# STATUS, CHECKSUM INFO $ utc; TZ=UTC zpool status; utc 2025-11-13T00:26:58.943284020Z pool: zc state: ONLINE status: One or more devices has experienced an unrecoverable error. An attempt was made to correct the error. Applications are unaffected. action: Determine if the device needs to be replaced, and clear the errors using 'zpool clear' or replace the device with 'zpool replace'. see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-9P scan: resilvered 3.65G in 05:12:07 with 0 errors on Tue Nov 11 08:55:50 2025 config: NAME STATE READ WRITE CKSUM zc ONLINE 0 0 0 mirror-0 ONLINE 0 0 0 sdc1 ONLINE 0 0 0 sdd1 ONLINE 0 0 2 errors: No known data errors pool: zd state: ONLINE status: One or more devices has experienced an error resulting in data corruption. Applications may be affected. action: Restore the file in question if possible. Otherwise restore the entire pool from backup. see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-8A scan: scrub repaired 0B in 8 days 09:55:50 with 15 errors on Mon Jul 21 16:20:05 2025 config: NAME STATE READ WRITE CKSUM zd ONLINE 0 0 0 sde1 ONLINE 0 0 0 errors: 15 data errors, use '-v' for a list 2025-11-13T00:26:59.327292724Z $ man zpoolconcepts # section "Device Failure and Recovery" >ZFS supports a rich set of mechanisms for handling device failure and data corruption. All metadata and data is checksummed, and ZFS automatically repairs bad data from a good copy, when corruption is detected. In order to take advantage of these features, a pool must make use of some form of redundancy, using either mirrored or raidz groups. While ZFS supports running in a non-redundant configuration, where each root vdev is simply a disk or file, this is strongly discouraged. A single case of bit corruption can render some or all of your data unavailable. >DEGRADED One or more top-level vdevs is in the degraded state because one or more component devices are offline. [...] The number of checksum errors exceeds acceptable levels and the device is degraded as an indication that something may be wrong. >Checksum errors represent events where a disk returned data that was expected to be correct, but was not. In other words, these are instances of silent data corruption. The checksum errors are reported in zpool status and zpool events. When a block is stored redundantly, a damaged block may be reconstructed (e.g. from raidz parity or a mirrored copy). In this case, ZFS reports the checksum error against the disks that contained damaged data. If a block is unable to be reconstructed (e.g. due to 3 disks being damaged in a raidz2 group), it is not possible to determine which disks were silently corrupted. In this case, checksum errors are reported for all disks on which the block is stored. # SMARTCTL = NO "HARD ERRORS" I GUESS, SO ZFS ONLY SHOWED "SOFT ERRORS" # HARD ERRORS WOULD BE A NUMBER OF Reallocated_Sector_Ct OR Current_Pending_Sector $ sudo smartctl -a /dev/sdd smartctl 7.4 2023-08-01 r5530 [x86_64-linux-6.8.0-87-generic] (local build) Copyright (C) 2002-23, Bruce Allen, Christian Franke, www.smartmontools.org === START OF INFORMATION SECTION === Device Model: WDC WD180EDGZ-11BLDS0 Serial Number: 8LH5LUUN LU WWN Device Id: 5 000cca 2c7d0a40e Firmware Version: 85.00A85 User Capacity: 18,000,207,937,536 bytes [18.0 TB] Sector Sizes: 512 bytes logical, 4096 bytes physical Rotation Rate: 7200 rpm Form Factor: 3.5 inches Device is: Not in smartctl database 7.3/5528 ATA Version is: ACS-5 (minor revision not indicated) SATA Version is: SATA 3.5, 6.0 Gb/s (current: 6.0 Gb/s) Local Time is: Wed Nov 12 17:21:26 2025 MST SMART support is: Available - device has SMART capability. SMART support is: Enabled === START OF READ SMART DATA SECTION === SMART overall-health self-assessment test result: PASSED General SMART Values: Offline data collection status: (0x80) Offline data collection activity was never started. Auto Offline Data Collection: Enabled. Self-test execution status: ( 0) The previous self-test routine completed without error or no self-test has ever been run. Total time to complete Offline data collection: ( 0) seconds. Offline data collection capabilities: (0x5b) SMART execute Offline immediate. Auto Offline data collection on/off support. Suspend Offline collection upon new command. Offline surface scan supported. Self-test supported. No Conveyance Self-test supported. Selective Self-test supported. SMART capabilities: (0x0003) Saves SMART data before entering power-saving mode. Supports SMART auto save timer. Error logging capability: (0x01) Error logging supported. General Purpose Logging supported. Short self-test routine recommended polling time: ( 2) minutes. Extended self-test routine recommended polling time: (2214) minutes. SCT capabilities: (0x003d) SCT Status supported. SCT Error Recovery Control supported. SCT Feature Control supported. SCT Data Table supported. SMART Attributes Data Structure revision number: 16 Vendor Specific SMART Attributes with Thresholds: ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE 1 Raw_Read_Error_Rate 0x000b 100 100 001 Pre-fail Always - 0 2 Throughput_Performance 0x0004 146 146 000 Old_age Offline - 58 3 Spin_Up_Time 0x0007 085 085 001 Pre-fail Always - 283 (Average 352) 4 Start_Stop_Count 0x0012 100 100 000 Old_age Always - 247 5 Reallocated_Sector_Ct 0x0033 100 100 001 Pre-fail Always - 0 7 Seek_Error_Rate 0x000a 100 100 000 Old_age Always - 0 8 Seek_Time_Performance 0x0004 136 136 000 Old_age Offline - 16 9 Power_On_Hours 0x0012 100 100 000 Old_age Always - 8761 10 Spin_Retry_Count 0x0012 100 100 000 Old_age Always - 0 12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always - 238 22 Unknown_Attribute 0x0023 100 100 025 Pre-fail Always - 6553700 90 Unknown_Attribute 0x0031 100 100 001 Pre-fail Offline - 300647710720 192 Power-Off_Retract_Count 0x0032 100 100 000 Old_age Always - 589 193 Load_Cycle_Count 0x0012 100 100 000 Old_age Always - 589 194 Temperature_Celsius 0x0002 054 054 000 Old_age Always - 31 (Min/Max 16/67) 196 Reallocated_Event_Count 0x0032 100 100 000 Old_age Always - 0 197 Current_Pending_Sector 0x0022 100 100 000 Old_age Always - 0 198 Offline_Uncorrectable 0x0008 100 100 000 Old_age Offline - 0 199 UDMA_CRC_Error_Count 0x000a 100 100 000 Old_age Always - 0 SMART Error Log Version: 1 No Errors Logged SMART Self-test log structure