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Abstract

We consider how the mass of the black hole decreases by the Hawking radia-
tion in the Vaidya spacetime, using the concept of dynamical horizon equation,
proposed by Ashtekar and Krishnan. Using the formula for the change of the
dynamical horizon, we derive an equation for the mass incorporating the Hawk-
ing radiation. It is shown that the final state is the Minkowski spacetime in
our particular model. We finally solved the equation which describes how black
hole mass decreases. The back-reaction problem of the Hawking radiation has
not been solved by the conventional method by solving the Einstein equation.
While we can solve this problem using the following three ideas. First idea
is to use the dynamical horizon equation which only needs information of the
horizon surface. Then we calculate usual field equation as the integration equa-
tion. Second we taken negative energy into account near the black hole horizon.
Using the negative energy we can enlarge the dynamical horizon to the time-
like case. Third, we use the Vaidya metric. Usually the Einstein equation and
the dynamical horizon equation are not compatible. However, using the Vaidya
metric as a background we can use the dynamical horizon equation in place of
the Einstein equation.
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Chapter 1

Introduction

The black hole is a peculiar phenomenon in general relativity. In the problem of
the black hole there is singularity problem and information loss paradox. The
singularity problem means the breakdown of classical general relativity so that
to avoid this we should quantize the black hole. The information loss problem
is related with the Hawking radiation. In the classical theory of black hole can
only absorb and not emit particles. However, quantum mechanical effect causes
black holes to create and emit particles. This thermal emission leads to a slow
decrease in the mass of the black hole and eventually disappeared. Once the
particle enters or information enters in black hole this information vanishes by
the black hole evaporation. The Hawking radiation is the phenomenon that the
particle is created by the coupling of background black hole spacetime. In the
null infinity there are the thermal radiation by the Hawking effect. Relating
to the information loss paradox there is the black hole evaporation problem.
How the black hole evaporates or final state of the black hole by the Hawking
radiation has been an open problem. This problem is known as the back reaction
problem. We have solved this problem in this thesis [1]. However, we solved
black hole evaporation problem at the semi-classical level. So there remain the
black hole quantization problem.

There have been many works concerning black hole evaporation, either in
string theories[3][4][5], or semi-classical theory typically using apparent horizon
[6]. Hiscok studied spherical model of the black hole evaporation using the
Vaidya metric, which we also use in present work, to solve the black hole evapo-
ration problem. However, he simply set a model not taking account of the field
equation. Hajicek’s work[8] treated the black hole mass more generally than
our present case. However, he did not use the field equation either. One of
the more recent studies is Sorkin and Piran’s work [9] on charged black holes.
And neutral case has been done by Hamade and Stewart[10]. Their conclusion
is that black hole mass decreases or increases depending on initial condition.
They used a model of the double null coordinates, and obtained a numerical
result. But they did not consider the Hawking effect directly but they used
massless scalar field as a matter. Brevik and Halnes calculated primordial black



hole evaporation[11]. Very recently Hayward studied black hole evaporation
and formation using the Vaidya metric [12]. It seems no analytical equation
has been proposed for the black hole mass with the Hawking effect taken into
account.

The dynamics for the black hole mass with the Hawking effect is a long
standing problem. Page[13] derived the equation of mass intuitively, that is
M x —M~2. But it does not come from the first principle. We will comment
on his intuitive result in the final section. To derive the equation of mass from
the first principle we should treat the Einstein equation with the back reaction
term by the Hawking radiation. However, the Einstein equation cannot be
analytically solved, because the equation contains fourth derivative terms as
back reaction. Recently Ashtekar and Krishnan derived an equation which
describes how the horizon changes in time [14, 15, 16, 17, 18, 19, 20, 21, 22]. Tt
needs only information of the horizon surface.

The black hole evaporation problem as back-reaction problem usually is not
solved for the difficulty of the field equation. However, introducing three ideas
we can solve it. First we use the dynamical horizon equation and enlarge it to
timelike case using negative energy. And we use a fact that near the horizon
the energy become negative. And we calculate the dynamical horizon equation
in the Vaidya spacetime which meet the Einstein equation. With these ideas we
can solve black hole evaporation problem.

In chapter II we introduce quantum field theory in the curved spacetime
[23, 24, 25, 26]. And in this section we calculate the Green function and derive
field equation which is solved for the back-reaction problem. And in this chapter
we introduce negative energy or violation of energy condition [27, 28, 29, 30,
31, 32, 33, 34, 35, 36] which is used in this paper. In this chapter we derived
the Green function which is used to derive negative energy near the black hole
horizon. And negative energy is used to enlarge the definition of the dynamical
horizon equation. In chapter IIT we introduce the dynamical horizon and equa-
tion of the dynamical horizon. The dynamical horizon equation is enlarged by
negative energy to timelike case. And we use the timelike dynamical horizon
equation to solve the black hole evaporation problem as back-reaction problem.
In chapter IV we solve black hole evaporation problem using the dynamical
horizon equation and negative energy in the Vaidya spacetime. In chapter V we
discuss and comment on the obtained result.



Chapter 2

Quantum field theory
(QFT) in curved spacetime

In this chapter we review quantum field theory (QFT) in curved spacetime.
We start with basic formalism of this theory in section 2.1. The Hawking effect
is explained in section 2.2. We derive the Green function in section 2.3. And
finally we show what is negative energy in section 2.4. This chapter is mainly
the derivation of the Green function. Once the Green function is derived we
can calculate the energy in the limit of black hole horizon. This result is used
in the chapter 3 and 4. Because of the negative energy we enlarge the definition
of the dynamical horizon and we enlarge the dynamical horizon equation in the
timelike case. And the energy near the event horizon is used in the integration
of the dynamical horizon.

2.1 Basic Formalism and Particle Creation

In this section we treat basic formalism and particle creation by the background
gravitational field. Particles are created by moving mirror or time dependent
background spacetime. The particle creation by the background spacetime is
one of main issues in this thesis, because the Hawking effect is the one of its
phenomena. To derive the Hawking effect in the next section, we setup the
background knowledge in this section.

In the subsection 2-1-1 we start with basic formalism of quantum field theory
in curved spacetime and by derive second quantizing a scalar field. In the
subsection 2-1-2 we calculate comformal transformation and derive conformal
coupling factor in general dimensions. In the subsection 2-1-3 we treat particle
creation from the background metric in a two dimensional model, while in the
subsection 2-1-4 we treat particle creation by the moving mirror.



2.1.1 Second Quantization in Curved Space

We introduce a scalar field in the curved spacetime, and add an action for
the scalar field term to the Einstein-Hilbert action. We start with following
Lagrangian,

1
L =5 (0apd"p = m*¢* — ERp?), (2.1)
where, signature is (+ — ——). Varying ¢, we obtain the equation of motion as,
Op + m?p + ERp = 0. (2.2)

Here m is the mass of the particle and £ is a coupling constant to the Ricci scalar
R. This coupling is only an assumption; which we ignore for simplicity. There
are also other couplings such that Rq,R®p or RapeqR%4p. If € is zero we call
that the scalar field is minimally coupled. If £ is 1/6 we call that the scalar field
is conformally coupled. We define the inner product to the two solutions f; and
f2 of (1.2) as

(1. fo) =i / (5 8, fo)dzt. (2.3)

Here,d¥* = d¥n*,d>. means the volume element of spacelike hypersurface, and
n*is the timelike vector orthogonal to this hypersurface with norm 1. Here
the important point is the inner product does not depend on the choice of the
hypersurface, that is,

(f1, f2)z, = (f1; f2) = (2.4)

This fact is proved in a direct way. At first we assume that the V' is the four
dimensional submanifold between X1, Y5, Then

o f2)ss — (Fr, fo)sy = i f (5 B f1)dSr = i /V Va(f5 8, f)dV. (25)

oV

Here the last step follows from the four dimensional version of Gauss’ law, and
dV is the four dimensional volume element. We can prove that the way of
integration (1.3) does not depend on the choice of the hypersurface ¥, because
the following equation holds,

Vulfs 0 h) = VulF30uf1 — H0.f3) = £0f — AOF;
—f3(m? +ER) f1 + fr(m® + ER) f5 =0, (2.6)

The quantization of the scalar field can be carried by the canonical quanti-
zation. The conjugate momentum is defined by

oL
™= =, (27)
¢
and the canonical commutation relation is given by
o, ), m(x, ] = i6(x,%). (2.8)



Here, the delta function appearing in the above equation is defined by
/ F(2')8(x,x )Y = F(z), (2.9)

for an arbitrary function F(z). Then second quantization can be written by
using annihilation and creation operators as,

o= (ajfj+alf)). (2.10)
J

Here (f;, fj’-") form the complete set of solution of the equation of motion with
fj and f being the positive and negative frequency parts, respectively. And
[a;, a;,] =, y. For the second quantization we refer [37] to the reader.

In curved spacetime, the situation is quite different from the Minkowski
vacuum. There is no unique choice of the positive frequency part {f;}, and
hence no unique notion of the vacuum state. This means that we cannot identify
what constitutes a state without particle content, and the notion of particle
becomes ambiguous. One possible resolution to this difficulty is to choose some
quantities other than particle content to label quantum states. Possible choices
might include local expectation values, such as (), (¢?),etc. In the particular
case of an asymptotically flat spacetime, we might use the particle content in
an asymptotic region. Even this characterization is not unique. However, this
non-uniqueness is an essential feature of the theory with physical consequences,
namely the phenomenon of particle creation.

