o

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at IEEE Gaming, Entertainment, and
Media Conference, GEM 2024, Turin, June 5-7 2024.

Citation for the original published paper:

Fransson, E., Hermansson, J., Hu, Y. (2024)

A Comparison of Performance on WebGPU and WebGL in the Godot Game Engine

In: 2024 IEEE Gaming, Entertainment, and Media Conference, GEM 2024 Institute of
Electrical and Electronics Engineers (IEEE)
https://doi.org/10.1109/GEM61861.2024.10585437

N.B. When citing this work, cite the original published paper.

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-26785



A comparison of Performance on WebGPU and
WebGL in the Godot game engine

1%* Emil Fransson
Department of Computer Science
Blekinge Institute of Technology
Karlskrona, Sweden
emfal7 @student.bth.se

Abstract—WebGL has been the standard API for rendering
graphics on the web over the years. A new technology, WebGPU,
has been set to release in 2023 and utilizes many of the
novel rendering approaches and features common for the native
modern graphics APIs, such as Vulkan. Currently, very limited
research exists regarding WebGPU’s rasterization capabilities.
In particular, no research exists about its capabilities when
used as a rendering backend in game engines. This paper
aims to investigate performance differences between WebGL and
WebGPU. It is done in the context of the game engine Godot,
and the measured performance is that of the CPU and GPU
frame time. The results show that WebGPU performs better than
WebGL when used as a rendering backend in Godot, for both
the games tests and the synthetic tests. The comparisons clearly
show that WebGPU performs faster in mean CPU and GPU
frame time.

Index Terms—Game Engine, Performance Overhead, Render-
ing, WebGPU, WebGL

I. INTRODUCTION

Modern video games leverage sophisticated graphics appli-
cation programming interfaces (APIs) to render highly detailed
worlds. They accomplish this at interactive frame rates by
utilizing powerful graphics processing units (GPUs) equipped
with modern computers. Commonly used APIs include Di-
rect3D [1] for machines running Windows, Metal [2] for
Apple products, and Vulkan [3] and OpenGL [4] as a cross-
platform alternative. Those APIs all target native platforms,
and as is evident, many choices are available to developers.
However, when it comes to rendering on the web, the choices
narrow significantly. WebGL was the lowest-level alternative
for rendering on the web [5]. It is based on the aforementioned
OpenGL native API and adopts the same workflow and syntax.

WebGL is a cross-platform, open-source API for rendering
interactive 2D and 3D graphics on the web, with an initial
release in March 2011. A typical WebGL program consists
of JavaScript-written control code and shader code facilitated
by the OpenGL Shading Language (GLSL). Additionally, Em-
scripten may compile C/C++ OpenGL code into WebAssem-
bly, allowing the WebGL API to be interacted with through
lower-level languages [6]. WebGL is a mature API supported
by many different hardware products and browsers. It has been
applied in many environments and fields, such as rendering
backends in the gaming industry and for visualization purposes

2™ Jonatan Hermansson
Department of Computer Science
Blekinge Institute of Technology
Karlskrona, Sweden
johm18@student.bth.se

3 Yan Hu
Department of Computer Science
Blekinge Institute of Technology
Karlskrona, Sweden
yan.hu@bth.se

in medicine and geospatial applications. WebGL currently
exists as a possible rendering backend in the Godot engine
for rendering graphics on the web platform.

This paper consists of an implementation of a rendering
backend for the game engine Godot using the currently latest
low-level web graphics API WebGPU, and comparing its
performance in various test cases to the performance of the
WebGL backend currently implemented in Godot. WebGPU
is a new graphics API that aims to bring a more modern API
workflow to web platforms, with its first draft of specifications
being released in 2021 [7]. Like the previously mentioned
modern APISs, it aims to enable the developer to work closer to
the hardware of the machine it is running on. The API utilized
by the web browser is determined by the operating system
on which it is executed. Depending on the specifications of
the system, the web browser may utilize either the Direct3D
12, Vulkan, or Metal APIs. As with these APIs, WebGPU
provides developers with relatively direct access to previously
inaccessible low-level GPU resources. It also employs a state-
less syntax, which leads to fewer API calls, invoking less API
overhead when compared to the stateful syntax of WebGL,
inherited by OpenGL.

Section 2 lists some related work in the areas of WebGPU.
Section 3 details the overall research method including the
implementation details and how the experiment and data
gathering were conducted. Section 4 presents the results and
analysis of the conducted experiment. Section 5 contains
a discussion of the performed work, and the final section
presents the conclusions and future work.

