

This blank page was inserted to presenie pagination.

MAC TR-113

ON REDUCIBILITY AMON; COMBIN\TORIAL PROBLEMS

Paul Peter Herrmann

December 1973

This research was supported by the National
Science Foundation under research grant GJ-34671

MASSACHUSETTS INSTITUTE OF TECHIDLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

- 2 -

ON REDUCIBILITY AMONG COMBINATORIAL PROBLEMS

Abstract: A large class of combinatorial problems

have been shown by Cook and Karp to be computationally

equivalent to within a polynomial. We exhibit some

new problems in this class, and provide simpler

proofs for some of the known reductions.

- 3 -

CHAPTER l: THE PROBLEM. TERMIIDLOGY.

(1.1) The Problem.

(For the terminology see (1.3).)

In 1970 S.A. Cook stated the problem whether a deterministic T.M.

(Turing machine) can do in polynomial time what a nondeterministic one

can do in polynomial time. His conjecture which has gained support since

then is that the answer is negative. He showed that every language

recognition problem (i.e. every decision problem) solvable in polynomial

time by a nondeterministic T.M (we call this class of problems /NP)

can be reduced in polynomial time to the satisfiability problem (i.e.

whether for a given propositional formula there is a truth assigrnnent

making it true) and also to a few other problems in /NJ' ([l]). We call

such problems polynomial-complete in NP or, for short, p-complete.

In 1972, R.M. Karp listed 21 decision problems and showed that they

are p-complete ([7]). In the meantime the family of known p-complete

problems has been extended by S. Sahni (CS Dept., Cornell Univ.) and

others.

Cook's problem has become an important issue in complexity theory

([10)). Its solution would provide some important clues about how to

approach a large class of notoriously intractable computational problems

in mathematical programming, operations research, theorem proving, and

related areas.

- 4 -

(1. 2) Connnent.

A general characterization of p-complete problems that allows one

to decide algorithmically whether a combinatorial decision problem is

p-complete or solvable in polynomial time w.r.t. (with respect to) the

input lenght would be very desirable. There are deceptive relations

between combinatorial problems. For example, a family {S.}, i€ {1,2, ... ,m},
1

of finite subsets of some domain has- a system of distinct representatives

iff for every finite k and any choice of k distinct indices i 1 , i 2 , ... ik,

the subsets S. , S. , ... ,S. contain between them at least k distinct
11 12 1k

elements. One might be tempted to guess that the problem can only be

decided by an exhaustive search. But Marshall Hall discovered an algorithm

for its solution that takes only polynomial time ([6]).

We started this work looking for some characterization of p-complete

problems as mentioned above. The goal has not been achieved. In Chapter 2

and 3 we are going to report on the by-products of our efforts. Both

chapters have introductory sections.

(1.3) Terminology.

We assume the reader is familiar with the papers by Cook and Karp

mentioned in (1.1).

We are considering decision problems and always assume that they are

given in some encoded form over a finite alphabet. So they become language

recognition problems.

Let P be a decision problem and L be some representation (encoding)

of P over a finite alphabet I:. We have LC rJ'f' +). Every element of L

+) ~ denotes the set of all finite strings that can be formed by

elements of :r, including the empty string.

- 5 -

represents an instance of P. - Assume P' is a special case (a subproblem)

of P, that means using the same encoding as for P, P' is represented by a

language L' and L' c L. Then we call P' a contraction of P. - Analogously,

if P" is a generalisation of P, that means using the same encoding as for

P, P" is represented by a language L" and L" ::J L, then we call P" an

extension of P.

The class of problems solvable in polynomial time by a nondeterministic

T.M. is denoted by /N'/P, the class of problems solvable in polynomial

time by a deterministic T. M. by 7P • The time is always considered to be

a function of the input length. We are only dealing with one-tape T.M. 's.

Given a problem P1 as a language 1 1 over a finite alphabet :E1, and

a problem P2 as a language L2 over a finite alphabet I;2• Assume there is a

mapping f: ~ ➔ ~ s. t. for every w E: ~. f(w) E: 1 2 iff w E: L1. f is

called a reduction from P1 to P2• If there is a deterministic T.M. that

performs the mapping fin polynomial time, then we say P1 is Karp-reducible,

or K-reducible to P2• For that we use the notation

Some standard encodings of the problems involved are implicit in our use

of this notation.

