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ABSTRACT 
This thesis is concerned with percent knowledge and instruction. It explores 

the relationship between instruction, learning and unlearning in actual classrooms for 

the purpose of developing instruction to facilitate Year 8 students' access to percent 

knowledge for solving common percent problems. Research conducted in this study 

occurred in response to suggestions in the literature that percent is a difficult topic to 

teach and learn; that no best method for percent instruction has been developed; and, of 

a more disturbing nature, that many students in senior high school, can not perform 

two-step percent problems. 

In this study, a series of teaching experiments was conducted. A teaching 

program was implemented, consisting of a proportional method for percent problem 

solving, and metacognitive training. Implementation of the teaching program was 

guided by a model of diagnostic-prescriptive instruction which states that prior 

knowledge must be taken into account in any teaching sequence, and errors, 

misconceptions and naive conceptions must be dealt with to promote forward 

development of knowledge. The influence of instruction was monitored through 

analysis of pre-, post- and delayed posttest results; researcher-generated field notes; 

observations; students' diaries and artefacts; ad hoc interviews with students and 

observers. Results of the study indicated that the teaching program developed was 

extremely effective in promoting students' percent problem solving proficiency; that 

the metacognitive training component of the program appeared to enhance the 

development of students' principled-conceptual percent knowledge; and that 

application of "unteaching" strategies were more effective than good "reteaching 

strategies" in overcoming inappropriate prior knowledge. This study gave rise to the 

development of a model of percent instruction, a model of percent knowledge, and a 

model of diagnostic-prescriptive mathematics teaching. 

The teaching experiments in this study were conducted in actual classrooms 

and therefore in authentic school environments. The students who participated in the 

study were from intact classes, and the teaching program was implemented during 

students' normally timetabled mathematics classes. The teaching program spanned the 

typical allocated time for instruction (2 weeks approximately) in the topic of percent 

with Year 8 students. Within these constraints, the teaching program presented to 

students in this study resulted in students operating proficiently on all three types of 

percent problems, including those involving increase and decrease. Trialling of the 

teaching program in this naturalistic manner underscored the viability, transplantability, 

and relevance of the teaching program to the mathematics classroom. 
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CHAPTER 1 

INTRODUCTION 

CHAPTER OVERVIEW 
In this introductory chapter, an overview of the study is presented. This 

chapter includes a summary of the issues pertaining to the topic under investigation, 

the context of the study, and also the aims, significance and design of the research 

carried out. There are four sections in this chapter. In sections 1.1 and 1.2, the 

background and the context are described. In section 1.3, the aims, significance and 

design are presented. This chapter concludes (section 1.4) with a summary of the 

structure of the chapters within the report. 

1.1 Background 
1.1.1 Overview 

This section of the introductory chapter provides a background to the study, 

and overviews issues in teaching and learning the mathematical topic of percent. The 

background begins with a description, in section 1.1.2, of the historical roots of 

percent, delineating the social necessity of percent, and the relative complexity of 

percent used in society today. This description also suggests that, historically, percent 

was regarded as a proportion. The proportional nature of percent is addressed in 

section 1.1.3. In section 1.1.4, the difficulty of defining percent knowing is 

discussed, and definitions of mathematical knowing are presented. Research on 

students' understanding of percent is summarised in section 1.1.5. In section 1 .1 . 6, 

the learning of mathematics, and issues in mathematics instruction are overviewed. A 

summary of key points in this section of the chapter is presented in section 1.1. 7. 

1.1. 2 The nature of percent 

The application of percent in the real world cannot be denied. Percent 

discounts, profits, losses, savings, increases, are an integral part of our society, as 

attested to on billboards, in newspapers, in advertisements, in shops. There can be no 

question as to the social necessity of a knowledge and understanding of percent and 

therefore its place in the mathematics curriculum. However, percent is often misused 

or misunderstood when applied in the real world (Watson, 1994), and is a difficult 

topic to learn and teach (Cole & Weissenfluh, 1974; Parker & Leinhardt, 1995; Smart, 

1980; Wendt, 1959). 

The notion of percent has its roots in the marketplace; the application of 

percent-like concepts for interest and tax calculations can be traced to 300BC India 

(Parker & Leinhardt, 1995). According to Parker and Leinhardt's (1995) historical 
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review, percent was recognised as a statement of simple proportion with a comparative 

base of 100 in 200BC China, and The Rule of Three (a computational procedure for 

percent calculations- see section 1.1.3 below), was utilised. Since that time, percent 

calculations have been carried out for various commercial purposes, for example, to 

determine interest, tax, profit, currency exchange. Procedures employed for such 

calculations have included the Rule of Three and similar derivations (The Rule of 

Five), with common (to match base 12) and decimal fraction calculations utilised with 

the advent of base-12 imperial and base-10 decimal currency respectively (Parker & 

Leinhardt, 1995). Symbolic recording of percent has evolved to a concise form. 

According to Parker and Leinhardt (1995), the definitionof percent, meaning for every 

hundred, was shortened to the word perceto in India in 1481, followed by the 

appearance of various symbols for percent in Italy around 1650. The percent symbol 

used today (%) replaced the words per cent, as meaning for every hundred, with, for 

example, expressions such as £6 per cent written as 6%. 

According to Parker and Leinhardt (1995), percent is an elusive, concise 

concept with multiple meanings, as it can be all of the following: (a) a number, in that a 

percent can be written in an equivalent fraction or decimal form; (b) a comparison in 

the part-whole fraction sense (e.g., if a candidate receives 35% of the votes, this 

percent is the subset of people who voted for this candidate compared to the total 

number of votes cast); (c) a ratio comparison, where the comparison is between two 

distinct sets (e.g., there are 400% more boys than girls); (d) a statistic when data is 

reduced to manageable form for interpretation (e.g., a state's employment rate of 8.5% 

is compared to the national average of 10%); and (e) a function when amounts are 

calculated according to a stated percent (e.g., interest rates, discounts, etc). The link 

between these many dimensions of percent, according to Parker and Leinhardt, is that 

of proportionality. As they stated: 

The common thread woven through all these descriptions is that percent is an 

alternative language used to describe proportional relationships - a language that 

is unique, concise and provides a privileged notation system. (p. 444) 

1. 1. 3 Percent proportionality and the Rule of Three 

As previously stated, percent as a proportion comparison with a base of 100 

can be traced to the year 200BC. The Rule of Three was utilised as a computational 

procedure embodying the notion of percent as a statement of simple proportion. 

Parker & Leinhardt (1995) described the Rule of Three as a procedural method for 

solving proportion equations, where three numbers in the proportion equation are 

given and the object is to find the fourth. In India, in AD499, the Rule of Three was 

described in the following way: "Multiply the fruit by the desire and divide by the 

measure. The result is the fruit of the desire", and in AD628: "Requisition multiplied 
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by Fruit and divided by Argument, is the Produce" (Parker & Leinhardt, 1995, p. 

430). 

The Rule of Three can be seen to draw on principles of proportion which still 

hold today. Touriniaire and Pulos (1985) stated that, "For mathematicians, a 
proportion is a statement of equality of two ratios, i.e. a;b = c;d" (p. 181). And, Post, 

Behr and Lesh (1988) stated that, "The standard algorithm for proportionality [is] alb = 
clx, where a, b, c are given and [we] need to find x" (p. 81). The Rule of Three 

procedure can be seen to follow the cross-multiply method for solving proportion 

equations defined by Robinson (1981) as the following, "If you multiply the two 

numbers across from one another and divide by the other number, the correct answer 

is obtained" (p. 6). The Rule of Three, therefore is the typical proportion equation 

familiar to mathematicians today. 

The Rule of Three procedure encapsulates the meaning of percent as a 

proportion. However, as Parker and Leinhardt (1995) suggested, the true meaning of 

percent has become "entangled in the mesh of conversion rules for changing decimals 

to fractions, fractions to decimals, improper fractions to mixed numbers, and mixed 

numbers to improper fractions" (p. 434), where the emphasis is on fast, efficient 

calculation skills rather than meaning. Thus, percent knowledge must comprise more 

than successful performance of percent calculations. Of percent knowledge, Parker 

and Leinhardt (1993) stated: 

The black-and-white picture of what students should know about percent that is 

seen in texts and tests differs from the full-colour version which reflects real 

appearances of percent in the everyday world. More than conversions, 

computations, and applications, knowing percent both in school and out means 

understanding its multiple and often embedded meanings and its relational 

character. (p. 47) 

Parker and Leinhardt (1995) also stated that, "Percent is fundamentally a language of 

privileged proportion which simplifies and condenses descriptions of multiplicative 

comparisons" (p. 472). 

From Parker and Leinhardt' s analysis of percent, it appears that, due to its 

multiplicity of meaning, there is a need to clearly enunciate the types of knowledge 

which constitute percent knowledge, and thus serve to inform instruction. 

1.1. 4 Knowing percent 

In the past, basic mathematical knowledge was viewed as a student's 

proficiency in arithmetical calculation (Putnam, Lampert, & Peterson, 1990), and thus 

traditionally, the teaching of computational skills was dominant in mathematics 

instruction (Lampert, 1986). However, computational proficiency is not necessarily a 

guarantee of mathematical understanding (Leinhardt, 1988). 
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Resnick (1982) defined mathematical knowledge as comprising semantic and 

syntactic knowledge. According to Resnick, syntactic knowledge is correct 

performance of mathematical procedures (computational proficiency) and semantic 

knowledge is the understanding of the meaning of those procedures. Similarly, 

Skemp (1978) described mathematical knowledge as instrumental, the knowledge of 

computational procedures, and relational, the understanding of why those procedures 

work. Anderson (1985) described two components of mathematical knowledge in a 

similar fashion. Declarative mathematical knowledge, according to Anderson, is 

largely automated algorithmic/computational knowledge, and procedural mathematical 

knowledge is the understanding of those computational procedures which can be 

applied with meaning to new computational procedures. Taking account of the 

importance of mathematical knowledge gained prior to formal school instruction, 

Ginsburg (1977) described mathematical knowledge as intuitive and fonnal. 

According to Ginsburg, intuitive mathematical knowledge is constructed by children 

through problem solving in their own environment, while fonnal knowledge is the 

result of school instruction, and is seen to be often unconnected to intuitive, logical 

mathematical structures. 

A further definition of mathematical knowledge also acknowledges intuitive 

mathematical knowledge and suggests that mathematical knowledge is comprised of 

the categories of intuitive, concrete, computational and principled/conceptual 

knowledge (Lampert, 1986; Leinhardt, 1988). From this perspective, intuitive 

mathematical knowledge is "everyday" real world application knowledge which is 

normally acquired before formal instruction, concrete knowledge is knowledge 

associated with representation by appropriate concrete materials during instruction, 

computational knowledge is knowledge of and the ability to apply numerical 

procedures for computation, and principled/conceptual knowledge is underlying 

knowledge of the computational procedures that constrains or justifies those 

procedures (Leinhardt, 1988). 

From the "knowledge types" which constitute mathematical knowledge, it can 

be seen that, computational knowledge is an essential component of mathematical 

knowledge, but is not the only component. As suggested by Putnam, Lampert and 

Peterson (1990), mathematical skill/computational knowledge can develop in relative 

isolation to conceptual knowledge, but to "know mathematics" is where all 

mathematical knowledge is linked; where the knower has developed various 

internalised representations of related mathematical ideas, and easily moves between 

each representation. It appears that, together, these knowledge types will enable 

successful performance in problem situations. However, it is generally accepted that 

performance in mathematical problem situations is influenced by metacognition 
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(Flavell, 1976; Garofalo & Lester, 1985; Silver, 1982). Therefore, for mathematical 

knowledge to be accessed, metacognitive knowledge must also be promoted. 

Garofalo and Lester (1985) suggested that mathematical knowledge is 

influenced by three metacognitive categories as person, task and strategy knowledge. 

Garofalo and Lester defined person metacognitive knowledge as "one's assessment of 

one's own capabilities and limitations with respect to mathematics in general, and also 

with particular topics or tasks" (p. 167). This is the affective domain, and includes 

such affective variables as motivation, anxiety and perseverance. According to 

Garofalo and Lester, task knowledge is one's beliefs about the nature of the 

mathematical tasks, and strategy knowledge is awareness of strategies for guiding 

problem solving. Similarly, Prawatt (1989) suggested that access to knowledge is 

determined by a learner's organisation (structure) and awareness (metacognition) of 

three factors: knowledge base (concepts, principles, rules, facts and procedures); 

strategic and metastrategic thinking (general problem solving heuristics and executive 

processes, such as planning, monitoring, checking, revising); and disposition (habits 

of mind). 

From the above discussion, it appears that, for students to successfully 

operate in the domain of percent, they need percent knowledge and metacognitive 

knowledge. In terms of percent knowledge, knowledge of, and skill in, applying 

computational procedures for percent calculations would be one element of percent 

knowledge. Percent knowledge would also consist of conceptual understanding of the 

meaning of percent in its many dimensions together with knowledge of the principles 

which legitimise percent calculations, as well as metacognitive knowledge to enhance 

access to such percent knowledge. 

1. 1. 5 Instructional approaches for teaching percent 

The literature provides many and varied suggestions for instruction in percent 

which appear to focus on: (i) developing the concept of percent, and/or (ii) methods for 

solving percent application problems. For developing the concept of percent a 

common approach is through linking percentages to fractions and decimals (e.g., 

Brueckner & Grossnickle, 1953; Hauck, 1954), and building students' mental 

visualisation of percent through representing percents on lOxlO grids (Bennett & 

Nelson, 1994; Reys, Suydam & Lindquist, 1992). It has also been suggested that the 

concept of percent should be developed through exploration of the special language of 

percent and building students' estimation skills through exploration of patterns of 

simple percent calculations (e.g., Cooper & Irons, 1987; Glatzer, 1984). The concept 

of percent can also be promoted through linking percent to ratio (e.g., Brown & 

Kinney, 1973) and through studying percent expressions as statements of proportion 

(e.g., Schmalz, 1977). 
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As instructional approaches for developing the concept of percent are varied, 

so too are instructional approaches for solving percent application problems. Percent 

application problems are of three types. Ashlock, Johnson, Wilson and Jones ( 1983) 

described the three percent types as the following: 

(i) finding a part or percent of a number (e.g., 25% of 20 is L\.); 

(ii) finding a part or percent one number is of another (e.g., L\% of 15 is 

5); and 

(iii) finding a number when a certain part or percent of that number is 

known (e.g., 20% of L\ is 6). (p. 297). 

In general, percent application problems give two of the unknown elements in the 

percent statement, and require students to find the third. (Throughout this report, the 

three types of percent application problems will be referred to as Type I, Type II and 

Type III percent problems respectively.) 

The literature offers various suggestions for assisting students in solving 

percent application problems, ranging from the use of concrete materials and 

representations (Bennett & Nelson, 1994; Cooper & Irons, 1987; Dewar, 1984; 

Haubner, 1992; Weibe, 1986), to the use of mnemonic strategies (e.g., Boling, 1985; 

McGivney & Nitschke, 1988; Teahan, 1979). The representations and mnemonic 

strategies can be seen to advocate particular procedures for solving percent problems, 

incorporating a variety of multiplication, division, decimal, fraction, and proportion 

procedures. The various procedures appear to be based on the teaching principle that 

the teacher's role in mathematics instruction is to provide experiences and opportunities 

for children to develop mathematical concepts and thus provide a meaningful basis for 

the application of mathematical skills (Reys, Suydam & Lindquist, 1992). 

In their analysis of the literature on percent, Parker and Leinhardt ( 1995) stated that, 

by 1960, there were five distinct computational procedures for solving percent 

equations taught in schools. The five procedures can be summarised as follows: 

1 . Traditional/cases: students classify the problem and apply a different 

procedure for each problem type (Type I - multiply the number by the percent 

as a decimal; Type II - divide the numbers and translate the decimal answer to 

a percent; Type III - divide the number by the percent as a decimal); 

2. Percent fonnula: "knowns" are substituted in the formula, P=BR (P is percent 

as a number, B is base number and R is percent as a rate) and the "unknown" 

is found by algebraic manipulation; 

3. Equation: "knowns" are categorised as factors or product and substituted in 

the formula: factor x factor = product. Algebraic manipulation is used to find 

the unknown; 

4 . Proportion: percent is considered as a common fraction with a denominator of 

100 and is equated to a fraction made up from the two other possible numbers 
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(i.e., a; 100 = c; d); the unknown is found either by algebraic manipulation or 

the cross-multiply method. 

5 . Unitary: 1% of the "known" IS calculated and then simple arithmetic 

computations are performed to calculate the required percent (e.g., 11% of 

200 is thought of as the product of 1% of 200 and 11). 

According to Smart (1980), the selection of a particular computational 

procedure studied by students in schools is dependent upon the teacher's personal bias 

towards that particular method. It appears then, that the instruction students receive on 

percent during their years at school can be as varied as the approaches for developing 

the concept of percent as well as instructional methods for performing percent 

calculations. 

1. 1. 6 Error patterns, misconceptions, remediation and constructivism 

Many students experience difficulty with the learning of mathematics; the 

learning of the mathematical topic of percent in particular is no exception (Parker & 

Leinhardt, 1995). Constructivist theories of learning state that knowledge is actively 

constructed by learners (Confrey, 1990a), therefore constructivist learning theory 

builds awareness of the need to provide rich learning environments to assist students 

construct appropriate mathematical knowledge and achieve mathematical 

understanding. However, it is well documented that, through the study of 

mathematics, students develop error patterns and misconceptions, and this influences 

their academic performance (Ashlock, 1994; Engelhardt, 1977; Wilson, 1976a). The 

field of diagnosis and remediation is concerned primarily with helping children 

overcome difficulties they experience in the study of mathematics. 

Traditionally, students' mathematical errors and misconceptions were viewed 

from a negative perspective, taken as indicative of the absence of knowledge/meaning. 

Constructivist views of errors and misconceptions offer a more positive perspective, 

suggesting that errors are an individual's current interpretation of a mathematical 

situation and thus are indicative of the presence of knowledge (Confrey, 1990b). In 

terms of mathematics diagnosis and remediation, the problem is dealing with 

knowledge (albeit inappropriate), not a lack of knowledge. A reinterpretation of errors 

and mathematical misconceptions as knowledge challenges educators to find the means 

for effectively dealing with erroneous knowledge rather than engaging in a reteaching 

program on the assumption of an "absence of knowledge" perspective. 

Error pattern research has documented students' (and adults') systematic 

errors and misconceptions in many topics within the mathematics curriculum (e.g., 

Borassi, 1994; Dubinsky, Dautermann, Leron & Zazkis, 1994; Fong, 1995; Mansfield 

& Happs, 1992; Rauff, 1994). Such research has made a significant contribution to 
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the field of mathematical research in several ways. First, awareness of common 

errors/misconceptions has contributed to mathematical pedagogy by heightening 

awareness of the need for rich learning environments to facilitate construction of 

appropriate knowledge. Second, research into teachers' errors and misconceptions has 

informed teacher-education courses of the need to be aware of the influence of 

teachers' misconceptions upon students' knowledge constructions. Third, 

acknowledging that erroneous knowledge impedes forward growth of appropriate 

knowledge has prompted the search for teaching methods that promote sustained and 

positive conceptual change through removing the blocking action of the erroneous 

knowledge. 

A common theme through programs of intervention has been the provision of 

experiences to build students' conceptual understanding of particular mathematical 

topics (e.g., Ashlock, Johnson, Wilson & Jones, 1983; Booker, Irons & Jones, 1980; 

Wilson, 1976a). Such programs appear to be based on the notion that students' errors 

and misconceptions can be overcome through meaningful mathematics teaching. Such 

programs have been met with mixed success, in that there has been a puzzling 

tendency for students to be able to demonstrate knowledge of mathematics concepts 

and principles whilst retaining errors/misconceptions (e.g., Connell & Peck, 1993). 

This phenomenon has led to the development of programs which use reflection on 

errors/misconceptions as a starting point for intervention (e.g., Ashlock, 1994; Bell, 

1986-87; Borassi, 1994; Rauff, 1994). Current trends in intervention methods appear 

to be methods which focus specifically on errors, bringing them out into the "open" for 

discussion, analysis, and/or "exposure" to some extent. Error exposure contrasts 

traditional intervention methods where errors were not overtly acknowledged in 

remedial programs. 

Taking intervention research to a further level is the Conceptual Mediation 

Program (CMP) (Lyndon, 1995). CMP provides an explanation for the ineffectual 

nature of "reteaching" programs together with an explanatory theory for the tenacity of 

errors/misconceptions. The theoretical background of the program states that proactive 

inhibition (PI), an information protection mechanism common to everyone, is 

responsible for the human tendency to retain naive conceptions, alternative conceptions 

and error patterns, in light of rational argument. The theoretical basis of CMP states 

that, when confronted with information which conflicts with knowledge currently held 

by the learner, PI causes accelerated forgetting of the new, incoming information 

whilst protecting the old knowledge from change. To overcome errors and 

misconceptions, CMP states that errors are the starting point for intervention, and that 

breaking the protective hold of PI over the error (prior knowledge) is the means of 

effective remediation. CMP offers a strategy for confronting proactive inhibition, thus 
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providing a vehicle for conceptual change, and self-empowerment and control of 

learning. 

1.1. 7 Implications 

The focus of this thesis is on the development of instruction to promote Year 8 

students' percent knowledge and problem solving skills. The key issues pertinent to 

this study, and which provide a summary of factors guiding the development and 

implementation of the study, are encapsulated within the following points: 

1. An understanding of and the ability to apply percent knowledge is a life skill. 

2. Percent is often misapplied in the real world, thus indicating that many adults 

have a faulty or tenuous knowledge of percent. 

3 . The meaning of percent as a proportional statement of comparison has become 

hidden through the development of various quick computational procedures 

for calculating percentage amounts. 

4. The multi-dimensional nature of percent has made percent difficult to define. 

5 . Definitions of mathematical knowing may contribute to defining percent 

knowing. 

6. Instructional approaches for developing the concept of percent and for 

assisting percent calculations are many and varied, drawing on 

decimal/fraction knowledge, ratio knowledge, proportion knowledge, or a 

combination. 

7. Mathematics diagnosis and remediation literature may provide suggestions for 

helping students access mathematical knowledge in general, and percent 

knowledge in particular. 

8. Analysis of literature on mathematics diagnosis and remediation will provide 

the conceptual framework for interpreting the contribution of CMP to the 

study of mathematics. 

9 . CMP as an integral part of instruction may provide a lens for evaluating 

teaching and learning in the classroom and thus guide the development of a 

model of effective teaching. 

1.2 Context 
1. 2 .1 Overview 

This section of the chapter describes the context of this study. In section 

1.2.2, the mathematics syllabus for teaching percent in Queensland schools is 

described (Queensland is the state of Australia in which the research for this study was 

conducted). In section 1.2.3, assessment of students' understanding of percent is 

presented through summaries of research studies conducted in this field. In section 

1.2.4, the significance of the study is described, through discussion of exploring 
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percent instruction in the "real world". A summary of key points in this section of the 

chapter are presented in section 1.2.5. 

1 . 2. 2 Queensland syllabus and practice 

In Queensland schools, the mathematical curriculum is guided by the 

Mathematics Syllabus. A state-school teacher in Queensland must follow the syllabus 

when developing mathematical learning experiences for students. 

In Queensland schools, formal study of the mathematical topic of percent 

begins in Year 6 (Department of Education, Queensland, 1989a). At this stage, 

children are not expected to perform written computations for solving percent 

application problems, but to build their knowledge of percent as hundredths and their 

knowledge of how percent relates to decimals and fractions. Mental calculations for 

determining percentages of quantities are encouraged through the application of 

benchmarks of 50% as one half, and 10% as one tenth. In Year 7, the written 

algorithm for calculating percentages of numbers or quantities is introduced. This 

algorithm is applied in practical situations, and the use of mental, written and calculator 

procedures is practised. In Year 8, the study of the mathematical topic of percent 

includes: 

• analysing the relationships between percentage and decimal and common 

fractions - particularly hundredths; 

• representing 100% as the whole and less than 100% as a part of the whole 

using appropriate verbal, concrete and pictorial forms; 

• representing decimal and common fractions as percentages and vice-versa 

(whole percentages only); 

• estimating and calculating using calculators, mental strategies and algorithms 

in practical situations to find a percentage of a number or quantity; 

• estimating and calculating to increase or decrease a quantity by a given 

percentage; and 

• solving and creating problems involving practical applications of percentages 

including discount and simple interest (Department of Education, Queensland, 

1989b). 

In Year 9 the study of percent involves consolidation and extension of all work in 

previous years, in addition to finding a number or quantity or percentage of that 

quantity; expressing one number or quantity as a percent of another; and simple and 

compound rates of growth. 

Thus the mathematical topic of percent is introduced to children in a spiral 

manner, where the relationship of decimals, fractions and percents is the beginning 

point. Concrete/pictorial models are used widely in the beginning study of percent and 

typically focus on the 10x10 grid. The grid is used to stress the "hundredthsness" of 
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percent, and to simultaneously depict the diagrammatic form of percents, fractions, and 

decimals. Conversions between the three forms (decimal, fraction, percent) are 

integral to the study of the mathematical topic of percent, and are used for the 

calculation of percent application algorithms (Department of Education, Queensland, 

1989a). The three types of percent application problems are introduced in a staggered 

manner, over three years, beginning with Type I problems in Year 7, Type II problems 

in Year 8, and Type III problems in Year 9. 

1. 2. 3 Assessment of percent knowledge 

Parker and Leinhardt (1995) summarised results of research spanning almost 

7 decades into students' knowledge and understanding of percent. From their review, 

various early studies conducted between 1920 to 1950 indicated that students had great 

difficulty in problem solving involving percent calculations. Research conducted in the 

1960's and 1970's focused on comparing various computational approaches for 

solving percent equations. For example, in 1959, the ratio method was compared to 

the case method; in 1961, the unitary analysis method was compared to the equation 

method; in 1965, the case method, the ratio method, and students' self-discovery 

methods were compared. Results of these comparative studies did not conclusively 

suggest one method was superior to another. The comparative studies typically tested 

students' proficiency with percent calculations and percent word problem solving. 

Parker and Leinhardt's (1995) analyses of other studies consistently have 

shown that the majority of students experience difficulty with the study of percent. In 

the conclusion of their extensive review, Parker and Leinhardt stated percent is a 

confusing topic in the mathematics curriculum for both students and teachers, and that 

basically, "percent is hard" (p. 423). 

The fourth National Assessment of Educational Performance (NAEP) of 

mathematics (Kouba, Brown, Carpenter, Lindquist, Silver & Swafford, 1988) 

provided evidence that students at the seventh grade level had difficulty with percent 

calculations and appeared to lack understanding of the concepts of percent underlying 

calculations. It was found that this lack of understanding of percent and the lack of 

ability to apply percent knowledge in problem solving situations was a trend which 

continued through to students in the eleventh grade. Percent items on the NAEP test 

related to students' understanding of the concept of percent, calculations with percent, 

and problem solving involving percent. Relating to the concept of percent, it was 

found that, in general, students understood that the sum of the percentage parts must 

totallOO percent, and that familiar percents, such as 50% and 25% were well related to 

common fractional equivalents. However, when required to perform calculations with 

percent, and apply percent knowledge to problem solving situations, students generally 

performed at a low level. For example, only 32% of Year 7 students and 62% of Year 
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11 students could calculate 4% of 75, and only 9% of Year 7 students and 37% of 

Year 11 students could solve a two-step word problem involving simple interest 

calculations. 

A relatively recent study by Lembke and Reys (1994) looked at Years 5, 7, 9 

and 11 students' conceptual and computational percent knowledge before and after 

formal percent instruction. Their study showed a more promising picture of percent 

knowledge students may possess. Lembke and Reys interviewed high and middle 

ability students in each of the four year levels and found that students in Years 5 and 7 

who had not received formal instruction in percent used a variety of intuitive strategies 

to solve (simple) percent problems; that older students (Years 9 and 11) utilised a 

percent formula for calculating percentages, often making simple errors, but that 

common benchmarks (100% is a whole, 50% is half, and 25% is half of a half of 

something) were used by students of all year levels, and were used extensively by the 

students to check the reasonableness of their calculations. 

1. 2. 4 Authentic classroom instruction in percent 

Middle to high achievers experience little difficulty with the topic of percent, 

by utilising a well-developed "sense-of-percent" to interpret and operate on percent 

situations (Dole, Cooper, Batura & Canoplia, 1997; Lembke & Reys, 1994). 

However, as discussed in section 1.2.3, research into students' knowledge and 

understanding of percent indicates that students have difficulty completing simple 

percent calculations and applying percent knowledge and procedures to solve problem 

situations. The most difficult aspects of percent appear to be those involving problem 

solving and interpreting and calculating any percent greater than 100 (Parker & 

Leinhardt, 1995). Students' inability to interpret information relating to percent 

problems has implications for society. The meaning of information presented in 

percent language is possibly lost on the majority of our citizens. There is a clear need 

for research into means of improving instruction in the mathematical topic of percent in 

order to build students' know ledge and understanding of percent. 

Literature on teaching and learning percent provides a wide range of 

suggestions for instruction, but the specific manner in which to proceed in the actual 

classroom context is still unclear. As Parker and Leinhardt (1995) stated: 

More recent contributions towards improved instruction in percent suggest 

ways to improve dialogue, to focus students' attention through models and 

representation, and to ground percent in the real experiences of students. However, 

thus far there has been a serious lack of empirical research that actually tests and 

evaluates these claims in real classroom settings. (p. 472) 

The classroom world is "rich, complicated and noisy" (Confrey & Harel, 

1994, p. xxv). It is acknowledged in the literature that research provides ideas on the 
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types of mathematical knowledge to be promoted through instruction, but ideas for 

direct translation into the classroom are less certain (Behr, Harel, Post & Lesh, 1992; 

Confrey & Harel, 1994). Within the classroom context, there is also the need to 

develop instruction which assists students learn and achieve in school mathematics 

now, which contrasts suggestions of the nature of instruction students should have 

received initially. There is also the dilemma facing teachers of choosing between 

teaching for understanding and teaching for academic achievement. As Cramer, Post 

and Currier (1992) stated, "There is currently a mismatch between how and what 

teachers are encouraged to teach and what skills are evaluated. In the real context, 

there is subtle pressure to promote academic achievement efficiently, rather than 

promoting true conceptual understanding" (p.173). 

1.2.5 Implications 

Issues relating to the context of this study, which further impinge upon the 

development of the research program, are summarised as follows: 

1 . In the Queensland school situation, percent is taught from a decimal/fraction 

perspective, with the three types of percent application problems introduced 

separately in the curriculum over three years. 

2. The concept of percent as a proportion is not overtly taught in Queensland 

schools. 

3. Research studies indicate that students' knowledge and understanding of 

percent is at a low level and does not improve greatly as students progress 

through secondary school. 

4. There is a need to develop efficient instructional strategies for developing 

percent knowledge which promotes percent interpretation and problem solving 

skills; instruction which works in real classroom situations. 

Analysis of the issues pertaining to teaching and learning percent have 

generated the following questions: 

1 . What instructional sequences best promote Year 8 students' percent 

knowledge holistically to enable them to solve percent application problems 

and petform percent computations with meaning? 

2. What instructional approaches best enable Year 8 students to come to know 

the multidimensional nature of percent? 

3 . What instructional sequences are most efficient (in terms of required 

preparation, time, resources, cost) and effective (in terms of student 

knowledge growth, and permanence of knowledge growth) for promoting 

Year 8 student's knowledge of percent? 
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4. How can the effects of prior erroneous knowledge be catered for through 

instruction? 

5. Can CMP be successfully utilised in the mathematics classroom, and can 

definitive guidelines be developed for use of CMP within mathematical 

classroom situations? 

1. 3 Aims, significance and design 
The aims of this study are: 

1 . To develop a program for effectively teaching percent applications in real 

classrooms. 

2. To draw implications and construct models for percent knowledge, percent 

instruction, and mathematics teaching in general. 

In more detail, effective teaching is that which: 

(a) is diagnostic-prescriptive in that it caters for all categories of learners ranging 

from learners who have experienced limited formal instruction in percent, to 

learners who have received considerable formal instruction in percent; 

(b) is effective (in terms of student outcome) in relation to promoting students' (i) 

intuitive, concrete, computational, and principled-conceptual percent 

knowledge; (ii) percent application problem solving skill; and (iii) permanence 

of knowledge over time; and 

(c) is efficient (in terms of teacher input) of (i) teacher preparation requirements; 

(ii) time requirements to implement in the real world (i.e. in the school 

situation); (iii) resources; and (iv) cost. 

Specifically, the implications and models will be in terms of: 

(a) students' knowledge of percent; 

(b) a model for teaching percent problem solving; and 

(c) a model for diagnostic-prescriptive teaching of mathematics. 

The significance of the study is embedded in the following statements: 

1. Percent notions and percent applications are widely used in society, and thus 

are culturally valued. 

2. Understanding of percent notions and calculation of percent problems is an 

inherently difficult topic for students (and society members). 

3 . There is lack of clarity of teaching approaches for developing percent 

knowledge and application skill, and little consensus amongst mathematics 

educators as to the most effective program for percent teaching. 
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4. There is a lack of research into approaches to teaching percent where results 

readily translate into real classroom situations. 

The focus of this study is on developing an instructional program applicable to 

real classroom situations. The study must utilise an appropriate methodology where a 

teaching program can be developed and trialled in actual classrooms in a way that 

enables ongoing refinement to the teaching program to be carried out. The teaching 

experiment (Kantowski, 1978), therefore, is the most suitable research methodology 

for this study. The teaching experiment design for this study is described in detail in 

chapter 4 (see section 4.1). 

To achieve the aims of the study, the research was conducted in the following 

sequence: 

1 . Review of the literature relating to percent, and development of an initial 

model of percent knowledge to guide instruction, particularly in relation to 

developing students' percent problem solving skills. 

2 . Review of the literature relating specifically to diagnostic-prescriptive 

approaches to mathematics instruction, and development of an initial 

diagnostic-prescriptive model of instruction for promoting knowledge change 

and growth, and for dealing with inappropriate prior knowledge. 

3. Development, trialling and refinement of an instructional program which is 

efficient and effective in Year 8 classrooms for meaningful application of 

problem types through a series of teaching experiments. 

4. Generation of hypotheses regarding knowledge learning, relearning and 

unlearning, through analysis of relationships between instruction and learning 

inherent in the teaching experiments. 

5. Drawing of implications relating percent knowledge and percent teaching. 

6. Construction of models for teaching percent problem solving from a 

proportional perspective, and for teaching mathematics from a diagnostic­

prescriptive perspective. 

1. 4 Organisation of the thesis 
The report on the study is structured into 7 chapters. In chapter 1, the 

background to the problem was presented. Percent is widely used in our society, yet 

there is evidence to suggest that percent is a concept which is poorly understood by the 

majority of citizens. Percent is a multi-dimensional topic, and is a difficult topic to 

learn and teach. There is a need for research to clarify specifically what constitutes 

percent knowledge, and instructional approaches to best foster students' understanding 

of percent. The aims of the study were presented in this introductory chapter. 
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Chapters 2 and 3 are literature chapters. Literature pertinent to this study is 

from two fields, (i) teaching and learning percent, and (ii) the diagnostic-prescriptive 

teaching of mathematics. A summary of the literature within these two fields relevant 

to the study is presented separately in chapters 2 and 3. Within these chapters, a 

discussion of how these two fields of literature link to the purposes of the study is 

presented. 

In chapter 4, the research design for the study is described. This chapter 

presents a discussion of various research methodologies for studying teaching and 

learning, and specifically the influence of instruction upon knowledge change and 

growth. The subjects, data sources, and the procedures for analysing the data are 

discussed. 

In chapter 5, the results of the study are presented. A sequence of four 

teaching experiments was conducted in this study. Implementation of instruction and 

results of each experiment are detailed in this chapter. The description of the four 

teaching experiments provides a comprehensive view of the development and 

modification of the instruction in light of implementation in the classroom. 

In chapter 6, a discussion of the results is presented. In this chapter, percent 

knowledge and percent instruction (incorporating metacognition) are analysed in terms 

of events within the teaching experiments and with respect to the literature. 

In chapter 7, conclusions from the study are drawn. The results of this study in 

relation to the stated aims of the study listed in chapter 1, are discussed. Limitations of 

the study are outlined, and implications of the results for further research and for 

instruction are delineated. 

The chapter titles of this report are as follows: 

Chapter 1 - Introduction 

Chapter 2 - Literature: Teaching and learning percent 

Chapter 3 - Literature: The diagnostic-prescriptive teaching of mathematics 

Chapter 4 - Design 

Chapter 5 - Results 

Chapter 6 - Discussion 

Chapter 7 - Conclusions 

CHAPTER SUMMARY 
This introductory chapter has presented an overview of issues relating to 

teaching and learning percent, particularly for Year 8 students. Through this 

background to the study, it was seen that percent is a difficult topic to teach and learn, 

a difficulty compounded by the complexity of defining percent itself. In this chapter, 

the aims and significance of the study were presented, and the design summarised. 
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Through description of the aims and significance of the study, it was seen that 

two fields of research impinge upon the study, namely the mathematical topic of 

percent, and effective teaching to overcome misconceptions and mathematical learning 

difficulties. In the next two chapters of the report, issues from within these two fields 

of research are discussed in detail, with issues in teaching and learning percent 

presented in chapter 2, and issues in mathematics teaching from a diagnostic­

prescriptive approach presented in chapter 3. The focus of these two literature chapters 

is to identify key factors of effective instruction for teaching and learning the 

mathematical topic of percent. 
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CHAPTER 2 

LITERATURE 

Teaching and learning percent 

CHAPTER OVERVIEW 
This chapter is concerned with issues in percent teaching and learning. This 

chapter is divided into four sections. Contained within the first two sections, section 

2.1 and section 2.2 respectively, summaries of instructional approaches for: (i) 

promoting the concept of percent in learners, and (ii) assisting students solve percent 

application problems, are presented. In section 2.3, other related literature, which 

provides further suggestions for helping students develop percent knowledge, is 

discussed. In section 2.4, a model of percent knowledge for guiding instruction is 

presented. 

2.1 Percent concept development 
2 .1.1 Overview 

In this section, instructional approaches for percent concept development are 

summarised. In section 2.1.2, models, strategies and the language of percent, are 

described, and are seen to link to fraction/decimal concepts. In section 2.1.3, percent 

as ratio and the promotion of the ratio concept through percent are described. In 

section 2.1.4, percent and proportion, and the development of the concept of percent 

through linking to proportional understanding are described. A summary of the key 

points contained within this section is presented in section 2.1.5. 

2. 1. 2 Models, strategies, and the language of percent 

It is widely suggested that the concept of percent be developed through the use 

of representations to assist children visualise percent; the most common suggested 

representation is a 10x10 grid (Bennett & Nelson, 1994; Breuckner & Grossnickle, 

1953; Reys, Suydam & Lindquist, 1992). Reys, Suydam & Lindquist (1992) 

suggested that, as percent is "derived from the Latin work per centum which means 

'out of every hundred' or 'for every hundred'" (p. 228), percent experiences for 

children should be those which concentrate on a base of 100, hence the value of a 

10x10 pictorial grid as an easily recognisable, visual representation of one whole 

divided into 100 parts. The key instructional point is to stress that each square within 

the grid is 1%, and the whole is 100%. Bennett and Nelson (1994) stated that the use 

of 10x10 grids assists students visualise not only percents to one whole, but also 
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percents greater than 100% and smaller than 1%. For percents greater than 100%, two 

or more grids are utilised, and for percent less than 1%, one square of the 10x10 grid 

is further divided. Pictorial examples for representations of 0.5%, 28% and 135% 

using 10x10 grids are presented in Figure 2.1. 

b 

•••• 
II I I• ,., .. , 

• 
0.5% 28% 

135% 

Figure 2.1. Pictorial representation of a percent less than 1%, less that 100%, 

and greater than 100% and less than 1% on a 10x10 grid. 

Reys, Suydam and Lindquist (1992) stated that the time to introduce students 

to the topic of percent is after they have an understanding of decimals and fractions and 

have experienced ratios. Similarly, Brueckner and Grossnickle (1953) suggested that 

children's understanding of percent builds from decimal knowledge, and that the topic 

of percent should not be introduced until children have a "good background in 

decimals"(p. 426). Reys et al. (1992) suggested that the 10x10 grid is a useful model 

for linking percents to fractions and decimals as students can see fraction, decimal, 

percent equivalence simultaneously. 

Another aid for developing the concept of percent is the hundred board, which 

according to Brueckner and Grossnickle (1953) can be used in teaching to stress the 

notion that a percent is a part of 100. To begin instruction, Brueckner and Grossnickle 

suggested that the teacher writes on the board: 

1 out of 100 

1t10o 

.01 

which gives the fraction and decimal form of a verbal statement. The teacher then tells 

children that another way of writing 1 out of 100 is 1%. Brueckner and Grossnickle 

also suggested that the pictorial representation in the form of 10x10 grids be used to 

help children identify percents. 

A further model for assisting the visualisation of percent and linking percents 

to fractions and decimals has been suggested by Hauck (1954). Hauck suggested the 

use of a "percentage box" which is a concrete model consisting of interconnecting 

wooden blocks representing 25%, 50%, 75% and so on. The whole block put 

together represents 100%. On each block the decimal, fraction and percent notation is 
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written. Hauck stated that the percentage box would, "with discussion and 

question ... show a definite relationship between fractions, per cent and decimals"(p. 

9). 

Cooper and Irons (1987) also suggested that children's understanding of 

percent should be developed through concrete representations of percents on lOxlO 

grids, and through linking this to decimal hundredths using appropriate language. The 

basis for instruction, according to Cooper and Irons, is guided by the triadic interaction 

of language, symbol and model, as seen in Figure 2.2. 

LANGUAGE: 
35 parts per hundred 
35 per centum 
35 per cent 

MODEL: 

~~ ~~ 

~ ~~ 
~ ~~ 
~ ~ 

35% 

Figure 2. 2. Cooper & Irons' (1987) triadic model guiding instruction in 

percent. 

Cooper and Irons (1987) stressed the importance of the need to use 

appropriate language in all mathematics teaching, and stated that "percent has to be 

seen as hundredths, parts out of one whole, not out of one hundred" (p. 44). They 

also suggested that the word centum be introduced as a mediating step to the word 

percent. And thus, children become familiar with the language sequence (as depicted 

in Figure 2.2): 35 parts per hundred -> 35 parts per centum -> 35 percent. Cooper 

and Irons provided the following summary of what they consider to be the three 

important understandings for percent: 

1 . that percentages are parts per hundred 

2. that percentages are out of one whole; and 

3. that percentages are equivalent to hundredths as decimals fractions. 

(p.45) 

To further promote children's understanding of percent, Glatzer (1984) 

suggested that instruction should capitalise on children's intuitive notions of percent 

through the teacher asking such questions as: 
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Can we have 100% class attendance? 

Can we have 200% class attendance? 

Can a price decrease by 50%? 

Can a price decrease by 100%? 

Can a price decrease by 200%? and so on. 

Instruction should then, according to Glatzer, be based on developing children's 

awareness of patterns in percent where for example, children look at 1%, 10%, 100% 

of an amount. Similarly, Brueckner and Grossnickle (1953) suggested that instruction 

in percent should be continued further using 10x10 grids, where the children identify a 

percent of 100 as so many for every hundred: for example, 10% of 100 equals 10. 

This is then built on to finding a percent of multiples of 100: for example, 10% of 200 

is 20. Estimation skills are developed through such types of patterning activities 

(Glatzer, 1984). An example of a practice activity for building mental percent 

computation, and patterning awareness is the following, as suggested by Glatzer 

(1984): 

Circle the exercises below which can be done mentally: 

50% of 86 2% of 800 17% of 10 

25% of 88 

15% of60 

56% of89 

11% of 50 

150% of 40 

1.5% of 1 000 (p. 25) 

As a guide for teaching, Reys et al. (1992) suggested that further instruction 

in percent should aim to enable students to: (i) find a certain percent in a given situation 

(for example, find 25% of an amount), (ii) identify characteristics of that given percent 

(for example, 25% full means 75% empty), and (iii) compare and contrast that given 

percent with a range of other percents (e.g., 25% is half 50%, one quarter 100% is 

five times bigger than 5%, and so on). Thus, continued development of the concept of 

percent is through building children's mental pictures of common percentages as they 
relate to fractions (e.g., 25% means 1/4; 50% means 1/2; 10% means 1/ 10, and so on); 

through children's understanding of the part/whole nature of percent where the whole 

comprises 100%; and by continually reinforcing how certain percents relate to the 

whole. The models described for building the concept of percent clearly emphasise the 

link of percent to fractions and decimals. Equivalence, or viewing various symbolic 
representations as having the same value (e.g., 25% is the same as 25/ 100 which is the 

same as 0.25) is generally a poorly developed concept in children (Vance, 1992). As 

the percent literature stresses the development of the concept of percent through linking 

to the concept of decimals and fractions, it appears that time needs to be spent 

providing opportunities for children to envisage a percent simultaneously as a decimal 

and a fraction. According to Glatzer ( 1984 ), procedures for solving percent 

application problems are secondary to developing the concept of percent in children. 
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2. 1. 3 The concept of percent as ratio 

Brown and Kinney (1973) suggested that the concept of percent should be 

related to ratio, to thus serve as a vehicle for developing the concept of ratio through 

the study of percent. Brown and Kinney stated that such definitions of "percent means 

hundredths" and "percent means x .01" overly simplify the concept of percent, and are 

unhelpful in interpreting percent usage in the real world. They suggested that a 

"percent as fraction" notion would provide little assistance for interpreting such 

statements as, ''There is a budget deficiency of 9 percent" and "Population growth 

shows no signs of slowing and is running at 1.9 percent" (p. 352). As they stated 

"Translation of any of these statements into fractional form, according to the rule 

'percent means hundredths', is not helpful. It leaves the question, 'fraction of what?"' 

(p. 352). 

According to Brown and Kinney, relating percent to fractions and decimals 

assumes that there is no new knowledge to be developed in order to understand 

percent. However, as they stated, children must become aware that percent is a unique 

and concise language, and because it is used so extensively in our society, children 

must be able to interpret precent statements (such as in the examples given above). 

Brown and Kinney described why percents are ratios rather than numbers 

(decimals, fractions) as they stated: 

A number is a property of a set, the specific number being determined by how 

many members are in the set. A ratio on the other hand, expresses the 

relationship between the number associated with set A and the number 

associated with reference set B. (p. 354) 

Brown and Kinney described three percent problem situations which, as they 

suggested, need to be interpreted as ratio situations for meaning. The three examples 

are as follows: 

(1) In the problem, "Find 35 percent of 120", the problem is to find a subset 

of n of the reference set associated with the number 120 whose ratio is as 35 

to 100. (2) In the problem, "What percent of 35 is 75?'', the problem is to 

identify the number n that has the same ratio to 100 as the set of 75 elements 

has to the reference set of 35 elements. (3) In the problem "24 is 40 percent 

of what number?", the problem is to find the reference set n so that the ratio 

between a set of 24 elements and the reference set is as 40 is to 100. (p. 354-

355) 

It can be seen that the three examples described above are common percent 

"word problems" which students are exposed to in their study of mathematics. Brown 

and Kinney (1973) suggested that interpreting percent problems as ratios promotes 
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understanding of ratio as a correspondence between a given set and the reference set 

and thus promotes ratio understanding. 

2 .1 . 4 The concept of percent as proportion 

In a similar fashion to Brown and Kinney (1973), Schmalz (1977) stated that 

for students to understand percent as it is used in our society, they need to be able to 

interpret the precise language in which percent statements are presented, and this is 

through conceptualising percent statements as statements of proportion. To develop 

the concept of percent as proportion, Schmalz suggested a language-based approach 

where students are instructed on how to interpret percent statements into meaningful 

language. Schmalz contended that a percent statement is merely a proportion statement 

as it compares two quantities, and it is this fact that children are not overtly taught. 