II. RELATED WORK

A study by Hidaka et al. found that their implementation
of a deep neural network (DNN) using WebGPU performed
around 36 times faster (91 ms over 3297 ms) compared to
another popular DNN implementation for the web that makes
use of the emulated compute capabilities of WebGL [8].

Aldahir researched the compute performance differences
(Mandelbrot set generation and matrix multiplication) of
CUDA and WebGPU, with WebGPU set up to run compute op-
erations in a cluster of web browsers. The results showed that
CUDA is faster and more efficient than WebGPU. However,
the authors added that WebGPU is still in early development



and hence not as stable and mature as CUDA. Also, WebGPU,
along with WebRTC, displayed good scalability with over 75%
efficiency for building clusters of web browsers [9].

Usher and Pascucci compared the computing capabilities
of WebGPU with those of native Vulkan. In the paper, the
marching cubes algorithm applied on a scalar field was used
as a proxy for compute-intensive tasks. The results display
similar performance with WebGPU falling in the same order of
magnitude and often even closer to the Vulkan implementation
in terms of time-to-render [10].

Dyken et al. investigated the relative performance of ren-
dering large-scale graph layouts on the web using libraries
based on WebGPU (GraphWaGu), WebGL (NetV & Stardust),
and non-GPU-accelerated equivalents (such as D3 Canvas).
GraphWaGu is the only GPU-leveraged library that is able
to compute iterations of the graph algorithms in parallel. So
at 100.000 nodes and 2.000.000 edges, only GraphWaGu is
able to maintain interactive rendering at a frame rate of ten
or more. The equivalent frame rate for NetV is three, with
StarDust being unable to render the graph layout at all [11].

There has been quite some research done in the field of
WebGPU and its general computing capabilities. However, this
does not hold true for WebGPU and its rasterization capability
counterpart, in particular research involving comparisons of
WebGPU and WebGL. Furthermore, at the time of doing
this study, no research could be found that places its context
inside the environment of a game engine. The work presented
in this paper aims to effectively reduce the research gap on
WebGPU as a new rasterization technology for the web in the
environment of the Godot game engine, grounding the research
and results in real usability scenarios.

III. METHODS

Godot is an open-source game engine first released in
2015. It has since had many updates and the newest version,
4.0, was recently released as of doing this study [12], with
many new features and an entirely new rendering pipeline
leveraging the aforementioned Vulkan API, along with a host
of updates to the existing legacy rendering backends. Godot
is multifaceted in the advantages it affords the work when
used as a foundation for implementing a rendering backend.
Firstly, a pre-established architecture can be followed during
implementation, keeping comparisons between rendering APIs
fair. Secondly, the currently implemented WebGL rendering
backend can be assumed to be fairly well optimized and thus
serves as a good benchmark for the performance of WebGL
rendering engines in the industry. The reason for choosing
Godot over another game engine mainly comes down to its
open-source nature.

A. Implementation

In order for the implemented WebGPU Rasterizer and the
existing WebGL Rasterizer to be eligible for performance
comparisons, the overall computation work they do must be as
identical as possible. More precisely, these prerequisites must
be aimed for:

1) The shaders used must be as close as possible in terms
of instruction count, branching, and operations. Exactly
the same work must be done in the shaders.

2) The shader pressure, in terms of data types and data
layout, must be as close as possible.

3) No optimizations are allowed for the WebGPU Raster-
izer on the CPU-side or GPU-side, which would put it
at an unfair advantage over the WebGL Rasterizer.

4) The CPU workflow must be as identical as possible in
terms of computations and branching.

5) The run time allocations should be as identical as
possible.

To achieve the prerequisites, the work began with deconstruct-
ing the WebGL Rasterizer to a state where it would match the
MVP aimed for as close as possible; the Rasterizer should be
able to render simple 2D games of predetermined complexity
and nothing more. In order for measurements between the
performance of the two APIs to be as fair as possible, the
WebGPU rendering backend has to adhere to the rendering
techniques that Godot employs. The techniques that concern
the scaled-down version of the Rasterizer backend include
batching and instancing as well as the forcing of render
target blitting. Batching is a technique used to group similar
items and render them together to avoid unnecessary resource
binding. For blitting, a separate pipeline was set up with a
vertex shader that simply renders a triangle covering the entire
back buffer, and a fragment shader that textures this triangle
using the main render target texture.