Cook's notion of reducibility is different. Given two decision problems

P and Q. Assume we have an oracle for solving Qin time 1. Then, according

to Cook, Pis reducible to Qin polynomial time iff there is an algorithm

which decides P and may use the oracle for Q (more than once) and runs in

polynomial time. Then we say, Pis Cook-reducible, or C-reducible to Q,

and we use the notation

p 8--+ Q •

- 6 -

Obviously, when P ~ Q, then P €-+ Q. But it is not known whether

C-reducibility implies K-reducibility. Elsewhere, when we write 'Pis

reducible to Q ', we mean K-reducibility.

Ifs is a finite string of literals, we denote the length of s, i.e.

the number of literals ins, by v(s).

Assume a decision problem P1 is K-reducible to P2. Assume Pi is given

as a language L. over a finite alphabet :E., i = 1, 2. Assume the reduction
i i

f: ~ ➔ t; is performed by a T.M. M. Let T(w) be the time M takes to

compute f(w), and let cr(w) be v(f(w)). We define

t(n) = max (T(w): v(w) ~ n}

and call t(n) the reduction time off (w.r.t. M).

We define

s(n) = max { cr(w): v(w) ~ n 1

and call s(n) the reduction space off (w.r.t. M). - Observe that s(n) is

not the work space needed by M to perform f.

Whenever we refer to time or space of a reduction we mean the reduction

time or the reduction space, resp., as defined above.

If t(n) is linear (quadratic), we say f is time-linear (time-quadratic).

If s(n) is linear (quadratic), we say f is space-linear (space-quadratic).

Assume the reduction P1 ~ P2 is such that f restricted to L1 is a

bijective mapping onto L2, and f-l gives a reduction P
2
~ P1• Then we

call P1 isomo~phic to P2 w.r.t. f.

Assume there is a problem P € IN'if> s.t. for every Q € !)JP there is a

reduction Q K---+ P. Then we call P K-p-complete in ff.Jf , or sometimes

just p-complete. - If there is a problem P' € fN ffe s.t. for every Q € hJiP

there is a reduction Q ~ P', we call P' C-p-complete (in h./ P).

- 7 -

We are going to use Karp's names for the p-complete problems he listed

in [7], except we call SUBSET SUM what he calls KNAPSACK. These names will

be written in capitals. - A p-complete contraction of SAT is the one where

we confine ourselves to propositional formulas in conjunctive form. We call

this problem·CF-SAT. - CF-SAT with at most three literals per clause or

exactly three literals per clause is also p-complete. We refer to both cases

by 3-CF-SAT and specify in the context which one we mean.

A network is a graph with weighted arcs, where the weights are non­

negative integers. The network may have sources with specified maximum

(integer) supplies and sinks with specified minimum (integer) demands.

(1.4) Remark.

Though other parameters are sometimes used, it js connnon to give the

computational complexity (in time and space) of a problem as a function

of the input length v(w), where w is the input, i.e. an encoding of the

given instance of the problem. Hence, this computational complexity depends

on the encoding and thus on the alphabet!; chosen. However, it turns out

that within a range of encodings for a given problem, encodings that we

informally would like to call 'standard encodings' (cf. (3.2)), the

computational complexity is only slightly affected when the encoding

is being changed. If the computational complexity is of some polynomial

degreed, a change of the encoding may lead to a polynomial degree of

2d or 3d. But a change of the encoding will not result in converting a

complexity that is of higher than polynomial degree into a complexity

of polynomial degree, and vice versa. In this sense our different encodings

are invariant. The only exception to this remark is the difference between

- 8 -

unary (or tally) and radix notation for integers which may differ

exponentially. We shall always asstnne integers are represented in radix

notation, say base two for definiteness.

We doubt that the length parameter vis always the most suitable one

for expressing the computational complexity of the problems with which

we are dealing. Probably, a parameter or a vector of parameters closer to

the logical structure of our decision problems would be more revealing

in particular cases. But length will be our main parameter in order to

maintain comparability among the several differently structured problems

we consider. We do not know a better one for this purpose.