revision number 1 Num Test_Description Status Remaining LifeTime(hours) LBA_of_first_error # 1 Short offline Completed without error 00% 45 - # 2 Extended offline Aborted by host 90% 44 - # 3 Extended offline Aborted by host 90% 12 - # 4 Extended offline Aborted by host 80% 5 - # 5 Extended offline Aborted by host 90% 2 - # 6 Extended offline Aborted by host 90% 2 - # 7 Extended offline Aborted by host 90% 1 - SMART Selective self-test log data structure revision number 1 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS 1 0 0 Not_testing 2 0 0 Not_testing 3 0 0 Not_testing 4 0 0 Not_testing 5 0 0 Not_testing Selective self-test flags (0x0): After scanning selected spans, do NOT read-scan remainder of disk. If Selective self-test is pending on power-up, resume after 0 minute delay. The above only provides legacy SMART information - try 'smartctl -x' for more $ sudo smartctl -a /dev/sdc smartctl 7.4 2023-08-01 r5530 [x86_64-linux-6.8.0-87-generic] (local build) Copyright (C) 2002-23, Bruce Allen, Christian Franke, www.smartmontools.org Read Device Identity failed: scsi error device will be ready soon If this is a USB connected device, look at the various --device=TYPE variants A mandatory SMART command failed: exiting. To continue, add one or more '-T permissive' options. $ sudo smartctl -a /dev/sdc smartctl 7.4 2023-08-01 r5530 [x86_64-linux-6.8.0-87-generic] (local build) Copyright (C) 2002-23, Bruce Allen, Christian Franke, www.smartmontools.org === START OF INFORMATION SECTION === Device Model: WDC WD180EDGZ-11BLDS0 Serial Number: 8LH4D9LB LU WWN Device Id: 5 000cca 2c7d01732 Firmware Version: 85.00A85 User Capacity: 18,000,207,937,536 bytes [18.0 TB] Sector Sizes: 512 bytes logical, 4096 bytes physical Rotation Rate: 7200 rpm Form Factor: 3.5 inches Device is: Not in smartctl database 7.3/5528 ATA Version is: ACS-5 (minor revision not indicated) SATA Version is: SATA 3.5, 6.0 Gb/s (current: 6.0 Gb/s) Local Time is: Wed Nov 12 17:22:17 2025 MST SMART support is: Available - device has SMART capability. SMART support is: Enabled === START OF READ SMART DATA SECTION === SMART overall-health self-assessment test result: PASSED General SMART Values: Offline data collection status: (0x80) Offline data collection activity was never started. Auto Offline Data Collection: Enabled. Self-test execution status: ( 0) The previous self-test routine completed without error or no self-test has ever been run. Total time to complete Offline data collection: ( 0) seconds. Offline data collection capabilities: (0x5b) SMART execute Offline immediate. Auto Offline data collection on/off support. Suspend Offline collection upon new command. Offline surface scan supported. Self-test supported. No Conveyance Self-test supported. Selective Self-test supported. SMART capabilities: (0x0003) Saves SMART data before entering power-saving mode. Supports SMART auto save timer. Error logging capability: (0x01) Error logging supported. General Purpose Logging supported. Short self-test routine recommended polling time: ( 2) minutes. Extended self-test routine recommended polling time: (2102) minutes. SCT capabilities: (0x003d) SCT Status supported. SCT Error Recovery Control supported. SCT Feature Control supported. SCT Data Table supported. SMART Attributes Data Structure revision number: 16 Vendor Specific SMART Attributes with Thresholds: ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE 1 Raw_Read_Error_Rate 0x000b 100 100 001 Pre-fail Always - 0 2 Throughput_Performance 0x0004 146 146 000 Old_age Offline - 58 3 Spin_Up_Time 0x0007 084 084 001 Pre-fail Always - 352 (Average 350) 4 Start_Stop_Count 0x0012 100 100 000 Old_age Always - 271 5 Reallocated_Sector_Ct 0x0033 100 100 001 Pre-fail Always - 0 7 Seek_Error_Rate 0x000a 100 100 000 Old_age Always - 0 8 Seek_Time_Performance 0x0004 140 140 000 Old_age Offline - 15 9 Power_On_Hours 0x0012 100 100 000 Old_age Always - 10387 10 Spin_Retry_Count 0x0012 100 100 000 Old_age Always - 0 12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always - 267 22 Unknown_Attribute 0x0023 100 100 025 Pre-fail Always - 6553700 90 Unknown_Attribute 0x0031 100 100 001 Pre-fail Offline - 296352743424 192 Power-Off_Retract_Count 0x0032 100 100 000 Old_age Always - 667 193 Load_Cycle_Count 0x0012 100 100 000 Old_age Always - 667 194 Temperature_Celsius 0x0002 060 060 000 Old_age Always - 27 (Min/Max 16/68) 196 Reallocated_Event_Count 0x0032 100 100 000 Old_age Always - 0 197 Current_Pending_Sector 0x0022 100 100 000 Old_age Always - 0 198 Offline_Uncorrectable 0x0008 100 100 000 Old_age Offline - 0 199 UDMA_CRC_Error_Count 0x000a 100 100 000 Old_age Always - 0 SMART Error Log Version: 1 No Errors Logged SMART Self-test log structure revision number 1 No self-tests have been logged. [To run self-tests, use: smartctl -t] SMART Selective self-test log data structure revision number 1 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS 1 0 0 Not_testing 2 0 0 Not_testing 3 0 0 Not_testing 4 0 0 Not_testing 5 0 0 Not_testing Selective self-test flags (0x0): After scanning selected spans, do NOT read-scan remainder of disk. If Selective self-test is pending on power-up, resume after 0 minute delay. The above only provides legacy SMART information - try 'smartctl -x' for more $ # Not 2.5-inch drives # UNRELATED, some IP addresses found by using different I2P outproxies exit.stormycloud.i2p http://checkip.amazonaws.com/ = 23.171.8.170 = 2025-11-06 UTC: not 4chan-banned 74.48.163.73 = 2025-11-07 UTC: not 4chan-banned, is Wikipedia-banned http://proxy4uwdijqxac2bvdx4fuhem6njmiwukuk2gelejv2nzxka2xq.b32.i2p/ http://outproxy.acetone.i2p/ or http://outproxy.acetone.i2p:3128/ for HTTP or outproxy.acetone.i2p:1080 for HTTPS/SOCKS http://checkip.amazonaws.com/ (HTTP) = 36.131.68.200 98.177.101.26 55.233.0.155 159.239.26.73 144.59.172.68 190.189.47.169 131.198.113.217 24.110.50.19 https://checkip.amazonaws.com/ (HTTPS) = 23.137.249.65 = 2025-11-08 UTC: not Wikipedia-banned # UNRELATED, web captures $ echo To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs.; localip=localhost; basepath="/srv/http/selenium"; cd "$basepath/dl"; newest="$(ls -t1 | head -n1)"; url="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ url: " | sed "s/\s*$//g" | sed "s/.