2.1.2 Conformal Factor

In this subsection we show that the coupling constant appearing in the previous
Lagrangian £ can determined if we demand the invariance under the confor-
mal transformation. The conformal transformation is defined by the following
transformation of the metrics as

G = W () Guu, (2.11)
or,
ds” = w?(z)ds?. (2.12)
By this transformation Christoffel symbols becomes,
re, =17, +Ch,. (2.13)
Here, C1,, is
Ch,=w N 0V,w + 05V i — Gun g Vaw). (2.14)

If we write the Riemann tensor with this C,,
Rg,ul/ = Rg,uz/ + vucfja - VVO[L)O' + OZ)\Cli\o - OSAO;\U =
Rpul/ - 2(6ﬁt 3]65 - go_[”(sst]gpﬁ)wfl(vavﬂw)

+2(287,85105 = 2901,059"° + 901,079 )0 (Vaw) (Vsw).- (2.15)



If we contract the above Riemann tensor with p and p we can obtain the Ricci
tensor as,

Ry, = Ry, — [(n— 2)5?55 + gwgaﬁ]w—l(vavﬁw)
+[2(n — 2)6268 — (n — 3)gorg*PJw™2(Vaw)(Vaw). (2.16)

Here the n is the dimension of the universe n = 4 for the physical spacetime.
The Ricci scalar is

R=w2R—2(n—1)g*w=3(VaVsw
—(n—1)(n —4)g*PwHVow)(Vsw)). (2.17)

Similarly we can calculate covariant derivative as,
ViV = ViV — (6585 + 6565 — gu,g™ )™ (Vaw)(Vaw). (2.18)
From the trace of above formula we obtain
(96 = w206 + (n — 2)g*Pw ™ (Vo) (V0). (2.19)
For the term of w2 to vanish the ¢ in the action should be

(n—2)

€= ) (2.20)

If £ is the above constant, we can say that the action is conformally coupled.

2.1.3 Particle Creation by Gravitational Field

In this section we treat particle creation effect by gravitation [38, 40] for scalar
particles i.e. particles corresponding a scalar field The energy and momentum
conservation law may not hold if we do not take the back reaction into account.
The broken of the conservation low comes from fixing of background. We con-
sider a spacetime which is asymptotically flat in the past and in the future, but
non-flat in the intermediate region. The particle creation appeared from back-
ground spacetime. Now we write past positive frequency solution as {f;} and
write future positive frequency as {F;}. Let the orthogonal basis be (f;, f; *)
and (F}, F}") such that,

(fj: fir) = (Fy, Fy) = 655
(f;7fj>'k’) = (Ff?Ff’) = _6jj,
(f5: f3) = (F3, F}) = 0. (2.21)

These two orthogonal basis satisfy the following Fourier transformation as,

fi= Z(aijk + BinFy). (2.22)

k



Here,

ajr = (fj, Fr) (2.23)
Bk = (5, Fy) (2.24)
Inserting the previous equation we obtain
Z(O‘jko‘;’k — BixBj) = 651, (2.25)
k
and
Z(O‘jkaj’k — BjrBjk) = 0. (2.26)
k

The inverse transformation to (2.2) is

Fp =) (aipfi = Birf])- (2.27)

J

The field operator ¢ is written in terms of {f;} or also {F}} as

o= (ajfj+alfy)=> (b;F; +biFl). (2.28)
J

J

Here a;, and a;{ are the creation and annihilation operators in the in-region that

is the past infinity region, and by, b} are the creation and annihilation operators
in the out-region that is the future infinity region. In other words,a;|0);, = 0
and b;[0) oy = 0. From the fact that a; = (¢, f;) and b; = (¢, F}), we see

a; =Y (ajb— Bibh) (2.29)
k
b =Y _(ajra; + Bjal). (2.30)

J

We call this transformation as the Bogolubov transformation and the oy, and
Bji as the Bogolubov coefficients. Now we are ready to describe the physical
phenomenon of particle creation by a time-dependent gravitational field. Let us
assume that no particles were present before the gravitational field is turned on.
If the Heisenberg picture is adopted to describe the quantum dynamics, then
|0);n is the state of the system for all time. However, the occupation number
operator which counts particles of the mode k in the out region is Ny = blbk.
Thus the mean number of particles created in the mode k is

(Nk) = in{O[bLbR10)in = > [B;ul- (2.31)
J

We apply the above probability density in the Robertson-Walker universe [26][27].
The metric of this universe is,

ds? = dt* — a*(t)dx* = a*(n)(dn* — dx?). (2.32)



Here, 7 is the conformal time, as
dn=dt/a (2.33)
t n 7 !’
t:/ dt :/ a(n )dn . (2.34)

The solution of the scalar field equation in the Friedmann universe is

e1k-x

Je(x,n) = WM(U)- (2.35)

Here x satisfies the following equation,

dQXk
dn?

+ [ = V(n)lxk =0, (2.36)
where

1
V(n) == —a’(n)[m® + (€ ~ 5 B (2.37)
At this point, because the norm of fyx is one, we can derive the Wronskian

condition as .
o Xk Xk
k dn k dn

For simplicity we set m = 0, and search the solution in the past infinity, then

= . (2.38)

—iwn

~ M) = S 2.39
In the future infinity, the solution is
(out) _ 1 —iwn iwn
~ = ——(are + Oke . 2.40

Here the oy, and By, are calculated by oy = apdxk and fyx = Brdk,—k. From
the above result, the number density created in the unit volume is

1
N = d3k|Br|?. 2.41
o | HA (2.41)
And energy density is
1
= ——— [ &’k 2, 2.42
0= e | A (2.42)

Because to calculate xj; in analytical way is not easy, we calculate it in the
perturbation way as

el =37+t [ " V)sinw(n — oyl ) (2.43)



For simplicity we treat the first order approximation and we replace xx(n') in
the integration by Xém)(n’). If we compare with (2.38),

i oo
ap ~ 1+ %/ V(n)dn (2.44)

¢ —2iw
B =g | e 2V (). (2.45)

If we insert V', mean number density and energy density are given as

_ 1,2 oo
v=C-6) [ arman @)

16ma®  J_ oo

_1y2 oo 00
p= e [ am [ dnaftn o — ) R )

xdim[a%nz)mmm (2.47)

2.1.4 Particle Creation by Moving Mirrors

In this subsection we treat two dimensional spacetime. If a mirror is accelerating
in the two dimensional spacetime and coupled to the universe [40, 41]. A simple
example of quantum particle creation was given by Fulling and Davies [28][29].
This consists of a moving mirror in two-dimensional spacetime coupled to a
massless scalar field, . The field is assumed to satisfy a boundary condition
on the world line of the mirror, such as ¢ = 0. For a given mirror trajectory, it
is possible to construct exact solutions of the wave equation which satisfy this
boundary condition. Let v = ¢ + 2 and uw = ¢t — = be null coordinates which
are constant upon null rays moving to the left and to the right, respectively. A
null ray of fixed v which reflects a moving mirror in two-dimensional spacetime
accelerates for a finite period of time. The quantum radiation emitted to the
right of the mirror propagates in the spacetime. First we define the orbit of the
moving mirror as,

x = 2(t),|5(8)] < 1. (2.48)

This is illustrate as following. The massless scalar field in the background
satisfies the following equation in two dimensional spacetime as

2¢ 9%

Next we restrict the boundary condition as,
o(t, z(t)) = 0. (2.50)
By the conformal scaling, the metric becomes

G = C(t, )Gy (2.51)

10



mirror

Figure 2.1: particle creation by moving mirrors. First mirror stays at r = 0 if
t < 0. In the time ¢ > 0, the mirror accelerates and emit particles.

We transform the null basis to w + s by the following two functions as,
t—z=fw-—s), t+x=gw+s). (2.52)
Then the metric conformally transform as,
dt* —dz? = f'(w — 8)g'(w + s)(dw?® — ds?). (2.53)

Then the wave equation becomes,

2o  0%¢

Now we assume that the moving mirror is at s = 0 and that boundary condition

there is,
o(w,0) = 0. (2.55)

Then the following equation holds,

Slg(w) = f(w)] = Z(%[Q(w) + f(w)]). (2.56)
We assume the initial condition as

z(t) =0 for t <O. (2.57)

11



Then above condition is the same as,

fw) =g(w) =w forw<0 (2.58)
glw) =w for all w (2.59)
Sl = Fw)] = (3w + fw) (260)

The final equation determines the f(w). The complete solution of (2.54) and
(2.55) is
dw(w,s) = (ﬂ'w)_% sinwse™ ™ (w > 0), (2.61)

or in other words
dw(t,x) = i(47rw)_%[e_i“gfl(t+z) — e_i“’ffl(t_‘r)]. (2.62)
This equation can be rewritten by DeWitt[25] as
buo(t, @) = i(dmw) "2 [0 — g~ WTu—w)], (2.63)

Here,
ust—z, v=t+z (2.64)

are the advanced and retarded coordinate respectively. And 7, is defined by the

following equation as,
Ty — 2(T4) = u. (2.65)

Moreover u is obtained via the inverse function of f as
27, —u = f 1 (u) = p(u). (2.66)

We write T}, as,

1 {(%)QJF(?)Q 906¢ 4 9050
5 |000e | 0806 (B 585 | - (2.67)
2 |5¢as tawar () +(55)°

If we write ¢,
(oo}
o(t, x) :/ dwlai™ ¢, + al"T ¢ ], (2.68)
0
the corresponding operator 1}, is
Ty =: Ty + (T ). (2.69)

Here : T),, : means normal ordering and () means the expectation value by the
vacuum |0) with a|0) = 0. From these results we obtain

@ = | " AT (b, 81)- (2.70)

12



If we use the point-splitting method to evaluate (2.70) by noting

w

0,/0t = ()2 [e™™" —p/ (we ™), (2.71)
06/0x = (12)3[e7" +p/(we™ 7] (2.72)
06 /0t = (=) e — g/ (u+ e)er(+9)) (2.73)
9%, )0z = (%)% [e= @9 4 pf (u + g)e~P(uta)], (2.74)

‘We obtain
1 o )
(Too) = (Tn1) = E/ wd {6 4 pf (w)p! (a1 )@y (2.75)
0
1 [ . .
<T10> — <T01> = 47/ wdw{ezws - p’(u)p’(u n 6)ezw[P(u+s)—P(u)]}_ (2_76)
™ Jo

If we use Taylor expansion, we obtain finally

(Too) = —(2me®) ™" — (Ton) (2.77)
(Tin) = 24m) B = S+ 0, (275)
= —(12m) 7 ()2 () 2)" + O(e). (2.79)

Unfortunately, the simple solution for the moving mirror radiation of a mass-
less field in two-dimensional spacetime depends upon the special conformal prop-
erties in this case and does not generalize to massive field or to four dimensional
spacetime. In the four dimensional case, there are exact solutions available for
special trajectories [34][35], and approximate solutions for general trajectories
[36], but no general, exact solutions. However, the technique of mapping be-
tween ingoing and outgoing ray is crucial in the derivation of particle creation
by black holes.

