

Tius blank page was inserted to preserve pagination.

MAC TR-113

ON REDUCTIBILITY AMONG COMBINATORTAL PROBLEMS

Paul Peter Herrmann

December 1973

This research was supported by the National
Science Foundation under research grant GJ-34671

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

-2 -

ON REDUCIBILITY AMONG COMBINATORIAI PROBLEMS

Abstract: A large class of combinatorial problems
have been shown by Cook and Karp to be computationally
equivalent to within a polynomial. We exhibit some

new problems in this class, and provide simpler

proofs for some of the known reductions.

CHAPTER 1: THE PROBLEM. TERMINOLOGY.

(1.1) The Pfoblem.

(For the terminology see (1.3).)

In 1970 S.A. Cook stated the problem whether a deterministic T.M.
(Turing machine) can do in polynomial time what a nondeterministic one
can do in polynomial time. His conjecture which has gained support since
then is that the answer is negative. He showed that every language
recognition problem (i.e. every decision problem) solvable in polynomial
time by a nondeterministic T.M (we call this class of problems NP)
can be reduced in polynomial time to the satisfiability problem (i.e.
whether for a given propositional formula there is a truth assigmment
making it true) and also to a few other problems in NP ([1]). We call
such problems polynomial-complete in NP or, for short, p-complete.

In 1972, R.M. Karp listed 21 decision problems and showed that they
are p-complete ([7]). In the meantime the family of known p-complete
problems has been extended by S. Sahni (CS Dept., Cornell Univ.) and
others.

Cook's problem has become an important issue in complexity theory
([10]). Its solution would provide some important clues about how to
approach a large class of notoriously intractable computational problems
in mathematical programming, operations research, theorem proving, and

related areas.

(1.2) Comment.

A general characterization of p-complete problems that allows one
to decide algorithmically whether a combinatorial decision problem is
p-complete or solvable in polynomial time w.r.t. (with respect to) the
input lenght would be very desirable. There are deceptive relations
between combinatorial problems. For example, a family {Si}, ie {1,2,...,m),
of finite subsets of some domain has a system of distinct representatives

iff for every finite k and any choice of k distinct indices il’ .1

12" k’

the subsets S, , S. ,...,S, contain between them at least k distinct
i’ i, i
elements. One might be tempted to guess that the problem can only be
decided by an exhaustive search. But Marshall Hall discovered an algorithm
for its solution that takes only polynomial time ([6]).
We started this work looking for some characterization of p-complete
problems as mentioned above. The goal has not been achieved. In Chapter 2

and 3 we are going to report on the by-products of our efforts. Both

chapters have introductory sections.

(1.3) Terminology.

We assume the reader is familiar with the papers by Cook and Karp
mentioned in (1.1).

We are considering decision problems and always assume that they are
given in some encoded form over a finite alphabet. So they become language
recognition problems.

Let P be a decision problem and I be some representation (encoding)

+
of P over a finite alphabet 2. We have L Ciz*). Every element of L

+) Z* denotes the set of all finite strings that can be formed by

elements of T, including the empty string.

represents an instance of P. - Assume P' is a special case (a subproblem)
of P, that means using the same encoding as for P, P' is represented by a
language L' and L' € L. Then we call P' a contraction of P. - Analogously,
if P" is a generalisation of P, that means using the same encoding as for
P, P" is represented by a language L" and 1" 2 1, then we call P" an
extension of P.

The class of problems solvable in polynomial time by a nondeterministic
T.M. is denoted by NP ,» the class of problems solvable in polynomial
time by a deterministic T.M. by ”) . The time is always considered to be
a function of the input length. We are only dealing with one-tape T.M.'s.

Given a problem P1 as a language L. over a finite alphabet ¥., and

1

over a finite alphabet Zé. Assume there is a

a problem P, as a language L

2 2
mapping f£: ET - Z; s.t. for every w € ZT, f(w) € L2 iffwe Ll' f is
called a reduction from P1 to Pz. If there is a deterministic T.M. that

performs the mapping £ in polynomial time, then we say P1 is Karp-reducible,
or K-reducible to P2. For that we use the notation

P k— P, .

