Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media, as well as to allow video information to be shared for both marketing, analytics and editorial purposes.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Reconstituting and Purifying Assembly Intermediates of Clathrin Adaptors AP1 and AP2

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2473))

  • 1810 Accesses

  • 2 Citations

Abstract

Clathrin-coated vesicles mediate membrane cargo transportation from the plasma membrane, the trans-Golgi network, the endosome, and the lysosome. Heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) are bridges that link cargo-loaded membranes to clathrin coats. Assembly of AP2 was previously considered to be spontaneous; however, a recent study found AP2 assembly is a highly orchestrated process controlled by alpha and gamma adaptin binding protein (AAGAB). Evidence shows that AAGAB controls AP1 assembly in a similar way. Insights into the orchestrated assembly process and three-dimensional structures of assembly intermediates are only emerging. Here, we describe a protocol for reconstitution and purification of the complexes containing AAGAB and AP1 or AP2 subunits, known as AP1 and AP2 hemicomplexes. Our purification routinely yields milligrams of pure complexes suitable for structural analysis by X-ray crystallography and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5):313–326. https://doi.org/10.1038/nrm.2017.132

    Article  CAS  PubMed  Google Scholar 

  2. Mettlen M, Chen PH, Srinivasan S, Danuser G, Schmid SL (2018) Regulation of Clathrin-mediated endocytosis. Annu Rev Biochem 87:871–896. https://doi.org/10.1146/annurev-biochem-062917-012644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim K, Gadila SKG (2016) Cargo trafficking from the trans-Golgi network towards the endosome. Biol Cell 108(8):205–218. https://doi.org/10.1111/boc.201600001

    Article  CAS  PubMed  Google Scholar 

  4. Traub LM, Bonifacino JS (2013) Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 5(11):a016790. https://doi.org/10.1101/cshperspect.a016790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T (2004) Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432(7017):573–579. https://doi.org/10.1038/nature03079

    Article  CAS  PubMed  Google Scholar 

  6. Paraan M, Mendez J, Sharum S, Kurtin D, He H, Stagg SM (2020) The structures of natively assembled clathrin-coated vesicles. Sci Adv 6(30):eaba8397. https://doi.org/10.1126/sciadv.aba8397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovtun O, Dickson VK, Kelly BT, Owen DJ, Briggs JAG (2020) Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Sci Adv 6(30):eaba8381. https://doi.org/10.1126/sciadv.aba8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park SY, Guo X (2014) Adaptor protein complexes and intracellular transport. Biosci Rep 34(4):e00123. https://doi.org/10.1042/BSR20140069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4(3):202–212. https://doi.org/10.1038/nrm1050

    Article  CAS  PubMed  Google Scholar 

  10. Gan Y, McGraw TE, Rodriguez-Boulan E (2002) The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat Cell Biol 4(8):605–609. https://doi.org/10.1038/ncb827

    Article  CAS  PubMed  Google Scholar 

  11. Kirchhausen T (1999) Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 15:705–732. https://doi.org/10.1146/annurev.cellbio.15.1.705

    Article  CAS  PubMed  Google Scholar 

  12. Traub LM (1997) Clathrin-associated adaptor proteins - putting it all together. Trends Cell Biol 7(2):43–46. https://doi.org/10.1016/S0962-8924(96)20042-X

    Article  CAS  PubMed  Google Scholar 

  13. Kirchhausen T, Owen D, Harrison SC (2014) Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 6(5):a016725. https://doi.org/10.1101/cshperspect.a016725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109(4):523–535. https://doi.org/10.1016/s0092-8674(02)00735-3