- 10 -

Do this for every clause and form the union of all the unions (i). Let

1
B denote this union. Then, A is satisfiable iff Bis 3-satisfiable.

(2.2) NWF with two flow intervals.

We are going to consider network flows (l'MF). Always assume there is

one sources and one sink tin the network. All pertinent data are supposed

to be integer valued.

Assume for a flow f. along Arc i we have the constraints O ~ f. ~ a.,
i i i

where a. is a nonnegative integer. There is an algorithm by Ford-Fulkerson­
i

Edmonds to determine the maximal feasible flow in the network. The

3
computational complexity of the algorithm is O(n), where n is the number

of nodes ([3]). This algorithm starts with a feasible flow, e.g. the

zero-flow, and augments it step by step.

Now allow upper and lower bounds for the flows f., s.t.
i

(0 <:;;) b. ~ f. ~ a.
i i i

for every arc i. Here the first question is whether there is a feasible

flow at all. But one can start with the zero flow and apply the algorithm

mentioned before repeatedly, namely once for increasing a flow f. along
i

Arc i, given f. < b., in order to get b.<:;; f. (~a.), and, at worst,
i i i i i

once for every i. If the computation becomes stymied no feasible flow

exists. The overall computation is, at worst, O(n7
). The procedure was

outlined by Lawler ([8]).

To get a p-complete problem we allow two flow intervals for an arc i

such that either d. ~ f ~ C
i i i

or b <:;; f. ~ a
i i i

for given a., b., c., d;;
i i i .L

a. z b. z c. z d .. The decisive question is whether there is a feasible
i i i i

flow. This problem is called NWF with two flow intervals.

The problem is obviously in t,Jf. We show

- 11 -

SUBSET SUM r~<-~>➔ I:wJF with two flow inte,vals

Given a set of positive integers ' s n

and a positive integer s The Subset Sum Problem: Is there a subset

S' of S such that ~ s. = s ? - For the reduction we use the follow­
s._ E- 5' l

ing network :

[O], [s

Source s r [s] Sink t

[OJ, [s]
n

There are narcs from s tor the ith of which allows a flow of value 0

ors .. From r tot the flow has to have values. The Subset Sum Problem
l

has a solution iff there is a feasible flow from s tot in the network.

i1.:..1l CTP with quadratic optimization function.

Given a network with sources and sinks. A source may have a limited

supply, and at each sink a demand has to be satisfied. An arc must carry

a flow between O and some positive upper bound, the capacity of the arc.

There is a cost c. per unit associated with the flow f. along the
l l

directed arc i.

The problem whether there is a flow of size v with a cost not excee­

ding k, for given v and k, is a wellknown linear progrannning problem,

often called the Capacitated Transshipment Problem (CTP). (We assume

that all the pertinent data are integer valued.) If there is a solution,

then there is also an integer solution ([5]). The optimization function is

- 12 -

where A is the set of arcs of the network.

Remark: Lawler gives an algorithm for CTP with a computational

complexity O(v.n2
), where n is the number of nodes in the network ([8]).

But since we assume that the data including v are given in radix notation,

the algorithm is not polynomial-time bounded with respect to the input

length. We do not know whether CTP is in 1P.
In CTP, an arc i that carries a flow of value f. contributes c.f.

1 1 1

to the cost. Now we allow this cost contribution to be quadratic inf.:
1

2
c

2
., f.
1 1

+ c 1 .. f. 1 1
+

where c21 , c 1i and c
0

i are the coefficients that determine the cost

contribution of arc i. So the optimization function becomes quadratic

inthef.'s.
1

The problem whether there is a flow v of cost zero (for given v)

is K-p-complete. We call this problem CTP with quadratic optimization

function. - (We are considering integer data and integer solutions only.)

To prove this we show the reduction

SUBSET SUM I~(----'>► CTP with quadratic optimization
function •

The problem is obviously in IN JP.- Given a set of positive integers

•••• , s } ' n

and a positive integers. The Subset Sum Problem: Is there a subset S'

of S, such that !; s. s ?
s~eS' 1

For the reduction we construct the following network:

Source
with
supply

s

Sink
with
demand

s

- 13 -

There are narcs between the source and the sink. Along Arc i the flow

value must be in the interval [O, s.], i
]_

Consider the cost function

n
~

i=l
f. (s. - f.) .

