

Fitting hyperelastic models to experimental data

Computational Mechanics

34, 484-502

DOI: 10.1007/s00466-004-0593-y

Citation Report

#	ARTICLE	IF	CITATIONS
2	Finite amplitude elastic waves propagating in compressible solids. <i>Physical Review E</i> , 2005, 72, .	2.0	48
3	Solitary and compactlike shear waves in the bulk of solids. <i>Physical Review E</i> , 2006, 73, .	2.0	36
4	On worm-like chain models within the three-dimensional continuum mechanics framework. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2006, 462, 749-768.	2.2	62
5	A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. <i>Strain</i> , 2006, 42, 135-147.	2.4	438
6	Combining Approach in Stages with Least Squares for fits of data in hyperelasticity. <i>Comptes Rendus - Mecanique</i> , 2006, 334, 628-633.	0.7	10
7	On the Size of RVE in Finite Elasticity of Random Composites. <i>Journal of Elasticity</i> , 2006, 85, 153-173.	1.3	131
8	Anisotropic constitutive equations and experimental tensile behavior of brain tissue. <i>Biomechanics and Modeling in Mechanobiology</i> , 2005, 5, 53-61.	2.4	227
9	Validation of a clinical finite element model of the human lumbosacral spine. <i>Medical and Biological Engineering and Computing</i> , 2006, 44, 633-641.	2.9	74
10	Numerical and Experimental Analysis of McKibben Actuators and Dielectric Elastomer Sensors. , 2009, , .		5
11	An adaptive method for homogenization in orthotropic nonlinear elasticity. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2007, 196, 3409-3423.	7.2	69
12	Experimentally determined properties of softening functions in pseudo-elastic models of the Mullins effect. <i>International Journal of Solids and Structures</i> , 2007, 44, 4145-4157.	2.9	19
13	Modeling hyperelastic behavior of rubber: A novel invariant-based and a review of constitutive models. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007, 45, 1713-1732.	2.4	85
14	Elastic instabilities for strain-stiffening rubber-like spherical and cylindrical thin shells under inflation. <i>International Journal of Non-Linear Mechanics</i> , 2007, 42, 204-215.	3.1	86
15	A variational constitutive model for soft biological tissues. <i>Journal of Biomechanics</i> , 2008, 41, 1458-1466.	2.3	72
16	On Extension and Torsion of Strain-Stiffening Rubber-Like Elastic Circular Cylinders. <i>Journal of Elasticity</i> , 2008, 93, 39-61.	1.3	54
17	An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. <i>Journal of Biomechanics</i> , 2008, 41, 2673-2680.	2.3	48
18	A class of mathematical models for alternated-current electrochemical measurements accounting for non-linear effects. <i>Nonlinear Analysis: Real World Applications</i> , 2008, 9, 412-429.	1.6	11
19	On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. <i>Comptes Rendus - Mecanique</i> , 2008, 336, 851-855.	0.7	11

#	ARTICLE	IF	CITATIONS
20	Plane strain bending of strain-stiffening rubber-like rectangular beams. International Journal of Solids and Structures, 2008, 45, 1713-1729.	2.9	36
21	Inhomogeneous shearing of strain-stiffening rubber-like hollow circular cylinders. International Journal of Solids and Structures, 2008, 45, 5464-5482.	2.9	13
23	On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Mathematics and Mechanics of Solids, 2009, 14, 474-489.	1.7	172
24	Anisotropy and Nonlinear Elasticity in Arterial Wall Mechanics. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2009, , 179-258.	0.0	27
25	Compression tests and constitutive models for the slight compressibility of elastic rubber-like materials. International Journal of Engineering Science, 2009, 47, 1232-1239.	5.4	35
26	Inflation of a circular elastomeric membrane into a horizontally semi-infinite liquid reservoir of finite vertical depth: Estimation of material parameters from volumeâ€“pressure data. International Journal of Engineering Science, 2009, 47, 718-734.	5.4	3
27	Finite Deformations of Tubular Dielectric Elastomer Sensors. Journal of Intelligent Material Systems and Structures, 2009, 20, 2187-2199.	2.3	49
28	A New Stored Energy Function for Rubber Like Materials for Low Strains. Mechanics of Advanced Materials and Structures, 2009, 16, 402-416.	3.8	12
29	A Review of Constitutive Models for Rubber-Like Materials. American Journal of Engineering and Applied Sciences, 2010, 3, 232-239.	1.0	217
30	A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mechanics of Materials, 2010, 42, 932-944.	3.7	50
31	Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mechanica, 2010, 213, 235-254.	2.4	72
32	Constitutive modeling of rubberlike materials based on consistent strain energy density functions. Polymer Engineering and Science, 2010, 50, 1058-1066.	3.5	15
33	Effects of Mechanical Properties of Kevlar/PTFE Fabric-Reinforced Self-Lubricating Liners on Performance of Self-Lubricating Spherical Plain Bearings. Applied Mechanics and Materials, 2010, 29-32, 197-202.	0.4	11
34	Product-oriented material testing and FEA for hyperelastic suspension jounce bumper design. International Journal of Design Engineering, 2010, 3, 374.	0.1	0
35	Phenomenological Modeling of DNA Overstretching. Journal of Nonlinear Mathematical Physics, 2021, 18, 411.	1.2	0
36	Anisotropic AAA: Computational comparison between four and two fiber family material models. Journal of Biomechanics, 2011, 44, 2418-2426.	2.3	21
37	A Mechano-Acoustic Indentor System for In Vivo Measurement of Nonlinear Elastic Properties of Soft Tissue. Journal of Manipulative and Physiological Therapeutics, 2011, 34, 584-593.	1.1	11
38	Engineering Design of Fluid-Filled Soft Covers for Robotic Contact Interfaces: Guidelines, Nonlinear Modeling, and Experimental Validation. IEEE Transactions on Robotics, 2011, 27, 436-449.	10.8	38

#	ARTICLE	IF	CITATIONS
39	Hyperelastic Modeling of Rubber-Like Photopolymers for Additive Manufacturing Processes. , 2011, , .		10
40	Performance analysis for a new whole-spacecraft isolation using viscoelastic damping material. Proceedings of SPIE, 2011, 7977, 79772B.	1.0	1
41	Modeling shear behavior of the annulus fibrosus. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1103-1114.	3.4	31
42	An 8-chain Model for Rubber-like Materials Accounting for Non-affine Chain Deformations and Topological Constraints. Journal of Elasticity, 2010, 102, 99-116.	1.3	59
43	Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis. Biomechanics and Modeling in Mechanobiology, 2010, 10, 27-38.	2.4	111
44	Analysis on the fundamental deformation effect of a robot soft finger and its contact width during power grasping. International Journal of Advanced Manufacturing Technology, 2010, 52, 797-804.	2.9	26
45	Identification of mechanical properties of heterogeneous soft bodies using gravity loading. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 391-407.	2.4	37
46	Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 105-113.	3.5	63
47	Mechanical response of pig skin under dynamic tensile loading. International Journal of Impact Engineering, 2011, 38, 130-135.	4.9	107
48	Hyperelastic properties of human meniscal attachments. Journal of Biomechanics, 2011, 44, 413-418.	2.3	53
49	On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. Journal of the Royal Society Interface, 2011, 8, 435-450.	3.4	162
50	Fitting Theory and Method of Hyper-Elastic Materialsâ™ Nonlinear Constitutive Relations Base on BP Neural Network. Applied Mechanics and Materials, 2012, 137, 36-41.	0.4	2
51	Identifying a Minimal Rheological Configuration: A Tool for Effective and Efficient Constitutive Modeling of Soft Tissues. Journal of Biomechanical Engineering, 2011, 133, .	1.5	14
52	Viscoelastic Material Properties of the Myocardium and Cardiac Jelly in the Looping Chick Heart. Journal of Biomechanical Engineering, 2012, 134, .	1.5	26
53	THE EFFECT OF ASYMMETRY AND AXIAL PRESTRAINING ON THE AMPLITUDE OF MECHANICAL STRESSES IN ABDOMINAL AORTIC ANEURYSM. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250089.	0.9	6
54	A high rate tension device for characterizing brain tissue. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2012, 226, 170-176.	0.8	3
55	A nonlinear elasticity phantom containing spherical inclusions. Physics in Medicine and Biology, 2012, 57, 4787-4804.	3.4	30
56	Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 93-106.	3.4	208

#	ARTICLE	IF	CITATIONS
57	Immediate Effect of Nimmo Receptor Tonus Technique on Muscle Elasticity, Pain Perception, and Disability in Subjects With Chronic Low Back Pain. <i>Journal of Manipulative and Physiological Therapeutics</i> , 2012, 35, 45-53.	1.1	12
58	Determination of friction coefficient in unconfined compression of brain tissue. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012, 14, 163-171.	3.4	34
59	An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials—part 1: incompressible deformations. <i>Acta Mechanica</i> , 2012, 223, 2039-2063.	2.4	36
60	Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. <i>International Journal for Numerical Methods in Engineering</i> , 2012, 91, 799-824.	3.0	87
61	On the Modeling of Extension-Torsion Experimental Data for Transversely Isotropic Biological Soft Tissues. <i>Journal of Elasticity</i> , 2011, 108, 179-191.	1.3	28
62	Automated Estimation of Collagen Fibre Dispersion in the Dermis and its Contribution to the Anisotropic Behaviour of Skin. <i>Annals of Biomedical Engineering</i> , 2012, 40, 1666-1678.	4.2	181
63	Experimentation, material modelling and simulation of bonded joints with a flexible adhesive. <i>International Journal of Adhesion and Adhesives</i> , 2012, 37, 56-64.	3.3	22
64	Fluid pressure loading of a hyperelastic membrane. <i>International Journal of Non-Linear Mechanics</i> , 2012, 47, 228-239.	3.1	44
65	Ray W. Ogden. <i>International Journal of Non-Linear Mechanics</i> , 2012, 47, 94-96.	3.1	0
66	Constitutive modeling of fiber composites with a soft hyperelastic matrix. <i>International Journal of Solids and Structures</i> , 2012, 49, 635-647.	2.9	49
67	Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: Comparisons and benchmarks. <i>European Journal of Mechanics, A/Solids</i> , 2012, 34, 21-37.	3.8	84
68	Finite element analysis of aircraft tyre – Effect of model complexity on tyre performance characteristics. <i>Materials & Design</i> , 2012, 35, 810-819.	5.5	61
69	Mechanical characterization of brain tissue in compression at dynamic strain rates. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012, 10, 23-38.	3.4	292
70	Thermomechanical analysis of an aircraft tire in cornering using coupled ale and lagrangian formulations. <i>Open Engineering</i> , 2013, 3, 191-205.	1.6	11
71	A method for the characterization of static elastomeric lip seal deformation. <i>Tribology International</i> , 2013, 60, 119-126.	6.2	20
72	Reality based modeling and simulation of gallbladder shape deformation using variational methods. <i>International Journal of Computer Assisted Radiology and Surgery</i> , 2013, 8, 857-865.	2.3	8
73	A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. <i>Computational Mechanics</i> , 2013, 52, 1199-1219.	3.3	86
74	At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. <i>Computational Mechanics</i> , 2013, 52, 959-969.	3.3	59

#	ARTICLE	IF	CITATIONS
75	Mechanical characterization of brain tissue in simple shear at dynamic strain rates. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013, 28, 71-85.	3.4	180
76	An anisotropic hyperelastic constitutive model with shear interaction for cordâ€“rubber composites. <i>Composites Science and Technology</i> , 2013, 78, 69-74.	8.7	42
77	A numerical study to analyse the risk for pressure ulcer development on a spine board. <i>Clinical Biomechanics</i> , 2013, 28, 736-742.	1.3	53
78	A hybrid variationally consistent homogenization approach based on Ritz's method. <i>International Journal for Numerical Methods in Engineering</i> , 2013, 94, 625-647.	3.0	8
79	A hyperelastic constitutive model for rubber-like materials. <i>European Journal of Mechanics, A/Solids</i> , 2013, 38, 144-151.	3.8	177
80	Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2013, 254, 61-82.	7.2	85
81	Semi-analytic inverse method for rubber testing at high strain rates. <i>Mechanics Research Communications</i> , 2013, 47, 97-101.	2.0	6
82	Constitutive modeling of a SEBS cast-calender: Large strain, compressibility and anisotropic damage induced by the process. <i>Polymer</i> , 2013, 54, 4594-4603.	4.1	8
83	A modelling study of the visco-elastic behaviour of polyester-based coil coatings. <i>Progress in Organic Coatings</i> , 2013, 76, 1556-1566.	4.1	10
84	Simulating the three-dimensional deformation of in vivo facial skin. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013, 28, 484-494.	3.4	68
85	Characterization of Biaxial Mechanical Behavior of Porcine Aorta under Gradual Elastin Degradation. <i>Annals of Biomedical Engineering</i> , 2013, 41, 1528-1538.	4.2	66
86	Towards the Direct and Inverse Adaptive Mixed Finite Element Formulations for Nearly Incompressible Elasticity at Large Strains. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2013, , 299-323.	0.0	0
87	How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading?. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2013, 16, 520-529.	2.1	27
88	More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. <i>Journal of the Mechanical Behavior of Materials</i> , 2013, 22, 27-50.	1.7	132
89	Mechanical Performance of Bovine Pericardial Bioprosthetic Valves. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2013, 7, .	0.5	5
90	COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES. <i>International Journal for Multiscale Computational Engineering</i> , 2013, 11, 201-225.	1.4	94
91	Bioinspired Fingertip for Anthropomorphic Robotic Hands. <i>Applied Bionics and Biomechanics</i> , 2014, 11, 25-38.	1.0	25
92	MATERIAL PARAMETER OF RUBBER GLOVE VULCANIZED USING COMBINED INFRARED AND HOT-AIR HEATING. <i>American Journal of Applied Sciences</i> , 2014, 11, 648-655.	0.2	4

