789*2^3183463+1 958321 L5482 2022 4129 855*2^3183158+1 958229 L5161 2022 4130 20234282^131072+1 957624 L4942 2020 Generalized Fermat 4131 20227142^131072+1 957604 L4677 2020 Generalized Fermat 4132 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 4133 20185276^131072+1 957486 L4201 2020 Generalized Fermat 4134 935*2^3180599+1 957459 L5477 2022 4135 573*2^3179293+1 957066 L5226 2022 4136 33*2^3176269+1 956154 L3432 2013 4137 81*2^3174353-1 955578 L3887 2022 4138 19464034^131072+1 955415 L4956 2020 Generalized Fermat 4139 600921*2^3173683-1 955380 g337 2018 4140 587*2^3173567+1 955342 L5301 2022 4141c 20520*115^463335-1 954798 A11 2025 4142 19216648^131072+1 954687 L5024 2020 Generalized Fermat 4143 1414*95^482691-1 954633 L4877 2019 4144 305*2^3171039+1 954581 L5301 2022 4145 755*2^3170701+1 954479 L5302 2022 4146 775*2^3170580+1 954443 L5449 2022 4147 78*236^402022-1 953965 L5410 2020 4148 18968126^131072+1 953946 L5011 2020 Generalized Fermat 4149 18813106^131072+1 953479 L4201 2020 Generalized Fermat 4150 18608780^131072+1 952857 L4488 2020 Generalized Fermat 4151 1087*2^3164677-1 952666 L1828 2012 4152 18509226^131072+1 952552 L4884 2020 Generalized Fermat 4153 18501600^131072+1 952528 L4875 2020 Generalized Fermat 4154 459*2^3163175+1 952214 L5178 2022 4155 15*2^3162659+1 952057 p286 2012 4156 18309468^131072+1 951934 L4928 2020 Generalized Fermat 4157 18298534^131072+1 951900 L4201 2020 Generalized Fermat 4158 849*2^3161727+1 951778 L5178 2022 4159 67*2^3161450+1 951694 L3223 2015 4160 119*2^3161195+1 951617 L5320 2022 4161 1759*2^3160863-1 951518 L4965 2021 4162 58*117^460033+1 951436 L5410 2020 4163 417*2^3160443+1 951391 L5302 2022 4164 9231*70^515544+1 951234 L5410 2021 4165 671*2^3159523+1 951115 L5188 2022 4166 17958952^131072+1 950834 L4201 2020 Generalized Fermat 4167 1001*2^3158422-1 950783 L4518 2023 4168 17814792^131072+1 950375 L4752 2020 Generalized Fermat 4169 17643330^131072+1 949824 L4201 2020 Generalized Fermat 4170 19*2^3155009-1 949754 L1828 2012 4171 281*2^3151457+1 948686 L5316 2022 4172 179*2^3150265+1 948327 L5302 2022 4173 17141888^131072+1 948183 L4963 2019 Generalized Fermat 4174 17138628^131072+1 948172 L4963 2019 Generalized Fermat 4175 17119936^131072+1 948110 L4963 2019 Generalized Fermat 4176 17052490^131072+1 947885 L4715 2019 Generalized Fermat 4177 17025822^131072+1 947796 L4870 2019 Generalized Fermat 4178 16985784^131072+1 947662 L4295 2019 Generalized Fermat 4179 865*2^3147482+1 947490 L5178 2021 4180 963*2^3145753+1 946969 L5451 2021 4181 16741226^131072+1 946837 L4201 2019 Generalized Fermat 4182 387*2^3144483+1 946587 L5450 2021 4183 1035*2^3144236+1 946513 L5449 2021 4184 1065*2^3143667+1 946342 L4944 2021 4185 1598*187^416536-1 946308 A11 2025 4186 193*2^3142150+1 945884 L5178 2021 4187 915*2^3141942+1 945822 L5448 2021 4188 939*2^3141397+1 945658 L5320 2021 4189 1063*2^3141350+1 945644 L5178 2021 4190 16329572^131072+1 945420 L4201 2019 Generalized Fermat 4191 69*2^3140225-1 945304 L3764 2014 4192 3*2^3136255-1 944108 L256 2007 4193 417*2^3136187+1 944089 L5178 2021 4194 15731520^131072+1 943296 L4245 2019 Generalized Fermat 4195 62721^196608-62721^98304+1 943210 L4506 2016 Generalized unique 4196 15667716^131072+1 943064 L4387 2019 Generalized Fermat 4197 15567144^131072+1 942698 L4918 2019 Generalized Fermat 4198 299*2^3130621+1 942414 L5178 2021 4199 15342502^131072+1 941870 L4245 2019 Generalized Fermat 4200 15237960^131072+1 941481 L4898 2019 Generalized Fermat 4201 571*2^3127388+1 941441 L5440 2021 4202 349*2^3126971-1 941315 L2235 2025 4203 107*2^3126660-1 941221 A38 2024 4204 15147290^131072+1 941141 L4861 2019 Generalized Fermat 4205 197*2^3126343+1 941126 L5178 2021 4206 15091270^131072+1 940930 L4760 2019 Generalized Fermat 4207 1097*2^3124455+1 940558 L5178 2021 4208 3125*2^3124079+1 940445 L1160 2019 4209 495*2^3123624+1 940308 L5438 2021 4210 14790404^131072+1 939784 L4871 2019 Generalized Fermat 4211 1041*2^3120649+1 939412 L5437 2021 4212 325*2^3120105-1 939248 L2017 2025 4213 14613898^131072+1 939101 L4926 2019 Generalized Fermat 4214 3317*2^3117162-1 938363 L5399 2021 4215e 6*7^1109897+1 937973 A2 2025 4216 763*2^3115684+1 937918 L4944 2021 4217 25*746^326451-1 937810 A28 2024 4218d 199*2^3115285-1 937797 A77 2025 4219 581*2^3114611+1 937595 L5178 2021 4220 14217182^131072+1 937534 L4387 2019 Generalized Fermat 4221 134*864^319246-1 937473 L5410 2020 4222 700057*2^3113753-1 937339 L5410 2022 4223 383748*277^383748+1 937303 A67 2025 Generalized Cullen 4224 5*6^1204077-1 936955 A2 2023 4225 1197*2^3111838+1 936760 L5178 2021 4226 14020004^131072+1 936739 L4249 2019 Generalized Fermat 4227 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 4228 755*2^3110759+1 936435 L5320 2021 4229 13800346^131072+1 935840 L4880 2019 Generalized Fermat 4230e 297*2^3108344-1 935708 A77 2025 4231 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 4232e 255*2^3107918-1 935579 A77 2025 4233 313*2^3107219-1 935369 L5819 2024 4234 13613070^131072+1 935062 L4245 2019 Generalized Fermat 4235 628*80^491322+1 935033 L5410 2021 4236 761*2^3105087+1 934728 L5197 2021 4237 13433028^131072+1 934305 L4868 2018 Generalized Fermat 4238 1019*2^3103680-1 934304 L1828 2012 4239 12*978^312346+1 934022 L4294 2023 4240 579*2^3102639+1 933991 L5315 2021 4241 99*2^3102401-1 933918 L1862 2017 4242 256612*5^1335485-1 933470 L1056 2013 4243e 88*7^1104001+1 932992 A11 2025 4244 13083418^131072+1 932803 L4747 2018 Generalized Fermat 4245 882*1017^310074+1 932495 A10 2024 4246 69*2^3097340-1 932395 L3764 2014 4247 153*2^3097277+1 932376 L4944 2021 4248 12978952^131072+1 932347 L4849 2018 Generalized Fermat 4249 12961862^131072+1 932272 L4245 2018 Generalized Fermat 4250 207*2^3095391+1 931808 L5178 2021 4251 12851074^131072+1 931783 L4670 2018 Generalized Fermat 4252 45*2^3094632-1 931579 L1862 2018 4253 259*2^3094582+1 931565 L5214 2021 4254 553*2^3094072+1 931412 L4944 2021 4255 57*2^3093440-1 931220 L2484 2020 4256 12687374^131072+1 931054 L4289 2018 Generalized Fermat 4257 513*2^3092705+1 931000 L4329 2016 4258 12661786^131072+1 930939 L4819 2018 Generalized Fermat 4259 933*2^3091825+1 930736 L5178 2021 4260 38*875^316292-1 930536 L4001 2019 4261 5*2^3090860-1 930443 L1862 2012 4262 12512992^131072+1 930266 L4814 2018 Generalized Fermat 4263 4*5^1330541-1 930009 L4965 2022 4264 12357518^131072+1 929554 L4295 2018 Generalized Fermat 4265c 3103*198^404736-1 929547 A11 2025 4266 12343130^131072+1 929488 L4720 2018 Generalized Fermat 4267 297*2^3087543+1 929446 L5326 2021 4268 1149*2^3087514+1 929438 L5407 2021 4269 745*2^3087428+1 929412 L5178 2021 4270 373*520^342177+1 929357 L3610 2014 4271 19401*2^3086450-1 929119 L541 2015 4272 75*2^3086355+1 929088 L3760 2015 4273 65*2^3080952-1 927461 L2484 2020 4274 11876066^131072+1 927292 L4737 2018 Generalized Fermat 4275 1139*2^3079783+1 927111 L5174 2021 4276 271*2^3079189-1 926931 L2484 2018 4277 766*33^610412+1 926923 L4001 2016 4278 11778792^131072+1 926824 L4672 2018 Generalized Fermat 4279 555*2^3078792+1 926812 L5226 2021 4280 31*332^367560+1 926672 L4294 2018 4281 167*2^3077568-1 926443 L1862 2020 4282 10001*2^3075602-1 925853 L4405 2019 4283f 293*2^3075434-1 925801 A77 2025 4284f 100*647^329222+1 925414 A11 2025 Generalized Fermat 4285 116*107^455562-1 924513 L4064 2021 4286 11292782^131072+1 924425 L4672 2018 Generalized Fermat 4287 14844*430^350980-1 924299 L4001 2016 4288 11267296^131072+1 924297 L4654 2017 Generalized Fermat 4289 19861029*2^3070319+1 924266 A31 2025 4290 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 4291 1105*2^3069884+1 924131 L5314 2021 4292 319*2^3069362+1 923973 L5377 2021 4293 11195602^131072+1 923933 L4706 2017 Generalized Fermat 4294 973*2^3069092+1 923892 L5214 2021 4295 765*2^3068511+1 923717 L5174 2021 4296 60849*2^3067914+1 923539 L591 2014 4297 674*249^385359+1 923400 L5410 2019 4298 499*2^3066970+1 923253 L5373 2021 4299 553*2^3066838+1 923213 L5368 2021 4300 629*2^3066827+1 923210 L5226 2021 4301 11036888^131072+1 923120 L4660 2017 Generalized Fermat 4302 261*2^3066009+1 922964 L5197 2021 4303 10994460^131072+1 922901 L4704 2017 Generalized Fermat 4304 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 4305 21*2^3065701+1 922870 p286 2012 4306 10962066^131072+1 922733 L4702 2017 Generalized Fermat 4307 10921162^131072+1 922520 L4559 2017 Generalized Fermat 4308 875*2^3063847+1 922313 L5364 2021 4309 43*2^3063674+1 922260 L3432 2013 4310 677*2^3063403+1 922180 L5346 2021 4311 8460*241^387047-1 921957 L5410 2019 4312 10765720^131072+1 921704 L4695 2017 Generalized Fermat 4313 111*2^3060238-1 921226 L2484 2020 4314 1165*2^3060228+1 921224 L5360 2021 4315 5*2^3059698-1 921062 L503 2008 4316c 2025*2^3059109-1 920887 L3345 2025 4317 10453790^131072+1 920031 L4694 2017 Generalized Fermat 4318 453*2^3056181+1 920005 L5320 2021 4319 791*2^3055695+1 919859 L5177 2021 4320 10368632^131072+1 919565 L4692 2017 Generalized Fermat 4321 582971*2^3053414-1 919175 L5410 2022 4322 123*2^3049038+1 917854 L4119 2015 4323 10037266^131072+1 917716 L4691 2017 Generalized Fermat 4324 400*95^463883-1 917435 L4001 2019 4325 9907326^131072+1 916975 L4690 2017 Generalized Fermat 4326 454*383^354814+1 916558 L2012 2020 4327 9785844^131072+1 916272 L4326 2017 Generalized Fermat 4328 435*2^3041954+1 915723 L5320 2021 4329 639*2^3040438+1 915266 L5320 2021 4330d 10129*108^449997-1 915039 A83 2025 4331 13822*115^443832+1 914608 A11 2024 4332 1045*2^3037988+1 914529 L5178 2021 4333 291*2^3037904+1 914503 L3545 2015 4334 311*2^3037565+1 914401 L5178 2021 4335 373*2^3036746+1 914155 L5178 2021 4336 9419976^131072+1 914103 L4591 2017 Generalized Fermat 4337 5706*162^413708+1 914098 A14 2024 4338 341*2^3036506-1 914082 p435 2023 4339 801*2^3036045+1 913944 L5348 2021 4340 915*2^3033775+1 913261 L5178 2021 4341 203*2^3033614-1 913212 L1817 2025 4342 38804*3^1913975+1 913203 L5410 2021 4343 161*2^3033558-1 913195 L1817 2025 4344 9240606^131072+1 913009 L4591 2017 Generalized Fermat 4345 869*2^3030655+1 912322 L5260 2021 4346 643*2^3030650+1 912320 L5320 2021 4347 99*2^3029959-1 912111 L1862 2020 4348 417*2^3029342+1 911926 L5178 2021 4349 207*2^3029112-1 911856 A58 2025 4350 345*2^3027769+1 911452 L5343 2021 4351 26*3^1910099+1 911351 L4799 2020 4352 355*2^3027372+1 911333 L5174 2021 4353 99*2^3026660-1 911118 L1862 2020 4354 417*2^3026492+1 911068 L5197 2021 4355 1065*2^3025527+1 910778 L5208 2021 4356 34202*3^1908800+1 910734 L5410 2021 4357 8343*42^560662+1 910099 L4444 2020 4358 699*2^3023263+1 910096 L5335 2021 4359 8770526^131072+1 910037 L4245 2017 Generalized Fermat 4360 8704114^131072+1 909604 L4670 2017 Generalized Fermat 4361 383731*2^3021377-1 909531 L466 2011 4362 46821*2^3021380-374567 909531 p363 2013 4363 2^3021377-1 909526 G3 1998 Mersenne 37 4364 255*2^3021196-1 909474 L3994 2025 4365 615*2^3019445+1 908947 L5260 2021 4366 389*2^3019025+1 908820 L5178 2021 4367 875*2^3018175+1 908565 L5334 2021 4368 375*2^3016803-1 908151 L2235 2023 4369 555*2^3016352+1 908016 L5178 2021 4370 7*2^3015762+1 907836 g279 2008 4371 759*2^3015314+1 907703 L5178 2021 4372 32582*3^1901790+1 907389 L5372 2021 4373 75*2^3012342+1 906808 L3941 2015 4374 459*2^3011814+1 906650 L5178 2021 4375 171*2^3010938-1 906385 A27 2025 4376 991*2^3010036+1 906115 L5326 2021 4377 583*2^3009698+1 906013 L5325 2021 4378 8150484^131072+1 905863 L4249 2017 Generalized Fermat 4379 593*2^3006969+1 905191 L5178 2021 4380f 53*308^363703+1 905096 A71 2025 4381 327*2^3006540-1 905062 L2257 2023 4382 75*2^3006235-1 904969 A38 2024 4383 367*2^3004536+1 904459 L5178 2021 4384 7926326^131072+1 904276 L4249 2017 Generalized Fermat 4385 1003*2^3003756+1 904224 L5320 2021 4386 626*1017^300576+1 903932 A9 2024 4387 573*2^3002662+1 903895 L5319 2021 4388 7858180^131072+1 903784 L4201 2017 Generalized Fermat 4389 329*2^3002295+1 903784 L5318 2021 4390 4*5^1292915-1 903710 L4965 2022 4391 7832704^131072+1 903599 L4249 2017 Generalized Fermat 4392 268514*5^1292240-1 903243 L3562 2013 4393d 6555*2^2999391-1 902911 A76 2025 4394 7*10^902708+1 902709 p342 2013 4395 435*2^2997453+1 902326 L5167 2021 4396 583*2^2996526+1 902047 L5174 2021 4397 1037*2^2995695+1 901798 L5178 2021 4398 717*2^2995326+1 901686 L5178 2021 4399 885*2^2995274+1 901671 L5178 2021 4400 43*2^2994958+1 901574 L3222 2013 4401 1065*2^2994154+1 901334 L5315 2021 4402 561*2^2994132+1 901327 L5314 2021 4403 147*2^2993165-1 901035 L1817 2025 4404 1095*2^2992587-1 900862 L1828 2011 4405 519*2^2991849+1 900640 L5311 2021 4406 5077*2^2990757-1 900312 L3519 2025 4407 7379442^131072+1 900206 L4201 2017 Generalized Fermat 4408 109932*5^1287894-1 900205 A11 2025 4409 459*2^2990134+1 900123 L5197 2021 4410 15*2^2988834+1 899730 p286 2012 4411 29*564^326765+1 899024 L4001 2017 4412 5129*24^650539+1 897885 A11 2024 4413 971*2^2982525+1 897833 L5197 2021 4414 1033*2^2980962+1 897362 L5305 2021 4415 357*2^2980540-1 897235 L2257 2023 4416 367*2^2979033-1 896781 L2257 2023 4417 39*2^2978894+1 896739 L2719 2013 4418 38*977^299737+1 896184 L5410 2021 4419b 1023*2^2976959-1 896157 A78 2026 4420 4348099*2^2976221-1 895939 L466 2008 4421 205833*2^2976222-411665 895938 L4667 2017 4422 593*2^2976226-18975 895937 p373 2014 4423 2^2976221-1 895932 G2 1997 Mersenne 36 4424 1024*3^1877301+1 895704 p378 2014 4425 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 4426 24704*3^1877135+1 895626 L5410 2021 4427 591*2^2975069+1 895588 L5299 2021 4428 249*2^2975002+1 895568 L2322 2015 4429 18431*82^467690-1 895076 A14 2024 4430 195*2^2972947+1 894949 L3234 2015 4431 6705932^131072+1 894758 L4201 2017 Generalized Fermat 4432 391*2^2971600+1 894544 L5242 2021 4433 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 4434 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 4435 369*2^2968175-1 893513 L2257 2023 4436 493*72^480933+1 893256 L3610 2014 4437 561*2^2964753+1 892483 L5161 2021 4438 1185*2^2964350+1 892362 L5161 2021 4439 6403134^131072+1 892128 L4510 2016 Generalized Fermat 4440 6391936^131072+1 892028 L4511 2016 Generalized Fermat 4441 1964*991^297652-1 891791 A11 2025 4442 395*2^2961370-1 891464 L2257 2023 4443 21*2^2959789-1 890987 L5313 2021 4444 627*2^2959098+1 890781 L5197 2021 4445 45*2^2958002-1 890449 L1862 2017 4446 729*2^2955389+1 889664 L5282 2021 4447c 96407*2^2954495+1 889397 L4789 2025 4448d 28460*105^439950-1 889227 A11 2025 4449 706*1017^295508+1 888691 p433 2023 4450 198677*2^2950515+1 888199 L2121 2012 4451 88*985^296644+1 887987 L5410 2020 4452 303*2^2949403-1 887862 L1817 2022 4453 5877582^131072+1 887253 L4245 2016 Generalized Fermat 4454 321*2^2946654-1 887034 L1817 2022 4455 17*2^2946584-1 887012 L3519 2013 4456 489*2^2944673+1 886438 L5167 2021 4457 141*2^2943065+1 885953 L3719 2015 4458 757*2^2942742+1 885857 L5261 2021 4459 5734100^131072+1 885846 L4477 2016 Generalized Fermat 4460 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 4461 33*2^2939063-1 884748 L3345 2013 4462 5903*2^2938744-1 884654 L4036 2015 4463 717*2^2937963+1 884418 L5256 2021 4464 5586416^131072+1 884361 L4454 2016 Generalized Fermat 4465 297*2^2937584-1 884304 L1817 2025 