*\s//g")"; timestr="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ saved date: " | sed "s/\s*$//g" | sed "s/^ saved date: //g")"; time="$(TZ=UTC date -d "$timestr" +%Y%m%d%H%M%S)"; unixtime=$(date +%s); mkdir "m/$unixtime"; urlsafe="$(echo "$url" | sed "s/:\|\/\|?\|=\|&\|(\|)\|,\|@\|+\|*\|%\|#/-/g")"; urllen=$(echo -n $time-$urlsafe | wc --bytes); if [ $urllen -gt 200 ]; then urlsafe="$(echo "$urlsafe" | perl -pE "s/^(.{200}).*/\1.URL2LONG/g")"; fi; echo "$url" > "$basepath/dl/m/$unixtime/$time-$urlsafe.txt"; cat "$newest" > "$basepath/dl/m/$unixtime/$time-$urlsafe"; newpath="$basepath/dl/m/$unixtime/$time-$urlsafe"; cid="$(curl -sLk -XPOST -F file=@$newpath "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&pin=false" | jq .Hash | sed "s/\"//g")"; curl -sLk -XPOST "http://$localip:5001/api/v0/files/cp?arg=/ipfs/$cid&arg=/created/cid/$cid"; arr="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/.*//g" | sed "s/\./ /g")"; echo "$(echo "${arr[@]}" | sed "s/^www //g" | tr ' ' '\n' | tac | tr '\n' ' ' | sed "s/ $//g" | sed "s/ /,/g")$(url2=$(echo "$url" | sed "s/^https\?:\/\/[^\/]*/)/g" | tr "[:upper:]" "[:lower:]"); if [[ "$url" == *\?* || "$url" == *\&* ]]; then base_url="${url2%%\?*}"; query_string="${url2#*\?}"; sorted_query=$(echo "$query_string" | tr '&' '\n' | sort | tr '\n' '&' | sed 's/&$//'); sorted_url="$base_url?$sorted_query"; echo "$sorted_url"; else echo "$url2"; fi) $time {\"locator\": \"urn:ipfs/bafkreihdwdcefgh4dqkjv67uzcmw7ojee6xedzdetojuzjevtenxquvyku/$cid\", \"status_code\": \"200\", \"mime_type\": \"text/html;charset=UTF-8\", \"original_uri\": \"$url\", \"title\": \"$(cat "$basepath/dl/m/$unixtime/$time-$urlsafe" | htmlq --text title)\"}" > $basepath/dl/m/$unixtime/$time-$urlsafe.cdxj; membase="$basepath/dl/m/$unixtime"; urlpath="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/$//g")"; if [[ "$url" =~ .*/$ ]]; then mkdir -p "$membase/memento/$time/$urlpath"; cp -n "$membase/$time-$urlsafe" "$membase/memento/$time/$urlpath/index.html"; else urlpathnolast="$(echo "$urlpath" | sed "s/\/[^\/]*$//g")"; lastpart="$(echo $urlpath | sed "s/.*\///g")"; mkdir -p "$membase/memento/$time/$urlpathnolast"; cp -n "$basepath/dl/m/$unixtime/$time-$urlsafe" "$membase/memento/$time/$urlpathnolast/$lastpart"; fi; filesf() { basedir="$basepath/dl/m/$unixtime"; basedirlen=$(echo "$basedir" | wc --bytes); find "$basedir" -type f | basedirlen="$basedirlen" xargs -d "\n" sh -c 'for args do nobasedir=$(echo "$args" | sed -E "s/^.{$basedirlen}//g"); echo " -F "file=@"\"$args\";filename=\"$nobasedir\"" | tr -d \\n; done' _; }; curl -k -XPOST -H "Content-Type: multipart/form-data" $(filesf) "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&wrap-with-directory=true&pin=false" To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs. {"Name":"20251106170131-http---proxy4uwdijqxac2bvdx4fuhem6njmiwukuk2gelejv2nzxka2xq.b32.i2p-.cdxj","Hash":"bafkreicwgvpvmpkk466sfzlhfksxhlnpl23ms2zbvqce2te4k2hykjkvpa","Size":"403"} {"Name":"memento/20251106170131/proxy4uwdijqxac2bvdx4fuhem6njmiwukuk2gelejv2nzxka2xq.b32.i2p/index.html","Hash":"bafkreig7h7w6m2cwpdkvnjo57dusem5ow3qkdi3c6banicu3gji7auuppm","Size":"110059"} {"Name":"20251106170131-http---proxy4uwdijqxac2bvdx4fuhem6njmiwukuk2gelejv2nzxka2xq.b32.i2p-","Hash":"bafkreig7h7w6m2cwpdkvnjo57dusem5ow3qkdi3c6banicu3gji7auuppm","Size":"110059"} {"Name":"20251106170131-http---proxy4uwdijqxac2bvdx4fuhem6njmiwukuk2gelejv2nzxka2xq.b32.i2p-.txt","Hash":"bafkreifaeunuxspspx7tgt4my5kwac7znfavsbmstztdy5chabtumyf6xy","Size":"69"} {"Name":"memento/20251106170131/proxy4uwdijqxac2bvdx4fuhem6njmiwukuk2gelejv2nzxka2xq.b32.i2p","Hash":"bafybeigqvjkbueig4d6ljhirkouf3pa3b5gkxcfosmq2hu4o5aape5udvu","Size":"110119"} {"Name":"memento/20251106170131","Hash":"bafybeiepxm2pqvg6kogsrdwudxtbxuhorsigu2yl4yvy2gvwmg7rnljgke","Size":"110229"} {"Name":"memento","Hash":"bafybeibapw5cxcxcm7ofcbsoxes2fd6ej7l2wytvordg4jcrz2asp3fl4a","Size":"110293"} {"Name":"","Hash":"bafybeif7eqy5g3k4k6owookfohnino7ykfocz5a6kwayjapjsddofrszw4","Size":"221276"} $ echo To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs.; localip=localhost; basepath="/srv/http/selenium"; cd "$basepath/dl"; newest="$(ls -t1 | head -n1)"; url="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ url: " | sed "s/\s*$//g" | sed "s/.*\s//g")"; timestr="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ saved date: " | sed "s/\s*$//g" | sed "s/^ saved date: //g")"; time="$(TZ=UTC date -d "$timestr" +%Y%m%d%H%M%S)"; unixtime=$(date +%s); mkdir "m/$unixtime"; urlsafe="$(echo "$url" | sed "s/:\|\/\|?\|=\|&\|(\|)\|,\|@\|+\|*\|%\|#/-/g")"; urllen=$(echo -n $time-$urlsafe | wc --bytes); if [ $urllen -gt 200 ]; then urlsafe="$(echo "$urlsafe" | perl -pE "s/^(.{200}).*/\1.URL2LONG/g")"; fi; echo "$url" > "$basepath/dl/m/$unixtime/$time-$urlsafe.txt"; cat "$newest" > "$basepath/dl/m/$unixtime/$time-$urlsafe"; newpath="$basepath/dl/m/$unixtime/$time-$urlsafe"; cid="$(curl -sLk -XPOST -F file=@$newpath "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&pin=false" | jq .Hash | sed "s/\"//g")"; curl -sLk -XPOST "http://$localip:5001/api/v0/files/cp?arg=/ipfs/$cid&arg=/created/cid/$cid"; arr="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/.*//g" | sed "s/\./ /g")"; echo "$(echo "${arr[@]}" | sed "s/^www //g" | tr ' ' '\n' | tac | tr '\n' ' ' | sed "s/ $//g" | sed "s/ /,/g")$(url2=$(echo "$url" | sed "s/^https\?:\/\/[^\/]*/)/g" | tr "[:upper:]" "[:lower:]"); if [[ "$url" == *\?* || "$url" == *\&* ]]; then base_url="${url2%%\?*}"; query_string="${url2#*\?}"; sorted_query=$(echo "$query_string" | tr '&' '\n' | sort | tr '\n' '&' | sed 's/&$//'); sorted_url="$base_url?$sorted_query"; echo "$sorted_url"; else echo "$url2"; fi) $time {\"locator\": \"urn:ipfs/bafkreihdwdcefgh4dqkjv67uzcmw7ojee6xedzdetojuzjevtenxquvyku/$cid\", \"status_code\": \"200\", \"mime_type\": \"text/html;charset=UTF-8\", \"original_uri\": \"$url\", \"title\": \"$(cat "$basepath/dl/m/$unixtime/$time-$urlsafe" | htmlq --text title)\"}" > $basepath/dl/m/$unixtime/$time-$urlsafe.cdxj; membase="$basepath/dl/m/$unixtime"; urlpath="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/$//g")"; if [[ "$url" =~ .*/$ ]]; then mkdir -p "$membase/memento/$time/$urlpath"; cp -n "$membase/$time-$urlsafe" "$membase/memento/$time/$urlpath/index.html"; else urlpathnolast="$(echo "$urlpath" | sed "s/\/[^\/]*$//g")"; lastpart="$(echo $urlpath | sed "s/.