2.2 The Hawking Effect

In this section, we will apply the notions of particle creation by gravitational
fields to black hole spacetime. This leads to the Hawking effect [2, 42], the
process by which black holes emit a thermal spectrum of particles. For the
sake of definiteness., we will concentrate on the case of massless, scalar field
in the Schwarzschild spacetime, but the basic ideas may by applied to any
quantum field in a general black hole spacetime. For the most part, we will
follow the original derivation given by Hawking [2]. We imagine that the black
hole was formed at some time in the past by gravitational collapse. We assume
gravitational collapse of the massive star and in the null past spacetime is close
to the Minkowski spacetime.

13
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I+

Figure 2.2: The Penrose diagram for the spacetime of a black hole formed by
gravitational collapse. The r = 0 line on the left is the world line of the center of
this body, the 7 = 0 line at the top of the diagram is the curvature singularity,
and H is the future event horizon. An ingoing light ray from Z~ passes through
the body and escapes to ZT as a u = constant light ray.
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Now we introduce the following two null vectors as,

v=t+r" (2.80)
u=t—r" (2.81)

y |r —2M|
= 2M In ——. 2.82
rt=r+ i (2.82)

Here, M is the black hole mass. Then the spacetime metric in the spacetime
region outside of the black hole is Schwarzschild metric

2M 2M 2M
ds® = (1— =)d2 — (1— =) ldr2 —12dQ? = (1— = )dudv —r2dQ>. (2.83)
T r r
If we write in-mode wave function as f,;, and out-mode wave function F,,

then in the null infinity the wave function becomes as,

f . ~ }/lm 9,¢) efiwv
v Varwr
Ym 67 —1
fotm ~ i/4(7¢)e WG on Tt (2.85)
TWwr
Y (6, _
lem ~ \l/zL(wa:»e "t on I+; (286)
Yim(0, )

lem ~ e—iwg(v) on 1. (287)
drwr

onZ™, (2.84)

By the geometrical optics approximation and the boundary condition we see
u = g(v),v = g-(u) = G(u) at » = 0. Although the u and v are originally
independent, by the reflection at the center of black hole these two vectors
depend.

Hawking gives a general rey-tracing argument which leads to the result that

u=g(v) = —4M1n(vO Y

) (2.88)

or
v=G(u) = vy — Ce /4, (2.89)

in the geometrical optics approximation. Here C' is a constant and vy is the
limiting value of v for rays which pass through the body before the horizon
forms. To derive this equation we assume that the inner metric becomes as

ds* = dT? — dr? — r?d0?°. (2.90)
Because of Eq. (2.83) and Eq. (2.90), at the event horizon following equation

holds as
dR R—-2M ﬂ R—-2M _, dR

1= (P = (G - () R

(2.91)

15



Now we use approximation that R is close to 2M, and set the time Ty at
R =2M. Then approximately we can obtain the equation as

R(T) ~2M + A(Ty — T). (2.92)

Inserting this equation to Eq.2.91, we obtain the following approximate equation
as

R—-2M , R—-2M . _, dR (2M)?
2 — )= 2.
( 2M ) ( 2M ) (dT) (T —Tp)? (2.93)
From the above formula, we obtain
To—T
t~—2MIn (=), T — Tp. (2.94)
Similar calculation can be carried out for r* and we obtain
r—2M ATy —-1T)
*~2M1 ~2MIn ——=. 2.95
P M In ()~ 2M I S (2.95)
In this limit the approximation
U=T—-r=T—-R(T)~ (1+ AT —-2M — AT, (2.96)

holds. Now we write two null coordinates in the shell as V,U. Here V =T +r
and U = T — r. There are three conditions to be determined: the relation
between the values of the null coordinates v and V for the ingoing ray, the
relation between V and U at the center of the shell, and finally the relation
between U and u for the outgoing ray; see figure 3. Let us suppose that our null
ray enters the shell at a radius of Ry, which is finitely larger than 2M. At this
point, both R/(R—2M) and dR/dt are finite and approximately constant. Thus
dt/dT is approximately constant, so t o< T'. Similarly r* is a linear function near
r = Ry. Then,

V(v) =av+b, a,b= const. (2.97)

The V coincides with the U is at r = 0,
U=V. (2.98)

Inserting Eq.(2.94) and Eq. (2.95) to the Eq. (2.97) and the Eq. (2.98), we
arrive at Eq.(2.88) and Eq. (2.89). Although we have performed our explicit
calculation for the special case of a thin shell, the result is more general, as is
revealed by Hawking’s derivation. We can understand why this is this case; the
crucial logarithmic dependence which governs the asymptotic form of u(v) comes
from the last step in the above sequence of matchings. This step through the
collapsing body, which is essentially independent of the interior geometry. We
could imagine dividing a general spherically symmetric star into a sequence of
collapsing shells. As the null ray enters and exits each shell, each null coordinate
is a linear function of the proceeding one, until we come to the exit from the
last shell. At this point, the retarded time u in the exterior spacetime is a
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[\V]

Figure 2.3: An ingoing ray enters the collapsing shell at point 1, passes through
the origin, and exits as an out going ray at point 2, when the shell has shrunk
to a smaller radius. Note that the rays in question are actually imploding or
exploding spherical shells of light.

logarithmic function of the previous coordinate, and hence also a logarithmic
function of v as given by Eq.(2.88)
From (2.87) the out-mode function is obtained as

lem ~ 64Miw1n [(vofv)/C]’ v < o (299)
Foim ~0v > (2100)
By the Bogolubov transformation of the above out-mode function, we obtain
oo ’
lem = /0 dw (azlwlmfw/lm - Bw’wlmf::/lm)' (2101)
Here o/ 1m = @ im wim 304 By yim = Bu/im wim- From this equation we
obtain as

1 Jo' [ L ,
a:}/wlm — 27 7/ dve™ ve4Mzw In [(vo—v)/C]’ (2102)
™V w J_o

’ v ,
Bw/w“n _ _i wi/ 0 dve_iw U64Miw In [(vo—v)/C’]7 (2103)
27V w J_o

or equivalently,

I A iw v _AMiwln (v /C
a, = — —/ dve™w v AMiwin (v /C) (2.104)
w wlm 1T w Jo

1 w' > w' v iwln (v C
BW'W“":%‘/U/O dve' v eAMiwln (v /C) (2.105)
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Noting that the integration along the closed loop C' becomes
% dv/efiw v 64M’£w In (UI/C) — 0’ (2106)
c

we obtain

oo 0o
/ dvle—iw/v’eélMiw In(v'/C) _ _ / dv/eiw,’u/e4Miw In (—v'/C—ie)
0 0

_ _6477Mw / dv/eiw/v/64Miw In (UI/C). (2107)
0

In the first line we have used Eq.(2.106) and make variable transformation v’ —

—v’. In the second line we have used the relation of In (—v'/C —ie) = —7 +
iln (v'/C).
From these result we obtain the result as

|aw'wlm| = 647er|ﬁw/wlm|' (2108)

From the relation of the Bogolubov coefficients, we obtain

S o wiml® = 1Bl = D (™% = 1)|B,y | = 1. (2.109)

’ ’
w w

Finally the Number density in the future null infinity becomes

1
Notm = D _ 1B wiml* = mro—7 (2.110)

If we identify the above result with the Bose-Einstein statistical thermal radia-

tion, the temperature is
1

T &M’
We call this temperature as the Hawking temperature.

Tw (2.111)

2.3 Green Function and stress-tensor Renormal-
ization

In this section we derive Green function [51, 52, 53, 54, 55, 56, 57] of the scalar
field created from the coupling to the background metric. The Green function
is important issue because we use Green function in the derivation of negative
energy near black hole. In the subsection 2.3.1, we derive the Green function
with complicated calculation and we re-normalize its trace. In the subsection
2.3.2 we treat infrared behaviour.
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2.3.1 Ultraviolet Behavior

In this subsection we treat the stress-energy tensor. At the first time, we define
the Green function in a abstract way. The Green function is defined by

Gi(z,2") = (0[p(x)¢(2")[0). (2.112)
The Hadamard expansion of the Green function can be written as

U(z,z')
p

Gi(x,2) = +V(z,2")Inp+ W(z,z'). (2.113)

Here p = %yay“ and y* is the vector whose curve is a geodesics curve connecting
z and z’. If we look at a small region in which z and z’ are contained. The
relation p = %(x — )2 holds. We now explain the way to derive an expression
for the stress-energy tensor in terms of the Green function which is given in
(2.111). The action for the scalar field coupled to background is

Slol = 5 [ dteg o0~ €k~ m*)o, (2.114)
and the field equation is
9—1/2% = (00— ¢R—m?)g=0. (2.115)

The stress-energy tensor from the action can be written as

Tab = 29—1/2 08

6gab
= (1-26)6°6" + (26 — 3)g" 600" — 2666 + 264600
+£(R™ — %Rg“b)qﬁz — %ngalQﬁQ. (2.116)

If we use the point-splitting method, the stress-energy tensor becomes

T = [7*((x) ()] = lim 7*(p(z)p(2")). (2.117)

r—ax!