4466 243*2^2937316+1 884223 L4114 2015 4467 973*2^2937046+1 884142 L5253 2021 4468 61*2^2936967-1 884117 L2484 2017 4469 203*2^2935338-1 883628 L1817 2025 4470 903*2^2934602+1 883407 L5246 2021 4471 5471814^131072+1 883181 L4362 2016 Generalized Fermat 4472 188*228^374503+1 883056 L4786 2020 4473 53*248^368775+1 883016 L5196 2020 4474 13613*82^461323-1 882891 A11 2024 4475 5400728^131072+1 882436 L4201 2016 Generalized Fermat 4476 17*326^350899+1 881887 L4786 2019 4477 855*2^2929550+1 881886 L5200 2021 4478 5326454^131072+1 881648 L4201 2016 Generalized Fermat 4479 839*2^2928551+1 881585 L5242 2021 4480 7019*10^881309-1 881313 L3564 2013 4481 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 4482d 131282*105^435927-1 881097 A11 2025 4483 391*2^2925759-1 880744 L2257 2023 4484 577*2^2925602+1 880697 L5201 2021 4485 97366*5^1259955-1 880676 L3567 2013 4486 246234*5^1259806-1 880572 A65 2025 4487 19861029*2^2924096-1 880248 A31 2024 4488 973*2^2923062+1 879933 L5228 2021 4489 1126*177^391360+1 879770 L4955 2020 4490 243944*5^1258576-1 879713 L3566 2013 4491 693*2^2921528+1 879471 L5201 2021 4492 6*10^879313+1 879314 L5009 2019 4493c 58028*115^426490-1 878872 A87 2025 4494 269*2^2918105+1 878440 L2715 2015 4495 331*2^2917844+1 878362 L5210 2021 4496 169*2^2917805-1 878350 L2484 2018 4497 1085*2^2916967+1 878098 L5174 2020 4498 389*2^2916499+1 877957 L5215 2020 4499 431*2^2916429+1 877936 L5214 2020 4500 1189*2^2916406+1 877929 L5174 2020 4501 1011*2^2916119-1 877843 L4518 2023 4502 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 4503 4974408^131072+1 877756 L4380 2016 Generalized Fermat 4504 465*2^2914079+1 877228 L5210 2020 4505 427194*113^427194+1 877069 p310 2012 Generalized Cullen 4506 322*952^294414+1 876955 A11 2025 4507 4893072^131072+1 876817 L4303 2016 Generalized Fermat 4508 493*2^2912552+1 876769 L5192 2021 4509 379*2^2911423-1 876429 L2257 2023 4510 143157*2^2911403+1 876425 L4504 2017 4511 567*2^2910402+1 876122 L5201 2020 4512 4098*1003^291860+1 875964 A14 2025 4513 683*2^2909217+1 875765 L5199 2020 4514 674*249^365445+1 875682 L5410 2019 4515 475*2^2908802+1 875640 L5192 2021 4516 2351*24^634318+1 875497 A11 2024 4517 117*2^2908312-1 875492 A27 2025 4518 371*2^2907377+1 875211 L5197 2020 4519 8161*24^633274+1 874056 A11 2024 4520 207*2^2903535+1 874054 L3173 2015 4521 851*2^2902731+1 873813 L5177 2020 4522 267*2^2902469-1 873733 A27 2024 4523 777*2^2901907+1 873564 L5192 2020 4524 717*2^2900775+1 873224 L5185 2020 4525 99*2^2899303-1 872780 L1862 2017 4526 63*2^2898957+1 872675 L3262 2013 4527 173*2^2897448-1 872221 A27 2024 4528 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 4529 187*2^2896841-1 872039 L3994 2024 4530 29601*24^631722+1 871915 A11 2024 4531 747*2^2895307+1 871578 L5178 2020 4532 403*2^2894566+1 871354 L5180 2020 4533 62022*5^1246456-1 871241 A11 2025 4534 629*2^2892961+1 870871 L5173 2020 4535 627*2^2891514+1 870436 L5168 2020 4536 325*2^2890955-1 870267 L5545 2022 4537 363*2^2890208+1 870042 L3261 2020 4538 471*2^2890148+1 870024 L5158 2020 4539 4329134^131072+1 869847 L4395 2016 Generalized Fermat 4540 583*2^2889248+1 869754 L5139 2020 4541 353*2^2888332-1 869478 L2257 2023 4542 955*2^2887934+1 869358 L4958 2020 4543 8300*171^389286+1 869279 L5410 2023 4544 303*2^2887603-1 869258 L5184 2022 4545 937*2^2887130+1 869116 L5134 2020 4546 885*2^2886389+1 868893 L3924 2020 4547 763*2^2885928+1 868754 L2125 2020 4548 1071*2^2884844+1 868428 L3593 2020 4549 1181*2^2883981+1 868168 L3593 2020 4550 327*2^2881349-1 867375 L5545 2022 4551 51*2^2881227+1 867338 L3512 2013 4552 933*2^2879973+1 866962 L4951 2020 4553 261*2^2879941+1 866952 L4119 2015 4554 4085818^131072+1 866554 L4201 2016 Generalized Fermat 4555 65*2^2876718-1 865981 L2484 2016 4556 21*948^290747-1 865500 L4985 2019 4557 4013*2^2873250-1 864939 L1959 2014 4558 41*2^2872058-1 864578 L2484 2013 4559 359*2^2870935+1 864241 L1300 2020 4560 165*2^2870868+1 864220 L4119 2015 4561 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 4562 665*2^2869847+1 863913 L2885 2020 4563 12*753^300293+1 863883 A59 2025 4564 283*2^2868750+1 863583 L3877 2015 4565 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 4566 845*2^2868291+1 863445 L5100 2020 4567 3125*2^2867399+1 863177 L1754 2019 4568 701*2^2867141+1 863099 L1422 2020 4569 9*10^862868+1 862869 L4789 2024 Generalized Fermat 4570 3814944^131072+1 862649 L4201 2016 Generalized Fermat 4571 81030*91^440109-1 862197 A11 2024 4572 119*954^289255+1 861852 L5410 2022 4573 307*2^2862962+1 861840 L4740 2020 4574 147*2^2862651+1 861746 L1741 2015 4575 1207*2^2861901-1 861522 L1828 2011 4576 231*2^2860725+1 861167 L2873 2015 4577 193*2^2858812+1 860591 L2997 2015 4578 41079*78^454700-1 860341 A11 2025 4579 629*2^2857891+1 860314 L3035 2020 4580 493*2^2857856+1 860304 L5087 2020 4581 241*2^2857313-1 860140 L2484 2018 4582 707*2^2856331+1 859845 L5084 2020 4583 3615210^131072+1 859588 L4201 2016 Generalized Fermat 4584 949*2^2854946+1 859428 L2366 2020 4585 222361*2^2854840+1 859398 g403 2006 4586 725*2^2854661+1 859342 L5031 2020 4587 178972*5^1228284+1 858539 A42 2024 4588 399*2^2851994+1 858539 L4099 2020 4589 225*2^2851959+1 858528 L3941 2015 4590 247*2^2851602+1 858421 L3865 2015 4591 183*2^2850321+1 858035 L2117 2015 4592 1191*2^2849315+1 857733 L1188 2020 4593 717*2^2848598+1 857517 L1204 2020 4594 795*2^2848360+1 857445 L4099 2020 4595 4242104*15^728840-1 857189 L5410 2023 4596 2*647^304931+1 857133 L550 2025 Divides Phi(647^304931,2) 4597 3450080^131072+1 856927 L4201 2016 Generalized Fermat 4598 705*2^2846638+1 856927 L1808 2020 4599 369*2^2846547+1 856899 L4099 2020 4600 233*2^2846392-1 856852 L2484 2021 4601 223952*91^437353-1 856798 A11 2024 4602 955*2^2844974+1 856426 L1188 2020 4603 753*2^2844700+1 856343 L1204 2020 4604 11138*745^297992-1 855884 L4189 2019 4605 111*2^2841992+1 855527 L1792 2015 4606 44*744^297912-1 855478 L5410 2021 4607 649*2^2841318+1 855325 L4732 2020 4608 228*912^288954-1 855305 L5410 2022 4609 305*2^2840155+1 854975 L4907 2020 4610 914*871^290787-1 854923 L5787 2023 4611 1149*2^2839622+1 854815 L2042 2020 4612 95*2^2837909+1 854298 L3539 2013 4613 199*2^2835667-1 853624 L2484 2019 4614 595*2^2833406+1 852943 L4343 2020 4615d 4468*108^419454-1 852932 A11 2025 4616 1101*2^2832061+1 852539 L4930 2020 4617 813*2^2831757+1 852447 L4951 2020 4618 435*2^2831709+1 852432 L4951 2020 4619 38*500^315752-1 852207 A21 2024 4620 13613*82^445251-1 852132 A11 2024 4621 393*2^2828738-1 851538 L2257 2023 4622 543*2^2828217+1 851381 L4746 2019 4623f 13*2022^257457+1 851098 L6279 2025 4624 68*1010^283267+1 851027 L5778 2023 4625 704*249^354745+1 850043 L5410 2019 4626e 127682607413*2^2822945+1 849803 L5327 2025 4627 1001*2^2822037+1 849521 L1209 2019 4628 84466*5^1215373-1 849515 L3562 2013 4629b 1023*2^2820811-1 849152 A78 2026 4630 97*2^2820650+1 849103 L2163 2013 4631 381*2^2820157-1 848955 L2257 2023 4632 43814*91^433332-1 848920 A32 2024 4633 107*2^2819922-1 848884 L2484 2013 4634 84256*3^1778899+1 848756 L4789 2018 4635 45472*3^1778899-1 848756 L4789 2018 4636 495*2^2819449-1 848742 L3994 2024 4637 14804*3^1778530+1 848579 L4064 2021 4638 497*2^2818787+1 848543 L4842 2019 4639 97*2^2818306+1 848397 L3262 2013 4640 313*2^2817751-1 848231 L802 2021 4641b 704226172571*2^2817103+1 848045 L5327 2026 4642f 25489*58^480810+1 847879 A11 2025 4643 177*2^2816050+1 847718 L129 2012 4644 585*2^2816000-1 847704 L5819 2024 4645 553*2^2815596+1 847582 L4980 2019 4646 1071*2^2814469+1 847243 L3035 2019 4647 105*2^2813000+1 846800 L3200 2015 4648 1115*2^2812911+1 846774 L1125 2019 4649 96*10^846519-1 846521 L2425 2011 Near-repdigit 4650 763*2^2811726+1 846417 L3919 2019 4651 1125*2^2811598+1 846379 L4981 2019 4652 891*2^2810100+1 845928 L4981 2019 4653 441*2^2809881+1 845862 L4980 2019 4654 14016*58^479652+1 845836 A73 2025 4655 499*2^2809261-1 845675 L5516 2024 4656 711*2^2808473+1 845438 L1502 2019 4657 1089*2^2808231+1 845365 L4687 2019 4658 63*2^2807130+1 845033 L3262 2013 4659 1083*2^2806536+1 844855 L3035 2019 4660 675*2^2805669+1 844594 L1932 2019 4661 819*2^2805389+1 844510 L3372 2019 4662 1027*2^2805222+1 844459 L3035 2019 4663 437*2^2803775+1 844024 L3168 2019 4664 29113*820^289614+1 843886 A50 2024 4665 381*2^2801281-1 843273 L2257 2023 4666 4431*372^327835-1 842718 L5410 2019 4667 150344*5^1205508-1 842620 L3547 2013 4668 311*2^2798459+1 842423 L4970 2019 4669 81*2^2797443-1 842117 L3887 2021 4670 400254*127^400254+1 842062 g407 2013 Generalized Cullen 4671 2639850^131072+1 841690 L4249 2016 Generalized Fermat 4672 43*2^2795582+1 841556 L2842 2013 4673 1001*2^2794357+1 841189 L1675 2019 4674 117*2^2794014+1 841085 L1741 2015 4675 1962*5^1203024-1 840881 A63 2025 4676 1057*2^2792700+1 840690 L1675 2019 4677 345*2^2792269+1 840560 L1754 2019 4678 267*2^2792074-1 840501 L1817 2024 4679 711*2^2792072+1 840501 L4256 2019 4680 293*2^2791482-1 840323 A27 2024 4681 42896*78^444110-1 840303 A11 2025 4682 315*2^2791414-1 840302 L2235 2021 4683 973*2^2789516+1 839731 L3372 2019 4684 27602*3^1759590+1 839543 L4064 2021 4685 2187*2^2786802+1 838915 L1745 2019 4686 15*2^2785940+1 838653 p286 2012 4687 333*2^2785626-1 838560 L802 2021 4688 1337*2^2785444-1 838506 L4518 2017 4689 711*2^2784213+1 838135 L4687 2019 4690 58582*91^427818+1 838118 L5410 2020 4691 923*2^2783153+1 837816 L1675 2019 4692 1103*2^2783149+1 837815 L3784 2019 4693 20708*82^437279-1 836875 A48 2024 4694 297*2^2778276-1 836347 A27 2024 4695 485*2^2778151+1 836310 L1745 2019 4696 600921*2^2776014-1 835670 g337 2017 4697 1129*2^2774934+1 835342 L1774 2019 4698 750*1017^277556-1 834703 L4955 2021 4699 8700*241^350384-1 834625 L5410 2019 4700 1023*2^2772512+1 834613 L4724 2019 4701 656*249^348030+1 833953 L5410 2019 4702 92*10^833852-1 833854 L4789 2018 Near-repdigit 4703 437*2^2769299+1 833645 L3760 2019 4704 967*2^2768408+1 833377 L3760 2019 4705 2280466^131072+1 833359 L4201 2016 Generalized Fermat 4706 1171*2^2768112+1 833288 L2676 2019 4707 57*2^2765963+1 832640 L3262 2013 4708 1323*2^2764024+1 832058 L1115 2019 4709 189*2^2762731-1 831668 A27 2024 4710 471*2^2762718-1 831664 L5516 2023 4711 115*2^2762111-1 831481 A27 2024 4712 77*2^2762047+1 831461 L3430 2013 4713 745*2^2761514+1 831302 L1204 2019 4714 2194180^131072+1 831164 L4276 2016 Generalized Fermat 4715 543*2^2760224-1 830913 L5516 2023 4716 7*10^830865+1 830866 p342 2014 4717 893*2^2758841+1 830497 L4826 2019 4718 593*2^2757554-1 830110 L5516 2023 4719 557*2^2757276-1 830026 L5516 2023 4720d 10129*108^407936-1 829511 A11 2025 4721 537*2^2755164+1 829390 L3035 2019 4722 225*370^322863-1 829180 A14 2024 4723 579*2^2754370+1 829151 L1823 2019 4724 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 4725 455*2^2754132-1 829080 L5516 2023 4726 139*2^2751839-1 828389 A27 2024 4727 677*792^285769-1 828369 L541 2023 4728 215*2^2751022-1 828143 L2484 2018 4729 337*2^2750860+1 828094 L4854 2019 4730 701*2^2750267+1 827916 L3784 2019 4731 467*2^2749195+1 827593 L1745 2019 4732 245*2^2748663+1 827433 L3173 2015 4733 591*2^2748315+1 827329 L3029 2019 4734 205*2^2747571-1 827104 L1817 2024 4735 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 4736 1007*2^2747268-1 827014 L4518 2022 4737 1089*2^2746155+1 826679 L2583 2019 4738 707*2^2745815+1 826576 L3760 2019 4739 14016*58^468332+1 825874 A68 2025 4740 525*2^2743252-1 825804 L5516 2023 4741 459*2^2742310+1 825521 L4582 2019 4742 777*2^2742196+1 825487 L3919 2019 4743 609*2^2741078+1 825150 L3091 2019 4744 684*157^375674+1 824946 L5112 2022 4745 639*2^2740186+1 824881 L4958 2019 4746 905*2^2739805+1 824767 L4958 2019 4747 119*954^276761+1 824625 L5410 2022 4748 1955556^131072+1 824610 L4250 2015 Generalized Fermat 4749 1741*168^370406-1 824272 A11 2025 4750 777*2^2737282+1 824007 L1823 2019 4751 224*938^277168-1 823802 A11 2025 4752 765*2^2735232+1 823390 L1823 2019 4753 609*2^2735031+1 823330 L1823 2019 4754 9*10^823037+1 823038 L4789 2024 4755 305*2^2733989+1 823016 L1823 2019 4756 165*2^2732983+1 822713 L1741 2015 4757 1133*2^2731993+1 822415 L4687 2019 4758 251*2^2730917+1 822091 L3924 2015 4759 189*2^2730633-1 822005 A27 2024 4760 1185*2^2730620+1 822002 L4948 2019 4761 (10^410997+1)^2-2 821995 p405 2022 4762b 1023*2^2730559-1 821984 A78 2026 4763 173*2^2729905+1 821786 L3895 2015 4764 285*2^2728979-1 821507 A27 2024 4765 1981*2^2728877-1 821478 L1134 2018 4766 693*2^2728537+1 821375 L3035 2019 4767 501*2^2728224+1 821280 L3035 2019 4768 763*2^2727928+1 821192 L3924 2019 4769 553*2^2727583-1 821088 L5516 2023 4770 5292*820^281664+1 820721 A11 2024 4771 465*2^2726085-1 820637 L5516 2023 4772 291*2^2725533-1 820470 L1817 2024 4773 10*743^285478+1 819606 L4955 2019 4774 17*2^2721830-1 819354 p279 2010 4775 1006*639^291952+1 819075 L4444 2021 4776 1101*2^2720091+1 818833 L4935 2019 4777 1766192^131072+1 818812 L4231 2015 Generalized Fermat 4778 555*2^2719105-1 818535 L5516 2023 4779 165*2^2717378-1 818015 L2055 2012 4780 495*2^2717011-1 817905 L5516 2023 4781 68633*2^2715609+1 817485 L5105 2020 4782 1722230^131072+1 817377 L4210 2015 Generalized Fermat 4783 9574*5^1169232+1 817263 L5410 2021 4784 1717162^131072+1 817210 L4226 2015 Generalized Fermat 4785 133*2^2713410+1 816820 L3223 2015 4786 9022*96^411931-1 816563 L5410 2023 4787 17423*52^475727-1 816354 A11 2025 4788 45*2^2711732+1 816315 L1349 2012 4789 569*2^2711451+1 816231 L4568 2019 4790 567*2^2710898-1 816065 L5516 2023 4791c 374*3^1710120-1 815938 A63 2025 4792 12830*3^1709456+1 815622 L5410 2021 4793b 12356*1027^270823-1 815607 A91 2026 4794 335*2^2708958-1 815481 L2235 2020 4795 93*2^2708718-1 815408 L1862 2016 4796 1660830^131072+1 815311 L4207 2015 Generalized Fermat 4797 837*2^2708160+1 815241 L4314 2019 4798 261*2^2707551-1 815057 A27 2024 4799 1005*2^2707268+1 814972 L4687 2019 4800 13*458^306196+1 814748 L3610 2015 4801 253*2^2705844+1 814543 L4083 2015 4802 657*2^2705620+1 814476 L4907 2019 4803 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 4804 405*2^2704471-1 814130 L5516 2023 4805 303*2^2703864+1 813947 L1204 2019 4806 141*2^2702160+1 813434 L1741 2015 4807 753*2^2701925+1 813364 L4314 2019 4808 133*2^2701452+1 813221 L3173 2015 4809 58434*5^1162930+1 812858 A11 2024 4810 521*2^2700095+1 812813 L4854 2019 4811 393*2^2698956+1 812470 L1823 2019 4812 417*2^2698652+1 812378 L3035 2019 4813 525*2^2698118+1 812218 L1823 2019 4814 3125*2^2697651+1 812078 L3924 2019 4815 287*2^2697536-1 812042 A27 2024 4816 153*2^2697173+1 811933 L3865 2015 4817 1560730^131072+1 811772 L4201 2015 Generalized Fermat 4818 26*3^1700041+1 811128 L4799 2020 4819 1538654^131072-1538654^65536+1 810961 L4561 2017 Generalized unique 4820 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 4821 555*2^2691334-1 810176 L5516 2023 4822 58*536^296735-1 809841 L5410 2021 4823 33016*3^1696980+1 809670 L5366 2021 4824 7335*2^2689080-1 809498 L4036 2015 4825 1049*2^2688749+1 809398 L4869 2018 4826 120*957^271487-1 809281 L541 2023 4827 329*2^2688221+1 809238 L3035 2018 4828 1578*37^515979-1 809163 p443 2024 4829 865*2^2687434+1 809002 L4844 2018 4830 989*2^2686591+1 808748 L2805 2018 4831 136*904^273532+1 808609 