*\///g")"; mkdir -p "$membase/memento/$time/$urlpathnolast"; cp -n "$basepath/dl/m/$unixtime/$time-$urlsafe" "$membase/memento/$time/$urlpathnolast/$lastpart"; fi; filesf() { basedir="$basepath/dl/m/$unixtime"; basedirlen=$(echo "$basedir" | wc --bytes); find "$basedir" -type f | basedirlen="$basedirlen" xargs -d "\n" sh -c 'for args do nobasedir=$(echo "$args" | sed -E "s/^.{$basedirlen}//g"); echo " -F "file=@"\"$args\";filename=\"$nobasedir\"" | tr -d \\n; done' _; }; curl -k -XPOST -H "Content-Type: multipart/form-data" $(filesf) "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&wrap-with-directory=true&pin=false" To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs. {"Name":"20251106170205-http---outproxy.acetone.i2p-","Hash":"bafkreicbiod7r5wbiwmb4d2zu6nm3f7ccy56opzwa275n6dleezhosyqty","Size":"110590"} {"Name":"20251106170205-http---outproxy.acetone.i2p-.cdxj","Hash":"bafkreiazd2kim7btroaq55a53sbuwyh6dhxq7p5lyivzmluv5amnh2mahi","Size":"323"} {"Name":"20251106170205-http---outproxy.acetone.i2p-.txt","Hash":"bafkreiblx2ai247tlfth33t2wu25y3gnvi2ithurnl7rusp6zys2uta6ky","Size":"29"} {"Name":"memento/20251106170205/outproxy.acetone.i2p/index.html","Hash":"bafkreicbiod7r5wbiwmb4d2zu6nm3f7ccy56opzwa275n6dleezhosyqty","Size":"110590"} {"Name":"memento/20251106170205/outproxy.acetone.i2p","Hash":"bafybeieg5zntmp7gbujg45pldghpsz7n4ounpchegz4itchnzxyl5frd5i","Size":"110650"} {"Name":"memento/20251106170205","Hash":"bafybeihyokec27kzsjgnwu2lptfjau3i4o6e3y5usdzjbniaploftuicyu","Size":"110720"} {"Name":"memento","Hash":"bafybeihq7j5nhfetrezezggzhi2zrx44vmbys5xza6tjzajffmnlrvegsy","Size":"110784"} {"Name":"","Hash":"bafybeihxtd6gpjvnuycjv3opvixxn6clgr754vwch5mp5u6neseqysdis4","Size":"222056"} $ echo To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs.; localip=localhost; basepath="/srv/http/selenium"; cd "$basepath/dl"; newest="$(ls -t1 | head -n1)"; url="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ url: " | sed "s/\s*$//g" | sed "s/.*\s//g")"; timestr="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ saved date: " | sed "s/\s*$//g" | sed "s/^ saved date: //g")"; time="$(TZ=UTC date -d "$timestr" +%Y%m%d%H%M%S)"; unixtime=$(date +%s); mkdir "m/$unixtime"; urlsafe="$(echo "$url" | sed "s/:\|\/\|?\|=\|&\|(\|)\|,\|@\|+\|*\|%\|#/-/g")"; urllen=$(echo -n $time-$urlsafe | wc --bytes); if [ $urllen -gt 200 ]; then urlsafe="$(echo "$urlsafe" | perl -pE "s/^(.{200}).*/\1.URL2LONG/g")"; fi; echo "$url" > "$basepath/dl/m/$unixtime/$time-$urlsafe.txt"; cat "$newest" > "$basepath/dl/m/$unixtime/$time-$urlsafe"; newpath="$basepath/dl/m/$unixtime/$time-$urlsafe"; cid="$(curl -sLk -XPOST -F file=@$newpath "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&pin=false" | jq .Hash | sed "s/\"//g")"; curl -sLk -XPOST "http://$localip:5001/api/v0/files/cp?arg=/ipfs/$cid&arg=/created/cid/$cid"; arr="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/.*//g" | sed "s/\./ /g")"; echo "$(echo "${arr[@]}" | sed "s/^www //g" | tr ' ' '\n' | tac | tr '\n' ' ' | sed "s/ $//g" | sed "s/ /,/g")$(url2=$(echo "$url" | sed "s/^https\?:\/\/[^\/]*/)/g" | tr "[:upper:]" "[:lower:]"); if [[ "$url" == *\?* || "$url" == *\&* ]]; then base_url="${url2%%\?*}"; query_string="${url2#*\?}"; sorted_query=$(echo "$query_string" | tr '&' '\n' | sort | tr '\n' '&' | sed 's/&$//'); sorted_url="$base_url?$sorted_query"; echo "$sorted_url"; else echo "$url2"; fi) $time {\"locator\": \"urn:ipfs/bafkreihdwdcefgh4dqkjv67uzcmw7ojee6xedzdetojuzjevtenxquvyku/$cid\", \"status_code\": \"200\", \"mime_type\": \"text/html;charset=UTF-8\", \"original_uri\": \"$url\", \"title\": \"$(cat "$basepath/dl/m/$unixtime/$time-$urlsafe" | htmlq --text title)\"}" > $basepath/dl/m/$unixtime/$time-$urlsafe.cdxj; membase="$basepath/dl/m/$unixtime"; urlpath="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/$//g")"; if [[ "$url" =~ .*/$ ]]; then mkdir -p "$membase/memento/$time/$urlpath"; cp -n "$membase/$time-$urlsafe" "$membase/memento/$time/$urlpath/index.html"; else urlpathnolast="$(echo "$urlpath" | sed "s/\/[^\/]*$//g")"; lastpart="$(echo $urlpath | sed "s/.*\///g")"; mkdir -p "$membase/memento/$time/$urlpathnolast"; cp -n "$basepath/dl/m/$unixtime/$time-$urlsafe" "$membase/memento/$time/$urlpathnolast/$lastpart"; fi; filesf() { basedir="$basepath/dl/m/$unixtime"; basedirlen=$(echo "$basedir" | wc --bytes); find "$basedir" -type f | basedirlen="$basedirlen" xargs -d "\n" sh -c 'for args do nobasedir=$(echo "$args" | sed -E "s/^.{$basedirlen}//g"); echo " -F "file=@"\"$args\";filename=\"$nobasedir\"" | tr -d \\n; done' _; }; curl -k -XPOST -H "Content-Type: multipart/form-data" $(filesf) "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&wrap-with-directory=true&pin=false" To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs. {"Name":"20251106170224-http---zzz.i2p-.cdxj","Hash":"bafkreifuc6kh6cm6daevr7mww6x7a6zawltwtpstmrha3lrnc6ioli5eem","Size":"307"} {"Name":"memento/20251106170224/zzz.i2p/index.html","Hash":"bafkreihg5um73sm22l2yib4qyxpw3judsecvfbp5g3azotb62jimviyo6a","Size":"92452"} {"Name":"20251106170224-http---zzz.i2p-.txt","Hash":"bafkreigzzoyto6d2xmktcbtcj3a3asw6dvulowkadud5frs236m26xl2lm","Size":"16"} {"Name":"20251106170224-http---zzz.i2p-","Hash":"bafkreihg5um73sm22l2yib4qyxpw3judsecvfbp5g3azotb62jimviyo6a","Size":"92452"} {"Name":"memento/20251106170224/zzz.i2p","Hash":"bafybeichirm4okscvbmehkd5szwfbjwrdpbj453ox5lgvhxxq2byovqgr4","Size":"92512"} {"Name":"memento/20251106170224","Hash":"bafybeibv2by2ryrlm47a4ofahm5j4jrbhvftl5h3bssvrgnlwfiuu3u2eq","Size":"92569"} {"Name":"memento","Hash":"bafybeidz6jkb7py4figkw5nupiva5remvvpyggu4ypcwxxdzyrd5inuije","Size":"92633"} {"Name":"","Hash":"bafybeihq5delpgm26diev5g4ykpczp4dihk7x3xkxd72gzvgmhvsfepobu","Size":"185699"} $ echo To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs.; localip=localhost; basepath="/srv/http/selenium"; cd "$basepath/dl"; newest="$(ls -t1 | head -n1)"; url="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ url: " | sed "s/\s*$//g" | sed "s/.*\s//g")"; timestr="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ saved date: " | sed "s/\s*$//g" | sed "s/^ saved date: //g")"; time="$(TZ=UTC date -d "$timestr" +%Y%m%d%H%M%S)"; unixtime=$(date +%s); mkdir "m/$unixtime"; urlsafe="$(echo "$url" | sed "s/:\|\/\|?\|=\|&\|(\|)\|,\|@\|+\|*\|%\|#/-/g")"; urllen=$(echo -n $time-$urlsafe | wc --bytes); if [ $urllen -gt 200 ]; then urlsafe="$(echo "$urlsafe" | perl -pE "s/^(.