    Article  CAS  PubMed  Google Scholar 

  15. Heldwein EE, Macia E, Wang J, Yin HL, Kirchhausen T, Harrison SC (2004) Crystal structure of the clathrin adaptor protein 1 core. Proc Natl Acad Sci U S A 101(39):14108–14113. https://doi.org/10.1073/pnas.0406102101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR, Honing S, Owen DJ (2008) A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456(7224):976–979. https://doi.org/10.1038/nature07422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Honing S, Evans PR, Owen DJ (2010) A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141(7):1220–1229. https://doi.org/10.1016/j.cell.2010.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH (2013) Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152(4):755–767. https://doi.org/10.1016/j.cell.2012.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia X, Weber E, Tokarev A, Lewinski M, Rizk M, Suarez M, Guatelli J, Xiong Y (2014) Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. eLife 3:e02362. https://doi.org/10.7554/eLife.02362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kelly BT, Graham SC, Liska N, Dannhauser PN, Honing S, Ungewickell EJ, Owen DJ (2014) Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345(6195):459–463. https://doi.org/10.1126/science.1254836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen QT, Ren X, Zhang R, Lee IH, Hurley JH (2015) HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons. Science 350(6259):aac5137. https://doi.org/10.1126/science.aac5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris KL, Buffalo CZ, Sturzel CM, Heusinger E, Kirchhoff F, Ren X, Hurley JH (2018) HIV-1 Nefs are cargo-sensitive AP-1 Trimerization switches in Tetherin downregulation. Cell 174(3):659–671. e614. https://doi.org/10.1016/j.cell.2018.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buffalo CZ, Sturzel CM, Heusinger E, Kmiec D, Kirchhoff F, Hurley JH, Ren X (2019) Structural basis for Tetherin antagonism as a barrier to zoonotic lentiviral transmission. Cell Host Microbe 26(3):359–368. e358. https://doi.org/10.1016/j.chom.2019.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Partlow EA, Baker RW, Beacham GM, Chappie JS, Leschziner AE, Hollopeter G (2019) A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. eLife 8:e50003. https://doi.org/10.7554/eLife.50003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wrobel AG, Kadlecova Z, Kamenicky J, Yang JC, Herrmann T, Kelly BT, McCoy AJ, Evans PR, Martin S, Muller S, Sroubek F, Neuhaus D, Honing S, Owen DJ (2019) Temporal ordering in endocytic Clathrin-coated vesicle formation via AP2 phosphorylation. Dev Cell 50(4):494–508. e411. https://doi.org/10.1016/j.devcel.2019.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beacham GM, Partlow EA, Hollopeter G (2019) Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 20(10):741–751. https://doi.org/10.1111/tra.12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gulbranson DR, Crisman L, Lee M, Ouyang Y, Menasche BL, Demmitt BA, Wan C, Nomura T, Ye Y, Yu H, Shen J (2019) AAGAB controls AP2 adaptor assembly in Clathrin-mediated endocytosis. Dev Cell 50(4):436–446. e435. https://doi.org/10.1016/j.devcel.2019.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pohler E, Mamai O, Hirst J, Zamiri M, Horn H, Nomura T, Irvine AD, Moran B, Wilson NJ, Smith FJ, Goh CS, Sandilands A, Cole C, Barton GJ, Evans AT, Shimizu H, Akiyama M, Suehiro M, Konohana I, Shboul M, Teissier S, Boussofara L, Denguezli M, Saad A, Gribaa M, Dopping-Hepenstal PJ, McGrath JA, Brown SJ, Goudie DR, Reversade B, Munro CS, McLean WH (2012) Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat Genet 44(11):1272–1276. https://doi.org/10.1038/ng.2444

    Article  CAS  PubMed  Google Scholar 

  29. Wang B, Ye K (2017) Nop9 binds the central pseudoknot region of 18S rRNA. Nucleic Acids Res 45(6):3559–3567. https://doi.org/10.1093/nar/gkw1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5(5):865–876. https://doi.org/10.1016/s1097-2765(00)80326-3

    Article  CAS  PubMed  Google Scholar 

  31. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28. https://doi.org/10.1016/0378-1119(90)90336-p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 1R01GM138685 to Q.Y.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Qian Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, B., Yang, R., Tian, Y., Yin, Q. (2022). Reconstituting and Purifying Assembly Intermediates of Clathrin Adaptors AP1 and AP2. In: Shen, J. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 2473. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2209-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2209-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2208-7

  • Online ISBN: 978-1-0716-2209-4

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics

Profiles

  1. Qian Yin