]_]_]_

1, 2, ... , n.

The Subset Sum Problem has a solution iff there is a feasible flow of

sizes with cost zero.

(2.4) Sunnnary.

Theorem 1: The following problems are K-p-complete in !'N f:

a)

b)

c)

~-DF-SAT,

WF with two flow intervals ,

CTP with quadratic optimization function.

The definitions and proofs are given in (2.1), (2.2), and (2.3).

(2.5) 3-NODE COVER is p-complete.

In the Node Cover Problem (NODE COVER) we have a graph G and an

arbitrarily given positive integer k. The question is whether all the

arcs of G can be covered by at most k nodes (whether there is a node

cover of size k).

Now assume k is a function of the number of nodes n. This is a

different problem that we denote by NODE COVER(k(n)). Here the decisive

question is whether there is a node cover of size rk(n)l. For example,

NODE COVER(¥) is the problem that asks whether there is a node cover

of size r ¥ 7. (We let n always denote the number of nodes in the

graph.)

- 15 -

x
1

for the first x, x
2

for the second x, x
3

for the third x, x
4

for the

first x, and x
5

for the second x - Extend F by

/\ (x V x
1

) /\ (x
1

V x
2

) /\ (x
2

V x
3

) /\ (x
3

V x
4

) /\ (x
4

V x
5

) /\ (x
5

V x),

that means

/\ (x ➔ x
1
➔ x

2
➔ x

3
➔ x

4
➔ x

5
➔ x) .

Do this for all variables occuring in F to get F'. Make sure that a new

variable is introduced for every literal of F.

Example:

F = (x V y V z) /\ (x V y V z) /\ (x V y V z)

F' = (xl V Y1 V zl) /\ (x2 V Y2 V z2) /\ (x3 V Y3 V z
3

)

/\ (x V x
1

) /\ (xl V x2) /\ Cx2 V x
3

) /\ Cx3 V x)

/\ (y V Y1) /\ (y 1 V y 2) /\ (y2 V Y3) /\ (y3 V y)

/\ (z V z
1

) /\ (zl V z2) /\ Cz2 V z3) /\ Cz3 V z)

Assume F has 3p literals and m different propositional variables.

Then, F' has

3p + (2•3p + 2m) = 9p + 2m

literals each of which is incompatible with at most three others. Hence,

if G' is the corresponding graph of F', we have G' € (1;
3

.

Obviously, Fis satisfiable iff F' is satisfiable. F' is satis­

fiable iff G' has a node cover of size 2p + (3p + m). This follows

immediately from the structure of F' and from the following reductions

as given by Karp ([7]):

CF-SAT K~-~>~ CLIQUE 1~,-~~~ NODE COVER.

i1..:._§2_ NODE COVER (cm) is p-complete.

We refer to the definitions given in (2.5).

From Karp's reductions

- 16 -

CF-SAT ~ CLIQUE K :, NODE COVER

it follows irmnediately that NODE COVER (2n/3) is p-complete. The

following theorem is a generalisation thereof.

Theorem 3: For any fixed rational as (0, 1),

NODE COVER (an) is K-p-complete in /1/P.

Proof of Theorem 3: We are going to show

3-CF-SAT ~ NODE COVER (an)

Let F be a propositional formula in conjunctive form with exactly

three literals per clause. Assume F hasp clauses. Let G be the corre­

sponding graph of F. G has n = 3p nodes.

We know from Karp's reductions that Fis satisfiable iff G has a

node cover of size 2n/3 .

2
First, assume a E (0, 3). We would like to reduce NODE COVER (2n/3)

to NODE COVER (an). For that, add ql isolated nodes to G; call the

new graph c
1

. Then, c
1

has 3p + q
1

nodes. There is a node cover of

2p nodes for Giff there is a node cover of 2p nodes for G
1

. We want

I a• (3p + q
1

) l = 2p , or

I CY• (n + q 1) l = ~n •

According to this equation, q 1 is essentially a linear function of n.