L5410 2020 4832 243*2^2685873+1 808531 L3865 2015 4833 909*2^2685019+1 808275 L3431 2018 4834 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 4835 1455*2^2683953-1 807954 L1134 2020 4836 11210*241^339153-1 807873 L5410 2019 4837 1456746^131072-1456746^65536+1 807848 L4561 2017 Generalized unique 4838 975*2^2681840+1 807318 L4155 2018 4839 999*2^2681353-1 807171 L4518 2022 4840 295*2^2680932+1 807044 L1741 2015 4841 275*2^2679936-1 806744 A27 2024 4842 1427604^131072-1427604^65536+1 806697 L4561 2017 Generalized unique 4843 575*2^2679711+1 806677 L2125 2018 4844 46533*52^469992-1 806513 L6248 2025 4845 2386*52^469972+1 806477 L4955 2019 4846 2778*991^269162+1 806433 p433 2023 4847 10*80^423715-1 806369 p247 2023 4848b 590158501703*2^2678193+1 806229 L5327 2026 4849 219*2^2676229+1 805628 L1792 2015 4850 637*2^2675976+1 805552 L3035 2018 4851 1395583^131072-1395583^65536+1 805406 L4561 2017 Generalized unique 4852 951*2^2674564+1 805127 L1885 2018 4853b 17934*565^292412-1 804737 A11 2026 4854 531*2^2673250-1 804732 L5516 2023 4855 1372930^131072+1 804474 g236 2003 Generalized Fermat 4856 662*1009^267747-1 804286 L5410 2020 4857 261*2^2671677+1 804258 L3035 2015 4858 895*2^2671520+1 804211 L3035 2018 4859 1361244^131072+1 803988 g236 2004 Generalized Fermat 4860 789*2^2670409+1 803877 L3035 2018 4861 256*11^771408+1 803342 L3802 2014 Generalized Fermat 4862 503*2^2668529+1 803310 L4844 2018 4863 255*2^2668448+1 803286 L1129 2015 4864 4189*2^2666639-1 802742 L1959 2017 4865 539*2^2664603+1 802129 L4717 2018 4866 3^1681130+3^445781+1 802103 CH9 2022 4867 26036*745^279261-1 802086 L4189 2020 4868 295*2^2663855-1 801903 A27 2024 4869 1396*5^1146713-1 801522 L3547 2013 4870 676*687^282491-1 801418 L5426 2023 4871 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 4872 51*892^271541+1 801147 L5410 2019 4873 1851*24^580404+1 801084 A49 2024 4874 12124*477^299035-1 800975 A11 2025 4875 297*2^2660048+1 800757 L3865 2015 4876 133*2^2658587-1 800317 L1817 2024 4877 99*2^2658496-1 800290 L1862 2021 4878c 580848*40^499188+1 799735 A11 2025 4879 851*2^2656411+1 799663 L4717 2018 4880 487*2^2655008+1 799240 L3760 2018 4881 153*2^2654686-1 799143 A27 2024 4882b 977*2^2654642-1 799130 A58 2026 4883 13291*108^392961-1 799061 A11 2025 4884 441*2^2652807-1 798578 L5516 2023 4885b 683*2^2652456-1 798472 A76 2026 4886 77594*78^421949-1 798373 A11 2025 4887b 885*2^2651841-1 798287 A76 2026 4888 371*2^2651663+1 798233 L3760 2018 4889 69*2^2649939-1 797713 L3764 2014 4890 207*2^2649810+1 797675 L1204 2015 4891 505*2^2649496+1 797581 L3760 2018 4892 993*2^2649256+1 797509 L3760 2018 4893 225*718^279185-1 797390 A11 2024 4894 517*2^2648698+1 797341 L3760 2018 4895b 645*2^2648647-1 797326 A76 2026 4896 340*703^280035+1 797250 L4001 2018 4897 441*2^2648307+1 797223 L3760 2018 4898 265666*1001^265666+1 797119 A67 2025 Generalized Cullen 4899 1129*2^2646590+1 796707 L3760 2018 4900 128*518^293315+1 796156 L4001 2019 4901 211*744^277219-1 796057 L5410 2021 4902 1181782^131072-1181782^65536+1 795940 L4142 2015 Generalized unique 4903 1176694^131072+1 795695 g236 2003 Generalized Fermat 4904 13*2^2642943-1 795607 L1862 2012 4905b 797*2^2642910-1 795599 A58 2026 4906 73406*105^393484+1 795311 A11 2025 4907 119*410^304307+1 795091 L4294 2019 4908 501*2^2641052+1 795039 L3035 2018 4909 267*2^2640554-1 794889 A27 2024 4910 879*2^2639962+1 794711 L3760 2018 4911b 765*2^2639940-1 794705 A76 2026 4912 57*2^2639528-1 794579 L2484 2016 4913 342673*2^2639439-1 794556 L53 2007 4914 813*2^2639092+1 794449 L2158 2018 4915 1147980^131072-1147980^65536+1 794288 L4142 2015 Generalized unique 4916 197*972^265841-1 794247 L4955 2022 4917 1027*2^2638186+1 794177 L3760 2018 4918 889*2^2637834+1 794071 L3545 2018 4919 175*2^2637399-1 793939 A27 2024 4920 1098*97^399549+1 793816 A11 2025 4921 421*2^2636975-1 793812 L5516 2023 4922b 779*2^2636892-1 793787 A76 2026 4923 92182*5^1135262+1 793520 L3547 2013 4924 5608*70^429979+1 793358 L5390 2021 4925 13107*58^449714+1 793043 A68 2025 4926 741*2^2634385+1 793032 L1204 2018 4927 99268*105^392060-1 792433 A11 2025 4928 34449*52^461672-1 792236 A11 2025 4929 465*2^2630496+1 791861 L1444 2018 4930 189*2^2630487+1 791858 L3035 2015 4931 87*2^2630468+1 791852 L3262 2013 4932 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat 4933 5252*53^459192-1 791778 A63 2025 4934 4*5^1132659-1 791696 L4965 2022 4935 1131*2^2629345+1 791515 L4826 2018 4936 967*2^2629344+1 791515 L3760 2018 4937 267*2^2629210+1 791474 L3035 2015 4938b 605*2^2628738-1 791332 A84 2026 4939b 861*2^2628649-1 791306 A76 2026 4940 154*883^268602+1 791294 L5410 2020 4941 237*2^2627713-1 791023 L1817 2024 4942 819*2^2627529+1 790968 L1387 2018 4943 183*2^2626880-1 790772 L1817 2024 4944 17152*5^1131205-1 790683 L3552 2013 4945 183*2^2626442+1 790641 L3035 2015 4946 137*2^2626238-1 790579 A27 2024 4947 813*2^2626224+1 790576 L4830 2018 4948 66*952^265412+1 790568 A52 2025 4949 807*2^2625044+1 790220 L1412 2018 4950 557*2^2624952-1 790193 L5516 2023 4951 4*10^789955+1 789956 L4789 2024 4952 1063730^131072+1 789949 g260 2013 Generalized Fermat 4953 1243*2^2623707-1 789818 L1828 2011 4954 693*2^2623557+1 789773 L3278 2018 4955b 693*2^2622739-1 789526 A76 2026 4956 981*2^2622032+1 789314 L1448 2018 4957 145*2^2621020+1 789008 L3035 2015 4958 963*792^271959-1 788338 L5410 2021 4959 1798*165^354958+1 787117 p365 2024 4960 541*2^2614676+1 787099 L4824 2018 4961 545*2^2614294-1 786984 L5516 2023 4962 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 4963 1061*268^323645-1 785857 L5410 2019 4964 1662*483^292719-1 785646 L5410 2022 4965 984522^131072-984522^65536+1 785545 p379 2015 Generalized unique 4966 1071*2^2609316+1 785486 L3760 2018 4967 87*2^2609046+1 785404 L2520 2013 4968 18922*111^383954+1 785315 L4927 2021 4969 543*2^2608129+1 785128 L4822 2018 4970 377*2^2607856-1 785046 L2257 2023 4971 329584*5^1122935-1 784904 L3553 2013 4972 10*311^314806+1 784737 L3610 2014 4973 85806*52^457298-1 784730 A11 2025 4974 1019*2^2606525+1 784646 L1201 2018 4975 977*2^2606211+1 784551 L4746 2018 4976 13*2^2606075-1 784508 L1862 2011 4977b 855*2^2606029-1 784496 A84 2026 4978 693*2^2605905+1 784459 L4821 2018 4979 6984*507^289940-1 784294 A54 2025 4980 147*2^2604275+1 783968 L1741 2015 4981 105*2^2603631+1 783774 L3459 2015 4982b 522958246757*2^2603124-1 783631 L5327 2026 4983b 983*2^2602962-1 783573 A76 2026 4984 93*2^2602483-1 783428 L1862 2016 4985b 777*2^2602457-1 783421 A84 2026 4986 155*2^2602213+1 783347 L2719 2015 4987 545*2^2602018-1 783289 L5516 2023 4988b 955*2^2601993-1 783281 A58 2026 4989 787*58^444113+1 783165 A72 2025 4990 303*2^2601525+1 783140 L4816 2018 4991 711*2^2600535+1 782842 L4815 2018 4992 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 4993 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 4994 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 4995 1183953*2^2367907-1 712818 L447 2007 Woodall 4996 150209!+1 712355 p3 2011 Factorial 4997 147855!-1 700177 p362 2013 Factorial 4998f 5321*2^2308643+1 694975 L5517 2025 Divides GF(2308641,5) 4999 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 5000 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 5001 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 5002 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 5003 2717*2^2196891+1 661334 L5239 2025 Divides GF(2196890,12) 5004 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 5005 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 5006 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 5007 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 5008 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 5009 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 5010 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 5011 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 5012 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 5013 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 5014 2167*2^2050616+1 617301 L6095 2025 Divides GF(2050615,5) 5015 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 5016 251749*2^2013995-1 606279 L436 2007 Woodall 5017 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 5018 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 5019 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 5020 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 5021 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 5022 4401*2^1925824+1 579735 L5309 2024 Divides GF(1925823,5) 5023 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 5024 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 5025 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 5026 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5027 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5028 110059!+1 507082 p312 2011 Factorial 5029 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38, generalized unique 5030 10^490030+10^309648+12345678987654321*10^245007+10^180382+1 490031 p363 2024 Palindrome 5031 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5032 1098133#-1 476311 p346 2012 Primorial 5033 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5034 103040!-1 471794 p301 2010 Factorial 5035 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5036 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5037 1467763*2^1467763-1 441847 L381 2007 Woodall 5038 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5039 94550!-1 429390 p290 2010 Factorial 5040 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5041 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5042 2^1398269-1 420921 G1 1996 Mersenne 35 5043 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5044 338707*2^1354830+1 407850 L124 2005 Cullen 5045 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5046 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5047 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5048 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5049 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5050 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5051 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5052 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5053 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5054 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5055 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5056 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5057 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5058 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5059 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5060 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5061 1268979*2^1268979-1 382007 L201 2007 Woodall 5062 2^1257787-1 378632 SG 1996 Mersenne 34 5063 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5064 843301#-1 365851 p302 2010 Primorial 5065 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5066 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5067 1195203*2^1195203-1 359799 L124 2005 Woodall 5068 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5069 10^320236+10^160118+1+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5070 10^320096+10^160048+1+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5071 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5072 10^300010+10^204235+12345678987654321*10^149997+10^95775+1 300011 x45 2024 Palindrome 5073 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5074 10^300000+10^158172+11011*10^149998+10^141828+1 300001 p409 2024 Palindrome 5075 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5076 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5077 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5078 2^859433-1 258716 SG 1994 Mersenne 33 5079 667071*2^667071-1 200815 g55 2000 Woodall 5080 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5081 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5082 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5083 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5084 392113#+1 169966 p16 2001 Primorial 5085 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 5086 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 5087 366439#+1 158936 p16 2001 Primorial 5088 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 5089 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 5090 481899*2^481899+1 145072 gm 1998 Cullen 5091b 152748736824915*2^480480+1 144654 A90 2026 Twin (p+2) 5092b 152748736824915*2^480480-1 144654 A90 2026 Twin (p) 5093e 100855907240235*2^480480-1 144653 A79 2025 Sophie Germain (2p+1) 5094e 100855907240235*2^480479-1 144653 A79 2025 Sophie Germain (p) 5095 669821552^16384-669821552^8192+1 144605 A18 2024 Twin (p+2), generalized unique 5096 669821552^16384-669821552^8192-1 144605 A18 2024 Twin (p) 5097 34790!-1 142891 p85 2002 Factorial 5098 (124750^27751-1)/124749 141416 p441 2024 Generalized repunit 5099 222710306^16384-222710306^8192+1 136770 A13 2024 Twin (p+2), generalized unique 5100 222710306^16384-222710306^8192-1 136770 A13 2024 Twin (p) 5101 (92365^24691-1)/92364 122599 CH14 2024 Generalized repunit 5102 9955858992*11^111111+1 115721 A25 2025 Twin (p+2) 5103 9955858992*11^111111-1 115721 A25 2025 Twin (p) 5104 7977227425*(2^368352-2^257849)+2^110505+1 110895 x52 2025 Consecutive primes arithmetic progression (2,d=6) 5105 7977227425*(2^368352-2^257849)+2^110505-5 110895 x52 2025 Consecutive primes arithmetic progression (1,d=6) 5106 (102936^21961-1)/102935 110076 CH14 2023 Generalized repunit 5107 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5108 R(109297) 109297 E12 2025 Repunit, ECPP, unique 5109 361275*2^361275+1 108761 DS 1998 Cullen 5110 26951!+1 107707 p65 2002 Factorial 5111 15898321815*2^333645+1 100448 p364 2025 Twin (p+2) 5112 15898321815*2^333645-1 100448 p364 2025 Twin (p) 5113 47356235323005*2^333444-1 100391 L6077 2024 Sophie Germain (2p+1) 5114 47356235323005*2^333443-1 100391 L6077 2024 Sophie Germain (p) 5115 21480284945595*2^333444-1 100390 L6029 2024 Sophie Germain (2p+1) 5116 21480284945595*2^333443-1 100390 L6029 2024 Sophie Germain (p) 5117 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5118 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5119 954589277*(2^332267-2^110758)+2^221511+1 100032 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5120 954589277*(2^332267-2^110758)+2^221511-3 100032 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5121f U(65181,1,20770)+U(65181,1,20769) 99985 CH15 2025 Lehmer number 5122e U(48099,1,21000)-U(48099,1,20999) 98321 p452 2025 Lehmer number 5123 8797170843*(2^317583+2^190552)+2^127033+3 95612 p408 2025 Consecutive primes arithmetic progression (2,d=4) 5124 8797170843*(2^317583+2^190552)+2^127033-1 95612 p408 2025 Consecutive primes arithmetic progression (1,d=4) 5125 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5126e U(54381,1,19426)+U(54381,1,19425) 91987 CH15 2025 Lehmer number 5127f (58425^18757-1)/58424 89403 p441 2025 Generalized repunit 5128 R(86453) 86453 E3 2023 Repunit, ECPP, unique 5129 (84741735735*(2^190738-1)+4)*2^95369+5 86138 p408 2024 Consecutive primes arithmetic progression (2,d=6) 5130 (84741735735*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=6) 5131 (74018908351*(2^190738-1)+4)*2^95369+3 86138 p408 2024 Consecutive primes arithmetic progression (2,d=4) 5132 (74018908351*(2^190738-1)+4)*2^95369-1 86138 p408 2024 Consecutive primes arithmetic progression (1,d=4) 5133 21480!