#	ARTICLE	IF	CITATIONS
93	Non-linear constitutive model for the oligocarbonate polyurethane material. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2014, 32, 1666-1677.	3.5	4
94	MULTIAXIAL STRAIN ENERGY FUNCTIONS OF RUBBERLIKE MATERIALS: AN EXPLICIT APPROACH BASED ON POLYNOMIAL INTERPOLATION. <i>Rubber Chemistry and Technology</i> , 2014, 87, 168-183.	1.3	12
95	On morphing wing for roll augmentation via material fitness using surrogate modelling. <i>European Journal of Computational Mechanics</i> , 2014, 23, 138-160.	1.0	0
96	The mechanical behavior of composite corrugated core coated with elastomer for morphing skins. <i>Journal of Composite Materials</i> , 2014, 48, 1623-1636.	2.2	38
97	STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA. <i>Rubber Chemistry and Technology</i> , 2014, 87, 120-138.	1.3	17
98	Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data. <i>Mathematical Modelling of Natural Phenomena</i> , 2014, 9, 98-116.	2.3	15
99	Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. <i>Continuum Mechanics and Thermodynamics</i> , 2013, 26, 207-220.	2.0	15
100	Influence of Specimen Geometry on the Estimation of the Planar Biaxial Mechanical Properties of Cruciform Specimens. <i>Experimental Mechanics</i> , 2013, 54, 615-631.	1.8	45
101	An approach for hyperelastic model-building and parameters estimation a review of constitutive models. <i>European Polymer Journal</i> , 2014, 50, 97-108.	6.0	100
102	How Constitutive Model Complexity can Affect the Capability to Fit Experimental Data: a Focus on Human Carotid Arteries and Extension/Inflation Data. <i>Archives of Computational Methods in Engineering</i> , 2014, 21, 273-292.	13.1	12
103	Obtaining multi-axial elastic potentials for rubber-like materials via an explicit, exact approach based on spline interpolation. <i>Acta Mechanica Solida Sinica</i> , 2014, 27, 441-453.	2.3	8
104	Mechanical characterization of a Tire Derived Material: Experiments, hyperelastic modeling and numerical validation. <i>Construction and Building Materials</i> , 2014, 66, 336-347.	7.4	27
105	On the macroscopic response, microstructure evolution, and macroscopic stability of short-fibre-reinforced elastomers at finite strains: I – Analytical results. <i>Philosophical Magazine</i> , 2014, 94, 1031-1067.	1.7	9
106	Unrealistic statistics: How average constitutive coefficients can produce non-physical results. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014, 40, 234-239.	3.4	33
107	Mechanical properties of human bone–implant interface tissue in aseptically loose hip implants. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014, 38, 59-68.	3.4	25
108	Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. <i>Biomechanics and Modeling in Mechanobiology</i> , 2014, 13, 1341-1359.	2.4	87
109	Prestretch effect on snap-through instability of short-length tubular elastomeric balloons under inflation. <i>International Journal of Solids and Structures</i> , 2014, 51, 2109-2115.	2.9	51
110	How to identify a hyperelastic constitutive equation for rubber-like materials with multiaxial tension–torsion experiments. <i>International Journal of Non-Linear Mechanics</i> , 2014, 65, 260-270.	3.1	17

#	ARTICLE	IF	CITATIONS
111	Role of Crosslinking and Entanglements in the Mechanics of Silicone Networks. <i>Experimental Mechanics</i> , 2014, 54, 1177-1187.	1.8	25
112	Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. <i>International Journal of Solids and Structures</i> , 2014, 51, 4316-4326.	2.9	98
113	Development of a detailed aircraft tyre finite element model for safety assessment. <i>Materials & Design</i> , 2014, 53, 902-909.	5.5	36
114	Multiscale treatment of mechanical contact problems involving thin polymeric layers. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2014, 22, 045012.	2.4	3
115	Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite. <i>Mechanics of Time-Dependent Materials</i> , 2013, 18, 1-20.	1.7	49
116	Mechanical characterization of brain tissue in tension at dynamic strain rates. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014, 33, 43-54.	3.4	213
117	Modelling and impact analysis of football player head with helmet toward mitigating brain concussion. <i>International Journal of Experimental and Computational Biomechanics</i> , 2015, 3, 267.	0.5	3
118	Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015, 82, .	2.5	24
119	Integral from Full Field Kinematic Data for Natural Rubber Compounds. <i>Strain</i> , 2015, 51, 343-356.	2.4	16
120	The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity. <i>Journal of Elasticity</i> , 2015, 121, 143-234.	1.3	90
121	The rheology of non-dilute dispersions of highly deformable viscoelastic particles in Newtonian fluids. <i>Journal of Fluid Mechanics</i> , 2015, 763, 386-432.	3.3	25
122	Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study. <i>Journal of the Mechanical Behavior of Materials</i> , 2015, 24, 11-24.	1.7	57
123	Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations. <i>Polymer Testing</i> , 2015, 42, 122-134.	5.4	120
124	On a molecular statistical basis for Ogden's model of rubber elasticity. <i>Journal of the Mechanics and Physics of Solids</i> , 2015, 78, 249-268.	5.6	49
125	On the identifiability of Anand visco-plastic model parameters using the Virtual Fields Method. <i>Acta Materialia</i> , 2015, 86, 118-136.	8.6	25
126	Methods for Using 3-D Ultrasound Speckle Tracking in Biaxial Mechanical Testing of Biological Tissue Samples. <i>Ultrasound in Medicine and Biology</i> , 2015, 41, 1029-1042.	1.7	7
127	Modeling of human artery tissue with probabilistic approach. <i>Computers in Biology and Medicine</i> , 2015, 59, 152-159.	7.4	3
128	A model and simulation of uterine contractions. <i>Mathematics and Mechanics of Solids</i> , 2015, 20, 540-564.	1.7	18

#	ARTICLE	IF	CITATIONS
129	Predictive model of the prostate motion in the context of radiotherapy: A biomechanical approach relying on urodynamic data and mechanical testing. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015, 49, 30-42.	3.4	13
130	Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. <i>Biomedizinische Technik</i> , 2015, 60, .	1.6	65
131	Ray W Ogden: An Appreciation. <i>Mathematics and Mechanics of Solids</i> , 2015, 20, 621-624.	1.7	4
132	Anisotropic hyperelastic modeling for face-centered cubic and diamond cubic structures. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015, 291, 216-239.	7.2	11
133	Reconstruction of a constitutive law for rubber from in silico experiments using Ogden's laws. <i>International Journal of Solids and Structures</i> , 2015, 62, 158-173.	2.9	2
134	Ground states of self-gravitating elastic bodies. <i>Calculus of Variations and Partial Differential Equations</i> , 2014, 54, 881-899.	1.5	5
135	The role of constitutive relation in the stability of hyper-elastic spherical membranes subjected to dynamic inflation. <i>International Journal of Engineering Science</i> , 2015, 93, 31-45.	5.4	31
136	Magnetic Elastomers for Stretchable Inductors. <i>ACS Applied Materials & Interfaces</i> , 2015, 7, 10080-10084.	8.0	44
137	Contribution of Collagen Fiber Undulation to Regional Biomechanical Properties Along Porcine Thoracic Aorta. <i>Journal of Biomechanical Engineering</i> , 2015, 137, .	1.5	63
138	A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials. <i>International Journal of Solids and Structures</i> , 2015, 67-68, 272-282.	2.9	16
139	Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. <i>European Journal of Mechanics, A/Solids</i> , 2015, 53, 99-106.	3.8	22
140	Biomechanics of oral mucosa. <i>Journal of the Royal Society Interface</i> , 2015, 12, 20150325.	3.4	112
141	Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation. <i>Optical Materials Express</i> , 2015, 5, 1792.	2.8	21
142	On the Feasibility of Identifying First Order Ogden Constitutive Parameters of Gelatin Gels from Flat Punch Indentation Tests. <i>Soft Materials</i> , 2015, 13, 188-200.	1.5	13
143	Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. <i>Cardiovascular Engineering and Technology</i> , 2015, 6, 519-532.	1.7	48
144	CLASSIC STRAIN ENERGY FUNCTIONS AND CONSTITUTIVE TESTS OF RUBBER-LIKE MATERIALS. <i>Rubber Chemistry and Technology</i> , 2015, 88, 604-627.	1.3	22
145	Soft Material Characterization for Robotic Applications. <i>Soft Robotics</i> , 2015, 2, 80-87.	7.9	195
146	Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties. <i>Comptes Rendus - Mecanique</i> , 2015, 343, 503-514.	0.6	34

#	ARTICLE	IF	CITATIONS
147	CHARACTERIZATION OF RECYCLED RUBBER USING PARTICLE SWARM OPTIMIZATION TECHNIQUES. <i>Rubber Chemistry and Technology</i> , 2015, 88, 343-358.	1.3	9
148	Parameter identification for rubber materials with artificial spatially distributed data. <i>Computational Mechanics</i> , 2015, 56, 353-370.	3.3	17
149	Material model calibration from planar tension tests on porcine linea alba. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015, 43, 26-34.	3.4	11
150	Gent models for the inflation of spherical balloons. <i>International Journal of Non-Linear Mechanics</i> , 2015, 68, 52-58.	3.1	71
151	The remarkable Gent constitutive model for hyperelastic materials. <i>International Journal of Non-Linear Mechanics</i> , 2015, 68, 9-16.	3.1	150
153	An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications. <i>Polymer Testing</i> , 2015, 41, 44-54.	5.4	28
154	Uniaxial Stress-Strain Characteristics of Elastomeric Membranes: Theoretical Considerations, Computational Simulations, and Experimental Validation. <i>Mechanics of Advanced Materials and Structures</i> , 2015, 22, 996-1006.	3.8	4
155	Human thoracic and abdominal aortic aneurysmal tissues: Damage experiments, statistical analysis and constitutive modeling. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015, 41, 92-107.	3.4	87
156	Non-linear vibrations of rubber membrane. <i>Applied Mathematical Sciences</i> , 2016, 10, 1797-1810.	0.7	1
157	Study Neo-Hookean and Yeoh Hyper-Elastic Models in Dielectric Elastomer-Based Micro-Beam Resonators. <i>Latin American Journal of Solids and Structures</i> , 2016, 13, 1823-1837.	1.0	24
158	Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons. <i>Latin American Journal of Solids and Structures</i> , 2016, 13, 2657-2678.	1.0	4
159	Equi-biaxial tension tests on magneto-rheological elastomers. <i>Smart Materials and Structures</i> , 2016, 25, 015015.	3.6	30
160	Constitutive modeling of isotropic hyperelastic materials using proposed phenomenological models in terms of strain invariants. <i>Polymer Engineering and Science</i> , 2016, 56, 299-308.	3.5	12
161	Soft Color Composites with Tunable Optical Transmittance. <i>Advanced Optical Materials</i> , 2016, 4, 620-626.	7.0	31
162	Needle Cutting of Skin Simulants. , 2016, , .		2
163	The Exponentiated Hencky Strain Energy in Modeling Tire Derived Material for Moderately Large Deformations. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2016, 138, .	1.7	21
164	A hyperelastic fibre-reinforced continuum model of healing tendons with distributed collagen fibre orientations. <i>Biomechanics and Modeling in Mechanobiology</i> , 2016, 15, 1457-1466.	2.4	20
165	Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016, 59, 393-403.	3.4	14

