
Detection and Localization of HTML Presentation
Failures Using Computer Vision-Based Techniques

Sonal Mahajan and William G. J. Halfond
University of Southern California

Los Angeles, California, USA
{spmahaja, halfond}@usc.edu

Abstract—An attractive and visually appealing appearance is
important for the success of a website. Presentation failures in a
site’s web pages can negatively impact end users’ perception of
the quality of the site and the services it delivers. Debugging such
failures is challenging because testers must visually inspect large
web pages and analyze complex interactions among the HTML
elements of a page. In this paper we propose a novel automated
approach for debugging web page user interfaces. Our approach
uses computer vision techniques to detect failures and can then
identify HTML elements that are likely to be responsible for the
failure. We evaluated our approach on a set of real-world web
applications and found that the approach was able to accurately
and quickly identify faulty HTML elements.

I. INTRODUCTION

An attractive and visually appealing appearance is impor-
tant for the success of a website. A recent study by Google
underscores this point by noting that the average visitor forms
a first impression of a web page within the first 50 milliseconds
of visiting a page [24] — an amount of time that is heavily
influenced by a page’s aesthetics. Companies put significant
effort into the look and feel of their websites, employing
graphic designers and illustrators to carefully craft their layout
and graphics. Presentation failures – a discrepancy between the
actual appearance of a web site and its intended appearance
– can undermine this effort and negatively impact end users’
perception of the quality of the site and the services it delivers.
These types of failures can also impact the usability of a
web application’s user interface (UI) or be symptomatic of
underlying logic or data problems.

The UIs of modern web applications are highly complex
and dynamic. Back-end server code dynamically generates
content and client-side browsers render this content based
on complex HTML, CSS, and JavaScript rules. This makes
debugging presentation failures both a labor-intensive and
error-prone process. To illustrate, a tester must visually com-
pare the rendering of each page against an oracle, such as
a design mockup, to detect that a presentation failure has
occurred. This is labor intensive, since even a simple page can
contain hundreds of HTML elements each with several dozen
CSS properties that must be verified. Once testers detect a
presentation failure, the next step in debugging is to identify
the faulty HTML element responsible for the failure. This is
difficult since an element’s visual appearance is controlled
by a complex series of interactions defined by the page’s
HTML structure and CSS rules. The widespread use of HTML
rendering features, such as floating elements, overlays, and
dynamic sizing, also increases the difficulty of identifying the

faulty element as there is often no obvious or direct connection
from the rendered appearance to the structure of the underlying
HTML.

Testers have several techniques available to them to help
debug presentation failures. However, these techniques have
limitations that either reduce their effectiveness or make them
inappropriate for general usage. For example, many techniques
are focused on one type of presentation failure, such as Cross-
Browser Issues (XBIs) (e.g., [19], [7], [8]), or a limited and
predefined set of application-independent failure types (e.g.,
Fighting Layout Bugs [23]), and cannot detect other types
of presentation failures. Other techniques can only support
debugging efforts where there is a prior working version
that can be compared against (e.g., [26], [21]). Finally, a
group of techniques require testers to exhaustively specify
all correctness properties to be checked (e.g., Selenium [4],
CrawlJax [16], Cucumber [1], and Sikuli [6]), which is labor-
intensive and potentially error-prone.

To address these limitations, we propose a novel approach
to assist developers in debugging presentation failures. Our
approach uses computer-vision techniques to detect differences
between the actual appearance of a web page and its intended
appearance, and then analyzes rendering maps of the web
page to identify the HTML elements most likely to be re-
sponsible for the observed differences. As compared to current
techniques, our approach has several distinct advantages. (1)
By design, our approach reduces manual effort – it does not
require testers to manually specify every correctness property
to be checked. (2) The approach can detect a broad range
of failures – it does not impose restrictions on the type of
underlying fault that can be detected. (3) Our evaluation of
the approach shows that it localizes accurately – in over
93% of our test cases it could identify the faulty element.
(4) The approach is fast – in experiments on real-world
web applications, such as GMail and Craigslist, our approach
detected and localized each fault in an average of 87 seconds.

The rest of this paper is organized as follows: In Section II
we discuss several scenarios in which web developers need
to debug presentation failure and highlight the limitations of
existing work with respect to these scenarios. We provide
a detailed explanation of our approach in Section III. In
Section IV we present the results of our empirical evaluation.
We discuss more broadly related work in Section V, then
conclude and summarize in Section VI.

II. MOTIVATING SCENARIOS

In this section we describe several different scenarios in
which testers need to debug presentation failures and the
limitations of existing techniques with respect to those sce-
narios. Recent research has focused on one such scenario,
XBI. Presentation failures occur in this scenario when a
web page is rendered inconsistently across different browsers.
XBI can result in potentially serious usability and appear-
ance failures. Proposed techniques [19], [7], [8] have made
significant progress in detecting XBI, but are limited in their
applicability to other types of presentation failures. The reason
for this is that XBI techniques detect failures by comparing the
underlying Document Object Model (DOM) of the web pages.
As we explain below, such a technique is not applicable for
scenarios where DOM (but not visual) changes are intended or
where developers are trying to match a page against a mockup
provided by a graphical designer.

The second such scenario is what we refer to as regression
debugging. In this scenario, developers have modified the
current version of the web application to correct a bug,
introduce a new feature, or refactor the HTML code. For
example, a developer may refactor a web page to transition
it from using a table-based layout to one based on the use
of the <div> tag. During this modification, developers may
introduce a fault in the code that results in a presentation
failure. Existing techniques, such as Cross-Browser Testing
(XBT) [19], [7], [8], GUI differencing [26], automated oracle
comparators [21], or tools based on diff may be of limited
use in this scenario. The reason for this is that these techniques
use a tree-based representation (e.g., DOM) to compare the
versions of the faulty web page. If a faulty change is small
and localized within the tree, it may be straightforward for
these techniques to identify the fault. However, if the tree
structure has changed significantly (as in the above refactoring
example) then a comparison will most likely result in many
spurious changes being identified as the fault. To verify this
assertion, we conducted a small case study with the most
recent implementation of XPERT [8], a well-known tool for
performing XBT. In its current state of implementation that is
publicly available, XPERT is only able to detect XBIs based on
the functionality of the apps and layout/structure of the web
page’s appearance. Therefore, we ran XPERT on test cases
that were handcrafted to have a combination of DOM and
visual changes that resulted in layout and structural changes.
The results demonstrated that with a change in the underlying
DOM structure, the presentation failures were not detected, as
no matching DOM node was found in the reference DOM tree.
Hence, the changed DOM node was not analyzed, resulting in
a false negative. Furthermore, these techniques assume that
any difference between the tree-based representation implies a
failure. This is not always true as there can be multiple ways
to implement the same visual appearance using HTML and
CSS properties.