B. Experiment and Data Gathering

When it comes to the performance of games and graphical
scenes the general consensus of how well something performs
is how smooth it appears to run to the human eye. The
gathered data in the conducted experiment is that of the frame
time measured in milliseconds. As the WebGL backend and
implemented WebGPU backend spans over both the CPU and
GPU in terms of work performed, both the CPU work times
and GPU work times are measured. The time gathered is for
a full frame for the CPU and GPU.

The timings are gathered as averages over 2000 frames.
The measurements of elapsed time on the CPU for the
various scopes was measured by using the C++ standard
library’s chrono header. A timestamp was acquired from
chrono::high_resolution_clock at the start of the
relevant scope and another one at the end of it. To calculate
how much time elapsed, the start time stamp was subtracted
from the end one. This elapsed time was then stored in a
vector and used later when enough samples have been gathered
to calculate an average elapsed time. For measuring time on
the GPU, different methods need to be used for the different
APIs. WebGL provides a way of measuring the elapsed time
between two points, whereas WebGPU provides a way to
queue a timestamp on the command encoder. If one timestamp
is acquired at the start of a frame and one at the end, the
elapsed time can be acquired in the same way as described
for the CPU measurements.



The experiments include two categories: simple 2D games
and synthetic tests. For the category of simple 2D games six
different games that are simple in scope and complexity were
selected. As the Rasterizers are limited in scope, and as the
games must be supported by the Godot version used in this
work, the games were selected purely based on the engine’s
and the two Rasterizers’ ability to support and render them.
The games are:

1) Snake [13], in which the player must avoid obstacles and
gather apples in order for the snake character to grow
longer and longer.

2) Evader [14], in which the player must avoid incoming
shapes on the highway.

3) Checkers' [15], in which the player plays the checkers
game either versus an Al or optionally versus another
player locally.

4) Falling Cats [16], in which the player must catch cats
falling from a tree before they hit the ground.

5) Deck Before Dawn [17], in which the player strategically
plays a number of cards every turn with abilities in order
to defend a sleeping child from nightmare creatures.

6) Ponder? [18], in which the player must navigate a duck
character in a finite number of sequences in order to
collect all ducklings.

The synthetic tests are applied in order to test specific areas
of rendering and how the Rasterizers compare for each one.
As such the synthetic tests are further split into four categories
for each specific test case. The synthetic test categories are:

1) Multiple Quads — Multiple tiny textured sprites:
The test consists of one big draw call of one batch
consisting of instances of textured sprites in the order
of 10, 100, 1000, 10000, 20000, 30000, 40000, and
50000 sprites rendered on screen simultaneously, using
the shaders for rendering the quad render item type.

2) Full-screen quads — Multiple full screen textured
sprites:

The test and details regarding it are identical to the
aforementioned test with the sole difference that every
sprite now is full screen sized.

3) Multiple Polygons — Multiple tiny polygons:

The test consists of one batch per polygon (as Godot
has every polygon forming its own batch) in the order of
10, 100, 1000, 10000, 20000, 30000, 40000, and 50000
polygons rendered on screen simultaneously, using the
shaders for rendering the polygon render item type.

4) Large polygons — A few polygons, each with 50000
vertices:

The test consists of one batch per polygon in the order
of 40, 80, 120, 160, 200, 240, 280, and 320 polygons
rendered on the screen simultaneously, using the shaders
for polygons just like the aforementioned test. The
aim of the test is to put considerate pressure on the
vertex shader stage as the number of vertices to process

IThe version used in testing is v1.0.1-0-g7a4203b
2The version used for testing is v1.0.0

will increase significantly with each test increasing the
polygon count, up to and including 16 million vertices.

C. Hardware and Software Specification

The hardware as well as what versions of relevant graphics
drivers were used are presented in Table I.

TABLE 1
INFORMATION ABOUT HARDWARE AND SOFTWARE VERSIONS OF THE
MACHINE UPON WHICH ALL TEST CASES WERE RUN.