#	ARTICLE	IF	CITATIONS
166	Macroscopic rheological behavior of suspensions of soft solid particles in yield stress fluids. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2016, 234, 139-161.	2.4	21
167	Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch. <i>Journal Physics D: Applied Physics</i> , 2016, 49, 265401.	3.1	37
168	Constitutive behaviors and mechanical characterizations of fabric reinforced rubber composites. <i>Composite Structures</i> , 2016, 152, 117-123.	6.4	74
169	Novel strategy for the hyperelastic parameter fitting procedure of polymer foam materials. <i>Polymer Testing</i> , 2016, 53, 149-155.	5.4	19
170	Multi-scale modelling of rubber-like materials and soft tissues: <i>< i>an appraisal</i></i> . <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016, 472, 20160060.	2.2	61
171	Strain and stress concentrations in elastomers at finite deformations: effects of strain-induced crystallization, filler reinforcement, and deformation rate. <i>Acta Mechanica</i> , 2016, 227, 1969-1982.	2.4	21
172	Hyperelastic strain measurements and constitutive parameters identification of 3D printed soft polymers by image processing. <i>Additive Manufacturing</i> , 2016, 11, 40-48.	3.6	28
173	On the accuracy and fitting of transversely isotropic material models. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016, 61, 554-566.	3.4	45
174	Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis. <i>Journal of Biomechanics</i> , 2016, 49, 1186-1191.	2.3	26
175	Nanoindentation and finite element modelling of chitosan-“alginate multilayer coated hydrogels. <i>Soft Matter</i> , 2016, 12, 7338-7349.	2.6	12
176	The relevance of transverse deformation effects in modeling soft biological tissues. <i>International Journal of Solids and Structures</i> , 2016, 99, 57-70.	2.9	32
177	Can hyperelastic material parameters be uniquely determined from indentation experiments?. <i>RSC Advances</i> , 2016, 6, 81958-81964.	4.4	15
178	Strain energy function for isotropic non-linear elastic incompressible solids with linear finite strain response in shear and torsion. <i>Extreme Mechanics Letters</i> , 2016, 9, 204-206.	4.2	33
179	Mechanical properties development of high-ACN nitrile-butadiene rubber/organoclay nanocomposites. <i>Plastics, Rubber and Composites</i> , 2016, 45, 389-397.	1.9	18
180	Approximation of properties of hyperelastic materials with use of energy-based models and biaxial tension data. <i>AIP Conference Proceedings</i> , 2016, 1738, 480090.	0.1	0
181	A technique for the classification of tissues by combining mechanics based models with Bayesian inference. <i>International Journal of Engineering Science</i> , 2016, 106, 95-109.	5.4	21
182	Creating a model of diseased artery damage and failure from healthy porcine aorta. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016, 60, 378-393.	3.4	22
183	Material parameters identification and experimental validation of damage models for rubberlike materials. <i>European Polymer Journal</i> , 2016, 78, 302-313.	6.0	7

#	ARTICLE	IF	CITATIONS
184	A finite element stratification method for a polyurethane jounce bumper. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230, 983-992.	1.7	16
185	Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method. Advanced Engineering Materials, 2016, 18, 978-988.	3.0	232
186	Control of tensionâ€“compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 218-228.	3.4	50
187	Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations. Journal of Magnetism and Magnetic Materials, 2016, 404, 205-214.	2.8	47
188	A numerical study of isotropic and anisotropic constitutive models with relevance to healthy and unhealthy cerebral arterial tissues. International Journal of Engineering Science, 2016, 101, 126-155.	5.4	18
189	SIMULATION OF MUSCLE ACTIVATION WITH COUPLED NONLINEAR FE MODELS. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650082.	0.9	9
190	Relationship Between Structure and Mechanics for Membranous Tissues. , 2016, , 135-173.		2
191	Planar biaxial testing of soft biological tissue using rakes: A critical analysis of protocol and fitting process. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 135-151.	3.4	70
193	Bayesian calibration of hyperelastic constitutive models of soft tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 108-127.	3.4	43
194	A new set of biaxial and uniaxial experiments on vulcanized rubber and attempts at modeling it using classical hyperelastic models. Mechanics of Materials, 2016, 92, 211-222.	3.7	23
195	Jointed Pipeline Response to Large Ground Deformation. Journal of Pipeline Systems Engineering and Practice, 2016, 7, .	1.7	37
196	Rediscovering GF Beckerâ€™s early axiomatic deduction of a multiaxial nonlinear stressâ€“strain relation based on logarithmic strain. Mathematics and Mechanics of Solids, 2016, 21, 856-911.	1.7	18
197	An invariantâ€“free formulation of neoâ€“Hookean hyperelasticity. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2016, 96, 233-252.	2.2	18
198	Fracture Mechanics Model of Needle Cutting Tissue. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2016, 138, .	2.6	57
199	DYNAMIC ANALYSIS OF HEALTHY AND EDGE-TO-EDGE REPAIRED MITRAL VALVE BEHAVIOR SUBJECTED TO HIGH G ACCELERATIONS. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750032.	0.9	4
200	On the use of uniaxial tests on the sclera to understand the difference between emmetropic and highly myopic eyes. Meccanica, 2016, 52, 603-612.	1.8	9
201	Hyperelastic model analysis of stress-strain behavior in polybutadiene/ethylene-propylene diene terpolymer nanocomposites. Journal of Vinyl and Additive Technology, 2017, 23, 21-27.	4.0	6
202	A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1077-1093.	2.4	14

#	ARTICLE	IF	CITATIONS
203	Stochastic modeling of the Ogden class of stored energy functions for hyperelastic materials: the compressible case. <i>ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik</i> , 2017, 97, 273-295.	2.2	23
204	A Soft-Touch Gripper for Grasping Delicate Objects. <i>IEEE/ASME Transactions on Mechatronics</i> , 2017, 22, 1276-1286.	7.8	68
205	Histology and Biaxial Mechanical Behavior of Abdominal Aortic Aneurysm Tissue Samples. <i>Journal of Biomechanical Engineering</i> , 2017, 139, .	1.5	16
206	Methodical fitting for mathematical models of rubber-like materials. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2017, 473, 20160811.	2.2	126
207	Numerical characterisation of uncured elastomers by a neural network based approach. <i>Computers and Structures</i> , 2017, 182, 504-525.	4.5	70
208	To What Extent Can Hyperelastic Models Make Sense the Effect of Clay Surface Treatment on the Mechanical Properties of Elastomeric Nanocomposites?. <i>Macromolecular Materials and Engineering</i> , 2017, 302, .	4.2	16
209	Characterization of the Monotonic Uniaxial and Biaxial Mechanical Response of Polyvinylidene Fluoride (PVDF) Films. <i>Experimental Techniques</i> , 2017, 41, 357-363.	1.4	2
210	A Comparison of How Well Two Different Models of Thermo-Setting Polymers Predict Their Thermo-Mechanical Aspects. <i>Macromolecular Symposia</i> , 2017, 372, 51-68.	0.8	3
211	Mechanical behavior of nylon 66 tyre cord under monotonic and cyclic extension: Experiments and constitutive modeling. <i>Fibers and Polymers</i> , 2017, 18, 542-548.	2.0	22
212	On the representative elementary size concept to evaluate the compatibilisation of a plasticised biopolymer blend. <i>Carbohydrate Polymers</i> , 2017, 172, 120-129.	12.1	16
213	The mechanical behavior of skin: Structures and models for the finite element analysis. <i>Computers and Structures</i> , 2017, 190, 75-107.	4.5	130
214	A family of hyperelastic models for human brain tissue. <i>Journal of the Mechanics and Physics of Solids</i> , 2017, 106, 60-79.	5.6	153
215	Effects of the bulk compressibility on rubber isolatorâ€™s compressive behaviors. <i>Advances in Mechanical Engineering</i> , 2017, 9, 168781401769935.	1.8	11
216	Synthesis process of a compliant fluidmechanical actuator for use as an adaptive electrode carrier for cochlear implants. <i>Mechanism and Machine Theory</i> , 2017, 112, 155-171.	5.2	5
217	WYPiWYG hyperelasticity without inversion formula: Application to passive ventricular myocardium. <i>Computers and Structures</i> , 2017, 185, 47-58.	4.5	18
218	Assessment of hyperelastic material models for the application of adhesive point-fixings between glass and metal. <i>International Journal of Adhesion and Adhesives</i> , 2017, 77, 102-117.	3.3	24
219	Simulation of arterial dissection by a penetrating external body using cohesive zone modelling. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2017, 71, 95-105.	3.4	15
220	On the large strain deformation behavior of silicone-based elastomers for biomedical applications. <i>Polymer Testing</i> , 2017, 58, 189-198.	5.4	54

#	ARTICLE	IF	CITATIONS
221	Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring. <i>ACS Applied Materials & Interfaces</i> , 2017, 9, 1770-1780.	8.0	394
222	Capturing anisotropic constitutive models with WYPiWYG hyperelasticity; and on consistency with the infinitesimal theory at all deformation levels. <i>International Journal of Non-Linear Mechanics</i> , 2017, 96, 75-92.	3.1	18
223	Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device. <i>Scientific Reports</i> , 2017, 7, .	3.6	10
224	Design and Analysis of Soft Grippers for Hand Rehabilitation. , 2017, , .		9
225	On the nonlinear viscoelastic behavior of rubber-like materials: Constitutive description and identification. <i>International Journal of Mechanical Sciences</i> , 2017, 130, 437-447.	8.9	29
226	On the Correlation of FEM and Experiments for Hyperelastic Elastomers. <i>Experimental Mechanics</i> , 2016, 57, 195-206.	1.8	44
227	Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery. <i>International Urogynecology Journal</i> , 2016, 28, 275-284.	1.5	30
228	Single-step scanner-based digital image correlation (SB-DIC) method for large deformation mapping in rubber. <i>Optics and Lasers in Engineering</i> , 2017, 88, 167-177.	3.9	10
229	WYPiWYG hyperelasticity for isotropic, compressible materials. <i>Computational Mechanics</i> , 2016, 59, 73-92.	3.3	59
230	Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2017, 65, 743-752.	3.4	34
231	Understanding the need of the compression branch to characterize hyperelastic materials. <i>International Journal of Non-Linear Mechanics</i> , 2017, 89, 14-24.	3.1	41
232	Addressing Uncertainty in Constitutive Model Forms and Parameters for FE Models of the Human Head Subjected to Blast Loading. , 2018, , .		0
233	FEM-based soft robotic control framework for intracavitary navigation. , 2017, , 11-16.		17
234	Stiffness and energy dissipation of Oval Leaf Spring mounts under unidirectional line loading. <i>Mechanics and Industry</i> , 2017, 18, 414.	0.9	4
235	Coupled numerical investigation of structural glass panels with elastic materials injection and hyperelastic materials injection subjected to locally introduced axial compression. <i>International Journal of Structural Engineering</i> , 2017, 8, 111.	0.2	0
236	An integrated study on the optimal shape design of cruciform specimen used in equibiaxial tensile test of a hyperelastic material. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017, 272, 012023.	0.5	1
237	Constitutive behaviour of paddlefish (<i>Polyodon spathula</i>) cartilage. <i>Bioinspired, Biomimetic and Nanobiomaterials</i> , 2017, 6, 236-243.	0.5	3
238	Constitutive modeling of bovine tendon. , 2017, , i-iii.		0