2
Now assume as (3, 1). G has n = 3p nodes. Add a complete graph

of q
2

nodes to G; call the extended graph G
2

. G has a node cover of

2p nodes iff c2 has a node cover of 2p + q
2

- 1 nodes. We want

1 a-(3p + q
2

) 7

I CY· (n + q
2

) l

1

1

or

Obviously, q2 is essentially a linear function of n.

- 17 -

lb.]J_ NODE COVER (..!!!,/n1) is p-cornplete.

With respect to Theorem 3 one may ask for further generalisations.

Our next theorem gives one answer.

Theorem 4: Given a fixed integer m greater than 1.

a) NODE COVER (~) is K-p-cornplete.

b) NODE COVER (n - m/n7) is K-p-complete.

Proof: For example, we can reduce NODE COVER (n/2) to the problems

given in a) and b). Then the proof is analogous to the proof of Theorem

3, i.e. we add isolated nodes or complete graphs to the given graph

to get the desired ratio between n and the size of the node cover.

To carry out the reductions, we start with a graph G which has n

nodes. Assume n is even (otherwise add an isolated node).

In Case a) we add q
1

isolated nodes to G and call the new graph c
1

.

c1 has n + q
1

nodes. G has a node cover of size n/2 iff c
1

has a

node cover of size n/2. Thus we want

In Case b) we add a complete graph with q
2

nodes to G and call the

new graph c2 . c2 has n + q
2

nodes. G has a node cover of size n/2 iff

c2 has a node of size n 1 Thus we want cover - + q - . 2 2
n + 1 n + q2 -~ 2 q2 - '

or

n + 1 ~ 2

Remark: Since both q
1

and q
2

are m
O(n), the reduction space

its elf is
m

O(n). We do not know better reductions and conjecture

that the reduction space for any reduction

NODE COVER (n/2) ~ NODE COVER (Vn7)
m

is 0(n).

- 19 -

the problem is whether there is a subset of k columns that covers all

rows. - One could fonnulate dual problems in the same way for SET

PACKING and SET COVERING.

(2.9) 3-CHROMATIC NUMBER is p-complete.

The problem 3-CHROMATIC NUMBER asks whether a given graph is

three-colorable. It was shown by Larry Stockrneyer that this problem

and the contraction restricting it to planar graphs are p-complete

([12]).

- 20 -

CHAPTER 3: ON REDUCTIONS AMONG K-p-COMPLETE PROBLEMS.

(3.0) In t~is chapter we report some efforts made to investigate the

computational complexity of the reductions among p-complete problems.

A motivation is given in (3.1). In Sections (3.2) and (3.3) we give

a few observations on encoding and space complexity. The rest of

the chapter exhibits a few new reductions we found among known p-com­

plete problems.

(3.1) By Cook's Reduction Theorem ([l]) every problem solvable in

nondeterministic polynomial time is K-reducible in polynomial time

to SAT. The reduction time (i.e. the polynomial) depends on the

problem, i.e. on the special nondeterministic T.M. and thus also on

the encoding.

Let Il be a problem having deterministic time lower bound r
r

n •

Assume, for example, there is a reduction

reduction time t (n) r and reduction space

Il K---+ SAT
r

s (n).
r t r

that has

and s r

polynomials inn. Asstm1e SAT has (deterministic) time upper bound

'T (n). Then,

t (n) + 'T(s (n))
r r

is an upper bound on the deterministic time complexity of TI • r

are

If degree t (n) < r
r

r
, then -r(s (n)) must be at least O(n). r

Hence, 'T must be at least o(nr/deg(sr>). This observation may

- 21 -

allow us to prove large polynomial lower bounds on complete problems

such as SAT even if we are unable to prove that SAT t 1P •

Therefore we were looking for problems with detenninistic poly­

nomial time lower bounds of high degree that can be reduced to some

p-complete problem, e.g. to SAT, easily, at least such that it takes

space bounded by a lower degree polynomial. We did not achieve what

we wanted but became interested in the computational complexity of

the reductions.

(3,2) Time and space complexity of a reduction depends on encodings

of problems as well as on the reduction device. Here we use one-tape

T.M.'s.