Here 7% is defined as the following,

/ 1 ’
7 = (1 —28)gh, VOVY + (26 — 5)gabgg,vcvc D TAVAA VAl
1 1
+269°"V eV + E(R™ — S Rg™) — 5m®g™. (2.118)

For the case of massless minimally coupled scalar field,

1
Tap = dadp = 59av9.a0™ (2.119)
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Using the definition of the Green function (2.111) we obtain as
1 1 /
(Tup) = 5 Jim {00 — 040" GO (z,2")}. (2.120)
' =

From now on we study the Green function. At first we decompose the metric
in the Riemann normal coordinate around z’ as,

1 1
7Ruowﬁyayﬁ - gRuavﬁ;'yyayﬁy’y

Guv = Nuv — 3
S 2 R BY Sy y Ty 2.121
+( 20 /mnuﬁ’;’yé“i’ 45 apBA yu&)y vyyy. ( . )

In the same way we can calculate its determinant as,
1 1
3Rasy®y” = cRapy ™y "y

1 1
—R.3R — Rugs)y yPy7y0. 2.122
18 BAlys — 90 20 5;’)’5)y vy'y ( )

In the next step we define G(z,2’) following as,
G(x,2") = g7/ ()G (z,a")g~ /(')
=g V4G (z, ). (2.123)

g=1—

+( R/\aﬁ Rxysr —

Inserting these results into the equation of the Green function,
(O —m? + ER)G(x,2') = g~ V/25(x — '), (2.124)
then after the complicated calculations we obtain

. 1.1 B}
1 9,0,G — [m* + (€~ DRGSRy 0,C

I
+3R” 9°y 0,0,G = (€ = ) RiatG
1 1 .
—|—(§Ra”;5 + éRaﬂ’ Y yP8,G + R/a 5,9y Py70,0,G
1 1
—5(5 - *)R;aﬁyayﬁG + (—*R o Rag + ORKa)\,BRn)\

RW " Raunp — 1; Tog e + ZDRa[g)yo‘yﬁé
+(*2?)*01:{”(1;67 + %OR(X&V v 7RH o pltey

+1L5Rna/\ﬁRKV7/\)yayﬁy73V@ + (7Rﬂa#6;75
+%R”MBR "Ny y?yy°0,0,G = —i(y). (2.125)

Extending above equation to an arbitrary dimensions, and performing the Fourier
transformation, we obtain,

G(z,z") = /(;l;;f eMG(Ek). (2.126)
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Here ky = k,y® = naﬂk’ay[g. Expanding the G(k), we can write
G(k) = Go(k) + G1(k) + Ga(k) + - - - . (2.127)

The relation to the G;(z, ') is given by

Gi(w,a) = / TE G, (2.128)
(2m)™
where ~
Go(k) = (K* +m*)~* (2.129)
and the first order is -
G1(k) =0. (2.130)

And the second order term is
_ _ 1 . 1 _
77‘“’3“81,6‘2 — m2G2 + (5 - E)RGO - gRa”ya&,Go
1 Voo -
+§Rﬂa By yﬁﬁuauGO = 0 (2131)
If we take into account of the Lorentz invariance for y* in the above equation,

—gR Yy20,Go + R 59y’ 0,0,Go = 0 (2.132)

Then the Eq. (2.131) becomes

n"0,0,Ga — m*Ga + (€ — %)RG(J =0, (2.133)

and the second order term is
G () = (% — R/ (K +m?)2. (2.134)
In the similar calculations, the condition of the Lorentz invariance for the y® is

1 v 1 Yy, o ~
(*R B‘f‘gRaB’ )y yﬁayGo

GR o Y Yy 8,0,Go = 0, (2.135)
and
3 K V
(7% oy T Raﬁ v o gy
+t15 Ra)\ﬁR )y y’y70,Go
g R“ pime T 153 WR* "y Yy’ 0,0,Go = 0. (2.136)
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Though Eq.(2.83) becomes
_ 1 _ 1 _
" 0u0,G = [m* + (€ = H)RIG = (= L) Ry G

1 1 ~ 1 1
_Z(f — 2R, a, B T npA T PR A
5 (6= ) Rapy™y’ G + (=55 R R + o5 R s R
i - Lo+ Log YWy G = —d(y) (2.137)
60 altiAukp 120 ;a8 40 aB)Y Y Y). .

If we write it in the momentum space with k being the momentum, we obtain
1 - 1 _
[k +m? + (€ - §IRG +i(€ — 2)Ra0°G

1 1

1 A 1 KA
+[ 2(5 6)R;a5 30Ra Ry + GOR o pRin
1 Ak B 1 1 o 0B A _
+60R aRA,uH,B 7120R;aﬁ + —40DRaﬁ}8 0 G(k) =1. (2.138)

If we solve this equation for the fourth order, we obtain

Gk) = (K +m?*) " + (é — OR(K* +m?)?
+Z(% _ f)R;a(k2 + mZ)—laa(kZ +m2)—1

(G~ PR + )

taap(k? +m?)710°0% (k? + m?) L. (2.139)
Here
1 1 1 1
o = = (= 2)Ruap + —RRrg — — R 3R,
Gap = 5(§ — g)iap + g5 Ra Bas — 5 Ra s R
1 1 1
——RME Ry g + —=Roap — —ORyp. 2.140
G0~ oltuns T Toq has T gt ites (2.140)
In the next step we define the differential relation as,
1
(K +m?*) o (k> +m?) ! = 580‘(162 +m?)~? (2.141)
1
(K2 +m?)10%0P (k> + m?) ! = gaaaﬁ(kz +m?)~?
2
—gnaﬁ(k2 +m?) 3, (2.142)

The Eq.(2.139) becomes

Gk)= (K> 4+m>) "+ (= —OR(K* +m?*) 2

a M (k* +m?) 3. (2.143)



If we derive G(z, '), we carry out the inverse Fourier transformation of the
Green function, we obtain

Gz, z') :/ﬂei’w[l + fi(x,2")(— 82)

(2m)n om
1
2
+f2($795/)(w) ]m (2.144)
Here,
1 1.1
fi(z,a') = (6 R+ 5(5 - Ray”
1 {07
—30asy"y” (2.145)
1,1 1
/ 2 p2 A
=—(=-— ——a’\. 2.14
fala, o) = 5(5 — 2R = 20 (2.146)
We have used the following integration relation
(K* +m?)~! = / ids exp [—is(k? +m?)], (2.147)
0

where m? should be replaced by m? —ie precisely speaking. And we use following
definition as

F(x,2'yis) = 1+ fi(z,2')is + fa(z,2')(is)% (2.148)

Moreover we use the identity,

/ (dkn exp [—is(k* + m?) + iky]

2m)
) Cn . o
= W(ZS) /2 exp (7'Lm25 — %), (2149)
where 0 = %yay"‘. Then we obtain
Glaa') = —
(x’ € ) (47‘(’)"/2
* ids ) o .
X / ORE exp (—im?s — %)F(x,x';zs). (2.150)
0
Using van Vleck determinant,
Az, 2") = —g~V/2(x) det [0, 00 (x,2") g~ /2 (2'). (2.151)

we obtain the Green function as
iAY?(x, 2)
(471-)71/2

X / B exp (—im?s — L)F(x,x’;is). (2.152)
0 2is

G(x,2') =
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In what follows we show

2 oW

(—WW = (Tyw)s (2.153)

where we write the effective action as W, The generating function as Z is given
by
7] = / D(g] exp {iSy6] +i / J(2)é(x)d ) (2.154)
By definition we have
Z[0] = {(out,0/0,in) = (0|0) =1 (2.155)
Since the stress-energy tensor T}, is given by

2 65,
(9) 09

=T, (2.156)
and the derivative of the generating function is

5Z[0) =i / D[$)65,,e 1)

= i(out,0]0, in). (2.157)
We obtain 5 200
T [0 = i(out,0|7},,,|0, in) (2.158)
(—g)= 09"
In terms of
W = —iln {(out,0]0, in). (2.159)
We obtain 5 sW O 0
i _ {out, 0T, [0, in) (2.160)
(—g)z 69" (out,0]0, in)
By using the replacement of the delta function
[ aral-g@)ton e - y)i-gtw) = 1 (2161)
and we define K, by
Koy = (O+m? —ic + (R)S"(z — y)[—g(y)] 2, (2.162)
then the following equation is satisfied as
n 1 _ 1
[ rvl-gw) KoKy = o - 2) gl . (2163)
The above equation means
K} =-Gp(z,2) (2.164)



Combining the results (2.164) and (2.165) we obtain

Z[0] o« [det (—Gp)]3, (2.165)
and 1
W = —iln Z[0] = —itr[In (-G p)]. (2.166)
Furthermore from the normalization condition, we see
(@la’) = 0" (x — ') [~g(2))2. (2.167)
So
Gr(z,2') = (z|Gplz'). (2.168)
By the definition the following equation holds
Gp=-K1= i/ooo e s s, (2.169)

and
(xle™K5|a’y = i(dm) "2 (2, 2" )e™ SO/ P (g ol is) (is) "2, (2.170)

If the K has small negative imaginary part, the (2.170) can be calculate

/ e (i5) " Lids = Ei(—iAK) (2.171)
A

Here, Ei is the exponential integral function. This function can be expand as
Ei(z) =v+In(—2z) + O(z) (2.172)

Here 7 is the Euler constant.
Inserting this equation to Eq. (2.169) and set A = 0, we obtain

(oo}
In(—GFp) = —an:/ e (is)"lids (2.173)
0
From the above result we obtain
oo
(z|In (~GE9)|z") = —/ G2 (z, 2" )dm?. (2.174)
m2
If we express W by F', we obtain
L. T e 2~DS ’
W =—i [ d"z[—g(z)]2 lim dm*Gg> (z, ). (2.175)
2 =z f 2

Furthermore if we take a limit 2’ — x, we obtain

W= ;Z/: dmz/dnx[—g(x)]%Gﬁs(z,x). (2.176)
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We define effective Lagrangian density Leyy as follows

W= / Lops(@)dia = / = g(@)]} Loy s (2)d"a,

where
1 1 o
Legs(x) = [—g(x)] 2 Leps(x) = 52 lim / dm2GR5 (z,2").

