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ON REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 

Abstract: A large class of combinatorial problems 

have been shown by Cook and Karp to be computationally 

equivalent to within a polynomial. We exhibit some 

new problems in this class, and provide simpler 

proofs for some of the known reductions. 
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CHAPTER l: THE PROBLEM. TERMIIDLOGY. 

(1.1) The Problem. 

(For the terminology see (1.3).) 

In 1970 S.A. Cook stated the problem whether a deterministic T.M. 

(Turing machine) can do in polynomial time what a nondeterministic one 

can do in polynomial time. His conjecture which has gained support since 

then is that the answer is negative. He showed that every language 

recognition problem (i.e. every decision problem) solvable in polynomial 

time by a nondeterministic T.M (we call this class of problems /NP) 

can be reduced in polynomial time to the satisfiability problem (i.e. 

whether for a given propositional formula there is a truth assigrnnent 

making it true) and also to a few other problems in /NJ' ( [l]). We call 

such problems polynomial-complete in NP or, for short, p-complete. 

In 1972, R.M. Karp listed 21 decision problems and showed that they 

are p-complete ([7]). In the meantime the family of known p-complete 

problems has been extended by S. Sahni ( CS Dept., Cornell Univ.) and 

others. 

Cook's problem has become an important issue in complexity theory 

([10)). Its solution would provide some important clues about how to 

approach a large class of notoriously intractable computational problems 

in mathematical programming, operations research, theorem proving, and 

related areas. 
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( 1. 2) Connnent. 

A general characterization of p-complete problems that allows one 

to decide algorithmically whether a combinatorial decision problem is 

p-complete or solvable in polynomial time w.r.t. (with respect to) the 

input lenght would be very desirable. There are deceptive relations 

between combinatorial problems. For example, a family {S.}, i€ {1,2, ... ,m}, 
1 

of finite subsets of some domain has- a system of distinct representatives 

iff for every finite k and any choice of k distinct indices i 1 , i 2 , ... ik, 

the subsets S. , S. , ... ,S. contain between them at least k distinct 
11 12 1k 

elements. One might be tempted to guess that the problem can only be 

decided by an exhaustive search. But Marshall Hall discovered an algorithm 

for its solution that takes only polynomial time ([6]). 

We started this work looking for some characterization of p-complete 

problems as mentioned above. The goal has not been achieved. In Chapter 2 

and 3 we are going to report on the by-products of our efforts. Both 

chapters have introductory sections. 

(1.3) Terminology. 

We assume the reader is familiar with the papers by Cook and Karp 

mentioned in (1.1). 

We are considering decision problems and always assume that they are 

given in some encoded form over a finite alphabet. So they become language 

recognition problems. 

Let P be a decision problem and L be some representation (encoding) 

of P over a finite alphabet I:. We have LC rJ'f' +). Every element of L 

+) ~ denotes the set of all finite strings that can be formed by 

elements of :r, including the empty string. 
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represents an instance of P. - Assume P' is a special case (a subproblem) 

of P, that means using the same encoding as for P, P' is represented by a 

language L' and L' c L. Then we call P' a contraction of P. - Analogously, 

if P" is a generalisation of P, that means using the same encoding as for 

P, P" is represented by a language L" and L" ::J L, then we call P" an 

extension of P. 

The class of problems solvable in polynomial time by a nondeterministic 

T.M. is denoted by /N'/P, the class of problems solvable in polynomial 

time by a deterministic T. M. by 7P • The time is always considered to be 

a function of the input length. We are only dealing with one-tape T.M. 's. 

Given a problem P1 as a language 1 1 over a finite alphabet :E1, and 

a problem P2 as a language L2 over a finite alphabet I;2• Assume there is a 

mapping f: ~ ➔ ~ s. t. for every w E: ~. f(w) E: 1 2 iff w E: L1. f is 

called a reduction from P1 to P2• If there is a deterministic T.M. that 

performs the mapping fin polynomial time, then we say P1 is Karp-reducible, 

or K-reducible to P2• For that we use the notation 

Some standard encodings of the problems involved are implicit in our use 

of this notation. 

