Skip to main content
  1. Market Insights
  2. Consumer

Apparel - Kazakhstan

Kazakhstan
  • Revenue in the Apparel market in Kazakhstan is projected to reach US$5.89bn in 2025.
  • The market is forecasted to grow annually by 4.34% (CAGR 2025-2030).
  • The largest segment in the market is Women's Apparel, with a market volume of US$3.17bn in 2025.
  • In comparison to global markets, United States generates the highest revenue, amounting to US$366bn in 2025.
  • On a per capita basis, the revenue generated in 2025 is US$282.67.
  • The volume in the Apparel market is expected to reach 602.9m pieces by 2030.
  • In 2026, the market is projected to show a volume growth of 2.3%.
  • The average volume per person in the Apparel market is expected to reach 25.9pieces in 2025.
  • By 2025, 99% of sales in the Apparel market will be attributable to Non-Luxury.
  • Kazakhstan's apparel market is experiencing a surge in demand for traditional Kazakh clothing, reflecting a growing appreciation for cultural heritage.

Revenue

Notes: Data was converted from local currencies using average exchange rates of the respective year.

Most recent update: Dec 2025

Source: Statista Market Insights

Most recent update: Dec 2025

Source: Statista Market Insights

Volume

Most recent update: Dec 2025

Source: Statista Market Insights

Most recent update: Dec 2025

Source: Statista Market Insights

Price

Chart

Line chart with 4 lines.
The chart has 1 X axis displaying categories. Data range: 13 categories.
The chart has 1 Y axis displaying Values. Data ranges from 21.36 to 62.76.
End of interactive chart.

Most recent update: Dec 2025

Source: Statista Market Insights

Sales Channels

Chart

Bar chart with 2 data series.
The chart has 1 X axis displaying categories. Data range: 11 categories.
The chart has 1 Y axis displaying Values. Data ranges from 266.5 to 500.
End of interactive chart.

Most recent update: Mar 2024

Source: Statista Market Insights

Product Types

Chart

Bar chart with 2 data series.
The chart has 1 X axis displaying categories. Data range: 13 categories.
The chart has 1 Y axis displaying Values. Data ranges from 3 to 300.
End of interactive chart.

Most recent update: Dec 2025

Source: Statista Market Insights

Chart

Line chart with 12 data points.
The chart has 1 X axis displaying categories. Data range: 12 categories.
The chart has 1 Y axis displaying Values. Data ranges from 18.6 to 36.
End of interactive chart.

Most recent update: Apr 2025

Source: Statista Market Insights

Chart

Line chart with 12 data points.
The chart has 1 X axis displaying categories. Data range: 12 categories.
The chart has 1 Y axis displaying Values. Data ranges from 19.5 to 89.69999999999999.
End of interactive chart.

Notes: The Night & Underwear market is built on resources from the Statista platform as well as on in-house market research, national statistical offices, international institutions, trade associations, companies, the trade press, and the experience of our analysts. We evaluate the status quo of the market, monitor trends, and create an independent forecast regarding market developments of the global Night & Underwear industry.

Most recent update: Mar 2025

Source: Statista Market Insights

Global Comparison

2018
2030
2026

Chart

Map of World, medium resolution with 1 data series.
End of interactive chart.
Top 5 countries (2026) in billion USD (US$)
CountryRevenue
1. United States
2. China
3. India
4. Japan
5. United Kingdom

Most recent update: Dec 2025

Source: Statista Market Insights

Analyst Opinion

While Greater China almost overtakes the U.S. as largest fashion market in the world, key economic indicators create a more cautious mood for the global fashion industry potentially slowing down by 2020. For companies it is crucial to prepare plans to address a possible transformation of global value chains emerging by new opportunities from global consumer spending shifting towards emerging economies as well as trade tensions and uncertainties. A leverage point could be to take a strong position on social and environmental issues, as this is very much demanded by the younger generation.

Methodology

Data coverage:

Data encompasses B2C enterprises. Figures are based on the consumer spending on clothing which comprises women, men, and children segments that are produced for private end customers for both offline retail (department stores, traditional specialist shops) and online retail (e-commerce, ordering by catalog).

Modeling approach / Market size:

Market sizes are determined by a combined Top-Down and Bottom-Up approach, based on a specific rationale for each market segment. As a basis for evaluating markets, we use resources from the Statista platform, national statistics, industry research, market data from independent databases and third-party sources, historical developments, current trends, reported performance indicators from the key market players, and Statista interviews with market experts. Next we use relevant key market indicators and data from country-specific associations such as GDP, consumer spending, consumer price index and population. This data helps us to estimate the market size for each country individually.

Forecasts:

In our forecasts, we apply diverse forecasting techniques. The selection of forecasting techniques is based on the behavior of the particular market. For example, the exponential trend smoothing illustrates suited forecasting for the Apparel market with projected steady growth. The main drivers are GDP per capita and consumer spending per capita.

Additional Notes :

The market is updated twice per year in case market dynamics change. The impact of the COVID-19 pandemic and the Russia-Ukraine war are considered at a country-specific level.