For this approach to percent instruction, Schmalz suggested using real-world 

statements as the foci for discussion, and as a means of exploring the semantics of 

percent statements. For example, Schmalz suggested that a statement such as "Women 

hold 17% of all management positions" should be expanded into meaningful text, such 

as "out of every 100 management positions, 17 are held by women" (p. 340). The 

next instructional step, according to Schmalz, is to write the statement in more 

mathematical terms, such as: 

number of women in management = 17 

total number of people in management 100 

This act of rewriting the real world percent statement into meaningful text, Schmalz 

labelled as transforming text into a preproportional statement. It is this stage, Schmalz 

argued, which builds children's understanding of percent; where meaning of percent in 

the real world provides the basis for problem solution through proportional 

mathematics in the later stages of percent instruction. Schmalz acknowledged that 

expressing percent situations into a preproportional statement may take students some 

time to master, but the dividends pay off during the next phase of instruction when 

students are required to solve percent problems. As she stated: 

... a preproportional statement is an immediate step by which any percent 

statement takes on a manageable form. By helping students to see the 

comparisons in the problem before starting to work, it eliminates all 

guesswork. Preproportion statements also make concrete situations more 

easily understood and thus make problems more easily solved. (p. 343) 
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2. 1. 5 Summary of key points 

In this section, summaries of instructional approaches for percent concept 

development were presented. Analysis of the advocated instructional approaches 

suggests that percent concept development can be promoted through exploring percent 

as equivalent to fractions and decimals, and in relating percent to 100 as one whole. 

The part/whole notion of percent relies on prior part/whole knowledge of fractions. 

Students may have difficulty relating percent to fractions if their fraction knowledge is 

tenuous. Also, if the part/whole notion of percent is promoted through instruction to 

the exclusion of other percent notions, students may have a limited knowledge of 

percent in its other forms. A part/whole concept of percent may provide students with 

experience in converting percent to common and decimal fractions, but may not assist 

students to develop understanding of such conversions as applied to percent 

calculations encountered in the future. 

In this section, it was seen that the percent concept can also be developed 

through promotion of percent in relation to the concept of ratio. This approach 

suggested inadequacies of the part/whole approach, particularly in the assumption that 

understanding of percent requires no new knowledge to be developed. A ratio 

approach suggests that ratio knowledge can be developed through interpreting percent 

situations as ratios. For this approach, exploration of the language of percent as a 

statement of ratio was advocated. Such an approach is similar to suggestions that 

developing percent knowledge should be through proportion. A proportional approach 

to percent concept development was also presented in this section. Developing the 

concept of percent both as a ratio and a proportion through analysis of the language of 

percent may assist understanding of possible future calculations using proportion 

equations. 

2. 2 Solving percent application problems 
2. 2 .1 Overview 

In this section, various procedures, models and strategies are described for 

solving percent application problems. In section 2.2.2, models for representing the 

solutions to the three types of percent application problems are presented. In section 

2.2.3, the application of the 1 Ox1 0 grid for representing and solving the three types of 

percent application problems is presented. Building ratio understanding to solve 

percent application problems is presented in 2.2.4, the use of key words and 

mnemonics is discussed in section 2.2.5, and proportional representations are 

presented in section 2.2.6. In section 2.2.7, instructional approaches for solving 

percent equations proportionally are presented. A summary of the key points 

contained within this section is presented in section 2.2.8. 
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2.2.2 Models for representing the solutions to percent equations 

Weibe (1986) described a model for solving Type I and II percent application 

problems. In this model, Weibe suggested the use of a lOxlO transparent grid to 

represent 100% as consisting of 100 parts. The whole amounts for Type I and II 

problems are represented by squares congruent to the 10x10 grid, divided into the 

corresponding number of sections of the whole amount. For example, for the Type I 

problem, 80% of 20 = ~. the second grid is divided into 20 equal parts. To solve the 

problem, the transparent 10x10 grid is shaded to represent 80%, and placed on top of 

the square divided into 20 parts. The students then simply read off the number of parts 

out of 20 covered by the 80% shaded on the 10x10 grid (see Figure 2.3). 

Percentage 
transparency shaded 
to show 80% 

VVorksheetsquare 
divided to show 20 

Percentage transparency 
superimposed on 
worksheet square ( 16 
rectangles covered by 
shaded area). 

Figure 2.3. Using a percentage transparency to solve the Type I percent 

application problem: 80% of20 = ~ (Weibe, 1986). 

For Type II problems, for example 10 = ~% of 25, the whole grid is divided into 25 

parts, and 10 of these parts are shaded. The 10x10 grid is placed on top and the 

corresponding percent is read off (see Figure 2.4). 

Figure 2.4. Visual model for representing the solution of the Type II percent 

application problem: 10 = ~% of 25 (Wei be, 1986). 

For Type III problems which, according to Weibe (1986), are difficult using 

this model, Weibe suggested the use of a piece of elastic divided linearly into 100 equal 

parts. To solve such Type III problems as 50% of~ = 44, the elastic is placed against 
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a ruler, with 50% marked on the elastic corresponding to 44 on the ruler. The 100% 

mark on the elastic is located on the ruler and the percent on the ruler read off as the 

solution of 88 (see Figure 2.5). Type I and II problems can also be shown with the 

elastic. Weibe stated that the purpose of the two models is to assist children in 

building "mental images" and to develop an "understanding of percentage operations" 

(p. 26). 

1 0 20 30 40 50 60 70 80 90 em 

~~· ____ o_~_o ____ zs_~_o ____ s_o_% _____ 75-%----1-00_~_o _____ ·~~ 
Figure 2.5. Using the percentage elastic to solve the Type III problem: 50% 

of 11 = 44 (Weibe, 1986). 

According to Weibe, these manipulative models are a stepping stone into the symbolic 

procedures. Their strength, he continues, lies in the fact that they demonstrate the 

symbolic manipulation for percentage computations, and are also a means through 

which estimation skills are developed. 

2.2.3 Grids (10 xlO) for solving percent application problems 

Bennett and Nelson (1994) proposed that the lOxlO grid can be used to model 

percent application problems, thus providing a conceptual model for solving 

mathematical problems of percent. According to Bennett and Nelson, using the 10x10 

grid to "visualise" percent problems is based on prior experience of percent as "parts 

per hundred", with the understanding that each of the 100 squares of the grid 

represents 1%. This knowledge is extended to situations where, for example, the 

1 Ox1 0 grid represents 400 people, and students are encouraged to mentally calculate 

the value of one square within the grid. For example, if the unit square represents 500 

rabbits then each square is 5 rabbits; if the unit square represents 395 days, then one 

square is 3.65 days. Conversely, if provided with information on the value of 1% 

(one small square of the 10x10 grid) students are expected to be able to determine the 

value of the unit square. As Bennett and Nelson summarised, "successfully 

determining the value of one small square (1 percent) is the key to solve percent 

problems" (p. 21). 

Utilisation of the lOxlO grid for representing and solving the three types of 

percent problems is summarised through the following three examples, as described by 
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Bennett and Nelson. For the Type I problem, 20% of a business' 240 employees are 

classified as minorities. How many is this? the information is represented on the grid 

as in Figure 2.6. From the grid, the solution can be calculated in a number of ways. 

Some students may see that each small square ( 1%) is 2.4, therefore 20 squares would 
equal48; or students may interpret 20% as 2 lots of 1; 10 of the unit square; knowing 

that 1110 is 24, 2110 would then be simply doubling 24 to give 48. 

240 employees 

~::.::; 
~:~:.::;.: 

~~ 
'%::% 
00 
~~ 
~:~~ 
~~ 
'l:::fi 
0::% 

LJ 
20% 

Figure 2.6. Representation of Type I problem using a IOxlO grid (Bennett & 

Nelson, 1994, p. 22). 

For the Type II problem: 25 hectares of land are given to a community, of which 6 

hectares must be developed as a playground. What percent of land is for the 

playground? the information is represented on the 10x10 grid as in Figure 2.7. 

--· 0.25 
hectares 

25 hectares 

Figure 2. 7. Representation of Type II problem using a IOxlO grid (Bennett & 

Nelson, 1994, p. 22). 

From the grid, the unit square represents 25 acres, and one small square (1%) has a 

value of 0.25 acres. Bennett and Nelson (1994) described the solution process in the 

following manner: 

Each small square represents 0.25 = 1
/ 4 acres, so 4 small squares represents 1 

acre and 24 small squares represents 6 acres. Or since each small square has a 

value of0.25 acres, we can determine the number of times 0.25 divides 6 (6 + 

25 = 24) to see that 24 squares are needed to represent 6 acres. (p. 22) 
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For the Type III problem: In a certain county, 57 of the schools have a teacher 

to student ratio that is greater than the recommendations for accreditation. The 57 

schools represent 38 percent of the number of schools in the county. What is the total 

number of schools in the county? the information is represented on the lOxlO grid as 

in Figure 2.8. 
schools in the county 
I I 
57 schools 
I I 

' > \, 

c~ ,>: 
', :. I~ I' 

I< ! .• :::1;; 
,, !'·;:I~ 

: :; 
': 

1',\ ;.,fi" :}, 

I'•' 'I;; 
1.5 I~. :; ;"{ 

38% 

Figure 2.8. Representation of Type III problem using a 10x10 grid (Bennett 

& Nelson, 1994, p. 22). 

Bennett and Nelson (1994) interpreted the solution to the problem from the 10x10 grid 

representation in the following manner: 

Since the 38 small shaded squares represent 57 schools, each small shaded 

square represents 57+ 38 = 1.5 schools. So the unit square represents 100 x 

1.5 = 150, which is the number of schools in the county. (p. 22) 

Bennett and Nelson also provided examples of how the lOxlO grid can be 

used to represent problems of percent increase and decrease. The value of this 

representation, according to Bennett and Nelson, is that it connects the area model used 

for fractions and decimals, and continually emphasises the basic meaning of percent, 

as a whole partitioned into 100 parts. Bennett and Nelson also suggested that the 

1 Ox 10 grid model negates the need to interpret percent problems according to types, as 

all three types of percent problems can be represented via the model. 

2. 2. 4 Building ratio understanding to solve percent problems 

Cooper and Irons (1987) suggested that once children have developed the 

concept of percent and are familiar with the symbolism for percent, the relationship of 

percents and ratios should be taught, to thus enable students to solve percent 

application problems meaningfully through a ratio understanding. They suggested that 

the ratio/percentage concept is developed through providing a real-world percent 

context (e.g., money), continuing the use of lOxlO grids as representations for 

percent, and exploring patterns using a data retrieval table. For example, 35% of $1 

would be pictorially represented as seen in Figure 2.9, and students would be asked to 
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shade 35% of the square and questioned: "if the one square is $1, what is the value of 

the shaded section?" (35c). 

~ ~ ~~ 
~ ~ ~K\ 
0: ~ " ~ K\ ~~ 

1-0: 0:~ 
:s: ~ ~ 
::::.: ~ ~ 
~ :s:~ 
R' ::::.::~ 
t-0 "~ 

Shade 35% of one square. 
If one square is $1, what is the value of 
the shaded section? (35c) 

Figure 2.9. Pictorial representation of 35% of $1. 

Discussion would focus on the amount shaded and the value of the shaded area. This 

would be extended to the example of 35% of $4 where children would be encouraged 

to shade 35% of four squares, each whole square representing $1 (see Figure 2.10). 

~:/.1 ~ 
Z::% ~ lj 
Z::%i f-/: ':% 
~.z 1::% ~ 
:.:::-:~ 1::% 0 
~:/.1 ~ 
Z::;%:1%: 
&f.'l '/: 
~% 

:.:::-:~ z:: 

v, &o ~ ~ &:0 t/:: 
v, :.:::-:~ 1::% ~ ~0 1% 
~ -%'% ~ '%~ ;.-;; f.'l 
~-% 01/./. ~ 0~~ 
f:%0 10 ~:'l 1-:% 
:/.1 &o ~ &:'/: 
v, c% v- ~t:% 
~ -%0 rz: '%%i 
0Z:: t:1 ~ 0~ 
0 %10 1% &-f'l: 

Shade 35% of 4 squares (each representing $1) 
What is the value shaded in each of the squares? 

o.z 0~ 
-%0 %f.'l 
~t:1 lj~ 
%~ .z 
ijrz: ~0 
o.z.z: 
~1::%0 
0~0 
12~~ 
&-:f'l:'% 

Figure 2.10. Pictorial representation of 35% of $4. 

The information determined from such pictorial representations would be recorded on a 

table (see Table 2.1). The students would be instructed to complete the table to 

investigate percent patterns. From investigation of pictorial representations and data 

retrieval tables, children would then be directed to the multiplication method for finding 

percents of a whole. Cooper and Irons (1987) offered the following guidelines as a 

means of helping children find a percent of a quantity: 

... children need to see that per cent means 'so many hundredths out of every 

one.' This ratio is a part to whole comparison. As a result ratio notation is 

not usually used with percentage ideas. The fraction ideas of equivalence 

work just as well. Since decimal fractions are used, it is not even necessary to 

worry too much about the use of equivalence. It is relatively easy to see that: 
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1. Per cent means 'so many' hundredths out of every one; e.g., 35% 

means 0.35 out of every 1. 

2. We want to find the percent of an amount; e.g., what is 35% of 27? 

3. The amount tells us how many ones; e.g., In 27 there are 27 ones. 

4. To find the percentage, we multiply the number of ones by the part that 

is the per cent; e.g., 35% of 27 is 0.35 x 27. (p. 46) 

From the above description it can be seen that children are presented with 

percentages as ratios in the part-to-whole sense of so many hundredths for every one. 

This instructional sequence appears to be based on a unitary approach where children 

are encouraged to find 1% of an amount and use this to find the desired percentage 

part. In the initial instructional phases for solving percent problems, the link of 

percents to money is made. 

Table 2.1 

Data Retrieval Table for Finding the Percent of an Amount 

Amount earned Percentage saved Amount saved 

$1 35% of$1 35c 

$2 35% of$1 70c 

$3 35% of$1 

$4 35% of $1 

$5 35% of $1 

$6 

$7 

Similar to Cooper and Irons' (1987) suggestion of the use of money in 

percent application problems, Osiecki (1988) also reported on approaching percent 

calculation through money within the classroom. For ninth-grade students, Osiecki 

encouraged her students to think of percent in terms of money, for example 29% 

means 29c for every dollar. When looking at discount, for example a discount of 20% 

was interpreted as 20c off every dollar. Decimal multiplication was practised to solve 

percent problems. Osiecki reported much success with teaching percent application 

problems. In Osiecki's teaching unit, students were encouraged to scour newspaper 

advertisements to check percent calculations presented once they had mastered percent 

calculations using decimal multiplication. From this analysis of advertising, the 

students were asked to create their own percent story problems and compile these as a 

computer inventory. Of the unit, Osiecki concluded that: 
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... the students enhanced the concrete level of computation of percents with 

formal-operational-level creativity, analysis and syntheses of original story 

problems. They had started to think. (p. 34) 

2. 2. 5 Key words and mnemonics for solving percent problems 

To assist in the solving of percent application problems, Teahan (1979) 

suggested the use of a visual model for translating percent problems into a solvable 

form. This model is based on incorporating the common verbal cues present in many 

percentage application problems, being: is, of, percent. The model is a triangular 

shape divided into three sections. The words is, of and the symbol % are placed in 

designated sections of the triangle (see Figure 2.11). The positioning of these labels is 

static. 

Figure 2.11. Teahan's (1979) model for solving percent application problems. 

From Figure 2.11, it can be seen that the procedures for solution have been 

incorporated into this model with the inclusion of the symbols "x" and "+". To use 

this model, students place the numbers given in the problem that precede the three 

labels (i.e., is, of, %) in the corresponding sections of the triangle and perform the 

stated operation. Examples of how this model can be used to solve the three types of 

percentage application problems are presented in Figure 2.12. 

Similar to Teahan's model, Boling (1985) also suggested the use of a triangle 

to solve percentage application problems. The difference between the two triangular 

models is the placement of the labels. Boling's model is presented in Figure 2.13. 

Boling further delineated prerequisite knowledge necessary for successful application 

of this model. According to Boling, to utilise this model, students must have (i) the 

ability to convert percentages to decimals, and (ii) knowledge that fractions can be 

interpreted as division problems; that is, that the numerator is divided by the 

denominator. Boling also has cautioned that when this model is utilised, students must 

check that their solution matches the form required. For example, in Type II 

problems, the solution is a decimal, and therefore must be converted back to a percent 

to answer the question. The necessity of such a procedure appears to be a 

disadvantage of the method. 
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Type I: What is 4% of 80? 
To Solve: The 4% is changed to the decimal 
form 0.04 and multiplied by 80. 

Type II: 15 is what percent of 35? 
To Solve: 15 is divid:xl by 35 then 
multiplied by 100 (15 + 35 x 100) 

Type III: 12 is 6% of what number? 
To Solve: 6% is changed to 0.06 and divid:xl 
into 12 (12 + 0.06) 

Figure 2.12. Solving the three types of percent application problems using 

Teahan's (1979) model. 

Figure 2.13. Boling's (1985) model for solving percent problems. 

McGivney and Nitschke (1988) proposed a mnemonic for helping children 

translate percentage application problems into a proportion equation. Like Teahan 

(1979) and Boling (1985), McGivney and Nitschke focused on the key words within 

most percentage problems: is, of and what. These words are incorporated into a 

proportion equation: 

~# = what# 

of# 100 

Further, to assist children automatise this mnemonic, they suggested that relating is 

and of to alphabetical positions ("i" comes before "o" in the alphabet) helps position 

the two words in the proportion equation. For percentage application problems not 
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stated in the is - of form, McGivney and Nitschke suggested that translation must 

occur to set up the proportion and then solve the problem. 

2. 2 . 6 Proportional representations for solving percent problems 

Dewar (1984) suggested a visual approach to setting up proportion equations 

to solve percentage application problems through the use of a comparison scale 

diagram. Similar to Weihe's (1986) elastic model for estimating and solving 

percentage problems, Dewar's comparison scale provides a visual image of a 

proportion statement. The comparison scale is constructed by drawing a vertical 

unsealed number line. One side of the number line represents the whole on a linear 

scale from 0-100%, the other represents the quantity as referred to in the percentage 

application statement (see Figure 2.14). From Figure 2.14 it can be seen that the 

whole of the quantity would be positioned on the right hand side corresponding to 

100%. By translating the given information from the percentage application problem 

onto the comparison scale, the elements in the proportion equation are given, and as 

Dewar (1984) stated, "the correct proportion is right before the students' eyes" (p. 49). 

percent quantity 

0% 

100% 

Figure 2.14. Dewar's (1984) comparison scale for solving percent 

application problems. 

Similar to Dewar, Haubner (1992) proposed a more elaborate visual model 

which simultaneously can assist percentage problem solving through equation or 

proportion methods. Haubner's model delineates the percentage part from the quantity 

part of the stated problem, and provides a richer visual image of the stated percent as it 

relates to the quantity. For example, the Type II problem: 16 is what percent of 40 
would be shown as in Figure 2.15, and the proportion equation: xt100 = 16140 would 

thus be constructed from the model. According to Haubner, this question can also be 

solved by the equation method where interpretation of the model takes place 

horizontally, and students construct a typical textbook equation into the form x% of 40 

= 16. Haubner proposed her model in response to the fact that many difficulties 

experienced with percentage application problems are due to interpretation problems. 
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Haubner provided the following example to demonstrate the use of her model for 

setting up percentage equations: 

The area of North America is about 75% the area of Africa. The area of Africa 

is about 12 million square miles - About how large is the area of North 

America? (p. 232) 

The given information is translated onto the model as in Figure 2.16. 

% Quantity 

16 

100% ......_--'---ll--...1..-. 40 

Figure 2.15. Using Haubner's (1992) model for solving the Type II percent 

application problem: 16 is what percent of 40? 

Area 

75% X 

100% .....__.__....__,__ 12 million 

Figure 2.16. Using Haubner's (1992) visual model to translate percent 

application problems into solvable equations. 

To translate into an equation, the students must think about the information given and 

how this relates to the question asked. Reading from the model, the student thinks 

"100% of 12 million is 12 million; 75% of 12 million is x.", and thus the equation is 

developed. Haubner suggested that both proportion and equation approaches to 

solving percentage application problems need to be familiar to students, and that the 

equation method promotes use of mental estimation skills. 

2. 2. 7 Approaches for solving percent equations proportionally 

Once percent situations have been represented as a proportional equation, the 

equation must be solved to complete the problem. Examples of strategies for solving 

percent equations using a proportion equation discussed thus far (e.g., Dewar, 1984; 

Haubner, 1992; McGivney & Nitschke, 1988) do not describe the procedures involved 

in solving proportion equations. For solving proportion equations, initial instruction 
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generally limits proportion examples to factors or multiples of the given proportion 

(e.g., Reys et al., 1992). Simple exercises such as the following would be common 

examples for children to solve at this stage: 

1 3 = 4 

5 7 = 35 

2 = 6 8 

40:30 = 4 

However, when instruction in percent begins to relate to proportion and students are 

required to solve percent application problems by solving a proportion equation, the 

numbers in such problems rarely are multiples or factors of the other. This is an issue 

which only infrequently is addressed in the literature. Wendt (1959) and Cole and 

Weissenfluh (1974) attempted such a task. 

Wendt (1959) suggested that as children are taught such formulae as "A= L x 

W", and "V = 112 b x h", so too can children learn "A is P percent of B" and translate 

this into the proportion equation: Pt100 = At60. To solve a percent application problem 

such as, What number is 30 percent of60?, Wendt suggested the following procedure: 

After the proportion equation has been set up, the values are inserted into their 

appropriate place: 80t100 = At60. To solve this equation requires the A to be 

left by itself. Both sides of the equation are multiplied by 60 I 1, and elaborate 

cancelling begins: 

6 

(JG/1 X 

3 
3G 1100 

18 

= 

= 
to reveal the solution of A equals 18. 

A/6G X 

A 

(p. 227) 

Wendt acknowledged that this procedure is algebraic, but prefers to call it "generalised 

arithmetic." He suggested that generalised arithmetic can be taught to Year 6 children 

by building on their prior arithmetical knowledge. For example, children can solve 3 x 

N = 12, and this can be expanded to show that by dividing both sides of the equation 

by 3, the solution also can be found. Hence, Wendt suggested, that generalised 

arithmetic should be introduced to children in the upper primary school to give 

meaning to the arithmetical manipulation of numbers required to solve percentage 

proportion problems. 

Cole and Weissenfluh (1974) suggested that the cross multiply rule be utilised 

to solve percent proportion problems, but that children need to be shown why this 

procedure works. For example, to solve the problem: What is 10% of 20?, the 
proportion equation is set up: 10/ 100 = Xf20. Upon cross multiplying, the 10 is 

multiplied by the 20, and the 100 is multiplied by the x: 
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10 X 20 

200 
= 
= 

100 X X 

100 X X 

To explain how this is possible, Cole and Weissenfluh suggested that teachers 

demonstrate how, by multiplying "both equivalent comparisons by the same numbers, 
100;1 and 20;1" (p. 227), the equivalency is unchanged: 

20; 1 X 100; 1 X 10j 100 = Xf20 X 100/1 X 20; 1 

to become 20 x 10 = x x 100 as after the cross multiplication procedure. 

To solve for "x", Cole and Weissenfluh suggested converting the product of 

the cross multiply procedure to the fractional form as follows: 
200;

1 
= 100x;

1 

1;100 X 200;1 = 100Xj1 X 1;100 

2/1 = Xfl 

and 2 = x 

For Type II and III percentage application problems, Cole and Weissenfluh (1974) 

presented the following worked examples: 

Type II: 2 is what percent of 20? 

XjlOO = 2120 

200 = 20 XX 

10 = X 

Type III: 2 is 10% of what number? 

10/100 = 2fx 

200 = lOx 

20 = X (p. 228) 

In these last two cases, converting products to fractions over 1 are not 

presented. The examples given by Cole and Weissenfluh use simple numbers, and 

finding x is merely a mental exercise. However, if the numbers were not so "neat", 

the step from the cross multiply to solving for x is not fully delineated. 

Reys et al. (1992) provided the following approach to solving percent 

application problems using proportion equations: 

Type I 10% of 60 = ~ 

10%/ 
100% = x;60 

X = 6 

Type II ~% of20 = 15 
x%; 

100% = 15; 
20 

X = 75 
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Type III 50% of 1:1 

50%;100% 

X 

= 

= 

= 

$40 
$40; 

X 

$80 (p. 232) 

In the above examples given by Reys et al., the proportion equation and the solution is 

given. No discussion, however, is presented as how to guide children from the 

equation to the solution. This appears to be the case in many textbook approaches to 

solving proportion equations, as Fisher (1988) stated, ''The most common textbook 
strategy for solving a proportion problem is to write an equation in the a;d = c;d form 

with an unknown as one of the four terms, cross-multiply and solve for the unknown" 

(p. 157). 

2 . 2. 8 Summary of key points 

In this section, summaries of methods for representing and solving percent 

application problems were presented. These methods included the use of various 

models, such as: fraction/percent overlays, elastic strips, 10xl0 grids, identification of 

key words, use of mnemonic strategies, and comparison scales. All methods 

presented appear to have certain shortcomings, which override, to an extent, the 

benefits purported. The fraction/percent overlays exemplify the part/whole notion of 

percent situations but can be used only for Type I and Type II percent situations. Type 

III percent situations can be adequately modelled using an elastic strip, but this models 

the proportional nature of percent situations, not the part/whole notion of the overlays. 

The lOxlO grids require extensive decimal and fraction multiplication and division 

procedures as well as a high level of computational estimation skill. The grids are 

time-consuming to construct and also do not appear to lend themselves to percents 

greater than 100. Using mnemomics and key words appear to be very procedural 

methods, unrelated to percent concepts and principles, and therefore appear limited in 

their ability to promote students' principled-conceptual knowledge. Comparison scales 

appear to be simple to construct and powerful for representing percent situations as 

statements of proportion, but offer few suggestions for assisting students solve 

proportion equations meaningfully. In this section, procedures for calculating the 

proportion meaningfully were described, but such procedures were seen to use 

relatively simple numbers, and failed to address understanding of the calculations 

required in proportion equations when the numbers are not multiples or factors of 100. 

It has been seen that, through analysis of instructional approaches to percent, 

percent knowledge and problem solving skills can be developed in multifarious ways. 

The question is, which ways are best? Throughout their comprehensive analysis of 

percent literature, Parker and Leinhardt (1995) frequently suggested that the key to 
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percent understanding is in understanding the relationship of percent to proportion. 

However, there appears to be a paucity of literature which specifically describes the 

promotion of percent knowledge from a proportional perspective which encompasses 

teaching of the proportion equation meaningfully. In the next section, related literature 

for pedagogic insight into percent is reviewed. 

2. 3 Related issues in percent teaching and learning 
2. 3 .1 Overview 

'This section is a summary of the exploration of issues pertaining to percent 

teaching and learning which may serve to guide instructional planning. There are five 

parts. In section 2.3.2, various studies which have focused on researching 

instructional approaches to teaching percent are summarised. In section 2.3.3, the 

mathematical topic of proportion and the issue of percent as a component of the 

concept of proportion, is addressed. In section 2.3.4, the simplicity and complexity of 

the proportion equation applied to percent calculations is described. In section 2.3.5, 

other instructional strategies which may be useful for guiding percent instruction are 

presented through discussion of mental models, problem interpretation, and holistic 

versus sequential instruction. A summary of key points contained within this section 

is presented in section 2.3.6. 

2. 3 . 2 Studies of percent instruction 

As described in chapter 1 (section 1.2.3), research studies have indicated that 

students' understanding of percent is generally poor. Parker and Leinhardt (1995) 

provided an extensive review of studies of various approaches to percent instruction. 

In the following paragraphs, summaries of the studies, as described by Parker and 

Leinhardt, are presented. 

Parker and Leinhardt ( 1995) described a comparative study conducted in 1963 

by Tredway and Hollister, where students received instruction which was either drill 

and practice of the three cases of percent problems, or was more activity based, 

focusing on meaningful understanding of the three types of percent problems using 

10x10 grids and the hundreds board. The two approaches can be seen as quite 

distinct. For one group, each of the three types of percent problems were introduced 

to the students on different days, and computational procedures for solving each of the 

types were practised. For the other group, the three types of percent problems were 

intermingled throughout the instructional sequence, and concrete referents were used to 

assist meaning. Of this study, Parker and Leinhardt stated: "This study provides one 

of the first pieces of evidence for the benefits of teaching percent as an integrated 

process. It also provides some evidence of the value of using visual representations of 

percent relationships" (p. 454). 
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Parker and Leinhardt described another study conducted in 1975 by Mason, 

where an alternative representation for percent problems was taught to adult students. 

This method was called the time-function model, and Parker and Leinhardt provided 

the following example of the time-function model for interpreting and solving percent 

problems: 

Problem: After an increase of 15%, the cost of an item was $28.75. Find the 

original cost. 

To solve the problem, Parker and Leinhardt (1995) stated, that "the base is the first 

quantity to appear in time, that is the original cost. Using the percent relationship, if 

the original price had been $100, the increase would be $15" (p. 455). The symbolic 

representation of this information would be: 

original 
$100 

X 

increase 
$15 

y 

new cost 
$115 

$28.75 

relative data 

actual data 

From this representation, there are two sets of data visible, relative and actual. From 

this data, there can be seen three statements of proportion: lOO;x = l5;Y; 100/x = 
115;28 .75 ; and 15;Y = 115;28.75 . Solution proceeds via cross multiplication. Of this 

method, Parker and Leinhardt, stated that it "emphasised both the multiplicative and 

additive relationship found in percent problems, eliminated one known trouble spot 

(conversions) and addressed another (base identification). Considering the clear 

evidence of the entanglement that students experience between the notations of decimal 

and percents, it is significant that this model for percent problems gave meaning to the 

base of the percent and avoided the necessary conversion between symbol systems" 

(p. 455). 

Parker and Leinhardt reported on a relatively recent comparative study 

conducted by Maxim in 1982, where students were instructed either in solving percent 

exercises using the proportion method or the equation methods (see chapter 1, section 

1.1.5 for descriptions of the procedures involved in these two solution methods). 

Results indicated that neither method improved students' performance significantly, 

with Maxim (1982) concluding that students' percent performance is affected by 

students' know ledge of fractions, the difficulty of the percent symbol, and the wording 

of percent problems. From such a conclusion, it appears that, execution of the 

computational procedure may have assisted students in computing percent problems, 

but interpretation of percent situations hindered application of the computational 

procedure. In conclusion to their review of studies on percent instruction, Parker and 

Leinhardt stated that the results of all studies collectively were inconclusive, and no 

single "best" approach was apparent. 
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The study by Lembke and Reys (1994), briefly described in section 1.2.3, 

looked at Years 5, 7, 9 and 11 students' conceptual and computational percent 

knowledge, before and after formal percent instruction. Lembke and Reys interviewed 

high and middle ability students in each of the four year levels to determine their: (i) 

knowledge of pictorial representations of percent; (ii) knowledge of relationships 

between fractions, decimals and percents; (iii) use of strategies including benchmarks; 

(iv) use of mental computation; and (v) sensibility to reasonableness of the solution. 

Lembke and Reys' found that students utilised a variety of strategies for solving 

percent problems, but with formal instruction, such creativity appeared to give way to 

application of learned procedures. This finding has clear implications for instruction. 

According to Parker and Leinhardt ( 1995), instruction should not focus on execution 

of mechanical procedures, but on providing students with strategies and experiences to 

enable them to apply their own computational procedures. 

The value of allowing students opportunities to develop their own percent 

computational procedures in the school situation can be seen as a noble suggestion, 

well grounded in research on children's intuitive percent computational procedures. 

However, the provision of such experiences may not be viable in all school settings. 

A study by Allinger ( 1985) provided an insight into the dilemma facing teachers 

between providing students with opportunity to develop their own understanding of 

percent situations, and also providing helping strategies to promote achievement. 

Contrasting Lembke and Reys ( 1994) study (described above) on the use of intuitive 

strategies for solving percent problems by middle and high ability students, Allinger 

(1985) reported on a study with Year 10 students who had experienced a long history 

of failure in the study of mathematics. In this study, students were provided with 

instruction in solving Type I and Type II percent problems using the proportion 

equation and the cross-multiply technique. Instruction began with the focus on 

equivalent fractions. The procedure for fraction equivalence was then related to solve 

Type II percent problems. For example, the problem: 24 is what percent of 80? was 
translated to the proportion form of 24 I 80 = N I 100. Instruction also included the 

application of 10x10 grids to develop meaning of percent as part of a whole where the 

whole is 100%. Students were given opportunities to practise the Type I and Type II 

problems through constructing a proportion equation, and using a calculator to solve 

the equation. As Allinger stated, "Our goal of the unit was to build concept 

understanding and thought processes but some mechanisation was desirable in helping 

these slow/reluctant learners achieve" (p. 568). Of this study Allinger reported that 

motivation and general interest in mathematics was promoted with the use of the 

calculator as a tool in computation. Throughout the instructional sequence, Allinger 

stated that the concept of percent as a statement of proportion was continually 

impressed upon the students. Allinger presented this concept as the following: 
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"Percent means hundredths, and is a part/whole comparison; therefore 20% of 75 can 

be computed using a proportion" (p. 572). According to Allinger, the proportion is 

thus set up by reminding students that percent means hundredths, and that, in this 
particular example, 7 5 is the whole, creating the equation N I 75 = 20 I 100. Solution thus 

proceeds using cross-multiplication. According to Allinger, by drawing students' 

attention to the components of the problem (i.e., percent means hundredths, the whole 

relates to hundredths), they were provided with strategies for interpreting and 

analysing the components of percent problem situations. The use of the calculator was 

simply to attain a solution. 

In relation to students' own intuitive procedures for percent calculations, 

Parker and Leinhardt (1995) stated: 

There is strong evidence that students can do the mechanical parts of percent 

problems. For the student who has correctly analysed the referents and their 

relationships to each other and understands the proportion relationship that 

exists between the quantities, any number of solution procedures might be 

accessed to solve the problem. (p. 463) 

In this statement, it can be seen that such procedures are dependent upon "correctly 

analysing the referents" and "understanding the proportional relationships". In 

Allinger's (1985) study, it can be argued that an attempt has been made to assist 

students experiencing difficulty with percent (students who have received formal 

instruction in percent over many years) to provide scaffolding for the analysis of 

referents and understanding the proportion relationship. 

2. 3. 3 Percent as a proportion 

As repeatedly stated by Parker and Leinhardt (1995), the underlying meaning 

of percent is primarily proportion. It follows that, to understand the proportional 

nature of percent, a well-developed understanding of proportion is required. It could 

be argued that building students' understanding of proportion would be the means to 

promote students' understanding of percent. Developing instructional programs in 

percent, from a proportional perspective, thus would rely on a knowledge of 

instructional programs for building proportional understanding. 

Analysis of the proportion concept itself has been a major field of research 

(e.g., Behr, Barel, Post & Lesh, 1992), and the importance of students' developing an 

understanding of proportion concepts and proportional reasoning skills is becoming 

widely accepted as a key aspect of the mathematics curriculum. As Lesh, Post and 

Behr (1988) stated, "Proportional reasoning is the capstone of children's elementary 

school arithmetic and the cornerstone of all that is to follow" (p. 93-94). However, the 

development of proportional reasoning is a complex operation, as Post, Behr and Lesh 

(1988) stated that proportional reasoning: 
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... requires firm grasp of various rational number concepts such as order and 

equivalence, the relationship between the unit and its parts, the meaning and 

interpretation of ratio, and issues dealing with division, especially as this 

relates to dividing smaller numbers by larger ones. A proportional reasoner 

has the mental flexibility to approach problems from multiple perspectives and 

at the same time has understandings that are stable enough not to be radically 

affected by large or "awkward" numbers, or the context within which a 

problem is posed. (p. 80) 

Proportional reasoning, therefore, relies on a well-developed concept of proportion, 

but building students' understanding of proportion appears to be a complex process as 

the proportion concept is interrelated with many other concepts. For example, English 

and Halford (1995) stated that: "Fractions are the building blocks of proportion" (p. 

254). Similarly, Behr et al. (1992) stated that "the concept of fraction order and 

equivalence and proportionality are one component of this very significant and global 

mathematical concept" (p. 316). Also, Streefland (1985) suggested that "Learning to 

view something 'in proportion', or 'in proportion with ... ' precedes the acquisition of 

the proper concept of ratio" (p. 83). Developing students' understanding of ratio and 

proportion is difficult because the concepts of multiplication, division, fractions and 

decimals are the building blocks of proportional reasoning, and students' knowledge 

of such topics is generally poor (Lo & Watanabe, 1997). 

The proportion concept, therefore, is intertwined with many mathematical 

concepts. This has implications for instruction. The development of a rich concept of 

rational number, and thus proportional relationships, takes a long time (Streefland, 

1985). The proportional nature of various rational number topics must be the focus of 

instruction as these topics are revisited continually throughout the curriculum, in order 

to build and link students' proportional understanding (Behr et al., 1992). Building 

proportional reasoning must be through multiple perspectives (Post et al., 1988). 

The literature provides various suggestions for activities and strategies for 

promoting the proportion concept. The use of ratio tables has been suggested as one 

means for building students' ratio understanding (English & Halford, 1995; Middleton 

& Van den Heuvel-Panhuizen, 1994; Robinson, 1981; Streefland, 1985). English and 

Halford (1995) provided the following example of a ratio table, which assists in the 

comparison of the number of soup cubes per person: 

soup cubes 2 

people 4 

4 

8 

6 

12 

8 

16 

English and Halford stated, "A table of this nature provides an effective means of 

organising the problem data and enables children to detect more readily all the relations 
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displayed, both within and between the series .. .it serves as a permanent record of 

proportion as an equivalence relation" (p. 254). 

A common theme for initial instruction in ratio and proportion, is on providing 

students with many mathematical experiences and activities which require them to 

explore and test their own intuitive procedures for solving proportion problems (Behr 

et al., 1992; Hiebert & Carpenter, 1992; Lo & Watanabe, 1997; Streefland, 1985). 

The essence of proportional reasoning is on understanding the multiplicative structures 

inherent in proportion situations (Behr et al., 1992). Children's intuitive strategies for 

solving proportion problems typically are additive (Hart, 1981). The teacher's role, 

therefore, is to build on students' intuitive additive strategies and guide them towards 

building multiplicative structures. Multiplicative structures develop as early as Grade 2 

for some children, but are also seen to take time to develop to a level of conceptual 

stability (often beyond Grade 5) (Clark & Kamii, 1996). Behr et al. (1992) suggested 

that exploring "change" will help students develop multiplicative understanding. For 

example, students can be encouraged to discuss the change to 4 which will result in 8. 

From an additive view, 4 can change to 8 by adding 4. From a multiplicative view, 4 

can change to 8 by multiplying by 2. The difference between the additive and 

multiplicative view can be seen by looking at other numbers. The additive rule holds 

for 13 changing to 17, but not the multiplicative rule. According to Behr et al. (1992), 

"the ability to represent change (or difference) in both additive and multiplicative terms 

and to understand their behaviour under transformation is fundamental to 

understanding fraction and ratio equivalence" (p. 316). Moving students towards 

formal ratio and proportion principles and procedures is termed by Streefland (1985) 

as "anticipating ratio", where the teacher capitalises on students' informal intuitive 

problem solving procedures guiding students to "formulae and algorithmisation" (p. 

84). Such an approach was taken in a teaching experiment conducted by Lo and 

Watanabe (1997) where a Year 5 child was exposed to proportional reasoning tasks to 

promote intuitive multiplicative reasoning skills and hence develop proportional 

reasoning. 

Research has indicated that students' (and teachers') understanding of 

proportion is generally poor (e.g., Behr et al., 1992; Fisher, 1988; Hart, 1981; Post, 

Harel, Behr & Lesh, 1991;). Streefland (1985) stated that: "Ratio is introduced too 

late to be connected with mathematically related ideas such as equivalence of fractions, 

scale, percentage" (p. 78). English and Halford (1995) suggested that proportional 

reasoning is taught in isolation and thus remains unrelated to other topics. Behr et al. 

(1992) stated, "We believe that the elementary school curriculum is deficient by failing 

to include the basic concepts and principles relating to multiplicative structures 

necessary for later learning in intermediate grades"(p. 300). Behr et al. also added, 

"There is a great deal of agreement that learning rational number concepts remains a 
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serious obstacle in the mathematical development of children .. .In contrast there is no 

clear argument about how to facilitate learning of rational number concepts" (p. 300). 

Developing students' understanding of percent through linking it to the concept of 

proportion, appears therefore, to be a complex process, as students appear to be 

unlikely to have a well-developed concept of proportion at the time they are introduced 

to the percent concept. 

2. 3. 4 The proportion equation and its relation to percent 

In linking percent to proportion, Post, Behr and Lesh (1988) stated simply, 

that "percent is a special type of rate", and that "in percent situations, one rate pair will 

always be 100" (p. 80). They then provided an example of each of the three types of 

percent problems as simple statements of proportion, and stated that "all percent-related 

situations can be solved with the use of proportions and an essentially identical 

conceptual framework" (p. 80), suggesting that, percent situations are conceptually the 

same as proportion situations. Indeed, Vernguard (1988; 1983) stated that 

multiplication and division problems are also proportion situations, solvable using the 

Rule of Three (see Greer, 1992, for a full description). Post et al. provided examples 

of how the three types of percent situations can be symbolised as proportion situations 

as follows: 

Type 1 Jessica scored 85 points on a 115 point test. What percent was this? 
85/ -Xf 

115- 100 

Type II If Jessica scored 74% on a test with 115 items, how many did she get 

correct? 
74/ -Xf 100- 115 

Type III Jessica had 85 items on a test correct. This was 74%. How many 

items were on the test? 
74/ _ 85/ or 85/ _ Xf 

100- X 74 - 100 

Solving the proportion equations, as suggested by Post and colleagues, is via the 

"standard" approach which is to "cross-multiply and solve for x" (p. 81). If this is the 

standard method, the question is asked as to how this is taught to students. 

Teaching students the standard solution procedure for proportion equations 

appears to be a controversial issue. There is agreement that the cross-multiply method 

is a simple procedure, but concern for how it is introduced to students in the 
classroom. For example, Hart (1981) stated, "Teaching an algorithm such as a;b = c;d 

is of little value unless the child understands the need for it and is capable of using it. 
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Children who are not at a suitable level to the understanding of a/b = c/ d will just forget 

the formula" (p. 101). Similarly, Parker and Leinhardt (1995) stated: 

... the proportion method has become one of the most popular methods for 

solving percent problems. Conceptually, we would agree that a true 

understanding of the proportionality of percent would uncover the hidden 

referents. But in actual case, the proportion method has become something 

different. To students, it is just a procedure. (p. 451) 

Also, Cramer, Post and Currier (1992) stated, "the cross-product algorithm is 

efficient, [yet] it has little meaning. In fact, it is impossible to explain why one would 

want to find the product of contrasting elements from two different rate pairs ... The 

cross-product rule has no physical referent and therefore lacks meaning for students 

and for the rest of us as well" (p. 170). 

In terms of instruction, there is consensus that the proportion equation must 

be introduced to students in a meaningful manner, or students must be provided with 

experiences to enable them to develop their own solution strategies for solving 

proportion equations. For example, Fisher (1988) stated, "If it is important that 

strategies other than the proportion formula be taught to secondary students in order 

that the students better understand proportion, then teachers must be made aware of the 

need and must accept the alternate strategies" (p. 166). Streefland (1985) stated that, 

"Formal procedures available as mathematical tools such as the 'rule of three' and 

'cross-product' may make a provisional endpoint in this learning process but they 

should certainly not stand at its start" (p. 92). And, Post et al. (1988) stated, 

"Although it can be effectively argued that students need to automatise certain 

commonly used mathematical processes (Gagne, 1983) it can likewise be argued that 

the most efficient methods are often those that are least meaningful, and therefore 

should be avoided during the initial phases of instruction. Unfortunately, we 

sometimes confuse efficiency with meaning, and by default, even with the best 

intentions, we introduce a concept in the most efficient but least meaningful manner" 

(p. 81). 

Focussing specifically on instruction, Robinson (1981) suggested that an 

understanding of the cross multiply procedure can be developed from a progressive 

approach to teaching ratio. Robinson's approach to ratio is by children constructing 

ratio "boxes" to correspond to the information given in a situation These ratio boxes 

are similar to the ratio tables advocated by Streefland ( 1985) and English and Halford 

(1995). The approach of constructing a ratio scale is used to assist children in 

developing understanding of the multiplicative structure inherent in the concept of 

ratio. For example, in the early stages of ratio instruction, according to Robinson, 
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children would look at problems such as: For every 2 fish John caught, Jim caught 3. 

The box would be drawn as follows: 

John's fish 2 

Jim's fish 3 

To solve the problem: How many fish would John have if Jim caught 15? would be 

solved by extending the box: 

John's fish 2 2 2 2 2 = 10 

Jim's fish 3 3 3 3 3 = 15 

This step would then be simplified by focussing on the given information: Jim caught 

15 fish, 15 3 gives 5; 5 boxes with 2 fish in each is equal to the number of fish 

John caught (2 x 5). Upon analysis it can be seen that from this example, in essence, 

the cross multiply procedure has been utilised. 

John's fish 2 X 

Jim's fish 3 15 

Translating the above situation into a proportion equation gives the following : 

2 X 

3 15 

Using cross multiply procedures gives 

2 X 15 = 3 X X 

30 = 3x 

10 = X 

According to Robinson ( 1981) this exploration guides students to generating the rule 

for solving proportion equations, "If you multiply the two numbers across from one 

another and divide by the other number, the correct answer is obtained" (p. 6). 

As described in chapter 1(see section 1.1.3), the cross-multiply procedure is 

the Rule of Three of ancient times. Although there is a general feeling that this 

procedure should not be overtly taught to students (e.g., Cramer, Post & Currier, 

1992; Hart, 1981; Streefland, 1985), Resnick and Omanson (1987) provided a strong 

argument for the study of mathematical procedures in their own right as an integral 
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component of the study of mathematics. They stated that mathematical procedures are 

deeply embedded in mathematical principles, and that exploration of the principles 

upon which these procedures are built, can lead to deep mathematical understanding 

and appreciation. The fascination with the development of such procedures generates 

from the following questions posed by Resnick and Omanson, "What knowledge 

enters these constructions?" and what do "people know which permits and constrains 

the particular procedural variants they invented?" (p. 42). Tracing the historical 

development of the Rule of Three provides insight into the mathematical advancement 

of cultures long ago. Indeed, Swetz (1992) described the way the Rule of Three was 

emulated by mathematicians in the fifteenth and sixteenth century through his 

exploration of texts of the time, in the following: 

The 'Rule of Three', commonly known in its time as the 'Golden Rule' or the 

'Merchant's Rule' was highly esteemed in the fifteenth and sixteenth century 

as being a powerful mathematical technique applicable to solve many problem 

situations. Today this rule would be recognised as a statement of simple 

proportion involving three quantities from which a fourth must be found. (p. 

373) 

Continuing his analysis of texts of this time, Swetz stated that the Rule of Three was 

the foremost procedure studied in schools at that time. 