The objects of the known p-complete problems are propositional

formulas, graphs, graphs with weighted arcs, finite sets of integer

equations, or sets of subsets of a finite domain. For each of these

problems we have two or three encodings that we would like to call

standard encodings. We are going to outline what kind of encodings

we have in mind.

Assume we have in each case some convenient finite alphabet :E.

When we distinguish items of the same type, like variables or nodes,

we use indexing and binary notation. For example, we could represent

five nodes of a graph by NO, Nl, NlO, Nll, NlOO, where Ne :E.

Integers are represented in binary notation.

In case of propositional fonnulas we think about the following

encodings:

clause-by-clause, where essentially every clause is a list of

the literals occuring in it;

- 22 -

the incidence matrix given row by row, consisting of O's and

l's, one row for each clause and one double column for each

variable (a double column because the variable may occur

affirmative or negative);

an encoding like the previous one, but O's, +l's and -l's in the

matrix and a single column for each variable, using +l for

an affirmative and -1 for a negative occurence of a variable.

In case of graphs we think about the encodings:

a list of all nodes followed by a list of all arcs, an arc given

as a pair of nodes;

the incidence matrix given row by row using O's and l's, rows

for the nodes and columns for the arcs;

the adjacency matrix given row by row.

In case of subsets of a finite domain we think about the encodings:

a list of all subsets, where every subset is a list of the elements

occuring in it;

the incidence matrix given row by row, a row for every subset

and a column for every variable in the domain.

For a set of equations we think about the encodings:

equation-by-equation;

the coefficient matrix of the system of equations, given row

by row.

These are essentially the encodings we refer to when we use the

term 'standard_encodin8'·

(3.3) The reduction space of the reductions within the family of

p-complete problems was considered in some detail. One can find standard

- 24 -

p-complete problems given in some standard encoding, vis not linear

(on a one-tape T.M.), but in many cases quadratic in the input length

n, sometimes even worse but not exceeding O(n3).

Some_new_reductions_among_known_e-comelete_eroblems

(3.4) 3-CF-SAT ~~--> EXACT COVER

Given a propositional formula Fin conjunctive form with exactly

three literals per clause. Assume F has m clauses and r variables occur

(uncomplemented or complemented). Let C. be the clauses, i = 1, 2, ••
]_

• • ' m , and x. be the variables,
J

j = I, 2, ••• , r. Form the following

array:

I - I
- ,- -

XI xl x2 x2 x3 I x3 X I X
I I I r I r

I I -
I I

Cl X I X X I
X

I I
I I I I

c2 I X I I
X I X

I I I I

c3 X I I X I X I X
I I I I . I I ! I

.
. I I I .

1
! . I I I I .

I
I I i I

C I I I X I X
m

I I I I

X X X X

There is a row for every clause Ci and a double column for every

pair (x., x.). A cross X occurs in Row C. and Column x. (or x.)
J J]_ J J

iff in Clause i the literal x. (or x.) occurs. In addition, we have
J J

one cross for every row in an additional column at the right hand

side, and one cross for every double column at the bottom of the array.

The domain of the Exact Cover Problem is the set S of all these

crosses, i.e. each cross is an element in S. We form a system of subsets

- 26 -

3 m ~ 2 r. This shows that our reduction w.r.t. the encodings

outlined above is space-linear.

2. A space-linear reduction SAT &----+ 3-CF-SAT was given by

Fischer, Meyer and Paterson ([4]). Hence we have a space-linear

reduction SAT ~ EXACT COVER.

3. It was shown by Michael J. Fischer that our reduction

3-CF-SAT ~ EXACT COVER can be modified to a reduction

CF-SAT K:---+- EXACT COVER that is quadratic in space.

(3.5) + CF-SATK ~-~~~ directed RC).

Karp ([7]) gives a reduction NODE COVER ~ directed RC

that is rather complicated and quadratic in space. The reduction we

are going to describe here is linear in space.