Inserting GE9

Legy =~ hm Za] z,z') / zs)j_I_TL/Qe_i("LQS_”/QS)ids.

/= 247‘( n/2

Taking the limit 2’ — z, we obtain
1 —n/2 — > - \j—1—n/2_—im?2s;
Lesp =~ 5(4#) / Zaj(ac)/o (i) =1 2emim 84

47r "/2Za Hn/2707 (5 — n/2).

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)

Here aj(z) = aj(z,2’). We can rewrite this equation by using the arbitrary

mass scale p as,

Legy = %(47r)*”/2(m/u)"*4 > aj(@)m* VT (j - n/2).
j=0

(2.182)

The divergence appear in the case of j = 2. So we can write the divergence

term of W as
1 1
Wain = 5(4ﬂ)’”/2(m/u)”’4F(2 - n/Q)/d”:v[—g(x)Paz(x)
1 —n/2 n—4 n %
= 5 @m) ™ (m/p)" (2 = n/2) [ d*a[-g(z)]*[aF (z)
+8G(x)] + O(n — 4).
Here,
F=R°Ro5.5 — 2R Rop + %RQ
G = R*P"°R,p,5 — 4R“’Rop5 + R%.

And here, the constant numbers «, 3 are

1 1

“=10 P~ 360
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(2.184)

(2.185)
(2.186)

(2.187)



Using the next relations

2 .0 A P — 2
gt g / (=9)?Fd"z = —(n — 4)(F — 0OR) (2.188)
(—29); g 696W /(—g)%Gd% =—(n-4)G, (2.189)

then we obtain
2 L, Wi 1 n e
=T S = gUm) A m/p) T (A= D2 = n/2)

2
x[a(F — gDR) + B8G]+0(n—4). (2.190)
Then the divergence term of stress-energy tensor i.e. Ty, i8S
2
(T,")aiw = (1/167%)[a(F — 30R) + G, (2.191)

If we remove the divergence term, we obtain

(T, ren = —(1/167%)[c( F — §DR) + BG] (2.192)

= —ay /1672 (2.193)

= —(1/28807%)[Rap,s R*?7° — RosR*® — OR] (2.194)

— (1/28807%)[Cagrs O™ + Ros R — %32 _OR]. (2.195)

We call the above formula as the conformal anomaly because the renormalization
of a quantum stress tensor breaks conformal invariance. A conformally invariant
classical theory, such as electromagnetism or the conformally coupled massless
scalar field, has the property lost in the renormalized quantum theory, and
the expectation value of T} acquires a nonzero trace. This anomalous trace is
independent of the choice of quantum state and is a local geometrical quantity.

2.3.2 Infrared Behavior

We consider massless scalar field in flat four-dimensional spacetime. In our
discussion of the Hadamard form, we noted that it is a common, although not
universal property of quantum states. In a state in which the two-point function
does not have the Hadamard form, the renormalization procedure outlined above
will not remove all of the infinities from the stress tensor. In flat spacetime, a
state which does not have the Hadamard form would have to be considered to be
unphysical if the normal-ordered energy density were infinite. Fulling, Sweeny
and Wald [58]have shown that a two point function which has the Hadamard
form at one time will have it at all times. In particular, in any spacetime which
is asymptotically flat in the past or in the future, the Hadamard form will hold
if it holds in the flat region [59]. Thus, it seems reasonable to require that the
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two point function having the Hadamard form be a criterion for a physically

acceptable state.

Examples of state which do not have the Hadamard form may be constructed
even in flat spacetime. Let us first consider a massless scalar field in flat four-

dimensional spacetime, which has the mode expansion
o= (axfic+alfg).
k

If we box normalize the mode function, as

eik-x

fk _ [a(w)efiwt + 5(w)eiwt]’

<

2w

we must require
(@) = |Bw)? = 1.
We define the two-point function by

(plo()o(z")|e) = ﬁ / Pro Ho(w)e ™ + Bw)e™!]
~ [Oé* (w)eiwt’ + B* (w)efiwt’]eik-(xfx’)'

Here, ¢ is defined by (2.197). If we assume w is small,

(olb(@) b)) ~ s / duowla(w) + Bw) P

(2m)?

For example, let )
Bw)=w™ alw) = (1 +w>)z.

Then we obtain
la(w) + W) ~w™¢ w—0.

In this case it diverges for ¢ > 1.
In the case of two dimensions, the two-point function is

(Plo@)o@)le) ~ - [ dowlale) + 5P
If we assume similarly as
Blw) =—w™", aw)=(1+w )3

Then 1
la(w) + B(w)| ~ Zw%, w—>0.

(2.196)

(2.197)

(2.198)

(2.199)

(2.200)

(2.201)

(2.202)

(2.203)

(2.204)

(2.205)

In this case the above equation is finite if ¢ > 0. If we choose a« = 1,5 = 0, the
two-point function in two-dimensional case diverges. One may show that in any
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state which is free of infrared divergences, (¢?) must be a growing function of
time [47] In the case of t — oo

(¢%) ~ 1% (2.206)

Similar divergence appearing in the case of background is de-Sitter space-
time. Then the metric is

1

2 _
= Gy

(dn? — dx?) = dt? — e*Htax?, (2.207)

—~

and
O¢ = 0. (2.208)

The mode function satisfying the above equation is given by Hankel function
as

)

Jic o X ea B (k) + ex HS (k). (2.209)

If we set co = 1,¢; = 0, this state is infrared divergent, because the Hankel
function behaves as,

HP (kn) ~ k™2, k—0. (2.210)
2
In this case in the future infinity,
H3¢
2

This result is applicable to the Goldstone model of U (1) symmetry breaking.
At first we define the Lagrangian density by

L= 0,80 — V(D) (2.212)

where the potential V' is given by

1 1
V(®) = —§m2‘1>*‘1) + 1/\(<I>*<I>)2. (2.213)
The potential is minimal at the point of
® =oe®, o=mAV2 (2.214)
The equation of motion of ® is O¢ = 0. If we divide positive and neg-
ative frequency part of this wave function, we obtain ¢ = ¢ + ¢, and
¢T|0) = 0,and{0]¢~ = 0. If we use annihilation and creation operator, ¢+ =

Ej a;fi, ¢~ = Ej a;[.f;-‘. We use the Campbell-Baker-Hausdorff formula
€? = ci(¢pT +¢7) = e e 300 1eio" (2.215)
And if we use the identity.

[p*, 07 = Z fify = (%), (2.216)
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we obtain ' e
(®) = 0(e?) = ge™ 207, (2.217)

The ultraviolet divergence in (¢?) is absorbed in a rescaling of ®. In spacetimes,
such as four dimensional flat space, where one can have ($2) constant in a phys-
ically acceptable state, then there are stable broken symmetry states in which
(®) # 0. However, in two dimensional flat spacetime or in four dimensional
de-Sitter spacetime, the growth of (¢?) forces (®) # 0 to decay in time. In this
cases, the infrared behavior of the massless scalar field prevents the existence of
a stable state of broken symmetry.

2.4 Negative Energy

2.4.1 Casimir effect

In this section we consider electrodynamic stress-energy tensor in vacuum. An
electromagnetic field will be modified in the presence of conducting surfaces.
Then the stress-energy tensor operator is given using

T (2, ) = FP M + %5)F”/\(x _ %e)
—lg‘“’FM(x + 15)FM(x - 15), (2.218)
4 2 2
or
T = lim (1 + 1a*i)TW(g;,g) (2.219)

=0 4~ Qe

Because of these definitions we can remove the divergence of the term (g2)72.
From now on we consider the property of the stress-energy tensor. From the
fact that the divergence is zero, we obtain

0,T"" = 0. (2.220)

From the fact that the trace of stress-energy tensor is zero we obtain
T, =0. (2.221)
Now we consider the parallel and infinite complete condensation. The length

of two condensation is a. We assume the direction is 2# = (0,0,0,1). Then the
stress-energy tensor becomes as

(T"")(0) = (ig“” — 2 f(2). (2.222)

However, because its trace is zero, f(z) should be a constant factor and it
represents the energy in unit volume. Then the stress-energy tensor becomes

(T")(0) = (ig’w — 2#2Y)(he/at)y. (2.223)
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Here,

v = # il—‘* = (1/27)¢(4) = 7*/180. (2.224)
1=1
The energy density is
(T%%) o) = —(7*/720)(hc/a"), (2.225)
and the pressure is
(T3%) (o) = —(7*/240) (he/a®). (2.226)

In this particular case the Casimir effect gives negative energy and pressure.