Cook's notion of reducibility is different. Given two decision problems 

P and Q. Assume we have an oracle for solving Qin time 1. Then, according 

to Cook, Pis reducible to Qin polynomial time iff there is an algorithm 

which decides P and may use the oracle for Q (more than once) and runs in 

polynomial time. Then we say, Pis Cook-reducible, or C-reducible to Q, 

and we use the notation 

p 8--+ Q • 
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Obviously, when P ~ Q, then P €-+ Q. But it is not known whether 

C-reducibility implies K-reducibility. Elsewhere, when we write 'Pis 

reducible to Q ', we mean K-reducibility. 

Ifs is a finite string of literals, we denote the length of s, i.e. 

the number of literals ins, by v(s). 

Assume a decision problem P1 is K-reducible to P2. Assume Pi is given 

as a language L. over a finite alphabet :E., i = 1, 2. Assume the reduction 
i i 

f: ~ ➔ t; is performed by a T.M. M. Let T(w) be the time M takes to 

compute f(w), and let cr(w) be v(f(w)). We define 

t(n) = max ( T(w): v(w) ~ n} 

and call t(n) the reduction time off (w.r.t. M). 

We define 

s(n) = max { cr(w): v(w) ~ n 1 

and call s(n) the reduction space off (w.r.t. M). - Observe that s(n) is 

not the work space needed by M to perform f. 

Whenever we refer to time or space of a reduction we mean the reduction 

time or the reduction space, resp., as defined above. 

If t(n) is linear (quadratic), we say f is time-linear (time-quadratic). 

If s(n) is linear (quadratic), we say f is space-linear (space-quadratic). 

Assume the reduction P1 ~ P2 is such that f restricted to L1 is a 

bijective mapping onto L2, and f-l gives a reduction P
2 
~ P1• Then we 

call P1 isomo~phic to P2 w.r.t. f. 

Assume there is a problem P € IN'if> s.t. for every Q € !)JP there is a 

reduction Q K---+ P. Then we call P K-p-complete in ff.Jf , or sometimes 

just p-complete. - If there is a problem P' € fN ffe s.t. for every Q € hJiP 

there is a reduction Q ~ P', we call P' C-p-complete (in h./ P ). 



- 7 -

We are going to use Karp's names for the p-complete problems he listed 

in [7], except we call SUBSET SUM what he calls KNAPSACK. These names will 

be written in capitals. - A p-complete contraction of SAT is the one where 

we confine ourselves to propositional formulas in conjunctive form. We call 

this problem·CF-SAT. - CF-SAT with at most three literals per clause or 

exactly three literals per clause is also p-complete. We refer to both cases 

by 3-CF-SAT and specify in the context which one we mean. 

A network is a graph with weighted arcs, where the weights are non­

negative integers. The network may have sources with specified maximum 

(integer) supplies and sinks with specified minimum (integer) demands. 

(1.4) Remark. 

Though other parameters are sometimes used, it js connnon to give the 

computational complexity (in time and space) of a problem as a function 

of the input length v(w), where w is the input, i.e. an encoding of the 

given instance of the problem. Hence, this computational complexity depends 

on the encoding and thus on the alphabet!; chosen. However, it turns out 

that within a range of encodings for a given problem, encodings that we 

informally would like to call 'standard encodings' (cf. (3.2)), the 

computational complexity is only slightly affected when the encoding 

is being changed. If the computational complexity is of some polynomial 

degreed, a change of the encoding may lead to a polynomial degree of 

2d or 3d. But a change of the encoding will not result in converting a 

complexity that is of higher than polynomial degree into a complexity 

of polynomial degree, and vice versa. In this sense our different encodings 

are invariant. The only exception to this remark is the difference between 
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unary ( or tally) and radix notation for integers which may differ 

exponentially. We shall always asstnne integers are represented in radix 

notation, say base two for definiteness. 

We doubt that the length parameter vis always the most suitable one 

for expressing the computational complexity of the problems with which 

we are dealing. Probably, a parameter or a vector of parameters closer to 

the logical structure of our decision problems would be more revealing 

in particular cases. But length will be our main parameter in order to 

maintain comparability among the several differently structured problems 

we consider. We do not know a better one for this purpose. 
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Do this for every clause and form the union of all the unions (i). Let 

1 
B denote this union. Then, A is satisfiable iff Bis 3-satisfiable. 

(2.2) NWF with two flow intervals. 

We are going to consider network flows (l'MF). Always assume there is 

one sources and one sink tin the network. All pertinent data are supposed 

to be integer valued. 

