1.0 THz GaN IMPATT Source: Effect of Parasitic Series Resistance
Journal of Infrared, Millimeter, and Terahertz Waves
https://doi.org/10.1007/S10762-018-0509-ZAbstract
The degradation of high-frequency characteristics of a 1.0-THz double-drift region (DDR) impact avalanche transit time (IMPATT) diode based on wurtzite gallium nitride (Wz-GaN), due to the influence of parasitic series resistance, has been investigated. A twodimensional (2-D) large-signal (L-S) simulation method based on a non-sinusoidal voltage excitation (NSVE) model has been used for this purpose. A comprehensive model of series resistance has been developed by considering the influence of skin effect, and the said model has been incorporated in the 2-D L-S simulation for studying the effect of RF power output and DC to RF conversion efficiency of the device. Results indicate 24.2-35.9% reduction in power output and efficiency due to the RF power dissipation in the positive series resistance. However, the device can still deliver 191.7-202.9 mW peak RF power to the load at 1.0 THz with 8.48-6.41% conversion efficiency. GaN IMPATT diodes are capable of generating higher RF power at around 1 THz than conventional diodes, but the effect of parasitic series resistance causes havoc reduction in power output and efficiency. The nature of the parasitic resistance is studied here in the level of device fabrication and optimization, which to our knowledge is not available at present.
Key takeaways
AI
AI
- The study reveals a 24.2-35.9% reduction in RF power output due to parasitic series resistance.
- The 1.0-THz GaN IMPATT diode delivers 191.7-202.9 mW peak RF power with 8.48-6.41% efficiency.
- A comprehensive series resistance model incorporates the skin effect and impacts high-frequency performance.
- GaN IMPATT diodes outperform other conventional diodes in THz power generation capabilities.
- The research aims to enhance understanding of series resistance in GaN IMPATT diode fabrication and optimization.
References (60)
- P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photode- tector designs, Appl. Phys. Rev. 1, 041102 (2014).
- R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue, Phys. Med. Biol. 47, 3853 (2002).
- M. Nagel, P.H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Buttner, Integrated THz technology for label-free genetic diagnostics, Appl. Phys. Lett. 80 (1), 154 (2002).
- N. Karpowicz, H. Zhong, C. Zhang, K.I Lin, J.S. Hwang, J. Xu, X.C. Zhang, Compact continuous-wave subterahertz system for inspection applications, Appl. Phys. Lett. 86 (5), 054105 (2005).
- K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, Non-invasive inspection of c-4 explosive in mails by terahertz time-domain spectroscopy, J. Appl. Phys. 43 (3B), L414 (2004).
- K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express 11 (20), 2549 (2003).
- C. Joerdens, M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy, Opt. Eng. 47 (3), 037003 (2008).
- M. Tonouchi , Cutting-edge terahertz technology, Nat. Photonics 1, 97 (2007).
- P.H. Siegel, Terahertz technology, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
- B. S. Williams, Terahertz quantum-cascade lasers, Nat. Photonics 1, (2007) 517.
- F. Schuster , D. Coquillat , H. Videlier , M. Sakowicz , F. Teppe , L. Dussopt , B. Giffard , T. Skotnicki , W. Knap, Broadband terahertz imaging with highly sensitive silicon CMOS detectors,^Opt. Express 19, 7827 (2011).
- Xinghan Cai, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene, Nature Nanotechnology 9, (2014) 814.
- L. Liu, J. L. Hesler, H. Xu, A. W. Lichtenberger, R. M. Weikle A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode, IEEE Microwave Wireless Compon. Lett. 20, 504 (2010).
- G. C. Trichopoulos , H. L. Mosbacker , D. Burdette , K. Sertel , A broadband focal plane array camera for real-time THz imaging applications, IEEE Trans. Antennas Propag. 61, 1733 (2013).
- C. M. Watts , D. Shrekenhamer , J. Montoya , G. Lipworth , J. Hunt , T. Sleasman , S. Krishna , D. R. Smith , W. J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators, Nat. Photonics 8, 605 (2014).
- A. Tiwari, H. Satoh, M. Aoki, M. Takeda, N. Hiromoto, H. Inokawa, Fabrication and analytical modeling of integrated heater and thermistor for antenna-coupled bolometers, Sensors and Actuators A: Physical 222, 160 (2015).
- A. Banerjee, H. Satoh, A. Tiwari, C. Apriono, E. T. Rahardjo, N. Hiromoto and H. Inokawa, Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna- terahertz microbolometer, Jpn. J. Appl. Phys. 56, 04CC07 (2017).
- A. Banerjee, H. Satoh, Y. Sharma, N. Hiromoto, H. Inokawa Characterization of platinum and titanium thermistors for terahertz antenna-coupled bolometer applications, Sensors and Actuators: A Physical, Vol. 273, pp. 49-57, Feb. 10, 2018.