{200}).*/\1.URL2LONG/g")"; fi; echo "$url" > "$basepath/dl/m/$unixtime/$time-$urlsafe.txt"; cat "$newest" > "$basepath/dl/m/$unixtime/$time-$urlsafe"; newpath="$basepath/dl/m/$unixtime/$time-$urlsafe"; cid="$(curl -sLk -XPOST -F file=@$newpath "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&pin=false" | jq .Hash | sed "s/\"//g")"; curl -sLk -XPOST "http://$localip:5001/api/v0/files/cp?arg=/ipfs/$cid&arg=/created/cid/$cid"; arr="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/.*//g" | sed "s/\./ /g")"; echo "$(echo "${arr[@]}" | sed "s/^www //g" | tr ' ' '\n' | tac | tr '\n' ' ' | sed "s/ $//g" | sed "s/ /,/g")$(url2=$(echo "$url" | sed "s/^https\?:\/\/[^\/]*/)/g" | tr "[:upper:]" "[:lower:]"); if [[ "$url" == *\?* || "$url" == *\&* ]]; then base_url="${url2%%\?*}"; query_string="${url2#*\?}"; sorted_query=$(echo "$query_string" | tr '&' '\n' | sort | tr '\n' '&' | sed 's/&$//'); sorted_url="$base_url?$sorted_query"; echo "$sorted_url"; else echo "$url2"; fi) $time {\"locator\": \"urn:ipfs/bafkreihdwdcefgh4dqkjv67uzcmw7ojee6xedzdetojuzjevtenxquvyku/$cid\", \"status_code\": \"200\", \"mime_type\": \"text/html;charset=UTF-8\", \"original_uri\": \"$url\", \"title\": \"$(cat "$basepath/dl/m/$unixtime/$time-$urlsafe" | htmlq --text title)\"}" > $basepath/dl/m/$unixtime/$time-$urlsafe.cdxj; membase="$basepath/dl/m/$unixtime"; urlpath="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/$//g")"; if [[ "$url" =~ .*/$ ]]; then mkdir -p "$membase/memento/$time/$urlpath"; cp -n "$membase/$time-$urlsafe" "$membase/memento/$time/$urlpath/index.html"; else urlpathnolast="$(echo "$urlpath" | sed "s/\/[^\/]*$//g")"; lastpart="$(echo $urlpath | sed "s/.*\///g")"; mkdir -p "$membase/memento/$time/$urlpathnolast"; cp -n "$basepath/dl/m/$unixtime/$time-$urlsafe" "$membase/memento/$time/$urlpathnolast/$lastpart"; fi; filesf() { basedir="$basepath/dl/m/$unixtime"; basedirlen=$(echo "$basedir" | wc --bytes); find "$basedir" -type f | basedirlen="$basedirlen" xargs -d "\n" sh -c 'for args do nobasedir=$(echo "$args" | sed -E "s/^.{$basedirlen}//g"); echo " -F "file=@"\"$args\";filename=\"$nobasedir\"" | tr -d \\n; done' _; }; curl -k -XPOST -H "Content-Type: multipart/form-data" $(filesf) "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&wrap-with-directory=true&pin=false" To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs. {"Name":"20251106170239-http---zzz.i2p-topics-3637-i2p-over-tor","Hash":"bafkreieo4r6suhz4uqiimk3xfc63yysbfomk3gligztxj64mwkkbz5gmh4","Size":"64303"} {"Name":"20251106170239-http---zzz.i2p-topics-3637-i2p-over-tor.txt","Hash":"bafkreih62x2le55hhn76pj7btk5gnv3syjs2khegoxhpztboojxpj5jfzu","Size":"40"} {"Name":"memento/20251106170239/zzz.i2p/topics/3637-i2p-over-tor","Hash":"bafkreieo4r6suhz4uqiimk3xfc63yysbfomk3gligztxj64mwkkbz5gmh4","Size":"64303"} {"Name":"20251106170239-http---zzz.i2p-topics-3637-i2p-over-tor.cdxj","Hash":"bafkreieudsrms2y6snqzyr2ienbggbizridn2qp6ueyqwuvmaldqrv7i5e","Size":"348"} {"Name":"memento/20251106170239/zzz.i2p/topics","Hash":"bafybeifeqzyhbcb7uk5vzuneuf47dbqrywke6snmnm3hr7xogpi3m7ey6u","Size":"64370"} {"Name":"memento/20251106170239/zzz.i2p","Hash":"bafybeibokcd5pni3njk2olevxg2igwzdevwkyonpm4ca2tq6nzh4apobem","Size":"64426"} {"Name":"memento/20251106170239","Hash":"bafybeiatwpbedgjt3w3him6jyzswwmnn6pmjeeym73ojthivzbyoblcb5u","Size":"64483"} {"Name":"memento","Hash":"bafybeifqes644hxzichwjrivmfuw4tffdhc2nefretfqrgwqj2rvbfzpoe","Size":"64547"} {"Name":"","Hash":"bafybeid2onhwnq2zchekerfxjfmex4hp4y3k3zjwomdwmx3fjl7dhs2vnq","Size":"129601"} $ echo To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs.; localip=localhost; basepath="/srv/http/selenium"; cd "$basepath/dl"; newest="$(ls -t1 | head -n1)"; url="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ url: " | sed "s/\s*$//g" | sed "s/.*\s//g")"; timestr="$(grep -i -A2 "^ Page saved with SingleFile" "$newest" | grep -i "^ saved date: " | sed "s/\s*$//g" | sed "s/^ saved date: //g")"; time="$(TZ=UTC date -d "$timestr" +%Y%m%d%H%M%S)"; unixtime=$(date +%s); mkdir "m/$unixtime"; urlsafe="$(echo "$url" | sed "s/:\|\/\|?\|=\|&\|(\|)\|,\|@\|+\|*\|%\|#/-/g")"; urllen=$(echo -n $time-$urlsafe | wc --bytes); if [ $urllen -gt 200 ]; then urlsafe="$(echo "$urlsafe" | perl -pE "s/^(.{200}).*/\1.URL2LONG/g")"; fi; echo "$url" > "$basepath/dl/m/$unixtime/$time-$urlsafe.txt"; cat "$newest" > "$basepath/dl/m/$unixtime/$time-$urlsafe"; newpath="$basepath/dl/m/$unixtime/$time-$urlsafe"; cid="$(curl -sLk -XPOST -F file=@$newpath "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&pin=false" | jq .Hash | sed "s/\"//g")"; curl -sLk -XPOST "http://$localip:5001/api/v0/files/cp?arg=/ipfs/$cid&arg=/created/cid/$cid"; arr="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/.*//g" | sed "s/\./ /g")"; echo "$(echo "${arr[@]}" | sed "s/^www //g" | tr ' ' '\n' | tac | tr '\n' ' ' | sed "s/ $//g" | sed "s/ /,/g")$(url2=$(echo "$url" | sed "s/^https\?:\/\/[^\/]*/)/g" | tr "[:upper:]" "[:lower:]"); if [[ "$url" == *\?* || "$url" == *\&* ]]; then base_url="${url2%%\?*}"; query_string="${url2#*\?}"; sorted_query=$(echo "$query_string" | tr '&' '\n' | sort | tr '\n' '&' | sed 's/&$//'); sorted_url="$base_url?$sorted_query"; echo "$sorted_url"; else echo "$url2"; fi) $time {\"locator\": \"urn:ipfs/bafkreihdwdcefgh4dqkjv67uzcmw7ojee6xedzdetojuzjevtenxquvyku/$cid\", \"status_code\": \"200\", \"mime_type\": \"text/html;charset=UTF-8\", \"original_uri\": \"$url\", \"title\": \"$(cat "$basepath/dl/m/$unixtime/$time-$urlsafe" | htmlq --text title)\"}" > $basepath/dl/m/$unixtime/$time-$urlsafe.cdxj; membase="$basepath/dl/m/$unixtime"; urlpath="$(echo "$url" | sed "s/^https\?:\/\///g" | sed "s/\/$//g")"; if [[ "$url" =~ .*/$ ]]; then mkdir -p "$membase/memento/$time/$urlpath"; cp -n "$membase/$time-$urlsafe" "$membase/memento/$time/$urlpath/index.html"; else urlpathnolast="$(echo "$urlpath" | sed "s/\/[^\/]*$//g")"; lastpart="$(echo $urlpath | sed "s/.*\///g")"; mkdir -p "$membase/memento/$time/$urlpathnolast"; cp -n "$basepath/dl/m/$unixtime/$time-$urlsafe" "$membase/memento/$time/$urlpathnolast/$lastpart"; fi; filesf() { basedir="$basepath/dl/m/$unixtime"; basedirlen=$(echo "$basedir" | wc --bytes); find "$basedir" -type f | basedirlen="$basedirlen" xargs -d "\n" sh -c 'for args do nobasedir=$(echo "$args" | sed -E "s/^.