Component
CPU Intel Core i7 12700H, 2.7GHz
GPU NVIDIA GeForce RTX 3070 Ti (Laptop Version), 8GB GDDR6
Memory SK Hynix, 2x8GB DDR4, 3.2GHz
Disk Samsung MZVL21TOHCLR-00B07, 1TB, 7.0/5.1 GB/s

2560x1440
165Hz
Windows 11 Home 22H2

Monitor Resolution
Monitor Refresh Rate
Operating System

NVIDIA Driver Version 531.41
Emscripten 3.1.30
Chrome Canary 114.0.5715.1
Godot Engine Version 4.0
IV. RESULTS

A. Performance Comparison of Game Tests

The GPU frame time is firstly presented and the second the
total CPU frame time that measured. Along with average frame
times, the means of the 1% highest and the 95% lowest frame
times are calculated to be able to analyze the performance
consistency between the two Rasterizers.

Games - GPU Frame Time

. WebGL Mean
g 4 18 WebGPU Mean
319 321
1] 3.02
€3 278 275
l_
c
S2
=]
=1
v}
ol
=S 03 044
016 0.00 017 020

Checkers Snake Evader Ponder

Games

Falling Cats Deck Before Dawn

Fig. 1. Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the various games.

Games - GPU Frame Time

=
(6]

= WeDGLTop 1%

m— WebGL 95% Mean
WeDGPU Top 1%

m— WeDGPU 95% Mean

=
(=]

[5,]

Execution Time (ms)

Checkers Snake Evader Ponder

Games

Falling Cats Deck Before Dawn

Fig. 2. Comparison of the highest 1% mean and the lowest 95% mean WebGL
and WebGPU GPU frame times, in milliseconds, for the various games.

1) GPU Frame Time: In Figure 1, it can be seen that
WebGPU on average has much shorter GPU frame times than




WebGL in all games that were included in the test. Further-
more, a speed-up of WebGPU to WebGL ranges between
6.822, in the case of Ponder, and 35.611, in the case of Evader.
Figure 2 shows that the difference between the lowest 95% of
frame times and the highest 1% is larger for WebGL. However,
for Checkers and Ponder and Falling Cats, the percentage
difference is more significant for WebGPU. For checkers, this
comes out to a 7.020 times increase for WebGPU compared to
a 4.641 times increase for WebGL. For Ponder, the increase is
4.748 times for WebGPU and 4.292 times for WebGL. Lastly,
for Falling Cats, WebGPU shows a 1.613 times increase and
WebGL shows a 1.611 times increase. For the other games,
WebGPU has a smaller spread in absolute and percentage
terms.

Games - CPU Frame Time

6
- WebGL Mean
m WebGPU Mean 222
E
Q4
l_
C
2
=}
52
ot
0.96 0.96

= 088 070 081
il M W Ha W

o

Checkers Snake Evader Ponder

Games

Falling Cats Deck Before Dawn

Fig. 3. Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the various games.

Games - CPU Frame Time

=
o

- WebGLTop 1%

m— WebGL 95% Mean
WeDGPU Top 1%

= WebGPU 95% Mean

[es]

Execution Time (ms)

Checkers Snake Evader Ponder

Games

Falling Cats Deck Before Dawn

Fig. 4. Comparison of the highest 1% mean and lowest 95% mean WebGL
and WebGPU CPU frame times, in milliseconds, for the various games.

2) CPU Frame Time: In Figure 3, it is shown that WebGPU
has shorter mean frame times for all of the game tests
compared to WebGL. Deck Before Dawn is a clear outlier
in the data set in terms of how much shorter the CPU frame
time is with the WebGPU implementation. Figure 4 shows
that the percentage differences between the lowest 95% and
highest 1% of frame times are typically lower compared to
the spread documented for GPU frame times in Figure 2. This
does, however, not hold true for all cases. For instance, Evader
shows a larger spread for WebGPU in CPU frame time than
it did for the GPU.

B. Performance Comparison of Synthetic Tests

1) GPU Frame Time: For the synthetic test involving
rendering multiple quads WebGPU outperforms WebGL in all
cases in GPU mean frame times, as can be clearly seen in
Figure 5. The speed-up factor ranges from 4.588, as is the
case when rendering 40 000 quads, up to 9.039, as is the case
when rendering ten quads. The results of rendering multiple

Multiple Quads - GPU Frame Time

3 { == WebGL Mean
iy WebGPU Mean 278
£
:” 222
£2
'|: 164
c 132
o 117 121 114
‘3’ 1
g = 048 050
i 018 016 014 023 019 025
0 10 100 1000 10k 20k 30k 40k 50k
Quantity

Fig. 5. Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Multiple Quads test. The workloads range from 10 to
50.000 quads.

full-screen quads show how considerate pressure was put on
both Rasterizers, with long GPU mean frame times for all
tests above 1000 quads. In Figure 6, both Rasterizers show an
approximately linear increase in frame time as the number of
quads increases, with WebGPU being roughly 1.8 - 3.1 times
faster than WebGL depending on the profiling context.