Given a propositional formula Fin conjunctive form. AsstDile F

has m clauses Ci, i = 1, 2, ••• , m, and r variables x. occur in F,
J

j = 1, 2, ••• , r. - Essentially we use the same array as the one used

in (3.4). We have a row i for every clause Ci and columns for x1, x1,

x2, x2, ••• , xr, xr. We draw a box ~ in a column in Row i iff

the literal corresponding to this column occurs in Ci. In addition we

draw a cross Aj below and a cross Bj above each double column j,

j = 1 , 2 , ••• , r, and a box gJ for each row i , i = 1 , 2 , ••• , m,

on the right hand side of the array.

~P-1?1~= F = cl/\ c2 /\ c3 I\ C4 ,

Cl = xl V x
2

V x
5

, c2 =x
1

V x
3

V x
4

,

c3 = x2 V x
3 V XS , C4 = X3 V x4 V XS .

+) HC = Hamiltonian Circuit.

- 27 -

From the array we construct a graph G. The crosses will become nodes,

and the boxes ~ and ill are going to be subgraphs of G.

Each subgraph IBJ is isomorphic to the following one having three

nodes:

There is one chain of arcs upwards along each column of the array,

entering the subgraphs fID at 1 and leaving them at 3. For a double

column the two chains start at Aj on the bottom and end at Bj on the

top. Bj is connected to Aj+l' j = 1, 2, ••• , r-1, and Br to (!J by

arcs.

There are arcs from l!J to the ~ 's of Row i entering an @

always at its Node 3, and we have an arc from each fRJ of Row i to

IIJ leaving the l8J at its Node 1. The @ 's are described below,

but each @ has - among other nodes - an entrance node Pi and an exit

node Qi. Br is connected to P
1

, Qi to Pi+l for i = 1, 2, ••• , m-1, and

- 28 -

The idea of the construction is the following. A RC must go

through A1 and then follow either Column x
1

or Column x
1

up to B1.

Observe that the structure of the subgraphs [g) and the way they are

connected with each other along the columns forces the path to proceed

along one and the same column after A. is passed until B. is reached.
J J

Depending on the truth assigrnnent, we choose Column x 1 if x 1 is true,

and Column x 1 if x
1

is false. From B
1

we come to A
2

and go up Column x 2

if x2 is true and up Coltmm x
2 if x2 is false, and so on.

After the path has reached B it must pick up all the nodes in
r

the [l]•s, starting at I] , then going to m. and so on, until 0
is reached. While picking up the nodes of l}J , the rest of the nodes in

Row i must be picked up. Given there are r. literals in Clause i,
1.

@ is constructed in such a way that from it at the most

can be picked up.

r. - 1 0 's
1.

As far as the m 's are concerned, our original solution was for

three literals per clause only. It has been generalized and substanti­

ally improved by Michael J. Fischer and Joel Seiferas. They gave the

following elegant solution for what the subgraph [IJ has to perform.

For example, assume we have 5 literals in Clause i, i.e. 5 @ 's

in Row i. These @ 's are connected with eJ as follows: (See the

figure on the next page.)

P.
l.

- 29 -

~ ~

[!) has nodes Pi, Qi, and Rij' j = 1, 2, 3, 4, 5. It is easy to

convince oneself that a path from P. to Qi can pick up all the R .. 's
l. l.J

and an arbitrary 1?:~1?~: subset of the fgJ Is, but never all the m 's. -

The generalisation for any nmnber of literals per clause is obvious.

Thus we have shown: Fis satisfiable iff G has a HC.

(3.6) Undirected HC ~~-~~• SAT.

We describe a very simple reduction requiring only linear space.

This reduction is best described by an example.

N2 E2 N3
Graph G: 0 0 G has nodes N. and edges E. i /J~

l. J ;

VE6 i = 1, 2, 3, 4, 5·
'

N1 o~ E7/oN4 j = 1, 2, 3, 4, 5, 6, 7.

ES 1/E4
0

NS

- 30 -

Consider Node N1• A HC must include

E1 and ES and not E
6

or E1 and E6 and not ES

or ES and E6 and not E1

Therefore we.associate a Boolean variable x. with Edge E., j = 1, 2, 3,
J J

4, 5, 6, 7, and write the following five formulas:

F1: x1x6x5 V x1x
5
x

6
V x

5
x

6
x1

F2: xlx2

F3: x2x3x6x7 V x2x
6
x3x

7
V x2x

7
x3x

6
V x

3
x

6
x2x7 V x

3
x

7
x2x6

F4: .X3X4

F
5

: x
4

x
5
x

7
V x

4
x

7
x

5
V x

5
x

7
x

4
•

It is easy to see that

F = Fl A F 2 A F3 A F 4 A F S

is satisfiable iff G has a HC.