- A. Banerjee, Hiroaki Satoh, Durgadevi Elamaran, Yash Sharma, Norihisa Hiromoto, and Hiroshi Inokawa, Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer, Jpn. J. Appl. Phys., Vol. 57, No. 4S, pp. 04FC09_1-7, Mar. 19, 2018.
- J. Ward, E. Schlecht, G. Chattopadhyay, A. Maestrini, J. Gill, F. Maiwald, H. Javadi, and I. Mehdi, Capability of THz sources based on Schottky diode frequency multiplier chains, IEEE MTT-S Digest., pp. 1587-1590, 2004.
- S. Heyminck, R. Güsten, U. Graf, J. Stutzki, P. Hartogh, H. W. Hübers, O. Ricken, and B. Klein, GREAT: ready for early science aboard SOFIA, Proc. 20th Intl. Symp. Space THz Techn., Charlottesville, VA., pp. 315-317, 2009.
- T. W. Crowe, J. L. Hesler, S. A. Retzloff, C. Pouzou, and G. S. Schoenthal, Solid state LO sources for greater than 2 THz, 2011 ISSTT Digest, 22nd Symposium on Space Terahertz Technology, Tucson Arizona, USA 2011.
- T. W. Crowe, J. L. Hesler, S. A. Retzloff, C. Pouzou, and J. L. Hester, Multiplier based sources for frequencies above 2 THz, 36 th International Conference on Infrared, Millimeter and terahertz Sources (IRMMW-THz), pp. 1, 2011.
- A Maestrini, I Mehdi, JV Siles, J Ward, R Lin, B Thomas, C Lee, J Gill, G Chattopadhyay, E Schlecht, J Pearson, and P Siegel, First demonstration of a tunable electronic source in the 2.5 to 2.7 THz range, IEEE Trans. Terahertz Science Techn., vol. 3, 2012.
- S. Kitagawa, M. Mizuno, S. Saito, K. Ogino, S. Suzuki, and M. Asada, Frequency-tunable resonant- tunneling-diode terahertz oscillators applied to absorbance measurement, Japanese Journal of Applied Physics, vol. 56, pp. 058002-1-3, 2017.
- B. S. Williams, Terahertz quantum-cascade lasers, Nature Photonics, vol. 1, pp. 617-626, 2007.
- R. Lai, X. Mei, W. Deal, W. Yoshida, Y. Kim, P. Liu, J. Lee, J. Uyeda, V. Radisic, M. Lange, T. Gaier, L. Samoska, and A. Fung, Sub 50 nm InP HEMT device with f max greater than 1 THz, in Proc. IEEE Int. Electron Devices Meeting, 2007, pp. 609-611.
- W. Deal, X. Mei, V. Radisic, K. Leong, S. Sarkozy, B. Gorospe, J. Lee, P. Liu, W. Yoshida, J. Zhou, M. Lange, J. Uyeda, and R. Lai, Demonstration of a 0.48 THz amplifier module using InP HEMT transistors, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 289-291, May 2010.
- M. Urteaga, M. Seo, J. Hacker, Z. Griffith, A. Young, R. Pierson, P. Rowell, A. Skalare, and M. Rodwell, InP HBT integrated circuit technology for terahertz frequencies, in Proc. IEEE Compound Semicond. Integr. Circuit Symp., 2010, pp. 1-4.
- E. Lobisser, Z. Griffith, V. Jain, B. Thibeault, M. Rodwell, D. Loubychev, A. Snyder, Y. Wu, J. Fastenau, and A. Liu, 200-nm InGaAs/InP type-I DHBT employing a dual-sidewall emitter process demonstrating f max >> 800 GHz and f T = 360 GHz, in Proc. IEEE Int. Conf. Indium Phosphide Related Materials, May 2009, pp. 16-19.
- M. Seo, M. Urteaga, A. Young, V. Jain, Z. Griffith, J. Hacker, P. Rowell, R. Pierson, and M. Rodwell, 300 GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP HBT process, in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 272-275.
- J. Hacker, M. Seo, A. Young, Z. Griffith, M. Urteaga, T. Reed, and M. Rodwell, THz MMICs based on InP HBT technology, in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 1126-1129.
- M. Seo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, R. Lin, D. Pukala, and M. Rodwell, InP HBT IC technology for terahertz frequencies: fundamental oscillators up to 0.57 THz, IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2203-2214, 2011.
- Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepta Dasgupta and J. P. Banerjee, IMPATT devices based on group III-V compound semiconductors: prospects as potential terahertz radiators, HKIE Transactions, vol. 21, issue 3, pp. 135-147, 2014.
- Aritra Acharyya and J. P. Banerjee, Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources, Applied Nanoscience, Springer, vol. 4, pp. 1-14, 2014.
- Aritra Acharyya and J. P. Banerjee, Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits, IETE Journal of Research [India], vol. 59, issue 2, pp. 118-127, March-April 2013.
- V. A. Dmitriev et al., SiC a(3)n alloys and wide band gap nitrides grown on SiC substrates. Inst Phys Conf. Ser., vol. 141, pp. 497-502, 1995.
