Single crystal diamond growth by MPCVD at subatmospheric pressures
2020, Materials Today Communications
https://doi.org/10.1016/J.MTCOMM.2020.101635Abstract
Microwave plasma assisted chemical vapor deposition (MPCVD) is the established technique to produce high quality single crystal diamond (SCD). While typical pressures for SCD growth regimes in methane-hydrogen plasma are currently within 100-300 Torr, a transition to much high pressures promises enhanced growth rates. Here, we report on successful SCD synthesis by MPCVD in CH 4-H 2 gas mixtures at pressures up to 600 Tорр. A strong change of the plasma shape and volume (the latter shrinks by 10 times at fixed MW power) with pressure rise from 100 to 600 Torr was observed, still keeping the plasma stable. The record high absorbed MW power density of ≈1800 W/cm 3 was achieved at 600 Torr. Optical emission spectroscopy (OES) was used for the plasma analysis via monitoring emission intensities of radicals H α , C 2 and CH. The gas temperature T g determined from analysis of rotational fine structure of OES Swan transitions of dimer C 2 (516 nm) turned out to be essentially constant ~ 3100 ± 150 K over the pressure range explored. The diamond growth rate is found to increase by an order of magnitude with pressure to achieve 57 μm/h at 500 Torr at relatively low (4%) CH 4 concentration, as measured in situ using low-coherence interferometry, but declined at further pressure increase. The produced films were characterized with SEM, XRD, Raman and photoluminescence spectroscopy, and a high/moderate quality of the obtained material was confirmed.
Key takeaways
AI
AI
- SCD growth rates reach 57 μm/h at 500 Torr, declining post 600 Torr due to plasma shrinkage.
- MPCVD achieved record MW power density of 1800 W/cm³ at 600 Torr, enhancing growth conditions.
- Gas temperature remains constant at ~3100 ± 150 K across pressures, indicating stable plasma conditions.
- Plasma volume reduces by an order of magnitude from 100 to 600 Torr, affecting growth efficiency.
- The study emphasizes establishing a common protocol for defining plasma dimensions to enhance comparability.
References (40)
- F. Silva, J. Achard, O. Brinza, X. Bonnin, K. Hassouni, A. Anthonis, K. De Corte, J. Barjon, High quality, large surface area, homoepitaxial MPACVD diamond growth, Diam. Relat. Mater. 18 (2009) 683-697, https://doi.org/10.1016/j. diamond.2009.01.038.
- M. Muehle, J. Asmussen, M.F. Becker, T. Schuelke, Extending microwave plasma assisted CVD SCD growth to pressures of 400 Torr, Diam. Relat. Mater. 79 (2017) 150-163, https://doi.org/10.1016/j.diamond.2017.09.013.
- Y. Mokuno, A. Chayahara, Y. Soda, H. Yamada, Y. Horino, N. Fujimori, High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition, Diam. Relat. Mater. 15 (2006) 455-459, https://doi.org/10.1016/j. diamond.2005.11.046.
- Q. Liang, C.-s. Yan, Y. Meng, J. Lai, S. Krasnicki, H.-k. Mao, R.J. Hemley, Recent advances in high-growth rate single-crystal CVD diamond, Diam. Relat. Mater. 18 (2009) 698-703, https://doi.org/10.1016/j.diamond.2008.12.002.
- Y.J. Gu, J. Lu, T. Grotjohn, T. Schuelke, J. Asmussen, Microwave plasma reactor design for high pressure and high power density diamond synthesis, Diam. Relat. Mater. 24 (2012) 210-214, https://doi.org/10.1016/j.diamond.2012.01.026.
- A.P. Bolshakov, V.G. Ralchenko, V.Y. Yurov, A.F. Popovich, I.A. Antonova, A. A. Khomich, E.E. Ashkinazi, S.G. Ryzhkov, A.V. Vlasov, A.V. Khomich, High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation, Diam. Relat. Mater. 62 (2016) 49-57, https://doi.org/10.1016/j.diamond.2015.12.001.
- C.J. Widmann, W. Müller-Sebert, N. Lang, C.E. Nebel, Homoepitaxial growth of single crystalline CVD-diamond, Diam. Relat. Mater. 64 (2016) 1-7, https://doi. org/10.1016/j.diamond.2015.12.016.
- A.L. Vikharev, M.A. Lobaev, A.M. Gorbachev, D.B. Radishev, V.A. Isaev, S. A. Bogdanov, Investigation of homoepitaxial growth by microwave plasma CVD providing high growth rate and high quality of diamond simultaneously, Mater. Today Commun. 22 (2020), https://doi.org/10.1016/j.mtcomm.2019.100816.
- Q. Liang, C.Y. Chin, J. Lai, C.-s. Yan, Y. Meng, H.-k. Mao, R.J. Hemley, Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures, Appl. Phys. Lett. 94 (2009), https://doi.org/10.1063/1.3072352.