#	ARTICLE	IF	CITATIONS
239	Bladder/Prostate/Rectum. , 2017, , 307-324.	2	
240	Nonlinear Forced Vibration Analysis of Dielectric-Elastomer Based Micro-Beam with Considering Yeoh Hyper-Elastic Model. Latin American Journal of Solids and Structures, 2017, 14, 643-656.	1.0	11
241	Application of particle swarm optimization in inverse finite element modeling to determine the cornea's mechanical behavior. Acta Scientiarum - Technology, 2017, 39, 325.	0.2	4
242	Multiaxial experiments with radial loading paths on a polymeric foam. Polymer Testing, 2018, 67, 441-449.	5.4	9
243	Application of fractional time derivatives in modeling the finite deformation viscoelastic behavior of carbon-black filled NR and SBR. Polymer Testing, 2018, 68, 110-115.	5.4	30
244	Stochastic hyperelastic modeling considering dependency of material parameters. Computational Mechanics, 2018, 62, 1273-1285.	3.3	18
245	Computational Modeling of Wound Suture: A Review. IEEE Reviews in Biomedical Engineering, 2018, 11, 165-176.	13.0	26
246	Topology Optimized Design, Fabrication, and Characterization of a Soft Cable-Driven Gripper. IEEE Robotics and Automation Letters, 2018, 3, 2463-2470.	5.6	126
247	Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 104-113.	3.4	28
248	Evaluation of microstructurally motivated constitutive models to describe age-dependent tendon healing. Biomechanics and Modeling in Mechanobiology, 2017, 17, 793-814.	2.4	14
249	Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. Journal of the Mechanics and Physics of Solids, 2018, 112, 458-471.	5.6	38
250	Mechanical behaviour of Transparent Structural Silicone Adhesive (TSSA) steel-to-glass laminated connections under monotonic and cyclic loading. Glass Structures and Engineering, 2018, 3, 213-236.	1.4	9
251	Application of metaheuristic algorithms to the identification of nonlinear magneto-viscoelastic constitutive parameters. Journal of Magnetism and Magnetic Materials, 2018, 464, 116-131.	2.8	23
252	Stochastic isotropic hyperelastic materials: constitutive calibration and model selection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170858.	2.2	33
253	An investigation into hyperelastic behavior of BR/epoxy/polyester hybrid/nanoclay nanocomposites. Polymer Composites, 2018, 39, .	5.2	8
254	WYPiWYG Damage Mechanics for Soft Materials: A Data-Driven Approach. Archives of Computational Methods in Engineering, 2017, 25, 165-193.	13.1	9
255	An experimental study of the effect of CNTs on the mechanical properties of CNTs/NR/EPDM nanocomposite. Polymer Composites, 2018, 39, 4071-4079.	5.2	29
256	A data-driven approach to nonlinear elasticity. Computers and Structures, 2018, 194, 97-115.	4.5	155

#	ARTICLE	IF	CITATIONS
257	Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone. <i>Glass Structures and Engineering</i> , 2017, 3, 55-74.	1.4	22
258	A continuum approach for the large strain finite element analysis of auxetic materials. <i>International Journal of Mechanical Sciences</i> , 2018, 135, 441-457.	8.9	23
259	A continuum mechanics constitutive framework for transverse isotropic soft tissues. <i>Journal of the Mechanics and Physics of Solids</i> , 2018, 112, 209-224.	5.6	57
260	A new hyper-elastic model for predicting multi-axial behaviour of rubber-like materials: formulation and computational aspects. <i>Mechanics of Time-Dependent Materials</i> , 2017, 22, 167-186.	1.7	14
262	A numerical study on differential pressure needed for ball pig motion in pipelines based on nonlinear hyperelastic material model. <i>Journal of Natural Gas Science and Engineering</i> , 2018, 59, 466-472.	4.6	16
263	Mechanical Behavior Modeling of Hyperelastic Transversely Isotropic Materials Based on a New Polyconvex Strain Energy Function. <i>International Journal of Applied Mechanics</i> , 2018, 10, 1850104.	3.0	15
264	A Comparison Between Fractional-Order and Integer-Order Differential Finite Deformation Viscoelastic Models: Effects of Filler Content and Loading Rate on Material Parameters. <i>International Journal of Applied Mechanics</i> , 2018, 10, 1850099.	3.0	18
265	Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method. <i>Computational Materials Science</i> , 2018, 152, 268-290.	3.2	55
266	On Modeling and Simulation of Innovative Ship Rescue System. <i>Journal of Offshore Mechanics and Arctic Engineering</i> , 2018, 140, .	1.7	2
267	An evaluation of the Gent and Gent-Gent material models using inflation of a plane membrane. <i>International Journal of Mechanical Sciences</i> , 2018, 146-147, 39-48.	8.9	37
268	Determination of the hyper-viscoelastic model parameters of open-cell polymer foams and rubber-like materials with high accuracy. <i>Materials and Design</i> , 2018, 156, 596-608.	6.9	38
269	Strain behavior of malaligned cervical spine implanted with metal-on-polyethylene, metal-on-metal, and elastomeric artificial disc prostheses – A finite element analysis. <i>Clinical Biomechanics</i> , 2018, 59, 19-26.	1.3	22
270	Cell-Instructive Alginate Hydrogels Targeting RhoA. <i>Bioconjugate Chemistry</i> , 2018, 29, 3042-3053.	3.9	9
271	The human touch. <i>ACM Transactions on Graphics</i> , 2018, 37, 1-12.	10.7	18
272	Numerical analysis of wood-high-density polyethylene composites: A hyperelastic approach. <i>Journal of Composite Materials</i> , 2019, 53, 73-82.	2.2	2
273	Dielectric elastomer materials for large-strain actuation and energy harvesting: a comparison between styrenic rubber, natural rubber and acrylic elastomer. <i>Smart Materials and Structures</i> , 2019, 28, 114001.	3.6	68
274	Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019, 100, 103381.	3.4	42
275	Influence of stretch and temperature on the energy density of dielectric elastomer generators. <i>Applied Mathematics and Mechanics (English Edition)</i> , 2019, 40, 1547-1560.	4.2	8

#	ARTICLE	IF	CITATIONS
276	Elasticity bounds from effective field theory. <i>Physical Review D</i> , 2019, 100, .	4.4	22
277	Comparative Analysis of Various Hyperelastic Models for Neoprene Gasket at Ranging Strains. , 2019, 53, 179-188.	2	
278	A Bayesian model calibration framework to evaluate brain tissue characterization experiments. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2019, 357, 112604.	7.2	18
279	A multi-scale three-dimensional finite element analysis of polymeric rubber foam reinforced by carbon nanotubes under tensile loads. <i>Iranian Polymer Journal (English Edition)</i> , 2019, 28, 135-144.	2.4	4
280	A comparison of hyperelastic constitutive models applicable to shear wave elastography (SWE) data in tissue-mimicking materials. <i>Physics in Medicine and Biology</i> , 2019, 64, 055014.	3.4	22
281	Mechanical properties of Indonesian hyperelastic low-grade rubber for low-cost base isolator. <i>MATEC Web of Conferences</i> , 2019, 276, 01017.	0.3	5
282	A new hyper-viscoelastic model for investigating rate dependent mechanical behavior of dual cross link self-healing hydrogel. <i>International Journal of Mechanical Sciences</i> , 2019, 159, 278-286.	8.9	35
284	Experimental Characterisation: Rich Deformations. <i>Studies in Mechanobiology, Tissue Engineering and Biomaterials</i> , 2019, , 215-234.	0.0	0
285	General solution procedures to compute the stored energy density of conservative solids directly from experimental data. <i>International Journal of Engineering Science</i> , 2019, 141, 16-34.	5.4	8
286	Isotropic hyperelasticity in principal stretches: explicit elasticity tensors and numerical implementation. <i>Computational Mechanics</i> , 2019, 64, 1273-1288.	3.3	24
287	Methodologies for constitutive model parameter identification for strain locking materials. <i>Mechanics of Materials</i> , 2019, 134, 30-37.	3.7	2
288	Flexible identification procedure for thermodynamic constitutive models for magnetostrictive materials. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019, 475, 20180280.	2.2	3
289	Numerical Modeling and Experimental Characterization of Elastomeric Pads Bonded in a Conical Spring under Multiaxial Loads and Precompression. <i>Mathematical Problems in Engineering</i> , 2019, 2019, .	1.3	7
290	Average-chain behavior of isotropic incompressible polymers obtained from macroscopic experimental data. A simple structure-based WYPiWYG model in Julia language. <i>Advances in Engineering Software</i> , 2019, 130, 41-57.	6.3	13
291	Quasi-Static and High Strain Rate Simple Shear Characterization of Soft Polymers. <i>Experimental Mechanics</i> , 2019, 59, 733-747.	1.8	24
292	Rivlin's legacy in continuum mechanics and applied mathematics. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019, 377, 20190090.	2.6	8
293	In Silico Performance of a Recellularized Tissue-Engineered Transcatheter Aortic Valve. <i>Journal of Biomechanical Engineering</i> , 2019, 141, 061004-061004-12.	1.5	10
294	On the AIC-based model reduction for the general Holzapfelâ€Ogden myocardial constitutive law. <i>Biomechanics and Modeling in Mechanobiology</i> , 2019, 18, 1213-1232.	2.4	47

#	ARTICLE	IF	CITATIONS
296	A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental setups – Exemplified and detailed for lung parenchyma. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019, 94, 126-143.	3.4	25
297	A viscoelastic nonlinear compressible material model of lung parenchyma – Experiments and numerical identification. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019, 94, 164-175.	3.4	38
298	Permeability of the porcine iris stroma. <i>Experimental Eye Research</i> , 2019, 181, 190-196.	2.5	11
299	Mesoscale Hyperelastic Model of a Single Yarn Under High Velocity Transverse Impact. <i>PoliTO Springer Series</i> , 2019, , 103-124.	0.0	0
300	Do we need Truesdell's empirical inequalities? On the coaxiality of stress and stretch. <i>International Journal of Non-Linear Mechanics</i> , 2019, 112, 106-116.	3.1	6
301	Effects of fiber orientation in a soft unidirectional fiber-reinforced material under simple shear deformation. <i>International Journal of Non-Linear Mechanics</i> , 2019, 111, 72-81.	3.1	19
302	Characterization and Simulation of a Bush Plane Tire. <i>Lubricants</i> , 2019, 7, 107.	2.6	5
303	Mini-Workshop: Mathematical Aspects of Nonlinear Wave Propagation in Solid Mechanics. <i>Oberwolfach Reports</i> , 2020, 16, 577-615.	0.1	0
304	Uncertainty quantification of elastic material responses: testing, stochastic calibration and Bayesian model selection. <i>Mechanics of Soft Materials</i> , 2019, 1, .	1.8	18
305	Mechanical responses of Ecoflex silicone rubber: Compressible and incompressible behaviors. <i>Journal of Applied Polymer Science</i> , 2019, 136, .	2.7	107
306	A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain. <i>Journal of the Mechanics and Physics of Solids</i> , 2019, 124, 446-470.	5.6	73
307	Likely equilibria of stochastic hyperelastic spherical shells and tubes. <i>Mathematics and Mechanics of Solids</i> , 2019, 24, 2066-2082.	1.7	13
308	An experimental study of localized bulging in inflated cylindrical tubes guided by newly emerged analytical results. <i>Journal of the Mechanics and Physics of Solids</i> , 2019, 124, 536-554.	5.6	41
309	A predictive model for the hysteretic and damage behavior of rubberlike materials. <i>Journal of Rheology</i> , 2019, 63, 1-10.	3.0	6
310	The effects of initial crack length on fracture characterization of rubbers using the J-Integral approach. <i>Polymer Testing</i> , 2019, 73, 327-337.	5.4	19
311	Closed-form and numerical stress solution-based parameter identification for incompressible hyper-viscoelastic solids subjected to various loading modes. <i>International Journal of Mechanical Sciences</i> , 2019, 151, 650-660.	8.9	16
312	Tunable soft lithography molds enable rapid-prototyping of multi-height channels for microfluidic large-scale integration. <i>Journal of Micromechanics and Microengineering</i> , 2019, 29, 035009.	2.2	11
313	Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. <i>Journal of the Mechanics and Physics of Solids</i> , 2019, 124, 115-142.	5.6	46

#	ARTICLE	IF	CITATIONS
314	Energy based mechano-electrophysiological model of CNS damage at the tissue scale. <i>Journal of the Mechanics and Physics of Solids</i> , 2019, 125, 22-37.	5.6	21
315	Thermoelastic deformation and failure of rubberlike materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2019, 122, 538-554.	5.6	29
316	Experimental data reduction for hyperelasticity. <i>Computers and Structures</i> , 2020, 232, 105919.	4.5	23
317	Persistent occiput posterior position and stress distribution in levator ani muscle during vaginal delivery computed by a finite element model. <i>International Urogynecology Journal</i> , 2019, 31, 1315-1324.	1.5	16
318	Numerical study of a membrane-type micro check-valve for microfluidic applications. <i>Microsystem Technologies</i> , 2019, 26, 367-376.	2.1	7
319	Patient specific characterization of artery and plaque material properties in peripheral artery disease. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020, 101, 103453.	3.4	33
320	Shear shock evolution in incompressible soft solids. <i>Journal of the Mechanics and Physics of Solids</i> , 2020, 134, 103746.	5.6	11
321	Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method. <i>Acta Mechanica</i> , 2019, 231, 125-138.	2.4	35
322	Modeling the nonlinear elastic behavior of plant epidermis. <i>Botany</i> , 2020, 98, 49-64.	1.7	26
323	Fibrous soft tissues damage evaluation with a coupled thermo-visco-hyperelastic model. <i>International Journal of Non-Linear Mechanics</i> , 2020, 118, 103260.	3.1	5
324	The nonlinear elastic response of filled elastomers: Experiments vs. theory for the basic case of particulate fillers of micrometer size. <i>Journal of the Mechanics and Physics of Solids</i> , 2020, 135, 103781.	5.6	31
325	Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2020, 135, 103777.	5.6	81
326	Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020, 102, 103519.	3.4	16
327	On the local identifiability of constituent stress-strain laws for hyperelastic composite materials. <i>Computational Mechanics</i> , 2019, 65, 853-876.	3.3	6
328	Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models. <i>Biomechanics and Modeling in Mechanobiology</i> , 2019, 19, 971-983.	2.4	18
329	Assigning viscoelastic and hyperelastic properties to the middle-ear soft tissues for sound transmission. <i>Biomechanics and Modeling in Mechanobiology</i> , 2019, 19, 957-970.	2.4	12
331	Nonlinear coupled electro-mechanical behavior of a novel anisotropic fiber-reinforced dielectric elastomer. <i>International Journal of Non-Linear Mechanics</i> , 2020, 119, 103364.	3.1	25
332	Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes. <i>Nanoscale Advances</i> , 2020, 2, 5375-5383.	4.5	6