The simplicity and complexity of solving percent problems proportionally 

using the cross-multiply equation is evident. All cases of percent problems can be 

represented proportionally, and all proportion equations can be solved efficiently using 

one procedure. The implication for teachers is to consider carefully the instructional 

sequence for initial learners. However, when assisting learners who have experienced 

varying degrees of instruction in percent, the pathway is less obvious. The research 

study conducted by Allinger (1985) (discussed in section 2.3.2) highlights the 

situation of trying to maintain a balance between understanding and achievement. With 

the Year 10, low-achieving students in Allinger's study, the cross-multiply method for 

solving percent equations was presented to the students, and the students enjoyed the 

facility of using such a procedure to calculate solutions quickly. Such an approach to 

instruction for students experiencing difficulty with the study of mathematics would 

also find support from Noddings (1990) who stated "if it is clear that performance 

errors are getting in the way of concentrating on more significant problems, 

straightforward practice may actually facilitate genuine problem solving" (p. 15). She 

continued, "I'm not recommending drill and practice ... rather I'm suggesting that 

teachers anticipate skills that students will likely need to construct important concepts 

and principles" (p. 15). 
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2. 3. 5 Further "helping strategies" for promoting percent knowing 

Mental models 

One of the recommendations suggested by Parker and Leinhardt (1995) for 

promoting percent knowledge is the search for a visual model of percent. As they 

stated, "a solid representation of percent may be one key to unlocking the door to an 

understanding of percent" (p. 465). The value of visual models in mathematics has 

been recognised by many others. For example, Post and Cramer (1989) stated, 

"Representations can be viewed as the facilitators which enable linkages between the 

real world and the mathematical world" (p. 223). Streefland (1985) stated, ''The 

learning process should be designed with anticipating activities that account for 

connections with other learning sequences. To this aim schemas and visual models 

should be developed to support the long term learning process and within it general 

cognitive processes, such as abstracting, generalising and unifying" (p. 92). English 

and Halford (1995) stated "the essence of understanding a mathematical concept is to 

have a mental representation or mental model that faithfully reflects the structure of that 

concept" (p. 18). Hiebert and Carpenter (1992) stated, ''The form of an external 

representation (physical materials, pictures, symbols, etc) with which a student 

interacts makes a difference in the way the student represents the quantity or 

relationship internally" (p. 66). 

The most commonly used visual model for representing percent is the 10x10 

grid, as it embodies the "whole divided into 100 parts" notion of percent. The use of 

this representation for instruction has been described previously (see section 2.1.1 and 

2.2.3). The 10x10 grid has also been suggested as a means for assisting the 

conceptual understanding of percent calculations (e.g., Bennett & Nelson, 1994; 

Cooper & Irons, 1987; Weibe, 1986). According to Parker and Leinhardt (1995), one 

of the weaknesses of this model for such purposes is that it does not naturally lend 

itself to dealing with percent situations greater than 100. The difficulty is that one 

10x10 grid represents one whole, which is 100%. To represent percents greater than 

100 requires the use of another grid, which could be interpreted as two wholes. 

The number line, or a derivative (e.g., comparison scale) is another model to 

assist students calculate percent problems (e.g., Dewar, 1984; Haubner, 1992; see also 

section 2.2.6). A number line model appears to be useful for assisting students to see 

the proportional nature of percent problem situations, and could also be used to assist 

with mental calculation and checking for reasonableness of solutions. Such a model 

lends itself to representation of percents greater than 100, as the number line can 

simply be extended past the 100% mark. Parker and Leinhardt (1995) evaluated such 

a model as potentially useful for representing percent as a proportional comparison, but 

they questioned the positioning of the number line in space and the positioning of the 

values on the number line. They felt that a vertical number line is at odds with typical 
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representations of number lines, and the position of 100% at the bottom of the number 

line would cause conflict for students. 

Problem interpretation 

Research studies in percent indicated that students have difficulty in solving 

percent application problems, particularly percent situations involving percents greater 

than 100 (see section 1.2.3). For percent problem solving, Parker and Leinhardt 

(1995) stated that "the first stage of solving percent problems deals with reading, 

interpreting and defining relationships between the problem components" (p. 471). In 

the addition and subtraction literature, the part-part-whole notion was extensively 

investigated, suggesting the use of a part-whole schema to assist students identify 

problem types (e.g., Mahlios, 1988; Resnick, 1982; Wolters, 1983). For initial 

instruction, it was found that this schema assisted students to interpret the component 

parts of the written problem. In the percent study described by Allinger (1985) (see 

section 2.3.2), a similar type of analysis of the components of the problems was 

presented. Similarly, in the study by Mason (1975) (see section 2.3.2), the time­

function procedure encouraged students to identify the events in the situation in order 

to interpret the problem situation. Such analysis of the component parts of percent 

problems appeared to assist students in word problem solving in these studies. 

Holistic or sequential instruction in percent problem types? 

A feature of traditional percent instruction has been the introduction of the 

three types of percent cases separately, with drill on each procedure followed by 

application in problem solving. Resnick (1992) suggested that an alternative 

instructional sequence to this traditional approach is where all cases of particular 

mathematical problems are introduced to students at once, and solving word problems 

occurs in the first instance, rather than after students have practised computational 

skills required to solve the word problems. This instructional strategy is described as 

presenting the whole "conceptual field" of problems to students, and the theory behind 

such an approach is that students can see how similar mathematical principles for 

solution hold across all cases. Of this approach, Resnick stated, "A program of this 

kind constitutes a major challenge to an idea that has been widely accepted in 

educational research and practice. This is the notion of learning hierarchies, 

specifically that it is necessary for learners to master simpler components before they 

try to learn complex skills" (p. 422). Of the strategy of beginning with mathematical 

problems presented in words (commonly referred to as story problems), Resnick 

stated: "It is a strategy which contrasts quite sharply with traditional methods of 

arithmetic drill in which practice on number proceeds independently of situations 

involving quantity ... Rather than decontextualised drills, what is needed is extensive 
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practice in solving well-understood quantity problems ... from the teacher, or from the 

students" (p. 417). 

2. 3. 6 Summary of key points 

In this section, summaries of research studies exploring various instructional 

approaches for percent were described. Such research has not served to elucidate a 

single, best approach to teaching percent, but has highlighted the need to consider the 

student body for whom instruction is intended. In terms of helping children achieve an 

understanding of percent, there are two distinct bodies of learners whose needs must 

be considered. Students who are yet to receive formal instruction in percent need to be 

provided with opportunities to develop a rich concept of percent, from which intuitive, 

meaningful and legitimate computational procedures for percent calculation can 

naturally evolve. For students who have received varying degrees of instruction in 

percent, it appears that helping strategies for building and linking fragmented percent 

knowledge, and for solving percent equations meaningfully need to be provided. 

The issue of developing percent knowledge through linking to the concept of 

proportion was seen to be an approach fraught with complexity. Proportional 
reasoning was seen to be embodied in the proportion equation a/b=c/d, and developing 

students' understanding of this equation was discussed. However, the development of 

proportional reasoning takes a long time, which calls into question the sensibility of 

building percent knowledge through proportional understanding if proportional 

understanding and reasoning is limited. Other issues were raised in this section, 

pertaining to percent instruction, specifically the potential of a mental model which 

embodies the proportional nature of percent, strategies for interpreting percent 

application problems, and sequencing instruction. 

2. 4 Percent problem solving and percent knowledge 
2. 4.1 Overview 

The focus of this section is percent problem solving, percent knowledge, and 

instruction. In section 2.4.2, a model for percent problem solving, which is presented 

as an efficient and effective model for guiding percent instruction for Year 8 students, 

is described. In section 2.4.3, guiding models for instruction to build and link 

mathematical knowledge are described. In section 2.4.4, a model of percent 

knowledge, identifying intuitive, concrete, computational and principled-conceptual 

percent knowledge, is proposed. A summary of the key points contained within this 

section is presented in section 2.4.5. 
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2. 4. 2 A proportional method for percent problem solving 

Parker and Leinhardt (1995) stated that percent is fundamentally a language of 

proportion, and that percent instruction should focus on developing students' 

understanding of percent as a proportion. However, as discussed in the previous 

section, proportion concepts and proportional reasoning take a long time to develop, 

and are dependent upon the establishment of other prior knowledge (see section 

2.2.3). If instruction in percent is to build from proportion knowledge, it can be 

argued that students will experience difficulty in linking percent to proportion if their 

proportion knowledge is limited, faulty or tenuous. Percent instruction, therefore, 

must be designed which provides students with models and strategies to experience 

problem solving in a successful manner. The models and strategies must encapsulate 

the notions of perent as a proportion, and must be accessible to students regardless of 

the level of their proportional knowledge. 

From analysis of the literature pertaining to percent, new strategies and a 

model for percent problem solving is proposed. The model and strategies combine 

into a method to enable students to experience percent sitatuations, and is based on 

representing percent as a proportion. The method offers a a holistic approach to 

percent problem solving, which assists students interpret, analyse, represent and solve 

percent situations. The method draws on various suggestions across a wide range of 

sources, and comprises more than a procedure for percent calculations. The 

proportional model for percent problem solving is presented as follows. 

Percent application problems are of three types, and contained within each 

problem are three elements: the part, the whole (total amount), and the percent. In a 

similar vein to a part-whole schema for interpreting addition and subtraction word 

problems (Mahlios, 1988; Resnick, 1982; Wolters, 1983), a part-whole-percent 

schema is proposed as a means of interpreting percent problems. The part-whole­

percent schema may assist in the first stage of percent problem solving, which, 

according to Parker and Leinhardt (1995), lies in reading, interpreting and defining the 

relationships within percent problems. To represent percent problems, a single vertical 

number line is proposed. This number line is similar to the comparison scales 

suggested by Dewar (1984) and Haubner (1992), where an amount is compared to the 

percentage base of 100 simultaneously in a linear fashion on a dual-scale number line. 

The dual scale number line provides a clear image of the proportional relationship of 

percent situations (Dewar, 1984; Haubner, 1992), and can be used to model all three 

types of percent application problems, including increase and decrease. The number 

line appears to have the potential to satisfactorily represent all percent situations, 

however, it is acknowledged that arguments of the limitations of this model have been 

proposed (see Parker & Leinhardt, 1995). The representation of the percent situation 
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on the number line enables the proportion equation to be constructed and solved using 

the ancient, and once highly esteemed (Swetz, 1992) Rule of Three procedure. 

In this proposed method of percent problem solving, interpreting, 

representing and solving percent application problems occur in a series of five steps. 

The first step is to identify the elements given within the problem in terms of the part­

whole-percent schema. The second step is to construct a dual-scale number line and 

label appropriately, and then to translate the information given in the problem onto the 

number line. The next step is to transfer the information positioned on the number line 

to a proportion equation. The last step is to solve the proportion equation using the 

Rule of Three procedure. An example of the use of the percent -schema and dual scale 

number line is illustrated in Figure 2.17 for a Type I problem. Type II and Type III 

problems are depicted in Figure 2.18. 

0% 

25% ? 

100% 60 

Type I 

What is 25% of 60? 

Figure 2.17. Use of the percent-schema and Rule of Three for interpreting, 

and representing a Type I percent problem. 

0% 0% 

? 18 28% 15 

100% 60 100% ? 

Type II Type III 

18 is what percent of 60? 15 is 28% of what number? 

Figure 2.18. Interpreting and representing Type II and Type III percent 

problems. 

For percent increase and decrease problems, extra analysis of information 

presented in the problem is required to successfully interpret and represent the problem 

using the number line. For example, the problem: If I receive a 25% discount on $60, 

how much do I pay?, can be interpreted two ways: subtractively or multiplicatively. 
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The calculations, therefore, can be carried out in either one or two steps. To solve in 

two steps, 25% discount is found, and this is subtracted from the original amount. To 

solve in one step is to interpret the 25% discount as being 75% of the original amount. 

Representation of the situation would occur on the number line as in Figure 2.19. 

Percent increase situations can also be interpreted in two ways, in both an 

additive and multiplicative sense. For example, the problem: The cost of the ticket was 

$50, but I had to pay an extra 15% booking fee as well, so how much did I have to 

pay?, can be solved in two steps by finding 15% of the whole and adding this to the 

original price, or in one step by interpreting a 15% increase as 115% of the original 

amount. To represent this problem on the number line requires the number line to be 

extended beyond 100%. Representation of this problem situation is depicted in Figure 

2.20. 

0% 

75o/c ? 
-25% 

100% $60 

Figure 2.19. Representation of percent discount situations using the number 

line. 

0% 

100% $50 
+15% 

115% ? 

Figure 2.20. Representation of percent increase situations using the number 

line. 

It is proposed that the benefits of this method for interpreting percent 

situations relate to issues of efficiency and effectiveness. The model is effective as it 

embodies the proportional nature of percent situations. It also provides a clear means 

for constructing the proportion equation which can thus be seen as an equivalent 

fraction. The dual scale number line also has the potential to promote estimation skills 

through positioning of the values on the number line using common percent 

benchmarks of 50% and 25%. Using the Rule of Three procedure to solve the 
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proportion equation is an efficient method, and although it may be taught in a rote and 

meaningless fashion, frees up mental space required for problem solving (Sweller, 

1988, 1989; Sweller & Low, 1992). The use of a single procedure for solving all 

types of percent problems also is efficient, and is a means for presenting the whole 

conceptual field (Resnick, 1992) of percent problems to students. 

2. 4. 3 Guiding models for instruction to build and link mathematical 

knowledge 

The proportional method for percent problem solving, proposed in section 

2.4.2, focusses specifically on percent problem solving. However, percent is a multi­

dimensional concept (Parker & Leinhardt, 1995) and as stated in section 1.1. 3, can be 

a number, a comparison, a ratio, a statistic, a function. It could be argued that percent 

instruction which consists primarily of calculation exercises may not promote students' 

knowledge of percent in a global sense. There appears to be a need to define percent 

knowledge to inform and guide instruction. 

Studies on teaching and learning multiplication (Lampert, 1986), subtraction, 

and fractions (Leinhardt, 1988) have shown that working definitions of mathematical 

knowledge, defined as comprising intuitive, concrete, computational and principled­

conceptual knowledge can serve as a base for effective mathematical instruction which 

aims to build and link the four classes of knowledge. 

To develop mathematical knowledge, Leinhardt (1988) suggested that 

instruction should begin with students' intuitive notions, and exploration of the 

mathematical topic using concrete representations and manipulations. Concrete 

materials are then used to represent expanded algorithms to develop computational 

knowledge. As Leinhardt stated, "the power of concrete representations is that they 

can help the students to develop an understanding of the meaning of the concepts and 

procedures and mathematics and they may provide a mechanism for solving new 

problems" (p. 121). To complete the instructional sequence, simple algorithms are 

practised without concrete materials, then algorithms are practised in a variety of 

contexts. Similarly, Lampert (1986) suggested that the goal of effective mathematical 

instruction is to enable children to make connections between concrete materials and 

principled, computational practices. The focus of instruction is on strengthening 

connections between intuitive, concrete, computational and principled/conceptual 

knowledge. Lampert also uses the four types of mathematical knowledge to guide 

instruction, following a model proposed by Karnii (1985) who stated that knowledge, 

and therefore instruction, progresses from "intuitive to concrete, concrete to 

computational and computational to principled/conceptual, with principled/conceptual 

knowledge being the ultimate goal" (Lampert, 1986, p. 313). 
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From the above descriptions, it could be argued that effective instruction in 

mathematics is instruction which builds and links intuitive, concrete, computational, 

and principled/conceptual knowledge. As shown by Leinhardt (1988) and Lampert 

(1986), planning for instruction in mathematics, therefore, can begin with applying 

definitions of mathematical knowledge to a piece of mathematics' curriculum to 

provide descriptions of intuitive, concrete, computational and principled/conceptual 

knowledge of that curriculum topic. 

2. 4. 4 A model of percent knowledge 

Parker and Leinhardt (1993) have called for a much broader definition of 

percent knowledge which is more than "conversions, computation and applications" 

(p. 47); a definition which embodied percent's "multiple and often embedded relational 

character" (p. 47) (as previously stated in section 1.1.4). The literature, however 

offers few definitions which encompass such a multi-dimensional definition of percent 

knowledge. Following suggestions that mathematical topics can be defined as 

comprising intuitive, concrete, computational and principled-conceptual mathematical 

knowledge (Lampert, 1986; Leinhardt, 1988) the following model of percent 

knowledge is proposed as a means for defining percent, and therefore guiding 

instruction. The model is based on Leinhardt' s definitions of intuitive, concrete, 

computational, and principled-conceptual mathematical knowledge and applied to 

defining intuitive, concrete, computational, and principled-conceptual percent 

knowledge. 

Intuitive percent knowledge 

Leinhardt's definition of intuitive mathematical knowledge suggested that 

intuitive knowledge can be regarded as that knowledge usually acquired prior to formal 

instruction, and/or that knowledge which relates the topic to the real world situation. 

From this definition, intuitive percent knowledge is proposed for the model of percent 

knowledge to consist of: the language of percent as used in the real world; the concept 

of percent as it relates to 1 00; common percent benchmarks; and the relationship of 

percent equations to real world situations. Intuitive percent knowledge, therefore, is 

proposed to consist of the following: 

1. Knowledge of the language of percent as it is used in the real world, in terms 

of such notions that the reduction of the whole relates to real world discount 

and loss situations; and the increase of the whole relates to real world profit, 

interest and increase situations. 

2. Knowledge of the concept of percent which includes such things as the 

part/whole notion of percent (that a percent is part of a whole where the whole 
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has 100 parts), and that the sum of percent parts gives the whole (i.e., 100%), 

and that a percent greater than 100% is greater than the original whole. 
3. Knowledge of common percent benchmarks, such as 50% is 112, 25% is half 

of a half, and 10% is 1 I 10. 

4. Knowledge of the three types of symbolic percent statements (equations) and 

how they translate to real-world situations. 

Concrete percent knowledge 

Leinhardt (1988) stated that "Concrete knowledge is knowledge of the 

nonalgorithmic, frequently pictorial systems ... that often serve as a basis for 

demonstration or as an explanation of an algorithm" (p. 121), and that "the power of 

concrete representation is that they can help students to develop an understanding of 

the meaning of the concepts and procedures of mathematics and they may provide a 

mechanism for solving new problems" (p. 121). Leinhardt added that, as 

concrete/pictorial representations are typically used by teachers and texts, concrete 

knowledge is students' understanding of those representations. This brings into the 

question the appropriateness of the concrete/pictorial representations selected for use in 

mathematics instruction. It is generally accepted that an appropriate representation for 

percents, decimals and fractions is the 10x10 grid (e.g., Brueckner & Grossnickle, 

1953; Reys et al., 1992; Weibe, 1988), and an appropriate representation for 

modelling proportional situations is the number line (e.g., Dewar, 1984; Haubner, 

1992; Weibe, 1988). 

For this model of percent knowledge, it is proposed that concrete percent 

knowledge relates to: (i) understanding of the appropriateness of concrete 

representations of percent used during instruction, (ii) the ability to interpret pictorial 

representations of percent, (iii) the ability to estimate pictorial representations of 

percent, and (iv) the ability to represent real world percent situations pictorially. 

An understanding of the appropriateness of concrete representations of percent 

used during instruction relates to Leinhardt' s discussion of the importance of pictorial 

representations for concept development. Ten x 10 grids and number lines divided 

into 100 equal sections relate to the concept of percent meaning hundredths. 

Interpreting pictorial representations is necessary concrete percent knowledge 

as percent instruction often relies on the use of lOxlO grids to simultaneously depict 

the relationship between percents, fractions and decimals. Students need to be able to 

interpret this interconnectedness of one pictorial model depicting three different 

mathematical representations of like meaning. 

The ability to estimate pictorial representations of percent is important concrete 

percent knowledge. Exercises in shading percents of regions are for the purpose of 

building percent benchmarks. Percent benchmarks relate to students knowing that 
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50% is half of a region or set, 25% is one quarter of a region or set, and 1% is a very 

small amount whereas 99% is almost the whole. Students need to be able to compare 

and contrast a given percent with a wide range of other percents in order to understand 

percent (Reys et al., 1992). 

The ability to represent real world percent situations pictorially relates to 

Leinhardt's (1988) statement as to the use of concrete representations as a "mechanism 

for solving new problems" (p. 121). In section 2.2, various pictorial models were 

described for representing and assisting problem context interpretation, solution 

estimation, and calculation of percent application problems. According to Leinhardt' s 

definition of concrete mathematical knowledge, appropriate concrete models are those 

which serve to explain algorithms and which embody the principles of the calculation 

procedures. In terms of percent knowledge, the concrete model must relate to the 

selected algorithmic procedures chosen to solve percent problems. Thus, they are 

dependent upon the selected procedures. The two main models which represent all 

three types of percent situations are: (a) the 10x10 grid requiring part/whole 

fraction/percent knowledge and decimal multiplication and division calculation 

procedures (e.g., Bennett & Nelson, 1994) (see section 2.2.3), and (b) the dual-scaled 

number line/comparison scale requiring proportional reasoning and solving proportion 

equation procedures (e.g., Dewar, 1984; Haubner, 1992) (see section 2.2.6). 

Concrete percent knowledge of pictorial representations of real world percent problems 

thus would be dependent upon the pictorial model selected. 

In this model of percent knowledge, concrete percent knowledge is proposed 

as consisting of the following: 

1. Knowledge of concrete referent in terms of 100 parts, particularly 10x10 grids 

and percent number lines. 

2. Ability to estimate pictorial representations of percent. 

3. Ability to represent real-world percent situations pictorially. 

Computational percent knowledge 

Leinhardt (1988) stated that "Computational knowledge is the procedural 

knowledge of mathematics, the algorithms and procedures for operations" (p. 121). 

For this model, it is proposed that computational percent knowledge comprises (i) 

estimation and mental computation, and (ii) computational skills. For estimation and 

mental computation knowledge, certain percent calculations would be performed 

mentally through estimation and rounding. For example, to mentally find 5% of a 

quantity, 10% of the quantity would be found and then halved. Computational percent 

skills include decimal, fraction, percent conversions; changing fractions with 

denominators that are factors of 100 to percents; and computing the three types of 

57 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



percent problems, including percent increase and decrease problems. For this model 

of percent knowledge, computational percent knowledge is proposed as the following: 

1 . Ability to estimate and mentally compute percentages using common percent 

benchmarks. 

2. Ability to convert percents to common fractions and decimal fractions, and 

vice-versa. 

3. Ability to calculate the three types of percent application problems, including 

percent increase and decrease situations. 

Principled/conceptual percent knowledge 

Leinhardt (1988) stated that "Principled/conceptual knowledge is the 

underlying knowledge of mathematics from which the computational procedures and 

constraints can be deduced" (p. 121). In this model of percent knowledge, the concept 

of percent is the basis of a number of principles which legitimise calculation 

procedures. The basic concept of percent is that a percent is a part of a whole, where 

the whole has 100 parts; and percent is a comparison to a standard base of 100. From 

this concept of percent, a number of principles arise, which underlie percent calculation 

procedures. The principles identified have been termed: the complement principle; the 

fraction-percent equivalence principle; the decimal-percent equivalence principle; the 

additive/subtractive percent increase/decrease principle; and the multiplicative percent 

increase/decrease principle. The principles which constitute principled-conceptual 

percent knowledge for this model are described as follows: 

1 . Complement principle. 

A percent is part of a whole; for each percent, there is a complement percent to 

comprise the whole. 

2. Fraction-percent equivalence principle. 

A fraction is also part of a whole. If the whole has 100 parts, the fraction 

represents a percent because of the concept of percent. If the whole is not 

100, this can be attained through the principle of fraction equivalence. [The 

principle of fraction equivalence enables any fraction to be converted to an 

equivalent fraction of specified denominator or numerator through solving for 

the unknown. Solving for the unknown requires the mathematical principle of 

inverse, namely the multiplication/division inverse principle (that 

multiplication is the inverse of division and division is the inverse of 
multiplication). For example, to find an equivalent fraction for 317 with a 

denominator of 100, the following procedure would be followed 
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XjlOO = 
X = 

3t 
7 

3 X lOOt 
7 

It is noted that finding equivalent fractions does not solely rely on the principle 

of fraction equivalence. Simpler conversions can be carried out if the 

denominator or numerator of the original fraction is a multiple or factor of the 

equivalent fraction. In such cases, different mathematical principles are 

utilised. Thus, the principle of fraction equivalence as stated above is seen as 

separate from, but related to, the fraction/percent equivalence principle. The 

fraction equivalence principle is seen as necessary for higher order fraction, 

ratio, proportion, percent applications where equivalent fractions are not 

factors or multiples of 100.] 

3. Decimal-percent equivalence principle. 

Decimals have a base of 10. If the decimal is hundredths, the decimal is a 

percent because of the concept of percent. 

4. Additive/subtractive percent increase/decrease principle. 

Percent increase situations can be interpreted additively or subtractively, when 

only the amount of increase/decrease is the focus. For example, the term 

"25% increase" is seen additively as the original whole + a further 25%. A 

25% decrease is seen subtractively as the original whole less 25%. 

5. Multiplicative percent increase principle. 

Percent increase/decrease situations can be interpreted multiplicatively, where 

the percent increase/decrease is in terms of the original amount. For example, 

the term "25% increase" is seen multiplicatively as 125% of the original 

amount; the term "25% discount" is seen multiplicatively as 75% of the 

original amount. The multiplicative percent decrease principle also relies on 

the complement principle (Principle 1). 

In this model, these five principles permit the three types of percent 

applications: (i) finding a part or percent of a number (Type I percent application); (ii) 

finding a part or percent one number is of another (Type II percent application); and 

(iii) finding a number when a certain part or percent of that number is known (Type III 

percent application). Percent increase and decrease situations can be either Type I, II 

or III application problems, thus there are only three types of percent applications 

which can be solved through knowledge of the principles of percent. 
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For this model of percent knowledge, principled-conceptual percent 

knowledge is defined as consisting of the following: 

1. Knowledge of the concept of percent as part of a whole, where the whole has 

100 parts. 

2. Knowledge of the concept of percent as a comparison to a standard base of 

100. 

3. Knowledge of the complement principle, namely where every percent part has 

a complement part to total the whole of 100%. 

4. Knowledge of the fraction-percent equivalence principle, namely that every 

fraction is a percent if the denominator is 100. 

5. Knowledge of the decimal-percent equivalence principle, namely that decimal 

hundredths are percents as they relate to a base of 100. 

6. Knowledge of the additive/subtractive percent increase/decrease principle 

where percent increase/decrease situations are interpreted as an added or 

subtracted change to the original whole. 

7. Knowledge of the multiplicative percent increase/decrease principle where 

percent increase/decrease situations are interpreted as a multiplicative change 

to the original whole. 

8. Knowledge that there are only three types of percent application problems. 

2. 4. 5 Summary of key points 

In this section, a proportional method for percent problem solving was 

proposed as an efficient and effective means to assist interpretation, representation and 

solution of percent application problems. This method was seen to provide a model 

and strategies for percent problem solving to enable students to experience success in 

percent problem solving regardless of their level of proportion knowledge. The dual­

scale number line within the method was proposed as reflecting the essence of percent 

as a proportion. Instruction in the method, therefore, is based on presenting percent as 

a proportion. Also in this section, a model of percent knowledge was proposed, 

consisting of intuitive, concrete, computational and principled-conceptual knowledge. 

This model was created to define percent knowledge in greater terms than conversions 

and calculations and thus to serve to guide instruction in percent. 

2.5 Towards an integration of percent issues to inform 
curriculum design 
In the first two sections of this chapter, teaching approaches to promote 

percent concept development and methods for solving percent applications problems 

were presented. Teaching approaches for developing the concept of percent, as 

described in section 2.1, included ideas for linking of percent to common and decimal 
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fractions (e.g., Brueckner & Grossnickle, 1953; Hauck, 1954), using 10x10 grids to 

promote mental images of percents (e.g., Bennett & Nelson, 1994; Reys, Suydam & 

Lindquist, 1992), investigating the special language of percent used in society (e.g., 

the use of such terms as 100% attendance, 200% attendance) and building estimation 

skills through exploration of patterns of simple percent calculations (e.g., Cooper & 

Irons, 1987; Glatzer, 1984), linking percent to ratio understanding (e.g., Brown & 

Kinney, 1973), and studying percent expressions as statements of proportion (e.g., 

Schmaltz, 1977). In section 2.1.5, the potential advantages and shortcomings of the 

teaching approaches for percent concept development were identified, and will be 

reiterated here. Linking percent to common and decimal knowledge appears to be a 

useful starting point, assuming students have developed sufficient common and 

decimal fraction knowledge. However, this approach could lead to students 

developing a narrow view of percent if it is the only focus of teaching. The use of 

lOxlO grids to assist students to link common and decimal fraction knowledge to 

percent knowledge appears to be useful for promoting knowledge of equivalence 

between common fractions, decimal fractions and percents. However, the applicability 

of 10x10 grids can be questioned due to their seeming inability to adequately represent 

percents greater than 100, when the use of two grids are suggested (see Figure 2.1). 

Exploration of the special language of percent as used in society and the promotion of 

mental computation skills are useful suggestions for inclusion in a teaching program, 

and appear to offer students an opportunity to draw upon and clarify their intuitive 

notions of percent. Whilst arguments against linking percent to common and decimal 

fractions, and promoting the definition of percent as meaning "hundredths" are worth 

consideration, promoting percent knowledge through linking to ratio knowledge may 

be difficult. For students to develop an understanding of percent as a ratio appears to 

require students to have developed a solid understanding of ratio in the first instance. 

Similarly, to understand percent as a proportion would require students to have 

developed a solid understanding of proportion. 

In section 2.2, various procedures, models and strategies for solving percent 

application problems were described, and these included the use of fraction/percent 

overlays, elastic strips, 10x10 grids, identification of key words, use of mnemonic 

strategies, and comparison scales. In section 2.2.8, potential advantages and 

shortcomings of each were outlined, which can be listed as follows: (a) 

fraction/percent overlays exemplify the part/whole notion of percent situations but can 

be used only for Type I and Type II percent situations; (b) Type III percent situations 

can be adequately modelled using an elastic strip, but the elastic strip models the 

proportional nature of percent situations, not the part/whole notion of the overlays; (c) 

lOxlO grids require extensive decimal and fraction multiplication and division 

procedures as well as a high level of computational estimation skill; (d) grids are time-
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consuming to construct and also do not appear to lend themselves to percents greater 

than 100; (e) mnemonics and key words appear to be very procedural methods, 

unrelated to percent concepts and principles, and therefore appear limited in their ability 

to promote students' principled-conceptual knowledge; (f) comparison scales appear to 

be simple to construct and powerful for representing percent situations as statements of 

proportion, but offer few suggestions for assisting students solve proportion equations 

meaningfully; and (g) procedures for calculating the proportion use relatively simple 

numbers, and fail to address understanding of the calculations required in proportion 

equations when the numbers are not multiples or factors of 100. 

As seen in section 2.1 and 2.2, the percent literature offers a variety of 

opinions on teaching and learning percent. With such diversity of opinions and 

suggestions, the percent literature presents as a picture of controversy and confusion, 

rather than serving as a guide for the development of a comprehensive and coherent 

teaching program. Indeed, the studies of various teaching programs trialed in 

classrooms, as summarised in section 2.3.2, also indicate little consensus about 

percent instruction and percent teaching programs. 

One particularly prominent theme in the literature is that the meaning of 

percent is primarily proportion (Allinger, 1985; Parker & Lienhardt, 1995; Post, Behr 

& Lesh, 1988). The perceived difficulty of implementing a program of percent 

instruction from a proportional perspective is that students typically do not have a well­

developed concept of proportion at the time they meet instruction in percent (Lo & 

Watanabe, 1997). This issue was the point of discussion in section 2.3. 

As a proportional approach to percent instruction was discussed, 

paradoxically as embodying the prime concept of percent, further literature was 

consulted in a effort to glean ideas for the development of a teaching program on 

percent. Pertinent points can be summarised (as in section 2.3.5) in terms of the 

following: (a) that mental models facilitate understanding of mathematics concepts; (b) 

that successful problem solving is based on the ability to analyse and interpret 

problems; and (c) that practise of computational skills before application to solving 

problems is not necessarily a useful classroom practice. In section 2.4.2, such 

suggestions were considered in light of developing a teaching program on percent, and 

can be summarised as the following: (a) that an appropriate mental model which 

represents percent as a proportion may assist the development of students' 

understanding of percent as a proportion and as well promote students' knowledge of 

the proportion concept itself; (b) that promotion of a part-whole-percent schema 

(similar to a part-part-whole schema for interpreting addition and subtraction word 

problems) may assist students to interpret the three elements contained in percent 

problems as well as enabling students to distinguish between Type I, Type II and Type 

III percent problems; and (c) that within the teaching program, the three types of 
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percent problems should be presented to students simultaneously rather than treated as 

separate cases. 

From the literature on percent, selected literature on proportion, and other 

literature pertaining to teaching and learning mathematics, an approach for interpreting, 

representing and solving percent problems, which utilised a vertical, dual-scale number 

line and the Rule of Three procedure for calculation of proportion equations, was 

presented in section 2.4.2. As stated in section 2.4.2, the method was devised in the 

conscious effort to provide students with strategies for percent problem solving and a 

model of percent as a statement of proportion which was accessible to students 

regardless of their level of proportional knowledge. In a further attempt to find 

direction for the construction of a teaching program on percent, which could be seen as 

more than promoting students' conversion, computation, and application skills, a 

model of percent knowledge was proposed in section 2.4.4. Based on Leinhardt's 

(1988) model of mathematics knowledge, percent knowledge was defined as 

consisting of intuitive, concrete, computational and principled-conceptual percent 

knowledge. A teaching program was developed with instruction planned to progress 

from intuitive to concrete, concrete to computational, computational to principled­

conceptual percent knowledge, in accordance with suggestions by Lampert (1986). 

The proportional number line method for interpreting, representing and solving percent 

problems (presented in section 2.4.2) was deemed as a possible vehicle to promote 

students' principled-conceptual knowledge (listed in section 2.4.4) through the 

development of concrete and computational knowledge as students solve percent 

problems. 

Thus faced with a percent literature which appeared to present a confusing 

picture of issues associated with teaching and learning percent, a teaching program was 

adopted that promoted principled-conceptual knowledge of percent as a proportion and 

provided a structure for continued knowledge growth of percent as a multi-faceted 

concept. 

CHAPTER SUMMARY 
In this chapter, issues in teaching and learning percent were presented. 

Summaries of instructional approaches for both developing the concept of percent in 

learners, and for solving percent problems, were described. Included in this chapter 

was a method for interpreting, representing, and solving percent problems based on a 

proportional teaching approach to percent, and a model of percent knowledge to 

promote students' percent knowledge in a broad sense. This chapter concluded with a 

synthesis of literature on percent in particular and selected literature on teaching and 

learning mathematics in general in an attempt to integrate percent issues, and to provide 

direction for the development of a coherent and comprehensive teaching program. 
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Analysis of literature on teaching and learning percent indicated the variety of 

strategies, methods and approaches available to teachers for developing instruction in 

percent, and the lack of consensus amongst authors in the field. The myriad of 

approaches suggests that, as students move through their years of schooling, they 

could be exposed to a variety of instructional approaches for percent knowledge 

development. Such a variety of instructional approaches could precipitate the 

development of confusion and misconceptions within the percent domain. Teaching 

programs which focus on providing assistance for students experiencing difficulty in 

the study of mathematics is the field of mathematics diagnosis and remediation. 

Diagnostic-prescriptive mathematics teaching is the focus of the next chapter. 
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CHAPTER 3 

LITERATURE 

The diagnostic-prescriptive teaching of 
mathematics 

CHAPTER OVERVIEW 
The focus of this chapter is the diagnostic-prescriptive teaching of 

mathematics. It is an exploration of issues pertaining to the development of learning 

difficulties in mathematics. In this chapter is presented a summary of research into the 

development of mathematical errors, misconceptions and alternative conceptions; 

instructional programs for overcoming such inappropriate mathematical knowledge; 

and factors which affect the success of such programs. Also presented in this chapter 

is a discussion of the role of metacognition in promoting successful mathematics 

learners and strategic problem solvers. 

This chapter is divided into six sections. In section 3.1, diagnosis is 

discussed. In section 3.2, research into error patterns in mathematics is summarised. 

In section 3.3, remediation, or the provision of intervention programs and strategies to 

specifically assist students experiencing learning difficulty in the study of mathematics, 

is addressed. In section 3.4, specific programs of intervention are overviewed, and 

remediation is addressed once more and the need to redefine the term 'remediation' is 

discussed. In section 3.5, the Conceptual Mediation Program (CMP) (Lyndon, 1995) 

as an alternative framework for diagnosis and remediation is presented. In section 3.6, 

the Conceptual Mediation Program is discussed in terms of mathematics diagnosis and 

remediation, and a model of diagnostic-prescriptive mathematics teaching incorporating 

CMP is proposed. 

3.1 Diagnosis 
3 .1.1 Overview 

The focus of this section is on diagnosis in mathematics instruction. In section 3.1.2, 

the diagnostic process is described, and in section 3.1.3, the importance of 

determining the exact nature of the learning difficulty is discussed. This section 

concludes with a summary of key points presented in section 3.1.4. 

3 .1. 2 The nature of learning problems in mathematics 

It is when a student begins to exhibit symptoms of mathematical 

misunderstanding that those concerned with the individual's mathematical progress 
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(e.g., parents, teachers, and the student him/herself) are alerted to the existence of a 

mathematics learning problem. As Kirby and Williams ( 1991) stated, "learning 

problems begin to exist only as they [the students] begin to fail" (p. 242). In the 

school setting, the provision of extra assistance to promote mathematical achievement 

is the domain of mathematical diagnosis and remediation. 

Once students have been identified as experiencing difficulty with the study of 

mathematics, determining the nature of the difficulty is required (Ashlock, 1994; 

Shapiro, 1989; Underhill, Uprichard & Reddens, 1980). This is the process of 

diagnosis. Underhill, Uprichard and Reddens (1980) used a medical analogy to 

characterise the diagnostic process, where a doctor gathers as much information as 

possible about the nature of a patient's complaint prior to prescribing a remedy to 

overcome the troubling condition. In relation to mathematics, the diagnosis of a 

student's learning problem begins at a global level, through analysis of the student's 

various formal test papers; observations of the student working on mathematical 

problems and activities in the classroom, and in other subjects; observations of the 

student interacting with his/her peers; determining the home environment of the student 

in terms of assistance for mathematical studies and the student's preferred learning 

style (e.g., Fernald, 1971; Reisman, 1982; Shapiro, 1989). 

Included in this information gathering process can be the administration of 

various psychological tests to determine whether the student has some particular 

physiological problem which is slowing down his/her educational progress (Fennell, 

1981). If a mental process, or other disability has been eliminated as contributing to 

the student's difficulty in mathematics, further information must be gathered to 

pinpoint the specific nature of the problem. This may be accomplished through: 

analysis of the student's solutions to pen-and-paper test items; examination of written 

scripts of the student's work; interviews with, and observations of, the student as 

he/she works on various mathematical problems and exercises. Diagnosis, then, is 

characterised as a process of continual probing: providing students with a variety of 

mathematical tasks in relation to specific mathematical topics to determine the student's 

mathematical strengths and weaknesses (Ashlock, 1994; Wilson, 1976a). 

A further dimension to the diagnostic process is offered by Shapiro (1989) 

who suggested that it should be the classroom learning environment and a teacher's 

teaching style which must also be analysed to build a clearer picture of the nature of a 

student's learning difficulty. As Shapiro (1989) stated, "Indeed, if a child fails to 

master an academic skill, it directly suggests potential failure in the instructional 

methodologies" (p. 23). Historically, diagnosing the nature of students' difficulties in 

any academic field was influenced by the expectation that the learning difficulty was a 

result of some physiological processing capacity of the learner (e.g., Kephart, 1960). 

Recently, diagnosis has emphasised the necessity to focus more on the students' 
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learning environment, and the quality of the instruction the child received prior to 

developing the learning difficulty (MacDonald, 1972; Shapiro, 1989). As Derry 

( 1990) suggested, "our explanations of learning difficulties are placing less emphasis 

on the diagnosis of structural learning processes" (p. 19). Rather than diagnosis 

suggesting weaknesses in the memory processing of the child for example, students' 

learning difficulties are more frequently diagnosed as stemming from a lack of 

understanding directly attributable to instruction (MacDonald, 1972; Woodward & 

Howard, 1994). 

3. 1. 3 Learning difficulties and specific mathematical learning 

difficulties 

Although the trend is away from attributing students' processing deficiencies 

as the cause of learning problems, the need for careful diagnosis of the nature of the 

student's learning difficulty has been highlighted by Kirby and Williams (1991). 

Kirby and Williams also acknowledged that the instructional environment may be the 

prime source of a learning difficulty for the majority of students in the mainstream 

classroom, but this may not be the case for all children. For example, quite often, 

students with learning problems exhibit behaviour problems in the regular classroom, 

such as inattentiveness and distractive behaviour. The learning environment may be 

the cause, but there may be another cause. According to Kirby and Williams, 

distractive behaviour may be a direct result of the child experiencing difficulty in a 

specific area, or it could be because the child's physiological make-up is causing the 

inattention, and hence the learning difficulty. Or, it could be that the child is suffering 

an emotional problem which is causing the inattentive behaviour which is causing the 

specific learning difficulty. Thus, Kirby and Williams have categorised learning 

difficulties as due to three main causes: physiological attention problems, emotional 

problems, and specific subject-related learning problems. They suggested that, if one 

of these three sources is the prime cause of the child's learning difficulty, this will 

cause secondary and tertiary problems. For example, a child whose learning problem 

is emotional in nature, will most likely exhibit attention deficit-type behaviours, which 

will cause a tertiary problem, in that the child will develop a specific learning problem 

due to lack of attention when a specific subject is being taught. Similarly, a child 

experiencing difficulty with learning a specific subject will develop secondary 

emotional problems, such as anxiety, avoidance, low self-esteem, and this may cause 

attention deficit behaviours. 

Kirby and Williams suggested that it is learners primarily with specific 

learning difficulties with whom classroom teachers must deal most consistently. 

Classroom teachers, thus, must become acquainted with a wide range of strategies and 

methods for helping students with specific learning needs to achieve in the classroom. 
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Learners with emotional problems or physiological attention problems require more 

specialised assistance from others trained to deal with such problems. As Underhill et 

al. (1980) stated, "No matter how sophisticated the classroom teacher becomes in 

mathematics teaching, there still will be children with severe mathematical difficulties 

with which the regular classroom teacher cannot cope with in the classroom 

environment" (p. 67). 

Kirby and Williams' (1991) analysis is useful in providing a focus for the 

diagnosis of students' difficulties in mathematics, and suggests that some children 

need other, external assistance (such as counselling, or medical assistance), but that 

not all overactive, inappropriate behaviour needs to be drug- or other-regulated. Much 

diagnosis will point at the instructional setting as a cause of learning problems, and 

therefore, the classroom teachers' instructional program is accountable for students' 

progress. 

3 .1. 4 Summary of key points 

In this section, the importance of diagnosis in determining the nature of a 

student's learning difficulty was discussed. It was suggested that the majority of 

students' learning difficulties can be traced to poor instruction, although such 

difficulties can result from other causes. The nature of the learning difficulty must be 

ascertained in order to develop appropriate intervention programs. 

3. 2 Error patterns in mathematics 
3.2.1 Overview 

The focus of this section is on error patterns and misconceptions in 

mathematics. In section 3.2.2, a summary of error pattern research in mathematics is 

presented. Errors as knowledge are discussed in section 3.2.3, and errors in terms of 

constructivist learning theory are described in section 3.2.4. Explanatory theories for 

the development of error patterns in mathematics are presented in section 3.2.5. A 

summary of key points in this section are listed are section 3.2.6. 

3 . 2. 2 Error pattern research 

Analysis of students' errors on mathematical tasks can serve as a means for 

gleaning information about a student's mathematical knowledge and skill in a particular 

domain, and is thus a focus for diagnosis of the nature of the student's mathematical 

learning difficulty at a specific level. The study of error patterns in mathematics 

computation has revealed that, contrary to the belief that all errors are random and 

careless, they occur regularly and consistently (Brumfield & Moore, 1985; Cox, 

1975). To determine the nature of the error, providing students with several items of 

similar type of computational exercises enables classification of errors as either 
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consistent or careless. According to Cox (1975), a student demonstrating the error 

pattern at least three times out of five attempts indicates that the error is habitual and 

automatic. Technology has moved to assist the process of error pattern analysis with 

the advent of several computer programs designed for such a purpose (e.g., Orey & 

Burton, 1992; Woodward & Howard, 1994). Analysis of students' errors on pen­

and-paper tests, or via computer-assisted means, can provide insight into the 

consistency of the error, and thus provide a focus for programs of intervention. 

Error analysis can be regarded as a window through which the thinking 

processes of the individual in relation to construction of the error may be viewed. For 
example, a student may respond with a solution of 3 I 5 to the mathematical calculation 

of 112+213, and such a response may be consistent across all such fraction 

computational exercises. A hypothesis might be that the student is simply adding the 

numerators to get the digit for the numerator in the solution, and is adding the 

denominators to get the digit for the denominator in the solution. The creation of such 

a solution suggests that the student is overgeneralising whole number addition rules, 

and that the student has little conceptualisation of fraction addition. However, merely 

hypothesising the nature of the error through such means can lead to misinterpretation 

of a student's thinking (Orey & Burton, 1992). Probing deeper into the individual's 

mind to determine the nature of the error, interviewing students (Ashlock, 1994; Orey 

& Burton, 1992), or even having students write about their erroneous solution 

processes (Drake & Amspaugh, 1994) will assist the diagnostic process. 

Categories of students' (and adults') patterns of mathematical error have been 

well documented over many mathematical domains. Ashlock (1994) provided a 

comprehensive historical summary of error pattern research, focussing particularly on 

identification of error patterns in computation. Recent studies have reported on 

evidence of consistency in students' (and adults) errors in mathematical skill 

calculation and conceptual understanding in other mathematical topics, such as Year 8 

students' understanding of parallel lines (Mansfield & Happs, 1992), Year 5 students' 

understanding of ratio and proportion (Pong, 1995), Year 10 student's understanding 

of circle geometry (Borassi, 1994); high school students' skill in factoring polynomials 

(Rauff, 1994); secondary school teachers' concepts of group theory (Dubinsky, 

Dautermann, Leron, & Zazkis, 1994). 

As stated in chapter 1 (see section 1.1.6), the value of error pattern research 

can be seen to operate on at least three levels. Primarily, the accuracy of the diagnosis 

will enable specific intervention strategies and activities to be developed, with a greater 

chance of successfully helping the student overcome the learning difficulty and 

progress towards mathematical achievement. At a secondary level, error pattern 

research has pedagogic implications. If it is known the various errors students develop 

in relation to particular mathematical topics, teachers can develop programs of 
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instruction in an effort to possibly prevent the development of such errors (Maurer, 

1987; Stefanich & Rokusek, 1992). The creation of appropriately rich learning 

environments can thus be created from an informed position with greater teacher 

awareness of possible student misconceptions of the teaching experience. The study 

of systematic errors benefits teaching in that sources can be determined and learning 

environments developed that inhibit errors (Behr & Harel, 1990). At yet another level, 

error pattern research has implications for teacher training programs. For example, 

Thipkong and Davis ( 1991) alerted educators to the influence of teacher errors and 

misconceptions in their teaching, and thus on student learning. In their research, they 

identified preservice teachers' misconceptions in interpreting and applying decimals, 

noting that the misconception "multiplication makes bigger, division makes smaller" 

was extremely prevalent. They suggested that if teachers are aware of their own errors 

and misconceptions in particular mathematical topics, great care will need to be taken 

so that such errors and misconceptions are not transferred to learners. Research on 

preservice and inservice teacher errors serves to thus inform mathematics teacher 

training programs. 

3. 2. 3 Errors and knowledge 

The study of error patterns has significantly influenced the field of diagnosis 

and remediation in mathematics, providing alternative perspectives on what errors 

indicate (e.g., Ashlock, 1994; Ashlock et al., 1983). Traditionally, students who 

made errors in their work were regarded as suffering from some learning disability 

(e.g., Kephart, 1960). From this perspective, students made errors because they 

lacked knowledge of a "correct" algorithm, and as such, these students needed slow 

and progressive re-teaching in order to repair their knowledge deficit (e.g., Valett, 

1976). A deficit model of error production suggests that the student has remained 

completely ignorant of the correct skill performance; that nothing has been learned as a 

result of the original teaching effort. 

Consistency in production of errors tends to negate a view that errors are 

indicative of a lack of knowledge. According to Ashlock (1994), the fact that errors 

can be systematic over certain mathematical computations indicates that they are 

habitual, automatic responses to specific stimuli. In contrast to random, careless 

errors, habitual errors are not self-detected nor self-corrected; they are conceptual and 

learned. The implication of errors as conceptual and learned knowledge provides an 

alternative perspective on what errors indicate about a student's mathematics 

knowledge. Errors are thus indicative of the presence rather than the absence of 

knowledge. The notion of mathematics learning disabilities suggests a difficulty in 

acquiring knowledge. Consistency in errors indicates that the student is, in fact, 

capable of learning. From this perspective, what a student has learned are merely 
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incorrect ways of doing things. The student has somehow acquired a learned disability 

rather than a learning disability (Ashlock, 1994). 