2.4.2 Negative Energy: a simple example

We can illustrate the basic phenomenon of negative energy arising from quantum
coherence with a very simple example. Let the quantum state of the system be
a superposition of the vacuum and a two particle state:

1
2) = == (10} +<]2). (2.227)

Here we take the relative amplitude € to be a real number. Let the energy
density operator be normal ordered:

p =: Ttt ‘. (2228)

Then the averaged value of energy becomes as

(6) = 15 2eRe((0]ol2)) + <(2]pl2)]. (2.229)

We may always choose ¢ to be sufficiently small that the first term on the right
hand side dominates the second term. However, the former term may be either
positive or negative. At any given point, we could choose the sign of € so as to
make (p) < 0 at that point.

In the next step we show more general result. We use a fact that the energy
of the squeezed state becomes negative value at some point. General squeezed
state for a single mode can be written as

|2,¢) = D(2)5(¢)[0). (2.230)
Here, D(z) is the displacement operator defined as
D(z) = exp (zal — 2%a) = 67‘2‘2/26”%4*“, (2.231)

and S(¢) is the squeeze operator defined as
1 * 2 1 12
S(¢) = exp [§C a® — §C(a )] (2.232)
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Here, , 4
z=1s5e", (=red. (2.233)

With z being an arbitrary complex number. The displacement operator and the
squeeze operator satisfy the relation as

D(2)aD(z) = a + 2, (2.234)

D(2)a'D(z) = af + 2, (2.235)

ST(¢)aS(¢) = acoshr — ale sinhr, (2.236)
ST(0)a'S(¢) = a' coshr — ae~* sinhr. (2.237)

If ¢ = 0, we obtain coherent state |z) = |z,0). In this case the averaged value
of the quantum field is

(¢) = zf + 2" f*. (2.238)
Furthermore the fluctuation of this state is minimal and
(62) = (o) (2.239)

If we consider the squeezed state in the region |0, (), then (p) < 0.
From now on we apply above discussion to the curved spacetime. We assume
the Bogolubov transformation as

a=a*b— b, (2.240)

with |a|?—|B|? = 1. The annihilation operators satisfy, a|0);, = 0 and b|0) o =
0 Now we assume in-state and out-state are related as

[0)ir, = 2]0) out, (2.241)

where ¥ is a certain operator with Xfa¥ = b = aa + *at. If we multiply this
equation by Xa, we obtain
»Tax|0) = 0. (2.242)

If we set o = coshr,3 = —e™, ¥ = S and the |0);, becomes the squeezed
vacuum. Then the averaged value of the energy may become negative.

By the Hawking effect, the energy is extracted from black hole so that the
area of the horizon decreases. We would like to consider this effect. Although
we used dominant energy condition, the energy condition is broken near the
horizon. For example we consider two dimensional black hole [50]. The metric
is

ds® = (1 —2M/r)dt* — (1 — 2M /r) " tdr®. (2.243)

By the coordinate transformation we obtain

u=t—r"
v=t+r" (2.244)
r*=r+2Mln(r/2M — 1)
ds* = (1 — 2M /r)dudov. (2.245)
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Then the stress-energy tensor is

g2 R tut, 1

Ty =—(—— + = — ) + 0 + O
" (47rtat“+247r)(tat“ 9 9n )+ O + O(e)

Here, 60, can be written using conformal factor as,

If we re normalize the stress-energy tensor and we assume t%¢,
obtain

R
ﬂtv = GHV + Eguu
Calculating this term we obtain as
3M?2 M
- _ —1
1 2M? M
Typ = Typy = (24m) 1( . ﬁ)
TM?  AM
_ —1
Ttt = (247'(') ( ’)"4 7“3 )
Ty =T4=0
2
Ty = —(24m) (1 —2M/r)~2 =

(2.246)

(2.247)

= +1, then we

(2.248)

(2.249)

This example shows the fact that the energy becomes negative near the horizon.

There is also negative energy inequality [48].
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Chapter 3

Dynamical Horizon

In this chapter we introduce the concept of the dynamical horizon. The dynam-
ical horizon has the equation which describes how the black hole radius changes.
The equation has been normally used only in the spacelike case. If the hori-
zon is spacelike, black hole all ways increases by the apparent horizon analysis.
However, by using the result derived in chapter 2, we can extend the definition
of the dynamical horizon to timelike case. Then the timelike dynamical horizon
equation can be applied to black hole evaporation problem in the next chapter.

3.1 Spacelike and timelike dynamical horizons

Ashtekar and Krishnan considered dynamical horizon [15][20], and derived a
new equation that dictates how the dynamical horizon radius changes. Apparent
horizon is a time slice of the dynamical horizon. The definition of dynamical
horizon is,

Definition. A smooth, three-dimensional, spacelike submanifold H in a space-
time is said to be a dynamical horizon if it is foliated by preferred family of
2-spheres such that, on each leaf S, the expansion O of a null normal [*
vanishes and the expansion O, of the other null normal n® is strictly negative.

The requirement that one of the null expansions is zero comes from the
intuition that black hole does not emit even light. And the requirement that
other null expansion is strictly negative comes from that null matter goes in
black holes inward.

In this section we recapitulate the important formula which gives a change
of the dynamical horizon radius by the matter flow, using 3+1 and then 241
decompositions and also the Gauss-Bonet theorem. Decomposing the Einstein-
Hilbert action in 3+1 dimensions, we obtain the constraint equations, scalar
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constraint and vector constraint as

Hs=R+ K? - K%K, = 167G, 77" (3.1)
H{; = Dy(K® — Kq*) = 87GT"7.q;.

where, K, is the extrinsic curvature defined by K, := nggvc%d, and K is its
trace, K¢. Here 7¢ and 7 are unit vectors in the time and radial directions. We
choose the vector 7* along the dynamics of the horizon, and 7% is defined by the
orthogonality 7%7, = 0, so that there are two choices of time vector, future or
past. qqp is three dimensional spatial metric, R is the three dimensional scalar
curvature, and D, is three dimensional covariant derivative. AH is the volume
of the dynamical horizon between two trapped surfaces. We set

- 1
Tab = Tab - %

with T,; being the matter stress-energy tensor in the case that the cosmological
constant A is present. We denote the flux of matter energy across AH by
JTR

matter

Agab, (3.3)

‘F'rljiatter = /AH Tab%af?R)dgv' (34)

By the Einstein equation, we can rewrite the right hand side in terms of the
geometrical quantities as

w 1 Ngp(Hg + 27, HY)d3V
‘Fmatter 167G N R( s+ 271 V)
1
= N K? — KK, + 27,D, P)d?V. .
657G Jo (R + b + 274 Dy P*°)d3V. (3.5)

Here, {{) := Ngl® (Ng := |OR|) and R is the radius of the dynamical horizon,
an
P .= K% _ K¢, (3.6)

Now, we decompose R in 241 dimensions
R=R+K?— K, K% +2D,a°, (3.7)

here K := (jgcngCfd, and af := P Dy7® — 7o Db,
Then we also rewrite P as

o Da P = D,B% — P D, . (3.8)

with
B = K%y — K72, (3.9)

Putting together the equations (6)-(9), we obtain

Hs + 27 HE = R+ K? — K K
+K? — Koy K% — 2P Dy, + 2D,~°, (3.10)
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with

~v¢ = a4 B (3.11)
Now, we use the fact that the null expansion Oy can be written as
O = K — Kui®i* + K, (3.12)
we further decompose the extrinsic curvature K, into 2+1 dimensions as,
Kap = %f(dab + Sap (3.13)
Kb = AGap + Sap + 2W(ay) + Biafy. (3.14)
Here f(abis the extrinsic curvature in 241 dimensions, K is its trace (f( =K @)

S,p is the traceless part of f(ab, Sap is the projection of traceless part on .S,
and W, is the projection of Kg7® on S. And also we define A := %Kab(jab,
B = K7, where G, is two dimensional metric dup := qap — Fafs. Inserting
these decompositions into the previous equation, we obtain

Hg + 27 HE = R — 0450 — 2W, W — 2W %P Dy,
1 a
+§®(l)(®(l) +4B) + 2D~ (3.15)

~Tn

Here 04y := Sap + Sap is shear of 1%, that is, oup = q,
Using

qv;}vmln - %dabqabvmln-

V= a4 B = Dy — P Dy’ + Ky — Ky
= P Dyi" + W* — ©()7*, (3.16)
we can rewrite the acceleration term, as
7 Dyiq = (Ng) ™' DyNp. (3.17)
Finally we get
Hg + 27 HE = R — 030" — 2¢¢, + 2D, "

1 .
+§®(l)(®(l) +4B —4]()7 (3.18)
where ) )
(*:=W*+ D*InNg = §*7°V.ly, (3.19)
and therefore
1 .
fwﬁmlz)tte?“ = 167G AH NR(R - Uabaab - 2<a<a)d3V- (320)

To evaluate the right hand side of Eq. (3.20) we note that equation (3.5) reduces
to

NrRdA*V = 167G / Tap?" &) d*V
AH AH

+/ (|o|* + 2[¢)*)d*V. (3.21)
AH
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Here we put, |0|? = 0,50, [¢|? = (*(,. We see that the second term of right
hand side of this equation is the form of the Bondi energy, therefore positive. If
we assume dominant energy condition, the right hand side would be positive, and
therefore the horizon radius would increase. Using the Gauss-Bonet theorem,
the left hand side becomes,

R2 -
NrRA*V = / dr(f Rd*V) = 8n(Ry — Ry). (3.22)
AH Ry S

Substituting equation (22) back in equation (3.21) one obtains

Ry Ry 5 ach 3
SrelubTelin /AHT‘”’T SmdV
1 2 2\ 13
+em /AH(|O'| +2/¢H a3V (3.23)

This is the dynamical horizon equation that tells how the horizon radius changes
by the matter flow, shear and expansion. In the spherically symmetric case that
we shall consider in what follows the second term of the right hand side vanishes.
Although in the case of quantum field theory in curved space time, the domi-
nant energy condition does not hold[48][24], we can use the dynamical horizon
equation because it is valid even when the black hole radius decreases. And the
dynamical horizon equation is a consequence of the Einstein equation. We use
the dynamical horizon equation in place of the Einstein equation. Because of
the negative energy, we can expand the definition of the dynamical horizon in
the case of timelike. Then the definition of the dynamical horizon is now,

Definition (modified version). A smooth, three-dimensional, spacelike or time-
like submanifold H in a space-time is said to be a dynamical horizon if it is
foliated by preferred family of 2-spheres such that, on each leaf S, the expansion
©(;) of a null normal [* vanishes and the expansion O, of the other null normal
n® is strictly negative.