{$basedirlen}//g"); echo " -F "file=@"\"$args\";filename=\"$nobasedir\"" | tr -d \\n; done' _; }; curl -k -XPOST -H "Content-Type: multipart/form-data" $(filesf) "http://$localip:5001/api/v0/add?cid-version=1&chunker=size-1048576&recursive=true&wrap-with-directory=true&pin=false" To be used with SingleFile extension for Brave Browser and a running ipfs daemon. For: text/html grabs. {"Name":"20251106170326-http---checkip.amazonaws.com-.txt","Hash":"bafkreib4rhg2gsv5x3xqt3ndz6g3fgt7ioastc7tbbrdruabnlu4ettln4","Size":"30"} {"Name":"20251106170326-http---checkip.amazonaws.com-.cdxj","Hash":"bafkreic43lo5ogjaoelzph5stwhkp6kahgqigxwrhul2wew3g6j63jr4fe","Size":"307"} {"Name":"20251106170326-http---checkip.amazonaws.com-","Hash":"bafkreihktgvop2fd6tbiqtvu4llk5vk375eohydqfppq4aznbv433izpwm","Size":"536"} {"Name":"memento/20251106170326/checkip.amazonaws.com/index.html","Hash":"bafkreihktgvop2fd6tbiqtvu4llk5vk375eohydqfppq4aznbv433izpwm","Size":"536"} {"Name":"memento/20251106170326/checkip.amazonaws.com","Hash":"bafybeigdlg2rc5wfv2vnnkw5beq5othynsj46byypopnnlagn72qg5ghym","Size":"595"} {"Name":"memento/20251106170326","Hash":"bafybeifovlnjsxy4klp6reulvcfeeur4rz72o56iylh5xzk4bf27zb6z24","Size":"665"} {"Name":"memento","Hash":"bafybeigbufovgznjrch47evunomv3gyohdwovqkfrclzzu7ljzsi5i3xee","Size":"728"} {"Name":"","Hash":"bafybeigquhphmtovkxfy6zkvgq57usjyvklpthca66ik5zfpycbr5r4oam","Size":"1932"} $ # 2025-11-06 17:03:26 UTC # FULL MAN PAGE ZPOOLCONCEPTS(7) Miscellaneous Information Manual ZPOOLCONCEPTS(7) NAME zpoolconcepts — overview of ZFS storage pools DESCRIPTION Virtual Devices (vdevs) A "virtual device" describes a single device or a collection of devices, organized according to certain performance and fault characteristics. The following virtual de‐ vices are supported: disk A block device, typically located under /dev. ZFS can use individual slices or partitions, though the recommended mode of operation is to use whole disks. A disk can be specified by a full path, or it can be a shorthand name (the relative portion of the path under /dev). A whole disk can be specified by omitting the slice or partition designation. For example, sda is equivalent to /dev/sda. When given a whole disk, ZFS automatically labels the disk, if necessary. file A regular file. The use of files as a backing store is strongly discouraged. It is designed primarily for experimental purposes, as the fault tolerance of a file is only as good as the file system on which it resides. A file must be specified by a full path. mirror A mirror of two or more devices. Data is replicated in an identical fashion across all components of a mirror. A mirror with N disks of size X can hold X bytes and can withstand N-1 devices failing, without losing data. raidz, raidz1, raidz2, raidz3 A distributed-parity layout, similar to RAID-5/6, with improved distribution of parity, and which does not suffer from the RAID-5/6 "write hole", (in which data and parity become inconsistent after a power loss). Data and parity is striped across all disks within a raidz group, though not necessarily in a consistent stripe width. A raidz group can have single, double, or triple parity, meaning that the raidz group can sustain one, two, or three failures, respectively, without losing any data. The raidz1 vdev type specifies a single-parity raidz group; the raidz2 vdev type specifies a double-parity raidz group; and the raidz3 vdev type specifies a triple-parity raidz group. The raidz vdev type is an alias for raidz1. A raidz group with N disks of size X with P parity disks can hold approximately (N-P)*X bytes and can withstand P devices failing without losing data. The mini‐ mum number of devices in a raidz group is one more than the number of parity disks. The recommended number is between 3 and 9 to help increase performance. draid, draid1, draid2, draid3 A variant of raidz that provides integrated distributed hot spares, allowing for faster resilvering, while retaining the benefits of raidz. A dRAID vdev is con‐ structed from multiple internal raidz groups, each with D data devices and P parity devices. These groups are distributed over all of the children in order to fully utilize the available disk performance. Unlike raidz, dRAID uses a fixed stripe width (padding as necessary with zeros) to allow fully sequential resilvering. This fixed stripe width significantly af‐ fects both usable capacity and IOPS. For example, with the default D=8 and 4 KiB disk sectors the minimum allocation size is 32 KiB. If using compression, this relatively large allocation size can reduce the effective compression ratio. When using ZFS volumes (zvols) and dRAID, the default of the volblocksize property is increased to account for the allocation size. If a dRAID pool will hold a significant amount of small blocks, it is recommended to also add a mirrored special vdev to store those blocks. In regards to I/O, performance is similar to raidz since, for any read, all D data disks must be accessed. Delivered random IOPS can be reasonably approximated as floor((N-S)/(D+P))*single_drive_IOPS. Like raidz, a dRAID can have single-, double-, or triple-parity. The draid1, draid2, and draid3 types can be used to specify the parity level. The draid vdev type is an alias for draid1. A dRAID with N disks of size X, D data disks per redundancy group, P parity level, and S distributed hot spares can hold approximately (N-S)*(D/(D+P))*X bytes and can withstand P devices failing without losing data. draid[parity][:datad][:childrenc][:sparess] A non-default dRAID configuration can be specified by appending one or more of the following optional arguments to the draid keyword: parity The parity level (1-3). data The number of data devices per redundancy group. In general, a smaller value of D will increase IOPS, improve the compression ratio, and speed up re‐ silvering at the expense of total usable capacity. Defaults to 8, unless N-P-S is less than 8. children The expected number of children. Useful as a cross-check when listing a large number of devices. An error is returned when the provided number of children differs. spares The number of distributed hot spares. Defaults to zero. spare A pseudo-vdev which keeps track of available hot spares for a pool. For more information, see the “Hot Spares” section. log A separate intent log device. If more than one log