The third scenario is mockup-driven development [17],
[14], [18]. In this style of development, front-end developers
use mockups – highly detailed renderings of the intended
appearance of the web application – to guide their development
of web application templates. The developers are generally ex-
pected to create “pixel perfect” matches of these mockups [2]
using web development tools, such as Adobe Muse, Amaya,

or Visual Studio. Back-end developers also make changes to
these templates by adding dynamic content. Both front-end
and back-end developers need to check that their respective
changes are consistent with the mockup, and if not, identify
the HTML elements that have caused the discrepancy. In
this scenario, it is not possible to use any of the tree-based
comparison techniques, as there does not yet exist a prior
working version of the web page, only the graphical mockup.
Using other techniques, such as Selenium [4], Cucumber [1],
Crawljax [16], Sikuli [6], or graphical automated oracles [9],
is not practical in this scenario for several reasons. First,
these techniques require testers to exhaustively specify every
correctness property to be checked, which may be very labor
intensive. A new tool, “Fighting Layout Bugs” (FLB) [23],
does eliminate the need to specify such correctness properties,
but it can only detect general types of failures, such as
overlapping text regions, and cannot detect application-specific
failures. Second, the correctness properties are expressed in
terms of HTML syntax, not the visual appearance of an HTML
element. Therefore, these techniques may miss presentation
failures, such as incorrect inheritance of an ancestor element’s
CSS properties.

III. APPROACH

The goal of our approach is to automatically detect and
localize presentation failures in web pages. To do this, our
approach applies techniques from the field of computer vision
to analyze the visual representation of a web page, identify
presentation failures, and then determine which elements in
the HTML source of the page could be responsible for the
observed failures.

The approach takes three inputs. The first input is the web
page (P) to be analyzed for presentation failures. The form
of P is a URL that points to either a location on the network
or filesystem where all HTML, CSS, JavaScript, and media
files of P can be accessed. The second input is the oracle
(O) that specifies the visual correctness properties of P. The
form of O is an image that can be either a mockup or a
screenshot of a previously correct version of P. The third input
is a set of special regions (SR) defining areas of O that will
contain dynamic text, ads, etc., which define dynamic regions
common in modern web applications. Special regions provide
a mechanism to allow developers to specify such regions that
should be handled specially.

From a high-level, our approach can be described as having
three phases. The first phase, detection, compares the visual
representations of P and O to detect a set of differences in
either the special regions or the regular page. The identified
set of differences are then clustered into groups that are likely
to represent different underlying faults in P. The second phase,
localization, analyzes a rendering map of P to identify the
set of HTML elements that define the pixels of each set
of clustered differences. Finally, the third phase, result set
processing, prioritizes the set of elements identified for each
cluster and provides this as an output for the developer.

Figure 1 shows an example web application that we will
use to illustrate our approach. Figure 1a shows the intended
appearance (oracle) of the web page under test. This oracle
could be the mockup used by the front-end developers or a

(a) Oracle (O) (b) Rendered test page screenshot (Pv) (c) Differences between O and Pv

Fig. 1: Illustrative example

screenshot of a previously correct version. A screenshot of the
appearance of the application under development is shown in
Figure 1b. As compared to the oracle, there are five visual
differences: (1) the size of the logo image has changed, (2,3)
the alignment of the “Username” and “Password” labels has
shifted, and (4,5) the content of the news box and advertise-
ment box has changed.

A. Phase 1: Detection

The first phase of the approach detects presentation failures
by comparing the screenshot of P, as rendered in a browser,
with its expected appearance, O. The approach captures a
visual representation (Pv) of P. Then, the approach identifies
the visual differences (DP) between O and Pv . A Δ parameter
is used as a customizable tolerance level to indicate how
closely O and Pv must match.

To capture the visual representation, Pv , the approach takes
a screenshot of the browser window that is rendering P. Since
this visual representation will be compared against the oracle,
it is necessary to ensure that (1) the browser window size
is similar to the oracle image’s dimensions (i.e., height and
width); (2) the amount of zoom in the browser window is
approximately the same as that used while developing the
oracle; and (3) the size of the browser viewport is set to
ensure that page scrolling does not eliminate visible portions
of the page. Note that the testing and oracle platforms do
not need to be exactly the same as our comparison technique
allows for various levels of tolerance and resizing (see below).
The screenshot library of Selenium provides functionality to
configure these visual aspects.

The approach compares O and Pv to find differences. In
our prior work [15], we used a strict pixel-to-pixel equivalence
comparison to identify differences. As we show in Section IV,
this type of comparison is impractical for real-world mockups
for two reasons. First, the oracle and screenshot may be
developed on different platforms and small inconsequential
variations may be introduced as a result of scaling or resizing
images for comparison. Second, small differences may repre-
sent concessions to coding simplicity or be within a level of

tolerance that the development team does not consider to be a
presentation failure.

To address these limitations, our approach uses perceptual
image differencing (PID), a computer vision based technique
for image comparison [27]. PID uses computational models
of the human visual system to compare two images. This
allows the approach to compare the images based on an idea
of “similarity” that corresponds to human’s visual concept
of similarity. PID models three features of the human visual
system: (1) spatial sensitivity, (2) luminance sensitivity, and (3)
color sensitivity to compare a given pair of pixels. The PID
algorithm also accepts a threshold value Δ as a parameter,
which is used to decide whether the images are below a
threshold of perceptible difference, a field of view value in
degrees F , which indicates how much of the observer’s view
the screen occupies, a luminance value L, which indicates
brightness of the display the observer is seeing, and a color
factor C, which indicates the sensitivity to colors. For space
considerations, we omit the details of how the PID algorithm
functions. The PID technique is particularly well-suited for
our problem for two reasons. First, the three modeled features
roughly account for the location (or size), contrast, and color
of the HTML elements in the two pages, which together cover
almost all possible visual rendering effects available via CSS
or HTML. Second, the Δ, F , L, and C allow the difference
detection to be scaled to reduce false positives (via Δ) and
account for screenshot/oracle sizes that are either very small
(e.g., smartphone) or large (e.g., desktop web browser).