- A.P. Bolshakov, V.G. Ralchenko, V.Y. Yurov, G. Shu, E.V. Bushuev, A.A. Khomich, E.E. Ashkinazi, D.N. Sovyk, I.A. Antonova, S.S. Savin, V.V. Voronov, M. Y. Shevchenko, B. Dai, J. Zhu, Enhanced deposition rate of polycrystalline CVD diamond at high microwave power densities, Diam. Relat. Mater. 97 (2019), https://doi.org/10.1016/j.diamond.2019.107466.
- S.A. Bogdanov, A.M. Gorbachev, D.B. Radishev, A.L. Vikharev, M.A. Lobaev, Contraction of microwave discharge in the reactor for chemical vapor deposition of diamond, Tech. Phys. Lett. 45 (2019) 89-92, https://doi.org/10.1134/ s1063785019020032.
- K.F. Sergeichev, N.A. Lukina, A.P. Bolshakov, V.G. Ralchenko, N.R. Arutyunyan, I. I. Vlasov, Polycrystal diamond growth in a microwave plasma torch, Plasma Phys. Rep. 36 (2010) 1272-1277, https://doi.org/10.1134/s1063780x10130301.
- K.F. Sergeichev, N.A. Lukina, N.R. Arutyunyan, Atmospheric-pressure microwave plasma torch for CVD technology of diamond synthesis, Plasma Phys. Rep. 45 (2019) 551-560, https://doi.org/10.1134/s1063780x19060096.
- J. Kim, H. Sakakita, H. Ohsaki, M. Katsurai, Microwave-excited atmospheric pressure plasma jet with wide aperture for the synthesis of carbon nanomaterials, Jpn. J. Appl. Phys. 54 (2015), https://doi.org/10.7567/jjap.54.01aa02.
- K.W. Hemawan, H. Gou, R.J. Hemley, Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition, Appl. Phys. Lett. 107 (2015), https://doi.org/10.1063/1.4934751.
- M. Naamoun, A. Tallaire, F. Silva, J. Achard, P. Doppelt, A. Gicquel, Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/ O2plasma etching treatment, Phys. Status Solidi A 209 (2012) 1715-1720, https:// doi.org/10.1002/pssa.201200069.
- S. Nad, Y. Gu, J. Asmussen, Growth strategies for large and high quality single crystal diamond substrates, Diam. Relat. Mater. 60 (2015) 26-34, https://doi.org/ 10.1016/j.diamond.2015.09.018.
- H. Yamada, A. Chayahara, Y. Mokuno, Method to increase the thickness and quality of diamond layers using plasma chemical vapor deposition under (H, C, N, O) system, Diam. Relat. Mater. 101 (2020), https://doi.org/10.1016/j. diamond.2019.107652.
- E.V. Bushuev, V.Y. Yurov, A.P. Bolshakov, V.G. Ralchenko, E.E. Ashkinazi, A. V. Ryabova, I.A. Antonova, P.V. Volkov, A.V. Goryunov, A.Y. Luk'yanov, Synthesis of single crystal diamond by microwave plasma assisted chemical vapor deposition with in situ low-coherence interferometric control of growth rate, Diam. Relat. Mater. 66 (2016) 83-89, https://doi.org/10.1016/j.diamond.2016.03.023.
- E.V. Bushuev, V.Y. Yurov, A.P. Bolshakov, V.G. Ralchenko, A.A. Khomich, I. A. Antonova, E.E. Ashkinazi, V.A. Shershulin, V.P. Pashinin, V.I. Konov, Express in situ measurement of epitaxial CVD diamond film growth kinetics, Diam. Relat. Mater. 72 (2017) 61-70, https://doi.org/10.1016/j.diamond.2016.12.021.
- M.A. Lobaev, S.A. Bogdanov, D.B. Radishev, A.L. Vikharev, A.M. Gorbachev, Method of power density determination in microwave discharge, sustained in hydrogen-methane gas mixture, Diam. Relat. Mater. 66 (2016) 177-182, https:// doi.org/10.1016/j.diamond.2016.05.004.
- J. Ma, M.N.R. Ashfold, Y.A. Mankelevich, Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition, J. Appl. Phys. 105 (2009), 043302, https://doi.org/ 10.1063/1.3078032.
- X. Duten, A. Rousseau, A. Gicquel, P. Leprince, Rotational temperature measurements of excited and ground states of C2(d 3Πg-a 3Πu) transition in a H2/ CH4 915 MHz microwave pulsed plasma, J. Appl. Phys. 86 (1999) 5299-5301, https://doi.org/10.1063/1.371515.
- S.A. Bogdanov, A.M. Gorbachev, A.L. Vikharev, D.B. Radishev, M.A. Lobaev, Study of microwave discharge at high power density conditions in diamond chemical vapor deposition reactor by optical emission spectroscopy, Diam. Relat. Mater. 97 (2019), https://doi.org/10.1016/j.diamond.2019.04.030.