device is specified, then writes are load-balanced between devices. Log devices can be mirrored. However, raidz vdev types are not supported for the intent log. For more information, see the “Intent Log” section. dedup A device solely dedicated for deduplication tables. The redundancy of this device should match the redundancy of the other normal devices in the pool. If more than one dedup device is specified, then allocations are load-balanced between those devices. special A device dedicated solely for allocating various kinds of internal metadata, and optionally small file blocks. The redundancy of this device should match the redundancy of the other normal devices in the pool. If more than one special device is specified, then allocations are load-balanced between those devices. For more information on special allocations, see the “Special Allocation Class” section. cache A device used to cache storage pool data. A cache device cannot be configured as a mirror or raidz group. For more information, see the “Cache Devices” sec‐ tion. Virtual devices cannot be nested arbitrarily. A mirror, raidz or draid virtual device can only be created with files or disks. Mirrors of mirrors or other such combina‐ tions are not allowed. A pool can have any number of virtual devices at the top of the configuration (known as "root vdevs"). Data is dynamically distributed across all top-level devices to balance data among devices. As new virtual devices are added, ZFS automatically places data on the newly available devices. Virtual devices are specified one at a time on the command line, separated by whitespace. Keywords like mirror and raidz are used to distinguish where a group ends and another begins. For example, the following creates a pool with two root vdevs, each a mirror of two disks: # zpool create mypool mirror sda sdb mirror sdc sdd Device Failure and Recovery ZFS supports a rich set of mechanisms for handling device failure and data corruption. All metadata and data is checksummed, and ZFS automatically repairs bad data from a good copy, when corruption is detected. In order to take advantage of these features, a pool must make use of some form of redundancy, using either mirrored or raidz groups. While ZFS supports running in a non-redundant configuration, where each root vdev is simply a disk or file, this is strongly discouraged. A single case of bit corruption can render some or all of your data unavailable. A pool's health status is described by one of three states: online, degraded, or faulted. An online pool has all devices operating normally. A degraded pool is one in which one or more devices have failed, but the data is still available due to a redundant configuration. A faulted pool has corrupted metadata, or one or more faulted devices, and insufficient replicas to continue functioning. The health of the top-level vdev, such as a mirror or raidz device, is potentially impacted by the state of its associated vdevs or component devices. A top-level vdev or component device is in one of the following states: DEGRADED One or more top-level vdevs is in the degraded state because one or more component devices are offline. Sufficient replicas exist to continue functioning. One or more component devices is in the degraded or faulted state, but sufficient replicas exist to continue functioning. The underlying conditions are as fol‐ lows: • The number of checksum errors or slow I/Os exceeds acceptable levels and the device is degraded as an indication that something may be wrong. ZFS continues to use the device as necessary. • The number of I/O errors exceeds acceptable levels. The device could not be marked as faulted because there are insufficient replicas to continue function‐ ing. FAULTED One or more top-level vdevs is in the faulted state because one or more component devices are offline. Insufficient replicas exist to continue functioning. One or more component devices is in the faulted state, and insufficient replicas exist to continue functioning. The underlying conditions are as follows: • The device could be opened, but the contents did not match expected values. • The number of I/O errors exceeds acceptable levels and the device is faulted to prevent further use of the device. OFFLINE The device was explicitly taken offline by the zpool offline command. ONLINE The device is online and functioning. REMOVED The device was physically removed while the system was running. Device removal detection is hardware-dependent and may not be supported on all platforms. UNAVAIL The device could not be opened. If a pool is imported when a device was unavailable, then the device will be identified by a unique identifier instead of its path since the path was never correct in the first place. Checksum errors represent events where a disk returned data that was expected to be correct, but was not. In other words, these are instances of silent data corruption. The checksum errors are reported in zpool status and zpool events. When a block is stored redundantly, a damaged block may be reconstructed (e.g. from raidz parity or a mirrored copy). In this case, ZFS reports the checksum error against the disks that contained damaged data. If a block is unable to be reconstructed (e.g. due to 3 disks being damaged in a raidz2 group), it is not possible to determine which disks were silently corrupted. In this case, checksum errors are reported for all disks on which the block is stored. If a device is removed and later re-attached to the system, ZFS attempts to bring the device online automatically. Device attachment detection is hardware-dependent and might not be supported on all platforms. Hot Spares ZFS allows devices to be associated with pools as "hot spares". These devices are not actively used in the pool. But, when an active device fails, it is automatically replaced by a hot spare. To create a pool with hot spares, specify a spare vdev with any number of devices. For example, # zpool create pool mirror sda sdb spare sdc sdd Spares can be shared across multiple pools, and can be added with the zpool add command and removed with the zpool remove command. Once a spare replacement is initiated, a new spare vdev is created within the configuration that will remain there until the original device is replaced. At this point, the hot spare becomes available