Assume for a flow f. along Arc i we have the constraints O ~ f. ~ a., 
i i i 

where a. is a nonnegative integer. There is an algorithm by Ford-Fulkerson­
i 

Edmonds to determine the maximal feasible flow in the network. The 

3 
computational complexity of the algorithm is O(n ), where n is the number 

of nodes ([3]). This algorithm starts with a feasible flow, e.g. the 

zero-flow, and augments it step by step. 

Now allow upper and lower bounds for the flows f., s.t. 
i 

( 0 <:;;) b. ~ f. ~ a. 
i i i 

for every arc i. Here the first question is whether there is a feasible 

flow at all. But one can start with the zero flow and apply the algorithm 

mentioned before repeatedly, namely once for increasing a flow f. along 
i 

Arc i, given f. < b., in order to get b.<:;; f. (~a.), and, at worst, 
i i i i i 

once for every i. If the computation becomes stymied no feasible flow 

exists. The overall computation is, at worst, O(n7
). The procedure was 

outlined by Lawler ([8]). 

To get a p-complete problem we allow two flow intervals for an arc i 

such that either d. ~ f ~ C 
i i i 

or b <:;; f. ~ a 
i i i 

for given a., b., c., d;; 
i i i .L 

a. z b. z c. z d .. The decisive question is whether there is a feasible 
i i i i 

flow. This problem is called NWF with two flow intervals. 

The problem is obviously in t,Jf. We show 
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SUBSET SUM r~<-~>➔ I:wJF with two flow inte,vals 

Given a set of positive integers ' s n 

and a positive integer s The Subset Sum Problem: Is there a subset 

S' of S such that ~ s. = s ? - For the reduction we use the follow­
s._ E- 5' l 

ing network : 

[O], [s 

Source s r [ s ] Sink t 

[OJ, [s ] 
n 

There are narcs from s tor the ith of which allows a flow of value 0 

ors .. From r tot the flow has to have values. The Subset Sum Problem 
l 

has a solution iff there is a feasible flow from s tot in the network. 

i1.:..1l CTP with quadratic optimization function. 

Given a network with sources and sinks. A source may have a limited 

supply, and at each sink a demand has to be satisfied. An arc must carry 

a flow between O and some positive upper bound, the capacity of the arc. 

There is a cost c. per unit associated with the flow f. along the 
l l 

directed arc i. 

The problem whether there is a flow of size v with a cost not excee­

ding k, for given v and k, is a wellknown linear progrannning problem, 

often called the Capacitated Transshipment Problem ( CTP ). (We assume 

that all the pertinent data are integer valued.) If there is a solution, 

then there is also an integer solution ([5]). The optimization function is 
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where A is the set of arcs of the network. 

Remark: Lawler gives an algorithm for CTP with a computational 

complexity O(v.n2
), where n is the number of nodes in the network ([8]). 

But since we assume that the data including v are given in radix notation, 

the algorithm is not polynomial-time bounded with respect to the input 

length. We do not know whether CTP is in 1P. 
In CTP, an arc i that carries a flow of value f. contributes c.f. 

1 1 1 

to the cost. Now we allow this cost contribution to be quadratic inf.: 
1 

2 
c

2
., f. 
1 1 

+ c 1 .. f. 1 1 
+ 

where c21 , c 1i and c
0

i are the coefficients that determine the cost 

contribution of arc i. So the optimization function becomes quadratic 

inthef.'s. 
1 

The problem whether there is a flow v of cost zero (for given v) 

is K-p-complete. We call this problem CTP with quadratic optimization 

function. - (We are considering integer data and integer solutions only.) 

To prove this we show the reduction 

SUBSET SUM I~(----'>► CTP with quadratic optimization 
function • 

The problem is obviously in IN JP.- Given a set of positive integers 

•••• , s } ' n 

and a positive integers. The Subset Sum Problem: Is there a subset S' 

of S, such that !; s. s ? 
s~eS' 1 

For the reduction we construct the following network: 

Source 
with 
supply 

s 

Sink 
with 
demand 

s 
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There are narcs between the source and the sink. Along Arc i the flow 

value must be in the interval [O, s.], i 
]_ 

Consider the cost function 

n 
~ 

i=l 
f. (s. - f.) . 

]_ ]_ ]_ 

1, 2, ... , n. 

The Subset Sum Problem has a solution iff there is a feasible flow of 

sizes with cost zero. 

(2.4) Sunnnary. 