- A.L. Vikharev, A.M. Gorbachev, D.B. Radishev, Physics and application of gas discharge in millimeter wave beams, J. Phys. D Appl. Phys. 52 (2019), https://doi. org/10.1088/1361-6463/aae3a3.
- K.W. Hemawan, R.J. Hemley, Optical emission diagnostics of plasmas in chemical vapor deposition of single-crystal diamond, J. Vac. Sci. Technol. A 33 (2015), 061302, https://doi.org/10.1116/1.4928031.
- K. Hassouni, F. Silva, A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas, J. Phys. D Appl. Phys. 43 (2010), 153001, https://doi. org/10.1088/0022-3727/43/15/153001.
- N. Derkaoui, C. Rond, K. Hassouni, A. Gicquel, Spectroscopic analysis of H2/CH4 microwave plasma and fast growth rate of diamond single crystal, J. Appl. Phys. 155 (2014), 233301, https://doi.org/10.1063/1.4883955.
- G. Shu, V.G. Ralchenko, A.P. Bolshakov, E.V. Zavedeev, A.A. Khomich, P. A. Pivovarov, E.E. Ashkinazi, V.I. Konov, B. Dai, J. Han, J. Zhu, Evolution of surface relief of epitaxial diamond films upon growth resumption by microwave plasma chemical vapor deposition, CrystEngComm 22 (2020) 2138-2146, https:// doi.org/10.1039/c9ce01933b.
- D.G. Goodwin, Scaling laws for diamond chemical vapor deposition. I. Diamond surface chemistry, J. Appl. Phys. 74 (1993) 6888-6894, https://doi.org/10.1063/ 1.355063.
- A. Charris, S. Nad, J. Asmussen, Exploring constant substrate temperature and constant high pressure SCD growth using variable pocket holder depths, Diam. Relat. Mater. 76 (2017) 58-67, https://doi.org/10.1016/j.diamond.2017.04.010.
- W. Müller-Sebert, E. Wörner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond, Appl. Phys. Lett. 68 (1996) 759-760, https://doi.org/10.1063/1.116733.
- Cs. Yan, Y.K. Vohra, Hk. Mao, R.J. Hemley, Very high growth rate chemical vapor deposition of single-crystal diamond, Proc. Natl. Acad. Sci. U.S.A 99 (2002) 12523-12525, https://doi.org/10.1073/pnas.152464799.
- A. Chayahara, Y. Mokuno, Y. Horino, Y. Takasu, H. Kato, H. Yoshikawa, N. Fujimori, The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD, Diam. Relat. Mater. 13 (2004) 1954-1958, https://doi.org/10.1016/j.diamond.2004.07.007.
- J. Achard, F. Silva, O. Brinza, A. Tallaire, A. Gicquel, Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals, Diam. Relat. Mater. 16 (2007) 685-689, https://doi.org/ 10.1016/j.diamond.2006.09.012.
- A.M. Zaitsev, Optical Properties of Diamond: a Data Handbook, Springer Science & Business Media, 2001.
- L.-f. Hei, Y. Zhao, J.-j.
- Wei, J.-l. Liu, C.-m. Li, F.-x. Lü, Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD, Int. J. Miner. Metall. Mater. 24 (2017) 1424-1430, https://doi.org/10.1007/s12613-017-1535-x.
- G. Shu, B. Dai, V.G. Ralchenko, A.A. Khomich, E.E. Ashkinazi, A.P. Bolshakov, S. N. Bokova-Sirosh, K. Liu, J. Zhao, J. Han, J. Zhu, Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy, J. Cryst. Growth 463 (2017) 19-26, https://doi.org/10.1016/j. jcrysgro.2017.01.045.
- V. Yurov, E. Bushuev, A. Bolshakov, E. Ashkinazi, I. Antonova, E. Zavedeev, A. Khomich, V. Voronov, V. Ralchenko, Etching kinetics of (100) single crystal diamond surfaces in a hydrogen microwave plasma, studied with in situ low- coherence interferometry, Phys. Status Solidi A 214 (2017), 1700177, https://doi. org/10.1002/pssa.201700177.
FAQs
AI
What is the maximum growth rate achieved for SCD at high pressures?
The study achieved a maximum single crystal diamond growth rate of 57 μm/h at 500 Torr.
How does plasma shape evolve with increasing pressure during synthesis?
Plasma shape transitions from spherical at 100 Torr to a vertically elongated ellipsoid at 600 Torr.
What are the implications of plasma volume reduction on growth rates?
Plasma volume decreases from 17 cm³ to 2 cm³ as pressure rises, influencing growth rate stability.
How does optical emission vary with pressure during diamond growth?
Bright emission lines for species such as C2 and CH increase with pressure, but saturate above 500 Torr.
What factors contribute to growth rate declines at very high pressures?
Growth rates decline due to reduced radical supply from compressed plasma and nitrogen contamination effects.