Fullscreen Quads - GPU Frame Time

2500 == WebGL Mean
m WebGPU Mean 20358
é 2000 178733
£
£ 1500
'— 1354.53 1546
c
€ 1000 w110 "
5 44 49
v}
Q a45.87 504.45
ﬁ 500 I24ﬁ 62
0 215 0.68 a84 208 44662489
10 100 1000 10k 20k 30k 40k 50k
Quantity

Fig. 6. Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Full-screen quads test. The workloads range from 10 to
50.000 full-screen quads.

The Polygons synthetic tests show the biggest comparative
GPU frame time differences between the two Rasterizers,
with WebGPU vastly outperforming WebGL in every case.
As an example, in Figure 7, at the point of rendering 50 000
polygons WebGL manages an average of 150.94 milliseconds
per frame while WebGPU is still running at passable real-time
speeds (15.75 milliseconds, equivalent to more than 60 frames
per second). The GPU frame times for the Large Polygons
synthetic test show that WebGPU is roughly 2 - 3 times
faster across various workloads. The frame time increases
roughly linearly for the Rasterizers with greater workloads,
with a statistical deviation occurring at 4 million polygons
for WebGL. Like with the test of rendering multiple quads,




Multiple Polygons - GPU Frame Time

= WebGL Mean

» 150 WebGPU Mean 15094

£

:J’ 117.81

S

= 100 8.76

o

o

= 57.53

3 50

% 2934

w 1323 1575

0 458 023 190017 120 023 I 173 3.84 6.40
10 100 1000 10k 20k 30k 40k 50k

Quantity

Fig. 7. Comparison of the mean WebGL and WebGPU GPU frame times, in
milliseconds, for the Multiple Polygons test. The workloads range from 10 to
50.000 polygons.

WebGL again shows a bigger spread of frame times, with
WebGPU remaining fairly stable (see Figure 8).

Large Polygons - GPU Frame Time

8 s WebGL Mean
iy WebGPU Mean Lz
E
o0
£
=
c4
o
] 276
2
: J I I I
4
w
0
8m 10m 16m
Quantity

Fig. 8. Comparison of the mean WebGL and WebGPU GPU frame times,
in milliseconds, for the Large Polygons test. The workloads range from 2
million to 16 million vertices.

2) CPU Frame Time: For the Quads synthetic test, Figure
9 shows that WebGPU performs better in total CPU frame
time compared to WebGL. It is also shown in the graph that
the gap between them, with the exception of the 30 000 quads
variant, increases the more items are being rendered.

Multiple Quads - CPU Frame Time

- WebGL Mean
m WebGPU Mean e
Es
) 13.08
E 117
= 10.01
c 10 850 g15
2
]
§ 5 49
X
w 155 128 159
0 . LEER  REX . 073
10 100 1000 10k 20k 30k
Quantity

Fig. 9. Comparison of the mean WebGL and WebGPU CPU frame times, in
milliseconds, for the Multiple Quads test. The workloads range from 10 to
50.000 quads.

For the Full-screen Quads synthetic tests, WebGL can be
seen to have a mostly linear increase in mean CPU frame time
following from the number of quads that need to be rendered,
see Figure 10. However, for WebGPU, while there is a fairly

steady increase for all workloads below 50 000 quads, the 50
000 quads variant has a much larger frame time than the 40
000 quads variant. The frame time for this variant looks very
similar to the GPU frame time presented in Figure 6.

Fullscreen Quads - CPU Frame Time

2500 == WebGL Mean
iy WebGPU Mean 220276
§ 2000
1786.54
]
£ 1500 B
'E 138.58
.8 1000 89051
>
o]
2 500 ws.15
i
0 140 037 149 033 43_“064 I 324 532 839 10.94
10 100 1000 10k 20k 30k 40k 50k
Quantity

Fig. 10. Comparison of the mean WebGL and WebGPU CPU frame times,
in milliseconds, for the Full-screen Quads test. The workloads range from 10
to 50.000 full-screen quads.