-1 83727 p65 2001 Factorial 5134 (74968^17107-1)/74967 83390 p441 2024 Generalized repunit 5135 66629493*2^269335-1 81086 L3494 2025 Sophie Germain (2p+1) 5136 66629493*2^269334-1 81086 L3494 2025 Sophie Germain (p) 5137 1867513233*2^266698+1 80294 L527 2025 Twin (p+2) 5138 1867513233*2^266698-1 80294 L527 2025 Twin (p) 5139 201926367*2^266668+1 80284 A25 2024 Twin (p+2) 5140 201926367*2^266668-1 80284 A25 2024 Twin (p) 5141 107928275961*2^265876+1 80048 p364 2023 Cunningham chain 2nd kind (2p-1) 5142 107928275961*2^265875+1 80048 p364 2023 Cunningham chain 2nd kind (p) 5143 22942396995*2^265777-1 80018 L3494 2023 Sophie Germain (2p+1) 5144 22942396995*2^265776-1 80017 L3494 2023 Sophie Germain (p) 5145 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5146 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5147 262419*2^262419+1 79002 DS 1998 Cullen 5148 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5149 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5150 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5151 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5152 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5153 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5154 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5155 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5156 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5157 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5158 1893611985^8192-1893611985^4096+1 76000 A13 2024 Twin (p+2), generalized unique 5159 1893611985^8192-1893611985^4096-1 76000 A13 2024 Twin (p) 5160 1589173270^8192-1589173270^4096+1 75376 A22 2024 Twin (p+2), generalized unique 5161 1589173270^8192-1589173270^4096-1 75376 A22 2024 Twin (p) 5162 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5163 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5164 996094234^8192-996094234^4096+1 73715 A18 2024 Twin (p+2), generalized unique 5165 996094234^8192-996094234^4096-1 73715 A18 2024 Twin (p) 5166 895721531^8192-895721531^4096+1 73337 A7 2024 Twin (p+2), generalized unique 5167 895721531^8192-895721531^4096-1 73337 A7 2024 Twin (p) 5168 5^104824+104824^5 73269 E4 2023 ECPP 5169 795507696^8192-795507696^4096+1 72915 A5 2024 Twin (p+2), generalized unique 5170 795507696^8192-795507696^4096-1 72915 A5 2024 Twin (p) 5171 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5172 691595760^8192-691595760^4096+1 72417 A13 2024 Twin (p+2), generalized unique 5173 691595760^8192-691595760^4096-1 72417 A13 2024 Twin (p) 5174 647020826^8192-647020826^4096+1 72180 A5 2024 Twin (p+2), generalized unique 5175 647020826^8192-647020826^4096-1 72180 A5 2024 Twin (p) 5176 629813654^8192-629813654^4096+1 72084 A5 2024 Twin (p+2), generalized unique 5177 629813654^8192-629813654^4096-1 72084 A5 2024 Twin (p) 5178f (V(6489,1,18903)-1)/(V(6489,1,3)-1) 72051 CH15 2025 Lehmer primitive part 5179f (V(27730,1,16209)+1)/(V(27730,1,9)+1) 71976 CH15 2025 Lehmer primitive part 5180 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5181 504983334^8192-504983334^4096+1 71298 A7 2024 Twin (p+2), generalized unique 5182 504983334^8192-504983334^4096-1 71298 A7 2024 Twin (p) 5183 (V(10981,1,17553)+1)/(V(10981,1,3)+1) 70914 CH15 2025 Lehmer primitive part, cyclotomy 5184f U(8478,1,17710)+U(8478,1,17709) 69567 p452 2025 Lehmer number 5185 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5186e U(1731,1,21000)-U(1731,1,20999) 68001 p452 2025 Lehmer number 5187 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5188 10957126745325*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5189 20690306380455*2^222333-1 66943 L5843 2023 Sophie Germain (2p+1) 5190 10030004436315*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5191 8964472847055*2^222334-1 66943 L5843 2023 Sophie Germain (2p+1) 5192 10957126745325*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5193 20690306380455*2^222332-1 66942 L5843 2023 Sophie Germain (p) 5194 10030004436315*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5195 8964472847055*2^222333-1 66942 L5843 2023 Sophie Germain (p) 5196 (2^221509-1)/292391881 66673 E12 2023 Mersenne cofactor, ECPP 5197 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5198 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5199 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5200 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5201 145823#+1 63142 p21 2000 Primorial 5202 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5203 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5204 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5205 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5206 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5207 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5208 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5209 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5210 3^125330+1968634623437000 59798 E4 2022 ECPP 5211 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5212 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5213 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 5214 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5215 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5216 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5217 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5218 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5219 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5220 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5221 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5222 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5223d 2^176177+60947 53035 E11 2025 ECPP 5224 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5225 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 5226 (940^17581-1)/939 52268 E2 2025 ECPP generalized repunit 5227 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5228 10^50000+65859 50001 E3 2022 ECPP 5229 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5230 (V(8275,1,12447)-1)/(V(8275,1,27)-1) 48659 x45 2025 Lehmer primitive part 5231 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5232 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5233 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5234 (V(24444,1,10809)+1)/(V(24444,1,9)+1) 47393 x45 2025 Lehmer primitive part 5235b (2^157457-1)/1651348995090599153173927 47376 E18 2026 ECPP, Mersenne cofactor 5236 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5237 151023*2^151023-1 45468 g25 1998 Woodall 5238f (2^151013-1)/61157791169561859593299975690769 45428 E5 2025 Mersenne cofactor, ECPP 5239 24157096*104561#+1 45260 p364 2025 Arithmetic progression (4,d=6519272*104561#) 5240 17637824*104561#+1 45259 p364 2025 Arithmetic progression (3,d=6519272*104561#) 5241 11118552*104561#+1 45259 p364 2025 Arithmetic progression (2,d=6519272*104561#) 5242 4599280*104561#+1 45259 p364 2025 Arithmetic progression (1,d=6519272*104561#) 5243 2^148227+60443 44621 E11 2024 ECPP 5244 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5245 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5246 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5247e (2^141079+1)/3 42469 E5 2025 Wagstaff, ECPP, generalized Lucas number 5248 V(202667) 42355 E4 2023 Lucas number, ECPP 5249c gcd(primU(48099,1,20999),lucasU(48099,1,10500)-lucasU(48099,1,10499))/\ 41999 42229 E1 2025 ECPP 5250 2^139964+35461 42134 E11 2024 ECPP 5251 U(201107) 42029 E11 2023 Fibonacci number, ECPP 5252 -E(12146)/1226039954339 41943 E1 2025 Euler irregular, ECPP 5253 (2^138937+1)/3 41824 E12 2023 Wagstaff, ECPP, generalized Lucas number 5254 (2^136883-1)/536581361 41198 E5 2025 Mersenne cofactor, ECPP 5255 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5256 V(193201) 40377 E4 2023 Lucas number, ECPP 5257 p(1289844341) 40000 c84 2020 Partitions, ECPP 5258b (2^132929-1)/2054179601105776846215055956722560390485432904126229271473 39959 E18 2026 Mersenne cofactor, ECPP 5259 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5260 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 5261 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5262 V(183089) 38264 E4 2023 Lucas number, ECPP 5263 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 5264 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5265 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5266 p(1000007396) 35219 E4 2022 Partitions, ECPP 5267 1864754598*Bern(12306)/7988337402668760859 35160 E1 2025 Irregular, ECPP 5268 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5269 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5270 E(10168)/1097239206089665 34323 E10 2023 Euler irregular, ECPP 5271 Phi(717,-10^72) 34273 E1 2025 Unique, ECPP 5272 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5273 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5274 V(159521) 33338 E4 2023 Lucas number, ECPP 5275 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5276 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5277 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5278 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5279 7300751*74719#-1 32315 p364 2025 Arithmetic progression (4,d=1475275*74719#) 5280 5825476*74719#-1 32314 p364 2025 Arithmetic progression (3,d=1475275*74719#) 5281 4350201*74719#-1 32314 p364 2025 Arithmetic progression (2,d=1475275*74719#) 5282 2874926*74719#-1 32314 p364 2025 Arithmetic progression (1,d=1475275*74719#) 5283 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5284 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5285 Phi(34051,-10) 32033 E1 2025 Unique, ECPP 5286 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5287 Phi(23023,-100) 31681 E1 2025 Unique, ECPP 5288 (2^105269-1)/308568703561/44450301591671/36340288035156065237111970871\ /304727251426107823036749303510161 31603 E17 2024 Mersenne cofactor, ECPP 5289 Phi(4613,-100000000) 31585 E1 2025 Unique, ECPP 5290 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5291 Phi(10295,-10000) 31360 E1 2025 Unique, ECPP 5292 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5293 V(148091) 30950 c81 2015 Lucas number, ECPP 5294 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5295 -E(9266)/2129452307358569777 30900 E10 2023 Euler irregular, ECPP 5296 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5297 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5298 V(145703)/179214691 30442 E4 2023 Lucas cofactor, ECPP 5299 V(145193)/38621339 30336 E4 2023 Lucas cofactor, ECPP 5300 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5301 2120542945*2^99901-1 30083 p364 2022 Arithmetic progression (3,d=928724769*2^99901) 5302 18622159*2^99907-1 30083 p364 2022 Arithmetic progression (2,d=928724769*2^99901) 5303 263093407*2^99901-1 30082 p364 2022 Arithmetic progression (1,d=928724769*2^99901) 5304 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5305 49363*2^98727-1 29725 Y 1997 Woodall 5306 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5307 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5308 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5309 V(140057) 29271 c76 2014 Lucas number,ECPP 5310 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5311 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5312 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5313 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5314 primV(205011) 28552 x39 2009 Lucas primitive part 5315 -30*Bern(10264)/262578313564364605963 28506 c94 2021 Irregular, ECPP 5316 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5317 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5318 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5319 U(132409)/2882138154561602271737 27651 E16 2024 Fibonacci cofactor, ECPP 5320 90825*2^90825+1 27347 Y 1997 Cullen 5321 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5322 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5323 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5324 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5325 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5326 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5327 17148589*60919#+1 26383 p364 2022 Arithmetic progression (3,d=5210718*60919#) 5328 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5329 15220039*60919#+1 26383 p364 2022 Arithmetic progression (3,d=1809778*60919#) 5330 13410261*60919#+1 26383 p364 2022 Arithmetic progression (2,d=1809778*60919#) 5331 11937871*60919#+1 26382 p364 2022 Arithmetic progression (2,d=5210718*60919#) 5332 11600483*60919#+1 26382 p364 2022 Arithmetic progression (1,d=1809778*60919#) 5333 6727153*60919#+1 26382 p364 2022 Arithmetic progression (1,d=5210718*60919#) 5334 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5335 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5336 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5337 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5338 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5339 -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 5340 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5341 V(122869)/40546771/1243743094029841 25656 E1 2024 Lucas cofactor, ECPP 5342 primU(183537) 25571 E1 2024 Fibonacci primitive part, ECPP 5343 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5344 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5345 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5346 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5347 U(120937)/241873/13689853218820385381 25250 E1 2024 Fibonacci cofactor, ECPP 5348 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5349 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5350 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5351 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5352 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5353 primV(194181) 24908 E1 2024 Lucas primitive part, ECPP 5354 primV(119162) 24903 E1 2024 Lucas primitive part, ECPP 5355 -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 5356 primU(118319) 24553 E1 2024 Fibonacci primitive part, ECPP 5357 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5358 U(117167)/17658707237 24476 E1 2024 Fibonacci cofactor, ECPP 5359 V(116593)/120790349 24359 E4 2023 Lucas cofactor, ECPP 5360 primV(214470) 23895 E1 2024 Lucas primitive part, ECPP 5361 primU(115373) 23875 E1 2024 Fibonacci primitive part, ECPP 5362 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5363 798*Bern(8766)/14670751334144820770719 23743 c94 2021 Irregular, ECPP 5364 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5365 primU(135421) 23725 E1 2024 Fibonacci primitive part, ECPP 5366 primV(143234) 23654 E1 2024 Lucas primitive part, ECPP 5367 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5368 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5369 6917!