1 2

Some standard encodings of the problems involved are implicit in our use
of this notation.

Cook's notion of reducibility is different. Given two decision problems
P and Q. Assume we have an oracle for solving Q in time 1. Then, according
to Cook, P is reducible to Q in polynomial time iff there is an algorithm
which decides P and may use the oracle for Q (more than once) and runs in
polynomial time. Then we say, P is Cook-reducible, or C-reducible to Q,

and we use the notation

Obviously, when P k— Q, then P €~ Q. But it is not known whether
C-reducibility implies K-reducibility. Elsewhere, when we write 'P is
reducible to Q ', we mean K-reducibility.

If s is a finite string of literals, we denote the length of s, i.e.
the number of literals in s, by v(s).

Assume a decision problem Py is K-reducible to P,. Assume Pi is given
as a language Li over a finite alphabet Zﬁ, i =1, 2, Assume the reduction
f: ZT'* Zg is performed by a T.M. M. Let T(w) be the time M takes to
compute f(w), and let o(w) be v(f(w)). We define

t(n) =max { T(w): V(w) < n}

and call t(n) the reduction time of f (w.r.t. M).

We defihe
s(n) = max { g(w): v(w) < n}

and call s(n) the reduction space of f (w.r.t. M). - Observe that s(n) is

not the work space needed by M to perform f.

Whenever we refer to time or space of a reduction we mean the reduction
time or the reduction space, resp., as defined above.

If t(n) is linear (quadratic), we say f is time-linear (time-quadratic).
If s(n) is linear (quadratic), we say f is space-linear (space-quadratic).

Assume the reduction P, k— P_ is such that f restricted to L, is a

1 2 1

-1
bijective mapping onto L2, and £ = gives a reduction P2 k— Pl' Then we
call P1 isomorphic to P2 w.r.t., f.
Assume there is a problem P € NP s.t. for every Q e NP there is a

reduction Q K—> P. Then we call P K-p-complete in NP , or sometimes

just p-complete. - If there is a problem P' € NP s.t. for every Q € NP

there is a reduction Q 6—> P', we call P' C-p-complete (in M P).

We are going to use Karp's names for the p-complete problems he listed
in [7], except we call SUBSET SUM what he calls KNAPSACK. These names will
be written in capitals. - A p-complete contraction of SAT is the one where
we confine ourselves to propositional formulas in conjunctive form. We call
this problem CF~SAT. - CF-SAT with at most three literals per clause or
exactly three literals per clause is also p-complete. We refer to both cases
by 3-CF-SAT and specify in the context which one we mean.

A network is a graph with weighted arcs, where the weights are non-
negative integers. The network may have sources with specified maximum

(integer) supplies and sinks with specified minimum (integer) demands.

(1.4) Remark.

Though other parameters are sometimes used, it is common to give the
computational complexity (in time and space) of a problem as a function
of the input length v(w), where w is the input, i.e. an encoding of the
given instance of the problem. Hence, this computational complexity depends
on the encoding and thus on the alphabet £ chosen. However, it turns out
that within a range of encodings for a given problem, encodings that we
informally would like to call 'standard encodings' (cf. (3.2)), the
computational complexity is only slightly affected when the encoding
is being changed. If the computational complexity is of some polynomial
degree d, a change of the encoding may lead to a polynomial degree of
2d or 3d. But a change of the encoding will not result in converting a
complexity that is of higher than polynomial degree into a complexity
of polynomial degree, and vice versa. In this sense our different encodings

are invariant. The onlyexeeption to this remark is the difference between

unary (or tally) and radix notation for integers which may differ
exponentially. We shall always assume integers are represented in radix
notation, say base two for definiteness.