#	ARTICLE	IF	CITATIONS
333	An elastic model for rubber-like materials based on a force-equivalent network. <i>European Journal of Mechanics, A/Solids</i> , 2020, 84, 104078.	3.8	6
334	Auxetic orthotropic materials: Numerical determination of a phenomenological spline-based stored density energy and its implementation for finite element analysis. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020, 371, 113300.	7.2	9
335	A new approach to describe the elastic behavior of filled rubber-like materials under complex uniaxial loading. <i>International Journal of Solids and Structures</i> , 2020, 202, 816-821.	2.9	9
336	Material parameter determination for the simulation of hyperelastic bonds in civil engineering considering a novel material model. <i>International Journal of Adhesion and Adhesives</i> , 2020, 103, 102692.	3.3	11
337	Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedbackâ€Loop Control of a Soft Earthworm Robot. <i>ACS Applied Materials & Interfaces</i> , 2020, 12, 43388-43397.	8.0	48
338	A model for rubber elasticity. <i>Rheologica Acta</i> , 2020, 59, 905-920.	2.5	3
339	Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2021, 24, 538-550.	2.1	20
340	Soft Pneumatic Actuator with Bimodal Bending Response Using a Single Pressure Source. <i>Soft Robotics</i> , 2021, 8, 478-484.	7.9	17
341	Methodology Used for Characterizing the Fracture and Fatigue Behavior of Thermoplastic Elastomers. <i>Advances in Polymer Science</i> , 2020, , 273-296.	0.0	2
342	Fracture-directed Waterjet Needle Steering: Design, Modeling, and Path Planning. , 2020, , 1166-1173.		8
343	Likely striping in stochastic nematic elastomers. <i>Mathematics and Mechanics of Solids</i> , 2020, 25, 1851-1872.	1.7	17
344	IDENTIFICATION OF UNIAXIAL DEFORMATION BEHAVIOR AND ITS INITIAL TANGENT MODULUS FOR ATHEROMATOUS INTIMA IN THE HUMAN CAROTID ARTERY AND THORACIC AORTA USING THREE-PARAMETER ISOTROPIC HYPERELASTIC MODELS. <i>Journal of Mechanics in Medicine and Biology</i> , 2020, 20, 2050014.	0.9	6
345	<scp>Electroâ€thermal</scp> and â€mechanical model of thermal breakdown in multilayered dielectric elastomers. <i>AIChE Journal</i> , 2020, 66, .	3.8	6
346	Intra-well and cross-well chaos in membranes and shells liable to buckling. <i>Nonlinear Dynamics</i> , 2020, 102, 877-906.	5.3	9
347	Calibration of hyperelastic material models for structural silicone and hybrid polymer adhesives for the application of bonded glass. <i>Construction and Building Materials</i> , 2020, 254, 119204.	7.4	21
348	Characterization of PVA hydrogelsâ€™ hyperelastic properties by uniaxial tension and cavity expansion tests. <i>International Journal of Non-Linear Mechanics</i> , 2020, 124, 103515.	3.1	19
349	Hyperelastic constitutive modeling of hydrogels based on primary deformation modes and validation under 3D stress states. <i>International Journal of Engineering Science</i> , 2020, 154, 103314.	5.4	48
350	New numerical stress solutions to calibrate hyper-visco-pseudo-elastic material models effectively. <i>Materials and Design</i> , 2020, 194, 108861.	6.9	19

#	ARTICLE	IF	CITATIONS
351	A multi-scale finite element approach to mechanical performance of polyurethane/CNT nanocomposite foam. <i>Materials Today Communications</i> , 2020, 24, 101081.	2.3	9
352	Material characterisation of additively manufactured elastomers at different strain rates and build orientations. <i>Additive Manufacturing</i> , 2020, 33, 101160.	3.6	29
353	Effects of strain stiffening and electrostriction on tunable elastic waves in compressible dielectric elastomer laminates. <i>International Journal of Mechanical Sciences</i> , 2020, 176, 105572.	8.9	53
354	Simulation-Ready Characterization of Soft Robotic Materials. <i>IEEE Robotics and Automation Letters</i> , 2020, 5, 3775-3782.	5.6	13
355	Nonlinear dynamics of dielectric elastomer balloons based on the Gent-Gent hyperelastic model. <i>European Journal of Mechanics, A/Solids</i> , 2020, 82, 103986.	3.8	36
356	Styrenic-Rubber Dielectric Elastomer Actuator with Inherent Stiffness Compensation. <i>Actuators</i> , 2020, 9, 44.	2.2	13
357	Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications. <i>Medical and Biological Engineering and Computing</i> , 2020, 58, 1845-1872.	2.9	13
358	Toward a Common Framework and Database of Materials for Soft Robotics. <i>Soft Robotics</i> , 2021, 8, 284-297.	7.9	263
359	Development of ultrasensitive mechanical strain sensor made of 2D-assembled graphene monolayers aligned parallel into polysilicon nanocomposites. <i>Sensors and Actuators A: Physical</i> , 2020, 313, 112166.	4.8	33
360	Reverse-engineering and modeling the 3D passive and active responses of skeletal muscle using a data-driven, non-parametric, spline-based procedure. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020, 110, 103877.	3.4	5
361	Mechanical properties and hyper-elastic constitutive equation of <i>SylgardTM170</i> used for microstructure adhesion. <i>Journal of Micromechanics and Microengineering</i> , 2020, 30, 055005.	2.2	1
363	Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values. <i>Sensors and Actuators A: Physical</i> , 2020, 305, 111939.	4.8	54
364	Data-driven, structure-based hyperelastic manifolds: A macro-micro-macro approach to reverse-engineer the chain behavior and perform efficient simulations of polymers. <i>Computers and Structures</i> , 2020, 231, 106209.	4.5	19
365	Mechanical behavior of cold-water fish gelatin gels crosslinked with 1,4-butanediol diglycidyl ether. <i>Journal of Applied Polymer Science</i> , 2020, 137, .	2.7	5
366	Variational framework for distance-minimizing method in data-driven computational mechanics. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020, 365, 112898.	7.2	35
367	Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers. <i>Macromolecular Theory and Simulations</i> , 2020, 29, .	1.3	29
368	A neural network constitutive model for hyperelasticity based on molecular dynamics simulations. <i>International Journal for Numerical Methods in Engineering</i> , 2021, 122, 5-24.	3.0	30
369	Tricuspid Chordae Tendineae Mechanics: Insertion Site, Leaflet, and Size-Specific Analysis and Constitutive Modelling. <i>Experimental Mechanics</i> , 2020, 61, 19-29.	1.8	13

#	ARTICLE	IF	CITATIONS
370	Novel strategies for parameter fitting procedure of the Ogden hyperfoam model under shear condition. <i>European Journal of Mechanics, A/Solids</i> , 2021, 86, 104154.	3.8	22
371	Recent progress of uncertainty quantification in small-scale materials science. <i>Progress in Materials Science</i> , 2021, 117, 100723.	35.5	30
372	A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. <i>International Journal of Non-Linear Mechanics</i> , 2021, 128, 103626.	3.1	80
373	Constitutive modeling of visco- ϵ hyperelastic behavior of double- ϵ network hydrogels using long- ϵ term memory theory. <i>Journal of Applied Polymer Science</i> , 2021, 138, .	2.7	14
374	Mechanical Evaluation of Implant-Assisted Removable Partial Dentures in Kennedy Class I Patients: Finite Element Design Considerations. <i>Applied Sciences (Switzerland)</i> , 2021, 11, 659.	2.6	10
375	A study on the computational effort of hyper-dual numbers to evaluate derivatives in geometrically nonlinear hyperelastic trusses. <i>Journal of the Brazilian Society of Mechanical Sciences and Engineering</i> , 2021, 43, .	1.9	2
376	On the Transversely Isotropic, Hyperelastic Response of Central Nervous System White Matter Using a Hybrid Approach. <i>Journal of Engineering and Science in Medical Diagnostics and Therapy</i> , 2021, 4, .	0.5	2
377	Non-Newtonian Fluid-Like Behavior of Poly(Ethylene Glycol) Diacrylate Hydrogels Under Transient Dynamic Shear. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2021, , 17-23.	0.0	1
378	Additively Manufactured Custom Soft Gripper with Embedded Soft Force Sensors for an Industrial Robot. <i>International Journal of Precision Engineering and Manufacturing</i> , 2021, 22, 709-718.	2.8	53
379	On the network orientational affinity assumption in polymers and the micro- ϵ macro connection through the chain stretch. <i>Journal of the Mechanics and Physics of Solids</i> , 2021, 148, 104279.	5.6	16
380	Identifiability of tissue material parameters from uniaxial tests using multi-start optimization. <i>Acta Biomaterialia</i> , 2021, 123, 197-207.	9.3	9
381	Fate of a bulge in an inflated hyperelastic tube: theory and experiment. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2021, 477, .	2.2	12
382	Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages. <i>Materials Today Communications</i> , 2021, 26, 101895.	2.3	16
383	An improved direct shear characterisation technique for soft gelatinous and elastomeric materials. <i>Strain</i> , 2021, 57, .	2.4	4
384	Improved Carroll's hyperelastic model considering compressibility and its finite element implementation. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2021, 37, 785-796.	3.7	9
385	Evaluating the response of a modified Gent-Thomas strain energy function having limiting chain extensibility condition in torsion and azimuthal shear. <i>Polymers and Polymer Composites</i> , 2021, 29, S361-S375.	1.3	1
386	On the Performance of Isotropic Hyperelastic Constitutive Models for Rubber-Like Materials: A State of the Art Review. <i>Applied Mechanics Reviews</i> , 2021, 73, .	14.3	144
387	Ogden model for characterising and simulation of PPHR Rubber under different strain rates. <i>Australian Journal of Mechanical Engineering</i> , 2023, 21, 911-925.	2.1	15