again, if another device fails. If a pool has a shared spare that is currently being used, the pool cannot be exported, since other pools may use this shared spare, which may lead to potential data cor‐ ruption. Shared spares add some risk. If the pools are imported on different hosts, and both pools suffer a device failure at the same time, both could attempt to use the spare at the same time. This may not be detected, resulting in data corruption. An in-progress spare replacement can be canceled by detaching the hot spare. If the original faulted device is detached, then the hot spare assumes its place in the con‐ figuration, and is removed from the spare list of all active pools. The draid vdev type provides distributed hot spares. These hot spares are named after the dRAID vdev they're a part of (draid1-2-3 specifies spare 3 of vdev 2, which is a single parity dRAID) and may only be used by that dRAID vdev. Otherwise, they behave the same as normal hot spares. Spares cannot replace log devices. Intent Log The ZFS Intent Log (ZIL) satisfies POSIX requirements for synchronous transactions. For instance, databases often require their transactions to be on stable storage de‐ vices when returning from a system call. NFS and other applications can also use fsync(2) to ensure data stability. By default, the intent log is allocated from blocks within the main pool. However, it might be possible to get better performance using separate intent log devices such as NVRAM or a dedicated disk. For example: # zpool create pool sda sdb log sdc Multiple log devices can also be specified, and they can be mirrored. See the “EXAMPLES” section for an example of mirroring multiple log devices. Log devices can be added, replaced, attached, detached, and removed. In addition, log devices are imported and exported as part of the pool that contains them. Mirrored devices can be removed by specifying the top-level mirror vdev. Cache Devices Devices can be added to a storage pool as "cache devices". These devices provide an additional layer of caching between main memory and disk. For read-heavy workloads, where the working set size is much larger than what can be cached in main memory, using cache devices allows much more of this working set to be served from low latency media. Using cache devices provides the greatest performance improvement for random read-workloads of mostly static content. To create a pool with cache devices, specify a cache vdev with any number of devices. For example: # zpool create pool sda sdb cache sdc sdd Cache devices cannot be mirrored or part of a raidz configuration. If a read error is encountered on a cache device, that read I/O is reissued to the original storage pool device, which might be part of a mirrored or raidz configuration. The content of the cache devices is persistent across reboots and restored asynchronously when importing the pool in L2ARC (persistent L2ARC). This can be disabled by setting l2arc_rebuild_enabled=0. For cache devices smaller than 1 GiB, ZFS does not write the metadata structures required for rebuilding the L2ARC, to conserve space. This can be changed with l2arc_rebuild_blocks_min_l2size. The cache device header (512 B) is updated even if no metadata structures are written. Setting l2arc_headroom=0 will result in scanning the full-length ARC lists for cacheable content to be written in L2ARC (persistent ARC). If a cache device is added with zpool add, its label and header will be overwritten and its contents will not be restored in L2ARC, even if the device was previously part of the pool. If a cache device is onlined with zpool online, its contents will be restored in L2ARC. This is useful in case of memory pressure, where the contents of the cache device are not fully re‐ stored in L2ARC. The user can off- and online the cache device when there is less memory pressure, to fully restore its contents to L2ARC. Pool checkpoint Before starting critical procedures that include destructive actions (like zfs destroy), an administrator can checkpoint the pool's state and, in the case of a mistake or failure, rewind the entire pool back to the checkpoint. Otherwise, the checkpoint can be discarded when the procedure has completed successfully. A pool checkpoint can be thought of as a pool-wide snapshot and should be used with care as it contains every part of the pool's state, from properties to vdev configura‐ tion. Thus, certain operations are not allowed while a pool has a checkpoint. Specifically, vdev removal/attach/detach, mirror splitting, and changing the pool's GUID. Adding a new vdev is supported, but in the case of a rewind it will have to be added again. Finally, users of this feature should keep in mind that scrubs in a pool that has a checkpoint do not repair checkpointed data. To create a checkpoint for a pool: # zpool checkpoint pool To later rewind to its checkpointed state, you need to first export it and then rewind it during import: # zpool export pool # zpool import --rewind-to-checkpoint pool To discard the checkpoint from a pool: # zpool checkpoint -d pool Dataset reservations (controlled by the reservation and refreservation properties) may be unenforceable while a checkpoint exists, because the checkpoint is allowed to consume the dataset's reservation. Finally, data that is part of the checkpoint but has been freed in the current state of the pool won't be scanned during a scrub. Special Allocation Class Allocations in the special class are dedicated to specific block types. By default, this includes all metadata, the indirect blocks of user data, and any deduplication tables. The class can also be provisioned to accept small file blocks. A pool must always have at least one normal (non-dedup/-special) vdev before other devices can be assigned to the special class. If the special class becomes full, then allocations intended for it will spill back into the normal class. Deduplication tables can be excluded from the special class by unsetting the zfs_ddt_data_is_special ZFS module parameter. Inclusion of small file blocks in the special class is opt-in. Each dataset can control the size of small file blocks allowed in the special class by setting the special_small_blocks property to nonzero. See zfsprops(7) for more info on this property. OpenZFS April 7, 2023 ZPOOLCONCEPTS(7)