3. 2 . 4 Errors and constructivism 

Constructivist theories of learning state that knowledge is actively constructed 

by the individual. Of constructivism, Confrey (1990a) stated, "constructivism can be 

described as essentially a theory about the limits of human knowledge, a belief that all 

knowledge is necessarily a product of our own cognitive acts" (p. 67). Interpretation 

of mathematical errors and misconceptions as knowledge, then, is consistent with 

constructivist learning theory. Errors are personal constructions in the mind of the 

individual, and thus are meaningful, and make sense, to the individual (Confrey, 

1990b; Rauff, 1994). They are an individual's interpretation of a mathematical 

situation at the time. Confrey (1990a) stated that the work of Piaget has served to 

highlight the concept of knowledge as mental constructions with Pia get's 

documentation of the child's view of particular mathematical situations. As she stated: 

... a child may see a mathematical or scientific idea in quite a different way 

than it is viewed by an adult who is expert or experienced in working with the 

idea. These differences are not simply reducible to missing pieces or absent 

techniques or methods; children's ideas also possess a different form of 

argument, are built from different materials, and are based on different 

experiences. Their ideas can be qualitatively different, which can sometimes 

mean that they make sense only within the limited framework experienced by 

the child and can sometimes mean they are genuinely alternative. To the child, 

they may be wonderfully viable and pleasing. (p. 108-109) 

Confrey's statements provide a clear picture of active learners operating on 

and interpreting mathematical and scientific situations within their own mental 

framework. Further, Borassi (1994) provided a comprehensive description of the 

growth of mathematical knowledge at a societal level to reflect mathematical knowledge 

growth at an individual level in terms of constructivism. Citing the philosophical 

contributions of explanatory theories of mathematical knowledge, including (a) 

Dewey, who suggested that knowledge is a process of inquiry motivated by doubt; (b) 

Kuhn, who described knowledge as oscillation between normal science and scientific 

revolution, where unacceptable results and unsolvable problems leads to new 

perspectives; and (c) Lakatos, who stated that mathematical knowledge occurs through 

a dialectic process of proofs and refutations; mathematical knowledge can thus be seen 

as a constructed body of knowledge, changing and evolving over time. In light of this 

philosophical analysis of the construction of mathematical knowledge through history, 

Borassi likens the growth of mathematical knowledge in students. He described a 

view of learning "as a generative process of meaning making that is personally 
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constructed, informed by the context and purposes of the learning activity itself, and 

enhanced by social interactions" (p. 167). In terms of errors and misconceptions, 

Borassi's discussion shows that, at certain times in history, mathematical knowledge 

was erroneous, but was the socially constructed mathematical knowledge of the time. 

Mathematical errors and misconceptions, therefore, can be regarded as constructed 

knowledge. As Confrey argued, "Students are always constructing an understanding 

for their experiences ... Students' misconceptions, alternative conceptions and prior 

knowledge provide evidence of this constructive activity" (p. 112). In a similar vein, 

Rauff ( 1994) described students' mathematical knowledge as constructed over time, 

students' mathematical knowledge is based on their beliefs, and errors and 

misconceptions stem from their beliefs. According to Rauff, errors are logically based 

from within the student's "belief-set" and are thus meaningful and logical to the owner. 

3. 2. 5 The development of consistent errors 

In relation to the development of error patterns, Resnick et al. (1989) provided 

a description of how students develop patterns of error in computation, which can be 

seen to fit within a constructivist framework. According to Resnick et al., it is through 

children's attempts to integrate new knowledge with established knowledge that errors 

often develop. In explaining this process, Resnick et al. suggested that, within the 

mathematics classroom, teachers provide various examples of mathematical procedures 

for students to learn and practise. In the classroom situation, teachers can only provide 

certain examples, and when students are faced with computation exercises which have 

not been explained by the teacher, the students must decide for themselves how to 

proceed. According to Resnick et al., as a result of "making these inferences and 

interpretations, children are very likely to make at least temporary errors. Errorful 

rules are a natural result of children's efforts to interpret what they are told and go 

beyond the cases actually presented ... [therefore] errorful rules are active 

constructions" (p. 25); that is, they are the child's interpretation of the mathematical 

situation at the time. 

Brown & Van Lehn's (1982) "Repair Theory" also provides an explanation of 

the development of patterns of error which can also be interpreted as active 

constructions by students. Their theory described the development of error patterns in 

terms of computer language. In their theory, students' errors are called "bugs", and 

the process through which children develop these bugs is called Repair Theory. 

Repair Theory explains the process of how children develop consistent patterns of 

error: when learners are confronted with tasks on which they are unsure of how to 

perform (on which they have become "stuck"), they use a simple "repair" tactic which 

enables them to produce a solution and become "unstuck". In this way, repairs occur 

as a result of learners' choosing alternative solution paths in order to produce answers. 
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If the repair is erroneous and left unchecked, the incorrect repair, through repetition, 

becomes a habit, produced in response to appropriate stimuli. The repair is now a 

consistent error; that is, a "buggy" solution. Some students take several alternative 

solution paths in response to the one stimulus, hence switching between bugs, and this 

is labelled "bug migration". Bug theory is an explanatory theory for the development 

and consistency of erroneous algorithmic procedures (buggy solutions), and the 

existence of several incorrect procedures for the same stimulus (bug migrations). [Bug 

migration does, however have implications for accurate diagnosis of consistency in 

errors. Some procedures yield correct solutions, thus confirming the legitimacy of the 

buggy procedure in the mind of the student, and hence making remediation of that 

error pattern all the more difficult (Ashlock, 1994)]. 

3. 2. 6 Summary of key points 

In this section, a summary of error pattern research was presented. Errors 

were described as knowledge, and this has implications for intervention. The 

difficulty in intervention programs is thus in dealing with knowledge rather than 

assuming that errors result from a lack of knowledge. Such issues in remediation are 

the focus of the next section. 

3. 3 Remediation 
3. 3 .1 Overview 

The focus of this section is on mathematics remediation as the means for 

promoting successful mathematics learners. Section 3.3.2 begins with a summary of 

diagnostic-prescriptive models to guide the development of instructional programs to 

cater for students experiencing difficulties with particular mathematical topics. 

Included in this section is a brief review of some resources to support the diagnostic 

teaching of mathematics. In section 3.3.3, diagnostic-prescriptive instruction as a 

program of good teaching is discussed. Discussion in the following sections focuses 

on how the field of diagnostic-prescriptive instruction has expanded beyond programs 

and method for assisting students who are experiencing difficulty with particular 

mathematical topics to encompass models and strategies to assist students become 

better mathematical problem solvers, and more self-directed, self-reliant, autonomous 

learners. In section 3.3.4, the Cognitive Apprenticeship Model as a model for helping 

children develop their problem solving skills and strategies is described. In section 

3.3.5, promoting autonomy in learning through the development of metacognitive 

skills is summarised. Factors influencing metacognition, as success and effort, are 

discussed in section 3.3.6. The issue of skill development for problem solving is 

discussed in section 3.3.7. A summary of key points in this section is presented in 

section 3.3.8. 
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3. 3. 2 Diagnostic-prescriptive teaching models 

Reisman (1982) proposed a five step model for the diagnostic teaching 

process. After the first step of identifying the student's mathematical strengths and 

weaknesses, the next step is to hypothesise the nature of the difficulty and then 

formulate the mathematical behavioural objectives expected to be displayed by the 

student as a result of the intervention. The fourth step is to plan and implement the 

corrective remedial procedures, and the final step is the ongoing evaluation of the 

progress of the student as a result of the corrective instruction. The fourth and fifth 

steps are seen to interact and overlap. 

Wilson (1976a) proposed a model for diagnosis and remediation in 

mathematics which simultaneously provided a guiding framework for research in this 

field. According to Wilson, the model operates at two levels. Primarily, the model is 

to be utilised to assist the planning of specific intervention strategies for students 

experiencing difficulty in mathematics. Guiding principles for intervention are those 

based on building and correcting conceptual knowledge and expanding students' 

awareness and repertoire of cognitive strategies. At a secondary level, the model is for 

research into specific remedial teaching strategies from which hypotheses can be drawn 

to generally inform planning of effective teaching programs and episodes. The model 

is based on a specific perspective of mathematics: Mathematics is a highly organised, 

hierarchical structure, and children experiencing difficulty with the study of 

mathematics lack knowledge of the structure of the topic. Interaction with children in 

the diagnostic/remedial situation is a means for researching activities and experiences 

which appear to foster children's mathematical knowledge whilst also contributing to 

the research of the structural organisation of mathematics itself. Wilson viewed his 

model as a means for unravelling the complex structure of mathematics topics to assist 

in the diagnostic process and hence pinpoint remediation programs. Further, Wilson 

believed that mathematical knowledge is the ability to apply mathematics within various 

situations, and to be able to "see" a topic inherent in a range of exemplars and 

representations. According to Wilson, this level of mathematical knowledge is the 

extent to which remediation should strive. Thus, in the intervention program, 

student's knowledge is continually probed and diagnosed over a variety of exemplars 

and representations. The remediation process is the continual revisiting of the topic 

until a student's knowledge of the topic has reached such a level of complexity. Thus 

the model ascribes to developing indepth mathematics concepts, principles and 

schemas. 

Wilson described an instructional cycle as a guiding teaching model for 

promoting deep mathematical concept knowledge, with diagnosis being a central 

aspect. The model clearly described a cycle of activities for teaching: initiating, 
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abstracting, schematising, consolidating, and transferring. Ashlock et al. (1983) 

incorporated this model into a description of their diagnostic-prescriptive approach to 

mathematics. Briefly, the model suggests that, in the initiating phase, the teacher 

provides activities for students to explore the new concept; in the abstracting phase, the 

teacher carefully structures tasks so that the key principles of the concept can be 

understood by students; in the schematising phase the teacher provides activities for the 

purpose of linking students' prior knowledge to new knowledge. Having laid the 

foundation for concept development through exploration and structured linking 

activities the teacher then provides opportunities for students to practise and 

consolidate their new knowledge. According to Ashlock et al., when students can 

"easily, habitually and accurately recall new concepts and skills" (p. 26) they are in a 

position to transfer their knowledge to other new situations. The transferring stage is 

the final phase in the model before returning to the initiating phase. Diagnosis is 

integral to this model, where, at every phase, diagnosis informs the teacher's decisions 

about further instruction. Observation, interviews and pen-and-paper tests are 

suggested means for gathering data on students' understanding of the topic being 

taught. 

A further model for diagnostic-prescriptive teaching is proposed by Underhill, 

Uprichard and Heddens (1980) where the focus is on task analysis. Similar to the 

Wilson (1976a) model, this model is based on the assumption that mathematics is a 

hierarchically structured subject. Through task analysis, mathematical topics are 

broken up into component parts, thus pinpointing important steps in the learning 

sequence so that sequential instruction can be built. The key requirement in this model 

is for the teacher to become familiar with the hierarchical structure of a mathematical 

topic. Following this, a teacher can ascertain a student's level of knowledge in relation 

to that topic through interviews, where the student's knowledge is explored through 

use of concrete materials and representations. In this way, a teacher is gathering 

evidence for development of future learning experiences. The three main phases of 

this model are: task analysis, diagnosis of student knowledge, and provision of 

learning experiences based on both task analysis and student knowledge analysis. As 

Underhill et al. stated, ''The diagnostic model is based upon a good teaching/learning 

sequence so that the outcomes lead back into the sequence in a very smooth and natural 

way ... The diagnostic data are easily translated into needed curriculum 

experiences ... facilitating ease of design of both tests and curriculum experiences" (p. 

39-40). To support the implementation of diagnostic-prescriptive programs of 

intervention, various resources are available (e.g., Ashlock; 1994; Ashlock et al., 

1983; Booker, Irons & Jones, 1980; Fennell, 1981; Jones & Charlton, 1992; Valett, 

1978; Wilson, 1976a). Written within a framework of a diagnostic-prescriptive 

mathematics model for instruction, such resources offer prescriptive teaching 
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sequences for instruction in vanous mathematical topics. For example, Ashlock 

(1994) provided a comprehensive list of activities to specifically help students 

understand the legitimacy of computational procedures and to overcome their own 

computational error patterns. The activities often involve the use of concrete materials, 

and the activities are designed to promote students' understanding of the place-value 

numeration system in which we operate. For example, the use of bundling sticks and 

base 10 blocks are advocated to exemplify regrouping procedures in our number 

system, which enable computational procedures to be performed. Another resource 

which focuses on computation is presented by Booker, Irons and Jones (1980). This 

resource describes a structured, sequential approach to teaching the four operations 

meaningfully, through the use of materials (particularly base 10 blocks) and 

appropriate language. A resource kit by Valett (1976) provides a collection of activities 

for developing students' understanding of number. Similarly, other authors (e.g., 

Ashlock et al., 1983; Booker, Briggs, Davey & Nisbet, 1992; Jones & Charlton, 

1992) describe teaching approaches to various topics within the mathematics 

curriculum, emphasising the key concepts which need to be developed so that students 

will overcome their difficulties in understanding of specific mathematical topics. Such 

resources provide guidelines for meaningful teaching of mathematical topics for use 

with individual students, or with whole classes of students. 

3. 3 . 3 Diagnostic-prescriptive instruction and "good teaching" 

Programs, models and strategies for assisting students who are experiencing 

learning difficulty in the classroom appear to share certain similarities in that they 

follow a spiral approach, cycling though stages of diagnosing students' prior 

knowledge of a topic, planning instruction based on task analysis, and monitoring 

students' progress to guide further instruction. Diagnosis, particularly analysis of 

errors and misconceptions, provides the teacher with a picture of a student's 

knowledge of and beliefs about a topic so that learning tasks can be planned to promote 

appropriate knowledge growth. The process of task analysis provides teachers with an 
,. 

awareness of the relative complexity of a particular mathematics topic, so that 

instruction can be planned to be sufficiently rich in order to minimise students' 

difficulties, through promoting a rich understanding of that topic. Analysis of errors 

and exploration of misconceptions enable a learner's mathematical knowledge and 

beliefs to be determined. Continual monitoring of student progress in a topic is a 

means of individualising instruction, and thus catering to the learning needs of all 

students. Thus, diagnostic teaching models appear to be based on good teaching 

models. Resources to support the diagnostic-prescriptive teaching of mathematics 

provide suggestions for building and linking students' mathematical knowledge, and 

the means for providing representations to give meaning to mathematical procedures. 
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Such resources can therefore be regarded as comprehensive summaries of the analysis 

of mathematical tasks (one of the elements within the diagnostic process, according to 

Underhill et al., 1980- see section 3.3.2), and are thus resources for "good teaching". 

Teaching approaches which focus on remediation can thus be regarded as little 

different to strategies and methods employed in good teaching practices. If diagnostic­

prescriptive approaches to teaching are simply implementing "good teaching", then it 

follows that if a diagnostic-prescriptive approach to teaching is taken in the first 

teaching effort, the need for remedial practices will be diminished. As Fischer (1989) 

stated, "Although diagnostic-prescriptive teaching is used to find and remedy problems 

that children have with the content to be learned, ideally it should be used before 

children have the problems. The diagnostic-prescriptive approach should have been 

used in the first place" (p. 7) 

3. 3. 4 Cognitive apprenticeship 

Cognitive apprenticeship models are global approaches to teaching which 

follow typical apprenticeship training methods (Reid & Stone, 1991; Rojewski & 

Schell, 1994 ), and are designed specifically to help students become more successful 

learners and problem solvers. In apprenticeship training, a trainee is apprenticed to a 

master craftsman, learning and acquiring skills and knowledge of the trade alongside 

the expert. In the cognitive apprenticeship model, the focus is not on developing 

expertise in execution of typically manual, trade-related skills, but on the development 

of high-level, mental processes and thinking skills displayed by the expert problem 

solver. Learners are placed in problem situations, and together with experts, solve real 

problems. In this collaborative problem solving enterprise, the expert models 

successful problem solving skills and strategies. The cognitive apprenticeship model 

places the teacher in a co-operative problem solving role, guiding each student's 

cognitive development through solving of real problems. 

Rojewski and Schell ( 1994) proposed a four-component model of cognitive 

apprenticeship, of content, methods, sequence, and sociology. Each component 

highlights specific knowledge, skills, and teaching considerations for successful 

teaching. The content component emphasises domain knowledge, heuristics, control 

strategies and learning strategies: knowledge and skills required by learners. The 

methods component focuses on teaching methods, and emphasises the need for 

teachers to plan carefully for learning experiences, plan opportunities for guided 

practice, modelling, coaching, scaffolding, fading and so on. The sequence 

component is a global teaching method, focusing on sequencing of learning 

experiences, and such things as increasing capacity, increasing diversity and global 

before local skills. The sociology component considers the learning environment, and 

encompasses such principles as co-operative learning, context-based learning, 
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establishing a community of practice, and so on. The components of this model 

interrelate, and the model provides a comprehensive analysis of the interaction of 

elements which make up a model to guide good teaching. 

Rajewski and Schell's components of the cognitive apprenticeship model 

highlight the complexity of the task of teaching, and the many factors which must be 

attended to for good teaching. This model suggests that teachers must provide 

students with strategies and skills for successful learning, that the teaching sequence 

must be carefully planned and structured to nurture students' knowledge development, 

and that the learning environment must be conducive to interactive learning. 

Reid and Stone (1991) described the value of cognitive apprenticeship models 

by drawing on the learning theories ofVygotsky and Piaget: from Vygotsky, the value 

of the social interaction in knowledge development, and from Piaget, the need for 

learners to internally reflect on new material presented to build new cognitive 

structures. Reid and Stone suggested that the power of the cognitive apprenticeship 

model is that it capitalises on these two elements of social interaction and development 

of cognitive structures as the learner interacts with the expert during problem solving, 

observing expert problem solving skills and behaviours. The teacher's role is to 

promote an interactive learning environment, drawing the students into the learning 

process through social interaction and knowledge sharing, and the encouragement of 

reflection upon action. Reid and Stone proposed that learning occurs via prolepsis and 

reflective abstraction. In this view, prolepsis is the bridging mechanism which enables 

two people to understand each other. In the teaching situation, this is through the 

teacher establishing a link to the students' knowledge, and propelling them forward to 

develop new knowledge. The construction of new knowledge is through reflective 

abstraction, namely, personal, internal reflection on individually held mental 

structures. Thus, the teacher plays a direct mediating role of building and linking 

student knowledge through social interaction, as Reid and Stone (1991) stated, 

"connecting links, links between past and current knowledge, links between 

participants representation of the task, links between knowledge and activity" (p. 17). 

3. 3. 5 Metacognitive skills and knowledge and self control of learning 

Characteristics of unsuccessful learners are clearly presented in the following 

statement by Chan (1993): 

In contrast to efficient, active, strategic, independent and self-directed 

learners, students with learning difficulties are found to show limited 

understanding of effective thinking and self-directed learning strategies, such 

as ways of setting a goal, making a plan, designing work tactics and routines, 

monitoring progress and evaluation for self-improvement. (p. 22) 
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By analysing what efficient learners do, it can be seen that the majority of 

effective learning strategies are metacognitive in nature. Metacognition, defined by 

Kirby and Williams ( 1991) is "the conscious awareness of ways of approaching tasks, 

of processing information, and of monitoring success" (p. 70). Students experiencing 

difficulty, as suggested by Chan, do not demonstrate such metacognitive strategies. 

Developing students' metacognitive skills appears to be a means of developing more 

efficient learners, and literature summaries of metacognitive training programs indicate 

that this is the case (Chan, 1993; Kirby & Williams, 1991). 

Metacognitive training is the process of developing students' metacognitive 

skills (Cole & Chan, 1990). Cole and Chan suggested that explicit instruction in both 

cognitive and metacognitive strategies is a means of improving students' task 

performance. They contrast cognitive strategies as task specific strategies, applicable 

to only a limited number of domains, with metacognitive strategies as strategies which 

are highly generalisable and applicable to a wide range of situations. However, the 

fact that students have been provided with highly generalisable metacognitive strategies 

is no guarantee that they will be employed in other situations. Training in 

metacognitive skills must also include a focus on assisting students to see the 

generalisable nature of the skills they are developing; that the application of such skills 

is equally applicable to other learning situations (Brown & de Loache, 1983). 

Brown and Palinscar ( 1982) described three types of training: blind, informed 

and self-regulatory. They stated that blind training is similar to traditional methods of 

instruction used in schools where children are told what to do, but not encouraged to 

think about why, or how the procedure relates to other situations. Informed training is 

where strategies are provided for children and reflectivity on the significance and 

transferability of the strategy is encouraged. In self-regulatory training, instruction is 

supplemented with training in planning, monitoring and assessing of strategies over a 

wide range of situations. Brown and Palinscar's discussion of training types provides 

useful guidelines for the depth of the training situation, and how metacognitive training 

must also aim to be self-regulatory training. 

3. 3. 6 Success and effort 

The development and use of cognitive and metacognitive skills is for the 

purpose of assisting students in successfully completing required learning tasks. The 

key role of success as a motivating force is well documented (e.g., Chan, 1993; 1991; 

Cole & Chan, 1990; Mercer & Miller, 1992). To ensure students experience success, 

the teacher must orchestrate situations for this to occur. Fernald (1971) stated that 

ensuring students experience success is a paramount requirement of remedial 

instruction. This process, according to Fernald, is the process of "emotional 

reconditioning", and ensuring the student experiences success on the very first day of 
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remedial instruction is the means to overcome the student's negative emotional feelings 

towards mathematics. As suggested by Fernald, a student who has experienced 

repeated failure in performing mathematical tasks will only approach anything 

mathematical with a degree of fear and loathing. Often, negative responses to 

mathematical situations are in the form of avoidance behaviours, where a student 

shows extreme reluctance to perform any mathematical tasks, particularly those tasks 

with which the student has had a long history of failure. The notion of avoidance 

behaviour has been well-documented in the past. Over 100 years ago, James (1890) 

stated that avoidance behaviours are exhibited as a response to avoiding the situation: 

the best way to avoid failure is never to try anything new, because if there is no attempt 

there can be no failure, and with no failure, there can be no humiliation. 

According to Cole and Chan (1990), instruction must be organised around 

two basic notions of "ensuring early success, and avoiding situations that lead to 

failure" (p. 14). Similarly, Mercer & Miller (1992) stated that, "Mathematical 

instruction must be designed to ensure success and promote positive attitudes" (p. 24). 

To become independent, autonomous and successful learners, metacognitive 

awareness and control is required (Chan, 1993). In terms of metacognition for 

successful task performance, students can experience success by applying cognitive 

and metacognitive skills to purposely planned tasks. However, convincing students 

that such strategic skills will enhance successful performance may not be a simple task. 

Student's self-confidence and beliefs come into play. As Chan (1993) stated, 

"Students must first believe in the worth and benefits of their strategic actions and 

effort before they will apply those strategies and efforts in situations that require 

strategic learning" (p. 22). 

Applying skills for successful task performance requires effort. Effort can 

only come from the individual, and students must become aware that they are primarily 

responsible for their own achievements. As Mercer and Miller ( 1992) suggested, 

students should be continually informed that what they do influences both their 

successes and failures, so that they "realise that their behaviour directly influences 

what happens to them, and consequently, that they are in control of their own 

learning"(p. 24). Teachers must convince students that their own efforts and 

persistence, together with application of learning strategies, determine successful task 

performance (Chan, 1993). 

The focus on effort for success squarely places the onus for achievement on 

the individual. Learning is an active process, and as Weinstein and Mayer (1986) 

suggested, learning "occurs within the learner and ... can be directly influenced by the 

learner" (p. 315). From this constructivist perspective, the learner actively influences 

the learning that occurs. Learning requires energy (Baird & White, 1982), and it 

follows that the learner is in direct control of the amount of energy to be expended. 
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For some learners, apparent energy expenditure may yield little result; the affective 

domain, and learning strategies are again called into play (as discussed above). 

However, as Derry (1990) stated, "advanced skill comes easily for almost no-one. 

Becoming an expert means very hard work" (p. 28). Becoming an expert requires 

practice. 

3. 3. 7 Skill development and mathematics problem solving 

The provision of opportunity to practise skills to automaticity is a necessary 

component of an instructional program (Derry, 1990; Mercer & Miller, 1992). 

However, there may be reluctance on some teachers' part to provide the opportunity 

for practice of mathematical skills, where the emphasis is on conceptual understanding 

of mathematics, rather than "drill-and-practice" of facts, skills and procedures. 

Traditionally, rote practice of mathematical skills was a common feature of 

mathematics instruction (following behaviourist learning theories, e.g., Thorndike, 

1923; 1922). With calls to make mathematics more meaningful (Brownell, 

1956/1987), drill-and-practice techniques became unfavourable. As Resnick and Ford 

(1984) stated, "computational and conceptual approaches to mathematics instruction 

have existed in a kind of uneasy balance as mathematicians and educators have pressed 

for increased conceptual understanding of mathematics" (p. 7). However, there is a 

need for automatic recall of mathematical skills, particularly in relation to problem 

solving (Anderson, 1985; Glaser & Bassock, 1989) and cognitive load (Resnick & 

Ford, 1984; Sweller, 1988, 1989). For example, Resnick and Ford (1984) stated that 

as "certain processes can be carried out automatically, without the need for direct 

attention, more space becomes available in working memory for processes that do 

require attention" (p. 31). They continue " ... at least certain basic computational skills 

need to be developed to the point of automaticity so they can avoid competing with 

higher level problem solving processes for limited space in working memory" (p. 32). 

Similarly, Glaser and Bassock (1989) suggested that the problem solving process 

alternates between reliance on basic skills and higher levels of strategy and 

comprehension, and thus have suggested the desirability of basic skills being 

automatised. As they stated: 

In the development of higher levels of proficiency certain component skills 

need to become compiled and automatised so that conscious processing 

capacity can be devoted to higher levels of cognition as necessary. (p. 635) 

The words of Gagne (1983) also emphasise the vital nature of computational 

proficiency to automaticity. As he stated, ''The rules for this part of problem solving 

(automatic rule using to carry out mathematical operations) would be best not just 

learned, not just mastered, but automatised"(p. 18). 
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The development of skill automaticity, as Anderson suggested (1985), 

distinguishes novice problem solvers from experts. Familiar situations to many 

people, such as driving a car, learning column addition, and so on, pose real problems 

to people facing such situations for the first time. According to Anderson, skill 

learning involves three steps: (i) a cognitive stage, (ii) an associative stage, and (iii) an 

autonomous stage. Anderson suggested that the cognitive stage of skill learning 

demands the application of much cognitive effort to learn a skill or procedure. At the 

associative stage the procedure is practiced and more efficient means of performing the 

task are discovered. As a result of practice the procedure enters the third stage, the 

autonomous stage, and is performed with little conscious thought. Anderson stated 

that increased practice means a particular skill will be performed more quickly and 

accurately. 

Anderson argued that through practice, problem situations (such as driving a 

car, completing column addition) become automatic processes. In describing novices 

and experts, Anderson suggested that expertise in a particular domain is a product of 

practice, memory, and the ability to recognise patterns. Similarly, Sweller and Low 

(1992) elaborated on how expertise in a problem situation is developed. They stated 

that experience in problem situations enables problem schemas to be developed. These 

schemas are cognitive constructs which allow "problem solvers to recognise a problem 

as belonging to a specific category that requires particular moves for solution" (p. 83). 

Hence, the better developed the cognitive construct, the more expertise shown in a 

problem situation. Appropriate schemas are developed through experience in the 

problem solving situation. The automatisation of skills is necessary to reduce 

cognitive load. This is the basis of cognitive load theory (Sweller, 1992; 1989; 1988). 

Of cognitive load theory and its implications for instruction, Sweller and Low (1992) 

provided the following summary: 

The theory assumes that instructional designs must be structured in a manner 

that focuses attentional resources on problem states and their associated moves 

because it is familiarity with problem states and their associated moves that 

provides the basis of schemas. If instructional designs require students to 

devote cognitive resources to other aspects of a problem or other features of 

instruction, a heavy extraneous cognitive load may be imposed that interferes 

with learning and problem solving. (p. 88) 

Thus, practising certain skills to the point of automaticity appears to assist problem 

solving in terms of enabling more working memory space to be available to devote to 

higher order processes. 
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3. 3. 8 Summary of key points 

In this section, mathematics remediation, or teaching approaches to assist 

students who are experiencing learning difficulty in mathematics, were discussed. 

Models for the diagnostic-prescriptive teaching of mathematics were presented, and 

resources for mathematics remediation were reviewed. In this section, it was argued 

that remedial programs and strategies are "good teaching approaches", and therefore 

should be a natural part of a teacher's teaching style. For developing students' 

problem solving skills, the cognitive apprenticeship model was presented, which was 

seen as a model based on the teacher taking the role of mediator in the development of 

students' problem solving skills and knowledge, and thus assisting students 

experiencing learning difficulties in mathematics. Also, in this section, instructional 

issues relating to metacognition, success, effort and practice were discussed in terms 

of promoting successful learners and mathematical problem solvers. 

3. 4 Specific strategies and programs of intervention 
3. 4.1 Overview 

In this section, particular strategies and programs of intervention are described 

to exemplify current trends in intervention research. The programs and strategies 

discussed have been categorised as either general programs, based on re-teaching of 

the topic, or specific programs, which focus on individual students' 

errors/misconceptions. General programs of intervention are presented in section 

3.4.2, and specific programs of intervention are presented in section 3.4.3. In section 

3.4.4, the state of intervention research is summarised, and a new definition of 

mathematics remediation is proposed. This section concludes with a summary of key 

points presented in section 3.4.5. 

3. 4. 2 Intervention programs based on re-teaching 

The Strategic Mathematics Series (SMS) 

Mercer and Miller (1992) described a model of mathematics instruction, 

designed to target the improvement of the learning environment to reduce the 

development of students' learning difficulties in mathematics. The Strategic 

Mathematics Series (SMS) follows a diagnostic model, and can be summarised as a 

sequence of seven steps beginning with a pretest to ascertain students' knowledge of 

the topic, then instruction based on building knowledge through concrete 

representation, to symbolic representation, to abstract application and problem solving 

strategies. A posttest to ascertain progress is administered, followed by practice to 

fluency. This program of instruction is based on principles of developing problem 

solving and related thinking skills (such as analysing, planning, checking problem 

solving attempts), strategy instruction, encouraging generalisation of skills in other 
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domains, and attending to the affective domain by ensuring success. Thus, integral to 

the SMS model, is the focus on specific metacognitive skill development. 

Mercer and Miller applied the SMS program to instruction for helping students 

with learning problems acquire, understand, and apply basic mathematics facts. 

Research results indicated a positive effect. The SMS is based on ten instructional 

components of a good teaching program, which Mercer and Miller summarised from 

research. The ten components of effective instruction related to the need for teachers 

to: (i) select appropriate mathematics content, in line with the goals of a mathematics 

curriculum which emphasises critical thinking, conceptual understanding and real-life 

problem solving; (ii) establish goals and expectancies, where the teacher and learner 

both are informed of the direction of the learning process, and constant monitoring and 

assessment is carried out; (iii) provide systematic and explicit instruction based on 

careful planning and lesson design; (iv) teach students to understand mathematics 

concepts, by using first concrete materials, and representation before proceeding to 

abstract symbolism; ( v) monitor progress as students work on tasks, continually 

assessing the appropriateness of the task and making decisions as to future teaching 

activities; (vi) provide feedback to students so that they are constantly informed of their 

progress in the learning situation; (vii) teach to mastery by providing opportunities for 

students to practice new skills to automaticity so that such skills can be applied in 

problem situations; (viii) teach problem solving, including instruction on strategies, 

skills and metacognitive processes required for successful problem solving; (ix) teach 

generalisation so that skills and knowledge can be transferred across domains and 

situations; and (x) promote a positive attitude to mathematics, primarily by providing 

students with many opportunities to experience success, and having students realise 

that they are directly responsible for both their successes and failures in the learning 

situation. The ten components of effective mathematics instruction exemplify the 

nature of teaching as an active process. The teacher must orchestrate the learning 

environment so that students acquire and develop skills to succeed on academic tasks, 

and come to see their role as an active member of the teaching/learning process. 

Conceptual Change Intervention 

Connell and Peck ( 1993) reported on a conceptual change intervention that 

included a program of instruction based on creating a rich learning environment to 

build students' knowledge and understanding of particular mathematics topics. The 

four phases of this model included an unstructured, discovery phase, where students 

explored concepts using materials; a concrete phase, where students used concrete 

materials to develop meaning; an internalisations phase, where students solved 

problems using concrete materials; and an evaluative phase, where students' 

understanding of topics was probed as they worked on tasks. Connell and Peck 
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implemented this model in the school setting over a two year period. Mathematics 

instruction for each topic area was guided by the model. Connell and Peck reported 

that this model of instruction was valuable in helping children develop rich 

mathematical concepts of given topics, and it was therefore a good teaching model for 

initial instruction. However, in implementing this model for the purpose of creating a 

dynamic learning environment for overcoming students' misconceptions, Connell and 

Peck reported that the interference of prior, inappropriate knowledge over the linkage 

and development of rich conceptual knowledge was powerful indeed. As they stated, 

"When clearly identifiable student conceptual change occurred, it had limited effect due 

to interference from previously acquired mental structures. Newly acquired 

information appeared to serve in a superordinate capacity with previously learned 

procedures or concepts being automatically applied" (p. 329). They also found that if 

concrete materials had been inappropriately used in initial teaching, this also caused 

interference. The importance of the initial teaching effort was evident. As a result of 

their study, Connell and Peck stated that the interfering nature of prior knowledge, in 

spite of provision of a rich, compensatory learning environment "argue strongly for 

extreme care in the nature of the initial mathematical experience" (p. 329). 

3. 4. 3 Intervention programs based on errors/misconceptions 

Correcting error patterns in computation 

A comprehensive instructional program for overcoming students' error 

patterns in computation has been developed by Ashlock (1994). Ashlock has provided 

a resource to assist educators develop awareness and expertise in analysing students' 

error patterns in computation, and specific activities designed to help students 

overcome such errors. For example, for remedial assistance for the student whose 

computation (taken from Ashlock, 1994) is the following: 

26 60 74 

+ 3 

11 

+24 

84 

+ 5 
16 (p. 133) 

Ashlock suggested the provision of place value identification games, using base ten 

blocks or paddle pop sticks (for bundling into tens and ones) to represent each addend 

in the exercise, and the drawing in of place columns to display the tens and ones in 

each of the numbers. From such activities, it can be seen that the focus is on the 

particular computation in which the error pattern surfaced, and activities to build place 

value understanding and demonstrate the illegitimacy of the student's solution process. 

A much more prescriptive approach to correction of error patterns is offered 

by Gable, Enright, and Hendrickson (1991). They described a three-phase model, 

with the first phase being the identification of the consistency of the error, and 

including interviewing the student. The second phase begins the intervention, and 
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involves three stages of demonstration of the correct algorithm, selection of "error 

groups and appropriate corrective strategy" (p. 7), and practice of the new algorithm. 

The appropriate corrective strategy is through categorising the nature of the error as 

either conceptually-oriented or structurally-oriented. As Gable et al. stated, 

"Conceptually-oriented error patterns, such as regrouping errors and place value 

problems, require a manipulative, hands-on corrective strategy. In contrast, error 

patterns such as process subtraction, placement, and attention to sign can be corrected 

using graphically oriented strategies including the use of flowcharts or color coding to 

structure the work page" (p. 7). Phase two is characterised by extensive practice of the 

new/correct computational procedure. Phase three is the evaluative phase, and the 

application of the skill in the regular classroom. It has two stages, where the impact of 

the new skill on student performance is evaluated with the student, and the practice and 

maintenance of the skill is continued in the classroom context. As Gable et al. stated, 

this three phase model is cyclic, and can be used in the regular classroom as it 

integrates within a curriculum-based assessment and instruction mathematics program. 

Studies of the effectiveness of programs for correcting students' error patterns 

in computation have reported mixed results. For example, Resnick (1982) in focusing 

on students' computational procedures for subtraction algorithms found that, as a 

result of intervention, the students in the experimental group, with intensive instruction 

using concrete materials and place-value games, performed only marginally better than 

students in the control group. Of this study, Resnick (1992) stated: 

Despite the intensive personal instruction, only half the children taught learnt 

the underlying semantics well enough to construct an explanation of why the 

algorithm worked and what the marks represented. More surprisingly, even 

children who did give evidence of good understanding of the semantics often 

reverted to their buggy calculation procedures once the instructional sessions 

were over. (p. 394) 

Similarly, Connell and Peck (1993) (as described in section 3.4.2) found that, 

despite the use of concrete materials, students' prior knowledge interfered with their 

ability to perform computations correctly; the old, erroneous procedures continually 

resurfaced. Other studies specifically designed to help children overcome errors in 

computation have reported that students' old error patterns re-emerge despite the 

intensity of the remedial activities (e.g., Bourke, 1980; Resnick, 1982; Wells, 1982; 

Wilson, 1982). It is acknowledged, however, that particular studies have been 

reported, which show that the use of "good teaching" strategies will help students 

overcome error patterns in computation (e.g., Stefanich & Rokusek, 1992), and that 

student errors may naturally correct over time (Hennessy, 1993), but that commonly 
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held errors and misconceptions by young children can resist correction and grow 

stronger with age (Fischbein & Schnarch, 1997). 

Cognitive conflict 

Cognitive conflict models of instruction are based on the premise that prior 

inappropriate knowledge serves as a barrier to knowledge growth and development, 

and that this inappropriate knowledge must be confronted (Bell, 1986-87). In such 

teaching situations, the environment is structured so that students' misconceptions will 

surface as students work on mathematical tasks deliberately developed by the teacher 

for that purpose. Through discussion in group situations with peers and others, 

students' misconceptions are brought into the open. Through discussion, the intention 

is that students will see the impoverishedness of their understandings, and thus 

conceptual change will occur. 

Conflict teaching is thus based on acknowledging the power of prior learning. 

However, such an approach does not always result in sustained conceptual change 

occurring, as students' misconceptions are often in evidence after such conflict 

exercises (Bell, Swan, Onslow, Pratt & Purdy, 1985; Tirosh & Graeber, 1990). Even 

though a student can see the limitations of their own conceptualisation within a 

particular topic, they can develop and hold appropriate concepts without giving up their 

prior, inappropriate concept. The prior-held misconception continues to interfere with 

understanding and forward learning. This phenomenon has been described as due to 

knowledge compartmentalisation, where a learner holds two pieces of knowledge as 

separate entities in the mind, which are in conflict with each other (Posner, Strike, 

Hewson & Gertzog, 1982; Vinner, 1990). Posner et al. (1982) suggested that 

compartmentalisation is a learner's mechanism for avoiding cognitive conflict and 

conceptual change. This perspective suggests that human learners actively, though 

unconsciously, resist cognitive conflict. As Tirosh (1990) stated, "In cognitive 

psychology, human beings' desire to eliminate conscious inconsistencies in their 

thinking is regarded as a basic cognitive need" (p. 111). 

Together with the fact that conflict teaching does not always lead to sustained 

conceptual change, is the fact that conflict teaching requires learners to openly display 

the extent of their inappropriate knowledge so that critical peer review and analysis can 

occur. This calls into question the effect of such an approach on students' self-esteem 

and confidence. As Tirosh (1990) cautioned: "The conflict teaching approach includes 

a stage in which a student realises that something in his or her way of thinking is 

"wrong". In certain cases, this realisation may actually be detrimental to a student's 

confidence or self-esteem" (p. 123). 
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Errors as springboards for inquiry 

Borassi (1985) described how, in the field of diagnosis and remediation, 

errors are regarded in a negative fashion, as "signals that something has gone wrong in 

the learning process, and consequently remediation is needed" (p. 1). He suggested 

that errors should be viewed from a more positive perspective, as the means to 

promote students' thinking about mathematics and thus build mathematical 

understanding. 

Motivated by the belief that errors can be used to develop students' deeper 

understanding of mathematics, Borassi (1994) conducted a teaching experiment, 

focusing primarily on using other students' errors for student inquiry. In his study, he 

collected students' written definitions of a circle. He then presented these definitions 

to other students, after asking them to write their own. The students were required to 

analyse each definition and compare and contrast it with their own definition, thus 

modifying, rejecting, arguing for, justifying, certain definitions of a circle. The 

teacher's role was to assist the inquiry process, prompting students to explain clearly 

their statements, probing their knowledge of circles, and using this to continue the 

growth of the definition along appropriate lines. According to Borassi, the strategy of 

using "errors as springboards for inquiry" appeared to, not only help students change 

and modify their current conceptions of the mathematical topic under study, but also 

engaged them in "genuine problem solving, mathematical explorations, mathematical 

communication, initiative and ownership in learning mathematics, constructive doubt 

and conflict, and the need to monitor and justify their mathematical activity, as well as 

more humanistic and exciting aspects of mathematics" (p. 199). Borassi also reported 

that the students' learning of mathematical content was increased as a result of the 

teaching experiment, as well as the affective domain of the students, with students 

feeling more positive about the study of mathematics, and their own ability to continue 

with the study of mathematics. 

Belief-based teaching 

Rauff ( 1994) suggested that a process of "belief-based teaching" can help 

students overcome inappropriate mathematical procedures, and described this in terms 

of students' erroneous solutions for factoring polynomials. In a process similar to 

Borassi (1994), Rauff suggested that, to overcome students' errors/misconceptions, 

beliefs about particular mathematical procedures must be determined, and the teacher's 

role is to assist the integration of the appropriate mathematical procedures within the 

student's belief set. The theoretical stance which underpins his method is that, errors 

and misconceptions are regarded as a "student's belief set" (p. 425), and the 

development of errors are logical outcomes of the belief set. According to Rauff, ''The 

mathematics teacher who views errors in this way must discern the nature of the 
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student's model and then attempt to modify it appropriately so that the student can 

work from a mathematically sound belief set"(p. 422). 

In his study, Rauff (1994) reported on the relative ease with which some 

students modified their beliefs, and the difficulty with other students, depending on the 

nature of the student's current belief state. For example, one student used a particular 

strategy to factorise polynomials, which only worked in certain cases. The student 

was shown another strategy, but continued to use her own strategy first. Over time, 

the student came to realise that her own strategy was no longer efficient for all cases, 

but used it for the cases in which it yielded the correct solution. The student's initial 

belief set was expanded to include the new strategy, as well as her own. According to 

Rauff, this inclusion of the new strategy was because it "did not entail the removal of 

any other beliefs about factoring" (p. 424). Rauff summarised belief-based teaching 

thus: 

The focus of this approach into teaching and learning is student belief. An 

instructor using this approach to teaching factoring begins with asking the 

student to tell him or her what they think about factoring. The instructor then 

analyses their "buggy" factorisings in light of their beliefs. The students are 

next shown how their beliefs produce non-equivalent expressions. Finally, 

the students modify their beliefs appropriately. (p. 425) 

Teaching by analogy 

Teaching by analogy has been suggested as an approach for assisting students 

overcome misconceptions (Tirosh, 1990). The basis of teaching by analogy is that 

knowledge students have developed is linked, through analogy, to knowledge the 

teacher is presenting. The teaching by analogy approach can serve as a means of 

helping students solve analogous tasks, of helping students develop understanding 

through linking to analogous situations, of guiding teaching to link to analogous 

experiences, thus taking what is known and linking to what is new. In dealing with 

misconceptions, teaching by analogy involves presenting students with tasks that have 

been previously solved correctly, which are analogous to the tasks the student solved 

incorrectly. The intention is that the student will see the two tasks as analogous, and 

revise the approach taken for solution. Thus, students revisit a correctly performed 

task (the anchoring task) in order to change their approach to solving a task on which 

they initially experienced difficulty (the target task). This approach poses challenges 

for teachers, as Tirosh (1990) stated, the teacher must "find a suitable anchor task to 

the target task that convinces the student of the validity of the analogy" (p. 123). 
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Teaching for conceptual change 

Castro ( 1998) proposed a model of teaching to promote conceptual change. 

The model of teaching has four phases: (i) clarification of students' ideas; (ii) activities 

to encourage cognitive conflict; (iii) application of new ideas to new problems and 

situations; and (iv) revising old ideas in light of new knowledge. The model is based 

on Lakatosian epistemology that new knowledge is constructed when existing 

knowledge is seen to be limited and limiting within a new context. That is, knowledge 

change occurs as a result of a "better theory". For conceptual change to occur, three 

conditions must be met: (i) there must be dissatisfaction with existing knowledge; (ii) 

the new conception must be intelligible to the knower; and (iii) the new conception 

must be plausible within the new context. Castro used this model of teaching for 

conceptual change in a teaching experiment on probability concepts with students aged 

14-15 years. Results of the study showed the teaching approach positively influenced 

students' probability calculation and intuitive probabilistic reasoning skills, suggesting 

the value of this approach in mathematics classrooms. 

3. 4. 4 Redefining mathematics remediation 

As stated in section 3.2, research on error patterns suggests that errors are 

indicators of the presence of knowledge, not its lack. The challenge for intervention 

programs is often thus in confronting and dealing with knowledge. Intervention 

programs based on diagnostic-prescriptive teaching models which provide students 

with carefully planned and sequenced learning experiences for rich conceptual 

knowledge development should be successful in building knowledge when there is a 

lack. Such programs would be regarded as good teaching programs (see section 

3.3.3). Remediation of systematic errors and misconceptions, where errors indicate 

the presence of knowledge, "good teaching" approaches incorporating the close 

linkage of the written representation with the concrete/pictorial representation also have 

been suggested (e.g., Ashlock, 1994; Booker et al., 1980; Resnick, 1982; Wilson, 

1976a). Such approaches also appear to be based on slower, sequential and 

progressive reteaching and provision of rich learning experiences, and therefore appear 

to be no different to instruction for students who lack knowledge. In such programs, 

students' errors/misconceptions are acknowledged by the teacher, but are not overtly 

referred to in the remedial situation. Programs and methods for overcoming 

inappropriate knowledge have not reported clearly favourable outcomes, as prior 

knowledge continues to impede sustained knowledge growth (e.g. Bourke, 1980; 

Connell & Peck, 1993; Resnick, 1982; and also section 3.4.3). 

There are two distinct aspects of remediation apparent. The first is building 

knowledge where there is none. The methods advocated are seen to be good teaching 

practices, and thus the term "remediation" appears to be seemingly inappropriate in this 
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context; the term "reteaching" would seem to be more accurate. The second is 

overcoming prior inappropriate knowledge, manifest as error patterns or 

misconceptions, and this is where specific programs of remediation need to be applied. 

Such programs have reported some positive results in helping students overcome 

errors/misconceptions in various mathematical topics. Confronting prior knowledge 

appears to be the key to successful remediation. As described in section 3.4.3, there 

appears to be a growing emphasis on using students' errors as starting points for 

intervention programs. 

The presence of errors and misconceptions has implications for teaching, 

particularly with respect to helping students achieve in academic settings. As stated by 

Mansfield and Happs (1992) "many students will come to the mathematics classroom 

with a number of misconceptions about topics to be taught. Research has clearly 

indicated that these misconceptions act as barriers to the acquisition of new conceptual 

knowledge" (p. 453). Errors and misconceptions, therefore, block students' 

mathematical knowledge growth, and as such, need to be overcome in order for 

students to continue with mathematical studies. The notion of errors and 

misconceptions preventing forward knowledge growth is not new. The interfering 

effects of prior knowledge and the need to deal with such knowledge was, almost two 

decades ago, encapsulated by Ausubel (1968), who stated: 

The role of preconceptions in determining the longevity and qualitative content 

of what is learned and remembered is crucial ... [The] unlearning of 

preconceptions may well prove to be the most determinative factor in the 

acquisition and retention of ... knowledge. (p. 135) 

3. 4. 5 Summary of key points 

In this section, specific programs of intervention were described. A growing 

tendency in intervention programs emphasises the use of errors and misconceptions as 

the beginning points of remediation. In this section, it was seen that students' errors, 

misconceptions and alternative conceptions are extremely difficult to eradicate which 

underscores the paramount importance of the quality of the initial instruction. 