We doubt that the length parameter v is always the most suitable one
for expressing the computational complexity of the problems with which
we are dealing.‘Probably, a parameter or a vector of parameters closer to
the logical structure of our decision problems would be more revealing
in particular cases. But length will be our main parameter in order to
maintain comparability among the several differently structured problems

we consider, We do not know a better one for this purpose.

- 10 -

Do this for every clause and form the union of all the unions (i). Let

1
B denote this union. Then, A is satisfiable iff B is é—satisfiable.

(2.2) MWWF with two flow intervals.

We are going to consider network flows (MF). Always assume there is
one source s and one sink t in the network. All pertinent data are supposed
to be integer valued.

Assume for a flow fi along Arc i we have the constraints 0 < fi < ai’
where a; is a nonnegative integer. There is an algorithm by Ford-Fulkerson-
Edmonds to determine the maximal feasible flow in the network. The
computational complexity of the algorithm is O(n3), where n is the number
of nodes ([3]). This algorithm starts with a feasible flow, e.g. the
zero-flow, and augments it step by step.

Now allow upper and lower bounds for the flows fi’ s.t.

(0=) bi < fi < a;
for every arc i. Here the first question is whether there is a feasible
flow at all. But one can start with the zero flow and apply the algorithm
mentioned before repeatedly, namely once for increasing a flow fi along
Arc i, given fi < bi’ in order to get biS fi (< ai), and, at worst,
once for every i. If the computation becomes stymied no feasible flow
exists. The overall computation is, at worst, O(n7). The procedure was
outlined by Lawler ([8]).

To get a p-complete problem we allow two flow intervals for an arc i
such that either di < fi < ci or bi < fi < ai for given s bi’ Ci’ di;
a; > bi >c, = di' The decisive question is whether there is a feasible

flow. This problem is called WF with two flow intervals.

The problem is obviously in NP. We show

- 11 -

SUBSET SUM K——= NMWF with two flow intervals

Given a set of positive integers S = { S1s S5 cee 5 S 1,

and a positive integer s . The Subset Sum Problem : Is there a subset

S' of S such that 2 s. =135 ? -~ For the reduction we use the follow-
s,€§'

ing network :

-»s Sink t

Source s

There are n arcs from s to r the ith of which allows a flow of value O
or Si' From r to t the flow has to have value s. The Subset Sum Problem

has a solution iff there is a feasible flow from s to t in the network.

(2.3) CTP with quadratic optimization function.

Given a network with sources and sinks. A source may have a limited
supply, and at each sink a demand has to be satisfied. An arc must carry
a flow between 0 and some positive upper bound, the capacity of the arc.
There is a cost c; per unit associated with the flow fi along the
directed arc 1i.

The problem whether there is a flow of size v with a cost not excee-
ding k, for given v and k, is a wellknown linear programming problem,
often called the Capacitated Transshipment Problem (CTP). (We assume
that all the pertinent data are integer valued.) If there is a solution,
then there is also an integer solution ([5]). The optimization function is

p £, c: s
LeA

- 12 -

where A is the set of arcs of the network.

Remark: Lawler gives an algorithm for CTP with a computational
complexity O(v.nz), where n is the number of nodes in the network ([8]).
But since we assume that the data including v are given in radix notation,
the algorithm is not polynomial~-time bounded with respect to the input
length. We do not know whether CTP is in P.

In CTP, an arc i that carries a flow of value fi contributes c. f,
to the cost. Now we allow this cost contribution to be quadratic in f£,:

2
¢ fy * eyt fy * S o

and c¢,, are the coefficients that determine the cost

where Coss C14 0i

contribution of arc i. So the optimization function becomes quadratic
in the f,'s.
i
The problem whether there is a flow v of cost zero (for given v)

is K-p-complete. We call this problem CTP with quadratic optimization

function. - (We are considering integer data and integer solutions only.)
To prove this we show the reduction

SUBSET SUM k——> CTP with quadratic optimization
function .