#	ARTICLE	IF	CITATIONS
388	Analysis of solitary waves in fluid-filled thin-walled electroactive tubes. <i>Mechanics Research Communications</i> , 2021, 113, 103654.	2.0	7
389	Quantifying matrix-fiber mechanical interactions in hyperelastic materials. <i>International Journal of Mechanical Sciences</i> , 2021, 195, 106268.	8.9	2
390	A Study on Soft Material Parameter Determination by Iterative Force-Displacement Curve Fitting. <i>IEEE Robotics and Automation Letters</i> , 2021, 6, 3864-3869.	5.6	3
391	Hamstring muscles rupture under traction, peeling and shear lap tests: A biomechanical study in rabbits. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021, 116, 104324.	3.4	7
392	Finite element modeling of maximum stress in pelvic floor structures during the head expulsion (FINESSE) study. <i>International Urogynecology Journal</i> , 2021, , .	1.5	20
393	Antishrinking Strategy of Microcellular Thermoplastic Polyurethane by Comprehensive Modeling Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2021, 60, 7155-7166.	3.9	38
394	Mechanical Behaviour of Large Strain Capacitive Sensor with Barium Titanate Ecoflex Composite Used to Detect Human Motion. <i>Robotics</i> , 2021, 10, 69.	3.6	12
395	Contact Area-Based Modeling of Robotic Grasps Using Deformable Solid Mechanics. <i>International Journal of Applied Mechanics</i> , 0, , 2150038.	3.0	1
396	A finite strain non-parametric hyperelastic extension of the classical phenomenological theory for orthotropic compressible composites. <i>Composites Part B: Engineering</i> , 2021, 212, 108591.	12.8	5
397	On the central role of the invariant I_2 in nonlinear elasticity. <i>International Journal of Engineering Science</i> , 2021, 163, 103486.	5.4	54
398	Numerical Models Can Assist Choice of an Aortic Phantom for In Vitro Testing. <i>Bioengineering</i> , 2021, 8, 101.	3.7	6
399	A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. <i>Nano Materials Science</i> , 2022, 4, 64-82.	14.1	81
401	Modelling hollow thermoplastic syntactic foams under high-strain compressive loading. <i>Composites Science and Technology</i> , 2021, 213, 108882.	8.7	14
402	A comparative study on the electromechanical properties of 3D-Printed rigid and flexible continuous wire polymer composites for structural health monitoring. <i>Sensors and Actuators A: Physical</i> , 2021, 328, 112764.	4.8	24
403	Molecular Ferroelectric-Based Flexible Sensors Exhibiting Supersensitivity and Multimodal Capability for Detection. <i>Advanced Materials</i> , 2021, 33, .	24.2	60
404	Analytical Design of a Pneumatic Elastomer Robot With Deterministically Adjusted Stiffness. <i>IEEE Robotics and Automation Letters</i> , 2021, 6, 7773-7780.	5.6	7
405	A pseudo-strain energy density function for mechanical behavior modeling of visco-hyperelastic materials. <i>International Journal of Mechanical Sciences</i> , 2021, 208, 106652.	8.9	13
406	Validated tensile characterization of the strain rate dependence in soft materials. <i>International Journal of Impact Engineering</i> , 2021, 156, 103949.	4.9	26

#	ARTICLE	IF	CITATIONS
407	Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing. <i>Additive Manufacturing</i> , 2021, 47, 102108.	3.6	19
408	Experimental investigation on sphere pig movement in multiple thickness pipe. <i>Journal of Natural Gas Science and Engineering</i> , 2021, 95, 104152.	4.6	9
409	On the response of fiber reinforced elastomeric isolators (FREIs) under bidirectional shear loads. <i>Structures</i> , 2021, 34, 2340-2354.	3.8	14
410	Effect of the second invariant of the Cauchy-Green deformation tensor on the local dynamics of dielectric elastomers. <i>International Journal of Non-Linear Mechanics</i> , 2021, 137, 103807.	3.1	19
411	Numerical Investigations on Steady-State Dynamic and Transient Rolling of Automobile Tire. <i>Lecture Notes in Mechanical Engineering</i> , 2021, , 785-795.	1.0	0
413	Shear Property Characterization for Agarose Gel. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2020, , 151-154.	0.0	1
414	Black rubber and the non-linear elastic response of scale invariant solids. <i>Journal of High Energy Physics</i> , 2020, 2020, .	4.7	14
415	Increase of stiffness in plantar fat tissue in diabetic patients. <i>Journal of Biomechanics</i> , 2020, 107, 109857.	2.3	16
416	Continuum-DFT multiscale model to investigate linear/nonlinear anisotropic mechanical characterization of crystal phase of nylon-6, 6. <i>Mechanics of Materials</i> , 2018, 117, 181-191.	3.7	8
417	A continuum magneto-mechanical model for magnetorheological elastomers. <i>Smart Materials and Structures</i> , 2021, 30, 015008.	3.6	15
418	How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2017, 473, 20170607.	2.2	143
419	Computational Biophysics of the Skin. , 2016, , .		17
420	Fiber-Matrix Models of the Dermis. , 2014, , 133-159.		2
421	Sensitivity Analysis of Left Ventricle with Dilated Cardiomyopathy in Fluid Structure Simulation. <i>PLoS ONE</i> , 2013, 8, e67097.	2.4	8
422	Determination of material parameters of isotropic and anisotropic hyper-elastic materials using boundary measured data. <i>Journal of Theoretical and Applied Mechanics</i> , 0, , 895.	0.6	8
423	Ut vis sic tensio. <i>Theoretical and Applied Mechanics</i> , 2018, 45, 1-15.	0.5	3
424	Test Methods for Hyperelastic Characterization of Rubber4. <i>Tire Science and Technology</i> , 2009, 37, 165-186.	0.5	4
425	Effects of Cross Section and Flexibility of Pectoral Fins on the Swimming Performance of Biomimetic Underwater Vehicles. <i>Journal of the Japan Society of Naval Architects and Ocean Engineers</i> , 2012, 15, 175-189.	0.1	1

#	ARTICLE	IF	CITATIONS
426	Comparative Study on the Nonlinear Material Model of HyperElastic Material Due to Variations in the Stretch Ratio. <i>Journal of Ocean Engineering and Technology</i> , 2018, 32, 253-260.	1.3	9
427	FE Model of Low Grade Rubber for Modeling Housingâ€™s Low-Cost Rubber Base Isolators. <i>Civil Engineering Journal (Iran)</i> , 2018, 4, 24.	4.4	11
428	Domain of validity and fit of Gent-Thomas and Flory-Erman rubber models to data. <i>EXPRESS Polymer Letters</i> , 2008, 2, 615-622.	2.0	4
430	Material Properties for Reliability Improvement in the FEA Results for Rubber Parts. <i>Transactions of the Korean Society of Mechanical Engineers, A</i> , 2011, 35, 1521-1528.	0.1	5
431	Application of Genetic Algorithms for Approximation with Energy-Based Models. , 0, , .		1
432	A two-parameter strain energy function for brain matter: An extension of the Hencky model to incorporate locking. <i>Brain Multiphysics</i> , 2021, 2, 100036.	1.7	4
433	Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks. , 2021, 33, 943-949.		0
434	Extracting material parameters of silicone elastomers under biaxial tensile tests using virtual fields method and investigating the effect of missing deformation data close to specimen edges on parameter identification. <i>Mechanics of Advanced Materials and Structures</i> , 2022, 29, 6421-6435.	3.8	7
435	A high-fidelity human cervical muscle finite element model for motion and injury studies. <i>Transportation Safety and Environment</i> , 2021, 3, .	2.5	1
436	The Relative Contributions of Muscle Deformation and Ischemia to Pressure Ulcer Development. , 2013, , 375-376.		1
437	Non-Concurrent Computational Homogenization of Nonlinear, Stochastic and Viscoelastic Materials. , 2013, , .		0
438	Investigating Uncertainty in SHPB Modeling and Characterization of Soft Materials. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2015, , 21-30.	0.0	1
439	Fiber-Matrix Models of the Dermis. , 2016, , 157-184.		0
440	Comparison of Unconventional Testing Methods for Mechanical Characterization of Polymeric Materials in Modern Glass Structures. <i>IABSE Symposium Report</i> , 2017, 109, 2378-2385.	1.0	3
442	Material Response: Constitutive Models and Their Implementation. <i>Springer Tracts in Mechanical Engineering</i> , 2018, , 363-436.	0.0	1
443	Implant-Assisted Removable Partial Dentures in Mandibular Kennedy Class I Patients: The Impact of Implant Positioning. <i>IFMBE Proceedings</i> , 2020, , 1424-1430.	0.0	0
444	Residual Ridge Resorption in Mandibular Kennedy Class I Denture Wearers: Proposal of a Pressure-Induced Mechanism Based on a Finite Element Analysis. <i>IFMBE Proceedings</i> , 2020, , 1431-1440.	0.0	1
445	Hyperelastic membrane modelling based on data-driven constitutive relations. <i>Russian Journal of Numerical Analysis and Mathematical Modelling</i> , 2020, 35, 163-173.	0.6	7

#	ARTICLE	IF	CITATIONS
446	A Simple Method for the Estimation of Hyperelastic Material Properties by Indentation Tests. <i>Journal of the Computational Structural Engineering Institute of Korea</i> , 2019, 32, 273-278.	0.3	0
447	Review on the design and mechanics of bonded marine hoses for Catenary Anchor Leg Mooring (CALM) buoys. <i>Ocean Engineering</i> , 2021, 242, 110062.	4.8	40
448	A New Design Solution for Aircraft Wheels that Reduces Overpressure in the Tire while Retaining its Absorption Power and its Dimensions. <i>Strojnicki Vestnik/Journal of Mechanical Engineering</i> , 2020, 66, 431-438.	0.9	0
449	Computational mechanical modeling of human skin for the simulation of reconstructive surgery procedures. <i>Procedia Structural Integrity</i> , 2021, 33, 556-563.	1.0	4
450	Mechanical characterization of dissected and dilated human ascending aorta using Fung-type hyperelastic models with pre-identified initial tangent moduli for low-stress distensibility. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022, 125, 104959.	3.4	11
451	Polyconvex anisotropic hyperelasticity with neural networks. <i>Journal of the Mechanics and Physics of Solids</i> , 2022, 159, 104703.	5.6	137
452	Finite element analysis of different material models for polyurethane elastomer using estimation data sets. <i>Journal of the Brazilian Society of Mechanical Sciences and Engineering</i> , 2021, 43, .	1.9	4
453	Some Remarks on the Weakly Nonlinear Theory of Isotropic Elasticity. <i>Journal of Elasticity</i> , 2021, 147, 33-58.	1.3	17
454	Modeling Payne effect on basis of linearization of a visco-hyperelastic model. <i>Modelling and Simulation in Materials Science and Engineering</i> , 0, , .	2.4	2
455	ASSESSMENT OF A NEW ISOTROPIC HYPERELASTIC CONSTITUTIVE MODEL FOR A RANGE OF RUBBERLIKE MATERIALS AND DEFORMATIONS. <i>Rubber Chemistry and Technology</i> , 2022, 95, 200-217.	1.3	22
456	On Modelling Simple Shear for Isotropic Incompressible Rubber-Like Materials. <i>Journal of Elasticity</i> , 2021, 147, 83-111.	1.3	25
457	Optimization of Material Coefficients in the Holzapfel-Gasser-Ogden Material Model for the Main Four Ligaments of the Knee Joint-A Finite Element Study. <i>Applied Mathematics</i> , 2021, 12, 1166-1188.	0.4	7
458	Design of shear thickening fluid/polyurethane foam skeleton sandwich composite based on non-Newtonian fluid solid interaction under low-velocity impact. <i>Materials and Design</i> , 2022, 213, 110375.	6.9	44
459	ENTIRE-REGION CONSTITUTIVE RELATION FOR TRELOAR'S DATA. <i>Rubber Chemistry and Technology</i> , 2022, 95, 119-127.	1.3	2
460	Modified Yeoh model with improved equibiaxial loading predictions. <i>Acta Mechanica</i> , 2022, 233, 437-453.	2.4	13
461	A generalized strain approach to anisotropic elasticity. <i>Scientific Reports</i> , 2022, 12, .	3.6	11
462	Dynamics of a Nonlinear Oscillator: Dependencies on Extrinsic Conditions and Model Form Uncertainty. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2022, , 53-61.	0.0	0
463	Distensibility of Deformable Aortic Replicas Assessed by an Integrated In-Vitro and In-Silico Approach. <i>Bioengineering</i> , 2022, 9, 94.	3.7	6