Consumer

Access more Market Insights on Consumer topics with our featured report

Key Market Indicators

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
Population in million #****.***.****.****.***.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.***.***.****.****.****.**
Population, 0-14 Years in million #**.****.****.****.****.****.****.****.****.****.***.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.***.****.******.****.****.***.***.****.****.**
Population, 15-24 Years in million #**.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.***.***.****.****.****.****.****.****.****.****.***.***.****.****.****.****.****.****.****.****.***.****.**
Population, 25-34 Years in million #*.***.***.***.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.***.***.***.***.****.***.****.****.****.****.****.****.****.**
Population, 35-44 Years in million #*.***.***.***.***.***.***.***.***.****.***.***.**.***.***.***.***.****.****.****.****.****.****.****.****.****.****.***.****.****.****.****.****.****.****.****.***.***.***.***.**
Population, 45-54 Years in million #*.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.****.****.****.***.****.****.***.***.****.****.****.**
Population, 55+ Years in million #*.***.***.***.***.***.***.***.***.***.***.***.***.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.****.***.****.****.****.****.**
Population, 0-4 Years in million #*.***.***.***.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.**.***.**.***.***.***.***.***.***.***.**
Population, 5-9 Years in million #*.***.***.**.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.**.***.**.***.***.***.***.***.***.**
Population, 10-14 Years in million #*.***.**.***.***.***.***.***.***.***.***.***.***.**.***.***.**.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.***.***.***.***.**.***.***.***.**.**
Population, 15-19 Years in million #*.***.***.***.***.**.**.***.***.***.***.***.**.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.**.***.***.**.***.***.***.***.***.***.***.**
Population, 20-24 Years in million #*.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.**.***.***.**
Population, 25-29 Years in million #*.***.***.***.***.**.***.**.***.**.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.***.**
Population, 30-34 Years in million #*.***.***.***.***.***.***.***.***.***.***.***.**.***.**.***.***.***.***.***.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.**.**.***.***.**
Population, 35-39 Years in million #*.***.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.**.***.***.***.***.***.***.**
Population, 40-44 Years in million #*.***.***.***.***.***.**.**.***.***.**.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.***.**
Population, 45-49 Years in million #*.***.***.**.***.***.***.**.***.***.***.***.***.**.***.***.***.***.***.**.***.***.**.***.***.***.***.***.***.***.**.***.***.***.***.**.***.***.***.***.***.**
Population, 50-54 Years in million #*.***.***.***.***.***.***.***.***.**.***.***.***.***.**.***.***.**.***.***.***.***.***.***.***.***.**.***.***.***.***.***.***.***.***.***.***.***.***.***.***.**
Population, 55-59 Years in thousand #****.******.******.******.******.******.*****.******.******.******.*****.*****.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.**
Population, 60-64 Years in thousand #****.******.******.******.******.*****.******.******.******.******.******.******.*****.******.******.******.******.******.******.*****.******.******.*****.******.******.******.******.**********.******.******.*****.******.******.******.******.*****.******.******.*****.******.**
Population, 65-69 Years in thousand #****.******.******.******.******.******.******.******.******.*****.******.******.******.*****.******.*****.******.******.******.*****.******.******.******.******.******.******.******.*****.******.******.******.******.******.******.******.******.******.******.******.******.******.**
Population, 70-74 Years in thousand #****.******.******.******.******.******.******.******.******.******.******.******.*****.******.******.*****.*****.*****.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.*****.******.******.*****.******.******.*****.******.**
Population, 75-79 Years in thousand #***.*****.*****.*****.*****.*****.****.*****.*****.*****.*****.*****.*****.******.******.******.******.******.*****.*****.*****.*****.*****.*****.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.******.**
Population, 80-84 Years in thousand #***.*****.*****.****.*****.*****.****.****.*****.*****.****.*****.*****.*****.*****.*****.*****.*****.****.*****.*****.****.*****.*****.*****.*****.*****.****.*****.*****.*****.*****.******.******.******.*****.******.******.******.******.******.**
Population, 85-89 Years in thousand #***.*****.*****.*****.*****.*****.*****.****.****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.****.*****.****.*****.*****.*****.*****.*****.****.*****.*****.*****.**
Population, 90-94 Years in thousand #**.****.***.****.****.****.****.****.****.****.****.******.****.****.****.****.****.*****.*****.*****.*****.****.****.****.****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.*****.**
Population, 95-99 Years in thousand #**.****.****.****.***.***.***.***.****.****.***.***.***.***.***.***.***.****.****.****.****.****.****.***.****.****.****.****.****.***.****.****.****.****.****.***.****.****.****.****.****.*
Population, 100+ Years in #*********************************************************************************************************************************************************

Notes: Based on data from IMF, World Bank, UN and Eurostat

Most recent update: Jan 2025

Source: Statista Market Insights

Explore more high-quality data on related topic

Apparel market worldwide - statistics & facts

The apparel we wear can be highly individualized, representing our mood, identity, and background but is also affected by global trends, such as economics, sustainability, and popular culture. Manufacturers and retailers look to predict and even influence these trends to gain an advantage in the 1.8 trillion dollar global clothing market.
More data on the topic

Contact

Get in touch with us. We are happy to help.
Meredith Alda
Sales Manager
Tel

+1 914 619-5895

Mon - Fri, 9am - 6pm (EST)

Lodovica Biagi
Director of Operations
Tel

+44 (0)20 8189 7000

Mon - Fri, 9:30am - 5pm (GMT)

Ayana Mizuno
Business Development Manager

Mon - Fri, 10:00am - 6:00pm (JST)

Carolina Dulin
Group Director - LATAM
Tel

+1 212 419-5774

Mon - Fri, 9am - 6pm (EST)

Yolanda Mega
Operations Manager
Tel

+65 6995 6959

Mon - Fri, 9am - 5pm (SGT)