The problem is obviously in ”JH).- Given a set of positive integers
S = { §1s Sgs eeres sn},
and a positive integer s. The Subset Sum Problem: Is there a subset S'
of S, such that X s, = s ?

e 1
s, eS8

For the reduction we construct the following network:

[0,s,]
Source) Sink
with with
supply \, demand

S s

- 13 -

There are n arcs between the source and the sink. Along Arc i the flow
value must be in the interval [0, Si]’ i=1,2, ..., n

Consider the cost function

fi (si - fi)

IRYE

i=1
The Subset Sum Problem has a solution iff there is a feasible flow of

size s with cost zero.

(2.4) Summary.

Theorem 1: The following problems are K-p-complete inN ’P:
1
a) 3-DF-SAT ,
b) MF with two flow intervals ,
c¢) CTP with quadratic optimization function .

The definitions and proofs are given in (2.1), (2.2), and (2.3).

(2.5) 3-NODE COVER is p-complete.

In the Node Cover Problem (NODE COVER) we have a graph G and an
arbitrarily given positive integer k. The question is whether all the
arcs of G can be covered by at most k nodes (whether there is a node
cover of size k).

Now assume k is a function of the number of nodes n. This is a

different problem that we denote by NODE COVER(k(n)). Here the decisive

question is whether there is a node cover of size rk(n)w. For example,
NODE COVER(g) is the problem that asks whether there is a node cover

of size | g 1. (We let n always denote the number of nodes in the

graph.)

- 15 -

x, for the first x, x

1 for the second x, x

for the third x, X, for the

2 4

3

first x, and §5 for the second x . - Extend F by
A (i’le)/\ &1VX2)/\ (izvX3)A (;B\/Xa)/\ (-)?AVXS)/\(;(.SVX),
that means
A (x> Xy -+ X, - g » %, - Xg X)
Do this for all variables occuring in F to get F'. Make sure that a new
variable is introduced for every literal of F.
Example:
F=&XVyVEAEVYV2DAXRVTYV2)
F' = (x1 v Yy \ 51) A (§2 Y §2 v 22) A (x3 v‘§3 Y 23)
A (iVxl)A(ilez)A(§ZVx3)A (EBVX)
AGFEVIDA G VYA G, V) ATV y)
AN (z V zl) A (21 Vv 22) A (Eé \% z3) A (23 vV z)
Assume F has 3p literals and m different propositional variables.
Then, F' has
3p + (2°3p + 2m) = 9p + 2m
literals each of which is incompatible with at most three others. Hence,
if G' is the corresponding graph of F', we have G' ¢ 033 .
Obviously, F is satisfiable iff F' is satisfiable. F' is satis-
fiable iff G' has a node cover of size 2p + (3p + m). This follows
immediately from the structure of F' and from the following reductions

as given by Karp ([71):

CF-SAT ¥-—> CLIQUE K—> NODE COVER .

(2.6) NODE COVER (om) 1is p-complete.
We refer to the definitions given in (2.5).

From Karp's reductions

- 16 -

CF-SAT Kk—> CLIQUE K———> NODE COVER
it follows immediately that NODE COVER (2n/3) is p-complete. The
following theorem is a generalisation thereof.

Theorem 3: TFor any fixed rational o € (0, 1),

NODE COVER (on) is K-p-complete in NP,

Proof of Theorem 3: We are going to show

3-CF-SAT KkK—> NODE COVER (amn)

Let F be a propositional formula in conjunctive form with exactly
three literals per clause. Assume F has p clauses. Let G be the corre-
sponding graph of F. G has n = 3p nodes.

We know from Karp's reductions that F is satisfiable iff G has a
node cover of size 2n/3

2
3). We would like to reduce NODE COVER (2n/3)

to NODE COVER (on). For that, add 9 isolated nodes to G; call the

First, assume « ¢ (0,

new graph G,. Then, G. has 3p + qq nodes. There is a node cover of

1 1

2p nodes for G iff there is a node cover of 2p nodes for Gl' We want
Fae3p+q) 1 =2p, or
[o 1-2
o (n + ql) 30 -

According to this equation, a; is essentially a linear function of n.