-1 23560 g1 1998 Factorial 5370 primU(164185) 23524 E1 2024 Fibonacci primitive part, ECPP 5371 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5372 primU(166737) 23231 E1 2024 Fibonacci primitive part, ECPP 5373 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5374 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5375 primA(275285) 23012 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5376 primV(110723) 22997 E1 2024 Lucas primitive part, ECPP 5377 primV(180906) 22905 E1 2024 Lucas primitive part, ECPP 5378 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5379 U(106663)/35892566541651557 22275 E1 2024 Fibonacci cofactor, ECPP 5380 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 5381 p(398256632) 22223 E1 2022 Partitions, ECPP 5382 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5383 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5384 primB(282035) 21758 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5385 primA(276335) 21736 E1 2024 Lucas Aurifeuillian primitive part, ECPP 5386 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5387 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5388 6380!+1 21507 g1 1998 Factorial 5389 primV(154281) 21495 E4 2023 Lucas primitive part, ECPP 5390 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5391 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5392 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5393 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5394 primA(296695) 21137 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5395 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5396 primA(413205) 21127 E1 2023 Lucas Aurifeuillian primitive part, ECPP 5397 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5398b 57612705200181*2^69801+5 21026 E15 2026 Triplet (3),ECPP 5399b 57612705200181*2^69801+1 21026 p408 2026 Triplet (2) 5400b 57612705200181*2^69801-1 21026 p408 2026 Triplet (1) 5401 p(355646102) 21000 E1 2022 Partitions, ECPP 5402 V(100417)/713042903779101607511808799053206435494854433884796747437071\ 9436805470448849 20911 E1 2024 Lucas cofactor, ECPP 5403 p(350199893) 20838 E7 2022 Partitions, ECPP 5404 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5405 primU(102689) 20715 E1 2024 Fibonacci primitive part, ECPP 5406 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5407 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5408 V(98081)/31189759/611955609270431/6902594225498651/641303018340927841 20442 E1 2024 Lucas cofactor, ECPP 5409 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5410 4404139952163*2^67002+1 20183 p408 2024 Triplet (3) 5411 4404139952163*2^67002-1 20183 p408 2024 Triplet (2) 5412 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP 5413 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5414 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5415 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5416 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5417 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5418 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5419 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5420 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5421 p(322610098) 20000 E1 2022 Partitions, ECPP 5422 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5423 V(94823) 19817 c73 2014 Lucas number, ECPP 5424 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5425 (2^64381-1)/1825231878561264571177401910928543898820492254252817499611\ 8699181907547497 19308 E13 2024 Mersenne cofactor, ECPP 5426 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5427 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5428 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5429 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5430 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5431 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5432 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5433 V(89849) 18778 c70 2014 Lucas number, ECPP 5434 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5435 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5436 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5437 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5438 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5439 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5440 42209#+1 18241 p8 1999 Primorial 5441 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5442 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5443 7457*2^59659+1 17964 Y 1997 Cullen 5444 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5445 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5446 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5447 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5448 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5449 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5450 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5451 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5452 U(81839) 17103 p54 2001 Fibonacci number 5453 V(81671) 17069 c66 2013 Lucas number, ECPP 5454 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5455 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5456 V(80761)/570100885555095451 16861 c77 2020 Lucas cofactor, ECPP 5457 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5458 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5459 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5460 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5461 p(221444161) 16569 c77 2017 Partitions, ECPP 5462 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5463 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5464 17484430616589*2^54201+5 16330 E14 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5465 17484430616589*2^54201-1 16330 p440 2024 Consecutive primes arithmetic progression (2,d=6) 5466 17484430616589*2^54201-7 16330 E14 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5467 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5468 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5469 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5470 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5471 -E(5186)/295970922359784619239409649676896529941379763 15954 c63 2018 Euler irregular, ECPP 5472 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5473 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5474 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5475 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5476 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5477 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5478 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5479 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5480 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5481 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5482 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5483 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5484 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5485 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5486 214923707595*2^49073+1 14784 p364 2025 Cunningham chain 2nd kind (4p-3) 5487 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5488 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5489 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5490 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5491 p(158375386) 14011 E1 2022 Partitions, ECPP 5492 p(158295265) 14007 E1 2022 Partitions, ECPP 5493 p(158221457) 14004 E1 2022 Partitions, ECPP 5494 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5495 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5496 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5497 6*Bern(5534)/226840561549600012633271691723599339 13862 c71 2014 Irregular, ECPP 5498 4410546*Bern(5526)/9712202742835546740714595866405369616019 13840 c63 2018 Irregular,ECPP 5499 191279029*32003#+1 13773 p364 2025 Arithmetic progression (5,d=20571563*32003#) 5500 170707466*32003#+1 13773 p364 2025 Arithmetic progression (4,d=20571563*32003#) 5501 150135903*32003#+1 13773 p364 2025 Arithmetic progression (3,d=20571563*32003#) 5502 129564340*32003#+1 13773 p364 2025 Arithmetic progression (2,d=20571563*32003#) 5503 108992777*32003#+1 13773 p364 2025 Arithmetic progression (1,d=20571563*32003#) 5504 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5505 6*Bern(5462)/23238026668982614152809832227 13657 c64 2013 Irregular, ECPP 5506 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5507 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5508 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5509 V(64063)/464426465381142115542697818362662865912299 13347 E1 2024 Lucas cofactor, ECPP 5510 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5511 494597305*30941#+1 13338 p364 2022 Arithmetic progression (4,d=18195056*30941#) 5512 476402249*30941#+1 13338 p364 2022 Arithmetic progression (3,d=18195056*30941#) 5513 458207193*30941#+1 13338 p364 2022 Arithmetic progression (2,d=18195056*30941#) 5514 440012137*30941#+1 13338 p364 2022 Arithmetic progression (1,d=18195056*30941#) 5515 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5516 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5517 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5518 p(141528106) 13244 E6 2022 Partitions, ECPP 5519 p(141513546) 13244 E6 2022 Partitions, ECPP 5520 p(141512238) 13244 E6 2022 Partitions, ECPP 5521 p(141255053) 13232 E6 2022 Partitions, ECPP 5522 p(141150528) 13227 E6 2022 Partitions, ECPP 5523 p(141112026) 13225 E6 2022 Partitions, ECPP 5524 p(141111278) 13225 E6 2022 Partitions, ECPP 5525 p(140859260) 13213 E6 2022 Partitions, ECPP 5526 p(140807155) 13211 E6 2022 Partitions, ECPP 5527 p(140791396) 13210 E6 2022 Partitions, ECPP 5528 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5529 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5530 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5531 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5532 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5533 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5534 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5535 6*Bern(5078)/643283455240626084534218914061 12533 c63 2013 Irregular, ECPP 5536 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5537 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5538 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5539 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5540 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5541 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5542 V(56003) 11704 p193 2006 Lucas number 5543 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5544 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5545 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5546 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5547 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5548 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5549 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5550 primU(67825) 11336 x23 2007 Fibonacci primitive part 5551 3610!-1 11277 C 1993 Factorial 5552 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5553 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5554 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5555 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5556 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5557 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5558 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5559 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5560 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5561 3507!-1 10912 C 1992 Factorial 5562 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5563 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5564 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5565 1258566*Bern(4462)/6610083971965402783802518108033 10763 c64 2013 Irregular, ECPP 5566 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5567 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5568 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5569 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5570 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5571 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5572 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5573 V(51169) 10694 p54 2001 Lucas number 5574 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5575 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5576 U(50833) 10624 CH4 2005 Fibonacci number 5577 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5578 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5579 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5580 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5581 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5582 2907621951*24499#+1 10593 p422 2021 Arithmetic progression (4,d=56497325*24499#) 5583 2851124626*24499#+1 10593 p422 2021 Arithmetic progression (3,d=56497325*24499#) 5584 2794627301*24499#+1 10593 p422 2021 Arithmetic progression (2,d=56497325*24499#) 5585 2738129976*24499#+1 10593 p422 2021 Arithmetic progression (1,d=56497325*24499#) 5586 24029#+1 10387 C 1993 Primorial 5587 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5588 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5589 340916188*24001#+1 10378 p155 2018 Arithmetic progression (4,d=59874860*24001#) 5590 338301890*24001#+1 10378 p155 2018 Arithmetic progression (4,d=54840724*24001#) 5591 283461166*24001#+1 10377 p155 2018 Arithmetic progression (3,d=54840724*24001#) 5592 281041328*24001#+1 10377 p155 2018 Arithmetic progression (3,d=59874860*24001#) 5593 228620442*24001#+1 10377 p155 2018 Arithmetic progression (2,d=54840724*24001#) 5594 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5595 221166468*24001#+1 10377 p155 2018 Arithmetic progression (2,d=59874860*24001#) 5596 198785087*24001#+1 10377 p155 2018 Arithmetic progression (4,d=22703701*24001#) 5597 176081386*24001#+1 10377 p155 2018 Arithmetic progression (3,d=22703701*24001#) 5598 173779718*24001#+1 10377 p155 2018 Arithmetic progression (1,d=54840724*24001#) 5599 163456812*24001#+1 10377 p155 2018 Arithmetic progression (2,d=10601738*24001#) 5600 161291608*24001#+1 10377 p155 2018 Arithmetic progression (1,d=59874860*24001#) 5601 152855074*24001#+1 10377 p155 2018 Arithmetic progression (1,d=10601738*24001#) 5602 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5603 23801#+1 10273 C 1993 Primorial 5604 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5605 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5606 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5607 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5608 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5609 32469*2^32469+1 9779 MM 1997 Cullen 5610 8073*2^32294+1 9726 MM 1997 Cullen 5611 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5612 V(44507) 9302 CH3 2005 Lucas number 5613 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5614 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5615 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5616 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5617 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5618 18523#+1 8002 D 1989 Primorial 5619 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5620 U(37987)/1832721858208455887947958246414213 7906 c39 2012 Fibonacci cofactor, ECPP 5621 U(37511) 7839 x13 2005 Fibonacci number 5622 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5623 V(36779) 7687 CH3 2005 Lucas number 5624 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5625 V(35449) 7409 p12 2001 Lucas number 5626 -30*Bern(3176)/6689693100056872989386833739813089720559189736259127537\ 0617658634396391181 7138 c63 2016 Irregular, ECPP 5627 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5628 2012839090*16301#+1 7036 p155 2018 Arithmetic progression (5,d=141836149*16301#) 5629 1871002941*16301#+1 7036 p155 2018 Arithmetic progression (4,d=141836149*16301#) 5630 1729166792*16301#+1 7036 p155 2018 Arithmetic progression (3,d=141836149*16301#) 5631 1587330643*16301#+1 7035 p155 2018 Arithmetic progression (2,d=141836149*16301#) 5632 1445494494*16301#+1 7035 p155 2018 Arithmetic progression (1,d=141836149*16301#) 5633 -10365630*Bern(3100)/1670366116112864481699585217650438278080436881373\ 643007997602585219667 6943 c63 2016 Irregular ECPP 5634 23005*2^23005-1 6930 Y 1997 Woodall 5635 22971*2^22971-1 6920 Y 1997 Woodall 5636 15877#-1 6845 CD 1992 Primorial 5637 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5638 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5639 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5640 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5641 13649#+1 5862 D 1987 Primorial 5642 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5643 18885*2^18885-1 5690 K 1987 Woodall 5644 1963!