The approach uses the PID algorithm to compare O and
Pv at a tolerance level specified by Δ, F , L, and C. The
result of this is a set DP that contains all pixels of the two
images considered to be perceptually different. All pixels that
are within a special regions area, as specified by SR, are
removed from DP , as these pixels will be processed separately
as explained in Section III-D.

Next, the approach identifies difference pixels that are
likely to be caused by the same fault. Intuitively, these are
difference pixels that are located close to each other, a relation-
ship that can be found by clustering. Therefore, the approach
clusters the difference pixels in DP and creates a map that

consists of tuples with cluster id as the key and a set of
difference pixels corresponding to that cluster as the value,
〈cluster id, {〈x0, y0〉, 〈x1, y1〉, ..., 〈xn, yn〉}〉. For clustering,
we use a popular density-based clustering algorithm, DBSCAN
(Density Based Spatial Clustering of Applications with Noise)
[11]. DBSCAN does not require a predefined number of
clusters, but rather decides the number of clusters based on
the density distribution of the given data points. This feature
made DBSCAN more suitable for our approach than other
popular clustering algorithms, such as K-means, that require
the number of clusters as input, since the potential number of
presentation failures existing in a page cannot be known in
advance.

To illustrate the detection phase at a high level, consider
the oracle shown in Figure 1a and the screenshot of the page
in Figure 1b. The approach compares the two images and
identifies the differences between them. Figure 1c shows the
difference pixels as black dots. As noted earlier, the logo,
text labels of the input boxes, advertisement, and dynamic
text area differ from the oracle. Therefore Figure 1c shows
difference pixels in the areas of these elements. After removing
the difference pixels belonging to areas D and E, as they
belong to special regions and will be handled separately (see
Section III-D), the approach applies clustering and obtains
three clusters shown as A, B, and C in Figure 1c.

B. Phase 2: Localization

The second phase of the approach identifies the set of
HTML elements that are most likely to be the cause of the
detected presentation failures. To do this, the approach builds
a model of P, called an R-tree, that describes the pixel-level
relationships among elements of an HTML page. For each
pixel of the difference set, the approach uses the R-tree to
identify the set of HTML elements whose visual representation
includes that pixel. The union of all of the identified HTML
elements for all difference pixels in the respective cluster is
the set of potentially faulty HTML elements (E).

The first step is to build an R-tree model of P that will
be used to map difference pixels to HTML elements. An R-
tree is a height-balanced tree data structure that is widely used
in the spatial database community to store multidimensional
information. In our approach, we use the R-tree to store
the bounding rectangle assigned to an element when it is
rendered in the browser. The approach extracts the bounding
rectangle for each element in P via browser-provided APIs.
In the R-tree built by our approach, the leaves of an R-tree
correspond to rectangles and non-leaf nodes correspond to
the tuple 〈I, child pointer〉, where I is the identifier for the
minimum bounding rectangle that groups nearby rectangles,
and child pointer is the pointer to a lower node in the R-
tree. The HTML elements corresponding to an 〈x, y〉 pixel
can then be found by traversing the R-tree’s edges to find the
rectangles containing the pixel. Building and searching an R-
tree are standard techniques and can be found in [12].

Other browser APIs, such as the HTML DOM, can be
used to map pixels to HTML elements. However, the R-tree
representation is more efficient. The reason for this is that the
DOM tree models parent-child relationships based on syntax,
not layout. Therefore, even when an element is found in the

DOM tree that contains the pixel, there may be other elements
elsewhere in the tree that also contain the difference pixel.
This makes pixel mapping in the DOM an O(n) operation. In
contrast, the R-tree search is O(log n) as it is height balanced.

Fig. 2: P with bounding rectangles of HTML elements

The different HTML elements in the example
login.html are shown by their tag names and bounding
rectangles in Figure 2. This figure shows how a browser
defines the layout of a web page as a group of rectangles. The
bounding rectangle information of the HTML elements is used
to construct a page’s R-tree, by grouping nearby rectangles
together in a virtual minimum bounding rectangle. For
example, the four HTML elements, <tr>, <td>, <td[2]>,
and <input> that comprise the Username label and text box
would be grouped together in one node bounded by a virtual
rectangle.

After an R-tree has been constructed for P, the approach
iterates over all the clusters and identifies the HTML elements
that can be responsible for rendering the pixels contained in
the cluster’s difference set, DPcluster. For each pixel 〈x, y〉
in each cluster’s DP, the approach finds the containing HTML
elements in the R-tree, and adds them to the set E. Note that for
a given pixel, it is possible to have more than one responsible
HTML element, since CSS allows layers of HTML elements
with transparent or overlapping areas. Each HTML element is
represented in E using its XPath identifier, which can uniquely
identify an element in an HTML page.

After finding the potentially faulty elements corresponding
to the difference pixels, the approach refines the set E to
include additional likely faulty elements. This refinement is

performed based on per-element heuristics. In general, these
heuristics are used to analyze the elements present in E to
check if neighboring (parent, children, or sibling) elements
need to be added to the result set. These heuristics are applied
to all elements in E and elements are added to E until there are
no new elements to be added. An example of such a heuristic
is when an element in E has the “hidden” property set. An
element with the “hidden” property set would not have a visual
area associated with it in the R-tree, so it would never be placed
in E based on it containing difference pixels. If the “hidden”
element’s parent, children, or siblings are in E, then that makes
the “hidden” element more suspicious, so it is added to the set.
The set of heuristics was defined based on common patterns
of false negatives (i.e., elements that were not placed into E
but should have been). The addition of this heuristic-based
refinement also increases the average size of the result set
and introduces false positives. However, as can be seen by
comparing the localization results in Section IV with those
reported in our prior approach [15], the significantly improved
accuracy is achieved with an almost non-existent change in
terms of localization quality metrics.