2

3 1). G has n = 3p nodes. Add a complete graph

Now assume o £ (
of 95 nodes to G; call the extended graph G2. G has a node cover of

2p nodes iff G, has a node cover of 2p + q, - 1 nodes. We want

2
FoBp gl =2p+4q, -1 , or
M. -2 -
o-(n+ q2) i 50 + 45 1.

Obviously, q, is essentially a linear function of n .

- 17 -

(2.7) NODE COVER %/7n') is p-complete.

With respect to Theorem 3 one may ask for further generalisations.
Our next theorem gives one answer.

Theorem 4: Given a fixed integer m greater than 1.

a) NODE COVER (v n') is K-p-complete.
b) NODE COVER (n - =/m') is K-p-complete.

Proof: For example, we can reduce NODE COVER (n/2) to the problems
given in a) and b). Then the proof is analogous to the proof of Theorem
3, i.e. we add isolated nodes or complete graphs to the given graph
to get the desired ratio between n and the size of the node cover.

To carry out the reductions, we start with a graph G which has n
nodes. Assume n is even (otherwise add an isolated node).

In Case a) we add 4 isolated nodes to G and call the new graph Gl'
G1 has n + 44 nodes. G has a node cover of size n/2 iff G1 has a

node cover of size n/2. Thus we want
n_m
3 n + aq -

In Case b) we add a complete graph with q, nodes to G and call the
new graph G2. G2 has n + 5 nodes. G has a node cover of size n/2 iff
G2 has a node cover of size g + q, - 1 . Thus we want

+q, -1 +q, - n+q, ,or
ds n -+ q, n+dq,
+1 = /n+ q

Remark: Since both a; and q, are 0(nm), the reduction space

oty N

itself is 0O nm). We do not know better reductions and conjecture
that the reduction space for any reduction
NODE COVER (n/2) K—» NODE COVER (/n ')

is O(n").

- 19 -

the problem is whether there is a subset of k columns that covers all

rows, = One could formulate dual problems in the same way for SET

PACKING and SET COVERING.

(2.9) 3-CHROMATIC NUMBER is p-complete.

The problem 3-CHROMATIC NUMBER asks whether a given graph is
three-colorable. It was shown by Larry Stockmeyer that this problem

and the contraction restricting it to planar graphs are p-complete

(rizh.

- 20 -

CHAPTER 3: ON REDUCTIONS AMONG K-p-COMPLETE PROBLEMS.

(3.0) In this chapter we report some efforts made to investigate the
computational complexity of the reductions among p-complete problems.
A motivation is given in (3.1). In Sections (3.2) and (3.3) we give

a few observations on encoding and space complexity. The rest of

the chapter exhibits a few new reductions we found among known p-com-

plete problems.

(3.1) By Cook's Reduction Theorem ([1]) every problem solvable in
nondeterministic polynomial time is K-reducible in polynomial time
to SAT. The reduction time (i.e. the polynomial) depends on the
problem, 1.e., on the special nondeterministic T.M. and thus also on
the encoding.

Let Hr be a problem having deterministic time lower bound nr.
Assume, for example, there is a reduction Hr K—> SAT that has
reduction time tr(n) and reduction space sr(n). tr and s, are
polynomials in n. Assume SAT has (deterministic) time upper bound
T(n). Then,

tr(n) + T(sr(n))
is an upper bound on the deterministic time complexity of Hr.
If degree tr(n) <r , then T(sr(n)) must be at least O(nr).

Hence, T must be at least O(nr/deg(sr)). This observation may

- 2] -

allow us to prove large polynomial lower bounds on complete problems
such as SAT even if we are unable to prove that SAT £ ﬂ’ .

Therefore we were looking for problems with deterministic poly-
nomial time lower bounds of high degree that can be reduced to some
p-complete problem, e.g. to SAT, easily, at least such that it takes
space bounded by a lower degree polynomial. We did not achieve what
we wanted but became interested in the computational complexity of

the reductions.