#	ARTICLE	IF	CITATIONS
464	The Generalised Mooney Space for Modelling the Response of Rubber-Like Materials. <i>Journal of Elasticity</i> , 2022, 151, 127-141.	1.3	11
465	Fatigue Life Prediction and Correlation of Engine Mount Elastomeric Bushing using A Crack Growth Approach. <i>SAE technical paper series</i> , 0, , .	0.0	3
466	Energy-based nonlinear dynamical modeling of dielectric elastomer transducer systems suspended by elastic structures. <i>Acta Mechanica</i> , 2022, , , .	2.4	3
467	Dynamic Finite Element Modeling and Simulation of Soft Robots. <i>Chinese Journal of Mechanical Engineering (English Edition)</i> , 2022, 35, , .	3.7	45
468	A three-parameter structurally motivated robust constitutive model for isotropic incompressible unfilled and filled rubber-like materials. <i>European Journal of Mechanics, A/Solids</i> , 2022, 95, 104605.	3.8	38
469	An FEA-Assisted Decision-Making Framework for PEMFC Gasket Material Selection. <i>Energies</i> , 2022, 15, 2580.	3.4	6
470	Simulation and optimization of reconstructive surgery procedures on human skin. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022, 131, 105215.	3.4	5
471	Reverse physically motivated frameworks for investigation of strain energy function in rubber-like elasticity. <i>International Journal of Mechanical Sciences</i> , 2022, 221, 107110.	8.9	18
472	New viscoelastic circular cell honeycombs for controlling shear and compressive responses in oblique impacts. <i>International Journal of Mechanical Sciences</i> , 2022, 222, 107262.	8.9	17
473	Modeling thermal shrinkage of tire cords and its application in FE analysis of Post Cure Inflation. <i>Finite Elements in Analysis and Design</i> , 2022, 205, 103757.	3.2	6
474	A correlated likelihood function for Bayesian model calibration to harness gradient information. <i>Mechanics of Advanced Materials and Structures</i> , 2022, 29, 6477-6484.	3.8	1
475	Application of a deepest ϵ path algorithm to study the objective function landscape during fitting for the Yeoh and Ogden model. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2021, 21, , .	0.5	1
479	Parametric visco-hyperelastic constitutive modeling of functionally graded 3D printed polymers. <i>International Journal of Mechanical Sciences</i> , 2022, 226, 107335.	8.9	23
480	Parameters Identification of Rubber-like Hyperelastic Material Based on General Regression Neural Network. <i>Materials</i> , 2022, 15, 3776.	2.9	17
481	Hyperelastic parameter identification of human articular cartilage and substitute materials. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022, 133, 105292.	3.4	23
482	An experimental study of morphological formation in bilayered tubular structures driven by swelling/growth. <i>Mathematics and Mechanics of Solids</i> , 2022, 27, 1569-1591.	1.7	9
483	Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System. <i>Journal of the Society of Naval Architects of Korea</i> , 2022, 59, 157-163.	0.4	3
484	New constitutive models for the finite deformation of isotropic compressible elastomers. <i>Mechanics of Materials</i> , 2022, 172, 104403.	3.7	17

#	ARTICLE	IF	CITATIONS
485	Alterations in Human Mitral Valve Mechanical Properties Secondary to Left Ventricular Remodeling: A Biaxial Mechanical Study. <i>Frontiers in Cardiovascular Medicine</i> , 2022, 9, .	2.5	5
486	Bovine pericardium leaflet damage during transcatheter aortic valve crimping: a study of the mechanisms. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2023, 26, 1140-1149.	2.1	3
487	Development and characterisation of hybrid composite skin simulants based on short polyethylene fibre and bioactive glass particle-reinforced silicone. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022, 136, 105424.	3.4	4
488	Finite electro-elasticity with physics-augmented neural networks. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2022, 400, 115501.	7.2	37
489	Impact energy absorption composites with shear stiffening gel-filled negative poisson's ratio skeleton by Kirigami method. <i>Composite Structures</i> , 2022, 298, 116009.	6.4	42
490	Are Elastic Materials Like Gambling Machines?. <i>Interdisciplinary Applied Mathematics</i> , 2022, , 49-65.	0.0	0
491	Introduction. <i>Interdisciplinary Applied Mathematics</i> , 2022, , 1-5.	0.0	0
492	Liquid Crystal Elastomers. <i>Interdisciplinary Applied Mathematics</i> , 2022, , 183-215.	0.0	0
493	Finite Elasticity as Prior Information. <i>Interdisciplinary Applied Mathematics</i> , 2022, , 7-47.	0.0	0
494	Hyperelastic modelling of rubber with multi-walled carbon nanotubes subjected to tensile loading. <i>Archives of Materials Science and Engineering</i> , 2022, 114, 69-85.	0.6	5
495	An Ogden-like formulation incorporating phase-field fracture in elastomers: from brittle to pseudo-ductile failures. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	6
496	Linear, weakly nonlinear and fully nonlinear models for soft tissues: which ones provide the most reliable estimations of the stiffness?. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	4
497	A generalized Ogden model for the compressibility of rubber-like solids. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	9
498	Localized bulging of an inflated rubber tube with fixed ends. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	17
499	The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	24
500	An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	40
501	Variations on Ogdenâ€™s model: close and distant relatives. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	6
502	A mathematical model for the auxetic response of liquid crystal elastomers. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2022, 380, .	2.6	15

#	ARTICLE	IF	CITATIONS
503	A general family of limited stretchable models in finite deformation elasticity. <i>Archive of Applied Mechanics</i> , 2022, , .	2.1	0
504	Rational hyperelastic modelling of elastic poured compound for the failure analysis of embedded rail system. <i>International Journal of Rail Transportation</i> , 0, , 1-22.	3.6	1
505	Simulation of the female pelvic mobility and vesical pressure changes employing fluid-structure interaction method. <i>International Urogynecology Journal</i> , 2022, 34, 571-580.	1.5	1
506	Effect of the infill density on the performance of a 3D-printed compliant finger. <i>Materials and Design</i> , 2022, 223, 111203.	6.9	11
507	A comparative study of invariant-based hyperelastic models for silicone elastomers under biaxial deformation with the virtual fields method. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022, 136, 105522.	3.4	9
508	A new microâ€“macro transition for hyperelastic materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 171, 105156.	5.6	43
509	Data-Driven Constitutive Modeling via Conjugate Pairs and Response Functions. <i>Mathematics</i> , 2022, 10, 4447.	2.3	1
510	Title is missing!., 2017, .		2
511	Three-Dimensional Finite Element Modeling of Haul Road Response to Ultra-Large Dump Truck Dynamic Loading. <i>Mining, Metallurgy and Exploration</i> , 2023, 40, 315-335.	0.9	2
512	Large Isotropic Elastic Deformations: On a Comprehensive Model to Correlate the Theory and Experiments for Incompressible Rubber-Like Materials. <i>Journal of Elasticity</i> , 2023, 153, 219-244.	1.3	38
514	A Review of Hyperelastic Constitutive Models for Dielectric Elastomers. <i>Advanced Structured Materials</i> , 2023, , 1-17.	0.0	0
515	Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies. <i>Mathematics</i> , 2023, 11, 922.	2.3	8
516	Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2023, 140, 105708.	3.4	14
517	Nonlinear vibration of dielectric elastomer membranes with axial inertia effects. <i>International Journal of Mechanical Sciences</i> , 2023, 248, 108205.	8.9	11
518	Heuristic molecular modelling of quasi-isotropic auxetic metamaterials under large deformations. <i>International Journal of Mechanical Sciences</i> , 2023, 251, 108316.	8.9	5
519	A model for rubber-like materials with three parameters obtained from a tensile test. <i>European Journal of Mechanics, A/Solids</i> , 2023, 100, 104931.	3.8	4
520	Mechanically robust 3D printed elastomeric lattices inspired by strong and tough hierarchical structures. <i>Additive Manufacturing</i> , 2023, 66, 103451.	3.6	10
521	A New Dissipation Function to Model the Rate-Dependent Mechanical Behavior of Semilunar Valve Leaflets. <i>Journal of Biomechanical Engineering</i> , 2023, 145, .	1.5	3

#	ARTICLE	IF	CITATIONS
522	Free and Forced Vibration Behaviors of Magnetodielectric Effect in Magnetorheological Elastomers. <i>Vibration</i> , 2023, 6, 269-285.	1.5	5
523	An investigation into the transferability of dynamic elastomer dampersâ€™ properties between different damper sizes using FEM. <i>Forschung Im Ingenieurwesen/Engineering Research</i> , 2023, 87, 411-420.	1.0	0
524	Principal-stretch-based constitutive neural networks autonomously discover a subclass of Ogden models for human brain tissue. <i>Brain Multiphysics</i> , 2023, 4, 100066.	1.7	38
525	Comparative modelling results between a separable and a non-separable form of principal stretchesâ€“based strain energy functions for a variety of isotropic incompressible soft solids: Ogden model compared with a parent model. <i>Mechanics of Soft Materials</i> , 2023, 5, .	1.8	21
526	The Ogden model for hydrogels in tissue engineering: Modulus determination with compression to failure. <i>Journal of Biomechanics</i> , 2023, 152, 111592.	2.3	6
527	Utilizing ANN for Predicting the Cauchy Stress and Lateral Stretch of Random Elastomeric Foams under Uniaxial Loading. <i>Materials</i> , 2023, 16, 3474.	2.9	0
528	A strain energy function for large deformations of compressible elastomers. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 176, 105308.	5.6	31
529	Approach for the simulation of the load-deformation behaviour of hyperelastic bonded joints using strain and strain rate dependent tangent moduli. <i>International Journal of Adhesion and Adhesives</i> , 2023, 124, 103395.	3.3	6
530	A pseudo-hyperelastic model incorporating the rate effects for isotropic rubber-like materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 179, 105347.	5.6	26
531	Reformulation of the virtual fields method using the variation of elastic energy for parameter identification of \$\$\{extbf\{QR\}\}\$\$ decomposition-based hyperelastic models. <i>Acta Mechanica</i> , 2023, 234, 4629-4647.	2.4	2
532	Optimization workflow to parameterize elastomer material models based on arbitrary <code><scp>time</scp></code> measurement data. <i>Journal of Applied Polymer Science</i> , 2023, 140, .	2.7	2
533	A parameter identification scheme of the visco-hyperelastic constitutive model of rubber-like materials based on general regression neural network. <i>Archive of Applied Mechanics</i> , 2023, 93, 3229-3241.	2.1	5
534	A merging constitutive relation for skins under uniaxial tension. <i>MRS Communications</i> , 2023, 13, 520-525.	1.8	1
535	Neural networks meet hyperelasticity: A guide to enforcing physics. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 179, 105363.	5.6	89
536	Post-bifurcation of inflated fibrous cylindrical membranes under different fiber configurations. <i>European Journal of Mechanics, A/Solids</i> , 2023, 101, 105065.	3.8	7
537	Modelling and characterisation of the dynamic behaviours of silicone-based composite skin simulant with short polyethylene fibres and bioactive glass particles. <i>Mechanics of Materials</i> , 2023, 184, 104740.	3.7	5
538	Extending the theory of pseudo-elasticity to capture the permanent set and the induced anisotropy in the Mullins effect. <i>International Journal of Non-Linear Mechanics</i> , 2023, 156, 104500.	3.1	19
539	Determining large-strain metal plasticity parameters using <code><i>in situ</i></code> measurements of Aplastic flow past a wedge. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2023, 479, .	2.2	6

#	ARTICLE	IF	CITATIONS
540	Interpretable data-driven modeling of hyperelastic membranes. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2023, 39, .	2.4	2
541	A physically-based hydrostatic strain energy model for rubber-like materials inspired by Flory-Orwoll-Vrij equation of state theory. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 179, 105391.	5.6	3
542	A Modified Constitutive Model for Isotropic Hyperelastic Polymeric Materials and Its Parameter Identification. <i>Polymers</i> , 2023, 15, 3172.	4.7	4
544	FEA Assessment of Contact Pressure and Von Mises Stress in Gasket Material Suitability for PEMFCs in Electric Vehicles. <i>Inventions</i> , 2023, 8, 116.	2.2	3
545	Exact simulation for direction-dependent large elastic strain responses of soft fibre-reinforced composites. <i>Applied Mathematics and Mechanics (English Edition)</i> , 2023, 44, 1497-1510.	4.2	1
546	Data-driven hyperelasticity, Part I: A canonical isotropic formulation for rubberlike materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 179, 105381.	5.6	14
547	On tube models of rubber elasticity: fitting performance in relation to sensitivity to the invariant I2. <i>Mechanics of Soft Materials</i> , 2023, 5, .	1.8	6
548	A semi-analytical inverse method to obtain the hyperelastic potential using experimental data. <i>Journal of the Mechanics and Physics of Solids</i> , 2023, 181, 105431.	5.6	3
549	A generalised $\mathbb{S}\{\varvec{W}\}\left(\{\varvec{l}\}\right)_{\{1\}},\{\varvec{l}\}_{\{2\}}$ strain energy function of binomial form with unified applicability across various isotropic incompressible soft solids. <i>Acta Mechanica</i> , 2023, 235, 99-132.	2.4	17
551	Discrete data-adaptive approximation of hyperelastic energy functions. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2023, 416, 116366.	7.2	9
552	Finite deformation analysis of the rotating cylindrical hollow disk composed of functionally-graded incompressible hyper-elastic material. <i>Applied Mathematics and Mechanics (English Edition)</i> , 2023, 44, 1367-1384.	4.2	1
553	Calibration of Holzapfel-Gasser-Ogden collateral ligament properties in a hybrid post-arthroplasty knee joint model for laxity testing. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2024, 27, 1680-1690.	2.1	0
554	Advanced discretization techniques for hyperelastic physics-augmented neural networks. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2023, 416, 116333.	7.2	12
556	Adjacent tissues modulate shear wave propagation in axially loaded tendons. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2023, 147, 106138.	3.4	6
557	Highly efficient and reliable numerical approach for predicting automotive hood displacement considering composite materials and structures of weatherstrip. <i>Functional Composites and Structures</i> , 0, .	3.1	0
558	Fluid-structure interaction and structural simulation of high acceleration effects on surgical repaired human mitral valve biomechanics. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2023, 237, 1248-1260.	1.6	0
560	Mechanical differences of anterior and posterior spinal nerve roots revealed by tensile testing. <i>Journal of Biomechanics</i> , 2023, 161, 111850.	2.3	3
561	A generalisation of the Pucciâ€“Saccomandi model of rubber elasticity. <i>International Journal of Non-Linear Mechanics</i> , 2024, 158, 104578.	3.1	11