Presented in this section was a summary of current approaches, strategies and ideas for 

helping students overcome incorrect knowledge. The potential of the described 

approaches, strategies and ideas was contrasted with the inherent shortcomings of 

such. The varied strategies served to exemplify a changing focus from teaching which 

ignores students' inappropriate knowledge, to strategies which actively encourage 

students to explore their own inappropriate ideas and beliefs. In this section, it was 

argued that mathematics remediation must incorporate strategies to build knowledge, as 

well as strategies to overcome knowledge. 
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3. 5 Conceptual Mediation 
3. 5 .1 Overview 

The Conceptual Mediation Program (CMP) (Lyndon, 1995), a program for 

overcoming students' consistent errors and inappropriate knowledge, is the focus of 

discussion in this section. CMP is based on a particular perspective of 

errors/misconceptions, and has its own theory as to why they are difficult to eliminate. 

The theoretical background of CMP is presented in section 3.5.2. The program offers 

a strategy for assisting students overcome errors/misconceptions which slow down 

educational progress. A description of this strategy is provided in section 3.5.3. CMP 

also offers a metacognitive training program to enable students to become self­

empowered, autonomous learners, and this is described in section 3.5.4. A summary 

of key points is presented in section 3.5.5. 

3. 5. 2 Prior knowledge and proactive inhibition 

The theoretical basis of CMP states that factors which affect successful 

conceptual change are due to the mental phenomenon of proactive inhibition (PI). 

Such factors include lack of learning transfer from the remedial setting to the regular 

classroom, and recurrent appearance of error patterns and misconceptions despite 

intensive intervention programs; as well as the display of avoidance behaviour towards 

intervention programs by students. These factors, according to the conceptual 

framework of CMP, are a result of the activation of PI. 

Proactive inhibition has been described as an information protection 

mechanism: "it is produced by conflicting associations that are learned prior to learning 

of the task to be recalled" (Underwood, 1966, p. 564). Underwood suggested that, 

when a person is asked to give a response to a stimulus that differs from the response 

the person usually gives, the brain can only do so with great difficulty. Underwood 

provided the following example to demonstrate proactive inhibition in practice: 

If we are told that: 2 x 2 now is 11 

8-4 now is 1 

3 + 3 now is 27 

we can imagine the difficulty we would have in remembering and applying 

this new information. Interference, indeed frustration might well occur. (p. 

516) 

Further, Baddeley (1990) stated that proactive interference (inhibition) occurs when 

"new learning is disrupted by old habits" (p. 40). Baddeley provided the following as 

an example of proactive inhibition: "Being taught that C means 'caldo' which means 

hot, but none the less 'forgetting' and turning the wrong tap would be an instance of 

proactive interference" (p. 40). Similarly, of proactive inhibition, Houston (1991) 

stated: 
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Proactive inhibition is not a theory or an explanation. It is a fact, an important 

one. It refers to the enormous amount of forgetting that can be attributed to 

the interfering effects of prior learning. The more we learn, or store, the more 

susceptible we are to this type of interference. (p. 235) 

Proactive inhibition, then, as a mechanism for protecting knowledge, is 

activated when new learning conflicts with prior learning. In situations where prior 

learning conflicts with current learning, old learning will interfere with recall of the 

new learning. The need for such a mechanism is apparent, as it can be seen that 

without such an inbuilt knowledge protection system, the human mind would be in a 

constant state of confusion. A person's knowledge base would be changing 

continually in the face of new incoming information. It can also be seen that existence 

of a knowledge protection system is a two-edged sword, with all prior knowledge, 

correct or otherwise, being protected from change. The implications of proactive 

inhibition for remediation in mathematics are immense. Remediation of learning 

difficulties in mathematics typically requires students to change their response to a 

particular stimulus, be it an automatic response to a number fact, a completion of an 

algorithmic procedure, or a conceptualisation of a mathematical topic. The teacher is 

providing the same stimulus, but is requiring the student to give a new response that 

differs to the way the student responded previously to that stimulus. In terms of 

proactive inhibition, the enormity of such a request is realised, and is exemplified by 

the examples described above. PI can also serve to explain the common characteristics 

of the learner in the remedial situation, encapsulated by the words of Erl wanger ( 197 5) 

who questioned "why is it that remedial children often display patterns of errors, hold 

tenaciously to their own procedures, appear to become confused and emotionally 

disturbed during remedial work, and to require prolonged individual assistance and 

guidance?" (p. 171). In light of the discussion on PI, all characteristics described by 

Erlwanger can be attributed to the influence of PI. 

As previously discussed, constructivist views of learning state that 

errors/misconceptions are knowledge (e.g., Borassi, 1994; Confrey, 1990b; Rauff, 

1994). Errors/misconceptions are thus indicative of the presence, not the absence, of 

knowledge. In terms of diagnosis and remediation, the problem is dealing with 

knowledge, rather than providing learning experiences to "fill-the-gaps" or "link" 

knowledge as would be wont in an "absence of knowledge" perspective. 

Acknowledging the mechanism of PI as a part of the human mind, PI can be seen to 

serve as protection of errors/misconceptions from change. The role of PI is simply to 

prevent the cognitive conflict. As Tirosh ( 1990) suggested, avoidance of mental 

turmoil is the natural tendency of the human mind. 
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In view of PI as merely a knowledge protection mechanism, it can be seen that 

PI cannot determine appropriate knowledge from inappropriate knowledge, therefore 

all knowledge will be protected by PI. Psychological research studies have shown that 

it is initially learned knowledge which is more powerfully retained in memory over 

subsequent learning (e.g., Baddeley, 1990; Eysenck, 1977). The mathematics 

remediation literature has repeatedly stated that once acquired, students' errors, 

misconceptions and alternative conceptions are extremely difficult to overcome (e.g., 

Confrey, 1990b; Fischbein, 1987; Graeber & Baker, 1991), thus the need for carefully 

structured, planned and organised initial instruction is of paramount importance 

(Connell & Peck, 1993). Acknowledging the influence of PI within the remedial 

situation provides an explanatory theory for the persistence of errors/misconceptions. 

For some students, effective reteaching programs assist in overcoming 

errors/misconceptions. As previously stated, this could be attributable to providing 

learning experiences to develop knowledge where there was a lack. In terms of 

knowledge and PI, it may be because of a lower level of PI. The strength of the PI 

mechanism is variable to the individual (Stroop, 1935). It follows then, that the lower 

the level of PI, the easier it will be to overcome the power of PI. Conversely a high PI 

level suggests the difficulty of the process of conceptual change. Studies reporting on 

the recurrence of errors/misconceptions despite the intensity of the remedial program 

can thus be reinterpreted as programs which fail to take account of the PI mechanism. 

The above discussion highlights the key principles of Conceptual Mediation, 

which have been summarised by Lyndon (1989) into the following nine points: 

1 . Consistent, habitual errors indicate the presence, not the absence of 

learning/know ledge. 

2. What the individual knows is protected from change by the proactive 

inhibition mechanism. 

3. Proactive inhibition is an involuntary mechanism over which we have 

little or no control. 

4. Incorrect, as well as correct, knowledge is protected since proactive 

inhibition cannot discriminate between what is 'right' and what is 

'wrong'. 

5. Proactive inhibition does not prevent learning from occurring; it merely 

prevents the association of conflicting ideas. 

6. Considerable variation exists within the population in the level of 

proactive inhibition one inherits (Stroop, 1935). 

7. The higher the level of proactive inhibition, the more resistant the 

individual will be to conventional approaches to remediation. 

8 . Performance also becomes cue-dependent and, in the absence of the 

remediator, the student reverts to the erroneous behaviour patterns. 
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9. In this way, transfer of learning is inhibited and errors continue to 

resist correction. (p. 34) 

The Conceptual Mediation Program states that conventional remedial methods 

serve to activate the PI mechanism, causing student behaviours such as: slowness to 

respond; an apathetic attitude to the task; frustration and avoidance behaviour; to 

become evident. Avoidance behaviour can also be reinterpreted with acceptance of PI. 

Recurrence of systematic errors after intensive remedial instruction reinforces in 

learners their feelings of failure. In terms of PI, recurrence of systematic errors is the 

inability of intervention programs to successfully deal with PI, and a lack of 

knowledge on the part of the learner of the influence of PI over knowledge change. 

For effective remediation, CMP states that the remediator must acknowledge proactive 

inhibition as an inhibitor of knowledge change and growth. Remediation programs, 

therefore, must be structured to effectively deal with proactive inhibition. 

3.5.3 "Old Way/New Way" strategy 

To overcome the inhibitory influence of PI over knowledge change, a specific 

strategy is an integral element of CMP. The strategy is called Old Way/New Way 

( 0/N). The essence of the 0/N procedure is upon bringing the learner's "old way" to a 

conscious level and exchanging it for a "new way" by means of discrimination 

learning, followed by practice with the correct "new way". There are four steps to 

0/N. A simplified example of how the 0/N method proceeds through the four steps is 

provided for the remediation of a systematic error in the subtraction algorithm. In step 

1, reactivation of the error memory, the student is asked to complete the subtraction 

problem 306- 149 in their usual way. For step 2, labelling and offering an alternative, 

the student is asked if that particular method of performing that computation can be 

called the "old way". When consent is given, the student is asked if a "new way" for 

computing 306- 149 can be shown. Using carefully selected language, the remediator 

performs the algorithm the standard way. The difference between the two algorithms 

is then carefully pointed out. In step 3, discrimination, the student is asked to perform 

the computation the old way, then the new way, and then asked to contrast the two 

ways. This discrimination of the same problem (306- 149) is repeated five times. For 

step 4, generalisation, the student is provided with six subtraction exercises and asked 

to complete using the new way. This sequence of four steps is called a learning trial, 

and takes approximately 10 minutes. According to Baxter and Lyndon (1987) the 

benefits of the 0/N method are thus: 

0/N bypasses proactive inhibition and enables the remediator to change the 

child's knowledge base rapidly and permanently ... The more or less 

instantaneous success the child experiences after one trial ensure that 
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avoidance learning behaviours are soon eliminated. Confidence in ability to 

learn is restored. (p. 8) 

Analysis of the steps in 0/N reveals that the student is required to repeat the 

old way a total of five times. Such an approach is contrary to a perception that 

reactivation of the error pattern will only serve to strengthen that error pattern. This 

perception is evident in the words of Gagne (1983) who stated, "to make students fully 

aware of the nature of their incorrect rules before going on to teach correct 

ones ... seems to me .. .is very likely a waste of time" (p. 15). Gagne proposed that to 

overcome errors is to aim for "extinction" (in psychological terms) of that error, and 

suggested by the following comment: "The effects of incorrect rules of computation, as 

exhibited in faulty performance, can most readily be overcome by deliberate teaching 

of correct rules ... This means that teachers would best ignore the incorrect 

performances and set about as directly as possible teaching the rules for correct ones" 

(p. 15). In the context of the 0/N theory, the error is habitual, and more practice will 

not serve to make it any harder to eliminate. 

The 0/N procedure shares similarities with other procedures for dealing with 

errors/misconceptions, as described in previous sections (e.g., Borassi, 1994; Gable et 

al., 1991; Rauff, 1994) but its method is more prescriptive, and firmly based on 

psychological principles of learning. 0/N can be seen to provide a vehicle for dialogic 

mediation, and the key element is the discrimination of differences between the 

student's knowledge and the mathematical knowledge presented by the teacher. 

3. 5. 4 Conceptual Mediation and metacognition 

When using 0/N for the purpose of overcoming systematic computational 

errors, 0/N can be regarded as a metacognitive strategy applied to a particular cognitive 

strategy; it is cognitive in that it is task specific, but simultaneously, it is metacognitive 

as it is a highly generalisable strategy applicable to a wide range of situations. 0/N can 

be presented to students in all three training modes suggested by Brown and Palinscar 

(1982): blind, infonned and self-regulatory. In blind training, the 0/N strategy would 

be used with student errors, but no reason for the application of such a strategy would 

be given. In informed training, 0/N would be used with student errors, and students 

would be encouraged to reflect on the potential use of the strategy in other domains 

with other areas of difficulty. In self-regulatory training, the theoretical basis of 0/N 

would be shared with students to provide a clear rationale for the value of such a 

strategy to aid their own learning. The Conceptual Mediation Program (CMP) is a 

self-regulatory metacognitive training program in which 0/N is presented as a key 

"remedial" strategy. The program takes the form of a communication with students, 
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sharing with them ideas on what is empirically known about attention, memory, and 

learning, or more specifically, remembering and forgetting. 

Recognition and recall memory 

The first component of the metacognitive training within CMP focuses on 

remembering. It is generally accepted that the process of remembering is a result of 

two memory systems: recognition memory and recall memory. The difference 

between recognition memory and recall memory can be made explicit by examining the 

tasks performed by subjects in psychological experiments. In typical recall and 

recognition tasks, subjects are required to learn and remember lists of words. In recall 

tasks, subjects are required to remember as many studied words as possible after a 

given time. In recognition tasks, the word lists often comprise paired lists of words; 

one word invoking the memory of its pair. Subjects essentially have to be able to 

recognise whether certain words have been presented to them in the given context 

(Houston, 1991). In the metacognitive training component of CMP, recognition and 

recall memory are differentiated. Recognition memory is described as being externally 

activated and automatic. Recall memory, on the other hand, differs in that it is utilised 

when remembering something that is not present; it is a self-initiated event and operates 

at two levels. Recall memory is either automatic or effortful. Either, a memory can be 

retrieved automatically, or it requires a certain amount of effort for retrieval. Taking 

control of the remembering process is to store information in automatic recall memory 

where retrieval is self-initiated, rather than externally stimulated. To take control of the 

remembering process, practice is essential. Remembering is thus a product of practise 

and effort, and students need to be taught how to practise efficiently (Derry, 1990). 

Natural and accelerated forgetting 

The second component of the metacognitive training within CMP focuses on 

forgetting, of which two types are discussed with students. Forgetting can be either 

natural or accelerated. Natural forgetting occurs over time, as skills/knowledge learnt 

is not practised. As suggested by Anderson (1985), a skill that is not practised 

becomes a victim of the brain's process of natural forgetting. Accelerated forgetting is 

described to students in terms of PI as an information protection mechanism, and 0/N 

is demonstrated as a strategy for overcoming PI and taking control of accelerated 

forgetting. The notion of accelerated forgetting is presented to students as a natural 

brain process; a process which occurs when learning a new way of doing something 

conflicts with an already learned procedure for doing the same thing. 

In summary, the key points of the metacognitive training component within 

CMP, which from the basis of the communication with students, are as follows: 
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1 . Sometimes learning seems easy and sometimes it seems hard. Learning 

seems hard because it is paying attention, remembering and understanding that 

we find hard. 

2. What we pay attention to, we learn. We choose what we pay attention to. 

Paying attention is hard because it requires effort. 

3. We have two memory systems: recognition and recall. Recognition memory 

just happens naturally without effort. Recall memory is naturally effortful. 

Recall memory can be either automatic or effortful. Recall memory only 

becomes automatic through practice. 

4. We have two forgetting processes: natural and accelerated. We can take 

control of natural forgetting through use of efficient practise strategies. We 

can take control of accelerated forgetting by using the Old Way!New Way 

strategy. 

Central to CMP is the notion that the brain is designed to forget. It is this key 

phrase: the brain is designed to forget which provides a rationale for the importance of 

teaching students how to remember. The purpose of CMP is to inform students of 

how their own brain works so that they can take control of their own learning. 

Throughout the program, the continual emphasis is on the fact that learning is a result 

of effort, and the effort must come from the individual. Making students aware of the 

process of remembering, learning and forgetting may be part way to answering 

Norman's (1980) statement: 

It is strange that we expect students to learn yet seldom teach them about 

learning. We expect students to solve problems yet seldom teach them about 

problem solving. And, similarly, we sometimes require students to remember 

a considerable body of material yet seldom teach them the art of memory. (p. 

97) 

3. 5. 5 Summary of key points 

In this section, the Conceptual Mediation Program (CMP) was described. 

The program was presented as providing a strategy for promoting conceptual ex­

change, and a metacognitive training component to empower students to take control of 

their own learning. The theoretical position of CMP was presented as providing a 

clear perspective on the longevity of errors/misconceptions and a simple approach to 

mathematics remediation. 

3. 6 CMP within the mathematics program 
3.6.1 Overview 

In this section, the CMP in relation to diagnosis and remediation in 

mathematics is discussed. In section 3.6.2, the implications of CMP for mathematics 
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are addressed. In section 3.6.3, a model of diagnostic-prescriptive mathematics 

teaching incorporating CMP is presented. A summary of key points is presented in 

section 3.6.4. 

3. 6. 2 Implications of CMP for mathematics intervention 

The CMP challenges the notion that successful remediation in mathematics is a 

process of re-teaching. As the title of the program suggests, CMP is about 

"mediation" in the sense that mediation means "to stand between, to mediate between 

to reach agreement". In terms of dealing with students' error patterns and 

misconceptions in mathematics using CMP, the teacher is acting in a mediating 

capacity between the student's point of view and the mathematical point of view being 

presented by the teacher. The term re-mediation, in this context, refers to the process 

of the teacher "mediating" the two points of view a second time, or engaging in "re­

mediation". This process of re-mediation can be seen to be quite different to the 

provision of re-teaching episodes. It is the process of acting directly upon the 

error/misconception to explore the differences between the appropriate knowledge and 

the inappropriate knowledge. Such a mediating role taken by the teacher to overcome 

inappropriate knowledge and to build appropriate knowledge is the teaching approach 

advocated in the cognitive apprenticeship model (Reid & Stone, 1991; Rojewski & 

Schell, 1994) (see section 3.3.4). The teacher as a mediator of knowledge has also 

been described by Underhill (1988) as the means to helping students overcome their 

inappropriate beliefs which prevent further learning. As he stated, "knowing is 

believing, .. .learning is the process of developing new beliefs and altering old 

beliefs ... and teaching is helping others develop new beliefs and alter old beliefs" (p. 

62-63). The CMP, therefore, requires that the teacher determine the beliefs of the 

learner in order to facilitate conceptual ex-change. Working on errors/misconceptions, 

the CMP is not a replacement for good teaching. Its purpose is to overcome students' 

errors/misconceptions which impede educational achievement. As such, it is specific 

in nature. Utilised in this way, CMP is a direct method for dealing with 

errors/misconceptions to enable forward movement of the individual in the learning 

process. The value of CMP is thus its direct nature for overcoming specific difficulties 

in mathematics. The need for such an approach is encapsulated in the words of Kirby 

and Williams (1992) who stated: 

We should not lose sight of the purpose of diagnosis and remediation. It is 

achievement which we are attempting to improve, not cognitive processes. If 

our goal is to improve reading skills and we succeed only in improving a 

child' memory skill, we have not achieved our goal. (p. 4) 
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3. 6. 3 CMP and diagnostic-prescriptive mathematics teaching 

CMP, and particularly the Old Way/New Way strategy may provide the means 

for dealing with the protective influence of PI, but may superficially be seen as a 

means for replacing one mode of behaviour with another; of replacing a habit with a 

habit. From the example of the 0/N methodology applied to systematic errors in 

subtraction algorithms (section 3.5.3), it would appear that 0/N is useful for 

remediation of apparently "rote" behaviours, or automatic skills. Indeed, 0/N was 

originally developed for use in overcoming habitual behaviours at the "rote" end of the 

scale, such as spelling errors, letter reversals, body mannerisms. In mathematics, 0/N 

has shown to be a useful teaching tool in overcoming students' systematic 

mathematical computational subtraction errors and building subtraction knowledge in 

small group remedial situations (Baxter & Dole, 1990; Dole, 1993). However, 0/N 

has also shown to be successful in changing students' alternate science conceptions in 

whole class situations (Rowell, Dawson & Lyndon, 1990). Thus the theoretical basis 

of 0/N appears to relate equally well to misconceptions/alternative conceptions as it 

does to error patterns. 

Incorporating 0/N within a diagnostic-prescriptive model of mathematics 

teaching highlights the importance of diagnosis. Students' knowledge must be 

ascertained in order to make informed decisions in terms of providing further 

instruction to build knowledge, or to "break through" inappropriate knowledge, using 

0/N. In studies carried out by Dole (1993, 1995) it was found that when 0/N was 

used to remediate systematic errors in computation, students experienced rapid success 

in performing procedures upon which, in the past, they could not. This success built a 

foundation for the development of further knowledge. Once students successfully 

attained correct computations via pen-and-paper methods, the task of building 

knowledge as to why the new computational method yielded the correct answer was 

open. "Good teaching" approaches for rich conceptual knowledge development 

suggested in the literature were implemented. The diagnostic/prescriptive model 

developed for remediating systematic errors in computation consisted of the following 

five steps: 

1 . Identification of systematic errors. 

2. Structured interview to establish depth of principled/conceptual (Leinhardt, 

1988) knowledge in relation to the mathematical content from which the error 

derived. 

3. Implementation of 0/N to remediate systematic computational errors. 

4. Use of carefully chosen exemplary materials and language to link 

computational knowledge to concrete knowledge and thus legitimise the 

algorithm. 
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5. Utilisation of good teaching approaches for building of mathematical 

conceptual knowledge suggested in the literature (e.g., Ashlock, 1994; 

Booker et al., 1980; Booker, Briggs, Davey, & Nisbet, 1992; Jones & 

Charlton, 1992; Resnick, 1982; Wilson, 1976a). 

A diagnostic/prescriptive model of teaching, incorporating CMP (depicted in 

Figure 3.1), is proposed as a dual-path model of building knowledge or changing 

inappropriate knowledge. 

~building '- fl building ......_ fibuilding ............ 
/ knowledge "V knowledge -y-- knowledge "\.1 

diagnosis diagnosis diagnosis diagnosis 

'- ~ . ./1 '-.... /1 ' . / 'jdecomposmg decomposing decomposmg 
knowledge knowledge knowledge 

Figure 3.1. Dual-path model of diagnostic/prescriptive mathematics teaching. 

The focus of the model is diagnosis. The importance of diagnosis is in the need to 

determine whether the learning difficulty stems from a lack of knowledge, or the 

presence of knowledge. If the former is the case, "good teaching" is required to build 

knowledge. If the latter is the case, "re-mediation" (using 0/N) must take place to 

break through the "knowledge" barrier, followed by "good teaching" to build 

knowledge. 

3. 6. 4 Summary of key points 

In this section, the implications of CMP upon the notion of diagnosis and 

remediation in mathematics were discussed. A dual-path model for 

diagnostic/prescriptive mathematics teaching incorporating CMP was proposed. 

3. 7 Diagnostic-prescriptive models and percent instruction 
The focus of this chapter was to explore issues pertaining to instruction for 

students experiencing difficulty with the study of academic subjects, particularly 

mathematics. The literature discussed was selected to present a comprehensive picture 

of the field of diagnosis and remediation in general, and errors and misconceptions in 

particular. A summary of the discussion on diagnosis and remediation presented in 

this chapter can be highlighted in the following points: (a) traditionally, students 

exhibiting errors in mathematics were deemed as having a learning disability; (b) 

remediation programs were typically reteaching programs consisting of representation 

of the mathematics content in a slower and progressive mode; and (c) models of 
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diagnostic-prescriptive suggest that intervention is a cycle of planning, implementing, 

and reflecting upon teaching episodes which occurs after students' prior knowledge 

has been ascertained and the structure of mathematics tasks have been analysed. As 

well, metacognition and academic performance were discussed in this chapter, and it 

was suggested that students who experience difficulty with the study of academic 

subjects typically lack sophistication in level of metacognitive skills, and that 

intervention programs should aim to build students' metacognitive awareness and 

develop metacognitive skills. 

Mathematical error patterns and misconceptions were also discussed in this 

chapter. A number of key points were raised, and can be summarised as the 

following: (a) error pattern research has suggested that errors are not an indication of 

students' inability to learn, but provide strong evidence of their ability to learn, albeit 

incorrect knowledge; (b) constructivist learning theory has suggested that errors and 

misconceptions are constructed knowledge and are part of the belief-set of the learner; 

(c) reteaching programs do not always lead to sustained conceptual change as errors 

and misconceptions resurface; and (d) current trends in intervention programs are those 

which consciously focus on students' errors and misconceptions rather than reteach as 

if the errors and/or misconceptions are not in existence. 

In section 3.5 of this chapter, the Conceptual Mediation Program (CMP) was 

described in detail as a potential program for guiding the development of teaching 

programs in general as well as the tailoring of specific programs of intervention. The 

implications of the CMP for classroom teaching can be summarised in the following 

points: (a) errors and misconceptions are knowledge and knowledge is protected from 

change by the proactive inhibition mechanism; (b) presentation of mathematics 

concepts and skills in the classroom can be in conflict with students' prior knowledge 

and thus will be subject to accelerated forgetting; and (c) sharing with students such 

ideas on learning, remembering and natural and accelerated forgetting may offer 

students an opportunity to take greater metacognitive control of their own learning. 

In terms of classroom teaching, the CMP appeared to offer some interesting 

possibilities. With respect to designing a teaching program on percent for Year 8 

students, integrating CMP notions through metacognitive training as an integral part of 

the teaching program may assist students to take active control in their learning so that 

they may be more independent as learners, and to be metacognitive with respect to 

percent. 

CHAPTER SUMMARY 
In this chapter, issues in mathematics diagnosis and remediation were 

presented. The emphasis of this chapter was on instructional approaches for helping 

students overcome learning difficulties in academic situations. Diagnostic-prescriptive 
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teaching models and intervention programs were described, and were presented as 

programs of "good teaching". Research on error patterns in mathematical 

computations was presented, and the concept of errors as knowledge was discussed 

within a constructivist framework. Intervention programs and strategies were 

described for overcoming systematic mathematical errors/misconceptions. The 

Conceptual Mediation Program was presented, in which proactive inhibition was 

described as the mechanism responsible for the human tendency to retain naive 

conceptions, alternative conceptions and error patterns in the light of rational argument. 

A dual-path model was proposed, based on the CMP, for the diagnostic-prescriptive 

teaching of mathematics. 

Both this chapter, and the preceding chapter on percent teaching and learning 

have served to identify issues pertinent to this study. In the next chapter, the research 

methodology of the study is presented. 
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CHAPTER 4 

DESIGN 

CHAPTER OVERVIEW 
In this chapter the design of the study is presented. The study was designed 

to achieve the following aims (as stated in chapter 1, section 1.3): 

1 . To develop a program for effectively teaching percent applications in real 

classrooms. 

2. To draw implications and construct models for percent knowledge, percent 

instruction, and mathematics teaching in general. 

This chapter is presented in six sections. In section 4.1, methodologies for 

studying the influence of instruction upon students' learning are summarised. In 

section 4.2, the research design and methodology for this study is presented. In 

sections 4.3, 4.4, 4.5 and 4.6, the subjects, data sources, procedure and analysis are 

described respectively. 

4 .1 Researching teaching and learning 
4 .1.1 Overview 

The focus of this section is on research methodologies for studying the 

influence of instruction upon learning. In section 4.1.2, the teaching experiment is 

described. In section 4.1.3, action-research is described, and in section 4.1.4, 

clinical-intervention research and diagnostic-prescriptive instruction is described. 

Within these two sections, the nature of these research methodologies to the teaching 

experiment are discussed. In section 4.1.5, Hiebert and Wearne's (1991) 

methodology for studying learning to inform teaching is described, and in section 

4.1.6, Lampert's (1992) classroom based methodology for studying teaching and 

learning is described. A summary of key points is presented in section 4.1.7. 

4 .1. 2 The teaching experiment 

The teaching experiment design is typically a methodology for studying 

teaching or, specifically, studying the influence of instruction upon students' learning 

(Romberg, 1992). In teaching experiments, the instructional conditions which 

precipitate growth and change in students' knowledge are the prime focus of the 

research (Uprichard & Engelhardt, 1986). According to Romberg (1992), the teaching 

experiment design is utilised if the study "involves gathering research about the effects 

of a new and different product or program" (p. 57), and is different from other 
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qualitative approaches designed primarily to study how children think (Uprichard & 

Engelhardt, 1986). 

Ofthe teaching experiment, Kantowski (1978) stated that it was designed so 

that researchers could study the influence of planned instruction upon children's mental 

processes. Thus, observing how instruction led to development of problem solving 

and thinking skills provided guidelines for planning of instruction to optimally 

influence those processes. According to Kantowski, the teaching experiment derived 

from research methodologies devised by Vygotsky who believed that human cognitive 

functioning is a result of instruction, not an inborn process. Further, that instruction 

takes children from "ignorance to knowledge, from one level of operation to another, 

from a problem to a solution" (p. 45). 

The teaching experiment methodology (Kantowski, 1978; Rachlin, 

Matsumoto & Wada, 1987) typically requires students to be actively engaged in 

problem solving situations so that observations of student behaviour under such 

circumstances can be made. A cross-section of data is gathered from various sources 

including the teacher, the experimenter, an observer, and the students themselves. 

Selected students are often interviewed in clinical situations at various times during the 

teaching experiment. The students are selected on the basis of their being "strong", 

"average" or "weak" in the subject, according to judgment of the classroom teacher. 

All lessons are carefully observed and a comprehensive qualitative report of events is 

produced. Data from student interviews and classroom observations are combined and 

analysed, and conclusions as to effect of instruction on student behaviour are drawn. 

In light of these data, planning for future lessons is made. The lesson planning is 

contingent, but general course outline and content to be covered is determined in 

advance. 

In a teaching experiment, the researcher assumes an executive role, one 

where, as Hunting (1980) stated, the researcher is "a witness and interpreter of events" 

(p. 17), one who will "control the sequence of events and remain conscious at an 

'executive' level" (p. 17). Rachlin et al. (1987) further expanded upon the teaching 

experiment and delineated roles for each stage of the teaching experiment design. 

According to Rachlin et al., the teaching experiment involves a research team, 

comprising a researcher to provide a theoretical framework for the study; a curriculum 

developer to translate the framework into course materials; a teacher to implement the 

curriculum and adapt instruction to suit the program; an evaluator to provide feedback 

on the implemented program, and a disseminator to prepare others to use the new 

instructional program. 
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4 .1. 3 Action research 

Action research (Kemmis, 1982; Kemmis & McTaggart, 1990) also shares 

similar goals to the teaching experiment. Kemmis and McTaggart ( 1990) described 

action research as "trying out ideas in practice as a means of improvement and as a 

means of increasing knowledge about the curriculum, teaching and learning" (p. 5) 

which is a way of "working which links theory and practice into one whole: ideas-into­

action" (p. 5). Kemmis and McTaggart described the methodology of action research 

as a spiral of self-reflection, "a spiral of cycles of planning, acting (implementing 

plans), observing (systematically), reflecting ... and then replanning, further 

implementation, observing and reflecting" (p. 22). Thus, action research is classroom 

based, cyclical, and on-going. Its similarity to the teaching experiment is that it is a 

process of reflection upon practice. Action research provides a structure for guiding 

reflection upon practice. 

4. 1. 4 Clinical intervention research 

Clinical intervention research (Wilson, 197 6b) and diagnostic-prescriptive 

teaching (Uprichard & Engelhardt, 1986) offer a methodology for researching the 

influence of instruction upon students' learning. As described in section 3.3.2, clinical 

intervention research (Wilson, 1976a) is a methodology for research where instruction 

is specifically designed to help individual children overcome learning difficulties in 

mathematics. It can be seen to parallel the teaching experiment design in that treatment 

evolves in a spiral specific to the needs of the individual at the time, and the 

methodology involves extensive systematic descriptions of treatments and the 

recording of apparent effects. Individual cases are taken as a whole to draw 

generalisations from the patterns emerging so that they may form testable hypotheses 

for future research. Clinical intervention research and diagnostic-prescriptive 

instruction differ from the teaching experiment in that instruction is presented to 

individual cases, rather than whole class groups. However, there appears to be a trend 

away from using intact classes for teaching experiments, to presenting instruction to 

small, select groups of students (Thompson, 1994; Uprichard & Engelhardt, 1986). 

With small groups of students, a focused analysis of the influence of instruction can be 

undertaken, which, is the context for diagnostic and prescriptive mathematics 

(Uprichard & Engelhardt, 1986). 

4. 1. 5 A methodology for studying learning to inform teaching 

Hiebert and Wearne (1991) (see also Wearne & Hiebert, 1988) described a 

specific methodology for studying learning to inform teaching. This methodology can 

be summarised into the following four steps: 

1 . selecting the content domain and defining it clearly; 
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2. identifying the cognitive processes that are critical for successful performance 

in the domain; 

3. designing instruments to promote the acquisition and use of the key processes; 

and 

4. examining the relationship between instruction and cognitive change and 

assessing the extent of cognitive change. 

The focus of the methodology, according to Hiebert and W earne, IS the 

identification of the key processes required for successful operation within the 

mathematical domain; of designing instruction which directly facilitates the 

development and use of such key processes. The study of instruction upon the 

development of domain specific key processes may serve to identify and clarify key 

processes, thus the methodology may develop in a spiral, cyclical approach of 

"identifying processes and designing instruction to support their acquisition" (p. 165). 

The cyclical nature of the methodology simultaneously enables the influence of 

instruction upon the development of key processes to be determined, together with 

identification of further key processes, or identification of other key processes as the 

students are engaged in the learning process. Models can be built of the cognitive 

processes required to operate in that domain as well as models of teaching that facilitate 

the acquisition of such processes. To determine the extent of change, the methodology 

utilises two measures, direct and transfer measures. Direct measures assess how well 

students use the key processes on instructed tasks; transfer measures assess the degree 

of transfer of the key processes to other tasks not presented to students in the original 

instruction. 

4 . 1 . 6 Classroom based research 

One of the criticisms aimed at educational research is the limited degree to 

which research results filter to the real world of the classroom, or the degree to which 

results can be implemented directly to the classroom (Lerman, 1990). Hiebert and 

Wearne (1991) contended that their methodology is a means for placing research in the 

school situation to directly inform teachers. They advocate the use of whole class 

groups, as "full classroom settings afford greater ecological validity" (p. 163). A 

similar methodological approach was used by Lampert (1992), where instruction is 

presented to the entire class, and curriculum and instruction is developed 

simultaneously through studying the thinking processes of children as they interact 

within a mathematical domain. Lampert argued that the classroom situation, with the 

teacher as researcher, provides a totally different learning context to teaching in a 

clinical setting. As she stated, "it seems problematic to define understanding based on 

research done outside of the classroom and then to assess whether classroom 
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instruction is successful in producing that kind of understanding in the social setting of 

school activities" (p. 246). One of the problems of authentic classroom research is in 

determining students' thinking within a mathematical domain, and to assess the level of 

change as a result of instruction. To overcome this methodological problem, Lampert 

advocated the collection of data from many sources, but also confining the gathering of 

data to methods usually employed in the classroom situation. As she stated, children 

behave differently in problem solving situations conducted in clinical situations, and 

also during test situations. Therefore, data collection should be unobtrusive and 

"natural". 

4 .1 . 7 Summary of key points 

In this section, the teaching experiment design was described. The teaching 

experiment was presented as a general term encompassing classroom-based research 

into the influence of instruction upon learning. In this section, action-research, clinical 

intervention research and diagnostic-prescriptive teaching were described as research 

methodologies which share similar features to the teaching experiment. Other research 

methodologies were also described which were classroom based with a focus on 

instruction and learning. 

4. 2 Research design and methodology 
4.2.1 Overview 

In this section, the design and methodology of the study are described. In 

section 4.2.2, the "hybrid" (Schulman, 1990) nature of the design and methodology is 

presented, in section 4.2.3, the sequence of, and activities within the teaching 

experiments are described, and in section 4.2.4, data gathering techniques to achieve 

the outcomes of the study are listed. A summary of key points is presented in section 

4.2.5. 

4. 2. 2 A "hybrid" design 

The design of the study primarily followed that of the teaching experiment 

(Hunting, 1980; Kantowski, 1978), but methodological procedures were adopted from 

other qualitative designs for studying teaching. The design was thus a "hybrid" 

(Schulman, 1990). According to Schulman (1990), mixes of various research designs 

are "exciting new developments in the study of teaching" (p. 3). 

For the study, a series of teaching experiments was conducted to develop an 

efficient and effective instructional sequence and to explore students' understanding of 

percent. The "research team" (Rachlin et al., 1987) for the teaching experiment 

consisted of one person assuming the roles of researcher, curriculum developer, 

teacher, evaluator, and disseminator. The teaching experiments were performed on 
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intact classes to afford greater ecological validity (Hiebert & Weame, 1991). An 

authentic research context was created with instruction being presented to students 

during their normal school routine in a manner similar to that advocated by Lampert 

(1992). The teaching program was presented to the students by the researcher who 

assumed the role of the classroom teacher. The researcher had expertise in the 

instructional sequence to be trialled. The classroom teacher acted as observer to the 

lessons, and therefore assumed a minimalist role of "evaluator" (Rachlin et al., 1987) 

in the research team. Teaching episodes were planned and modified in light of analysis 

of students' written work and actions during instruction. The methodology thus 

incorporated a diagnostic-prescriptive approach to instruction (Ashlock, Johnson, 

Wilson & Jones, 1980). The action-research self-reflection spiral (Kemrnis & 

McTaggart, 1990) provided a framework for analysis of each teaching episode. The 

teaching episodes were developed through identification of key processes for 

successful operation within the domain of percent, with instruction planned for 

promotion of these key processes in students (as per Hiebert & Weame, 1991). The 

teaching episodes were written as systematic descriptions of treatments with the 

recording of apparent effects in accordance with clinical intervention research (Wilson, 

1976b). Simultaneously, the appropriateness of the key processes, and the 

instructional sequence to optimise acquisition of the key processes, were studied 

following the methodology for studying learning to inform teaching (Hiebert & 

Wearne, 1991). 

4. 2. 3 Sequence of, and activities within, the teaching experiments 

Four teaching experiments were conducted. The first teaching experiment 

was conducted in a school selected for its typicality; later experiments were conducted 

in a more controlled environment to enable a greater focus on instruction and cognitive 

change rather than behavioural change (see section 4.3). Each teaching experiment 

consisted of a series of teaching episodes which were modified during each of the 

experiments in response to the students' reactions. The initial teaching episodes were 

developed from the literature (see section 2.4) and were modified across the 

experiments. The focus throughout the experiments was on the relation between 

instruction and cognitive change (as per Hiebert & Weame, 1991). Changes in 

teaching were implemented to maximise learning. The experiments took place in actual 

classrooms following the schools' existing timetables. Each teaching experiment was, 

by necessity, compressed into a short time line. Major reflection upon each teaching 

experiment therefore tended to occur between experiments when time was available to 

adequately analyse data collected. Major modifications of teaching episodes occurred 

between experiments, as depicted in Figure 4.1. The experiments can be seen to flow 
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together as a series of hermeneutic cycles (Guba & Lincoln. 1989). where results of 

each previous experiment informed the planning of the following experiment. 

Literature Teaching Teaching Teaching Teaching 
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

1 l 1 J 1 
initial modification further further final program 
plan of of teaching modification of modification of 
teaching episodes teaching episodes teaching episodes 
episodes 

Figure 4.1. Development of teaching experiments. 

Within the teaching experiments, the teaching episodes were planned prior to 

implementation, but modified upon reflection of student reaction, observer feedback, 

and analysis of field notes upon implementation. Planning for future instruction was 

thus contingent upon preceding episodes. A diagnostic-prescriptive approach to 

instruction also guided the planning of the teaching episodes. Following the dual-path 

model of diagnostic-prescriptive mathematics teaching presented in section 3.6.3, 

students' knowledge of the topic was ascertained prior to instruction via a pen-and­

paper test. Results of this test influenced development of particular teaching episodes. 

Each teaching episode required careful planning, implementation, and monitoring so 

that subsequent episodes could be refined. The CMP (Lyndon, 1995) was also 

included as a teaching episode within each teaching experiment, and planning for CMP 

occurred as for all other episodes. The teaching episodes evolved in a spiral-manner 

through cycles of planning, acting, observing and reflecting (Kemmis & Mctaggart. 

1990) upon individual teaching episodes. The development of the teaching episodes is 

depicted in Figure 4.2. 

a~ --jnew pla~~n~ 
pretest 4 <.lifficulties --7 pl/ . Jct (n-- act (' act 

. J \ I j I ..:v I 

ret1ect ret1ect J rdlect 

'-__ llbser\ e ~observe ~observe 

Figure 4.2. Development of teaching episodes 
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4. 2. 4 Data collection and outcomes 

The study was designed to produce two outcomes. First, the experiments 

were sufficiently related so that instructional actions that produced learning could be 

cumulated, resulting in the documentation of an effective instructional program for 

teaching percent, and a description of incorporation of CMP into the mathematics 

classroom. Second, the experiments were sufficiently open so that data gathered 

provided insight into students' percent knowledge structures and percent problem 

solving, as well as a measure of the effectiveness of the CMP technique and the 

information on conditions under which CMP can be effectively introduced and 

implemented. 

To achieve the outcomes of the study, and to overcome the methodological 

problem of validity of results when conducting classroom-based research (Lampert, 

1992), data were collected from a variety of sources. The lesson plans were written, 

and evaluations made at the conclusion of each lesson. Comprehensive field notes 

were written upon completion of each teaching episode. The classroom teacher's 

observations were recorded at the same time. Ad hoc interviews were conducted with 

the students and the classroom teacher throughout each experiment, and included in the 

report. Students' work -samples were collected, and students were asked to write 

about various lessons in a reflective journal. Students were pre- and posttested, and 

results of the pretest were used for diagnostic purposes within the design of various 

lessons. Results also served to assess change in perform~ce within the mathematical 

domain. The pre- and posttests were developed for direct and transfer measures 

(Hiebert & Weame, 1988). A delayed posttest was administered to two of the four 

student groups approximately 8 weeks after instruction. 

4. 2. 5 Summary of key points 

In this section, a description of the design was presented. The design, 

broadly categorised as a series of teaching experiments, can be seen to incorporate 

elements of other designs for studying the influence of instruction upon learning. The 

overriding theme of the design is authenticity with the study carried out in the 

complicated context of the classroom. The desire for authenticity was seen to constrain 

the design in one sense, but also to give power to transferability of results. 

4.3 Subjects 
Four groups of students participated in the study. Each group of students was 

an intact class of approximately 30 Year 8 students (approximate age of 12-13 years). 

The students in all groups were not ability streamed, therefore a range of ability levels 

were represented in each group. Groups 1 and 2 students attended a co-educational 

suburban state secondary school; Groups 3 and 4 students attended an inner-city 
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private girls' school. Upon implementation of the teaching program with Groups 1 

and 2, it was found that instruction was hindered due to environmental factors 

associated with whole class instruction in naturalistic settings with an unfamiliar 

teacher. Groups 1 and 2 students reacted to an unfamiliar teacher, exhibiting 

behaviours which made it difficult to fully implement the teaching program as planned. 

The school environment of Groups 3 and 4 assisted the implementation of instruction 

by an unfamiliar teacher, and ensured that the planned teaching program was 

implemented in its entirety. Implementation of instruction for Groups 3 and 4 students 

required less emphasis on management than Groups 1 and 2, and enabled greater field 

data to be gathered. 

4.4 Data sources 
4. 4.1 Overview 

Several data sources were utilised in the study. These included a pen-and­

paper test, field notes, ad hoc interviews, student diaries, student artefacts and 

worksamples. A description of the pen-and-paper Percent Knowledge Test used for 

pre- and posttesting purposes, and the delayed post-test, is presented in section 4.4.2. 

Researcher-generated data in the form of field notes and a self-reflection journal are 

described in section 4.4.3. Subject-generated data in the form of student journals, 

work samples and artefacts are described in section 4.4.4. 

4. 4. 2 Pen and paper test 

Pre- and posttests 

The pen and paper Percent Knowledge Test was inspired by Leinhardt' s 

(1988) descriptions of intuitive, concrete, computational, and principled-conceptual 

mathematical knowledge, and developed to relate to percent knowledge (see section 

2.4.4 for a description of proposed intuitive, concrete, computational, and principled­

conceptual percent knowledge). Using Leinhardt's theoretical basis of mathematics 

knowledge, test items were constructed in light of percent knowledge categories 

proposed in section 2.4.4. The validity of the test was maintained through checking 

links between percent knowledge categories and the definitions of mathematics 

knowledge proposed by Leinhardt. For this study, the test results were to serve as 

indicative of knowledge growth after instruction, and also for diagnostic purposes. In 

this study, the test results were not used for quantitative analysis of an inferential 

nature, so reliability measures were not undertaken. The test was constructed in three 

sections; with Section I focusing on percent concepts and principles; Section II 

focusing on percent conversions and benchmarks; and Section III focussing on percent 

problem solving. 
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Section I contained items relating to intuitive and principlecl/conceptual percent 

knowledge. Intuitive knowledge of percent was interpreted as the use of percent in the 

real world, relating to such concepts of bank interest, profit, loss, discount; as well as 

the use of common benchmarking percentages of 50% is a half, 25% is a quarter, and 

10% is one-tenth. Principled/conceptual knowledge of percent was interpreted as the 

mathematical structures related to the domain of percent, such as: (i) the relationship 

between decimal and common fractions and percent; (ii) that 100% is the whole, and 

that a number of percentage parts can total the whole; (iii) interpretation of the additive 

and multiplicative language of percent increase and decrease situations; and (iv) 

construction of real-world examples of the three types of percent problems. Section I 

of the test consisted of 21 multiple-choice items and 3 written response items. 

Section II contained items relating to computational percent knowledge, 

specifically: equivalence of percent, common and decimal fractions; and mental 

computation of amounts using percent benchmarks. For Section III, the test items 

related to concrete and computational percent knowledge, specifically: computation of 

percent exercises and application problems for the three types of percent problems, and 

the use of appropriate diagrams for representing percent problems. Section II and III 

of the test required students to calculate solutions to the questions, and record all 

working on the test paper. A taxonomy of items within the Percent Knowledge Test is 

presented in Appendix A. 

Delayed posttest 

A shortened and modified Percent Knowledge test consisted of 10 items. The 

first two items were multiple choice questions relating to interpreting the additive and 

multiplicative language of percent increase/decrease problems. These two items related 

to intuitive, principlecl/conceptual percent knowledge. The other eight items required 

calculation of percent exercises and problems. These items related to 

concrete/computational percent knowledge. A taxonomy of test items within the 

delayed posttest is presented in Appendix B. 

4. 4. 3 Researcher Data 

Researcher developed field notes 

A daily diary of events for each lesson was compiled. During each teaching 

session, brief notes were jotted by the researcher (identified from now on as the 

teacher-researcher) if the students were actively engaged with a task and did not require 

assistance. Jottings were transcribed in detail at the earliest convenience after each 

teaching session, and thus a snap-shot of events in each lesson was constructed. 
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Ad hoc interviews 

At the conclusion of every teaching session, the researcher discussed the 

lesson with the classroom teacher. Through this informal interview situation, the 

researcher gathered data on the lesson from the observer's perspective. Informal 

interviews were also conducted by the teacher-researcher on an ad hoc basis with the 

students themselves at various times, including during the lessons as the teacher­

researcher moved about the room checking students' progress, and during out-of­

school times such as at recess or before or after class. 

Self-reflection journal 

The daily diary entries were incorporated into a "self-reflection" journal using 

the three of the four key elements in action research (Kemmis & McTaggart, 1990) of 

plan, action, and reflection. Under the subheading plan, the planned action for the 

daily teaching session was detailed. The subheading Action provided a description of 

the extent to which the session followed the pre-planned sequence. Details of notable 

features of the session were listed, particularly students' reactions to the implemented 

action. Descriptions were (i) anecdotal, where accounts of individual's reactions were 

detailed, and included the context and events preceding and following particular 

incidents; and (ii) of field note type, which included subjective impressions and 

interpretations (Kemmis & McTaggart, 1990). Under the subheading of Reflection, 

the teacher-researcher reflected upon the session, using subjective feelings noted at the 

conclusion of each teaching session and data from informal interviews with the 

classroom teacher and from ad hoc interviews with the students. Reflections included 

suggestions for subsequent lessons. 