{3.2) Time and space complexity of a reduction depends on encodings
of problems as well as on the reduction device. Here we use one-tape
T.M.'s.

The objects of the known p-complete problems are propositional
formulas, graphs, graphs with weighted arcs, finite sets of integer
equations, or sets of subsets of a finite domain., For each of these
problems we have two or three encodings that we would like to call
standard encodings. We are going to outline what kind of encodings
we have in mind.

Assume we have in each case some convenient finite alphabet Z.
When we distinguish items of the same type, like variables or nodes,
we use indexing and binary notation. For example, we could represent
five nodes of a graph by NO, N1, N10, N11, N100, where N € X .
Integers are represented in binary notation.

In case of propositional formulas we think about the following
encodings:

clause-by-clause, where essentially every clause is a list of

the literals occuring in it;

the incidence matrix given row by row, consisting of 0's and
1's, one row for each clause and one double column for each
variable (a double column because the variable may occur
affirmative or negative);

an encoding like the previous one, but O's, +1's and -1's in the
matrix and a single column for each variable, using +1 for
an affirmative and -1 for a negative occurence of a variable.

In case of graphs we think about the encodings:

a list of all nodes followed by a 1list of all arcs, an arc given
as a pair of nodes;

the incidence matrix given row by row using 0's and 1's, rows
for the nodes and columns for the arcs;

the adjacency matrix given row by row.

In case of subsets of a finite domain we think about the encodings:

a list of all subsets, where every subset is a list of the elements
occuring in it;

the incidence matrix given row by row, a row for every subset
and a column for every wvariable in the domain.

For a set of equations we think about the encodings:

equation-by-equation;

the coefficient matrix of the system of equations, given row
by row.

These are essentially the encodings we refer to when we use the

(3.3) The reduction space of the reductions within the family of

p-complete problems was considered in some detail. One can find standard

- 2 -

p-complete problems given in some standard encoding, v is not linear
(on a one-tape T.M.), but in many cases quadratic in the input length

. 3
n, sometimes even worse but not exceeding O0(n”).

3.4 3-CF-SAT K———> EXACT COVER

Given a propositional formula F in conjunctive form with exactly
three literals per clause. Assume F has m clauses and r variables occur
(uncomplemented or complemented). Let Ci be the clauses, i =1, 2, ..

esy m , and xj be the variables, j =1, 2, ..., r. Form the following

array:
x, | x. . % | x. % x_ X
1 { 1 2 4 72 3 A 3 r i T
X | T | ' X
C]_ ; i X X | |
} i) !
C, . X . . X , X
| | | |
C3 X I X X X
| | t |
. | } I | *
! [[| .
v i | | | .
; | | a
C | ! X | X
m | i A |
X X X X

There is a row for every clause C, and a double column for every

i
palr (xj, Ej). A cross X occurs in Row Ci and Column xj (or Eﬁ)

iff in Clause i the literal Xj (or ;}) occurs, In addition, we have
one cross for every row in an additional column at the right hand

side, and one cross for every double column at the bottom of the array.

The domain of the Exact Cover Problem is the set S of all these

crosses, i.e. each cross is an element in S. We form a system of subsets

- 26 -

3m < 2r . This shows that our reduction w.r.t, the encodings
outlined above is space-~linear.

2. A space-linear reduction SAT K-> 3=CF-SAT was given by
Fischer, Meyer and Paterson ([4]). Hence we have a space-linear
reduction SAT K—>» EXACT COVER.

3. It was shown by Michael J. Fischer that our reduction
3-CF-SAT Kk-—» EXACT COVER can be modified to a reduction

CF~-SAT K—>» EXACT COVER that is quadratic in space.

(3,5) CF-SAT K—> directed HC T).

Karp ([7]) gives a reduction NODE COVER K—>» directed HC
that is rather complicated and quadratic in space. The reduction we
are going to describe here is linear in space.

Given a propositional formula F in conjunctive form. Assume F

has m clauses C i=1, 2, ..., my, and r variables xj occur in F,

1’
j=1, 2, ..., r. - Essentially we use the same array as the one used

in (3.4). We have a row 1 for every clause C, and columns for x. , X

i 1?

