
REPL 指向
第 13 回 #渋谷java

@_ayat_p / Cybozu Startups, Inc.

REPL 指向至高
第 13 回 #渋谷java

@_ayat_p / Cybozu Startups, Inc.

(def _ayato_p
 {:name "あやぴー"
 :lang [:clojure]
 :company "Cybozu Startups, Inc."})

(def _ayato_p
 {:name "あやぴー"
 :lang [:clojure]
 :company "Cybozu Startups, Inc."})

最近 Clojure しか
書けなくなりました

はじめに

"REPL の話をします"

とは言ったけど

"Java の"とは一言も
言ってない :P

"Java の"とは一言も
言ってない :P

"Clojure の"
REPL の話をします

今日話すこと

•改めて REPL とは

• Clojure における REPL とは

• REPL 駆動開発

改めて REPL とは

•最近の言語はだいたい備えている

• Ruby -> irb, Python -> ipython

• Kotlin, Scala など JVM 言語でも! 
(そろそろ Java でも !?)

• Read-Eval-Print Loop

•読んで、評価して、出力する繰り返し

• Read-Eval-Print Loop

•読んで、評価して、出力する繰り返し#とは

e.g.) Ruby REPL
 
irb(main):001:0> def hello
irb(main):002:1> "Hello, world"
irb(main):003:1> end
=> nil
irb(main):004:0> hello
=> "Hello, world"

e.g.) Ruby REPL
 
irb(main):001:0> def hello
irb(main):002:1> "Hello, world"
irb(main):003:1> end
=> nil
irb(main):004:0> hello
=> "Hello, world"

READ & EVAL

READ & EVAL

e.g.) Ruby REPL
 
irb(main):001:0> def hello
irb(main):002:1> "Hello, world"
irb(main):003:1> end
=> nil
irb(main):004:0> hello
=> "Hello, world"

PRINT

PRINT

e.g.) Ruby REPL
 
irb(main):001:0> def hello
irb(main):002:1> "Hello, world"
irb(main):003:1> end
=> nil
irb(main):004:0> hello
=> "Hello, world"

LOOP

•対話的に開発するためのツール

•考えた機能を確認しながら実装できる

• (閉じた) REPL 環境に蓄積される

•たぶん便利(?)

•対話的に開発するためのツール

•考えた機能を確認しながら実装できる

• (閉じた) REPL 環境に蓄積される

•たぶん便利(?)

その REPL
本当に便利ですか?

Clojure における
REPL とは

たぶんあなたはこう思っている?

  「 "Clojure における REPL" ?
 他の言語と同じだろ? 」

たぶんあなたはこう思っている?

  「 "Clojure における REPL" ?
 他の言語と同じだろ? 」

違うんです

Clojure の REPL

• Clojure は実行時に Clojure コンパイラの機
能をフルで使える

• REPL 上での実行はファイルのロードと同じよ
うに動く

• テキストエディタ等と協調動作しやすいよう
になっている

違い
• ファイルベースのワークフロー 

(e.g. save -> auto-compile -> reload) 
が必要ない

• 実行中のプログラム環境を直接触れる

• ライブラリですら REPL 上で再定義可能

• 環境を触る機能が充実している 
(clojure.repl, tools.namespace とか)

• 本番環境ですら REPL を接続出来る

;; file
(ns example.core)

(defn inner-fn [])

(defn outer-fn []
 (inner-fn))

;; repl
e.c> (outer-fn)
=> nil

e.c> (defn inner-fn []
 "This is inner fn")
=> #'example.core/inner-fn

e.c> (outer-fn)
=> "This is inner fn"

こういう経験ありませんか?
• ファイル全体を更新したく

ないけど、一部変更を反映
させたい

• 開発時に素早くマイグレー
ションしたい

• SQL をインクリメンタルに
書きたい

• もっと早くトライアンドエ
ラーしたい

• ブラウザの環境を使いたい
(in AltJS)

• あの関数の名前が思い出せ
ない

• ドキュメントだけだと分か
らないから試してみたい

• etc, etc...

こういう経験ありませんか?
• ファイル全体を更新したく

ないけど、一部変更を反映
させたい

• 素早くマイグレーションし
たい

• SQL をインクリメンタルに
書きたい

• もっと早くトライアンドエ
ラーしたい

• ブラウザの環境を使いたい
(in AltJS)

• あの関数の名前が思い出せ
ない

• ドキュメントだけだと分か
らないから試してみたい

• etc, etc...

Clojure なら
簡単に解決可能

• REPL は Clojure での開発でなくては
ならない存在

•むしろ REPL と適当なエディタで十分 
(Rich Hickey は実際に Emacs と事実上 REPL だけで開発しているとかなんとか)

•逆に REPL ないとつらい

• REPL は Clojure での開発でなくては
ならない存在

•むしろ REPL と適当なエディタで十分 
(Rich Hickey は実際に Emacs と事実上 REPL だけで開発しているとかなんとか)

•逆に REPL ないとつらい

REPL が開発を
加速させる

REPL 駆動開発

• REPL Driven Development

• REPL で素早いフィードバックを得る

ワークフロー
考える/

コードを書く

思った通りに動く? REPL で試す

テストを書いて
仕様を固める

* 僕の日常です

• Clojure の特徴も相まって REPL 上であら
ゆる関数が簡単に実行可

• REPL を使ってボトムアップ開発

• REPL で関数の定義やドキュメントが読める 
(悩んだら REPL に聞ける)

副産物的なもの

•REPL からあらゆるコマンドを実行可 
(サーバーを起動したり、マイグレーションしたり)

• JVM の起動オーバーヘッドがない

デメリット(?)

•まれに REPL 上の定義が残ってて誤動
作するときがある

•テスト書きたくなくなる 
(だって動いてるし…)

まとめ

• REPL 駆動開発は楽しい

• Clojure の REPL は最高

• Clojure 最高

Enjoy Clojure