To illustrate the localization phase, consider again the
running example. The results from the prior detection phase
contain three clusters, A, B and C, shown in Figure 1c. Using
the R-tree built from the bounding rectangles information
shown in Figure 2, the approach searches for the HTML
elements that correspond to each of the pixels in DPcluster.
For example, EclusterA will contain the XPath of the Logo
 tag. Similarly, the elements containing the pixels in
clusters B and C are identified and added to their respective
result set.

C. Phase 3: Result Set Processing

A presentation failure can impact the visual appearance
of HTML elements containing, within, or adjacent to the
faulty HTML element. For example, if an element increases
in size, this can cause other elements to be repositioned and
trigger a cascade of dependent presentation failures. Similarly,
if a faulty element overlaps another element, then both the
overlapping and overlapped element will differ from the oracle.
Our approach adds elements, whether their presentation failure
is independent or dependent on another element, to the set of
potentially faulty HTML elements (E) for each cluster. This
can be problematic for developers if the size of E requires
them to inspect many HTML elements.

To address this potential problem, the third phase prioritizes
E’s elements in order of likelihood to have caused the presen-
tation failure and gives a ranked list, El, of potentially faulty
elements for each cluster. To do this, our approach analyzes
each HTML element e ∈ E and assigns it a prioritization
score. Then the elements of E are ranked according to their
prioritization score, with a lower score indicating a higher
likelihood of being a faulty element, and the sorted list is added
as a value to a map with the cluster ID as the key. The map is
then returned to the user. This rank function, which is shown
as Equation (1), assigns the prioritization score as a function
of four weighted heuristics.

1) Heuristic 1: Contained Elements (C): When a presenta-
tion failure occurs in an element, the children of that element

are likely to be impacted as well. The reason for this is
that style properties of an HTML element are, by CSS rules,
inherited from its parent. Therefore, if a parent element and
all of its children are identified as potentially faulty, there
is a higher likelihood that the faulty element is actually the
parent element. Equation (1a) implements this heuristic for an
element e ∈ E by determining if e’s parent and all siblings
have also been reported as having a difference. If this is the
case, then element e is assigned a C value of 1. This causes
the parent of e to have a lower prioritization score than e and
all of its siblings.

2) Heuristic 2: Overlapped Elements (O): The second
heuristic deals with the opposite scenario of the first. In cases
where a child’s visual appearance changes, these changes may
cause it to overlap its parents visual area. This will cause
the child, parent, and possibly some siblings to be reported
as potentially faulty. For example, if an element has a larger
than intended border, then this border will overlap with the
element’s parent’s visual area. Therefore, if an element is
potentially faulty and at least one, but not all of its children
have a visual difference as well, then its more likely that
the failure was caused by a presentation fault in a child.
Equation (1b) implements this heuristic for an element e ∈ E
by checking if the number of e’s children is greater than or
equal to one, but less than the total of e’s children. If this is
satisfied, then e is assigned a value of 1 for O. This causes the
child(ren) of e to have a lower prioritization score than e.

r(e) = w ∗ C(e) + x ∗ O(e) + y ∗ D(e) + z ∗ P (e) (1)

C(e) =

{
1 if e.parent ∈ E ∧ e.allSiblings ⊂ E
0 otherwise (1a)

O(e) =

{
1 if 1 ≤ |e.children ∩ E| < |e.children|
0 otherwise (1b)

D(e) =

{
1 if CI(e) is a sub-image of O
0 otherwise (1c)

P(e) = 1 − |{d | d ∈ D ∧ d within e.area}|
e.width × e.height

(1d)

3) Heuristic 3: Cascading (D): When a sizing related
presentation failure occurs in an element, it generally affects
the appearance of surrounding elements, leading to a set of
dependent failures. This occurs because the position of HTML
elements are often specified with relative layouts. When one
moves, the others shift to accommodate its new position,
causing a cascade of visual differences that are detected by our
approach. Our insight is that prioritization can be performed
by identifying visual differences that are strictly positional
displacement (i.e., a move along the X or Y axis). Any element
with only a positional displacement is more likely to have
been moved by a faulty element than to be the faulty element.
To identify positional displacement, our approach searches the
oracle to see if a screenshot of e simply appears at another
location in O. If this is the case, a value of 1 is assigned
as the D value, meaning that e is more likely to have been
identified as the result of a cascade than to be a faulty element.
Equation (1c) implements this heuristic with CI referring to
the cropped image that contains just the rendering of e.

4) Heuristic 4: Pixels Ratio (P): When a presentation
failure occurs in an element, it typically causes a significant
portion of the element to change appearance. This causes
a relatively high number of its corresponding pixels to be
identified as difference pixels. Our fourth heuristic captures
this intuition by assigning a lower prioritization score to
elements that have a high percentage of their pixels reported in
difference than those with a lower percentage. Equation (1d)
calculates this pixel ratio for an element e ∈ E. The numerator
is the number of pixels that are in the difference pixel set and
within the rendering rectangle of e. This is divided by the total
number of pixels in e’s rendering rectangle, and then subtracted
from one.

D. Special Regions Handling

In modern web applications, it is common to have parts
of a web page that are dynamically defined. For example,
part of a page could contain an advertisement, user account
information, or text from a database. Even though the actual
contents of these regions of the page are not known, designers
and developers are often able to specify other correctness
properties that should apply. For example, that all text within
the region should have a certain color, size, or font face. Our
approach provides a mechanism, called special regions, for
denoting these areas and specifying the correctness properties
that should apply to them.

The set of special regions is specified by the SR input
to the approach. Each special region is represented as a tuple
〈area, type, style〉. area specifies the location of the special
region in terms of the x-y coordinates of its upper left hand
corner and its width and height. Developers may provide these
coordinates directly, or provide the XPath of an HTML element
whose bounding rectangle will then be used to compute the
area coordinates. type denotes the type of special region that
is represented by the area. Our approach defines two types
of special regions, Exclusion (SR1) and Dynamic Text (SR2).
Together, these two types of special regions can be used to
handle web pages with dynamic content, such as Amazon.com
and CNN.com. We explain each of these in more detail below
in Section III-D1 and Section III-D2. style contains the set of
visual properties that should apply to a region. Referring back
to the example, there are two special regions that would be
identified by the developers and included in the SR input to
the approach. The first special region is 〈D, SR1, ∅〉, which
corresponds to the advertisement box. Here SR1 denotes that
D is an Exclusion area and the empty set denotes that there are
no style properties to verify. The second special region is 〈E,
SR2, {font-size: 12px, color: red, font-weight: bold}〉, which
corresponds to the news box. Here SR2 denotes a dynamic text
region and the style set contains the font properties that will
be verified.