Xps Xpy eeey X, ;r' We draw a box @ in a column in Row i 1iff

1’

the literal corresponding to this column occurs in Ci' In addition we

draw a cross A, below and a cross B, above each double columm j,

A 3
j=1, 2, .e., r, and a box for each row i, 1 =1, 2, ..., m,

on the right hand side of the array.

Example: F = C1 A C2 A C3 A C4 ’

- % =x, Vx, Vx
C1 Xy v x, v Xe s c X X X

C3 =X, Vx, VX ’

Q
1

) HC = Hamiltonian Circuit.

) Ay 4

xl Xl x2 xz x3 X3 x4 x4 xs x5
B, B, B, B,
aXe T T rx"\ r,x“g)
c
1 A
c
, ; %
C3
NN J ¥
X S 5 X X
A;\ — —

From the array we construct a graph G. The crosses will become nodes,
and the boxes [and Q are going to be subgraphs of G.
Each subgraph is isomorphic to the following one having three

nodes:

There is one chain of arcs upwards along each column of the array,
entering the subgraphs [X}] at 1 and leaving them at 3. For a double

column the two chains start at Aj on the bottom and end at B, on the

i

top. B, is connected to Aj+1’ j=1,2, «.., r~1, and Br to by

i

arcs.

There are arcs from @ to the 's of Row i entering an
always at its Node 3, and we have an arc from each of Row 1 to
@ leaving the at its Node 1. The m 's are described below,
but each [ﬂ has = among other nodes = an entrance node Pi and an exit
for 1 =1, 2, .o., m1, and

node Qi' Br is connected to P to P

1?4 i+1

- 28 =

to A
Qm 1°

The idea of the construction is the following. A HC must go
through A1 and then follow either Column x, or Column ;1 up to Bl'
Observe that the structure of the subgraphs and the way they are
connected with each other along the columns forces the path to proceed
along one and the same column after Aj is passed until Bj is reached.
Depending on the truth assigmment, we choose Column Xy if Xy is true,
and Column ;1 if X, is false, From Bl we come to A2 and go up Column X,

if X, is true and up Column ;2

After the path has reached Br it must pick up all the nodes in

the 's, starting at , then going to , and so on, until

is reached. While picking up the nodes of , the rest of the nodes in

if X, is false, and so on.

Row i must be picked up. Given there are r. literals in Clause i,
is constructed in such a way that from it at the most r, - 1 's
can be picked up.

As far as the 's are concerned, our original solution was for
three literals per clause only. It has been generalized and substanti-
ally improved by Michael J. Fischer and Joel Seiferas. They gave the
following elegant solution for what the subgraph has to perform.
For example, assume we have 5 literals in Clause i, i.e. 5 's
in Row i. These 's are connected with as follows: (See the

figure on the next page.)

- 29 -

has nodes Pi’ Qi’ and Rij’ j=1, 2, 3, 4, 5. 1t is easy to
convince oneself that a path from Pi to Qi can pick up all the Rij‘s
and an arbitrary proper subset of the [X] 's, but never all the [X] 's. =~
Thé generalisation for any number of literals per clause is obvious.

Thus we have shown: F is satisfiable iff G has a HC.

(3.6) Undirected HC K——» SAT.
We describe a very simple reduction requiring only linear space.

This reduction is best described by an example.

Example:
N N
O—-—_—-2 E2 (o] 3
Graph G: / G has nodes Ni and edges E,
/6 i=1, 2,3, 4, 5;

N, o oN

1\ 7/‘+ i=12,3,4,5,6,17.
Es O/E4

Ng

- 30 -

Consider Node N,. A HC must include

1
E1 and E5 and not E6
or E1 and E6 and not E5
or E5 and E6 and not E1 .

Therefore we. associate a Boolean variable xj with Edge Ej’ j=1, 2, 3,
4, 5, 6, 7, and write the following five formulas:

F,: XX, X_ V xX,x_ X, V X_.X_X

1 17675 17576 5761
F2: xlxz
F3: x2x3x6x7 Vv x2x6x3x7 Vv x2x7x3x6‘v x3x6x2x7 \% x3x7x2 6
\"2 x6x7x2x3
F4: -,x3x4

FS: x4x5x7 \% x4x7x5 \% x5x7x4 .