4. 4. 4 Subject-generated data 

Subjects' personal log books 

Ellerton (1989) suggested that mathematical understanding is enhanced by 

encouraging children to reflect on daily mathematical lessons through writing. To this 

end, Ellerton suggested that children write entries into log books for such purposes. 

Ellerton's suggestions were incorporated within this study, primarily as a data 

gathering technique, but also for the purpose of increasing student's self-reflective 

skills. Wardrop (1993) described a means for developing children's writing, and 

therefore reflective skills in mathematics, by providing focusing starting sentences 

which children must use to begin their writing. Wardrop's suggestions were adopted 

for this study, and consequently, all subjects in the study were given a note book 

which served as their mathematics journal. At various times during the instructional 

period, the subjects were expected to write an entry into their journal given specific 

guidelines. These specific guidelines are presented in Figure 4.3. 
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Mathematics Journal 

1. Write your thoughts about today's maths lesson. 

2. Put the date at the beginning of each journal entry. 

3. Each journal entry must be at least 112 a page in length. 

4. Each journal entry must have at least 2 sentences beginning 
with the following sentence starters: 

One thing I learned in maths today was ... 
I was pleased that I ... 
I found out that ... means ... 
I think I am getting better at ... 
I'm still confused about ... 

5 . Rule off after every entry. 

6. You may include diagrams or illustrations or decorate your 
journal in any (acceptable) way you wish. 

Figure 4.3. Instructions to students for completing mathematics reflection 

journals. 

Student artefacts and worksamples 

Student artefacts and worksamples included any pieces of work students 

completed during the instructional unit, such as their notebooks, homework sheets, 

class worksheets, written reports. 

4.5 Procedure 
For each group, the teaching experiment was conducted in four steps, as 

follows: 

Step 1 - Pretest 

Step 2 - Metacognitive training 

Step 3 - Instruction 

Step 4 - Posttest 

For Groups 3 and 4, a fifth step was included, which was the administration of the 

delayed posttest. Between each teaching experiment, planning for subsequent teaching 

experiments occurred. 

Step 1 - Pretest 

Prior to commencement of teaching, the Percent Knowledge Test was 

administered to students during timetabled mathematics classes. The test required two 

separate mathematical lessons for completion. Students were permitted to use 
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calculators for the concrete/computational items of the test if they so desired. The test 

was administered by the students' usual classroom teacher. The tests were analysed 

for diagnostic purposes. Specific items with which the majority of students 

experienced difficulty were noted to thus guided the development of instruction. 

Step 2- Metacognitive training 

The metacognitive training component of the instructional sequence was 

adapted from the Conceptual Mediation Program (CMP -see section 3.5 for a full 

description of this program). Two lessons were planned. The first session was 

planned to explore issues of attention, learning and remembering, (and to introduce a 

strategy called Look-Say-Cover-Write-Check (LSCWCh) which is a suggested means 

for taking control of remembering in the CMP). The second session was planned to 

explore natural and accelerated forgetting, (and to introduce the Old Way/New Way 

(0/N) strategy, an integral component of the CMP, for overcoming accelerated 

forgetting). The metacognitive training episode was planned to make the following 

points: 

1 . The nature of the brain 

The brain is designed to forget. 

2 . Learning and attention 

Learning is easy, remembering and paying attention is hard. 

We can choose what we pay attention to. 

What we pay attention to, we learn. 

Paying attention is hard because it requires effort. 

3 . Recognition and recall memory 

Our brain has two quite different ways of remembering, called recognition 

memory and recall memory. Knowing how these are different will help us 

take control of remembering. 

Recognition memory just happens naturally without effort. 

We can't improve our recognition memory by practice because it's already 

automatic. 

Recall memory is naturally effortful. 

Recall memory only becomes automatic through practice. 

We can avoid problems of effortful recall by using a good recall strategy. 

"Look, Say, Cover, Write, Check" (LSCWCh) is a good recall strategy. 
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4. Natural forgetting 

Natural forgetting is nomzal; it just happens. 

We cmz take control of 1zatural forgetting by using a good recall strategy GJZd 

practice. 

When we have forgotten something, we go through a process of relearning. 

Relearning is generally fast once practice recommences. 

5 . Accelerated forgetting 

Accelerated forgetting is natural and only occurs when someone has their own 

way of doing something before they try to learn a new or better way. 

Accelerated forgetting is quite rapid. 

We can take control of accelerated forgetting by using the Old Way/New Way 

( 0/N) strategy. 

Within the metacognitive training program, two strategies are presented. The 

LSCWCh strategy is a sequence of actions for committing something to memory. If 

used, for example, to learn the spelling of a new word, the first action is to LOOK at 

the word, noting the interesting features; then SAY the word; COVER the word; 

WRITE the word from memory, and then CHECK that the written word matches the 

targeted word. As a strategy within the CMP, LSCWCh is presented as a suggested 

means to take control of remembering, with emphasis on COVERING and WRITING 

the "word" in order to activate recall memory. In CMP, LSCWCh is described as a 

generic strategy, not just for learning to spell new words. The 0/N strategy is 

presented in the metacognitive training episode as a strategy for taking control of 

forgetting. This strategy is described in detail in section 3.5.3. 

One other main activity is incorporated within the metacognitive training 

program, and this is the Colour Card activity. The purpose of this activity is to 

demonstrate the existence of the proactive inhibition (PI) mechanism. For this activity, 

a set of "Colour Cards" are distributed. The colour cards are a set of three cards on 

which a series of words printed in various coloured inks are displayed, to cause 

maximum degrees of proactive interference (e.g., the word "green" printed in blue 

ink). In this activity, the sets of words are read, and reading time recorded. Results of 

this activity are displayed as a focus for discussion on the PI mechanism and 

accelerated forgetting. 

Step 3 - Instruction 

Instruction was designed around a number of teaching episodes. The teaching 

episodes were planned in consideration of two factors: (i) the need to balance 

presentation of key percent knowledge as suggested in the literature together with 
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equipping students to succeed in solving percent problems in school situations; and (ii) 

the time allocated by the school for teaching the topic of percent. Development of 

curriculum is guided by the mathematics syllabus, and, as stated in section 1.2.2, 

specific learning experiences for Year 8 in the topic of percent relate to analysing the 

relationship between percentage and decimal and common fractions, estimating and 

calculating to find a percentage of a number or quantity (Type I percent problems), 

estimating and calculating to increase and decrease by a given percentage, and solving 

and creating problems involving practical application of percent, including discount 

and simple interest. As also stated in section 1.2.2, the syllabus states that Type II and 

III percent problems be introduced to students in a staggered manner, in Years 8, 9 and 

10 respectively. As suggested in section 2.5, instruction in percent would focus 

around analysing and interpreting percent problems through development of a part­

whole-percent schema, representation of percent problems on a vertical, dual-scale 

percent/quantity number line, and the Rule of Three procedure for proportion problems 

(see section 2.4.2 for a detailed description of this method). Instruction was designed 

to follow suggestions for the development of mathematics knowledge (Karnii, 1995; 

Lampert, 1986; Leinhardt, 1988) that instruction should proceed from intuitive to 

concrete, concrete to computational, computational to principled-conceptual. For the 

first teaching experiment, instruction was planned into seven teaching episodes, 

including metacognitive training. The seven teaching episodes are outlined as follows: 

1 . Metacognitive training 

(See description of this episode previously presented in step 2) 

2. Concept of percent 

Percent use in the real world 

The multifaceted nature of percent 

3 . Fraction equivalence and the Rule of Three 

Practice Rule ofThree procedure 

4. Interpreting percent problems 

Interpreting percent problems in tenns of part-whole-percent (percent schema) 

Creating percent problems to match the three types of percent equations 

5. Solving percent problems 

Representing elements of percent problems on vertical number line 

Constructing proportion equation from representation 

Solving percent word problems using Rule of Three 
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6. The language of percent increase and decrease 

Interpreting percent increase and decrease problems in terms of additive and 

multiplicative language 

7 . Percent, fraction, decimal equivalence 

Analysing the relationship between percent, common and decimal fractions 

Practice in conversions between percents, fractions and decimals 

Percent instruction per se, was planned to commence in Teaching Episode 2, 

with the concept of percent being the focus of the episode. This episode was planned 

to draw out students' intuitive percent knowledge. In subsequent episodes it was 

planned that students would represent percent situations on a vertical number line and 

develop skill in solving proportion equations using the Rule of Three procedure. The 

dual-scale, vertical number line would be presented as a mental model of percent as a 

proportion on which percent situations could be visually represented. These episodes 

were to promote students' concrete and computational knowledge of percent as a 

proportion. Development of such concrete and computational knowledge associated 

with percent was to lay the foundation for the development of principled-conceptual 

percent knowledge, as listed in section 2.4.4. 

Step 4 - Posttest and delayed posttest 

At the conclusion of the instructional sequence, the posttests were 

administered by the Researcher acting as classroom teacher. For Groups 3 and 4, the 

delayed posttests were administered approximately 8 weeks after instruction. 

Planning of subsequent teaching experiments 

Upon completion of the teaching experiment with Group 1, the instructional 

sequence was modified in light of reflection of implementation. The instructional 

sequence developed for Group 2 was thus contingent upon instruction implemented 

with Group 1. The instructional sequence for Group 3 was modified in a similar 

fashion. Analysis of the third teaching experiment indicated positive results, thus the 

fourth teaching experiment was conducted with little modification to the instructional 

sequence used with Group 3. Teaching Experiment 4, therefore, was simply a further 

trial of the instructional sequence under conditions similar to the experiment conducted 

with Group 3. 
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4. 6 Analysis 
4. 6.1 Overview 

Data analysis occurred at two levels: (i) within and between episodes in each 

teaching experiment, and (ii) across the four teaching experiments. These two levels 

of analysis are described in sections 4.6.2 and 4.6.3 respectively. 

4. 6. 2 Within and between episodes in each teaching experiment 

For each episode in the teaching sequence, the teacher-researcher's field notes 

and the classroom-teacher's observations were combined with information on student 

performance to produce a description of lesson actions and student responses. 

Episode descriptions were presented in terms of the four steps of the action research 

cycle (Kemmis & McTaggart, 1990): plan, action, observation and reflection. 

Reflection upon each episode informed the plan of the following teaching episode. 

Teaching episodes were evaluated by reflecting on events within the lesson. Each 

episode was rated as successful or unsuccessful through analysis of students' 

responses and behaviour, and through discussion of the episode with the classroom 

teacher. Episodes were rated as unsuccessful through consideration of many factors, 

such as: the lesson was not implemented as planned; anticipated task completion by 

students did not occur; student behaviour indicated disinterest, lack of attention and/or 

motivation; students did not appear to grasp the concepts and ideas being presented; 

reflection upon implementation of the lesson, through discussion with the classroom 

teacher, suggested the episode was not successful. Evaluation of episodes primarily 

was on the basis of the "feel" through consideration of many factors (as per design­

experiments of Hawkins & Collins, 1992). 

For each teaching experiment, pre- and post-tests were scored and the results 

of these were combined with teaching episode information and the students' reflective 

journal writing to produce a description of the total teaching experiment which 

documented relationships between teaching action and student response across the 

experiment. This was evaluated in terms of the changes in test results (overall 

effectiveness) and the relative effectiveness of the episodes. This was particularly 

achieved in two ways. First, for percent knowledge, changes in test performance for 

different topics were related to impressions of the effectiveness of the teaching 

episodes for those topics. As a result of this, episodes which appeared successful in 

terms of their evaluation and related test results were retained, episodes for which 

results were mixed were modified, and episodes which were unsuccessful in terms of 

evaluation and test results were reconstructed. Second, for CMP, later episodes were 

observed for evidence of the CMP actions taught in early episodes. As a result, the 

CMP teaching actions which appeared successful in terms of their evaluation and the 

later use of the their teaching were retained, actions for which results were mixed were 
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modified, and actions which were unsuccessful in evaluation and later use were 

reconstructed. 

At the conclusion of each teaching experiment, summative evaluation occurred 

at two levels: (i) reflection upon implementation of teaching episodes, and (ii) 

reflection upon pre- and posttests and instruction. The focus was on modifying the 

experiments so that a larger number of episodes was deemed effective and test score 

results showed greater improvements. Thus, as shown in Figure 4.4, the analytic 

process became a series of hermeneutic cycles (Guba & Lincoln, 1989) through which 

instruction was refined (Hawkins & Collins, 1992). As well, episodes that retained 

effectiveness across experiments became the mainstay of the final teaching plan. 

Figure 4.4. Planning of teaching experiments following a hermeneutic cycle. 

4. 6. 3 Across the four teaching experiments 

Upon completion of the four teaching experiments, results were analysed 

collectively. Key processes in teaching and learning percent and the CMP had been 

developed from the literature (see sections 2.4.2 and 3.6.3). For each of these key 

processes, data from relevant episodes, test results and reflective journals were 

combined within each teaching experiment and compared across experiments (taking 

account of teaching differences). The focus here was on constructing categories for 

student responses with respect to percent knowledge, percent problem solving and use 

of CMP techniques, and in developing explanations for these responses in relation to 

the teaching program. 

CHAPTER SUMMARY 
In this chapter, the design of the study was described. The focus of the study 

was to research a teaching program for influencing Year 8 students' percent knowledge 

and problem solving skills, as well as metacognition, in authentic classroom situations. 

The design of the study followed the teaching experiment, but as presented in this 

chapter, was seen to be a "hybrid" design. The subjects, data sources, procedure and 

analysis were described. The results of the study are presented in the next chapter. 
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CHAPTER 5 

RESULTS 

CHAPTER OVERVIEW 
In this chapter the results of the study are presented. There are five sections 

in this chapter. The four teaching experiments within the study, are described 

individually in sections 5.1 to 5.4. In section 5.5, results across the four teaching 

experiments are discussed. The description of each teaching experiment includes pre­

and posttest results, an overview of the planned teaching sequence, and a detailed 

description of the implementation of each teaching episode within the planned 

sequence. The contingent nature of the study is shown as the report on each teaching 

experiment concludes with a statement of reflection, which can be seen to provide 

direction for the following teaching experiment. 

The report contained in this chapter is a narrative. The primary description of 

events is from teacher-researcher field notes, shaped by taking account of student 

reactions and responses, and classroom-teacher observations. Initially in the report, 

there is minimal reference to student diary entries and classroom teacher observations. 

A widening field of data sources is utilised as the narrative progresses with student 

diary entries and classroom-teacher observations increasingly being incorporated 

within the report, to provide depth to descriptions presented. The narrative shows the 

evolutionary nature of the four studies, initially with teacher-researcher self-reflection 

being used to mould and shape subsequent teaching episodes, to gradual utilisation of 

student and observer feedback to confirm teacher-researcher observations and 

reflections. 

5 .1 Teaching Experiment 1 
5 .1.1 Overview of report on Teaching Experiment 1 

The results of Teaching Experiment 1 are reported in this section. The pre­

and posttest results are presented in section 5.1.2. An overview of the planned 

teaching sequence, comprising seven teaching episodes, is presented in section 5 .1.3. 

In sections 5.1.4 to 5.1.10 inclusive, implementation of each of the seven teaching 

episodes is described. Each episode is presented as a new section. Each episode 

description is presented under the subheadings Plan, Action, Observation and 

Reflection. A reflection upon the implementation of the unit of work is presented in 

section 5 .1.11. A reflection upon pre- and posttest results and instruction is presented 

in section 5 .1.12. This chapter section concludes with a statement on directions for 

Teaching Experiment 2 in section 5.1.13. 
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5 . 1 . 2 Pre- and posttest results 

As stated in section 4.4.2, the pre- and posttests were parallel forms, 

containing items relating to intuitive, concrete, computational and principled­

conceptual knowledge (Leinhardt, 1988) of percent. The test comprised three 

sections, with Section I focussing on intuitive and principled-conceptual percent 

knowledge, Section II focussing on percent, common and decimal fraction equivalence 

notions and percent benchmarks, and Section III relating to percent calculations and 

problem solving. Group 1 scores on each section of the pre- and posttests are 

presented in table 5.1. 

Table 5.1 

Pre- and Posttest Means (%)for Group I Students on the Percent Knowledge Test in 

Total and in Each Test Section 

Components of the Percent Knowledge Test 

Test Total Section I Section II Section III 

Pretest 43% 60% 60% 10% 

Posttest 52% 69% 54% 33% 

From Table 5.1, it can be seen that Group 1 test scores showed a slight 

positive change with a pretest score of 43% and a posttest score of 52%. Within each 

section of the test, there is a slight positive change for Section I (intuitive, 

principled/conceptual knowledge), a slight negative change for Section II (conversions 

and benchmarks) %, and a positive change for Section III (percent calculations and 

problem solving). From Table 5.1, it can be seen that Group 1 students' intuitive and 

principled-conceptual percent knowledge, and proficiency in percent conversions and 

benchmarking, prior to instruction, was much greater than their percent calculation and 

problem solving skills. It also appears that, as a result of instruction, Group 1 

students' intuitive and principled/conceptual percent knowledge (Section I), and 

computational knowledge (conversions and benchmarks- Section II) did not change 

markedly as a result of instruction. Computational and concrete knowledge (percent 

calculations and problem solving - Section III) did change as a result of instruction, 

but did not increase to a satisfactory level for the whole group. In terms of the total 

test performance, there is a limited positive increase overall. Graphical representation 

of the pre- and posttest scores are presented in Figure 5.1, highlighting the marked 

change in pre- and posttest scores for Section II Part II of the test, and minimal change 

in other sections, and in the test overall. 
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Figure 5.1. Graphical representation of Group 1 students' pre- and posttest 

means (%) in total, and in each test section. 

Each section of the test was also scored for diagnostic-prescriptive purposes, 

so that particular areas of weakness could be identified and thus planning for 

instruction informed. Within the three parts of the test, the number of incorrect student 

responses for each item was tallied. Test items showing a high level of incorrect 

scores were identified from the Taxonomy of Percent Knowledge Test items (see 

Appendix A). Representation of the number of incorrect responses to each item on 

Section I (intuitive, principled-conceptual knowledge), Section II (conversions and 

benchmarks) and Section III (percent calculations and problem solving) of the Percent 

Knowledge Test are presented in Figures 5.2, 5.3 and 5.4 respectively. 

In Figure 5.2, it can be seen that, prior to instruction, the majority of students 

in Group 1 experienced difficulty with intuitive, principled-conceptual percent 

knowledge items 1d, 6c, 7a-c and 8a-c. From the taxonomy (see Appendix A) these 

items relate to understanding the real world percent transaction of bank interest, the 

additive and multiplicative language of percent increase and decrease, and the relation 

of real-world percent situations to percent equations. Specifically, item 1d relates to 

the interest charged on a credit card where the purchase cost via a credit card is greater 

than the initial purchase price. Item 6c relates to the additive language of percent 

increase situations where a 150% increase is the original amount plus 150%. Items 

7a-c relate to the multiplicative language of percent increase and decrease situations, 

where a) a 25% discount is the same as 75% of the original; b) a 25% increase is the 

same as 125% of the original; and c) a 125% increase is the same as 225% of the 

original. Item 8a-c relates to posing of real-world percent problems for: a) Type I; b) 

Type II; and c) Type III percent situations. 
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Figure 5. 2. Group 1 pretest (n=25) and posttest (n=27) incorrect scores on 

Section I (intuitive, principled/conceptual percent knowledge) of the Percent 

Knowledge Test. Graph indicates number of students incorrectly responding 

to particular items. 

Comparing pre- and posttest errors on Section I of the test, it can be seen that, 

after instruction, Group 1 students continued to experience difficulty with the same 

types of items as in the pretest. That is, many students still experienced difficulty with 

items relating to bank interest and loans, the multiplicative and additive language of 

percent increase, and the ability to pose real world percent problems from percent 

equations (items 1d, 6c, 7a-c, and Sa-c), although students' ability to pose real world 

percent situations showed improvement (item Sa-c). They also appeared to have 

difficulty with the percent benchmark item of 10% as one in ten (item 2c ), and the 

concept of percent as a part/whole relationship (item 3c ). 

In Figure 5.3, showing incorrect responses on Section II (conversions and 

benchmarks) of the Percent Knowledge Test, it can be seen that, on the pretest, the 

majority of students incorrectly responded to items 1 and 4, which relate to percent-to­

fraction conversions and fraction-to-percent conversions. Percent benchmark items 

(items 5a-j) were generally answered correctly. On the posttest, there appears to be a 

reversal of scores, with students incorrectly responding to items involving percent 

benchmarking (items 5a-j) and correctly converting percents to fractions (item 1). 

Students' performance on conversions of fractions to percents (item 4) remained 

unchanged. 
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Figure 5.3. Group 1 pretest (n=28) and posttest (n=27) incorrect scores on 

Section II (conversions and benchmarks) of the Percent Knowledge Test. 

Graph indicates number of students incorrectly responding to particular items. 

In Figure 5 .4, it can be seen that, on the pretest, all students experienced 

difficulty with percent calculations and solving percent problems (Section III). Results 

indicate that students experienced less difficulty with item la and 2a, which relate to 

calculation of Type I percent equations, and solving Type I percent word problems 

respectively. Figure 5.4 also indicates that no students drew diagrams to assist percent 

problem solving (item 3), and most students experienced difficulty writing percent 

problem solutions in words (item 4). Compared to pretest scores, posttest scores 

indicate that less students experienced difficulty in solving percent word problems 

(item 2a-c) after instruction, and slightly more than half of the students were using 

diagrams to assist percent problem solving (item 3). Slightly more students were also 

successfully tackling multi-step percent word problems (item 5a-d). 

Analysis of students' calculation procedures for items on Section III of the 

pre- and posttest indicate change in methods used by students. In the pretest, students 

who successfully completed Type I problems, utilised the decimal multiplication 

procedure (e.g., 24% of 15 = 0.24 x 15), or keyed the sequence into the calculator 

(e.g., 15 x 25 %), using the calculator "percent" button. Other students simply wrote 

the correct solution, therefore giving no indication of their solution strategy. Of the 

students who got Type I problems wrong, most students made no attempt at solution, 
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or provided a single answer with no working out. One student used an incorrect 

subtraction strategy (e.g. 15% of 24 = 15- 24), which indicates little understanding of 

percent calculation procedures. 
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Figure 5.4. Group 1 pretest (n=28) and posttest (n=28) incorrect scores on 

Section III (percent calculations and problem solving) of the Percent 

Knowledge Test. Graph indicates number of students incorrectly responding 

to particular items. 

For Type II problems, of the students who successfully answered such items, the 

division strategy was used (e.g., express 317 as a percentage = 3 + 7 = 0.4285 = 

42.85% ). For students who scored Type II problems incorrectly, there was no 

solution attempt made, or an answer only was given showing no working. For Type 

III problems, the four students who correctly answered these items gave a numerical 

answer and no working. Of the students who did not score on these items, the 

majority of students made no attempt at a solution. Two students used multiplication 

(e.g., 72 is 8% of what number= 0.08 x 72), and one student continued to use the 

subtraction procedure as for Type I problems (72 is 8% of what number= 72 - 8 = 

66%). Students' solution procedures for percent calculations therefore, showed 

utilisation of various strategies, but the majority of Group 1 students made no attempt 

to answer these items. 

On the posttest, utilisation of the proportional number line method, presented 

in the teaching experiment, was evident for many students. Of the students who 

correctly responded to such items on the posttest, the strategy used was the number 

line, or the proportion equation without the number line. Some students provided 
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answers only which were correct. One student continued to use the decimal 

multiplication procedure. Incorrect responses showed use of the proportional number 

line method with placement of numbers in incorrect positions, or incorrect placement 

of numbers into a proportion equation. One student used decimal multiplication for all 

three types of percent problems, and thus successfully solved Type I problems only. 

Other incorrect responses included no solution attempt by some students. Comparing 

pre- and posttest results in Figure 5.4, it can be seen that, on the pretest, more students 

experienced difficulty with Type II and III percent calculations (items 1b and 1c) than 

with Type I percent calculations (item la). Solving percent word problems (item 2a-c) 

was more successfully attempted by students after instruction, through use of the 

proportional number line method. 

5. 1. 3 Planned teaching episodes 

For Group 1, seven teaching episodes were planned, to fit within an allocated 

time frame of two weeks (10 class periods each of 40 minutes duration). The planned 

teaching episodes, described in section 4.5, are presented in Table 5.2. The table 

provides the number and title of each teaching episode, together with the number of 

actual lessons taken for implementation, and the chapter section in which discussion of 

each episode appears. 

Table 5.2 

Overview ofTeaching Episodes for Group 1 

Episode Topic Lessons Location 

1 Metacognitive training 2 5.1.4 

2 Concept of percent 1 5.1.5 

3 Fraction equivalence and the Rule 1 5.1.6 

of Three 

4 Interpreting percent problems 1 5.1.7 

5 Solving percent problems 2 5.1.8 

6 The language of percent increase 3 5.1.9 

and decrease 

7 Percent, common and decimal 2 5.1.10 

fraction equivalence 

A total of 16 class periods were spent with Group 1. Ten lessons were 

directly on the topic of percent, with a further 2 lessons used for metacognitive 

training. Pre- and posttesting occupied 2 days prior to and immediately following 

implementation of the unit of work. 
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5 .1. 4 Episode 1: Metacognitive training 

Plan 

For the metacognitive training, 2 lessons were planned. As described in 

section 4.5, the first lesson was to explore issues of attention, learning and 

remembering. The Look-Say-Cover-Write-Check (LSCWCh) strategy was to be 

presented in this lesson as a strategy for taking control of remembering. The second 

lesson was to focus on natural and accelerated forgetting. It was planned that the 

Colour Card activity would be implemented to demonstrate the PI mechanism and the 

0/N strategy described as a means of taking control of accelerated forgetting. The 

main points of the episode, being: the nature of the brain; learning and attention; 

recognition and recall memory; natural and accelerated forgetting; would be printed on 

coloured cards, and displayed on the board as they were addressed (see section 4.5 for 

list of key points). The students would be directed to take notes on the key points as 

they were presented. 

Action 

This episode spanned 2 lessons. In the first lesson, the nature of the brain 

(that the brain is designed to forget), and learning and attention, were discussed. The 

students took notes on the key points in their journals as directed by the teacher­

researcher. Key points on recall and recognition memory were described. The recall 

strategy LSCWCh was not presented to the students. Midway through the lesson, a 

student arrived late to class, and told other students the reason for his lateness. At the 

end of the lesson, the students were instructed to write an entry in their diary. 

The second lesson was effectively 30 minutes long as the students arrived late 

from their previous class. Natural and accelerated forgetting was described to the 

students, and the Colour Card activity presented. The students did not finish the 

Colour Card activity. The notions of proactive inhibition (PI) and accelerated 

forgetting were described, with the teacher-researcher drawing upon students' 

experience with the Colour Card activity. The Old Way/New Way (0/N) strategy was 

not presented to the students. 

Observation 

In the first lesson, subdued laughter came from the student body as they were 

told that: The brain is designed to forget. It appeared that the students were interested 

in this notion, and some students whispered such things as: "Now I know why I don't 

remember to do my homework". When students were asked to think of instances of 

their brain forgetting, the majority of students volunteered to share their experiences. 

During the discussion on attention and control of attention the students appeared 
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attentive and interested. 

With the late arrival of the student during this lesson, control of the lesson 

appeared to be momentarily lost, with audible questions directed to the student as to 

the reason for his lateness. As the lesson progressed, students appeared to be less 

attentive; there were increased whisperings between students, several students were 

observed gazing out the window, and audible comments of "What's' she going on 

about?"; "What's all this for?"; "I thought this was a maths lesson!" were noted. The 

students appeared to be clearly confused about the purpose of this lesson. Student 

diary entries support this observation, with students writing such things as: 

One thing I learnt in maths was that the brain is designed to forget. I don't 

know why we did this. 

I thought this was mathematics, not English. 

I'm still confused about all this brain stuff we did today. 

One thing I learnt in maths was that we had a new teacher. 

I was pleased I learnt about remembering. I am still confused about why we 

didn't do maths today. 

The classroom teacher (acting as observer of these lessons), stated that he 

thought the lesson progressed well, and that the students appeared attentive and well­

behaved. He noted that he thought the students became concerned when they were 

told that they were responsible for their own actions. As he commented: "They [the 

students] didn't like being told that it was their responsibility to pay attention." 

During the second lesson, the students appeared to enjoy the Colour Card 

activity, as they were cooperative and animated. All students used this activity in a 

competitive fashion, trying to better their friend's score. However, attention appeared 

to be difficult to maintain as the teacher-researcher tried to describe the nature of PI and 

taking control of accelerated forgetting. Students' mumblings indicated that only a 

certain amount of the students were paying attention, and audible comments of "this is 

not maths", were heard. The fact that this was not a mathematics lesson during 

mathematics time appeared to confuse the students. The classroom-teacher stated that 

he thought the students had understood very little of the colour-card activity, although 

he stated that they appeared to enjoy it. 

Reflection 

The whole planned metacognitive program was not presented to the students 

in the two lessons. The students' unsettled behaviour appeared to make it difficult to 

present the lesson in a coherent manner. The students were not presented with the 

strategies for recall memory and accelerated forgetting due to the fact that it was 

perceived that the students would not understand the purpose of such strategies. 

Student data, classroom-teacher comments, together with observations of student 
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behaviour during the lesson, confmned the teacher-researcher's perceptions that the 

episode required further planning. It was perceived that the rationale for the lesson 

should have been clearly presented to the students, and that more student activity 

should have occurred. The students appeared to have difficulty determining the 

difference between recognition and recall memory, thus it was perceived that an 

activity to demonstrate the difference between these two memories needed to be 

designed, so that the need to use a good memory strategy for storing information into 

recall memory would be more apparent to the students. 

The implementation of this teaching episode was unsuccessful. Several 

factors appeared to influence this outcome, including: lack of sustained student 

attention; poor planning and sequencing of instruction; non-establishment of clear 

goals and expectancies; poor alignment of the episode to the context of the class; and 

non-achievement of assisting students to see the generalisable nature of the skills 

presented. 

The purpose of this teaching episode was to teach students about learning, 

and to teach students the "art of memory" (Norman, 1980). It was to provide explicit 

instruction in metacognitive strategies for improved task performance (Cole & Chan, 

1990) via self-regulatory metacognitive training (Brown & Palinscar, 1982). In this 

episode, students' lack of attention made it difficult for teaching to occur as planned. 

Students' lack of attention provides supporting evidence to key points of the CMP, 

namely, "What we pay attention to, we learn"; "We choose what we pay attention to"; 

and "Paying attention is hard because it requires effort" (Lyndon, 1995). In terms of 

effort, applying effort to learn comes from, and is controlled by, the learner (Weinstein 

& Mayer, 1986). In this episode, the students were choosing not to pay attention, and 

thus it appeared that minimal learning occurred. And, although developing 

metacognitive skills is considered the means through which independent, autonomous 

learners develop (Chan, 1993), convincing students that strategic skills will enhance 

task performance is not a simple task. According to Brown and de Loache (1983), 

metacognitive training must enable students to apply metacognitive skills to other 

learning situations. In this episode, this was not achieved, as the metacognitive 

strategies planned were not presented to the students, which may have further 

contributed to students' confusion as to the purpose of the episode, and thus led to 

their stating that "this is not maths". No opportunity was provided for students to see 

how descriptions about learning, memory and forgetting related to mathematics. 

Students' lack of attention during this episode cannot totally be held 

responsible for the failure of this episode. The design of the lesson also was a 

contributing factor. This episode appeared inadequately planned as it was unable to 

capture and maintain students' attention. Careful planning of a teaching sequence is an 

element of successful teaching (Rojewski & Schell, 1994). Integral to this is the 
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importance of informing learners of their role in the learning process through 

establishment of the goals of the teaching (Mercer & Miller, 1992), as well as 

considering the sociology of the classroom (Rajewski & Schell, 1994). Although the 

metacognitive training episode was carefully planned and sequenced, it was apparent 

upon implementation that modification and further planning was necessary. Rather 

than attempt to replan and implement a modified version of this episode with Group 1 , 

it was decided to implement the next planned episode to maintain some continuity of 

instruction. 

5 .1. 5 Episode 2: Concept of percent 

Plan 

As an introductory episode for eliciting students' notions of percent, the 

episode was planned as follows: 

1 . Brainstorm percent words/notions/uses in the real world. Students copy into 

books. 

2. Students form groups to search through newspapers, cutting out examples of 

real-world percent use. 

3. Students to create a poster of newspaper clippings, writing a descriptive 

meaning of the use of percent indicated on each example. 

4. Each group to present poster to rest of class, describing examples of percent 

uses found. 

Action 

The episode proceeded as planned. Not all groups completed their posters in 

the time allowed. All posters were presented. 

Observation 

The brainstorming session about percent resulted in suggestions such as: "of 

100; discount; profit; out of 100, test scores; sport; shops". These suggestions were 

written on the board. The students were informed of the task for the lesson, and the 

cardboard, scissors, glue and newspapers were distributed. The students formed 

groups and began the newspaper search. The lesson progressed noisily as students 

moved around the room, organising themselves into groups or talking to other 

students in the classroom. Throughout the lesson, the teacher-researcher walked 

amongst the groups, checking that the task was being completed. As the episode 

progressed, all students appeared involved in the activity. However (similar to the 

view of the classroom teacher) it was perceived that this lesson did not actually help 

students build on their knowledge of percent usage in the real world. Throughout the 

lesson, the teacher-researcher reminded individual groups that the focus of the task 
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was to find a variety of examples of percent usage in the real world, not many of the 

same. For example, one group of students cut out five advertisements showing 

discounted prices of goods. The teacher-researcher assisted these students by 

searching the newspaper for percent used in a different way, such as survey data 

presented in a report. 

When the student groups presented their poster to the class, they simply stated 

what the advertisements were showing. For example, one group pointed to a cutting 

on their poster and stated, "Here is an ad for bank interest." Examples of percent used 

in statistical form, for example, to describe research data reported in the paper, were 

not located by the students (except with teacher-researcher assistance). There appeared 

to be reluctance on the students' part to scan various articles to identify such percent 

usage. Through informal interviews with the students, there appeared to be general 

consensus that the students enjoyed the "cutting up" activity, and that the activity was 

something they had not done for a long time during mathematics. The classroom­

teacher stated that he thought the students had enjoyed the relaxed nature of the 

activity, however, he also stated that stimulation of student knowledge of percent was 

not great during this activity. 

Reflection 

As an introductory activity, this lesson was perceived as a satisfactory 

beginning to a unit, where the topic was introduced in a relatively "free" setting. 

However, the lesson was perceived as relatively nondescript, as it neither appeared to 

promote development of the concept of percent, nor exemplified to students the 

multifaceted use of percent in our society. The primary concept of percent is its 

relationship to a base of 100, and instruction must promote this notion (Cooper & 

Irons, 1987; Reys et al., 1992). However, as stated by Parker and Leinhardt (1993, 

p. 47), knowing percent "means to understand its multiple and often embedded 

meanings and its relational character." The purpose of this episode was to promote 

students' awareness of the multiple forms of percent use in the real world. From 

students' responses during the brainstorming session, it was apparent that students 

were familiar with the basic notion of percent and its relationship to 100. From 

students' actions during the episode, it was apparent that students were not aware of 

the multifaceted nature of percent used in the real world. The episode did not appear 

strongly to promote awareness, although discussion between teacher and students may 

have assisted this awareness. In terms of lesson design, the episode was rated as 

requiring more structure. It was perceived that the rationale for the episode needed to 

be communicated to the students, as well as activities which directed students to the 

focus of the lesson. For students to see the multifaceted nature of percent using media 

required careful selection of examples to be given to students for analysis. This 
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episode was primarily an introductory lesson to provide an opportunity for the teacher­

researcher to listen as students engaged in the activity, determining their knowledge of 

percent use in the real world. The next episode was the beginning point for 

presentation of the proportional number line method for percent problem solving, thus 

implementation began in the next lesson. 

5 .1. 6 Episode 3: Fraction equivalence and the Rule of Three 

Plan 

This lesson was planned to introduce students to the Rule of Three as a 

method for solving proportion equations where proportional equations are equivalent 

fractions. The plan for this lesson was as follows: 

1 . On board, write: 1 = ....1 
4 20 

Ask a student to volunteer the solution, and to explain his/her solution 

procedure. Other methods used by students to be discussed (if any). 

2. Demonstrate solution using Rule of Three procedure. 

3. Ask students to check that 20x3+4 equals 15 using calculator. 

4. Present students with another pair of equivalent fractions, with the unknown 

in a different place. Ask students to use calculator to check answers. 

5 . Provide a third example with the unknown in a different place to the first two 

examples. 

6. Provide 10 practice examples. Correct in class, repeating procedure. 

7. Provide students with 30 practice examples. Teacher-researcher to 

individually correct students' work whilst moving around the room, 

monitoring progress. 

Action 

The lesson proceeded as planned. After the Rule of Three had been related to 

equivalent fractions, sets of practice exercises were written on the board. All planned 

blackboard exercises were completed. At the end of the lesson, the students were 

provided with further practice exercises for homework. 

Observation 

The discussion on the equivalent fraction procedure was completed rapidly, 

with all students indicating that to find\ as equivalent to 15
/ 20, they multiplied by 5

/ 5. 

The students were attentive as the Rule of Three procedure was demonstrated. As 

each set of practice exercises was written on the board, the teacher-researcher 

individually marked students' answers as they worked. The students appeared to 

enjoy the rapid feedback on their progress, as there were continual requests for further 
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marking of work completed. For the duration of the lesson, the classroom noise was 

minimal. The students appeared to work consistently for the whole lesson. The solid 

nature of the students' progress during that lesson, perceived by the teacher­

researcher, was confirmed by the classroom-teacher. He remarked that he felt that the 

students had worked extremely hard and were on task for the majority of the lesson. 

As students exited the room at the end of the lesson, several students approached the 

teacher-researcher and showed the amount of work they had completed in that lesson, 

and commented: "Look at how many I got right!" 

Reflection 

Implementation of this episode was perceived as successful. One of the 

features of this episode was the fact that it contributed to students' feelings of success. 

Designing activities to ensure successful performance is a key element of a teaching 

program (Cole & Chan, 1990; Mercer & Miller, 1992) and a strong motivating force 

(Cole & Chan, 1990). The episode also considered the sociology of the classroom 

(Rojewski & Schell, 1994) to provide a mathematics lesson during mathematics time. 

The design of the episode also enabled the teacher to provide immediate feedback to 

students as they completed the exercises, as well as providing students with the 

opportunity to develop a skill to automaticity. These are two components of effective 

instruction (Mercer & Miller, 1992). In this episode, the students practised the Rule of 

Three procedure; the provision of practice was to enable the procedure to reach 

automaticity to assist in later problem solving (Anderson, 1985; Glaser & Bassock, 

1989; Resnick & Ford, 1982; Sweller, 1989). The procedure was presented to the 

students in a manner which is not a recommended practice in mathematics instruction 

(see, for example, Cramer, Post & Currier, 1992; Post, Behr & Lesh, 1988; 

Streefland, 1985). However, the students in this group did not question the purpose 

of learning the Rule of Three, or why it "works". 

At this point in the teaching program, several pathways were apparent to 

provide students with meaning to the Rule of Three procedure. The procedure could 

have been explored from a historical perspective, searching out the embedded 

mathematical principles from which it is derived (Resnick & Omanson, 1987). The 

Rule of Three could also have been developed through linking to ratio and proportion 

(Hart, 1981; Robinson, 1981 ). In this sequence of instruction, the Rule of Three was 

presented as a "means to an end"; a procedure to aid in solving problems. Thus, like 

Allinger (1985), the Rule of Three was presented, and practised, to enable students to 

achieve future success in percent problem solving. 
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5 .1. 7 Episode 4: Interpreting percent problems 

Plan 

The focus of this episode was on introducing the dual-scale number line for 

solving percent equations. The plan was to introduce the three types of percent 

problems, demonstrate the number line for representing all types of percent problems, 

and solve percent problems utilising the Rule of Three. A set of three worksheets was 

prepared (see Appendix C), each containing 5 examples of percent word problems and 

5 examples of percent equations of either Type I, II, or III. The planned sequence of 

instruction was to begin with the Type I worksheet, printed on an overhead 

transparency (OHT), demonstrating to the students the steps for analysing, 

representing and solving the three types of percent problems. The lesson sequence 

was planned as follows: 

1 . Identify the elements of the word problem, as either part, whole or %. 

2. Draw the number line vertically and label with 100% on the bottom left. 

3. Position the elements of the problem onto the number line representation. 

4. Transfer the numbers on the number line to a proportion equation. 

5. Use the Rule of Three to solve the equation. 

It was planned that the teacher would work through an example on the board. 

The students would copy the number line, proportion equation, and solution into their 

books. After working through a Type I percent word problem, the matching Type I 

percent equation (of the form: ~% of~=~) would be shown. The students would be 

directed to write a story problem to match the equation, using the previous word 

problem as a guiding model. A second Type I problem would then be presented, with 

students copying the solution procedure demonstrated by the teacher. The students 

would then be directed to solve the problem. The students would then be handed the 

first of the 3 worksheets, and directed to complete the examples. After the majority of 

students had completed the worksheet of Type I problems, the same procedure would 

be adopted for the Type II and Type III problems printed on the other two worksheets. 

Action 

The lesson progressed as planned, but not all planned activities were 

implemented. Type I percent problems and exercises were presented. Only one Type 

II percent problem was discussed. At the end of the lesson, the students were given a 

worksheet containing Type II problems to be completed for homework. 

Observation 

At the beginning of the lesson, a Type I percent problem was presented, and 

several students called out "I know how to do that - we did it last year." Individual 
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students presented their solution procedure to the class. Allowing individual students 

to describe their methods for solving Type I problems reduced instructional time for 

the lesson, and appeared to make many students restless and inattentive, as they 

chatted to friends during other students' explanations. Attention was then refocussed 

on the percent situation presented, and the five steps outlined in the plan (above) were 

followed. A Type I percent equation was then shown to the students, and students 

were asked to write a story problem to match. A second Type I percent problem was 

presented on the OHT, and interpreting, representing and solving the problem was 

demonstrated. The students copied the procedure in their books. A further three 

percent problems were presented, and students were directed to interpret, represent 

and solve as shown. Faster finishing students were directed to write real-world story 

problems for the four percent exercises presented on a worksheet. When the majority 

of the class had completed the initial task, a Type II problem was displayed and the 

procedure for analysing, representing and solving the problem was repeated. 

During the lesson, the teacher continually reminded students to pay attention; 

to watch the blackboard; to listen to the explanation. The students appeared to find it 

tedious to identify and record: part = _, whole = _, % = _, and then to transfer this 

information to the number line. Observations of students' workbooks showed that 

some students made errors in setting up the number line, and in representing the 

numbers on the number line; some students were ignoring the number line 

representation and completing the problem their own way. One student asked: "Why 

are we doing this? I already know how to do this." Writing of story problems for 

percent equations was not completed by many students. The students appeared unable 

to do this task, although some students did create appropriate story problems, which 

were written on the board for the rest of the class to see and copy. Students' reaction 

to this task was interpreted as indicating the difficult nature of the task, and one which 

required further time for development. This task appeared to interrupt the focus of the 

lesson. As the focus of the lesson was on solving percent word problems, writing of 

word problems was abandoned midway through the lesson. 

Reflection 

This lesson was perceived as unsuccessful. Instruction on solving percent 

problems, and creating percent problems within one lesson simultaneously was a 

difficult task. This was a case of instruction overload due to insufficient planning and 

lesson design (Mercer & Miller, 1992). The number line procedure required many 

steps, to which the students did not pay close attention, thus learning did not occur 

(Lyndon, 1995). As a result, it was anticipated that many errors would begin to 

emerge, and once established, errors are difficult to eradicate (Confrey, 1990a). The 

structure of the lesson also appeared to trigger students' lack of attention, in that many 
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students stated they knew how to do the percent problems presented. Interference of 

prior knowledge influenced instruction (Lyndon, 1995). Prior knowledge was not 

taken into account in this lesson. 

Upon reflection of this lesson, a further episode was planned which focused 

primarily on interpreting, representing and solving percent word problems. For this 

episode, a worksheet was created which contained all three types of percent problems 

in story situations, where (i) the words part, whole and percent were provided 

requiring students only to write the values for each; (ii) the number line was provided, 

requiring students only to transfer the numbers from the problem onto the diagram; 

(iii) space to write the proportion equation in order to solve the problem was provided, 

and (iv) the "shell" of a percent equation in the form of: p% of p = p was provided for 

students to write the elements of the problem in a traditional percent equation form. 

The worksheet developed is in Appendix D. To consolidate the number line approach 

for interpreting, representing and solving percent problems, a second worksheet was 

developed, less structured in design than the first worksheet. It contained percent 

problems with space for students to show their working (this worksheet is located in 

Appendix E). This worksheet was designed so that students would not be constrained 

by the structure of the worksheet if they possessed their own efficient methods for 

solving percent equations. 

5 .1. 8 Episode 5: Solving percent problems 

Plan 

For this episode, the two worksheets, described in section 5.1.7 (Appendix D 

and E), were planned to be implemented over 2 lessons. The first worksheet was to 

be given to the students during the first lesson in this episode. The first three problems 

would be worked together as a whole class. The students would then have the rest of 

the lesson to work through the other problems; any unfinished problems were to be 

finished at home. The second worksheet was planned to be handed out to students 

during the second lesson in this episode. 

Action 

The episode was implemented as planned. At the end of the first lesson, the 

students were instructed to complete the first worksheet for homework. At the end of 

the second lesson, no student finished the 15 problems on the worksheet in the lesson 

period. The students were instructed to complete a further 5 problems for homework. 

Observation 

During the two lessons, the class appeared to remain on-task, and the noise 

level was low. The students worked on the problems at their own pace while the 
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teacher-researcher moved around the classroom, monitoring students' solution 

strategies, and correcting individual student's responses. The first worksheet 

appeared to help students organise the steps required to solve the problems. Analysis 

of students' work samples revealed that the majority of students followed the steps 

appropriately, however there was evidence of error patterns being developed. For 

example, one student's worksheet showed an inconsistent placement of the part, 

whole, and% elements on the number line; another student positioned the numbers on 

the incorrect sides of the number line. During the second lesson, as students worked 

independently, the teacher-researcher was able to provide individual attention to 

students experiencing difficulty. Through discussion with the two students making 

errors in their work, it appeared that these students had little concept of the whole 

being 100%, and that a percent is a part of the whole. With extra assistance provided, 

the students identified the elements of the problems and completed several problems 

correctly by following the steps. 

Productivity during the second lesson was perceived as not as great as for the 

first lesson. The rate of progress appeared to be increased as the teacher-researcher 

stood behind students, watching them as they worked. Analysis of students' 

responses as they worked on the second worksheet revealed that many students did 

not draw the diagram; they simply constructed the proportion equation from analysis 

of the problem. Upon questioning, the students stated that they knew where to place 

the numbers without drawing the diagram. General consensus was that the number 

line took too long to construct. Two students were identified as constructing the 

proportion equation incorrectly. Both students could quickly identify the elements of 

the problem (in terms of part, whole, percent), and with guidance, managed to 

translate this information to the number line. The students stated that they did not want 

to use the number line because their friend (sitting beside them) did not use a number 

line. Through discussion, the students eventually agreed that the number line helped 

them map the problem, and that the number line was useful. 

Reflection 

The first worksheet appeared to greatly assist students in intemalising the 

steps for solving the percent problems using the proportional number line method. 