For each special region, the approach calls a predefined
processing function that implements the difference semantics
for a given special region type. A processing function takes
two inputs; the web page, P, and the special region tuple, sr.
The processing function then analyzes the area to see if there
is a difference with respect to the region’s type semantics,
and if so, returns the set of difference pixels, DPsr. Then, the
approach again goes through phases 1 to 3 for finding faulty
elements in the special regions, but starting with the set DPsr

and the R-tree that has already been created in the localization
phase.

1) SR1: Exclusion Regions: Exclusion Regions allow
testers to specify regions of the web page for which no
correctness properties will apply except size bounding. Gen-
erally, these regions are used for dynamic content for which
a designer cannot assign correctness properties other than that
the content should be bounded within the region’s area, such
as advertisements, banners, and media, where the content is
provided at runtime by a third party or content that should be
ignored, such as intentional changes to a web page between
versions. The processing function associated with Exclusion
Regions simply returns an empty difference pixel set. Referring
back to the example, the dynamically loaded advertisement (D)
corresponds to an Exclusion Region. Therefore the invocation
of the special region’s processing function returns the empty
set and no difference pixels are added to DPsr.

2) SR2: Dynamic Text Regions: Dynamic Text Regions
indicate areas of a web page whose content will be textual
and for which the styling of the text is known but the exact
text is unknown at design time. Examples of Dynamic Text
Regions are parts of a web page provided by a database or
by a call to a web service. Note that static text, such as titles
and labels, does not need to be classified as a Dynamic Text
Region, since the normal difference semantics would detect
any presentation failures in static text that is present in the
oracle.

A simple, but naive, way to check dynamic text regions
is to obtain the style properties for the HTML elements that
are to be checked, and match them directly with the expected
style properties. However, this simple textual differencing may
not give correct results, as there are several ways in which
the appearance of an HTML element can be specified. For
example, font size could specified as “10px” or “x-small,” or
a font property could be inherited from an ancestor.

To address this problem, we employ a technique that checks
the actual visual appearance of the text. The basic intuition is
that the approach first identifies all HTML elements within the
special region’s area. This is done using the same mechanism
as in phase 1, detection, and phase 2, localization. Then the
style properties to be enforced are injected into the identified
HTML elements. The approach then compares the original
page (P) and the page (P′) with the injected style properties.
If a difference arises because of the insertion of the correct
style properties, then the approach infers that the original page
had a different (incorrect) style for the text and the identified
difference pixels are added to the set DPsr.

Referring back to the example, the news box (E) is a
Dynamic Text Region. The approach applies the styling, {font-
size: 12px, color: red, font-weight: bold}, specified in the
special region tuple, and assigns this to the HTML elements
that comprise the area of the news box. The approach takes
a screenshot of the original HTML page (P) under test and
compares this against P′

v . Phases 1 is then run on the two
versions to compare them and get the set DPsr. Since the
styling properties in our example are indeed different, the
difference pixels associated with the news box area highlighted
by area E are returned as the output of the processing function
and added to DPsr. Upon invocation of phases 1 through 3,

TABLE I: Subject applications

App URL Size

OPAL http://www.opalhvac.com 83
Set 1 Crawller http://www.crawller.com 266

Inno crawll http://inno.crawller.com 232
Gmail http://www.gmail.com 72
USC CS Research http://www.cs.usc.edu/research 322

Set 2 Craigslist http://losangeles.craigslist.org 1100
Virgin America http://www.virginamerica.com 998
Java Tutorial http://docs.oracle.com/javase/tutorial/

essential/io/summary.html 159

the faulty <div> element corresponding to the cluster E is
then reported to the user.

IV. EVALUATION

To evaluate our approach, we designed experiments to
determine its accuracy, localization quality, and time needed
to perform the analysis. The specific research questions we
considered are:

RQ1: What is the accuracy of our approach for detecting and
localizing presentation failures?

RQ2: What is the quality of the localization results?

RQ3: How long does it take to detect and localize presentation
failures with our approach?

To address these research questions, we carried out a large
scale empirical evaluation of our approach on a set of real-
world web applications and also compared the results with the
debugging performance of graduate-level software engineering
students.

A. Implementation

We implemented our approach in a prototype tool, WebSee.
The implementation of WebSee is in Java and leverages several
third party libraries to implement some of the specialized, but
standardized, algorithms. In the detection (Phase 1) module,
WebSee leverages the Selenium WebDriver to take screen-
shots and the perceptual image differencing library, “pdiff”,
to compare images and calculate differences. The clustering
algorithm, DBSCAN, as implemented in the Apache Commons
Math3 library, is used to cluster the difference pixels. In the
localization (Phase 2) module, we leverage the Java Spatial
Index library’s implementation of the R-trees and the Selenium
WebDriver to extract bounding rectangle information. For
the prioritization (Phase 3) module, the sub image searching
capability for the cascading heuristic is supplied by OpenCV.

B. Subject Applications

For our experiments, we utilize the eight subject applica-
tions shown in Table I. We chose these web pages because
they represent a mix of different implementation technologies
and layouts that are widely used across all web applications.
In particular, we chose our set of test subjects to include web
pages that were defined by statically generated HTML, CSS,
and JavaScript and pages defined by dynamically generated
HTML. The size of each page (in terms of the total number
of HTML elements) is also shown for each subject.

C. Empirical Evaluation

In our first experiment, we measured WebSee’s accuracy,
answer quality, and analysis time for presentation failures in
the subject application. To provide a measurement reference
point, we also asked graduate-level software engineering stu-
dents to detect and localize a subset of these test cases and
compared their performance against WebSee. To create test
cases for the evaluation, we used a random seeding based
approach that inserted presentation failures into the subject ap-
plications. We used this approach because we were not able to
obtain a sufficiently large enough set of mockups of real-world
web applications in order to ensure that our approach could
be validated against a wide range of presentation failures. (See
Section IV-D for evaluation on the limited set of mockups.)