It is easy to see that

A F, A F

F = F, AN F, A F 4 5

1 2 - 73

is satisfiable iff G has a HC.
Remark: The reduction can be changed easily to the reduction

directed HC X—» SAT .

Acknowledgements

Much of this work is due to the discussions I had with Prof. Albert
R. Meyer and Prof. Michael J. Fischer. Their help and interest are

greatly appreciated.

- 3] -

References:

[1] Stephen A. Cook, "The Complexity of Theorem-Proving Procedures',
Proceedings of Third Annual ACM Symposium on Theory of Compu-
ting, 1971,

[2] Stephen A. Cook, "A Hierarchy for Nondeterministic Time Complexity",
Proceedings of Fourth Annual ACM Symposium on Theory of Compu-
ting, 1972.

[3] J. Edmonds, R. M. Karp, "Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems', Report, Operations
Research Center, U. of C., Berkeley, July 1970.

[4] M. J. Fischer, A. R. Meyer, M. Paterson, "A Note on Disjunctive
Form Tautologies", unpublished paper, 1972.

[5] R. S. Garfinkel, G. L. Nemhauser, "Integer Programming', J. Wiley
and Soms, 1972,

[6] Marshall Hall, Jr., "An Algorithm for Distinct Representatives',
American Mathematical Monthly, Vol. 63, 1956.

[7] Richard M. Karp, '"Reducibility among Combinatorial Problems",
in '"Complexity of Computer Computations', R. E. Miller and
J. W. Thatcher, ed., Plenum Press, N.Y.

[8] Eugene Lawler, Lecture Notes on Combinatorial Theory, unpublished,
1971/1972,

[9] Albert R. Meyer, Lecture Notes on Algorithms, unpublished,

Fall 1972.
[10] Michael Rabin, in "Complexity of Computer Computations' (panel

discussion), edited by R.E. Miller and J. W. Thatcher.

- 32 -

[11] Sartaj Sahni, '"Some Related Problems from Network Flows, Game
Theory and Integer Programming', 13th Annual Symposium on
Switching and Automata Theory, 1972.

[12] L. J. Stockmeyer, "Planar 3-Colorability is Polynomial Complete"

to appear in SIGACT NEWS.

CS-TR Scanning Project ,
Document Control Form Date: oL /AT /1L

Report# _L<sTR-113

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
JX(Laboratory for Computer Science (LCS)

Document Type:

>EL Technical Report TR) [Technical Memo (TM)
O Other:

Document Information Number of pages: 32(35-imacs)
* Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
I Single-sided or [J Single-sided or
O Double-sided X Double-sided
Print type:
[0 Typewriter [oftsetPress [Laser Print
(] InkJet Printer Pﬁ\ Unknown [] other.

Check each if included with document:

[0 ooD Form O Funding Agent Form K Cover Page

O spine O Printers Notes [Photo negatives
K Other: 8/8LI0GCRAPH < DATA 5“;’{\\1‘
Page Data:

Blank Pagesey sage numben:

Photographs/Tonal Material ey sege numbes:

Other (note description/page number) .
Description : Page Number:

TmAGE MRS (l~ J MN#ED TSILE G’AG{ SR
[33~33 7 SeancodlRol, c.ous& Biglio-
OKRTA snsm TRETS (3.

Scanning Agent Signoff:
Date Received: & /93 /¢ Date Scanned: _J / 7/8¢ Date Retuned: _J /3 / 96

Scanning Agent Signature: MA\ %J GD’O'(\

Rev 9/94 DS/LCS Document Control Form cstrform.ved

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