Theorem 1: The following problems are K-p-complete in !'N f: 

a) 

b) 

c) 

~-DF-SAT, 

WF with two flow intervals , 

CTP with quadratic optimization function. 

The definitions and proofs are given in (2.1), (2.2), and (2.3). 

(2.5) 3-NODE COVER is p-complete. 

In the Node Cover Problem ( NODE COVER) we have a graph G and an 

arbitrarily given positive integer k. The question is whether all the 

arcs of G can be covered by at most k nodes (whether there is a node 

cover of size k). 

Now assume k is a function of the number of nodes n. This is a 

different problem that we denote by NODE COVER(k(n)). Here the decisive 

question is whether there is a node cover of size rk(n)l. For example, 

NODE COVER(¥) is the problem that asks whether there is a node cover 

of size r ¥ 7. ( We let n always denote the number of nodes in the 

graph.) 
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x
1 

for the first x, x
2 

for the second x, x
3 

for the third x, x
4 

for the 

first x, and x
5 

for the second x - Extend F by 

/\ (x V x
1

) /\ (x
1 

V x
2

) /\ (x
2 

V x
3

) /\ (x
3 

V x
4

) /\ (x
4 

V x
5

) /\ (x
5 

V x), 

that means 

/\ ( x ➔ x
1 
➔ x

2 
➔ x

3 
➔ x

4 
➔ x

5 
➔ x ) . 

Do this for all variables occuring in F to get F'. Make sure that a new 

variable is introduced for every literal of F. 

Example: 

F = (x V y V z) /\ (x V y V z) /\ (x V y V z) 

F' = (xl V Y1 V zl) /\ (x2 V Y2 V z2) /\ (x3 V Y3 V z
3

) 

/\ (x V x
1

) /\ (xl V x2) /\ Cx2 V x
3

) /\ Cx3 V x) 

/\ (y V Y1) /\ (y 1 V y 2) /\ (y2 V Y3) /\ (y3 V y) 

/\ (z V z
1

) /\ (zl V z2) /\ Cz2 V z3) /\ Cz3 V z) 

Assume F has 3p literals and m different propositional variables. 

Then, F' has 

3p + (2•3p + 2m) = 9p + 2m 

literals each of which is incompatible with at most three others. Hence, 

if G' is the corresponding graph of F', we have G' € (1;
3 

. 

Obviously, Fis satisfiable iff F' is satisfiable. F' is satis­

fiable iff G' has a node cover of size 2p + (3p + m). This follows 

immediately from the structure of F' and from the following reductions 

as given by Karp ([7]): 

CF-SAT K~-~>~ CLIQUE 1~,-~~~ NODE COVER. 

i1..:._§2_ NODE COVER (cm) is p-complete. 

We refer to the definitions given in (2.5). 

From Karp's reductions 
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CF-SAT ~ CLIQUE K :, NODE COVER 

it follows irmnediately that NODE COVER (2n/3) is p-complete. The 

following theorem is a generalisation thereof. 

Theorem 3: For any fixed rational as (0, 1), 

NODE COVER ( an ) is K-p-complete in /1/P. 

Proof of Theorem 3: We are going to show 

3-CF-SAT ~ NODE COVER (an) 

Let F be a propositional formula in conjunctive form with exactly 

three literals per clause. Assume F hasp clauses. Let G be the corre­

sponding graph of F. G has n = 3p nodes. 

We know from Karp's reductions that Fis satisfiable iff G has a 

node cover of size 2n/3 . 

2 
First, assume a E (0, 3). We would like to reduce NODE COVER (2n/3) 

to NODE COVER (an). For that, add ql isolated nodes to G; call the 

new graph c
1

. Then, c
1 

has 3p + q
1 

nodes. There is a node cover of 

2p nodes for Giff there is a node cover of 2p nodes for G
1

. We want 

I a• (3p + q
1

) l = 2p , or 

I CY• (n + q 1) l = ~n • 

According to this equation, q 1 is essentially a linear function of n. 

2 
Now assume as ( 3, 1). G has n = 3p nodes. Add a complete graph 

of q
2 

nodes to G; call the extended graph G
2

. G has a node cover of 

2p nodes iff c2 has a node cover of 2p + q
2 

- 1 nodes. We want 

1 a-(3p + q
2

) 7 

I CY· ( n + q
2

) l 

1 

1 

or 

Obviously, q2 is essentially a linear function of n. 



- 17 -

lb.]J_ NODE COVER (..!!!,/n1) is p-cornplete. 