To seed the presentation failures and generate mockups,
we used the following process for each subject page p. (1)
download from the web all files required to display p; (2) take
an image capture of p to serve as the oracle O; and (3) create
a set P′ that contains variants of p, each variant created by
randomly seeding a unique presentation fault. To identify the
types of faults to seed, we first manually analyzed the W3C
HTML and CSS specifications to identify visual properties
— HTML attributes or CSS properties that could change the
visual appearance of an element. We seeded faults by changing
the original value of each unique visual property present in p.
We eliminated any variant of p with a seeded presentation fault
that did not actually produce a presentation failure. To identify
these, we computed the set of pixel differences between the
rendering of p and O, and only included the variant if this set’s
size was non-zero. The visual impact of a seeded fault varied,
making the test cases vary in complexity for WebSee. In some
cases, the seeded fault caused almost all of a page to be shown
as having a pixel-level difference. For example, changing the
value of the padding CSS property in the <body> tag. In
other cases, the seeded fault impacted only a small area (e.g.,
changing the text color of a tag.)

Each test for WebSee included the oracle O and a p′ ∈
P ′ as inputs. The expected output was the HTML element in
which we had modified a visual property. The number of test
cases generated for each application is shown in Table II in
the column labeled “#T”. We ran WebSee on each of these
test cases and manually verified the reported results. The test
machine was a Windows 8.1 platform with 8GB RAM and a
3rd Generation Intel Core i7-3770 processor.

We considered two types of accuracy: detection and local-
ization. Detection accuracy was computed as a sanity check to
measure the correctness of the PID technique, as we had only
included test cases for which the rendering contained a percep-
tible difference. Thus, as expected, WebSee was able to detect
the presentation failures in all of the test cases. For localization
accuracy, we calculated the percentage of test cases in which
the expected faulty element was reported in the result set.
These results are shown under the column labeled “Accuracy”
in Table II. Localization accuracy was high – WebSee was able
to identify a result set that contained the faulty element for 93%
of the test cases. We investigated the results to determine the
reason why some elements did not appear in the localization
set. We found that the dominant reason was that some seeded
faults only changed the appearance of other elements. They
did not change the appearance of the element into which they

TABLE II: RQ1: Effectiveness of the approach

Accuracy Quality Timing
App #T Localize Median Result Median Median P1 P2 P3 Total

(%) Set Size Size Distance (s) (s) (s) Time (s)
Gmail 52 92 12 (16%) 2 4 2.7 2.5 1.4 7.2
USC CS Research 59 92 17 (5%) 5 6 48.2 12.9 77.0 149.2
Craigslist 53 90 32 (3%) 7 3 5.3 43.1 32.1 83.6
Virgin America 39 97 49 (5%) 8 12 22.6 38.5 103.0 180.9
Java Tutorial 50 94 8 (5%) 2 5 4.9 5.3 3.6 14.5

were seeded. For example, a seeded fault that set the CSS
position property to fixed caused the surrounding elements to
be re-positioned. This made the HTML elements surrounding
the seeded element, but not the seeded element, appear as a
difference.

To measure the quality of the responses provided by the lo-
calization process we calculated three metrics, “Size,” “Rank”,
and “Distance,” which are shown under the column labeled
“Quality” in Table II. The first metric, “Size,” represents
the median size of the result set returned by WebSee. In
parenthesis, this number is shown as a percentage of the
subject’s total number of HTML elements. Across all apps,
the average median result set size was 23 elements, which
was, on average, about 10% of each app’s total element count.
The second metric, “Rank,” represents the average rank of
the actually faulty element within the result set. In cases
where the faulty element was not present, we counted the
faulty element rank as the size of the result set. Overall, the
average median rank was 4.8, which means that the tester,
on average, would have to examine 2% of the elements in a
page before encountering the faulty element. The third metric,
“Distance,” represents a measure of how “close” the elements
in the result set are to the actual faulty element. We calculated
this metric for only the result sets where the faulty element
was not present. The intuition of this metric is that reporting
an element in the close vicinity of the faulty element may
still be useful for the developer in debugging. We calculated
distance based on the DOM tree structure of the web page. For
example, if a reported element is at a distance of one from the
faulty element, then the tester will have to additionally inspect
the parent and/or children of the reported element to find the
fault. We investigated the results to determine the reason the
fault elements were not receiving a top rank in the results
set. We found that the dominant cause of this was faults that
caused a change in the size or position of the element. This
type of fault had a cascading effect on other elements in the
page. For example, increasing the padding around a <div>
element would grow the parent elements and could possibly
move sibling elements.

We measured WebSee’s running time for each of the five
phases. The average for each phase is shown in seconds in
the columns labeled “P1” – “P3” of Table II, and the average
total time is shown for the entire process is shown as well. At a
high-level, WebSee’s runtime ranged from 7 seconds to about 3
minutes, with an average of 87 seconds. Within each test case,
Phases 2 and 3 dominated the running time of the analysis.
We determined that most of Phase 2’s time was consumed by
process of building the R-tree. In particular, it was necessary
to access the Selenium WebDriver interface repeatedly and this
was a comparatively slow API. Phase 3’s time was consumed
by the cascading analysis involving sub-image matching.

We also evaluated the performance of WebSee in the
context of a user study. Our users were students drawn from
a graduate level class on web application software testing and
analysis at the University of Southern California. All of the
students were experienced web developers and had received
training in using the Firebug tool to debug web application
presentation failures. Each student received a unique set of nine
test cases with manually seeded perceptually visible faults plus
a test case that did not contain a presentation failure. Each test
case was comprised of a test page and oracle image. We asked
the students to visually inspect the rendering of each page in a
browser to determine if there was a presentation failure, and if
so, use Firebug to help them identify the faulty element. The
students had 70 minutes to carry out the task. On average, the
students were able to correctly determine if there was a visual
difference in 76% of the cases and identify the correct faulty
HTML element for 36% of the test cases. Despite a request to
list all potentially faulty elements, all students only provided
one element, so it was not possible to calculate the additional
quality metrics for their localization answers.

Overall, the results of this experiment were very positive.
The results showed that our approach was able to detect all
of the presentation failures versus developers detection rate
of 76%. Localization accuracy was also much higher for our
approach (93%) as compared to the developers (36%). It
was not possible to compare answer quality; however, our
approach required developers to inspect a relatively small
number of the total elements and the set sizes with the highest
modalities were of size one and two, which indicates that the
approach was generally returning very small result sets. Due
to constraints of the user study setup, we could not compare
runtime. However, by itself, 87 seconds represents a small
amount of time. In comparison, none of the users in the study
finished within the allotted 70 minutes, indicating, at best, an
average test case time of seven minutes.