-1 5614 CD 1992 Factorial 5645 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5646 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5647 -30*Bern(2504)/1248230090315232335602406373438221652417581490266755814\ 38903418303340323897 5354 c63 2013 Irregular ECPP 5648 U(25561) 5342 p54 2001 Fibonacci number 5649 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5650 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5651 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5652 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5653 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5654 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5655 35734184537*11677#/3+9 5002 c98 2024 Consecutive primes arithmetic progression (4,d=6), ECPP 5656 35734184537*11677#/3+3 5002 c98 2024 Consecutive primes arithmetic progression (3,d=6), ECPP 5657 35734184537*11677#/3-3 5002 c98 2024 Consecutive primes arithmetic progression (2,d=6), ECPP 5658 35734184537*11677#/3-9 5002 c98 2024 Consecutive primes arithmetic progression (1,d=6), ECPP 5659 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5660 7911*2^15823-1 4768 K 1987 Woodall 5661 E(1736)/13510337079405137518589526468536905 4498 c4 2004 Euler irregular, ECPP 5662 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5663 744029027072*10111#-1 4362 p364 2025 Cunningham chain (8p+7) 5664 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5665 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5666 62399583639*9923#-3399421547 4285 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5667 62399583639*9923#-3399421577 4285 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5668 62399583639*9923#-3399421607 4285 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5669 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5670 276474*Bern(2030)/469951697500688159155 4200 c8 2003 Irregular, ECPP 5671 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5672 1477!+1 4042 D 1984 Factorial 5673 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5674 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 5675 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 5676 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 5677 (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 5678 12379*2^12379-1 3731 K 1984 Woodall 5679 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5680 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5681 E(1468)/12330876589623053882799895025030461658552339028064108285 3671 c4 2003 Euler irregular, ECPP 5682 1268118079424*8501#-1 3640 p434 2023 Cunningham chain (8p+7) 5683 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5684 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5685 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5686 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5687 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5688 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5689 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5690 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5691 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5692 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5693 4862357531*7927#-1 3407 p364 2022 Arithmetic progression (5,d=577051223*7927#) 5694 4285306308*7927#-1 3407 p364 2022 Arithmetic progression (4,d=577051223*7927#) 5695 3708255085*7927#-1 3407 p364 2022 Arithmetic progression (3,d=577051223*7927#) 5696 3131203862*7927#-1 3407 p364 2022 Arithmetic progression (2,d=577051223*7927#) 5697 2554152639*7927#-1 3407 p364 2022 Arithmetic progression (1,d=577051223*7927#) 5698 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5699 62753735335*7919#+3399421637 3404 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5700 62753735335*7919#+3399421607 3404 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5701 62753735335*7919#+3399421577 3404 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5702 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5703 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5704 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5705 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5706 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5707 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5708 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5709 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5710 92043001*7759#-1 3343 p398 2017 Arithmetic progression (5,d=12009836*7759#) 5711 80033165*7759#-1 3343 p398 2017 Arithmetic progression (4,d=12009836*7759#) 5712 68023329*7759#-1 3343 p398 2017 Arithmetic progression (3,d=12009836*7759#) 5713 56013493*7759#-1 3343 p398 2017 Arithmetic progression (2,d=12009836*7759#) 5714 44003657*7759#-1 3343 p398 2017 Arithmetic progression (1,d=12009836*7759#) 5715 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5716 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5717 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5718 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 5719 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+13 3207 c100 2023 Consecutive primes arithmetic progression (3,d=6),ECPP 5720 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+7 3207 c100 2023 Consecutive primes arithmetic progression (2,d=6),ECPP 5721 (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+1 3207 c100 2023 Consecutive primes arithmetic progression (1,d=6),ECPP 5722 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5723 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5724 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5725 121152729080*7019#/1729+13 3025 c92 2019 Consecutive primes arithmetic progression (3,d=6), ECPP 5726 121152729080*7019#/1729+7 3025 c92 2019 Consecutive primes arithmetic progression (2,d=6), ECPP 5727 121152729080*7019#/1729+1 3025 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5728 V(14449) 3020 DK 1995 Lucas number 5729 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5730 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5731 2949386547*7001#+1 3019 p155 2012 Arithmetic progression (5,d=46793757*7001#) 5732 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5733 2911906960*7001#+1 3019 p155 2012 Arithmetic progression (5,d=3093612*7001#) 5734 2908813348*7001#+1 3019 p155 2012 Arithmetic progression (4,d=3093612*7001#) 5735 2905719736*7001#+1 3019 p155 2012 Arithmetic progression (3,d=3093612*7001#) 5736 2902626124*7001#+1 3019 p155 2012 Arithmetic progression (2,d=3093612*7001#) 5737 2902592790*7001#+1 3019 p155 2012 Arithmetic progression (4,d=46793757*7001#) 5738 2899532512*7001#+1 3019 p155 2012 Arithmetic progression (1,d=3093612*7001#) 5739 2855799033*7001#+1 3019 p155 2012 Arithmetic progression (3,d=46793757*7001#) 5740 2809005276*7001#+1 3019 p155 2012 Arithmetic progression (2,d=46793757*7001#) 5741 2762211519*7001#+1 3019 p155 2012 Arithmetic progression (1,d=46793757*7001#) 5742 2642988356*7001#+1 3019 p155 2012 Arithmetic progression (6,d=481789017*7001#) 5743 2161199339*7001#+1 3019 p155 2012 Arithmetic progression (5,d=481789017*7001#) 5744 1679410322*7001#+1 3019 p155 2012 Arithmetic progression (4,d=481789017*7001#) 5745 1197621305*7001#+1 3019 p155 2012 Arithmetic progression (3,d=481789017*7001#) 5746 715832288*7001#+1 3019 p155 2012 Arithmetic progression (2,d=481789017*7001#) 5747 234043271*7001#+1 3018 p155 2012 Arithmetic progression (1,d=481789017*7001#) 5748 U(14431) 3016 p54 2001 Fibonacci number 5749 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5750 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5751 V(13963) 2919 c11 2002 Lucas number, ECPP 5752 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5753 9531*2^9531-1 2874 K 1984 Woodall 5754 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5755 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5756 V(12251) 2561 p54 2001 Lucas number 5757 974!-1 2490 CD 1992 Factorial 5758 7755*2^7755-1 2339 K 1984 Woodall 5759 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5760 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5761 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5762 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5763 107020074820*5303#+1 2271 p406 2019 Arithmetic progression (6,d=9726011684*5303#) 5764 105921154690*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10892863626*5303#) 5765 105854297223*5303#+1 2271 p406 2019 Arithmetic progression (6,d=10388428124*5303#) 5766 97867278281*5303#+1 2271 p406 2019 Arithmetic progression (5,d=2972005888*5303#) 5767 97348096836*5303#+1 2271 p406 2019 Arithmetic progression (5,d=5447332033*5303#) 5768 97294063136*5303#+1 2271 p406 2019 Arithmetic progression (5,d=9726011684*5303#) 5769 96461651937*5303#+1 2271 p406 2019 Arithmetic progression (4,d=435232416*5303#) 5770 96026419521*5303#+1 2271 p406 2019 Arithmetic progression (3,d=435232416*5303#) 5771 95664304943*5303#+1 2271 p406 2019 Arithmetic progression (4,d=817534485*5303#) 5772 95591187105*5303#+1 2271 p406 2019 Arithmetic progression (2,d=435232416*5303#) 5773 95155954689*5303#+1 2271 p406 2019 Arithmetic progression (1,d=435232416*5303#) 5774 94895272393*5303#+1 2271 p406 2019 Arithmetic progression (4,d=2972005888*5303#) 5775 94846770458*5303#+1 2271 p406 2019 Arithmetic progression (3,d=817534485*5303#) 5776 94029235973*5303#+1 2271 p406 2019 Arithmetic progression (2,d=817534485*5303#) 5777 93984538785*5303#+1 2271 p406 2019 Arithmetic progression (3,d=387018369*5303#) 5778 93597520416*5303#+1 2271 p406 2019 Arithmetic progression (2,d=387018369*5303#) 5779 93211701488*5303#+1 2271 p406 2019 Arithmetic progression (1,d=817534485*5303#) 5780 93210502047*5303#+1 2271 p406 2019 Arithmetic progression (1,d=387018369*5303#) 5781 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5782 66258958955*5303#+1 2271 p406 2019 Arithmetic progression (7,d=3026809034*5303#) 5783 63232149921*5303#+1 2271 p406 2019 Arithmetic progression (6,d=3026809034*5303#) 5784 60205340887*5303#+1 2271 p406 2019 Arithmetic progression (5,d=3026809034*5303#) 5785 57178531853*5303#+1 2271 p406 2019 Arithmetic progression (4,d=3026809034*5303#) 5786 54151722819*5303#+1 2271 p406 2019 Arithmetic progression (3,d=3026809034*5303#) 5787 51124913785*5303#+1 2271 p406 2019 Arithmetic progression (2,d=3026809034*5303#) 5788 48098104751*5303#+1 2270 p406 2019 Arithmetic progression (1,d=3026809034*5303#) 5789 V(10691) 2235 DK 1995 Lucas number 5790 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5791 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5792 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5793 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5794 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5795 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5796 7610828704751636272*4679#-1 2020 p151 2024 Cunningham chain (16p+15) 5797 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5798 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5799 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5800 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5801 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5802 6611*2^6611+1 1994 K 1984 Cullen 5803 U(9311) 1946 DK 1995 Fibonacci number 5804 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5805 2738129459017*4211#+3399421607 1805 c98 2022 Consecutive primes arithmetic progression (4,d=30) 5806 2738129459017*4211#+3399421577 1805 c98 2022 Consecutive primes arithmetic progression (3,d=30) 5807 2738129459017*4211#+3399421547 1805 c98 2022 Consecutive primes arithmetic progression (2,d=30) 5808 2738129459017*4211#+3399421517 1805 c98 2022 Consecutive primes arithmetic progression (1,d=30) 5809 V(8467) 1770 c2 2000 Lucas number, ECPP 5810 5795*2^5795+1 1749 K 1984 Cullen 5811 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5812 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5813 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5814 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5815 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5816 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5817 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5818 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5819 83*2^5318-1 1603 K 1984 Woodall 5820 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5821 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5822 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5823 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5824 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5825 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5826 652229318541*3527#+3399421607 1504 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5827 652229318541*3527#+3399421577 1504 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5828 652229318541*3527#+3399421547 1504 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5829 