V x
6
x

7
x2x3

Remark: The reduction can be changed easily to the reduction

directed HC ~ SAT •

Acknowledgements

Much of this work is due to the discussions I had with Prof. Albert

R. Meyer and Prof. Michael J. Fischer. Their help and interest are

greatly appreciated.

- 31 -

References:

[l] Stephen A. Cook, "The Complexity of Theorem-Proving Procedures",

Proceedings of Third Annual ACM Symposium on Theory of Compu­

ting, 1971.

[2] Stephen A. Cook, "A Hierarchy for Nondeterministic Time Complexity",

Proceedings of Fourth Annual ACM Symposium on Theory of Compu­

ting, 1972.

[3] J. Edmonds, R. M. Karp, "Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems", Report, Operations

Research Center, U. of C., Berkeley, July 1970.

[4] M. J. Fischer, A. R. Meyer, M. Paterson, "A Note on Disjunctive

Form Tautologies", unpublished paper, 1972.

[5] R. S. Garfinkel, G. L. Nemhauser, "Integer Programming", J. Wiley

and Sons, 1972.

{6] Marshall Hall, Jr., "An Algorithm for Distinct Representatives",

American Mathematical Monthly, Vol. 63, 1956.

[7] Richard M. Karp, "Reducibility among Combinatorial Problems",

in 'Complexity of Computer Computations', R. E. Miller and

J. W. Thatcher, ed., Plenum Press, N.Y.

[8] Eugene Lawler, Lecture Notes on Combinatorial Theory, unpublished,

1971/1972.

[9] Albert R. Meyer, Lecture Notes on Algorithms, unpublished,

Fall 1972.

[10] Michael Rabin, in "Complexity of Computer Computations" (panel

discussion), edited by R.E. Miller and J. W. Thatcher.

- 32 -

[11] Sartaj Sahni, "Some Related Problems from Network Flows, Game

Theory and Integer Programming", 13th Annual Symposium on

Switching and Automata Theory, 1972.

[12] L. J. Stockmeyer, "Planar 3-Colorability is Polynomial Complete",

to appear in SIGACT NEWS.

CS-TR Scanning Proiect
Document Control Form

Report # Le. s ,TR.- I I J

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

~ Technical Report (TR)

D Other:

D Technical Memo (TM}

Document Information Number of pages: jii)(r?- ; m1'6F:5)

Not to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are:

'Jg_ Single-sided or

D Double-sided

Print type:
0 Typewriter O Offset Press

Intended to be printed as :

O Single-sided or

~ Double-sided

0 Laser Print

0 Ink.Jet Printer ~ Unknown □ other: ______ _

Check each if included with document:

0 DOD Fonn 0 Funding Agent Fonn ~ Cover Page

D Spine O Printers Notes D Photo negatives

a Other: 6i6Li oGRAPl-t,'..._, D~,,.. S/-J,rt""I

Page Data:

Blank PageS(bypagenumber): __________ _

Photographsff onal Material (by page number): ________ _

Other <nca c1w1ipliol,1page number):
Description : Page Number:

Im AG£ m&Q' t (1- 1 c)) CA,N"#' xD BL~ f>AG £') d- - J;)_
(5'3 '3~ J S <-51-Jc::.owID.J:J ~ JE'f\ 13 i 8L 1 o -

Scanning Agent Signoff:

Date Received: LIJ:3 I.Ji Date Scanned: _}_1_.!j_1 q,

Scanning Agent Signature: __ ~ -.......,;;;;,....I\A,_1 /2'-+-'(}v........__J ~------­
\

Date Returned: _l_1 J) Jj£

Rev Q/84 DSILCS Document Conllol Form cmtonn.wd

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

~~-;~:­
~L-

~,.,,-. -~-~

darptrgLwpw Rev. 9/94