D. Case Study with Real Mockups

A potential threat to the validity of our results is that our
mockups were artificially generated instead of from actual
software engineering projects. The use of real mockups may
result in different levels of accuracy and quality of result
sets because the real mockups may not reflect the actual
implemented design as faithfully as the simulated mockups
(i.e., there may be observed differences for reasons other
than the seeded fault). This can occur for several reasons: (1)
variations may be introduced due to differences between the
oracle and testing platform; (2) some differences may be too
minor to be considered presentation failures; or (3) there may
be design changes made due to implementation constraints or
as concessions to coding simplicity. To improve the validity of

the results from our first experiment, we obtained three real-
world mockups (Set 1 shown in Table I) from an industrial
partner and performed a case study to detect and localize
differences between the mockups and the deployed versions
of the web pages.

We performed our case study as follows. First we analyzed
the pages to identify visual differences. Second, we classified
the differences in one of the three categories listed above or as
special regions, which were marked with placeholder text or
images. Note that we did not have access to the project man-
agers to determine if the differences we placed into category
(3) were real presentation failures or intended deviations. All of
the case study subjects had multiple differences in each of the
four categories. Third, we provided the mockup, deployed web
page, and special regions as inputs to WebSee. We ran WebSee
multiple times adjusting the different configurable parameters
and tolerance levels for the PID algorithm and observing the
set of reported faulty elements.

The results of our case study were informative. Our first
finding was that the use of the PID algorithm with its different
configurable parameters and tolerance level significantly im-
proved the accuracy of the approach versus our prior approach,
which required a pixel-perfect match [15]. To simulate the
pixel-perfect match, we set the PID’s Δ to zero, F value
to 89.9, L to 800, and C to 1. For several of the subjects,
this resulted in over 84% of the page being reported as a
difference [3]. In contrast, by taking advantage of the PID’s
customizability, we were able to find a setting (Δ of 10%, F
value of 27, L of 20, and C of 0) at which all of the differences
in categories (1) and (2) were not counted as failures, but those
in category (3) were, indicating that detection could be done
with high accuracy. Our second finding was that WebSee was
able to return sets that included all of the expected HTML
elements for the detected failures. It was not possible to use the
metrics from experiment one to rate the quality of the answers,
since there were multiple failures in the set. However, we found
that WebSee returned what we considered to be useful results.
For each of the subject applications, 45% of the faulty elements
were listed within the top five and 70% were within the top ten
ranked elements. The analysis time for the real and artificial
mockups was similar. Overall, we feel that the results of the
second experiment confirm that WebSee can perform accurate
and useful detection and localization for real mockups as well.

E. Threats to Validity

In our studies, we used externally developed commercial
web pages that covered a wide range of modern design styles
and frameworks. We also systematically tested the ability of
our approach to detect a wide variety of presentation faults
by using the W3C specification to identify all possible visual
properties. In Experiment 1, to eliminate the bias in the seeding
of faults, the process was randomized via automation and an
objective completeness criteria of seeding for each applicable
visual property was used. All results were checked manually.

V. RELATED WORK

Preliminary work by the authors appeared as a new ideas
shortpaper [15]. In that paper, the authors introduced the idea
of automatic detection and localization of presentation failures

using image processing techniques. The paper performed a
small case study on a small set of test cases to show the
viability of the approach. This paper has several significant
differences: (1) we replaced the pixel-to-pixel image com-
parison used in the detection phase by a more sophisticated
computer vision based technique, PID; (2) we introduced
handling of dynamic portions of a web page with special
regions processing; (3) we introduced handling of multiple
presentation failures with the notion of clustering; (4) we
refined the set of potentially faulty elements generated by
the localization to make it more comprehensive, resulting in
improved localization accuracy; (5) we prioritized the result set
produced by the localization phase with the most likely faulty
elements placed at the top to offer ease of use to the developers;
and (6) we performed an extensive empirical evaluation on a
set of real-world web applications.

Work by Roy Choudhary and colleagues [19], [7], [8]
in the field of XBT compares the rendering of a reference
version of a web page in one browser against its rendering in
another browser to detect XBI. As discussed in Section II, this
approach is not applicable for mockup driven development as
an existing golden version of the page is not available. Use
in regression debugging is also limited to scenarios where the
DOM had not changed significantly and matching elements
could still be matched using probabilistic techniques. Their
techniques use color histograms for visual comparison of
certain elements instead of the perceptual image differencing
employed by our approach.

Browser plug-ins, such as “PerfectPixel” for Chrome and
“Pixel Perfect” for Firefox help developers to detect pixel-level
differences with an image based oracle. They overlay a semi-
transparent version of the oracle over the HTML page under
test, enabling developers to do a per pixel comparison to detect
presentation failures. However, they require the developer to
manually locate the faulty elements. In contrast, our approach
is fully automated for detection and localization.

Sikuli [6] is an automation framework based on computer
vision techniques that uses sub-image searching to identify
and manipulate GUI controls in a web page. Although not
intended for verification, one could provide a set of screenshots
of each GUI control and use Sikuli to ensure that they match
(i.e., there are no presentation failures.) However, since Sikuli
uses a sub-image based search of the page, it could match
the provided screenshots against any portion of the page,
not necessarily the intended region. This means it would be
ineffective if there were visually identical elements in the page.
Furthermore, Sikuli only provides an element after a positive
match; therefore when there is a failure, no match will be made
and no element(s) will be provided to the testers to help with
localization.

Memon and colleagues [22] have done extensive work
in the area of model-based automated GUI testing. These
techniques differ from our approach in that they are not
focused on testing the appearance of the user interface, but
instead focus on testing the behavior of the system based on
event sequences triggered from the user interfaces. Another
work by Eaton and Memon [10] in the field of web applications
focuses on reporting HTML tags present in the test web page
that are not supported by a specific browser. This can detect
presentation failures caused by unsupported tags, however it

cannot detect failures related to application specific appearance
properties.

