Abstract
Congenital long QT syndrome (LQTS) is an inherited arrhythmia syndrome characterized by a prolonged QT interval in the 12-lead ECG, torsades de pointes and not negligible prevalence of sudden cardiac death. The genetic testing plays an important role in the diagnosis of LQTS. A total of 15 genes have been reported for autosomal-dominant forms of Romano–Ward-type congenital LQTS and 2 genes for autosomal-recessive forms of the Jervell and Lange–Nielsen syndrome. In this review, we summarize the recent advances in genetics of LQTS and briefly describe forward perspectives of LQTS investigation.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Schwartz, P. J., Stramba-Badiale, M., Crotti, L., Pedrazzini, M., Besana, A., Bosi, G. et al. Prevalence of the congenital long-QT syndrome. Circulation 120, 1761–1767 (2009).
Schwartz, P. J. & Crotti, L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 124, 2181–2184 (2011).
Priori, S. G., Wilde, A. A., Horie, M., Cho, Y., Behr, E. R., Berul, C. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10, 1932–1963 (2013).
Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D. & Keating, M. T. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).
Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12, 17–23 (1996).
Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J. L. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).
Napolitano, C., Priori, S. G., Schwartz, P. J., Bloise, R., Ronchetti, E., Nastoli, J. et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 294, 2975–2980 (2005).
Shimizu, W. Clinical impact of genetic studies in lethal inherited cardiac arrhythmias. Circ. J. 72, 1926–1936 (2008).
Ackerman, M. J., Priori, S. G., Willems, S., Berul, C., Brugada, R., Calkins, H. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8, 1308–1339 (2011).
Moss, A. J., Shimizu, W., Wilde, A. A., Towbin, J. A., Zareba, W., Robinson, J. L. et al. Clinical aspects of type-1long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115, 2481–2489 (2007).
Shimizu, W., Horie, M., Ohno, S., Takenaka, K., Yamaguchi, M., Shimizu, M. et al. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. J. Am. Coll. Cardiol. 44, 117–125 (2004).
Barsheshet, A., Goldenberg, I., O-Uchi, J., Moss, A. J., Jons, C., Shimizu, W. et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation 125, 1988–1996 (2012).
Shimizu, W., Moss, A. J., Wilde, A. A., Towbin, J. A., Ackerman, M. J., January, C. T. et al. Genotype-phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 54, 2052–2062 (2009).
Liu, L., Hayashi, K., Kaneda, T., Ino, H., Fujino, N., Uchiyama, K. et al. A novel mutation in the transmembrane nonpore region of the KCNH2 gene causes severe clinical manifestations of long QT syndrome. Heart Rhythm 10, 61–67 (2013).
Newton-Cheh, C., Eijgelsheim, M., Rice, K. M., de Bakker, P. I., Yin, X., Estrada, K. et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 (2009).
Pfeufer, A., Sanna, S., Arking, D. E., Müller, M., Gateva, V., Fuchsberger, C. et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 399–406 (2009).
Earle, N., Yeo Han, D., Pilbrow, A., Crawford, J., Smith, W., Shelling, A. N. et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm 11, 76–82 (2014).
Kolder, I. C., Tanck, M. W., Postema, P. G., Barc, J., Sinner, M. F., Zumhagen, S. et al. Analysis for genetic modifiers of disease severity in patients with long QT syndrome type 2. Circ. Cardiovasc. Genet.doi:10.1161/CIRCGENETICS.114.000785 (2015).
Schwartz, P. J., Spazzolini, C., Crotti, L., Amlie, J. P., Timothy, K., Shkolnikova, M. et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113, 783–790 (2006).
Harmer, S. C., Wilson, A. J., Aldridge, R. & Tinker, A. Mechanisms of disease pathogenesis in long QT syndrome type 5. Am. J. Physiol. Cell Physiol. 298, C263–C273 (2010).
Chen, L., Marquardt, M. L., Tester, D. J., Sampson, K. J., Ackerman, M. J. & Kass, R. S. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc. Natl Acad. Sci. USA 104, 20990–20995 (2007).
Robertson, G. A. & January, C. T. HERG trafficking and pharmacological rescue of LQTS-2 mutant channels. Handb. Exp. Pharmacol. 171, 349–355 (2006).
Lu, Y., Mahaut-Smith, M. P., Huang, C. L. & Vandenberg, J. I. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6. J. Physiol. 551, 253–262 (2003).
Smits, J. P., Koopmann, T. T., Wilders, R., Veldkamp, M. W., Opthof, T., Bhuiyan, Z. A. et al. A mutation in the human cardiac sodium channel(E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J. Mol. Cell Cardiol. 38, 969–981 (2005).
Stuhmer, W., Conti, F., Suzuki, H., Wang, X. D., Noda, M., Yahagi, N., Kubo, H. et al. Structural partsinvolved in activation and inactivation of the sodium channel. Nature 339, 597–603 (1989).
Makita, N., Behr, E., Shimizu, W., Horie, M., Sunami, A., Crotti, L. et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J. Clin. Invest. 118, 2219–2229a (2008).
Wilde, A. A. & Brugada, R. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ. Res. 108, 884–897 (2011).
Medeiros-Domingo, A., Kaku, T., Tester, D. J., Iturralde-Torres, P., Itty, A., Ye, B. et al. CN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 116, 134–142 (2007).
Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W. et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114, 2104–2112 (2006).
Gavillet, B., Rougier, J. S., Domenighetti, A. A., Behar, R., Boixel, C., Ruchat, P. et al. Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ. Res. 99, 407–414 (2006).
Tester, D. J., Arya, P., Will, M., Haglund, C. M., Farley, A. L. & Makielski, J. C. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm 3, 800–805 (2006).
Tristani-Firouzi, M., Jensen, J. L., Donaldson, M. R., Sansone, V., Meola, G., Hahn, A. et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388 (2002).
Dixon, R. E., Cheng, E. P., Mercado, J. L. & Santana, L. F. L-type Ca2+ channel function during Timothy syndrome. Trends Cardiovasc. Med. 22, 72–76 (2012).
Boczek, N. J., Best, J. M., Tester, D. J., Giudicessi, J. R., Middha, S., Evans, J. M. et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ. Cardiovasc. Genet. 6, 279–289 (2013).
Fukuyama, M., Wang, Q., Kato, K., Ohno, S., Ding, W. G., Toyoda, F. et al. Long QT syndrome type 8: novel CACNA1C mutations causing QT prolongation and variant phenotypes. Europace 6, 1828–1837 (2014).
Crotti, L., Johnson, C. N., Graf, E., De Ferrari, G. M., Cuneo, B. F., Ovadia, M. et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127, 1009–1017 (2013).
Makita, N., Yagihara, N., Crotti, L., Johnson, C. N., Beckmann, B. M., Roh, M. S. et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ. Cardiovasc. Genet. 7, 466–474 (2014).
Song, W. & Shou, W. Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia. Pediatr. Cardiol. 33, 943–949 (2012).
Jiang, W., Lan, F. & Zhang, H. Human induced pluripotent stem cell models of inherited cardiovascular diseases. Curr. Stem Cell Res. Ther. 2, 4 (2014).
Zhang, M., D’Aniello, C., Verkerk, A. O., Wrobel, E., Frank, S., Ward-van Oostwaard, D. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: Disease mechanisms and pharmacological rescue. Proc. Natl Acad. Sci. USA 111, E5383–E5392 (2014).
Terrenoire, C., Wang, K., Tung, K. W., Chung, W. K., Pass, R. H., Lu, J. T. et al. Induced pluripotent stem cells used to reveal drug actions in a longQT syndrome family with complex genetics. J. Gen. Physiol 141, 61–72 (2013).
Refsgaard, L., Holst, A. G., Sadjadieh, G., Haunsø, S., Nielsen, J. B. & Olesen, M. S. High prevalence of genetic variants previously associated with LQT syndrome in new exome data. Eur. J. Hum. Genet. 20, 905–908 (2012).
Campuzano, O., Sarquella-Brugada, G., Mademont-Soler, I., Allegue, C., Cesar, S., Ferrer-Costa, C. et al. Identification of genetic alterations, as causative genetic defects in long QT syndrome, using next generation sequencing technology. PLoS One 9, e114894 (2014).
Biesecker, L. G. Exome sequencing makes medical genomics a reality. Nat. Genet. 42, 13–14 (2010).
Maxmen, A. Exome sequencing deciphers rare diseases. Cell 144, 635–637 (2011).
Priest, J. R., Ceresnak, S. R., Dewey, F. E., Malloy-Walton, L. E., Dunn, K., Grove, M. E. et al. Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing. Heart Rhythm 11, 1707–1713 (2014).
Semsarian, C., Ingles, J. & Wilde, A. A. Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives. Eur. Heart J. 36, 1290–1296 (2015).
Porta, A., Girardengo, G., Bari, V., George, A. L. Jr, Brink, P. A., Goosen, A. et al. Autonomic control of heart rate and QT interval variability influences arrhythmic risk in long QT syndrome type 1. J. Am. Coll. Cardiol. 65, 367–374 (2015).
Myerburg, R. J. Physiological variations, environmental factors, and genetic modifications in inherited LQT syndromes. J. Am. Coll. Cardiol. 65, 375–377 (2015).
Acknowledgements
Dr W Shimizu was supported in part by a research grant for cardiovascular disease (H24-033 and H26-040) from the Ministry of Health, Labour and Welfare, Japan, and a Nippon Medical School Grant-in-Aid for Medical Research. Dr Y Nakano was supported by JSPS KAKENHI Grant Number 26461130.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nakano, Y., Shimizu, W. Genetics of long-QT syndrome. J Hum Genet 61, 51–55 (2016). https://doi.org/10.1038/jhg.2015.74
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2015.74
Subjects
This article is cited by
-
Disruption of asparagine-linked glycosylation to rescue and alter gating of the NaV1.5-Na+ channel
Heart and Vessels (2021)
-
Epidemiologie des Kreislaufstillstands in Europa
Notfall + Rettungsmedizin (2021)
-
Exome sequencing identifies a novel nonsense mutation of Ring Finger Protein 207 in a Chinese family with Long QT syndrome and syncope
Journal of Human Genetics (2019)
-
Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment
Scientific Reports (2019)
-
Different Cardiotoxicity of Palbociclib and Ribociclib in Breast Cancer: Gene Expression and Pharmacological Data Analyses, Biological Basis, and Therapeutic Implications
BioDrugs (2019)