We can easily calculate the timelike dynamical horizon equation only replacing
7% and 7%. And the way of 341 and 2+1 decomposition is replaced.
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Figure 3.1: This shows spacelike dynamical horizon.7* is normal vector parallel
to the dynamics. 7% is chosen as orthogonal to 7.l is the null normal whose

expansion is zero. n® is the null normal whose expansion is strictly negative.
AH is the region between two trapped surface.
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Chapter 4

Black Hole Evaporation

In this chapter we study the consequence of negative energy introduced in chap-
ter 2 to the dynamical horizon equation introduced in chapter3. On the basis
of the timelike dynamical horizon equation and negative energy near black hole
horizon in the Vaidya metric, we can solve the black hole evaporation problem as
a back-reaction problem. We introduce the Vaidya metric because the Einstein
equation and the dynamical horizon equation usually are not consistent.

4.1 Radius of the dynamical horizon

This chapter is mainly based on Sawayama [1].  The Vaidya metric is of the
form

ds? = —Fdv?® + 2Gdvdr + r2d9?, (4.1)

where F' and G are functions of v and r, and v® is null vector and r is the area
radius, and M is the mass defined by M = L(1 — &), a function of v and 7.
This metric is spherically symmetric. By substituting the Vaidya metric (2)
into the Einstein equation so that we can identify the energy-momentum tensor
Ty as

2
87Tu 1= (P, +GM,) (4.2)
2G
87TTUT = _TTM’T (43)
2G
8nT,, = T 4.4
™ e (4.4)

We do not need to check that the solution of the dynamical horizon equation sat-
isfies the Einstein equation. Because we would like to consider the Schwarzschild
like metric, we set v =t + r*, where r* is tortoise coordinate with dynamics

r* =7 +2M(v)In (QMT(U) ~ 1). (4.5)
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Figure 4.1: For the case that the dynamical horizon decreases, we should choose
[* = —t* + 7% so that [* points into the dynamical horizon.

For later convenience, we write,

or
@ ar*|, (4.6)
There are two null vectors,
lt _a—l
lr* a—l
a __ —
"= 10 - 0 ) (47)
1¢ 0
corresponding to the null vector v*, and the other is
nt _aq1
I3 F —1
a_ |7 — | TF2c?
n? 0

Here we multiply a~! so that {* = v®. This choice of the null vector % is
explained in figure 4.1. From now on we put,

F = (1—2M(”)> (4.9)

r

G = 1, (4.10)
in a similar form to the Schwarzschild metric, assuming that M (v) is a function
of v only. For a constant M, the metric coincides with the Schwarzschild metric.
We calculate the expansions © ;) and ©(,) of the two null vectors [, n®, because
the definition of the dynamical horizon requires one of the null expansions to
be zero and the other to be minus. The result is,

1
9(1) = ;(2F — a) (4.11)
1 (—2F? +aF — 2a?
= 4.12
@(n) ar ( —F 4+ 2a ) ( )

40



From Oy = 0 we get,
2F —a=0. (4.13)

we can check that the other null expansion ©(,)is strictly negative. There-
fore in this case, we can apply the dynamical horizon equation. In the usual
Schwarzschild metric with dynamics, both expansions become zero. This is one
of the reasons why we choose the Vaidya metric. By inserting equation (4.6) to

equation (4.13), we obtain
F(1—2M,In(=——1
v 2M

T (2 - 1)M’”)' (4.14)

Note that a is proportional to F'. Now we solve ©¢) = 0, to determine the
dynamical horizon radius as

S
Il

2F —a = 2F

— F(1-2M,In (-
(12t (537 1)

+ (r/2M—1 )
= 0. (4.15)

From this equation we obtain,

+M(rD/2DM —) M’”) =0 (4.16)

Here F' = 0 is also the solution of the dynamical horizon. The dynamical horizon
radius rp is given by solving (4.16) as

rp = 2M + 2Me~/?M, (4.17)
Note that this dynamical horizon radius is outside the r = 2M, that is other
solution.
4.2 Dynamical horizon with only Vaidya matter

First, we should derive the energy-momentum tensor 7}, for the integration
of the dynamical horizon equation. For this end we derive it from the given
Vaidya matter. For G =1, F =1 — QMT(”)

, the non-vanishing components of
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the energy-momentum tensor becomes

1

T, = FM, + M, 418

g (FM, 4 M) (418)
1

ﬂr* = _WM’TG) (419)

Tpere = 0. (4.20)

Here we have made the coordinate transformation from r to r*. Writing Ty, in
terms of T, and T~ given by (4.18)(4.19) with I* = v?, we see

Ttl = _Tvv + Tm"*

1
= 7_Flwr_iwv_ Mr
47rr2( ’ w — alM )
1 5
= — —M,. 4.21
4rr2 27 ( )

With £* being the unit vector in the direction of t%, we obtain

T, =— 4;2 ngF*l. (4.22)
For the dynamical horizon integration (3.23), we get
T2 5 M
/ Amrd Tyydrp = 5 / (14 e7v/2Myan, (4.23)
T M,
where we have used
e—v/2M
Sl pp—ITe (4.24)
and the fact
% = e V/2M <2(1 +e7v/2My 4 J\UfWW> 1, (4.25)

changing the integration variable from rp to M. In the above calculation, we
treat M, and F~! with rp fixed, because these functions are used only in the
integration. Inserting equation (4.23) to the dynamical horizon equation (3.23),
we obtain

1 Ma
—(2M + 2Me”/2M)‘
2 "
M2 5
:/ (14 e72Myang, (4.26)
M1 2
Taking the limit My — My = M, we obtain
3
—S(L e 4 e g, (4.27)
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This equation is the dynamical horizon equation in the case that only the Vaidya
matter is present. There is no solution of this equation, except the trivial one
(F=0orr=2M),so

rp = 2M(v). (4.28)

Here M (v) is the arbitrary function only of the v, which represent the Vaidya
black hole spacetime.

4.3 Dynamical horizon with Hawking matter

Next, we take into account the Hawking radiation. To solve this problem,
we use two ideas that is to use the dynamical horizon equation, and to use the
Vaidya metric. The reason to use the dynamical horizon equation comes from
the fact that we need only information of matter near horizon, without solving
the full Einstein equation with back reaction being the fourth order differential
equations, for a massless scalar field. For the matter on the dynamical horizon,
we use the result of Candelas [60], which assumes that spacetime is almost static
and is valid near the horizon, r ~ 2M.

Ty = Ty

B 1 /°° dww?®
221 —-2M/r) J, edmTMw 1

1
© 2eMAr2(1 - 2M/r)’ (4.29)

where we have used a well known result,

* dww? wd
/0 eaw — 1 15at’ (4.30)

and where ¢ = 61440. This matter energy is negative near the event horizon.
In the dynamical horizon equation, if black hole absorbs negative energy, black
hole radius decreases. This is one of the motivations to use the negative energy
tensor. Next we replace length of ¢ to unit length, because in the dynamical
horizon equation # is used, so

PO=pF"12 0= p-12 (4.31)
and therefore, the energy tensor becomes

1
2M4en2(1 —2M /r)2°

T, = (4.32)
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Calculating the integration on the right hand side of (3.23) for this matter,

b/M4 1—2M/rD) zdrp
B b/ AM?(1+ e /2M)t drp

Mae—v/M WdM

R 4(1 + efv/2M)4 v
— e VM (2(1 4 e7V/PMY o — e/ 2M ) g0 (4.33
[ A (s e e (1.33)

Here we insert the expression for rp (4.17)in the first line, and the expression for
drp/dM = 2(1+ e~ v/2M) 4 2e=v/2M g ysed. Here b is a constant calculated
in [60]
_ 1
307207

(4.34)

If we also take account of the contribution of the Vaidya matter, and inserting
this into the integration to the dynamical horizon equation (3.23), we obtain

1 Mo
~(2M + 2Mev/2M)
2
My
Mo 22(1 +677j/2M)4 v
—b —v/M 201 —v/2M Y —v/2M dM
/M1 Ve e < (I+e )+ 7€

Ms ¢
+/ S(1+e7PMyan. (4.35)
M1 2

Taking the limit My — M; = M, we finally get

3 v
_3(1 4 emv/2M —v/2M
2( +e )+ Y
2(1+e /M)ty —v/2M Vo /oM
= b "M (201 T ¢ e, (4.36)
or
8b(1 +67U/2]VI)46’U/M v
M2 _ 1 —v/2M Y —v/2M ) 4.
TI(1 4 /) ¢ gz e (1+e )+ ST (4.37)

This is the main result of the present work that describes how the mass of
black hole decreases. This equation is the transcendental equation, so usually
it cannot be solved analytically. However, with the right hand side depending
only on —v/2M, we can easily treat Eq.(4.37) numerically. Figure 4.3 is a graph
of M as a function of v

If the dynamical horizon were inside the event horizon, the dynamical horizon
radius would be

rp =2M — 2Me V/2M
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In this case, the dynamical horizon equation would become

ap_  —Sb(L— e/ Yt/ ((1 vy _ Ue—v/2M>
%(1 _ efv/2M) _ ﬁefv/2M 2M ’

The singular behavior of this expression excludes its physical relevance.
Now we show an approximation of Eq.(4.37) in particular limiting case. Taking
the limit M — 0, and —v/2M = const, we can see that (4.37) becomes,

bCl b’UCg
Where Cy, Cs are positive constants. or
OQU
= ——. 4.39
c (4.39)

So, in the vanishing process the mass is proportional to v. For M — large

. Cs

M= Tog M (4.40)
where Cj is a positive constant. It comes from the limit M — oo and —v/2M —
0o. In this limit the equation (4.37) becomes v = —2M log M. This is different
from Page’s result [13]. Because if M goes to large, the dynamical horizon
radius increases as M2, so absorbed energy also become large. From this reason
derivative of M by v changes. If we do not consider next order, the derivative of
M becomes M = —Cly, so that 47r23T* ~ 1, contradicting with Page’s intuition.