652229318541*3527#+3399421517 1504 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5830 3199190962192*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5831 4713*2^4713+1 1423 K 1984 Cullen 5832 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5833 449209457832*3307#+1633050373 1408 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5834 449209457832*3307#+1633050343 1408 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5835 449209457832*3307#+1633050313 1408 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5836 449209457832*3307#+1633050283 1408 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5837 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5838 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5839 2746496109133*3001#+26981 1290 c97 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5840 2746496109133*3001#+26951 1290 c97 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5841 2746496109133*3001#+26921 1290 c97 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5842 2746496109133*3001#+26891 1290 c97 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5843 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5844 42530119784448*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5845 22623218234368*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5846 1542946580224*2851#-1 1231 p364 2023 Cunningham chain (16p+15) 5847 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5848 406463527990*2801#+1633050373 1209 x38 2013 Consecutive primes arithmetic progression (4,d=30) 5849 406463527990*2801#+1633050343 1209 x38 2013 Consecutive primes arithmetic progression (3,d=30) 5850 406463527990*2801#+1633050313 1209 x38 2013 Consecutive primes arithmetic progression (2,d=30) 5851 406463527990*2801#+1633050283 1209 x38 2013 Consecutive primes arithmetic progression (1,d=30) 5852 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5853 U(5387) 1126 WM 1990 Fibonacci number 5854 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5855 1115744409*2591#+1 1101 p252 2019 Arithmetic progression (7,d=60355670*2591#) 5856 1055388739*2591#+1 1100 p252 2019 Arithmetic progression (6,d=60355670*2591#) 5857 995033069*2591#+1 1100 p252 2019 Arithmetic progression (5,d=60355670*2591#) 5858 934677399*2591#+1 1100 p252 2019 Arithmetic progression (4,d=60355670*2591#) 5859 874321729*2591#+1 1100 p252 2019 Arithmetic progression (3,d=60355670*2591#) 5860 813966059*2591#+1 1100 p252 2019 Arithmetic progression (2,d=60355670*2591#) 5861 753610389*2591#+1 1100 p252 2019 Arithmetic progression (1,d=60355670*2591#) 5862 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5863 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5864 2609339326*2459#+1 1057 p155 2009 Arithmetic progression (7,d=359463429*2459#) 5865 2249875897*2459#+1 1057 p155 2009 Arithmetic progression (6,d=359463429*2459#) 5866 1890412468*2459#+1 1056 p155 2009 Arithmetic progression (5,d=359463429*2459#) 5867 1530949039*2459#+1 1056 p155 2009 Arithmetic progression (4,d=359463429*2459#) 5868 1171485610*2459#+1 1056 p155 2009 Arithmetic progression (3,d=359463429*2459#) 5869 812022181*2459#+1 1056 p155 2009 Arithmetic progression (2,d=359463429*2459#) 5870 452558752*2459#+1 1056 p155 2009 Arithmetic progression (1,d=359463429*2459#) 5871 5963982717*2417#-1 1040 p364 2025 Arithmetic progression (8,d=108526765*2417#) 5872 5855455952*2417#-1 1040 p364 2025 Arithmetic progression (7,d=108526765*2417#) 5873 5746929187*2417#-1 1040 p364 2025 Arithmetic progression (6,d=108526765*2417#) 5874 5638402422*2417#-1 1040 p364 2025 Arithmetic progression (5,d=108526765*2417#) 5875 5529875657*2417#-1 1040 p364 2025 Arithmetic progression (4,d=108526765*2417#) 5876 5421348892*2417#-1 1040 p364 2025 Arithmetic progression (3,d=108526765*2417#) 5877 5312822127*2417#-1 1040 p364 2025 Arithmetic progression (2,d=108526765*2417#) 5878 5204295362*2417#-1 1040 p364 2025 Arithmetic progression (1,d=108526765*2417#) 5879 4692090369*2417#-1 1040 p364 2025 Arithmetic progression (8,d=370899838*2417#) 5880 4321190531*2417#-1 1040 p364 2025 Arithmetic progression (7,d=370899838*2417#) 5881 3950290693*2417#-1 1040 p364 2025 Arithmetic progression (6,d=370899838*2417#) 5882 3579390855*2417#-1 1040 p364 2025 Arithmetic progression (5,d=370899838*2417#) 5883 3208491017*2417#-1 1040 p364 2025 Arithmetic progression (4,d=370899838*2417#) 5884 2837591179*2417#-1 1040 p364 2025 Arithmetic progression (3,d=370899838*2417#) 5885 2466691341*2417#-1 1040 p364 2025 Arithmetic progression (2,d=370899838*2417#) 5886 2095791503*2417#-1 1040 p364 2025 Arithmetic progression (1,d=370899838*2417#) 5887 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5888 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5889 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5890 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5891 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5892 28993093368077*2399#+19417 1037 c18 2016 Sextuplet (1), ECPP 5893 64158976085*2399#+1 1034 p41 2025 Arithmetic progression (9,d=6383832302*2399#) 5894 57775143783*2399#+1 1034 p41 2025 Arithmetic progression (8,d=6383832302*2399#) 5895 51391311481*2399#+1 1034 p41 2025 Arithmetic progression (7,d=6383832302*2399#) 5896 45007479179*2399#+1 1034 p41 2025 Arithmetic progression (6,d=6383832302*2399#) 5897 38623646877*2399#+1 1034 p41 2025 Arithmetic progression (5,d=6383832302*2399#) 5898 32239814575*2399#+1 1034 p41 2025 Arithmetic progression (4,d=6383832302*2399#) 5899 25855982273*2399#+1 1034 p41 2025 Arithmetic progression (3,d=6383832302*2399#) 5900 19472149971*2399#+1 1034 p41 2025 Arithmetic progression (2,d=6383832302*2399#) 5901 13088317669*2399#+1 1034 p41 2025 Arithmetic progression (1,d=6383832302*2399#) 5902 R(1031) 1031 WD 1985 Repunit 5903 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5904 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5905 109723171258*2371#+1 1014 p308 2012 Arithmetic progression (8,d=6317280828*2371#) 5906 103405890430*2371#+1 1014 p308 2012 Arithmetic progression (7,d=6317280828*2371#) 5907 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5908 97088609602*2371#+1 1014 p308 2012 Arithmetic progression (6,d=6317280828*2371#) 5909 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5910 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5911 92709013183*2371#+1 1014 p308 2013 Arithmetic progression (8,d=127155673*2371#) 5912 92581857510*2371#+1 1014 p308 2013 Arithmetic progression (7,d=127155673*2371#) 5913 92454701837*2371#+1 1014 p308 2013 Arithmetic progression (6,d=127155673*2371#) 5914 92327546164*2371#+1 1014 p308 2013 Arithmetic progression (5,d=127155673*2371#) 5915 92200390491*2371#+1 1014 p308 2013 Arithmetic progression (4,d=127155673*2371#) 5916 92073234818*2371#+1 1014 p308 2013 Arithmetic progression (3,d=127155673*2371#) 5917 91946079145*2371#+1 1014 p308 2013 Arithmetic progression (2,d=127155673*2371#) 5918 91818923472*2371#+1 1014 p308 2013 Arithmetic progression (1,d=127155673*2371#) 5919 90985706543*2371#+1 1014 p308 2013 Arithmetic progression (8,d=6350457699*2371#) 5920 90771328774*2371#+1 1014 p308 2012 Arithmetic progression (5,d=6317280828*2371#) 5921 90149588569*2371#+1 1014 p308 2013 Arithmetic progression (8,d=3388165411*2371#) 5922 86761423158*2371#+1 1014 p308 2013 Arithmetic progression (7,d=3388165411*2371#) 5923 84635248844*2371#+1 1014 p308 2013 Arithmetic progression (7,d=6350457699*2371#) 5924 84454047946*2371#+1 1014 p308 2012 Arithmetic progression (4,d=6317280828*2371#) 5925 83373257747*2371#+1 1014 p308 2013 Arithmetic progression (6,d=3388165411*2371#) 5926 79985092336*2371#+1 1014 p308 2013 Arithmetic progression (5,d=3388165411*2371#) 5927 78284791145*2371#+1 1014 p308 2013 Arithmetic progression (6,d=6350457699*2371#) 5928 78136767118*2371#+1 1014 p308 2012 Arithmetic progression (3,d=6317280828*2371#) 5929 76596926925*2371#+1 1014 p308 2013 Arithmetic progression (4,d=3388165411*2371#) 5930 73208761514*2371#+1 1014 p308 2013 Arithmetic progression (3,d=3388165411*2371#) 5931 71934333446*2371#+1 1014 p308 2013 Arithmetic progression (5,d=6350457699*2371#) 5932 71819486290*2371#+1 1014 p308 2012 Arithmetic progression (2,d=6317280828*2371#) 5933 69820596103*2371#+1 1014 p308 2013 Arithmetic progression (2,d=3388165411*2371#) 5934 66432430692*2371#+1 1014 p308 2013 Arithmetic progression (1,d=3388165411*2371#) 5935 65583875747*2371#+1 1014 p308 2013 Arithmetic progression (4,d=6350457699*2371#) 5936 65502205462*2371#+1 1014 p308 2012 Arithmetic progression (1,d=6317280828*2371#) 5937 61526034135*2371#+1 1014 p308 2011 Arithmetic progression (3,d=1298717501*2371#) 5938 60227316634*2371#+1 1014 p308 2011 Arithmetic progression (2,d=1298717501*2371#) 5939 58928599133*2371#+1 1014 p308 2011 Arithmetic progression (1,d=1298717501*2371#) 5940 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5941 533098369554*2357#+3399421637 1012 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5942 533098369554*2357#+3399421607 1012 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5943 533098369554*2357#+3399421577 1012 c98 2021 Consecutive primes arithmetic progression (3,d=30), ECPP 5944 533098369554*2357#+3399421547 1012 c98 2021 Consecutive primes arithmetic progression (2,d=30), ECPP 5945 533098369554*2357#+3399421517 1012 c98 2021 Consecutive primes arithmetic progression (1,d=30), ECPP 5946 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5947 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5948 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5949 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5950 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5951 1184490310627008*2339#+1 1001 p364 2025 Cunningham chain 2nd kind (32p-31) ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST A2 Propper, Srsieve, PRST A3 Atnashev, PRST A5 Gahan, Cyclo, PRST A6 Propper, Gcwsieve, PRST A7 Baur, Cyclo, PRST A8 Baur1, Srsieve, PRST A9 Wright1, Srsieve, CRUS, PRST A10 Grosvenor, Srsieve, CRUS, PRST A11 Anonymous, Srsieve, CRUS, PRST A12 Kruse, Srsieve, CRUS, PRST A13 Marler, Cyclo, PRST A14 Thompson5, Srsieve, CRUS, PRST A15 Sielemann, Srsieve, CRUS, PRST A18 Trunov, Cyclo, PRST A19 Propper, Batalov, Srsieve, PRST A20 Propper, Batalov, Gcwsieve, PRST A21 Piesker, Srsieve, CRUS, PRST A22 Doornink, Cyclo, PRST A23 Brown1, Srsieve, PrimeGrid, PRST A24 Ogawa, MultiSieve, NewPGen, PRST A25 Schmidt2, NewPGen, PRST A26 VISCAPI, Srsieve, CRUS, PRST A27 Piesker, PSieve, Srsieve, NPLB, PRST A28 Gingrich1, Srsieve, CRUS, PRST A29 Kelava1, Srsieve, Prime95, PRST A30 Silva2, Srsieve, PrimeGrid, PRST A31 Dinkel, MultiSieve, PRST A32 Cedric, Srsieve, CRUS, PRST A33 Przystawik, Srsieve, CRUS, PRST A38 Batalov, PSieve, Srsieve, PRST A41 Gmirkin, Srsieve, PrimeGrid, PRST A42 Dadocad72, Srsieve, CRUS, PRST A43 Propper, MultiSieve, PRST A44 Smith12, Srsieve, CRUS, PRST A45 Kaczala, Srsieve, PrimeGrid, PRST A46 Primecrunch.com, Hedges, Srsieve, PRST A48 Peteri, Srsieve, CRUS, PRST A49 Swerczek, Srsieve, CRUS, PRST A50 Bird2, Srsieve, CRUS, PRST A51 Gahan, NewPGen, PRST A52 Schumacher, Srsieve, CRUS, PRST A54 Lynch, Srsieve, CRUS, PRST A55 Nielsen1, Gahan, PRST A57 Busler, Srsieve, CRUS, PRST A58 Schmidt2, PSieve, Srsieve, NPLB, PRST A59 Straleger, Srsieve, CRUS, PRST A60 Presler, Srsieve, PrimeGrid, PRST A61 Williams7, Gcwsieve, MultiSieve, PrimeGrid, PRST A62 Gehrke, Srsieve, CRUS, PRST A63 Davies, Srsieve, CRUS, PRST A64 Freeman.kennethgmail.com, Srsieve, CRUS, PRST A65 Dickinson, Srsieve, CRUS, PRST A66 Terber, Srsieve, CRUS, PRST A67 Gahan, Gcwsieve, PRST A68 Schroeder3, Srsieve, CRUS, PRST A69 Chodzinski, Srsieve, CRUS, PRST A70 Korolev, Srsieve, CRUS, PRST A71 Harju, Srsieve, CRUS, PRST A72 Brase, Srsieve, CRUS, PRST A73 Brooks2, Srsieve, CRUS, PRST A75 Yasuhisa, TwinGen, NewPGen, TPS, PRST A76 Brockwell, PSieve, Srsieve, NPLB, PRST A77 Barnes, PSieve, Srsieve, NPLB, PRST A78 Wen, PSieve, Srsieve, NPLB, PRST A79 Vink, Brockwell, Schmidt2, TwinGen, NewPGen, TPS, PRST A80 BLANCHE, Srsieve, CRUS, PRST A81 Arnold1, Srsieve, CRUS, PRST A82 Brockwell, TwinGen, NewPGen, TPS, PRST A83 DEWAR2, Srsieve, CRUS, PRST A84 Pinho, PSieve, Srsieve, NPLB, PRST A85 Coscia, PFCSieve, PrimeGrid, PRST A86 StPierre, Srsieve, CRUS, PRST A87 Menke, Srsieve, CRUS, PRST A88 Wharton1, Srsieve, CRUS, PRST A89 Lyubchik, Srsieve, CRUS, PRST A90 Vink, Brockwell, TwinGen, NewPGen, TPS, PRST A91 Kollipara, Srsieve, CRUS, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c88 Kaiser1, PolySieve, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH14 Wu_T, CM, OpenPFGW, CHG CH15 Propper, Batalov, CM, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM E11 Karpovich, CM E12 Enge, Underwood, CM E13 Batalov, Masser, CM E14 Batalov, EMsieve, CM E15 Batalov, PolySieve, CM E16 Propper, Batalov, CM E17 Foreman, Batalov, CM E18 Kruse, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g431 Shenton, Srsieve, Proth.exe gm Morii, Proth.exe K Keller L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L161 Schafer, NewPGen, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L550 Bonath, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4400 Norman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4777 Kampmeier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4943 Stroup, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5396 Andrade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5602 Wen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5628 Baranchikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5664 Kaczmarek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5667 Totty, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5682 Floyd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5687 Wellck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5690 Eldred, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5696 Earle, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5697 Black2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5700 Huang1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5707 Johns, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5711 Gingrich1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5712 Stahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5718 Ketamino, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5721 Fischer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5722 Rickard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5723 Fergusson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5731 Michael, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5767 Xu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5768 Lewis2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5771 Becker-Bergemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5784 Coplin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5791 Rindahl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5794 Morgan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5797 Ivanovski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5805 