#	ARTICLE	IF	CITATIONS
562	Prediction of Nonlinear Stress-strain Behaviors with Artificial Neural Networks and Its Application for Automotive Rubber Parts. <i>International Journal of Automotive Technology</i> , 2023, 24, 1481-1491.	1.4	2
563	Poromechanical modeling of fluid penetration in chemo-responsive gels: Parameter optimization and applications. <i>Journal of Intelligent Material Systems and Structures</i> , 2024, 35, 302-314.	2.3	2
564	Methodology for the mechanical characterisation of hyperelastic adhesives. Experimental validation on joints of different thicknesses. <i>Polymer Testing</i> , 2023, 129, 108286.	5.4	4
565	Extraction of hyper-elastic material parameters using BLSTM neural network from instrumented indentation. <i>Journal of Mechanical Science and Technology</i> , 2023, , .	1.5	1
566	Power-Yeoh: A Yeoh-Type Hyperelastic Model with Invariant I2 for Rubber-like Materials. , 0, 1, 104.		0
567	On the inflation, bulging/necking bifurcation and post-bifurcation of a cylindrical membrane under limited extensibility of its constituents. <i>Mathematics and Mechanics of Solids</i> , 2025, 30, 381-405.	1.7	4
568	On the origin of Sanchez-Lacombe equation of state theory in hydrostatic strain energy model for rubber-like materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2024, 184, 105533.	5.6	2
569	Performance of personalised prosthesis under static pressure: Numerical analysis and experimental validation. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2024, 151, 106396.	3.4	2
570	The biomechanics of wounds at physiologically relevant levels: Understanding skin's stress-shielding effect for the quantitative assessment of healing. <i>Materials Today Bio</i> , 2024, 25, 100963.	7.2	4
571	Homogenization of a coupled electrical and mechanical bidomain model for the myocardium. <i>Mathematics and Mechanics of Solids</i> , 2025, 30, 406-427.	1.7	3
572	A unified pseudo-elastic model of continuous and discontinuous softening in the finite deformation of isotropic soft solids. <i>International Journal of Solids and Structures</i> , 2024, 290, 112670.	2.9	11
573	Finite deformation and hyperelasticity. , 2024, , 257-320.		0
574	Stress Representations for Tensor Basis Neural Networks: Alternative Formulations to Fingerâ€“Rivlinâ€“Ericksen. <i>Journal of Computing and Information Science in Engineering</i> , 2024, 24, .	3.0	8
575	Unique Identification of Stiffness Parameters in Hyperelastic Models for Anisotropic, Deformable, Thin Materials Based on a Single Experiment - A Feasibility Study Based on Virtual Full-Field Data. <i>Experimental Mechanics</i> , 2024, 64, 353-375.	1.8	3
576	Energetically stable curve fitting to hyperelastic models based on uniaxial and biaxial tensile tests. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2024, 153, 106476.	3.4	0
577	Ogden and Mooney-Rivlin hyperelastic models comparison in porcine lobular tissue. <i>MRS Advances</i> , 2024, 9, 512-517.	0.9	0
578	Data-Driven Anisotropic Biomembrane Simulation Based on the Laplace Stretch. <i>Computation</i> , 2024, 12, 39.	2.3	0
579	Modelling the rate-dependent mechanical behaviour of the brain tissue. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2024, 153, 106502.	3.4	6

#	ARTICLE	IF	CITATIONS
580	Exploring key factors affecting the ultimate compression capacity of Unbonded Steel-mesh-reinforced Rubber Bearings. <i>Engineering Structures</i> , 2024, 306, 117813.	5.7	6
581	The potential of rubber materials as an inhibitor to suppress jet formation of the shaped charge warhead. <i>Journal of Mechanical Science and Technology</i> , 2024, 38, 1329-1340.	1.5	2
582	Experimental and numerical analysis of the buckling and postbuckling behavior of hyperelastic columns. <i>International Journal of Solids and Structures</i> , 2024, 295, 112813.	2.9	2
583	Continuous Softening as a State of Hyperelasticity: Examples of Application to the Softening Behavior of the Brain Tissue. <i>Journal of Biomechanical Engineering</i> , 2024, 146, .	1.5	10
584	On sparse regression, $\ L\ _p$ -regularization, and automated model discovery. <i>International Journal for Numerical Methods in Engineering</i> , 2024, 125, .	3.0	38
585	A comparative study on the multidirectional piezo-resistive scenario of conventional and auxetic silicone-based sensors coated with graphite powder. <i>Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications</i> , 2025, 239, 90-99.	1.2	1
586	Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2024, 426, 116973.	7.2	21
587	Connecting weakly nonlinear elasticity theories of isotropic hyperelastic materials. <i>Mathematics and Mechanics of Solids</i> , 2024, 29, 1900-1914.	1.7	1
590	A coupled thermo-mechanical material point model of binder jetted green part sintering. <i>Computational Mechanics</i> , 2024, , .	3.3	2
591	Mathematical modeling of biomechanical elastic and hyperelastic properties of the myocardium. <i>Meditsinskii Akademicheskii Zhurnal</i> , 2023, 23, 53-68.	0.2	1
592	Thermally Powered Soft Gripper Covered with Silver-Coated Nylon Fabric Heater Reinforced with Stainless Steel Yarn. <i>Advanced Engineering Materials</i> , 2024, 26, .	3.0	3
593	Analysis of quasi-periodic and chaotic motion of a dielectric elastomer shell under alternating voltage. <i>International Journal of Dynamics and Control</i> , 2024, 12, 3168-3178.	1.7	0
594	Investigation of Macroscopic Mechanical Behavior of Magnetorheological Elastomers under Shear Deformation Using Microscale Representative Volume Element Approach. <i>Polymers</i> , 2024, 16, 1374.	4.7	3
595	Preliminary Failure Analyses of Loaded Hot Water Bottles. <i>Applied Sciences (Switzerland)</i> , 2024, 14, 4427.	2.6	0
596	Effect of compressibility on the mechanics of hyperelastic membranes. <i>International Journal of Mechanical Sciences</i> , 2024, 278, 109441.	8.9	7
598	Best-in-class modeling: A novel strategy to discover constitutive models for soft matter systems. <i>Extreme Mechanics Letters</i> , 2024, 70, 102181.	4.2	17
599	Rediscovering the Mullins effect with deep symbolic regression. <i>International Journal of Plasticity</i> , 2024, 179, 104037.	10.8	9
600	Dynamic Integrity of Hyperelastic Spherical Membranes. <i>Springer Proceedings in Mathematics and Statistics</i> , 2024, , 73-85.	0.0	0

#	ARTICLE	IF	CITATIONS
601	A hyperelastic strain energy function for isotropic rubberlike materials. <i>International Journal of Mechanical Sciences</i> , 2024, 279, 109472.	8.9	12
602	A 2-D fabric anisotropic hyperelastic constitutive model based on micromechanics analysis. <i>International Journal of Mechanical Sciences</i> , 2024, 282, 109560.	8.9	3
603	New two-parameter constitutive models for rubber-like materials: Revisiting the relationship between single chain stretch and continuum deformation. <i>European Journal of Mechanics, A/Solids</i> , 2024, 108, 105398.	3.8	3
604	Hyperinelasticity: An energy-based constitutive modelling approach to isothermal large inelastic deformation of polymers. Part I. <i>Journal of the Mechanics and Physics of Solids</i> , 2024, 192, 105790.	5.6	6
606	Coupled Eulerian–Lagrangian model prediction of neural tissue strain during microelectrode insertion. <i>Journal of Neural Engineering</i> , 2024, 21, 046055.	4.0	4
607	Reduced and All-At-Once Approaches for Model Calibration and Discovery in Computational Solid Mechanics. <i>Applied Mechanics Reviews</i> , 2025, 77, .	14.3	11
608	A model for capturing the rate-dependent mechanical behaviour of liquid crystal elastomers. <i>Mechanics of Materials</i> , 2024, 198, 105108.	3.7	6
609	Cushioning property and structure optimization of double-arrow sandwich composite based on modified genetic algorithm. <i>Journal of Sandwich Structures and Materials</i> , 2024, 26, 1081-1106.	3.8	1
610	Enhancing compliant gripper performance: Exploiting electro-adhesion to increase lifting force over grasping force. <i>Robotics and Computer-Integrated Manufacturing</i> , 2025, 91, 102843.	12.9	3
611	A continuum and computational framework for viscoelastodynamics: III. A nonlinear theory. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2024, 430, 117248.	7.2	1
612	Experimental characterisation and calibration of hyperelastic material models for finite element modelling of timber-glass adhesive connections under shear and tensile loading. <i>Glass Structures and Engineering</i> , 2024, 9, 551-568.	1.4	1
613	Hyperinelasticity. Part II: A stretch-based formulation. <i>Journal of the Mechanics and Physics of Solids</i> , 2024, 192, 105825.	5.6	4
614	Characterizing and Modeling Ovine Hide and Costal Cartilage for Use in Modeling High-Rate Non-Penetrating Blunt Impact. <i>Military Medicine</i> , 2024, 189, 539-545.	1.0	0
615	Periodic and chaotic vibrations of dielectric elastomer spherical shells considering structural damping. <i>Nonlinear Dynamics</i> , 2024, 113, 1025-1040.	5.3	3
616	Improving the performance of Stein variational inference through extreme sparsification of physically-constrained neural network models. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2024, 432, 117359.	7.2	0
617	Mixed-mode fracture assessment of largely deformable hyperelastic materials highlighting crack removal phenomenon. <i>Theoretical and Applied Fracture Mechanics</i> , 2024, 134, 104700.	4.9	1
618	Energetic exhaustiveness for the direct characterization of energy forms of hyperelastic isotropic materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2024, 193, 105885.	5.6	5
619	Generalised invariants and pseudo-universal relationships for hyperelastic materials: A new approach to constitutive modelling. <i>Journal of the Mechanics and Physics of Solids</i> , 2024, 193, 105883.	5.6	8

#	ARTICLE	IF	CITATIONS
620	All-polymer syntactic foams: Linking large strain cyclic experiments to Quasilinear Viscoelastic modelling for materials characterisation. , 2025, 288, 111866.	4	
621	Estimation of the biaxial tensile behavior of ovine esophageal tissue using artificial neural networks. , 2024, 23, .	1	
622	Integrated Approach To Material Parameterization And Inflation Control Of Hyperelastic Membrane For Artificial Left Ventricle Development. , 2024, 2856, 012012.	0	
623	Modelling and experimentation of failure modes to obtain safe operating range for improved dielectric elastomer actuation performance. , 2024, 6, 045541.	0	
625	Global and local identifiability analysis of a nonlinear biphasic constitutive model in confined compression. , 2024, 21, .	0	
630	Development of a new polyurethane elastomer class for accurate simulation of structural behavior in OpenSees. , 2024, 38, 6573-6582.	1	
631	Modeling of visco-hyperelastic materials based on the rate equi-biaxial tensile data extracted from a novel biaxial tensile testing machine. , 0, , 1-18.	1	
636	Design and Potential Energy Analysis of Cable-Driven Soft Actuators Based on Linkage Bistable Mechanism. , 2025, 17, .	0	
640	A reparameterization-invariant Bayesian framework for uncertainty estimation and calibration of simple materials. , 2025, , .	1	
641	Large Isotropic Elastic Deformations: On a Comprehensive Model to Correlate the Theory and Experiments for Compressible Rubber-Like Materials. , 2025, 157, .	3	
642	Numerical and Experimental Analysis of the Structural Behavior of an EPP Component. , 0, , 29.	0	
654	Numerical Investigation of Hyperelastic Behavior in Recycled Rubber/Aluminum Powder Composite. , 2025, , 381-391.	0	
675	Proxy Test Structures for Improved Hyperelastic Material Parameter Estimation for Soft Robotic Components. , 2025, , 1157-1160.	0	