The total CPU frame time of the Polygons synthetic tests
shows that outside of the 10 polygon test case, the WebGPU
implementation is faster than the WebGL one (Figure 11). It
also shows that an increase in rendered polygons causes a
nearly linear increase in frame time, where the increase for
the WebGL Rasterizer is steeper than that of the WebGPU
one. Notably, for WebGPU, the step from 40 000 polygons
to 50 000 polygons breaks the previous pseudo-linearity and
causes the frame time to increase more significantly.

Multiple Polygons - CPU Frame Time

. WebGL Mean
iy WebGPU Mean 16503
£150
) 129.40
£
F 100 95,60
c
'4% 65.34
3
§ 50 32 zh 26.76 =
i 17.35
0 078 0.42 112 0.49 280 100
10 100 1000 lOk 20k 30k 40k 50k
Quantity
Fig. 11. Comparison of the mean WebGL and WebGPU CPU frame times,

in milliseconds, for the Multiple Polygons test. The workloads range from 10
to 50.000 polygons.

In the Large Polygons synthetic test, the total CPU time
recorded for the two Rasterizers in Figure 12 shows that
WebGPU has a very small steady increase following an
increase in workload, whereas the WebGL implementation
varies seemingly settling into a steady increase after 12 million
vertices (240 polygons).

We used paired T-tests as the main statistical significance
tests in our study. The p-value of all the comparisons of overall
mean values of GPU and CPU frame times are less than
0.05, which means it is significantly different. In all games,
WebGPU outperforms WebGL both in terms of overall CPU
and GPU mean frame times. The synthetic tests show similar
results, with WebGPU outperforming WebGL in both CPU and




Large Polygons - CPU Frame Time

8
WebGL Mean
m WebGPU Mean 695
E 6.08
—6 566
S 546
E
=
- 4
2
)
22
(]
= 095 095 115 140
w 0.20 0.27 0.26 0.29 0.35 038 039 0.48
0
2m am 6m 8m 10m 1Zm 14m 16m
Quantity

Fig. 12. Comparison of the mean WebGL and WebGPU CPU frame times,
in milliseconds, for the Large Polygons test. The workloads range from 2
million to 16 million vertices.

GPU frame time performance. This is especially prominent in
the case of rendering multiple polygons and multiple quads.
WebGL also shows more fluctuating frame times, as heavily
evident by the multiple quads and the large polygons tests.

V. DISCUSSION

There are several explanations as to why WebGPU performs
better than WebGL at the rendering tasks presented in the
study. One is due to the use of modern graphics drivers and
bundled state. These provide optimizations that WebGL or
OpenGL cannot achieve, and explain the superior performance
of WebGPU. Despite WebGPU showing consistently better
frame times than WebGL, there are still times when it strug-
gles. For instance, the CPU frame time for the 50,000 full-
screen quads synthetic test increases significantly compared
to the 40 000 full-screen quads due to data uploading to
the instance buffer. This function call may force CPU and
GPU synchronization, leading to longer CPU times and longer
GPU frame times. The reason for synchronization not being
necessary for other variants is unknown and requires further
study.

Aside from the already discussed performance benefits
inherent to WebGPU as a modern technology, there exist other
possible explanations as to why the performance of WebGL
falls behind WebGPU in the experiments conducted. One of
the reasons is related to stalling. WebGL experiences different
types of stalling at varying workloads, while WebGPU does
not. In the case of larger workloads, WebGL is several hundred
milliseconds slower than WebGPU in mean GPU frame times.
On the other hand, the Polygons tests show that the GPU is
stalled instead as the workload increases. The CPU stalls as
it waits for WebGL GPU instructions to complete, which is
reflected in the exceptionally high mean CPU frame times in
WebGL.

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated the relative performance of two
Rasterizers based on two different rendering APIs: WebGL
and WebGPU. This was done by implementing a WebGPU
Rasterizer backend and comparing it with the existing WebGL
Rasterizer backend in the context of the Godot game engine.

The work was grounded in both game examples with realistic
workloads and raw stress tests of varying workloads through
synthetic experiments. The results presented show how the
WebGPU implementation, in its current state, consistently
performs better than the WebGL equivalent. It does so across
all conducted experiments in terms of total mean CPU and
GPU frame time. Furthermore, and in general, the presented
results are statistically significant. The WebGPU renderer
implementation is relatively naive, the better results could
be achieved with a more modern graphics API workflow. A
notable suggestion for future research is to investigate the GPU
VRAM usage by both WebGL and WebGPU, if and when this
feature eventually becomes available for WebGPU. Another
suggestion for future research is to build upon the work in this
study in order to have the WebGPU Rasterizer more feature
rich. This would mainly involve adding support for additional
render item types and complementing the 2D Canvas Renderer
with the 3D Scene Renderer.