The second worksheet appeared to be useful for consolidation purposes, as many 

students dispensed with the number line and progressed straight to construction of the 

proportion equation, although errors were becoming apparent. Some students had not 

practiced the procedure sufficiently, and the skill was still in the cognitive or 

associative stage (Anderson, 1985), meaning that the skill would be effortful to recall 

later. The students' tendency to not engage in sufficient practice appears to support 

Lyndon's (1995) notion that remembering and paying attention is hard. Becoming an 
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expert and attaining an advanced level of skill requires hard work (Derry, 1990). The 

students in this group obviously were choosing not to afford themselves the 

opportunity to become experts. Students' rate of progress through the second 

worksheet was much slower than for the first worksheet, and three hypotheses are 

tendered: (i) the students were becoming bored with more of the same type of exercise, 

(ii) the students felt that they knew how to "do" percent problems, and more practice 

was of little benefit, or (iii) the first worksheet, which minimises the amount of writing 

required, encouraged students to complete more exercises. The last two hypotheses 

find support through analysis of students' responses in the lessons. 

The structure of this episode followed a diagnostic-prescriptive teaching 

approach to instruction (Ashlock et al., 1983) with instruction cycling through 

activities of initiating, abstracting, schematising, consolidating and transferring. In 

this episode, the structure of percent word problems was described, and activities 

provided for students to become familiar with this. Representation of percent word 

problems was provided and the procedure for solving percent word problems was 

linked to the Rule of Three activity. With the assistance of the worksheet, 

consolidation and practice was provided. In implementing the episode, the teacher­

researcher had time to analyse students' work, and to identify those students requiring 

individual assistance. The second lesson enabled the teacher-researcher to provide 

individual assistance, therefore, diagnosis was an integral component of this episode. 

At the end of the second lesson, particularly with students showing reluctance to 

complete the worksheet, the teacher-researcher diagnosed a need to plan further 

learning experiences to stimulate the majority of the class and thus allow for transfer of 

new knowledge as well as provide extra assistance to individuals. A conscious 

decision was made against this, however, due to the need to advance through the unit 

of work, and to present the whole class with the next episode. 

5.1.9 Episode 6: Language of percent increase and decrease 

Plan 

The focus of this episode was on developing the concept of percent increase 

and decrease, and of building students' awareness and understanding of the language 

associated with percent increase and decrease. The episode was planned to take two 

lessons. The first lesson was preplanned; the planning of the second lesson was 

contingent upon implementation of the first lesson. 

The first lesson was developed from analysis of the pretest results. Analysis 

of the pretest (see Figure 5.1.2 item 7c) indicated that many students in this class 

selected the incorrect response to the following multiple choice item: 

At 6am, there were 100 people lined up to buy State of Origin rugby tickets. 

At 9:00 am, the crowd had increased 400%. The crowd size now is 

140 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



a) 3 times the original size (i.e., 300) 

b) 4 times the original size (i.e., 400) 

c) 5 times the original size (i.e., 500) 

d) none of the above 

The most popular incorrect answer was b). The plan for this lesson was to re-present 

this problem to students on a piece of paper handed to them at the beginning of the 

lesson, and to ask them to select the correct response. On the paper, they would also 

be asked to provide a reason for their selection. Anticipating that students would 

continue to select b), the lesson was planned to help students develop a concept of 

percent increase greater than 100%. The procedure for the lesson was as follows: 

1 . Brainstorm words associated with increase and decrease, e.g. 

INCREASE 

profit 

raise 

more 

Students to write these lists into their books 

DECREASE 

loss 

discount 

less 

2. Using props, including 1kg bags of sugar and a small blanket, construct a 

"baby" by wrapping the 1kg bag of sugar in the blanket, thus producing a 

"baby" with a mass of 1kg. On the board, display a card to represent the 

mass of the baby: 

1kg baby 

Tell students the story of the baby growing, with the baby's mass increasing 

50%. Add a 500g packet of sugar to the "baby". Students to describe the 

mass of the baby in terms of percent. On the board, present the following 

diagram: 

1-----100%---11-50%--l increase 

!1kg baby II 500 gl 

Description language to include: 

The baby's mass increased 50% 

The baby's mass is 150% of its original size. 

Direct students to copy these two sentences from the board. 

3. Example 2: A dog weighs lOkg. After 12 months, its weight increased 90%. 

1-----1 00%---~l----90% --I increase 

I DOG . 

Discuss the two ways to write about this situation; e.g., (i) the dog's weight is 90% 

more; the dog's weight increased 90%; the dog's weight showed a 90% improvement; 

and (ii) the dog's mass is now 190% of its original mass. Stress the difference 

between these two statements: one being the amount of change in growth, the other 

being total growth in relation to original size. 
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4. Example 3: A baby weighs 1kg. After 6 months, its weight increased 100%. 

Use the baby prop; show the baby as having a mass of 1kg. Increase the 

baby's mass 100%, with the "baby" being wrapped in a blanket and another 

1kg bag of sugar added. (The purpose of the demonstration is to assist 

students visualise that a 100% increase is an increase of the same amount as 

the original.) On the board, present the following diagram: 

1-----100%---11-----100%---1 

1 1kg baby II lkg I 
Students to describe the mass of the baby, writing two different sentences to 

tell the same story (as in example 2). 

5. Example 4: Last year's crowd was 2500. This year there was a 160% 

increase. 

1-----100%---11----1 00%----11---60%--l increase 

Direct students to write two sentences describing this situation (as in example 

2). 

6. Set homework: A tree measured 50cm when planted. Within 3 months, its 

height increased 200%. Direct students to describe the change in two 

different sentences as practiced during the lesson. 

Action 

The multiple choice activity was completed. The first three planned 

demonstrations of percent increase situations were presented. 

Observation 

The students were handed the multiple choice task as they entered the room. 

The teacher-researcher moved around the room scanning students' responses. Initial 

scanning indicated that the majority of students, as predicted, incorrectly selected b). 

Students' written responses for why they selected b) included: 

The crowd was originally 100, that is 100%. If its 400%, it would be 

because the original size was 1 00= 100%. 

I don't know. 

I guessed. 

Only one student provided a response which indicated some understanding of the 

additive and multiplicative nature of percent increase situations. Her response is 

presented below: 

Because 100 people = 100%, 400 people = 400%, 400 + 100 = 500. 

The multiple-choice item appeared to give a focus to the lesson, and students quickly 

settled in their seats after entering the room. As a result of this task, the teacher was 
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provided with an indication of the number of students who had misinterpreted this 

percent increase situation. During the brainstorming session the students copied the 

list of increase and decrease words as they were suggested. The students were 

cooperative for this activity. The "baby" example was presented to the students, and 

the students copied the two different sentences from the board. For the second 

example shown, the students were asked to write the situation in two sentences in a 

similar fashion to the first example. The students appeared to have difficulty in 

constructing their own sentences of the situation, and many students sought 

clarification of this task from the teacher, or began talking to their peers. The teacher 

asked various students to read their responses, and then they were displayed on the 

board. The third example was presented, and time allowed for students to construct 

two sentences of the situation. Asking for answers to be volunteered, the teacher then 

wrote the sentences on the board. Although the students were attentive during the 

description of each percent increase situation, only a limited number of students could 

construct their own statements. Time was spent re-explaining the task, and writing 

suggestions on the board for students to copy. The number of examples shown was 

less than planned for this lesson. 

Reflection 

At the end of the lesson, it was perceived that many students had not been 

able to make the connection to 100% increase as 200% of the original amount. From 

students' relative difficulty in constructing their own percent increase situations, it was 

perceived that the lesson had not been successful in building students' awareness of 

percent increase. The classroom-teacher agreed, stating that he thought many students 

did not appear to be actively engaged in thinking of the different percent increase 

language, and were waiting to copy from the board. He also stated that percent 

increase situations were notoriously difficult for students to interpret, and that he 

found it a difficult topic to teach every year. Dealing with percents greater than 100 is 

a topic in which students experience great difficulty (Parker & Leinhardt, 1995). As 

shown in chapter 2, there is a paucity of literature on effective approaches to 

developing students' concept of percent increase, contrasting the complicated myriad 

of approaches for solving percent problems. Of this episode, the classroom teacher 

stated that he found the props an interesting way of presenting the material, and one 

which managed to gain students' attention. The modelling of percent increase 

situations using cards of various sizes may or may not have assisted students in 

linking percent increase situations to a comparison of the whole and the new amount. 

Directly representing percent increase situations on the number line, which was now 

familiar to the students, may have been more appropriate. A visual mathematical 

model should enable linkages of mathematics to the real world (Post & Cramer, 1989). 
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The model also must reflect the structure of the mathematical concept (English & 

Halford, 1995), and promote cognitive processes such as abstracting, generalising and 

unifying (Streefland, 1985). The number line model was proposed as a model which 

reflects the proportional nature of percent situations (Dewar, 1984~ Haubner, 1992). 

For consistency, the number line representation, extended beyond 100%, may have 

assisted students to abstract and generalise about percent increase situations in relation 

to the model. A second lesson was planned for this episode, in which further percent 

increase situations, as well as percent decrease situations, would be modelled with 

props, including groups of jellybeans. Each percent increase situation would be 

represented on the extended number line, with a similar representation in reverse for 

percent decrease situations. 

Re-Planning of percent increase lesson 

The lesson sequence was planned as follows: 

1. Example 1: A 2kg baby increased its mass by 25%. Diagram generated to 

model this situation: 

0% 

100% 2kg baby 

increase 25% 
+50% 

125% 

Students to copy diagram and write two sentences: 

25% increase/ growth/improvement 

IS THE SAME AS 

125% of the original 

2. Example 2: Humphrey Bear (a small toy bear) is 20cm tall. He grew, and his 

height increased 100%. 

Students to copy diagram and write two sentences: 

100% increase 

IS THE SAME AS 

200% of the original 
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0% 

Humphrey's height 
100% 20cm 

+ 100% 

200% increase 100% 

3 . Example 3: A group of 4 jellybeans was increased 100%. Place 4 jellybeans 

on the overhead projector (OHP). Students to draw diagram and write two 

sentences. 

4. Present other examples using jellybeans: 

Example 4: A group of 3 jellybeans was increased 200%. Students to draw 

diagram and write sentences. 

Example 5: A group of 3 jellybeans was increased 300%. Students to draw 

diagram and write sentences. 

For each of the examples, it was planned that the teacher-researcher would 

provide the example, then move around the room observing students' 

responses and check responses for accuracy. It was planned that the 

jellybeans would be given away to various students. 

5 . Present example of percent decrease. 

Action 

Example 6: A group of 10 jellybeans was reduced by 50%. Draw diagram on 

board: 

0% 

less 50% 

100% 10 

Stress positioning of the "less 50%" on the number line and explain how this 

provides two ways of interpreting the decrease situation. Write on board: 

50% discount IS THE SAME as 50% of the original. 

The lesson was implemented as planned, but the percent decrease situation 

was not presented. 
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Observation 

During the lesson, the students were cooperative and followed instructions. 

When the number line representation was drawn on the board, all students quickly 

copied the number line correctly. When the jellybeans were used, the students 

appeared eager to describe and present their solutions/solution procedures in class, and 

all other students were attentive as their peers spoke in class. The jellybeans appeared 

to be a strong motivating force behind students' willingness to participate, and this 

was confirmed by the classroom teacher. Two sentences were generated for each 

percent increase example: 

a 100% increase 

IS THE SAME AS 200% of the original 

When directed to construct the sentences for each example presented, many students 

were given continual encouragement to complete the sentences in their books. There 

appeared to be reluctance by some students to continually write these sentences. As 

the lesson proceeded, it was apparent that the majority of students could construct the 

number line appropriately, but were experiencing difficulty in the descriptive sentences 

without assistance. 

Reflection 

The lesson was perceived as successful in promoting students' awareness of 

percent increase language. In terms of lesson design, Rajewski and Schell (1994) 

suggested that effective instruction is where provision is made for guided practice, 

modelling, coaching, scaffolding and fading. The design of this episode on percent 

increase was perceived as well-planned in this respect, but possible information 

overload contributed to the students' hesitancy to construct percent increase sentences, 

and resulted in minimal "fading" of teacher assistance. The extended number line 

model was readily adopted by the students thus suggesting that this representation was 

more appropriate than using cards (as in the first lesson). As two lessons had now 

been spent on percent increase, the next lesson was planned to explore the language of 

percent decrease, and to link this to percent increase via the number line representation. 

Practising using the language of percent increase and decrease was also necessary, and 

this was also planned for the next lesson. 

Plan for percent decrease lesson 

The plan for this lesson was to build from the previous lesson on percent 

increase, using the number line to represent percent decrease situations, and to 

introduce both the multiplicative and subtractive nature in which percent decrease 

situations can be interpreted. An activity for the purpose of enabling students to 

discuss the language of percent increase and decrease situations was developed for this 
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lesson. The plan for this lesson was as follows: 

1. Place 12 jellybeans on the OHP. State: " Of the 12 jellybeans, 25% were 

eaten. How many left?" Construct number line: 

0% 

75% 
less 25% 

100% 12 

Stress subtractive nature of the 25% decrease. Direct students to describe the 

situation in a single sentence. 

25% discount IS THE SAME AS 75% of the original. 

2. Place 10 jellybeans on OHT. State: "Of the 10 jellybeans, 20% were eaten. 

How many left?" Construct number line. Stress the subtractive nature of the 

situation. 

Jess 20% 

0% 

80% 

100% 10 

Direct students to write a single sentence of the situation: 

20% reduction IS THE SAME AS 80% of the original. 

3. Distribute worksheet. (The worksheet, located in Appendix F, contains 

various percent increase/decrease situations, together with a number of 

statements of interpretation). To complete the worksheet, students select 

correct interpretations of the various percent increase and decrease situations 

presented. Students to work in groups. 

Action 

The lesson proceeded as planned, with all percent discount examples 

presented. The worksheet was handed to students after they formed groups. The 

lesson ended before all students had sufficient time to complete the worksheet. The 

students were instructed to complete the sheet at home and submit next lesson. 

Observation 

The students were attentive during presentation of the jellybean examples, 
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with all students wishing to volunteer the 2 different interpretations for percent 

decrease situations. The jellybeans appeared to be a tremendous incentive to the 

students; order and control was maintained throughout presentation of the examples of 

jellybean decrease. The students completed the number line representation and 

sentences as directed, but some students were seen to be copying from others around 

them. The students readily formed groups for the worksheet activity, and appeared to 

enjoy the opportunity to work in groups of their own choosing for the multiple choice 

sheet. The students were told that the group with the highest number of correctly 

identified increase and decrease statements would win a prize. This information 

appeared to motivate students to begin the worksheet activity. As the students worked 

through the worksheet, the teacher-researcher visited each group, monitoring 

progress. Students were observed identifying one correct statement, and then moving 

on to the next example. Midway through the lesson, the teacher informed the students 

of the number of correct responses for each increase and decrease situation (this 

information was subsequently added to later printings of the worksheet). Moving 

from group to group, the teacher continually informed the students that there was more 

than one correct statement for each example. Students then checked their work. 

Analysis of the worksheets revealed that many students were correctly interpreting the 

percent situations. Some students, however, were still not identifying both the 

additive and multiplicative sentences. 

Reflection 

In terms of attention, cooperation and enjoyment, this lesson was perceived as 

successful. The students were attentive during instruction, and thus favourable 

conditions for learning (Lyndon, 1995) were achieved. The activity enabled students 

to work in groups, with the opportunity for interaction and knowledge sharing, which 

is an element of a cognitive apprenticeship model of instruction (Reid & Stone, 1991). 

The worksheet appeared to motivate students to work in groups, and to cause them to 

discuss the sentences, and thus become familiar with the language of percent increase 

and decrease. The structure of the worksheet, however, did appear to influence 

performance as the majority of students identified one correct interpretation of the 

percent increase and decrease situations, and then moved on to the next example. This 

may have been due to students' past experiences with multiple choice items, where the 

selection of only one response is required. This could be explained in terms of 

proactive inhibition (Lyndon, 1995) interfering with performance. In light of this 

observation, the worksheet was amended to include the number of correct sentences 

contained to signal to students that more than one correct response was possible. 

To consolidate the building of students' knowledge of percent increase and 

decrease situations, one of the components of effective instruction is the provision of 
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opportunity for students to apply their new skills and strategies in a variety of 

situations (Mercer & Miller, 1992). Providing this opportunity, however, would 

require further class time, which was not available. To adhere to the time frame of the 

work program, the next planned episode was on fraction, decimal and percent 

conversions. 

5.1.10 Episode 7: Percent, common and decimal fraction equivalence 

Plan 

To develop and consolidate the link between percent, common and decimal 

fraction equivalence, and to follow the theme of the number line representation, one 

lesson was planned in which students would explore the equivalent forms of fraction, 

decimal and percent numbers, and then practice their skills in fraction, decimal and 

percent conversions. In this episode, the students would construct a number line by 

gluing the five, A5 size sheets of paper together. When assembled, the length of paper 

would show a number line with 100 calibrations, designed to be read vertically. On 

the number line, percent, fraction and decimal equivalent forms would be listed (as in 

Figure 5.5). 

The purpose of the number line was to assist students in developing their 

understanding of equivalence and skill in carrying out percent, fraction and decimal 

conversions, and in developing mental computation of percent amounts. The lesson 

was planned in the following steps: 

1 . Students to construct number line. 

2. Students to mark in fraction hundredths (and also in simplest form) along the 

number line up to 20 I 100. Students to mark in the corresponding decimal 

3. 

4. 

5. 

fraction representation, then the percent representation: 
. . 50 1 25 1 75 Students to mark m commonly used fractiOns: fwo ( /2), hoo ( /4), /100 

e/4), 
100

/100 (1); and every tenth fraction: 10
/100, 

20
fwo, 30

/100, 
40

/100, 
60

/wo, 
70 80 90 

/1oo, /1oo, /100· 

Students provided with instructions on how to use the number line to 

determine percent, common and decimal fraction equivalence. 

Students to use their constructed number line to complete the prepared 

worksheet for practicing percent, common and decimal fraction conversions 

(worksheet located in Appendix G). 
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Action 

Percent Fraction Decimal 

0 --0 

1% - -11100 -0.01 

2% - ~21100 (1/50) -0.02 

3% - r-3/100 -0.03 

Figure 5.5. Number line constructed from 5, A5 size pieces of paper. (Inset: 

calibrations on the number line). 

The students were shown how to construct the number line. Instructions for 

assembling and calibrating the number line were provided. Instructions on how to use 

the number line for percent, common and decimal fraction conversions were not 

provided, and the worksheet was not handed out. 

Observation 

The students appeared to listen to the instructions for constructing the number 

line, but once students were allowed to begin, the room became noisy and chaotic. To 

construct the number line, students had to join the five sections of paper with sticky­

tape (glue, although available, was not effective). The room was extremely noisy as 

students moved around the room, chasing sticky-tape, and calling out for the return of 

the sticky-tape. Many students appeared to experience difficulty lining-up the A5 

sheets of paper. As students began recording the numbers on their number lines, 

errors surfaced. The first major error was in placing the number 1
/ 100 on the beginning 

point of the number line, in the position for "0". The second common error was 

students' writing of decimal fractions. When writing the decimal fractions, many 

students wrote: 0.08, 0.09, 0.010, 0.011. As the teacher-researcher provided 

assistance to individual students who displayed errors in decimal place value, many 

other students continually interrupted the teacher, asking for the instru~tions to be 

repeated. 
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Reflection 

This lesson was perceived as unsuccessful, as the number line construction 

appeared to take up too much class time, which decreased the amount of time students 

could spend developing their conversion and mental computation skills. However, for 

diagnostic purposes, the lesson was perceived as useful, with students requiring 

further assistance in decimal place value being identified. As a result of students' task 

performance, teachers can identify areas of weakness and plan instruction accordingly 

(Reisman, 1982; Ashlock et al., 1983). In light of students' performance in this 

lesson, it was apparent that a second lesson was required in order for students to 

practise decimal, fraction and percent conversions using the constructed number line, 

if necessary. In light of diagnosis of students' decimal knowledge, a second lesson 

would also enable the teacher to work individually with students experiencing 

difficulty. 

Plan for second lesson in this episode 

The plan for the second lesson in this episode was as follows: 

1 . Provide instruction on how to use the number line. 

2. Distribute practice worksheet for building students' skills in decimal, fraction 

and percent conversions, and direct students to work at their own pace on the 

exercises presented. 

Action 

The students' usual classroom teacher implemented the planned lesson. 

Observation 

The classroom teacher stated that he was quite happy with the structure of the 

lesson, and that the number line appeared to help some students who were unsure of 

percent, common and decimal fraction conversions. Analysis of students' worksheets 

revealed that no student completed all worksheet questions, but many students showed 

evidence of working solidly in class. Errors were apparent, particularly writing 

decimal tenths as percentages (for example, many students wrote 0.8=8% ). 

Reflection 

This episode was perceived as unsuccessful as too much time was spent on 

. constructing the number line, and therefore too little time was available to assist 

students consolidate understanding of equivalence and conversions. Students' 

performance on constructing the number line indicated that this activity was 

unsuccessful in promoting students' understanding of percent as a number which 

could be located on a number line with an equivalent decimal and fraction form. 

151 



Students' errors on the worksheet also confirmed that the equivalence notions were not 

being consolidated. Other student responses on the worksheet indication that, for 

approximately 50% of the class, skill in percent conversions and benchmarking was 

satisfactory. For students who did not have such sufficient skill, the number line 

appeared to have little influence upon development of equivalence knowledge. 

This particular episode, in terms of the whole unit, was perceived as 

inconsistent. Decimal, fraction and percent conversion are primarily taught as a 

foundation for percent calculations using a decimal fraction approach (e.g., Breuckner 

& Grossnickle, 1953; Cooper & Irons, 1987; Hauck, 1954; Reys et al., 1992). In 

this unit of work, the proportional nature of percent situations was the focus, thus skill 

in conversion was a non-vital element. Although knowing percent means to know its 

multidimensional nature, including understanding that percent is a number (Parker & 

Leinhardt, 1995) and that developing mental computation skill in percent comes from 

percent benchmarks in relation to fractions and decimals (Glatzer, 1984; Reys et al., 

1992) this episode was perceived as unsuccessful in promoting such knowledge, and 

the timeframe for implementation was too tight to enable this episode to be given 

appropriate attention. As fractions, decimal and percent conversion are however, an 

integral part of the school work program for percent (see section 1.2.2), this episode 

was planned for authenticity purposes (to cover objectives of the syllabus), and 

therefore more careful planning may render the episode more successful. 

5.1.11 Reflection upon implementation of teaching episodes 

Upon reflection of implementation of this unit of work with the Group 1 

students, it was perceived the unit was not well implemented, and was only minimally 

effective in promoting students' understanding and access of percent knowledge in 

problem solving. The exploratory nature of the episodes within the unit of work is 

highlighted by the modifications which occurred during implementation. Many of the 

episodes within the unit were perceived as unsuccessful in achieving their planned 

purpose. In Table 5.3, a summary of the success rating of each episode is presented. 

Table 5.3 

Success Rating of Teaching Episodes for Group 1 

Episode 

1 

2 

3 

4 

5 

Topic 

Metacognitive training 

Concept of percent 

Fraction equivalence and the Rule of Three 

Interpreting percent problems 

Solving percent problems 
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Success 

rating* 
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Episode Topic 

6 The language of percent increase and decrease 

7 Percent, common and decimal fraction 

equivalence 
* S == successful 

U == unsuccessful 

Success 

rating* 

U-S 

u 

From Table 5.3, the metacogrnnve trammg episode was rated as 

unsuccessful, as well as the concept of percent, and the percent, decimal and fraction 

equivalence episodes. The episodes of interpreting percent problems, solving percent 

problems and the language of percent increase and decrease were rated as midway 

between unsuccessful and successful. Episode 3, on fraction equivalence and the Rule 

of Three, was the only episode rated as successful. 

As discussed in the reflection section of 5.1.4, the metacognitive training 

episode was rated as unsuccessful. Metacognitive training assists students to become 

more efficient learners (Chan, 1993; Kirby & Williams, 1991), as successful learners 

are those who display self-directed learning strategies, such as goal setting, 

worktactics, self-monitoring and self-evaluation (Chan, 1993). The metacognitive 

training program in this unit of work was to inform students of their role in the 

learning process; to inform students that their actions directly influence their successes 

and failures (Mercer & Miller, 1992); that successful task performance is a product of 

students' own efforts and persistence (Chan, 1993); that learning occurs within the 

learner and can be directly influenced by the learner (Weinstein & Mayer, 1986); and 

that learning requires energy (Baird & White, 1982) and is hard work (Derry, 1990). 

Such key notions are encapsulated in key points of the CMP, which state that learning 

occurs as a result of paying attention; and that paying attention is hard because it 

requires effort, but that the individual is in control of the amount of attention he/she 

chooses to pay (Lyndon, 1995). Upon implementation of the metacognitive training 

program, the majority of students were choosing not to pay attention to the teacher­

researcher, and this was compounded by several disruptions to normal routine which 

occurred. The episode was difficult to implement primarily due to the difficulty in 

maintaining students' attention. Although students' lack of attention contributed to 

poor implementation, the design of the lesson was also at fault, in that students' 

attention was not maintained. As stated in section 3.3.4, Rojewski and Schell (1994) 

described four elements which must be considered for successful teaching, being 

content, method, sequence and sociology. In this episode, the social context of the 

classroom was not taken into consideration sufficiently, as students questioned the 

nature of the metacognitive training program during mathematics lessons. Although 
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the strategies and ideas within the CMP are generic across all learning situations, 

convincing students of this was not a simple task. This finding is supported by Chan 

(1993) who stated that, students must be convinced that application of strategic 

actions which require effort on the individual's part will yield strong positive results, 

before students will demonstrate such strategic behaviour. Implementation of this 

metacognitive training program with Group 1 required further planning in order to 

"sell" the product to the students. Modification of this episode was required. 

The second episode in this unit on the concept of percent was also rated as 

unsuccessful. Its purpose, as stated in the reflection upon this episode in section 

5 .1.5, was to promote students' understanding of percent usage in the real world. In 

this episode, students worked in groups. Allowing for group work in learning 

situations provides a means through which students can discuss ideas together and 

build their own knowledge, and which enables the teacher to mediate in the process of 

knowledge growth (Reid & Stone, 1991; Rajewski & Schell, 1994). In this episode, 

the activity did not appear to engage students in thinking deeply about the use of 

percent in the real world, except when the teacher-researcher interacted with individual 

groups. Further planning of this episode was required to steer students directly into 

finding real examples of the multi-faceted nature of percent used in society. 

The seventh episode, on decimal, fraction and percent equivalence, was rated 

as unsuccessful. The construction of the number line was time-consuniing. 

Instruction for this needed to be more sequentially presented. More explicit instruction 

was also required to develop students' mental computational skills. 

As described in section 2.4.2, this unit of work was primarily based around 

presenting to students the proportional number line method for interpreting, 

representing and solving percent problems. Teaching of this method was planned in 

four episodes, which occurred in episodes 3-6 in this unit. Episode 3, on fraction 

equivalence and the Rule of Three was the first episode directly related to presentation 

of the method. Implementation of this episode was rated as successful. As stated in 

the reflection upon this episode in section 5.1.6, the design of this lesson appeared to 

contribute to successful implementation, particularly in building students' feelings of 

success. One concern of this episode was the fact that it appeared to be a rote teaching 

approach to skill development. However, the overarching goal was to provide 

students with a skill to enable them to be successful percent problem solvers. 

Providing students with skill can be the basis for construction of important principles 

and concepts (Noddings, 1990). To present students with investigations into the 

meaning of the Rule of Three may have actually caused students to lose sight of the 

topic. In the introduction to this episode, the Rule of Three was presented as a means 

for generating equivalent fractions. Although a superficial link, an attempt was made 

to relate this to prior experiences of the students. 
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Episodes 4 and 5, which linked to the skill of the Rule of Three, were rated as 

moderately successful. Proactive interference was encountered by presenting students 

with a Type 1 problem initially. Preparation of the structured worksheet met with 

successful task performance and increased productivity from students. However, 

students did not allow themselves time to practice the procedure for representing and 

solving percent problems to automaticity. Students' resistance to practice suggested 

that they were not prepared to take responsibility for their own learning; a component 

of metacognitive knowledge. Time limitations prevented further practice and 

consolidation exercises being implemented. 

Episode 6 on the language of percent increase and decrease underwent change 

and modification upon implementation. Modelling of percent increase situations 

maintained students' interest, but use of jellybeans maintained attention. Provision 

was made for students to share their understanding of the language of percent increase 

and decrease situations through the group activity, but time limitations prevented 

presentation of further consolidation and application activities. 

Reflecting upon episodes within the teaching experiment, five main factors 

which influenced implementation can be identified. They are: teacher factors; student 

metacognitive factors; time factors; school context factors; and curriculum factors. 

Teacher factors included poorly sequenced instruction, lack of provision for practise of 

new skills, lack of activities to stimulate and maintain student interest and attention, 

insufficient acknowledgment of prior knowledge in planning instruction, poor lesson 

design. Student factors were students' non-application of effort to maintain attention, 

lack of worktactics, goal direct-behaviour and self-directed learning strategies, non­

practise of skills to mastery, and resistance to learning about metacognitive skills. 

Time factors included lack of time to completely implement lessons/episodes, lack of 

sufficient time to re-implement lessons/episodes upon reflection, limited amount of 

time allocated to this topic in the school program. School context factors included 

disruption to episode implementation due to late arrival of students to class, change of 

room situations, and student reactions to a new teacher. Curriculum factors were the 

need to include a teaching episode on decimal, fraction and percent conversions as a 

requirement of the Year 8 syllabus. These 5 factors did not work in isolation, but 

were seen to impinge upon each other. For example, lack of provision of opportunity 

for students to practise new skills (teacher factor) was due to lack of time allocated to 

the topic (time factor) and students' reluctance to apply effort to practise skills to 

mastery (student metacognitive factor) as well as reacting to disruptions to the school 

situation (school factor). Also, more careful planning and lesson design (teacher 

factor) may have led to greater student attention and application of effort (student 

metacognitive factor) which would ensure sufficient time (time factor) for students to 

consolidate new knowledge. 
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5.1.12 Reflection upon pre- and posttests and instruction 

Reflecting upon pre- and posttest scores and implementation of this unit, 

parallels in results emerge. Implementation of this unit of work overall, was rated as 

unsuccessful. Pre- and posttest scores overall, indicate little change in student 

performance, with a prestest score of 43% and a posttest score of 52%. Minimal 

change in test scores would be anticipated from an unsuccessful rating of the teaching 

sequence upon implementation. Relating test scores on the sections of the Percent 

Knowledge Test to teaching episodes, it can be seen that promoting students' intuitive 

and principled-conceptual percent knowledge (Section I of the Percent Knowledge 

Test) was the focus of the entire teaching sequence, but particularly episodes 2 and 6; 

promoting students' conversions and benchmarking skills (Section II of the Percent 

Knowledge Test) was the focus of episode 7; and promoting students' percent 

calculations and problem solving skills (Section III of the Percent Knowledge Test) 

was the focus of episodes 3, 4 and 5. Students' performance on Section I of the 

posttest improved from the pretest (60%- 69% ), but mainly in students' ability to pose 

real world percent problems from equations. Episode 2, rated as unsuccessful, did not 

appear to influence students' intuitive and principled-conceptual percent knowledge. 

Episode 6, which specifically focused on the language of percent increase, was rated 

as moderately successful, and also appeared to have had little influence on students' 

intuitive and principled-conceptual knowledge of the additive and multiplicative 

language of percent increase. Students' posttest performance on Section II of the test 

was a negative change (60% pretest - 54% posttest). Episode 7 was rated as 

unsuccessful, and thus instruction appears to have had a negative influence on 

students' performance on this section of the test. Students' posttest performance on 

Section III was a positive change (10% to 33%), and episodes 3, 4 and 5 were rated as 

moderately successful. Instruction appears to have influenced students' ability to 

perform percent calculations and solve percent problems, but instruction appears to 

have been beneficial for only approximately one-third of the class. 

5.1.13 Direction for Teaching Experiment 2 

Reflections upon implementation of the teaching episodes, suggest that the 

unit of work could potentially be effective, but modifications to particular lessons 

would be required. Apparent changes within various episodes were identified as 

follows: the metacognitive training episode required contextualisation and/or inclusion 

of activities to sustain interest and attention; the concept of percent episode required 

focus on the multidimensional nature of percent in the real world; the episode on the 

number line model for interpreting, representing and solving percent problems and 

equations, although modified during implementation, required further, sequential 
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planning; the episode on percent, fraction and decimal equivalence required specific 

instruction to be planned to build knowledge and understanding of percent as a 

number. These considerations were taken into account for the episodes implemented 

with Group 2. 

Elaborating on replanning the episodes on interpreting and solving percent 

problems, these episodes present to students the proportional number line method for 

solving percent problems and exercises. This method was devised prior to instruction 

as a key process for operating within the domain of percent. Following the research 

methodology for studying learning to inform teaching (Hiebert & Weame, 1991), in 

this first teaching experiment instruction was devised to promote acquisition and use of 

the key process in percent problem situations. Analysis of students' methods for 

solving percent problems (as described in section 5.1.2) indicates that students 

abandoned their own methods, and adopted the number line model presented during 

the teaching sequences. Instruction, therefore, appears to have directly influenced the 

acquisition of the method as a key process, but only for approximately one-third of the 

class. Particular modification of episodes relating to the proportional number line 

method as a key process were considered for Teaching Experiment 2. 

5. 2 Teaching Experiment 2 
5. 2.1 Overview of report on Teaching Experiment 2 

The results for Teaching Experiment 2 are reported in this section. The pre­

and posttest results are presented in section 5.2.2. An overview of the planned 

teaching sequence, comprising six teaching episodes is presented in section 5.2.3. In 

sections 5.2.4 to 5.2.9, implementation of each of the six teaching episodes is 

described, under the headings of plan, action, observation and reflection. In Section 

5 .2.1 0, a reflection upon implementation of this unit of work is presented, followed 

by a reflection upon pre- and posttest results and instruction in section 5 .2.11. This 

section concludes with a statement on direction for Teaching Experiment 3 in section 

5.2.12. 

5. 2. 2 Pre- and posttest results 

Group 2 scores in total and for each section on the pre- and posttests are 

presented in Table 5.4. From Table 5.4, it can be seen that the Group 2 posttest score 

overall increased from 37% to 66%. Within each section of the test, there is a slight 

positive change for Section I (intuitive, principled-conceptual knowledge), a stronger 

positive change for Section II (conversions and benchmarks) and Section III (percent 

calculations and problem solving). 

From Table 5.4, it can be seen that Group 2 students' intuitive and principled­

conceptual percent knowledge, and proficiency in percent conversions and 
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benchmarking, prior to instruction, was much greater than their percent calculation and 

problem solving skills. These results are similar to those of Group 1 (see Table 5.1 in 

section 5.1.2). Positive change was most dramatic on Section III of the test on percent 

calculations and percent problem solving. Graphical representation of the pre- and 

posttest scores are presented in Figure 5.6, highlighting the change in pre- and posttest 

scores in total and in all sections. 

Table 5.4 

Pre- and Posttest Means (%)for Group 2 Students on the Percent Knowledge Test in 

Total and in Each Test Section 

Test 

Pretest 

Posttest 

Total 

37% 

66% 

Components of the Percent Knowledge Test 

Section I 

64% 

79% 

Section II 

41% 

70% 

Section III 

7% 

48% 

As for Group 1, Group 2 students' test results were analysed for diagnostic 

purposes. Pre- and posttests were scored to identify specific items on which students 

responded incorrectly. Within the three parts of the Percent Knowledge Test, the 

number of incorrect student responses for each item was tallied. Representation of the 

number of incorrect responses to each item on Section I (intuitive, principled­

conceptual percent knowledge), Section II (conversions and benchmarks), and Section 

III (percent calculations and problem solving) of the Percent Knowledge Test are 

presented in Figures 5.7, 5.8 and 5.9 respectively. 

100% 

80% 

60% 

40% 

20% 

0% 

Total Sect 
I 

Sect 
II 

Sect 
Ill 

D pre 

• post 

Figure 5.6. Graphical representation of Group 2 students' pre- and posttest 

means (%) in total, and in each test section. 

In Figure 5. 7, it can be seen that, similar to Group 1, Group 2 students 

experienced most difficulty with items 6c, 7a-c, and 8a-c on Section I of the pretest, 
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and also item 3e, which relate to the interpretation of the multiplicative and additive 

language of percent increase, and posing of real world percent problems from percent 

equations, and the concept of percent increase as more than 100%. Posttest scores 

indicate a positive change in performance after instruction, but also indicate that 

students continued to experience difficulty in interpreting the multiplicative and 

additive language of percent increase situations (item 6c, 7a-c), and in posing real 

world percent problems from percent equations (item 8a-c). 

32 
30 
28 
26 
24 
22 
20 
1 8 
1 6 
1 4 
1 2 
1 0 

8 
6 
4 
2 
0 . L.rt 

ctl.O 0"0 Q) 
............ ...... ...... ...... 

• pre 

D post 

l.il. n ~: L.~. .11 . h. 

Figure 5. 7. Group 2 students pretest (n=31) and posttest (n=29) incorrect 

scores on Section I (intuitive, principled/conceptual percent knowledge) of the 

Percent Knowledge Test). Graph indicates number of students incorrectly 

responding to particular items. 

In Figure 5.8, it can be seen that, on Section II of the pretest, many students 

experienced difficulty in fraction, percent and decimal conversions (items la-c, 2a-c, 

3a-c, 4a-c), and in using percent benchmarks, particularly benchmarks of 15% (as 

10% + 5%), 30% (as 3 x 10%), 60% (as 6 x 10%) and 331
/ 3 (as 1

/ 3) (items 5g-j). 

Compared to pretest scores, posttest scores indicate an improved student performance 

on conversions and use of benchmarks, most notably on percent-to-fraction 

conversions (item la-c), and percent to decimal conversions (item 2a-c). On the 

posttest, more students also were using percent benchmarks successfully (item 5a-j). 
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Figure 5.8. Group 2 students pretest (n=32) and posttest (n=31) incorrect 

scores on Section II (conversions and benchmarks) of the Percent Knowledge 

Test. Graph indicates number of students incorrectly responding to particular 

items. 

Figure 5. 9 indicates that Section III of the pretest (percent calculations and 

problem solving) was poorly attempted by students. From Figure 5.9, it can be seen 

that prior to instruction, some students successfully performed calculations of percent 

equations, but only those of Type I (item la). Type II and Type III percent equations 

(item lb and c), and all three types of percent problems (item 2a-c) were not 

successfully completed by students. In Figure 5.9, it can also be seen that no student 

used diagrams to assist percent problem solving (item 3), and no student could 

successfully express percent problem solutions in words (item 4). Posttest results 

indicate greater student facility in solving percent problems and performing percent 

equations after instruction. On the posttest, more than half the students successfully 

performed percent calculations of all three types (item la-c), and also successfully 

solved percent problems (item 2a-c). Approximately one-third of the students were 

using diagrams to solve percent problems (item 3), and could express solutions to 

percent problems in words (item 4 ). Facility in solving multistep word problems 

showed minimal improvement (item 5a-d). 
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Figure 5.9. Group 2 students pretest (n=30) and posttest (n=30) incorrect 

scores on Section III (percent calculations and problem solving) of the Percent 

Knowledge Test. Graph indicates number of students incorrectly responding 

to particular items. 

Analysis of students' solution procedures for solving percent equations and 

problems indicates change in strategies utilised by students after instruction. As with 

Group 1, on the pretest Group 2 students employed a variety of procedures for solving 

percent equations and problems. For Type I problems, the most common correctly 

used strategy was decimal multiplication, followed by the strategy of using the percent 

key on the calculator. For Type II problems, successful students used long division 

equations. For Type III problems, correct responses were single answers only, 

therefore solution strategy could not be categorised. The majority of students who 

were unsuccessful on these items made no attempt at a solution, or presented a single 

answer providing no evidence of their solution strategy. 

On the posttest, similar results were gained as for Group 1. However, more 

Group 2 students than Group 1 students, utilised the proportional number line method. 

Of students who successfully completed percent calculations and problem solving 

items, the number line strategy was used, or the proportion equation without the 

number line. Some students wrote answers only. Of the students who incorrectly 

responded to these items, errors stemmed from incorrect placement of numbers on the 

number line, or incorrect placement of numbers on the proportion equation. One 

student utilised an incorrect sequence when solving the proportion equation. Other 
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students made no attempt at solution. 

5 . 2. 3 Planned teaching episodes 

Six teaching episodes were planned for Group 2. Two of the episodes used 

with Group 1 were collapsed into one episode. The planned teaching episodes for 

Group 2 are presented in Table 5.5. The table provides the number and title of each 

teaching episode, together with the number of actual lessons taken for implementation, 

and the chapter section in which discussion of each episode appears. 

Table 5.5 

Plan ofTeaching Ep_isodesfor GrouP. 2 

EEisode ToEic Lessons Location 

1 Metacognitive training 2 5.2.4 

2 Concept of percent 1 5.2.5 

3 Fraction equivalence and the Rule 1 5.2.6 

of Three 

4 Interpreting and solving percent 3 5.2.7 

problems 

5 Percent, common and decimal 2 5.2.8 

fraction equivalence 

6 The language of percent increase 2 5.2.9 

and decrease 

As can be seen from Table 5.5, the order of presentation of the episodes 

changed from that with Group 1. The episode on percent, common and decimal 

fraction equivalence (episode 5) was presented after the episode on interpreting and 

solving percent problems (episode 4). The episode on the language of percent increase 

and decrease was moved to last place (episode 6). The reason for this was to create a 

"break" in the teaching sequence, where students' attention was turned to a rather 

dissimilar topic in percent after working with the proportional number line method for 

interpreting and solving percent word problems. It was felt that, with Group 1, the 

episode on interpreting and solving percent word problems had demanded a lot of 

students' attention, and that revisiting the topic of percent, decimal and common 

fraction equivalence (in which students would have had prior experience) would be 

less cognitively demanding than the topic of percent increase. 

A total of 15 class periods were spent with Group 2. Nine lessons were 

directly on the topic of percent, with a further 2 lessons used for metacognitive 

training. Pre- and posttesting occupied 2 days prior to, and immediately following, 

implementation of the unit of work. 
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5. 2. 4 Episode 1: Metacognitive training 

Plan 

In line with reflection of this episode with Group 1 (see section 5 .1.4 ), this 

episode was replanned. The intention of the episode was to make the same key points, 

but to supplement with activities that would reduce the use of teacher monologue, and 

engage the students' attention. As with Group 1, this episode was planned to occupy 

2 lessons. Attention and remembering would be the focus of lesson 1, and forgetting 

the focus of lesson 2. Lesson 1 was modified with the inclusion of activities for use 

when discussing the two types of memory. Lesson 2 was not modified as this lesson 

was not fully trialled as planned with Group 1. A description of the activities planned 

to assist students to understand the difference between recall memory and recognition 

memory, and thus justify the need for a good recall memory strategy to promote 

remembering is presented below. 

1 . Direct the students to write the answers to these questions in their books: 

Spell: cat 

Spell: stop 

VVhatis: 2x2,2x3,4x4 

What did you have for breakfast? 

What did your teacher wear yesterday? 

Discuss that these are instances of recall memory at work. 

2 . Introduce the terms automatic and effortful recall memory. 

Provide students with a variety of stimulus sounds/pictures: 

a) music from Sesame Street 

b) music to the ABC News report 

c) picture of our Prime Minister 

d) picture of the McDonald's arches 

Ask students if they recognised any of these. Explain that these are instances 

of recognition memory at work. 

3 . Discuss the difference between recognition and recall memory: 

(a) Provide students with a list of 10 familiar mathematics words. Give 

them one minute to study the words on the list, and then have them 

write as many from memory as possible. 

(b) Provide students with a different list of 10 familiar mathematics words 

and direct students to memorise them. Then show students cards with 

words on them, one at a time, and ask them to determine which of the 

words on the cards were on the original list memorised for this 

activity. 

Explain to the students that the first activity relied on recall memory, and the 
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second activity relied on recognition memory. 

4. Discuss the difference between effortful and automatic recall memory: refer to 

the spelling of the word cat and to the activity of listing what the teacher wore 

yesterday; ask students to determine which was easier to recall; discuss the 

desirability of having things stored in automatic recall memory; discuss 

strategies for committing information to recall memory volunteered by the 

students. 

5. Demonstrate the Look Say Cover Write Check (LSCWCh)strategy. 

Action 

The first lesson in this episode proceeded as planned. The LSCWCh strategy 

was presented using the word Pythagoras. The importance of the steps in this strategy 

was stressed, especially the need to write from memory, rather than "copying" the 

information 5 times. At the end of the lesson, the students were asked to write a 

reflection of this lesson in their journal. 

For the second lesson in this episode, a Mathematics Competition was held at 

the school on this day, which entailed a room change. The colour card activity was 

completed, but the discussion on proactive inhibition and accelerated forgetting was 

not completed as planned. The Old Way/New Way strategy was not demonstrated to 

the students. 

Observation 

In the first lesson in the episode, the students appeared interested, and 

participated willingly in the activities. The classroom teacher also commented that the 

students appeared cooperative and attentive throughout the lesson. The recognition 

memory activity using "sounds" appeared to generate interest, as several students 

asked for more "sounds" to be played. Upon presentation of the LSCWCh strategy, 

one student stated that she was familiar with the strategy, and volunteered to 

demonstrate it to the rest of the class. All students practised the strategy. It was 

observed that many students were taking care to check each letter, and to cover the 

word completely, forcing memory to be activated. Some students questioned quietly 

why they were doing "spelling" in mathematics. Of the lesson, the classroom teacher 

expressed doubt about the value of the lesson, in that she expected few students to be 

able to connect this "spelling" lesson to helping the learning of mathematics. This 

perception was confirmed by students' diary entries. Analysis of students' diary 

entries revealed that many students questioned the purpose of a "spelling" lesson in 

mathematics time. 

During the second lesson, several students were absent as they were involved 

in the Mathematics competition. The switched classroom for this lesson was a Science 
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laboratory. The noise of the stools on the floor appeared to make it difficult for the 

teacher-researcher's voice to carry. The discussion on natural forgetting was 

interrupted several times due to the late arrival of students. The colour card activity 

was completed, and the students were attentive as the data was recorded on the board. 

As the teacher-researcher began to explain the results of the colour card activities, 

several students enquired about the purpose of the lesson. After the lesson, students 

asked the teacher when instruction in percent would begin. 

Reflection 

The first lesson in this episode was perceived as successful. The inclusion of 

the activities for recognition and recall memory appeared to contribute to sustaining 

student interest. Students' careful use of the LSCWCh strategy indicated the purpose 

of this strategy (for controlling memory) was well understood by students. Lesson 

design thus appeared to assist students in maintaining attention. The second lesson 

was not perceived as successful. The change of classroom clearly influenced the 

degree to which the planned instruction was implemented. However, even though the 

students appeared to enjoy the Colour Card activity, their questioning about when they 

were going to "do some maths" suggested that they were not paying attention to the 

discussion on PI and controlling of accelerated forgetting. The interruptions to this 

lesson prevented the key issues being presented to the students, and the natural flow of 

the lesson was lost. Although implementation of this episode appeared much 

smoother than with Group 1, the same issues presented themselves, in terms of 

context of the lesson, maintaining students' attention, and in "selling" the notion that 

metacognitive strategies assist in successful task performance. Once again, impressing 

upon students how strategic behaviour as a result of effort from the individual 

influences learning, was not an easy task. 

5. 2. 5 Episode 2: Concept of percent 

Plan 

As this episode, used with Group 1, was perceived as relatively unsuccessful 

in building students' concept of percent used in the real world, a new lesson on 

developing the concept of percent was planned for Group 2. The whole class 

brainstorming session on percent usage in the real world, as used with Group 1 (see 

section 5 .1.5) would be included, but the students would be given a box of candy­

coated chocolate drops (Smarties) and asked to investigate their box of Smarties. The 

purpose of this introductory lesson was for the teacher-researcher to assess the extent 

to which students spontaneously used percent notions. The lesson sequence was 

planned as follows: 

1 . Brainstorm percent words/notions/uses in the real world; students copy into 
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their books. 

2. Students form groups, with each group of students provided with a box of 

Smarties. 

3. Students given sheets of poster paper, felt pens, and a worksheet containing 

the instructions of: "Describe the contents of your box of Smarties." (On the 

worksheet, the words fraction, decimal, percent, ratio, proportion, graph, 

were listed as stimulus ideas- see Appendix H). 