With respect to Theorem 3 one may ask for further generalisations. 

Our next theorem gives one answer. 

Theorem 4: Given a fixed integer m greater than 1. 

a) NODE COVER (~) is K-p-cornplete. 

b) NODE COVER ( n - m/n7) is K-p-complete. 

Proof: For example, we can reduce NODE COVER (n/2) to the problems 

given in a) and b). Then the proof is analogous to the proof of Theorem 

3, i.e. we add isolated nodes or complete graphs to the given graph 

to get the desired ratio between n and the size of the node cover. 

To carry out the reductions, we start with a graph G which has n 

nodes. Assume n is even ( otherwise add an isolated node). 

In Case a) we add q
1 

isolated nodes to G and call the new graph c
1

. 

c1 has n + q
1 

nodes. G has a node cover of size n/2 iff c
1 

has a 

node cover of size n/2. Thus we want 

In Case b) we add a complete graph with q
2 

nodes to G and call the 

new graph c2 . c2 has n + q
2 

nodes. G has a node cover of size n/2 iff 

c2 has a node of size n 1 Thus we want cover - + q - . 2 2 
n + 1 n + q2 -~ 2 q2 - ' 

or 

n + 1 ~ 2 

Remark: Since both q
1 

and q
2 

are m 
O( n ), the reduction space 

its elf is 
m 

O( n ). We do not know better reductions and conjecture 

that the reduction space for any reduction 

NODE COVER ( n/2 ) ~ NODE COVER ( Vn7 ) 
m 

is 0( n ). 
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the problem is whether there is a subset of k columns that covers all 

rows. - One could fonnulate dual problems in the same way for SET 

PACKING and SET COVERING. 

(2.9) 3-CHROMATIC NUMBER is p-complete. 

The problem 3-CHROMATIC NUMBER asks whether a given graph is 

three-colorable. It was shown by Larry Stockrneyer that this problem 

and the contraction restricting it to planar graphs are p-complete 

([12]). 
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CHAPTER 3: ON REDUCTIONS AMONG K-p-COMPLETE PROBLEMS. 

(3.0) In t~is chapter we report some efforts made to investigate the 

computational complexity of the reductions among p-complete problems. 

A motivation is given in (3.1). In Sections (3.2) and (3.3) we give 

a few observations on encoding and space complexity. The rest of 

the chapter exhibits a few new reductions we found among known p-com­

plete problems. 

(3.1) By Cook's Reduction Theorem ([l]) every problem solvable in 

nondeterministic polynomial time is K-reducible in polynomial time 

to SAT. The reduction time (i.e. the polynomial) depends on the 

problem, i.e. on the special nondeterministic T.M. and thus also on 

the encoding. 

Let Il be a problem having deterministic time lower bound r 
r 

n • 

Assume, for example, there is a reduction 

reduction time t (n) r and reduction space 

Il K---+ SAT 
r 

s (n). 
r t r 

that has 

and s r 

polynomials inn. Asstm1e SAT has (deterministic) time upper bound 

'T (n). Then, 

t (n) + 'T(s (n)) 
r r 

is an upper bound on the deterministic time complexity of TI • r 

are 

If degree t (n) < r 
r 

r 
, then -r(s (n)) must be at least O(n ). r 

Hence, 'T must be at least o( nr/deg(sr>). This observation may 
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allow us to prove large polynomial lower bounds on complete problems 

such as SAT even if we are unable to prove that SAT t 1P • 

Therefore we were looking for problems with detenninistic poly­

nomial time lower bounds of high degree that can be reduced to some 

p-complete problem, e.g. to SAT, easily, at least such that it takes 

space bounded by a lower degree polynomial. We did not achieve what 

we wanted but became interested in the computational complexity of 

the reductions. 

(3,2) Time and space complexity of a reduction depends on encodings 

of problems as well as on the reduction device. Here we use one-tape 

T.M.'s. 

The objects of the known p-complete problems are propositional 

formulas, graphs, graphs with weighted arcs, finite sets of integer 

equations, or sets of subsets of a finite domain. For each of these 

problems we have two or three encodings that we would like to call 

standard encodings. We are going to outline what kind of encodings 

we have in mind. 

Assume we have in each case some convenient finite alphabet :E. 

When we distinguish items of the same type, like variables or nodes, 

we use indexing and binary notation. For example, we could represent 

five nodes of a graph by NO, Nl, NlO, Nll, NlOO, where Ne :E. 