Belozersky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR L5812 Song, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5814 Chodzinski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5816 Guenter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5817 Kilstromer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5818 Belozersky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5819 Schmidt2, LLR2, PSieve, Srsieve, NPLB, LLR L5820 Hoonoki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5821 Elmore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5825 Norton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5826 Morávek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5827 Yasuhisa, TwinGen, NewPGen, TPS, LLR L5829 Dickinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5830 McLean2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5831 Chapman2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5833 Russell2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5834 Roberts, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5836 Becker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5837 Lin1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5839 Stewart1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5841 Yarham, Srsieve, CRUS, LLR L5842 Steenerson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5843 Vink, Kruse, Kwok, TwinGen, NewPGen, TPS, LLR L5844 Kadowaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5847 Eldredge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5848 Bressani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5850 Zakharchenko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5851 Liskay, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5852 Kwiatkowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5853 Simard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5854 Lehmann1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5855 Williams9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5858 GervaisLavoie, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5860 Joseph, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5862 Oppliger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5863 Duvinage, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5864 Amberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5865 Mendrik1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5866 Kim3, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5869 Arnold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5870 Bodlina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5871 Yakubchak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5875 Monroe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5878 Klinkenberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5879 Sanner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5880 Gehrke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5881 Medcalf, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5882 Basil, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5888 Presler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5894 Tamai1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5904 Rix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5913 Burtner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5916 Gao, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5923 Ryabchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5929 Bauer2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5935 Lacroix, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5938 Philip, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5945 Bush, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5948 Meuler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5952 Hall, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5956 Garnier1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5960 Jayaputera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5961 Carlier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5969 Kang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5971 Da_Mota, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5974 Presler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5977 Brockerhoff, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5980 Schmidt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5984 Desbonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5986 Wolfe1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5989 Williams10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5995 Lee10, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5997 Smith15, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5998 Da_Mota, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6005 Overstreet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6006 Propper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6010 Chaney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6011 Mehner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6013 Preston1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6015 Uehara1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6018 Varis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6019 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, Rechenkraft, PrimeGrid, LLR L6026 Bruner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6027 Johnson10, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6029 Schmidt2, Kwok, LLR2, TwinGen, NewPGen, TPS, LLR L6033 Tang3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6035 Garrison1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6036 Hogan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6038 Schafer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6040 Garland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6042 Fink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6043 Podsada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6044 Chesnut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6047 Wheeler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6049 Chen4, LLR L6056 Coscia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6057 Kim7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6058 StGeorge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6064 Adrian, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6065 Yakubchak1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6067 O’Hara, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6070 Mumper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6072 Lundström, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6073 Rojas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6075 Chodzinski, LLR2, Srsieve, PrimeGrid, LLR L6076 Yakubchak2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6077 Vink, Schmidt2, Kwok, TwinGen, NewPGen, TPS, LLR L6078 Zhaozheng, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6080 Sondergard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6082 Mckinley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6083 Yagi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6084 Criswell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6085 Granowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6086 Pastierik, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6087 Osaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6088 Abad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6089 Lynch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6090 Champ, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6091 Paniczko, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6092 Boerner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6093 Wagner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6094 Skendelis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6095 Stach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6096 Biggs, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6102 Yakubchak3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6123 Mukanos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6129 Slade2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6159 Weinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6163 Drozd, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6166 Carquillat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6168 Hogan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6170 Liang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6176 Shriner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6177 Mostad, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6178 Hua, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6182 Jans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6183 Lack, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6185 Abromeit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6187 Deram, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6189 Mohacsy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6201 Lein, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6202 Stach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6204 Probst, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6205 McDonald3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6207 Allen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6209 Marler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6215 Vykouril, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6217 Keskitalo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6220 Sandhop, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6221 Wu2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6227 Zhao1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6229 Dean1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6230 Gnann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6235 Rosick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6236 Neujahr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6237 Steffens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6238 Pabsch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6241 Haberer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6243 Baker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6245 Perek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6246 Slade, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6247 Slade2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6248 Hui, Srsieve, CRUS, LLR L6249 Puada, MultiSieve, PRST, LLR L6250 Gulliver, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6252 Carlin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6253 Takesue, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6255 Kim8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6256 Sariyar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6257 Hristoskov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6259 Baker2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6260 Cui, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6261 Saito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6262 Woodrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6263 Scheuern, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6264 Ogawa, LLR2, Srsieve, NewPGen, LLR L6265 DiMichina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6266 Pomeranke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6268 Monteith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6269 Edlund, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6270 Bressani, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6271 Hood1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6272 GervaisLavoie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6273 Hasznos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6274 Heidrich, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6275 Margossian, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6276 Patterson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6277 Gefreiter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6278 Silva3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6279 Antonov, CRUS, LLR L6280 Birzer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6281 Fitzgerald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6282 Puppi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6283 Kurtovic, Srsieve, NPLB, Prime95, LLR L6284 Hood2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6285 Abbondanti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6287 Zaugg1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6288 Kopp1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6289 Mendrik1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6290 Mondon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6291 Rojas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6292 DePuis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6293 Sriworarat, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6294 Poulos, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6295 Weiss2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6296 Wang6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6297 Geiger1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6298 Waller, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6299 Miles, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6300 Hood2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L6301 Poulos, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6302 Ottavi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6303 David2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6304 Bailey1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6305 Navrátil, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6306 Harada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L6307 Wei1, GeneFer, LLR L6308 Rasmussen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii MP1 Durant, GIMPS, GpuOwl O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p41 Luhn, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p137 Rodenkirch, MultiSieve, OpenPFGW p151 Kubota, NewPGen, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW p433 Dettweiler, LLR2, Srsieve, CRUS, OpenPFGW p434 Doornink, MultiSieve, OpenPFGW p435 Dettweiler, LLR2, PSieve, Srsieve, NPLB, OpenPFGW p436 Schwieger, OpenPFGW p437 Propper, Batalov, EMsieve, PIES, OpenPFGW p439 Trice, MultiSieve, OpenPFGW p440 Batalov, EMsieve, OpenPFGW p441 Wu_T, CM, OpenPFGW p442 Presler, MultiSieve, PrimeGrid, PRST, OpenPFGW p443 Brochtrup, Srsieve, CRUS, OpenPFGW p444 Kadowaki, MultiSieve, PrimeGrid, PRST, OpenPFGW p445 Merrylees, MultiSieve, PrimeGrid, PRST, OpenPFGW p446 Greer, MultiSieve, PrimeGrid, PRST, OpenPFGW p447 Wallbaum, MultiSieve, PrimeGrid, PRST, OpenPFGW p448 Little, MultiSieve, PrimeGrid, PRST, OpenPFGW p449 Rodriguez2, OpenPFGW p450 Propper, OpenPFGW p451 Davies, MultiSieve, PrimeGrid, PRST, OpenPFGW p452 Propper, Batalov, CM, OpenPFGW p453 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown x51 Lexut1, Srsieve, CRUS, Unknown x52 Batalov, PolySieve, OpenPFGW, Unknown x54 Gallot, GeneFer, Unknown Y Young