Another group of techniques validate HTML for syntax
[20] by checking for malformed HTML code that can cause
presentation failures if the rendering browser does not handle
them properly. However, these techniques can only detect
presentation failures related to HTML syntax errors and not
failures related to application specific appearance properties.

Recently, techniques to test JavaScript [5] have been pro-
posed. These techniques deal with specific components of the
client side and as such are not meant for detecting presentation
failures in a web application. Another technique based on
impact analysis of CSS changes across a web site [13] notifies
the developer if changes made in a CSS file are introducing
new presentation failures in other web pages of the web site.
However, this technique relies on the availability of the golden
version of all the web pages in the web site and is not able
to handle presentation failures caused by changes in the DOM
structure of the web page.

Wang and colleagues [25] propose a technique to au-
tomatically perform presentation changes in dynamic web
applications. Their technique facilitates automatic changes to
the server side code generating web pages based on a given
presentation change. Though this produces a new looking web
page, its appearance is not verified for correctness.

VI. CONCLUSION

In this paper we introduced a new technique for detecting
and localizing presentation failures in web applications. Our
approach uses computer vision based techniques to compare
a web page rendered in a browser with its oracle and identify
difference pixels. To handle the dynamic nature of modern
web applications, our approach allows developers to specify
regions that will contain dynamic text or images that should
be specially handled. The approach builds a rendering map of
the page and uses the difference pixels to identify and rank
a set of likely faulty HTML elements. In the evaluation our
approach detected 100% of the presentation failures and was
able to locate the faulty element in over 93% of the cases.
Overall, these are strong results and indicate that our approach
is able to assist developers by automating the detection and
localization of presentation failures.

REFERENCES

[1] Cucumber. http://cukes.info/.

[2] Front-end Developers Job Postings. http://www-scf.usc.edu/∼spmahaja/
front-end-job-postings/.

[3] Real Mockups Experiment. http://www-scf.usc.edu/∼spmahaja/
real-mockups-experiment/.

[4] Selenium. http://docs.seleniumhq.org/.

[5] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework
for automated testing of javascript web applications. In Proceedings of
the 33rd International Conference on Software Engineering.

[6] T.-H. Chang, T. Yeh, and R. C. Miller. GUI testing using computer
vision. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems.

[7] S. R. Choudhary, M. R. Prasad, and A. Orso. CrossCheck: Combining
Crawling and Differencing to Better Detect Cross-browser Incompat-
ibilities in Web Applications. In Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation.

[8] S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate Iden-
tification of Cross-Browser Issues in Web Applications. In Proceedings
of the 35th IEEE and ACM SIGSOFT International Conference on
Software Engineering (ICSE 2013).

[9] M. E. Delamaro, F. de Lourdes dos Santos Nunes, and R. A. P.
de Oliveira. Using concepts of content-based image retrieval to
implement graphical testing oracles. Softw. Test. Verif. Reliab., 23:171–
198, 2013.

[10] C. Eaton and A. M. Memon. An Empirical Approach to Testing Web
Applications Across Diverse Client Platform Configurations. Interna-
tional Journal on Web Engineering and Technology (IJWET), Special
Issue on Empirical Studies in Web Engineering, 3(3):227–253, 2007.

[11] M. Ester, H. peter Kriegel, J. S, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. 1996.

[12] A. Guttman. R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 14(2):47–57, June 1984.

[13] H.-S. Liang, K.-H. Kuo, P.-W. Lee, Y.-C. Chan, Y.-C. Lin, and M. Y.
Chen. SeeSS: Seeing What I Broke – Visualizing Change Impact of
Cascading Style Sheets (Css). In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology.

[14] P. J. Lynch and S. Horton. Web Style Guide, 3rd Edition: Basic Design
Principles for Creating Web Sites. Yale University Press, New Haven,
CT, USA, 3rd edition, 2009.

[15] S. Mahajan and W. G. J. Halfond. Finding html presentation failures
using image comparison techniques. In Proceedings of the 29th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) – New Ideas track, September 2014.

[16] A. Mesbah and A. van Deursen. Invariant-based automatic testing
of AJAX user interfaces. In Proceedings of the 31st International
Conference on Software Engineering.

[17] M. W. Newman and J. A. Landay. Sitemaps, Storyboards, and
Specifications: A Sketch of Web Site Design Practice. In Proceedings
of the 3rd Conference on Designing Interactive Systems: Processes,
Practices, Methods, and Techniques.

[18] F. K. Ozenc, M. Kim, J. Zimmerman, S. Oney, and B. Myers. How
to Support Designers in Getting Hold of the Immaterial Material of
Software. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems.

[19] S. Roy Choudhary, H. Versee, and A. Orso. WEBDIFF: Automated
identification of cross-browser issues in web applications. In Pro-
ceedings of the 2010 IEEE International Conference on Software
Maintenance.

[20] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and L. Hendren.
Automated repair of HTML generation errors in PHP applications using
string constraint solving. In Proceedings of the 2012 International
Conference on Software Engineering.

[21] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott.
Automated oracle comparators for testing web applications. In the Intl.
Symp. on Software Reliability Engineering, 2007.

[22] J. Strecker and A. M. Memon. Testing Graphical User Interfaces. In
Encyclopedia of Information Science and Technology, Second ed. IGI
Global, 2009.

[23] M. Tamm. Fighting layout bugs. https://code.google.com/p/
fighting-layout-bugs/, October 2009.

[24] A. N. Tuch, E. E. Presslaber, M. StöCklin, K. Opwis, and J. A. Bargas-
Avila. The Role of Visual Complexity and Prototypicality Regarding
First Impression of Websites: Working Towards Understanding Aes-
thetic Judgments. Int. J. Hum.-Comput. Stud., 70(11), Nov. 2012.

[25] X. Wang, L. Zhang, T. Xie, Y. Xiong, and H. Mei. Automating presen-
tation changes in dynamic web applications via collaborative hybrid
analysis. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering.

[26] Q. Xie, M. Grechanik, C. Fu, and C. M. Cumby. Guide: A GUI
differentiator. In ICSM, pages 395–396, 2009.

[27] H. Yee, S. Pattanaik, and D. P. Greenberg. Spatiotemporal Sensitivity
and Visual Attention for Efficient Rendering of Dynamic Environments.
ACM Trans. Graph., 20(1), Jan. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