- Y. V. Melnik, I. P. Nikitina, A. S. Zubrilov, A. A. Sitnikova , Y. G. Musikhin, V. A. Dmitriev, High-quality GaN grown directly on SiC by halide vapour phase epitaxy, Inst Phys. Conf. Ser., vol. 142, pp. 1996.
- Adesida et al. Dry and wet etching for group 111 nitrides, MRS Internet J. Nitride Semiconductor Res. 4S1, G1.4, 1999.
- C. F. Chu, C.C. Yu, Y.K. Wang, J.Y. Tsai, F.I. Lai and S.C. Wang, Low-resistance ohmic contacts on p-type GaN using Ni/Pd/Au metallization, Appl. Phys. Lett., vol. 77, pp. 3423-3425, 2000.
- J. Burm, K. Chu, W.A. Davis, W.J. Schaff, L.F. Eastman and T.J. Eustis, Ultra-low resistive ohmic contacts on n-GaN using Si implantation, Appl. Phys. Lett., vol. 70, pp. 464, 1997.
- T. Al-Attar, and T. H. Lee, Monolithic integrated millimeter-wave IMPATT transmitter in standard CMOS technology, IEEE Trans. on MTT, vol. 53, no. 11, pp. 3557-3561, 2005.
- M. Gilden, and M. E. Hines, Electronic tuning effects in Read microwave avalanche diode, IEEE Trans. on Electron. Devices, vol. ED-13, pp. 169-175, 1966.
- Aritra Acharyya, Suranjana Banerjee and J. P. Banerjee, Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices, Journal Computational Electronics [USA], Springer, vol. 12, issue 3, pp. 511-525, 2013.
- W. Harth, Large-signal series resistance of IMPATT-diodes, Arch. Elektron. Uebertragungstechnik, vol. 33, pp. 502-504, 1979.
- Aritra Acharyya, Suranjana Banerjee and J. P. Banerjee, A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-Band Si IMPATTs from the electric field snap-shots, International Journal of Microwave and Wireless Technologies, vol. 5, no. 1, pp. 91-100, 2013.
- S. M. Sze, Physics of semiconductor devices, 2nd edn Wiley,New York, 1981.
- Partha Banerjee, Aritra Acharyya, Arindam Biswas and A. K. Bhattacharjee, Effect of magnetic field on the RF performance of millimeter-wave IMPATT source, Journal of Computational Electronics [USA], Springer, vol. 15, pp. 210-221, 2016.
- M. Kurata, Numerical analysis for semiconductor devices, Heath, Lexington, 1982.
- H. H. Heimeier, A two-dimensional numerical analysis of a silicon n-p-n transistor, IEEE Trans. Electron Dev., vol. 20, pp. 708-714, 1973.
- W. Hayt, Engineering electromagnetics. 4th edn McGraw-Hill, New York, 1981.
- Mass magnetic susceptibility of the elements. http://periodictable.com/Properties/A/MassMagneticSusceptibility. v.log.html (Last accessed on: November 2017).
- Electrical conductivity of the elements. http://periodictable.com/Properties/A/ElectricalConductivity.v.log. html (Last accessed on: November 2017).
- F. A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers, Solid-State Electron., vol. 9, pp. 695-707, 1966.
- K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, Experimental evaluation of impact ionization coefficients in GaN, IEEE Electron Device Letter, vol. 20, no. 12, pp. 608-610, 1999.
- S. C. Shiyu, and G. Wang, High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective, Journal of Applied Physics, vol. 103, pp. 703-708, 2008.
- The Ioffe Institute, Electronic archive: new semiconductor materials, characteristics and properties, Available from: http://www.ioffe.ru/SVA/NSM/Semicond/index.html (Last accessed on: November 2017).
- B. V. Zeghbroeck, Principles of semiconductor devices, Colorado Press, USA, 2011.
- M. Sridharan, and S. K. Roy, Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR, Electron Lett., vol. 14, pp. 635-637, 1978.
- M. Sridharan, and S. K. Roy, Effect of mobile space charge on the small signal admittance of silicon DDR, Solid State Electron., vol. 23, pp. 1001-1003, 1980.
FAQs
AI
What causes the reduction in RF power output in GaN IMPATT diodes?
The study indicates a 24.16-35.87% decrease in RF power output due to parasitic series resistance.
How does series resistance affect the conversion efficiency of 1.0 THz GaN IMPATT diodes?
The research shows that series resistance reduces DC to RF conversion efficiency from 11.18% to 10.00%.
What is the peak RF power output of the 1.0-THz GaN IMPATT source?
Simulation results predict a peak RF power output of 191.66-202.85 mW at 1.0 THz.
What modeling approach was used to study series resistance in GaN IMPATT diodes?
The paper employs a 2-D large-signal simulation method considering the influence of skin effect.
Why is GaN preferred over conventional materials for IMPATT diodes in THz applications?
GaN IMPATT diodes show higher RF power generation capability compared to Si, GaAs, and InP-based diodes.