REFERENCES

[1] “Direct3D - Win32 apps,” Microsoft, Sep. 2021. [Online]. Available:
https://learn.microsoft.com/en-us/windows/win32/direct3d

[2] “Metal Overview,” Apple Inc. [Online].
https://developer.apple.com/metal/

[3] Vulkan, “Vulkan Cross platform 3D Graphics,” Khronos Group.
[Online]. Available: https://www.vulkan.org/

[4] “OpenGL - The Industry Standard for High Performance Graphics,”
Khronos Group. [Online]. Available: https://www.opengl.org/

[5] A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat, “3D
graphics on the web: A survey,” Computers & Graphics, vol. 41, pp.
43-61, 2014.

[6] D. Liu, J. Peng, Y. Wang, M. Huang, Q. He, Y. Yan, B. Ma,
C. Yue, and Y. Xie, “Implementation of interactive three-dimensional
visualization of air pollutants using WebGL,” Environmental Modelling
& Software, vol. 114, pp. 188-194, Apr. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1364815218304195

[7]1 “WebGPU,” W3C, 2021. [Online]. Available:
https://www.w3.org/TR/2021/WD-webgpu-20210518/

[8] M. Hidaka, Y. Kikura, Y. Ushiku, and T. Harada, “WebDNN: Fastest
DNN execution framework on web browser,” in MM 2017 - Proceedings
of the 2017 ACM Multimedia Conference, 2017, pp. 1213-1216.

Available:

[91 A. Aldahir, “Evaluation of the performance of webGPU
in a cluster of web-browsers for scientific computing,”
Bachelor’s thesis, Umea University, 2022. [Online]. Available:

http://urn.kb.se/resolve 7urn=urn:nbn:se:umu:diva-197058

W. Usher and V. Pascucci, “Interactive Visualization of Terascale Data
in the Browser: Fact or Fiction?” in 2020 IEEE 10th Symposium on
Large Data Analysis and Visualization (LDAV), 2020, pp. 27-36.

L. Dyken, P. Poudel, W. Usher, S. Petruzza, J. Y. Chen, and
S. Kumar, “Graphwagu: Gpu powered large scale graph layout
computation and rendering for the web,” in Eurographics Symposium
on Parallel Graphics and Visualization, 2022. [Online]. Available:
https://diglib.eg.org/xmlui/bitstream/handle/10.2312/pgv20221067/073-
083.pdf?sequence=1

[10]

(1]

[12] “Godot 4.0 sets sail: All aboard for new horizons,” Godot. [Online].
Available: https://godotengine.org/article/godot-4-0-sets-sail/

[13] P. Hex, “Snake in Godot4,” Itch.io. [Online]. Available:
https://hexblit.itch.io/snake-in-godot4

[14] MohamedA.G, “Evader,” Itch.io. [Online]. Available:
https://mohamedag.itch.io/evader

[15] Aezart, “Snake,” Itch.io. [Online]. Available:
https://aezart.itch.io/checkers

[16] angelchama333, “Falling Cats,” Itch.io. [Online]. Available:

https://angelchama333.itch.io/falling-cats

ShoeFisherGames, “Deck Before Dawn,” Itch.io. [Online]. Available:
https://shoefishergames.itch.io/deck-before-dawn
ceruleancerise, “Ponder,” Itch.io. [Online].
https://ceruleancerise.itch.io/ponder

(17]

[18] Available:


https://ceruleancerise.itch.io/ponder
https://shoefishergames.itch.io/deck-before-dawn
https://angelchama333.itch.io/falling-cats
https://aezart.itch.io/checkers
https://mohamedag.itch.io/evader
https://hexblit.itch.io/snake-in-godot4
https://godotengine.org/article/godot-4-0-sets-sail
https://diglib.eg.org/xmlui/bitstream/handle/10.2312/pgv20221067/073
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-197058
https://www.w3.org/TR/2021/WD-webgpu-20210518
https://linkinghub.elsevier.com/retrieve/pii/S1364815218304195
https://www.opengl.org
https://www.vulkan.org
https://developer.apple.com/metal
https://learn.microsoft.com/en-us/windows/win32/direct3d