45



25(
20}
15}
10}
5t
‘ ‘ ‘ ‘ R
3 4 5 6 7 8 2

Figure 4.2: Numerical calculation of (4.37) The present approximation is justi-
fied for small M in the Planck unit.
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Figure 4.3: Numerical calculation of the black hole mass M as a function of v
from the equation (4.37).The unit is the Planck unit.
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EH

Figure 4.4: The Penrose diagram of the dynamical horizon. E.H means event
horizon and D.H means the dynamical horizon.
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Chapter 5

Conclusion

We have derived an equation which describes how the black hole mass changes
taking into account of the Hawking radiation, in the special Vaidya spacetime
which becomes the Schwarzschild spacetime in the static limit. From the anal-
ysis of the transcendental equation (4.37), we have shown that the black hole
mass eventually vanishes and the spacetime becomes the Minkowski spacetime
independent of the initial black hole mass size.

The dynamical horizon method in this paper can take into account of the
back reaction of the Hawking radiation without solving the field equation which
contains the fourth order differentials.

In the limit of the black hole mass going to zero, the derivative of the mass
becomes small in proportion to the null coordinate (v = ¢ + 7*). On the other
hand as the black hole mass becomes large, the derivative behaves the minus
of the inverse of the logarithm of the mass. Our result, which is different from
Page’s result, comes from the fact that in the large mass limit, the black hole
radius behaves like quadratic of the black hole mass. This probably comes from
when large mass limit that the approximation » — 2M is broken.

We would like to compare the present work to the preceding works. Sorkin
and Piran or Hamade and Stewart used a massless scalar field instead of the
Hawking radiation as the back reaction directly. The conclusion of their paper
is that black hole starts with the small mass and it evaporates or increases.
However, it is shown in the present work that even if the black hole starts with
a large mass it always vanishes.

Although we have treated the black hole evaporation semi-classically, we
hope this work will give an intuition to quantization of black holes.
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Appendix A

Proof of the formula for the
dynamical horizon

A.1 Dynamical horizon

We use that expansion of null vector can be written,

O = K — Ko + K. (A.1)
Now we prove it.
% 1~ab 1 ab
K+K = 5 Da(lb *Tbb)+ 5(] Va(lernb)
1 1
= 3 7Dy (lp — mp) + 5(qab + 770V o Iy + 1p)
= §""Valy + 77" Dy (A.2)
PP Doty = PP K (A.3)

At the first line, we use [* = 7%+ 7 and n® = 7% — #*. And second line, we use
q® = @ + #2#b. My choice of I* and n® is not that case, but it is no problem.
Because in the spherical symmetry, K and 7#*#*K,; cancels, and null expansion
of {* become simply proportional to K.

Proof of (3.15).

f{abf{ab _

—~

1 - ~ 1 - ~
§K(jab + Sab)(éK(jab + 5%
K’Q ~abqab + Sabgab

DN — |

K2 + 5,5 (A.4)
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At the first line we simply insert (3.13), and second line, we use G S, = 0 from
definition.

K K™ = (Adas + Sap + 2W(,iy) + Biafy)
(Ag™ + 5 4 2W (@) 4 Biafh)
= 242 4 5,58 + AW, i W) 4 B2 (A.5)

X

This is almost all same as last equation, we use the definition of §2* and S°.
And there are many cancellation terms.

Now we calculate the equation (A.5) term by term. At first A can be written
by,

A = K
L ab _ aazh
= iKab(q = F77)
= %(K — Kopi®i?)
- %(K _B). (A.6)
So first term of right hand side of equation (A.5) is,
24% = i(K — B)?
= %(KQ —2KB + B?). (A7)
Third term of equation (A.5) is written by,
Wiainy W = %Wawawb + % VoW,
_ %mwa +o. (A.8)

Here we use a definition of W¢, that is two dimension vector. Finally we changes
term of P D, 7.

P®D,, = (K™ — Kq®)Dy#
= (Ag™ + 8 4+ 2W ) 4 Bi*i® — Kq*) D,y
= AG®Dyt, + SDoty 4+ 2W @ Dy, 4+ BrFP Doy, — Kq® Doty
= AK 4 8D, + W Dyty — Kq™ Doty
= %(K — B)K 4 8¢ Dyt + W Dyitq — K(§% + #97°) Doy

[ , - "
= KK — 5B +8%(g + ) Dot + W' Dy — KK

1 -~ 1_ - ~ ~
= —;KK-3BK+ S® Kap + W Dyiy
1 -~ 1_ - ~ ~
= —5KK-3BK+ 5SS, + Wb Dy, (A.9)
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At the second line we simply insert the decomposition of K (3.14). And at
the fourth line, we use definition of K and the fact that #* is normal vector.
And sixth line we insert definition of A and definition of g}

Proof of (3.18). Now we simply insert the definition of v* and ¢°.

,ya = a® _1_/6@ — ,,anb,,qa _ fanfb —I—Kabfb _ K'Fa
= Dy + W - 0 (A.10)
CaC® = (W~ PP Dyig) (W + 70 Dyi®)
= WW 4 2W,rt Dyi® + #%( Dyt )7 (D). (A.11)

Next we show D,(% can be written by follows.
D" = DG
= 5D (W + 7 Dyy)
= (g5 = Paf)Do(W* + 7 Dy)
D W — i DW® + (g5 — 747°) Do (#° Dyi®)
DaW*® = 7o DWW + (g5 — ™) ((De”) (Dyi®) + 7 De Dy
= D W — 7D W
(Do) (Dyi*) + #* D Dy — #f(Dei?) (Dyi®) — # 7 Do Dyi®
DgW? + Wor¢ Doi® + (D) (Dyi®) + #° Dy Dyi®
77 (D) (Dyi®) + 797 (Dot ) (Dyi®) (A.12)

_l_

It is long calculation, but we only use the definition of W* and ¢*® and the fact
7% is normal vector.
Now I show D,v* is written by follows.
Day* = Da(F* Dyt + W — 0()#*)
= (Daf*)(Dyi®) + P Dy Dyi® + DaW® — (DO 1)) — Oy Doi™®
= (Do) (Dyi*) + i Dy Dyi® + DuW® — #°DyOy — Oy K (A.13)

Next I show (, is written by follows.

G = Wat Dyt
= Ko’ — Biq + " Dyfq
= "Dy — FoP" 7Dty + 7 Dy
= PVl (A.14)
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Above two equation, we use same method of derivation of equation (A.12).
Proof that o, is shear.

. - 1~
Sab - Kab - EKQab
erdm s Logge .
= qaquch - iq anchra (A15)
1.
Sab = Kgu— iqdz - W(arb) — Brgrp

- . 1 . e dy~ .
(qg - rbrd)DaTd - i(q ¢ +r Td)QachTd

+  PPDgyFa + PP Dy Fa — PPty Doty

N N WO .
= G Dota— 54 dabDaTa (A.16)
Q ~c~d 1 ~cd ~
Sab + Sab = 4,9 Dcld - iq QGchla (A17)

In the calculation of equation (A.15) and (A.16), we insert the decomposition
of S% and S4°.

A.2 Vaidya calculation

We write the inverse metric of the Vaidya, because we use it calculation of
expansion of null vectors. Here we write only ¢ ant »* components.

—F a—F \_ 1 —-1(-F+4+2a —a+F
<a—F —F—|—2a) _a2<—a—|—F -F ) (A.18)

Next I show follow of dynamical horizon radius. From equation 2F — a = 0,

D D
2—-1 2M yIn | — —1 — M, | =0. Al
+ (20totn (55 - 1) + s gy ) =0 A9
D ™D _
2M’U In (W - 1) + mM’y =-1 (AQO)

It is rewritten by follows.
0y(2M In(rp/2M — 1)) = -1 (A.21)
To integrate this equation, we get,
2M In(rp/2M — 1) = —v (A.22)
From this equation,

rp = 2M + 2Me™/?M, (A.23)
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Next I show how Ty is written by T, and T,,. I use the fact [* = —v® (now I
renormalize [@).

Ty = Ty — 2T + Thovp
Ty = —Ty— Ty~
Ty = Ty — 2L + Tyere
Ty = Ty
Tyre = —Typr + Toeps
Ty = —Tyo+ Tore (A.24)

To insert the specific form of T, and T,

1
Ty = ——(-3FM,—M,
& 47r7°2( SEM, 2

1 3
= T 5 _71‘4U_1L4U
47r7"2< 27 ’ )

1 5

I show integration of Tj.

2
T2 T 5
/ 47Tr2DT£[er = — — 7UF71d’/‘D

T1 T1 2

"2 5 d’I“D dM
= — 7F_177d
/T, 2 dv drp D

/Mz 51+ e v/2M
= -

1

M, 2 e—v/2M

5 M
= 5/M (14 e v/2Myapm (A.26)

In the second line, I use the fact that M, = drp/dv x dM/drp. In the third
line, T use the relation drp = drp/dM x dM.
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