Integers are represented in binary notation. 

In case of propositional fonnulas we think about the following 

encodings: 

clause-by-clause, where essentially every clause is a list of 

the literals occuring in it; 
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the incidence matrix given row by row, consisting of O's and 

l's, one row for each clause and one double column for each 

variable ( a double column because the variable may occur 

affirmative or negative); 

an encoding like the previous one, but O's, +l's and -l's in the 

matrix and a single column for each variable, using +l for 

an affirmative and -1 for a negative occurence of a variable. 

In case of graphs we think about the encodings: 

a list of all nodes followed by a list of all arcs, an arc given 

as a pair of nodes; 

the incidence matrix given row by row using O's and l's, rows 

for the nodes and columns for the arcs; 

the adjacency matrix given row by row. 

In case of subsets of a finite domain we think about the encodings: 

a list of all subsets, where every subset is a list of the elements 

occuring in it; 

the incidence matrix given row by row, a row for every subset 

and a column for every variable in the domain. 

For a set of equations we think about the encodings: 

equation-by-equation; 

the coefficient matrix of the system of equations, given row 

by row. 

These are essentially the encodings we refer to when we use the 

term 'standard_encodin8'· 

(3.3) The reduction space of the reductions within the family of 

p-complete problems was considered in some detail. One can find standard 
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p-complete problems given in some standard encoding, vis not linear 

(on a one-tape T.M.), but in many cases quadratic in the input length 

n, sometimes even worse but not exceeding O(n3 ). 

Some_new_reductions_among_known_e-comelete_eroblems 

(3.4) 3-CF-SAT ~~--> EXACT COVER 

Given a propositional formula Fin conjunctive form with exactly 

three literals per clause. Assume F has m clauses and r variables occur 

( uncomplemented or complemented). Let C. be the clauses, i = 1, 2, •• 
]_ 

• • ' m , and x. be the variables, 
J 

j = I, 2, ••• , r. Form the following 

array: 

I - I 
- ,- -

XI xl x2 x2 x3 I x3 X I X 
I I I r I r 

I I -
I I 

Cl X I X X I 
X 

I I 
I I I I 

c2 I X I I 
X I X 

I I I I 

c3 X I I X I X I X 
I I I I . I I ! I 

. 
. I I I . 

1 
! . I I I I . 

I 
I I i I 

C I I I X I X 
m 

I I I I 

X X X X 

There is a row for every clause Ci and a double column for every 

pair (x., x.). A cross X occurs in Row C. and Column x. (or x.) 
J J ]_ J J 

iff in Clause i the literal x. (or x.) occurs. In addition, we have 
J J 

one cross for every row in an additional column at the right hand 

side, and one cross for every double column at the bottom of the array. 

The domain of the Exact Cover Problem is the set S of all these 

crosses, i.e. each cross is an element in S. We form a system of subsets 
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3 m ~ 2 r. This shows that our reduction w.r.t. the encodings 

outlined above is space-linear. 

2. A space-linear reduction SAT &----+ 3-CF-SAT was given by 

Fischer, Meyer and Paterson ([4]). Hence we have a space-linear 

reduction SAT ~ EXACT COVER. 

3. It was shown by Michael J. Fischer that our reduction 

3-CF-SAT ~ EXACT COVER can be modified to a reduction 

CF-SAT K:---+- EXACT COVER that is quadratic in space. 

(3.5) + CF-SATK ~-~~~ directed RC ). 

Karp ([7]) gives a reduction NODE COVER ~ directed RC 

that is rather complicated and quadratic in space. The reduction we 

are going to describe here is linear in space. 

Given a propositional formula Fin conjunctive form. AsstDile F 

has m clauses Ci, i = 1, 2, ••• , m, and r variables x. occur in F, 
J 

j = 1, 2, ••• , r. - Essentially we use the same array as the one used 

in (3.4). We have a row i for every clause Ci and columns for x1, x1, 

x2, x2, ••• , xr, xr. We draw a box ~ in a column in Row i iff 

the literal corresponding to this column occurs in Ci. In addition we 

draw a cross Aj below and a cross Bj above each double column j, 

j = 1 , 2 , ••• , r, and a box gJ for each row i , i = 1 , 2 , ••• , m, 

on the right hand side of the array. 

~P-1?1~= F = cl/\ c2 /\ c3 I\ C4 , 

Cl = xl V x
2 

V x
5 

, c2 =x 
1 

V x
3 

V x
4 

, 

c3 = x2 V x
3 V XS , C4 = X3 V x4 V XS . 

+) HC = Hamiltonian Circuit. 
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From the array we construct a graph G. The crosses will become nodes, 

and the boxes ~ and ill are going to be subgraphs of G. 

Each subgraph IBJ is isomorphic to the following one having three 

nodes: 

There is one chain of arcs upwards along each column of the array, 

entering the subgraphs fID at 1 and leaving them at 3. For a double 

column the two chains start at Aj on the bottom and end at Bj on the 

top. Bj is connected to Aj+l' j = 1, 2, ••• , r-1, and Br to (!J by 

arcs. 

There are arcs from l!J to the ~ 's of Row i entering an @ 

always at its Node 3, and we have an arc from each fRJ of Row i to 

IIJ leaving the l8J at its Node 1. The @ 's are described below, 

but each @ has - among other nodes - an entrance node Pi and an exit 

node Qi. Br is connected to P
1

, Qi to Pi+l for i = 1, 2, ••• , m-1, and 
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The idea of the construction is the following. A RC must go 

through A1 and then follow either Column x
1 

or Column x
1 

up to B1. 

Observe that the structure of the subgraphs [g) and the way they are 

connected with each other along the columns forces the path to proceed 

along one and the same column after A. is passed until B. is reached. 
J J 

Depending on the truth assigrnnent, we choose Column x 1 if x 1 is true, 

and Column x 1 if x
1 

is false. From B
1 

we come to A
2 

and go up Column x 2 

if x2 is true and up Coltmm x
2 if x2 is false, and so on. 

After the path has reached B it must pick up all the nodes in 
r 

the [l]•s, starting at I] , then going to m. and so on, until 0 
is reached. While picking up the nodes of l}J , the rest of the nodes in 

Row i must be picked up. Given there are r. literals in Clause i, 
1. 

@ is constructed in such a way that from it at the most 

can be picked up. 

r. - 1 0 's 
1. 

As far as the m 's are concerned, our original solution was for 

three literals per clause only. It has been generalized and substanti­

ally improved by Michael J. Fischer and Joel Seiferas. They gave the 

following elegant solution for what the subgraph [IJ has to perform. 

For example, assume we have 5 literals in Clause i, i.e. 5 @ 's 

in Row i. These @ 's are connected with eJ as follows: (See the 

figure on the next page.) 



P. 
l. 
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~ ~ 

[!) has nodes Pi, Qi, and Rij' j = 1, 2, 3, 4, 5. It is easy to 

convince oneself that a path from P. to Qi can pick up all the R .. 's 
l. l.J 

and an arbitrary 1?:~1?~: subset of the fgJ Is, but never all the m 's. -

The generalisation for any nmnber of literals per clause is obvious. 

Thus we have shown: Fis satisfiable iff G has a HC. 

(3.6) Undirected HC ~~-~~• SAT. 

We describe a very simple reduction requiring only linear space. 

This reduction is best described by an example. 

N2 E2 N3 
Graph G: 0 0 G has nodes N. and edges E. i /J~ 

l. J ; 

VE6 i = 1, 2, 3, 4, 5· 
' 

N1 o~ E7/oN4 j = 1, 2, 3, 4, 5, 6, 7. 

ES 1/E4 
0 

NS 
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Consider Node N1• A HC must include 

E1 and ES and not E
6 

or E1 and E6 and not ES 

or ES and E6 and not E1 

Therefore we.associate a Boolean variable x. with Edge E., j = 1, 2, 3, 
J J 

4, 5, 6, 7, and write the following five formulas: 

F1: x1x6x5 V x1x
5
x

6 
V x

5
x

6
x1 

F2: xlx2 

F3: x2x3x6x7 V x2x
6
x3x

7 
V x2x

7
x3x

6 
V x

3
x

6
x2x7 V x

3
x

7
x2x6 

F4: .X3X4 

F
5

: x
4

x
5
x

7 
V x

4
x

7
x

5 
V x

5
x

7
x

4 
• 

It is easy to see that 

F = Fl A F 2 A F3 A F 4 A F S 

is satisfiable iff G has a HC. 

V x
6
x

7
x2x3 

Remark: The reduction can be changed easily to the reduction 

directed HC ~ SAT • 
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