4. Students present their completed posters to the class. 

Action 

The lesson began with brainstorming percent notions which students copied 

into their books as they were written on the board. The instruction sheet was 

distributed to students, and the task explained. The lesson finished before students 

could present their posters to the class. The students' work was collected. 

Observation 

From the brainstorming session, the following student suggestions were 

listed on the board: "shopping, sales, % discount, bank interest rates, out of 1 00". 

The use of the Smarties appeared to cause excitement amongst the students, with the 

teacher-researcher being asked many questions about when the Smarties could be 

eaten. The students were quiet and attentive as instructions for the activity were given. 

When the students were instructed to organise themselves into groups, some groups 

took longer to form than others. The majority of students began the task by recording 

the number of Smarties of each colour contained in the box; some students counted the 

contents of the box to determine the number of Smarties each would get to eat. Most 

student groups recorded the number of Smarties of each colour as a fraction of the total 

number, and then began constructing a graph of this information. One student's work 

revealed descriptions of the various Smarties colours as ratios, and this student had 

been observed describing her ratio calculations to her partner. 

Reflection 

The Smarties assisted classroom management, as all students were actively 

engaged in the task. However, this lesson was perceived as unsuccessful in assisting 

the teacher-researcher to gain insight into the students' understanding of percent, or in 

helping students build their own concepts of percent. Only the student who described 

the Smarties as ratios provided the teacher with insight into her ratio knowledge. The 

brainstorming session did suggest that the students related percent to "one hundred", 

and that discount was a common use of percent known by the students. The 

worksheet was perceived as too open for the purposes of this lesson, however, 
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students' responses in this lesson indicated that they were more comfortable working 

in fractional amounts rather than percentage amounts. The classroom teacher stated 

that she felt the students had not been challenged during this lesson due to the lack of 

time, which, she stated, was a major difficulty with group work. In a similar vein to 

reflections upon this episode with Group 1, the lesson was unproductive in developing 

students' understanding of the multifaceted nature of percent. The students were 

unchallenged, but had enjoyed operating in group situations. Students' relative 

inexperience with group activities was reflected in the amount of time students took to 

form groups. In light of the students' limited productivity in the lesson, it was decided 

to begin the next teaching episode rather than replan this lesson using valuable class 

time. 

5. 2. 6 Episode 3: Fraction equivalence and the Rule of Three 

Plan 

With Group 1, this episode was rated as successful, thus with Group 2, the 

plan for the episode was modified only slightly. For this episode, students' 

understanding of the diagrammatic representation of fraction equivalence was to be 

explored. In this episode, the students would be instructed to draw a rectangle and 

represent one-third on it. The students would then be directed to use their diagram to 

show that 1
/ 3 is equivalent to 2

/ 6• From this, students' procedures for generating 

equivalent fractions would be discussed, and the Rule of Three presented as an 

alternative method. The remainder of the lesson would proceed as with Group 1 , 

where students practised exercises using the Rule of Three to generate equivalent 

fractions. 

Action 

The episode was implemented as planned. Students were provided with 10 

equivalent fraction exercises to complete for homework. 

Observation 

At the beginning of the lesson, the students were asked to draw a diagram to 

represent 1
/ 3. Students' drawings revealed some errors, particularly in relation to 

drawing "equal parts". The teacher drew an appropriate diagram, discussing equal 

parts and the nature of equivalence. The students copied the diagram into their books. 

Upon presentation of the equivalent fraction example in symbolic form, many students 

volunteered to explain their solution, thus indicating their familiarity with the 

mathematical procedure for determining equivalent fractions. The practice examples 

for finding equivalent fractions using the Rule of Three appeared to be well-received 

by the students as they worked solidly on completing all exercises in a quiet manner. 

167 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



The classroom teacher commented that she thought that the students had been very 

productive during that lesson as she felt that all students had worked solidly on the 

exercises. 

Reflection 

In this episode, the introductory activity of drawing a diagram to represent the 

equivalent nature of 1 I 3 and 2 I 6 did not appear to be useful, and may have served to 

complicate the main focus of the lesson. It is hypothesised that some students may not 

have had much experience representing fractions diagrammatically. In the lesson, 

insufficient time could be devoted to exploring students' knowledge of diagrams for 

representing equivalent fractions. Students appeared to be much more comfortable 

interpreting equivalent fractions at the symbolic level. This mode of presentation, of 

concrete representation prior to abstract symbolism is a key component of effective 

teaching and lesson design (Mercer & Miller, 1994). In light of students' responses in 

this lesson, familiarity with working at the symbolic level appeared more beneficial 

and less confusing to the students than use of the diagrammatic representation. It 

appears that, the "concrete before abstract" teaching approach may not always be the 

best way when students have already been exposed to the concept. Connell and Peck 

( 1993) also discussed the difficulty of using concrete representations to link previously 

learnt symbolic representations. At the symbolic operation level, this lesson was 

perceived as successful in providing students the opportunity to experience success, 

and in practicing a skill to be used in percent problem solving, as with Group 1. 

5. 2. 7 Episode 4: Interpreting and solving percent problems 

Plan 

With Group 1, two separate episodes were planned for (i) interpreting percent 

problems and (ii) solving percent problems. In light of reflections upon these two 

episodes, the plan for Group 2 was to restructure episodes 4 and 5 used with Group 1 

into one episode on interpreting and solving percent application problems. Three 

major modifications were made to this episode. First, the notions of part, whole and 

percent as elements within percent situations would be related to the students' 

experience with the Smarties activity of Episode 2 (see section 5.2.5). Second, only 

Type II problems would be shown initially to the students on an overhead 

transparency (OHT) for identification of part, whole or percent elements. This 

deliberate modification was an effort to discourage students volunteering to 

demonstrate their calculation procedures for the familiar Type I problems. Third, 

writing real situations to match percent exercises in the standard symbolic form of: 11% 

of 11 = 11 would be omitted, in an effort to not distract students' attention from the 

method presented. 
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This episode was planned to span 2 lessons, with instruction on interpreting, 

representing and solving percent word problems presented in lesson 1, and practice of 

this method in lesson 2. The plan for this episode was as follows: 

1 . Introduce the terms pan, whole, percent as elements of percent application 

problems, referring to the contents of the box of Smarties used in a previous 

lesson (see below for specific activities). 

2. Present Type II problem situations on an OHT. 

3. Help students identify elements in the given percent problem. 

4. Continue with other examples of Type I and III problems. 

5 . Introduce the vertical percent number line. 

6. Demonstrate the procedure for transferring information given in the problem 

onto the number line. 

7. Demonstrate construction of the proportion equation. Link to equivalent 

fraction solution procedure of the Rule of Three. 

8. Provide students with the structured practice worksheet (Appendix D) used 

with Group 1. 

9. Provide students with the consolidation worksheet (Appendix E) used with 

Group 1. 

For the first part of the episode (point number (1) above), it was planned 

students would be told that, in a box of 58 Smarties, 17 were red. On the board, this 

information would be displayed as shown: 

The students would be asked to identify which was the whole and which was the part 

in this situation. Three separate cards with the words whole, pan, percent would be 

displayed, and students would be asked to volunteer to place the correct card on the 

Smarties information displayed on the board. A second example would then be 

presented: There were 73 Smanies in a box, and 14 were blue. Students would be 

asked to identify the pan, whole and percent elements of this situation. It was 

expected that students would state that there was no percent given in these two 

situations. The students would then be asked to create a percent problem, asking the 

rest of the class to determine the percent in this situation. 
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Action 

The first seven steps of the planned episode were implemented during the first 

lesson. The terms part, whole and percent were introduced in relation to the contents 

of the Smarties box. Percent word problems were presented on an OHT. The 

students were directed to write in their books: part:_, whole: __ , %: __ , and to 

then record the three elements of each problem presented, placing a question mark next 

to the unknown element in the problem. The vertical number line procedure for 

representing and solving percent problems was demonstrated. The lesson ended 

before the worksheet could be handed out. In the second lesson, the technique for 

interpreting, representing and solving percent word problems was revised. The 

worksheet was handed to students, and students were instructed to work at their own 

pace on the sheet. The second worksheet was available for faster workers. 

Observation 

As the Smartie demonstration was presented, several students questioned the 

need for the percent term. No student volunteered to describe the Smartie part/whole 

situation into a problem requiring calculation of percent. Students' behaviour indicated 

that this segment of the lesson was causing inattention. The students were presented 

with a Type II word problem on an OHT, describing how percent word problems 

could be identified in terms of part, whole and percent elements. Unlike students' 

reactions to this part of the lesson with Group 1, no student stated that they knew how 

to solve the Type II problem presented. The teacher-researcher walked around the 

room, observing students as they identified the part, whole, percent, elements of each 

problem presented, noting that all students completed the task as required. 

The students completed the number line representation quickly. When 

students were asked to draw the number line in their books, a quick tour of the room 

by the teacher-researcher indicated that all students could place 0%, 100% and 50% at 

appropriate places on their diagram. No student questioned the vertical position of the 

number line, or the positioning of the 0% point on the number line. The students 

watched quietly as the procedure for transferring the information onto the number line 

was demonstrated. As the proportion equation was set up, the link between this 

equation and the fraction equivalence equations practised in Episode 3, was drawn. 

The students were asked to describe how they would solve the proportion equation. 

Many students volunteered to speak. Once the solution process was demonstrated to 

the class, the teacher-researcher stressed again how this procedure was identical to the 

one practised in the previous lesson. When the proportion equation was taken from 

the number line, there was audible positive recognition of the link. One student 

muttered: "Oh, now I get it.", and other students collectively said "Aaahh". 

At the commencement of second lesson in this episode, the students were not 
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lined up outside the classroom, and were scattered along the verandah. An "incident" 

involving two members of the class had occurred during the lunch-break prior to this 

lesson, and the class took approximately 8 minutes to move into the classroom and 

settle down at their desks. The lesson started with the teacher-researcher 

demonstrating the solution procedure for percent application problems, but one of the 

students involved in the incident continually recounted the events of the incident to 

students around him. The teacher-researcher handed out the worksheets, and asked 

the students to work through the examples given. Many students required individual 

assistance in completing the exercises on the sheet, as they could not recall the 

sequence of steps demonstrated on the board. The student involved in the incident 

remained off-task all lesson, as did the students around him. As the teacher-researcher 

moved around the room observing students working, it was apparent that many 

students were confused about the steps involved. The teacher asked the students to 

hand in their worksheets at the end of the lesson. Analysis of students' responses 

indicated that errors were occurring, particularly in relation to positioning numbers on 

the number line, and also in the cross-multiplication technique. The identification of 

part, whole, percent elements was generally correctly performed. All work planned 

for this episode was not fully implemented. 

Reflection 

The interpretation of percent problems in terms of the three elements was 

perceived as a successful part of this episode, but the use of the Smarties 

demonstration was not. In an effort to link to prior experiences (i.e., with the 

Smarties) it was found that students did not readily see the link to the fractional 

notation of the contents of a box of Smarties to percentage parts and wholes. 

Although students had prior experience with fraction, decimal and percent 

conversions, as indicated by their satisfactory performance on the pretest (Section II) it 

appeared that they did not readily relate fraction-to-percent conversions to real 

collections. Therefore, this introductory section of the episode was not a relevant link 

to the students' percent knowledge. The fact that all students could readily identify a 

percent problem in terms of part, whole, percent suggested that this was a relatively 

simple task. The use of the Smartie situation did not appear to have added any 

meaning to this part of the episode. The link between the proportion equation and the 

fraction equivalence method appeared to help students see the purpose of the previous 

lesson on finding equivalent fractions using the Rule of Three technique. The positive 

murmurings when the proportion equation was solved using the Rule of Three were 

interpreted as students seeing a link between the two procedures. 

The structure of the first lesson in this episode appeared to assist the 

successful nature of the lesson. Apart from the unsuccessful attempt to link fractions 
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to percent via the box of Smarties, the lesson instructions were sequential, gently 

guiding students to solving percent problems. After identifying the three elements in 

percent problems, the students drew a horizontal number line and marked in 0%, 50% 

and 100%. The teacher-researcher could thus quickly check students' understanding 

of this representation for percent. The rotation of the number line to a vertical position 

appeared to enable students to see how this representation linked to the horizontal 

format, and provided the structure for percent problem interpretation. The fact that the 

vertical number line positioned thus yielded a proportion equation which matched the 

positioning of numbers in equivalent fraction form was perceived as linking percent 

equations to proportion equations and thus to equivalent fractions. According to 

Parker and Leinhardt (1995), the positioning of the number line in this way may cause 

confusion as the scales showed greater amounts (100%) at the bottom of the scale, 

rather than at the top, as is usual in graphical representations. With students in this 

group, no such reaction occurred, and it actually linked to their new knowledge of the 

Rule of Three, as indicated by their responses. Also interesting with this group was 

the fact that presenting a Type II problem did not meet with resistance and lack of 

attention as was the case when Group 1 students were presented with a Type I 

problem. This "repatterning" approach to teaching, advocated by MacDonald (1972) 

appears to be a useful strategy to overcome the interfering influence of prior 

knowledge. 

In the second lesson, the lunchtime "incident" clearly affected lesson 

implementation. It was felt that re-presentation of the explanation for solving percent 

application problems was inadequate and caused students to begin to make errors. 

Analysis of students' worksheets indicated that two distwct categories of learners 

emerged: - those who could complete the percent application problems correctly, and 

those who could not. It was apparent that grouping students for instruction was 

necessary. To enable all students to practise solving percent problems, some students 

required further instruction in the number line procedure. A further lesson was 

planned in this purpose. 

Replanning for third lesson in this episode 

For the third lesson in this episode, it was planned to group the students on 

the basis of correct performance of percent application problems. Students 

successfully using the method would work individually, completing the problems on 

the worksheet, and then continue on with the further practice worksheet (Appendix E). 

Students experiencing difficulty, would receive demonstrations of the steps prior to 

working independently on their worksheets. At the beginning of the lesson, it was 

planned that the students would be presented with a brief historical timeline of percent. 

The purpose was to show the students the ancient nature of the Rule of Three via the 
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historical timeline (this timeline is in Appendix I). 

Action 

This lesson began with students instructed to sit in specified areas as they 

entered the room. The teacher-researcher returned students' worksheets to them, and 

the format of the day's lesson was described. The percent timeline was presented on 

an OHT, the Rule of Three descriptions were read to the students. The lesson 

continued as planned. 

Observation 

The students quietly moved to their allocated groups. The students listened 

quietly and appeared interested in the historical note of the Rule of Three. (The 

classroom-teacher commented during the lesson that she had not realised that percent 

was "such an ancient notion". She thought the Rule of Three was a useful procedure 

which she had not previously applied for solving percent problems.) With the class 

grouped in two, the teacher-researcher spent time with the students experiencing 

difficulty whilst the rest of the class worked individually on the worksheet. All 

students worked relatively quietly although some chatting amongst students occurred. 

From observations of students' work, some students were experiencing difficulty in 

interpreting the elements of Type III problems. Only 5 of the 30 students completed 

all 15 problems on the worksheets during the lesson. When working on the second 

worksheet, one student did not draw the diagram, or show evidence of working out. 

However, all solutions were correct. This student stated that he did most of the 

working in his head. The teacher-researcher asked the student what method he used, 
...)$ 

and the student replied that it was the proportion equation for Type II and III 

problems, but the percent button and multiplication for Type I problems. Another 

student did not draw a number line, but wrote the problem information as a proportion 

equation. This student's work showed evidence of misinterpretation of Type III 

percent problems. The teacher-researcher asked the student why he did not draw a 

number line, and he replied "But if I do, I'll never finish. The number line takes too 

long." The teacher-researcher stated that it was better to complete only two problems 

correctly than to finish all 8 and get most of them wrong. The teacher-researcher 

suggested that the number line would be useful to check the position of the numbers in 

the proportion equation. The student then proceeded to construct the number line. 

Reflection 

Student responses to pract1Slng solving percent problems were similar to 

those observed with Group 1 students. Once students had completed all problems on 

the structured worksheet, they found ways to cut corners, and thus errors developed. 
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The students were not allowing themselves time to practise strategic procedures for 

successful performance. The students had been presented with a cognitive strategy 

(Cole & Chan, 1990) to ensure successful percent problem solving, but their 

metacognitive knowledge had not been sufficiently developed to enable them to 

understand the benefit of practising the strategy to expert stage. The interplay of 

cognitive and metacognitive knowledge, and the difficulty of convincing students that 

they are in control of the learning situation were highlighted once again. 

In this episode, students' productivity in terms of the number of problems 

completed was not great. It was perceived that all students would benefit from another 

class period of further practice examples, and the students who were developing 

expertise in this method, could be presented with more open investigations. Due to the 

timetable restrictions a further lesson could not be afforded at this point. 

5. 2. 8 Episode 5: Percent, common and decimal fraction equivalence 

Plan 

The plan for this episode was the same as for Episode 7 used with Group 1 

(see 5.1.10), with some modifications. In view of the difficulty some Group 1 

students experienced in constructing the number line, it was planned that instruction 

for assembling the number line would be more directed and sequential. Two lessons 

were planned for this episode, with the first lesson taken up in construction of the 

number line, and the second lesson for practise of percent, decimal and fraction 

conversions. The planned sequence of instruction in this episode was as follows: 

1. Hand out a pre-printed A5 sheet of paper. Instruct students to begin counting 

in common fraction hundredths, marking the position of each hundredth on 

the number line, to 19
/ 100. Simplest form fractions to be written in brackets. 

2. Instruct students to write decimal fraction symbols for each corresponding 

common fraction symbol on the number line, to 19 hundredths (0.19). 

3 . Ask students to identify 1 I 100 as a percent, and write the corresponding percent 

values on the appropriate place on the number line, to 19%. 

4. Instruct students on how to join 4 more A5 sheets of paper to complete the 

number line to the number 1 (100%, 100
/ 100, 1.00). 

5. Direct students to mark commonly used decimal and common fractions, and 
25 50 75 100 . 10 percents - /100, / 100, / 100, / 100, and every tenth common fractiOn /100, 

20
1100

, 9o
1100

_ 

6. Students to use the constructed number line to assist in completion of the 

worksheet (see Appendix G). For example, if the item on the worksheet 

asked students to convert 4
/ 5 to a percent, from the number line, locate this 

simplest form fraction as 80
/ 100• The fraction is equivalent in value to 80%. 
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Action 

The first lesson proceeded as planned, with all students successfully 

constructing their number lines. At the beginning of the second lesson, the teacher 

demonstrated how to use the number line to assist in determining decimal and common 

fraction and percent equivalences. The worksheet was handed to the students, and the 

activities explained. The students were instructed to work through the activities at their 

own pace. 

Observation 

The step-by-step instructions for constructing the number line appeared to be 

a means for maintaining calm within the class, as all students completed the activity in 

a quiet manner. When directing students to fill out the decimal counting numbers, the 

teacher-researcher wrote the sequence of numbers 0.07, 0.08, 0.09, __ , on the 

board and asked the question: "What number comes next? Is it 0.10 or 0.010?" A 

student stated that "0.10" would come next, as "0.09 is nine-hundredths, and if we 

wrote 0.010 we have ten thousandths, not ten hundredths". By the end of the lesson, 

all students had successfully constructed the number line, to show equivalent forms of 

decimal, fractions and percent numbers. 

The worksheet was presented in the second lesson. As students worked 

through the worksheet (Appendix G), some students required individual assistance in 

writing decimals as equivalent percents. For example, to assist the conversion of 0.29 

as a percent, students were instructed to read the decimal as "twenty-nine hundredths" 

so they could "hear" the decimal as "hundredths" and thus as a percent. Most students 

experienced little difficulty in changing percentages (e.g., 52%) to common fraction 

form as they simply wrote the percent as a fraction of 100 (i.e., 52
/ 100). However, 

only a few students reduced such fractions to the simplest form. Despite the fact that 

the students' number line were marked with common fractions expressed in simplest 

terms, many students did not use the number lines as a reference to help them change, 

for example, 4
/ 5 to a percentage. Not all students had completed all activities on the 

worksheet by the end of the lesson. 

Reflection 

Instruction in this episode appeared to overcome students' counting errors in 

decimal, fraction and percent, and also ensured construction of the oversized number 

line was completed efficiently. As with Group 1, students with limited knowledge and 

skills of percent, common and decimal fraction conversions did not appear to develop 

such new skills (that is, in developing skills in reducing fractions to simplest form; in 

finding fraction equivalence to denominators of 100; and in converting decimal tenths 

to percent). These students did not refer directly to their constructed number line to 
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assist them in completing the worksheet exercises. For the students who already 

possessed satisfactory percent conversion and benchmarking skills, this episode 

appeared to provide an opportunity for practise of those skills. Construction of the 

number line for such students may have been a superfluous exercise. 

The purpose of having students construct a number line was to show that any 

percent value can be located on a number line; its equivalent common and decimal 

fraction form can also be located at the same point, thus reflecting the equivalent nature 

of the three number forms. Students' understanding of equivalence is generally weak 

(Vance, 1992), and this activity was designed to strengthen such understanding. In a 

similar vein to the reflection of this episode with Group 1 (section 5.1.10) this episode 

was perceived as requiring more direct instruction to draw students' attention to this 

fact. The episode therefore is rated as between successful and unsuccessful, as it did 

not overtly appear to build new understanding of equivalence, but did provide for 

practise of conversion skills. 

5. 2. 9 Episode 6: Language of percent increase and decrease 

Plan 

Given the "success" of using jellybeans to demonstrate percent increase 

situations (as used with Group 1), it was decided to use only jellybeans for 

demonstration of percent increase and decrease situations in this episode. The plan 

was to use jellybeans to demonstrate the effect on the whole when the number of 

jellybeans is increased by a certain percent. As in Episode 6 with Group 1 (see section 

5.1.9), each percent increase/decrease situation would be represented diagrammatically 

on the board, using the number line representation. Percent decrease situations would 

be modelled using jellybeans as with Group 1. The jellybean "decrease" situation 

would be represented diagrammatically using the number line, and additive and 

multiplicative language used in two different sentences. The multiple choice 

worksheet (Appendix F) would be used to enable students to practise their 

understanding of the language of percent increase and decrease situations. Thus, the 

plan for this episode was as follows: 

1 . Present students with the multiple-choice item from the pretest on a small slip 

of paper. Direct students to select the appropriate response and provide a 

reason why they selected that response. 

2. Scan students' responses to ascertain the approximate number of students 

who selected the appropriate response. 

3. Demonstrate percent increase situations using jellybeans in the following 

sequence: 

(a) 6 jellybeans, increased 50% 

(b) 8 jellybeans, increased 25% 
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(c) 10 jellybeans, increased 20% 

(d) 3 jellybeans, increased 100% 

(e) 3 jellybeans, increased 200%. 

For each situation, represent on a number line, and write sentences to describe 

the situation using (i) additive language, and (ii) multiplicative language. 

4. Demonstrate percent decrease situations using jellybeans in the following 

sequence: 

(a) 10 jellybeans, 50% eaten 

(b) 12 jellybeans, 25% eaten 

(c) 10 jellybeans, 20% eaten 

For each situation, represent on a number line, and write sentences to describe 

the situation using (i) subtractive language and (ii) multiplicative language. 

5. Present students with multiple-choice worksheet (Appendix F). Instruct 

students to work in groups to identify correct interpretations of given increase 

and decrease situations. 

It was planned that percent increase situations would be the focus of the first lesson in 

this episode, and percent decrease situations and the worksheet would be the focus of 

the second lesson. 

Action 

In the first lesson, the students completed the multiple choice item. The 

students were asked to leave the multiple choice item on their desks until the end of the 

lesson. The percent increase situations were presented to the students as planned. All 

percent increase demonstrations were completed during this lesson. 

The second lesson in this episode proceeded as planned. The delivery of the 

decrease examples was completed in less time than with Group 1, and thus the 

students had more class time to work on the worksheet. Many students completed the 

worksheet, which the teacher scanned, and provided students with immediate feedback 

if they had not identified all correct percent increase and decrease statements. For the 

students who did not complete the worksheet, the opportunity to complete the sheet in 

their own time was offered. 

Observation 

At the beginning of the first lesson, a quick scan of students' responses to the 

multiple choice item indicated that the majority of students had misinterpreted the 

question. As the lesson progressed, several students changed their initial response as 

various percent increase situations were demonstrated. New meaning of percent 

increase situations, as a result of the demonstrations, appeared to be developing for 

these students. 
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The students remained quiet and were cooperative during the whole lesson. 

The organisation of the lesson (demonstration, representation, writing additive and 

multiplicative sentences) enabled the teacher-researcher to scan students' work in 

between demonstrations. The students waited quietly as the teacher-researcher 

checked all students' written interpretations of each situation presented. 

The second lesson in the episode also appeared to proceed smoothly, and 

students remained cooperative and attentive. As students worked in groups on the 

worksheet, the teacher-researcher moved amongst the groups, listening to students' 

discussion of the percent increase and decrease sentences. Students who were still 

experiencing difficulty with such interpretations were identified, and extra assistance 

was provided by the teacher. From analysis of students' responses to the worksheet, 

it appeared that many groups of students correctly identified the majority of percent 

increase and decrease sentences. 

Reflection 

This episode was perceived as successful. This episode was implemented in 

a smooth manner as a result of reflection upon this episode with Group 1. Lesson 

design appeared to maintain students' attention, and thus students were assisting 

themselves to learn. The two-way nature of the learning process is highlighted here. 

The student is in control of the learning situation in that the amount of attention he/she 

pays influences what they learn (Lyndon, 1995). However, the teacher must plan 

carefully to assist students to maintain attention (Mercer & Miller, 1994) as 

maintaining attention is effortful and hard work (Lyndon, 1995). 

5.2.10 Reflection upon implementation of teaching episodes 

Reflection upon implementation of this unit of work was that it was more 

successful than with Group 1, but only moderately. Some episodes, as a result of 

reflection upon implementation with Group 1, were more successful than with Group 

1, but not sufficiently so in terms of an efficient and effective unit of work. In Table 

5.6, the success rating for each episode is presented. 

From Table 5.6, it can be seen that the metacognitive training episode was 

rated as between successful and unsuccessful, which is a change from its totally 

unsuccessful rating for Group 1. The other episode to be rated similarly was the 

percent, common and decimal fraction equivalence episode (episode 5), which also 

had been rated as unsuccessful for Group 1. The concept of percent episode (episode 

2) was rated as unsuccessful, which is the same rating as for Group 1. The episodes 

which focused specifically on the proportional number line method for solving percent 

equations (episodes 3, 4 and 6) were all rated as successful, which is a change in a 

positive direction compared with these episodes for Group 1. 
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Table 5.6 

Success Rating ojTeaching Episodes for Group 2 

Episode Topic 

1 

2 

3 

4 

5 

6 

Metacognitive training 

Concept of percent 

Fraction equivalence and the Rule of Three 

Interpreting and solving percent problems 

Percent, common and decimal fraction 

equivalence 

The language of percent increase and decrease 

* S = successful 

U = unsuccessful 

Success 

ratin * 
U-S 

u 
s 
s 

U-S 

s 

The metacognitive training episode was modified from that used with Group 

1, and this appeared to contribute to a more successful implementation with Group 2. 

However, the entire metacognitive training episode was not implemented entirely as 

planned with Group 2, and thus it failed to strongly inform the students of their role in 

the learning process, and the effort required on their part. The episode also did not 

provide students with strategies for successful task performance, or with sufficient 

explanation of how they could be applied for successful performance in mathematics. 

Thus, at times when the 0/N strategy could have been applied within the unit of work, 

it was not, due to lack of this shared knowledge and understanding between the 

students and the teacher. 

The last episode in this unit, on fraction, decimal and percent equivalence, 

was also rated as between successful and unsuccessful. It did not appear to build 

students' knowledge of equivalence, as students did not refer to the constructed 

number line when completing conversion activities. However, the episode did provide 

the opportunity for those students with sufficient skills in percent conversions and 

benchmarking to practice those skills. The episode therefore was of benefit to some 

students but not to others. 

The second episode in this unit, on the concept of percent, was rated as 

unsuccessful. In a similar manner to this corresponding episode with Group 1, this 

episode was perceived as unsuccessful in promoting students' understanding of the 

multifaceted nature of percent, and its uses in describing a group of objects. Although 

the students had appeared to enjoy the activity, no challenging notions were presented 

to the students. 

The episodes which specifically focused on the proportional number line 
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method for percent problem solving (Episodes 3, 4 and 6) were rated as successful, 

due to modifications as a result of reflection upon these episodes with Group 1. 

The major difficulty encountered once again, was the lack of time available in 

the real school situation to enable students to practise and consolidate skills and 

develop rich concepts. This unit of work was implemented with Group 2 in 11 

lessons which was a reduction of one lesson compared to Group 1, and many new 

concepts and skills were covered. In terms of efficiency, this unit was more efficient 

of teacher time, due to careful planning and structuring of each episode in light of 

reflection of implementation with Group 1. Teacher factors associated with lesson 

design and sequencing were thus more controlled in Teaching Experiment 2. 

5.2.11 Reflection upon pre- and posttests and instruction 

Reflecting upon pre- and posttest scores and implementation of this unit, 

some interesting comparisons can be seen. The implementation of the unit of work 

was rated as moderately successful, and overall pre- and posttest scores for Group 2 

showed moderate positive change from 37% to 66% respectively. Within the unit, the 

episodes on interpreting and solving percent problems were rated as successful, and 

Group 2 test scores on that section of the posttest are 48% compared to 7% pretest 

score. The number line model was the predominant strategy used by students on this 

section of the posttest. Thus, instruction appears to have contributed to more students' 

successful performance in interpreting and solving percent problems, therefore 

supporting the teacher-researcher's perceptions of the successful nature of these 

episodes in the unit, and the value of the proportional number line method as a key 

process. On Section II of the test (conversions and benchmarks), a positive change 

was recorded between pre- and posttests with scores of 41% and 70% respectively. 

Implementation of the episode on conversions and benchmarking was rated as between 

unsuccessful and successful, and students' test scores can be interpreted as reflective 

of this rating. As stated in the reflection upon implementation of this episode (see 

section 5.2.10), students who had sufficient skill in percent conversions and 

benchmarking completed class activities in a satisfactory manner during the episode; 

the constructed number line, however appeared to be of minimal assistance for other 

students in building their knowledge and skill in such conversions. The episode, 

therefore appears to have positively assisted students to practise conversion skills, but 

not for helping other students develop such skills. In terms of intuitive and principled­

conceptual knowledge, the students in Group 2 performed at a satisfactory level on the 

pretest, thus indicating that their percent knowledge in this category was satisfactory. 

The positive change on performance on this section of the posttest indicates that the 

unit of work may have raised students' awareness of percent notions, with pre- and 

posttest scores of 64% and 79% respectively. As with Group 1, Group 2 students 
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experienced difficulty with particular items on the pretest relating to the multiplicative 

and additive language of percent increase (see Figure 5.7, items 6a-c and 7a-c in 

section 5.2.2). As also noted with Group 1, Group 2 students' posttest scores 

indicate that students continued to experience difficulty in interpreting such items after 

instruction. Intense instruction on percent increase therefore appears to have been 

minimally beneficial for students in this group, although this episode in the teaching 

sequence was rated as successful. 

5.2.12 Directions for Teaching Experiment 3 

Reflections upon implementation of the teaching sequence with Group 2 

indicated that teacher factors were more controlled in Teaching Experiment 2, but that 

other factors, such as student metacognitive factors, time factors, school context 

factors and curriculum factors were difficult to control. In Teaching Experiment 2, 

often the reasons for unsuccessful episode implementation was due to these external 

factors. In an attempt to overcome such factors, Teaching Experiment 3 was trialled in 

a different school to Group 1 and 2. It was anticipated that student factors and school 

context factors may be more controllable to enable the planned teaching sequence to be 

fully implemented, and thus the time factor would be less interfering. Teaching 

Experiment 3 was thus conducted to enable evaluation of the teaching sequence to be 

undertaken. 

5.3 Teaching Experiment 3 
5. 3 .1 Overview of report on Teaching Experiment 3 

The results of Teaching Experiment 3 are reported in this section. The pre-, 

post- and delayed posttest results are presented in section 5.3.2. An overview of the 

teaching sequence comprising six teaching episodes is presented in section 5.3.3. In 

sections 5.3.4 to 5.3.9, implementation of the six teaching episodes is described under 

the subheadings of plan, action, observation and reflection. In section 5.3.10, a 

reflection upon implementation of this unit of work is presented, followed by a 

reflection upon pre- and posttest results and instruction in section 5.3.11. This section 

concludes with a statement on direction for Study 4 in section 5.3.12. 

5. 3. 2 Pre-, post- and delayed posttest results 

Group 3 scores on each section of the pre- and posttests are presented in 

Table 5.7 and show that Group 3 test scores overall increased from a pretest score of 

44% to a posttest score of 76%. Within each section of the test, there was a slight 

positive change on Section I (intuitive, principled-conceptual knowledge); a stronger 

positive change on Section II (conversions and benchmarks), as well as a similarly 

strong positive change on Section III (percent calculations and percent problem 
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solving). From Table 5.7, it can be seen that, like Group 1 and 2 students, Group 3 

students' intuitive and principled/conceptual percent knowledge, and proficiency in 

percent conversions and benchmarking, prior to instruction, was much greater than 

their percent calculation and problem solving skills. Graphical representation of the 

pre- and posttest scores are presented in Figure 5.10 highlighting the change in pre­

and posttest scores in total, and on all test sections. 

Table 5.7 

Pre- and Posttest Means (%)for Group 3 Students on the Percent Knowledge Test in 

Total and for Each Section 

Test 

Pretest 

Posttest 

Total 

44% 

76% 

100% 

80% 

60% 

40% 

20% 

0% 

Total 

Components of Percent Knowledge Test 

Section I Section II Section III 

72% 

86% 

Sect 
I 

Sect 
II 

42% 

75% 

Sect 
Ill 

19% 

67% 

D pre 

• post 

Figure 5.1 0. Graphical representation of Group 3 students' pre- and posttest 

means (%) in total, and in each test section. 

As for Groups 1 and 2, Group 3 students' test results were analysed for 

diagnostic purposes. Pre- and posttests were scored to identify specific items on 

which students responded incorrectly. Within the three parts of the Percent 

Knowledge Test, the number of incorrect student responses for each item was tallied. 

Representation of the number of incorrect responses to each item on Section I 

(intuitive, principled-conceptual percent knowledge), Section II (conversions and 

benchmarks) and Section III (percent calculations and problem solving) are presented 

in Figures 5.11, 5.12. and 5.13 respectively. 
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Figure 5.11. Group 2 students' pretest (n=30) and posttest (n=26) incon·ect 
scores on Section I (intuitive, principled-conceptual percent knowledge) of the 
Percent Knowledge Test. Graph indicates number of students incorrectly 
responding to particular items. 

• pre 

D post 

1 6 . 

1 4 
1 2 
1 0 

8 
6 . 

4 
2 
0 b b 0 n t:J 0 n ll D 0 n 
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Figure 5.12. Group 3 students pretest (n=30) and posttest (n=25) incorrect 
scores on Section II (conversions and benchmarks) of the Percent Know ledge 
Test. Graph indicates number of students incorrectly responding to particular 
items. 
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In Figure 5.11, it can be seen that, on the pretest, Group 3 students 

experienced most difficulty with items 7a-c, and 8a-c, which relate to interpretation of 

the multiplicative and additive language of percent increase, and the posing of real 

world percent problems from percent equations and also item 2c, which relates to the 

percent benchmark that 10% is one tenth. Posttest scores indicate positive change in 

performance after instruction, but also indicate that students continued to experience 

difficulty in interpreting the multiplicative and additive language of percent increase 

situations (item 7a-c). Students' ability to pose real world percent problems from 

percent equations improved on the posttest (item 8a-c ). 

Figure 5.12 indicates that, prior to instruction, many students experienced 

difficulty in fraction, percent and decimal conversions (items 1-4), and in using 

percent benchmarks (item 5), particularly benchmarks of 15% (as 10% + 5%), 30% 

(as 3 x 10%), 60% (as 6 x 10%) and 331
/ 3 (as 1

/ 3) (item 5f-j). On the posttest, 

improved student performance can be seen, most notably on percent-to-fraction 

conversions (item la-c), and percent-to-decimal conversions (item 2a-c). After 

instruction, more students also were using percent benchmarks successfully, however 

percent benchmarks of 15%, 30%, 60% and 331
/ 3 were still causing difficulty for 

some students (items 5g-j). 

Figure 5.13 indicates that, Section III of the pretest (percent calculations and 

problem solving) was not well-attempted by the students. 

30 
28 
26 
24 
22 
20 
1 8 
1 6 
1 4 
1 2 
1 0 

8 
6 
4 
2 
0 

. 

n. n 0 n. n n . 

• pre 

D post 

Figure 5.13. Group 3 students pretest (n=30) Posttest (n=25) incorrect scores on 

Section III (percent calculations and problem solving) of the Percent Knowledge 

Test. Graph indicates number of students incorrectly responding to particular items. 
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From Figure 5.13, it can be seen that, on the pretest, some students could successfully 

perform calculations of percent equations and solve percent problems, but mainly 

those of Type I (items la and 2a). Type II and Type III percent equations (items 1 b 

and 1c), and percent problems (item 2b and 2c) were not successfully completed by 

students. In Figure 5.13, it can also be seen that no student used diagrams to assist 

percent problem solving (items 3), and only a minority of students could successfully 

express percent problem solutions in words (item 4). Posttest results indicate greater 

facility in solving percent problems and performing percent equations after instruction, 

with over two-thirds of the students successfully performing percent calculations of all 

three types (item la-c), and also successfully solving percent problems (items 2a-c) on 

the posttest. The majority of students used diagrams to solve percent problems (item 

3), and could express solutions to percent problems in words (item 4). Facility in 

solving multistep word problems also showed some improvement (items 5a-d). 

Analysis of students' solutions to percent calculations and problem solving 

items on the pre- and posttests indicate change in strategy, similar to results for 

Groups 1 and 2. On the pretest, Group 3 students used decimal multiplication or the 

calculator sequence for Type I problems, and the long division procedure for Type II 

problems. Of the students who successfully performed Type III problems, answers 

only were given, thus categorisation of solution strategy was unavailable. Some 

students also gave answers only for each of the three types of percent problems; some 

solutions were correct and some solutions were incorrect. On the posttest, all students 

who revealed their solution procedure used the proportional number line method. Of 

the students who utilised this method, but gave an incorrect response, errors could be 

seen to emerge from incorrect placement of numbers on the number line. Of the 

students who successfully attempted all three types of percent calculations and word 

problems on the pretest, posttest results showed use of the proportion equation as their 

solution strategy. Thus, as with Groups 1 and 2, there was a greater use of the 

proportional number line method for percent calculation and problem solving by all 

students as a result of instruction, and utilisation of this strategy led to successful task 

performance. 

As stated in section 4.5, a delayed posttest was administered to students 

approximately 8 weeks after instruction. In Table 5.8, results for this test are 

displayed, by individual item. From Table 5.8, it can be seen that students were still a 

showing high level of mastery in percent calculations (items 3a-c) and in solving 

percent problems (items 4a-c). Procedures used were predominantly the proportional 

number line method, or simply the proportion equation. Performance on all items 

relating to additive and multiplicative language of percent increase (item 2, 5a and 5b) 

was minimal, with scores of29%, 10% and 14% for items 2, 5a and 5b respectively. 
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Interpreting the subtractive language of percent discount (item 1) was generally well 

handled by students (82% ). 

Table 5.8 

Delayed Posttest Means(%) on Individual Test Items for Group 3 Students 

Item 

Score 82 

% 

2 

29 

% 

3a 

86 

% 

3b 

71 

% 

3c 

71 

% 

4a 

93 

% 

4b 

86 

% 

4c 

71 

% 

5a 

10 

% 

5b 

14 

% 

Students' scores on individual items of the delayed posttest are graphically 

displayed in Figure 5.14, and serve to highlight the particular items with which 

students experienced difficulty. 

100% 

80% 

60% 

40% 

20% 

0% 
C\1 co .0 

lO lO 

Figure 5.14. Graphical representation of Group 3 students' delayed posttest 

means(%) by item. 

5. 3. 3 Planned teaching episodes 

The sequence of six teaching episodes implemented with Group 3 was the 

same as implemented with Group 2. In Table 5.9 each episode, and the number of 

lessons required for implementation with Group 3 is presented. The table provides the 

number and title of each teaching episode, together with the number of actual lessons 

taken for implementation, and the chapter section in which discussion of each episode 

appears. 

As can be seen from Table 5. 9, the order of presentation of the teaching 

episodes is the same as with Group 2. Upon reflection of implementation with Group 

2, the sequence of episodes was rated as satisfactory and thus change of order was 

perceived as unnecessary. A total of 15 class periods was spent with Group 3. Nine 

lessons were directly on the topic of percent, with a further 2 lessons used for 

metacognitive training. Pre- and posttesting occupied 2 days prior to and immediately 

following implementation of the unit of work. 
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Table 5.9 

Plan ofTeaching Episodes for Group 3 

Episode Topic 

1 Metacognitive training 

2 Concept of percent 

3 Fraction equivalence and the Rule 

of Three 

4 Interpreting and solving percent 

problems 

5 Percent, common and decimal 

fraction equivalence 

6 The language of percent increase 

and decrease 

5 . 3. 4 Episode 1: Metacognitive training 

Plan 

Lessons Location 

2 5.3.4 

1 5.3.5 

1 5.3.6 

3 5.3.7 

2 5.3.8 

2 5.3.9 

For this Group, the metacognitive training episode was planned to be 

implemented as described with Group 1 (see section 5.1.4) with the inclusion of the 

additional activities for recognition and recall memory as used with Group 2 (see 

section 5.2.4). It was planned that attention, memory and recall memory strategies 

would be presented in the first lesson, and natural and accelerated forgetting, proactive 

inhibition (PI), and the 0/N strategy presented in the second lesson. 

Action 

The metacognitive training episode was implemented as planned. Attention 

and memory were discussed in the first lesson and the LSCWCh strategy 

demonstrated. Forgetting and PI were discussed in the second lesson and the 0/N 

strategy demonstrated. At the end of both lessons in this episode, the students were 

instructed to write a diary entry in relation to this lesson for homework. 

Observation 

The students remained attentive and appeared interested in the material 

presented in the episode. The students remained attentive during presentation of the 

LSCWCh strategy, with several students stating that they knew of the strategy. One 

student stated that she had used the strategy before, although not in the totally 

prescriptive manner described, but that she now understood the need for all the steps 

to control memory. The Colour Card activity was readily completed by the students, 

with several students commenting that the activity had been "fun", but really 
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"annoying" due to the interference felt. The 0/N strategy was demonstrated with a 

student volunteer and her misspelling of the word "seperate" (separate). After the 

lesson, several students commented as they left the room, that the lesson had been 

"fun". 

The classroom-teacher commented that she had enjoyed both lessons in the 

episode, and that she had learnt a lot about her brain as a result. She commented that 

the students appeared very interested in the lessons. She also commented that, when 

the students were informed that they were in control of their attention, she noted that 

there appeared to be a visible, startled, reaction by the students. 

The students' diary entries indicated that, of the first lesson, the key idea for 

the lesson, that the brain is designed to forget, was well noted by the students. 

Students' diary entries also confirmed the classroom-teacher's and teacher-researcher's 

perception that the students found the metacognitive training episode extremely 

interesting and useful. The following comments, taken from students' diaries, are 

categorised as key points from the episode, or general statements about the episode. 

The following comments are student's interpretations of the key points of the 

metacognitive training episode: 

"One thing I learned in maths today was that our brains are made to forget. 

Another thing that I learned was that if you go over something 5 times that 

thing will go into auto recall. " 

"I learnt that paying attention requires effort. " 

"There are many types of remembering, but you have to practise things 5 

times before they get into the part of our brain where we want them to get into 

which is called the automatic recall memory. We want them there because 

then we canjust bring it up when ever we want, and won't have to think too 

much." 

"/found out that recognition memory happens naturally without effort. 

"I found out that learning is easy but paying attention is hard. " 

"This lesson has actually taught me more about the brain and how it works. It 

has now made me realise how my attention gets distracted very easy. I was 

pleased that I found out about how my attention flies away. " 

"One thing I learnt today in maths was about accelerated forgetting is natural 

and I learnt there is a way to learn something again which I had forgot 

before." 

"Today I learnt how to relearn something if I have learnt it incorrectly." 

"One sort of forgetting is Accelerated Forgetting. Accelerated forgetting is 

natural and it shows the creativity in our minds because say if we forget how 

to spell a word but then we come up with our own and no-one corrects well 

we keep on spelling it that way. " 
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"One thing I learned in maths today was how to reprogram an old way of 

doing something (e.g. an incorrect way of spelling something) to a correct 

way of doing something. The process is called "old way, new way". I think 

I will use it a lot. It will be handy. " 

"One thing I learned in maths today was about the two types of forgetting. I 

found out that there are two types of forgetting, which I didn't know before 

and how to take over accelerated forgetting and improve on it. " 

The following comments are students' statements of the episode in general: 

"In maths today we learnt that our brain is designed to forget. That is good, -

that means my brain is working! I was paying attention because the lesson 

was fun and interesting. " 

"I learned that you could train your brain to learn things. I thought you either 

were smart or not smart. I think I am getting better teaching my brain to take 

things in better." 

"I was pleased that it was such a different and exciting lesson, and although it 

doesn't seem like I was learning, I was actually learning and having fun at the 

same time. " 

"Today's maths lesson was more interesting than most because we did 

something that I like. " 

"It was really interesting learning about the memory. " 

"!felt I have learnt something during our maths lesson yesterday. For I learnt 

to listen and concentrate to other people. " 

"I enjoyed this lesson and I understood it fully." 

Reflection 

This episode, implemented as planned, was perceived as successful. The 

lesson plan appeared to enable the key points of the episode to be presented in a 

flowing manner, with activities and discussion providing a balance between "listening" 

and "doing" for the students. Delivery of this episode did not meet with the resistance 

observed with Groups 1 and 2. Although the metacognitive training did not provide a 

mathematical context for the memory strategies, the students paid attention during the 

episode. Convincing students of the need for strategic behaviour in the learning 

situation was a simpler task for this group than with Groups 1 and 2. Students' diary 

entries indicated that the key points of CMP were well-noted. It appears that, for 

successful presentation of the metacognitive training a relatively controlled 

environment is required, particularly with uninterrupted amounts of time for successful 

implementation. 
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5. 3. 5 Episode 2: Concept of percent 

Plan 

Upon reflection of this episode with Group 1 and 2 students, this episode was 

planned to stimulate students' knowledge of percent in the real world in a similar 

fashion to the manner with Groups 1 and 2, but in a more structured way. A large 

worksheet/poster was printed, containing examples of percent taken from a 

newspaper. To begin the lesson, it was planned that brainstorming percent notions 

would be done with the whole class. In groups of four, the students would then be 

directed to discuss the uses of percent presented on the worksheet, and write an 

explanation underneath. The lesson was for the purpose of providing students with 

examples of percent used to describe discounts, profits, data, interest rates. 

Action 

The lesson began with brainstorming of percent notions which students 

copied into their books as they were written on the board. The worksheet was 

distributed to students, and the task explained. The students finished the task before 

the end of the lesson. The students' work was collected. The teacher conducted a 

discussion on percent language used in the real world using a pre-prepared OHT (see 

Appendix J) on which notions, such as 110% effort, 75% full and 25% empty, were 

displayed. The students were asked to use the 0/N strategy at home on a spelling 

word for homework. 

Observation 

The brainstorming session was completed quickly with the teacher-researcher 

writing many percent notions on the board similar to those presented by Group 1 and 2 

students. The students were informed of the activity and moved into groups quickly 

and quietly. The students discussed each example as directed, and the teacher­

researcher visited each group of students, listening to students' discussions, and 

encouraging students to give better explanations. For example, one advertisement for 

home units stated that 66% of units had been sold. The teacher asked students what 

percent were unsold. After group discussion, the students wrote an explanation which 

described the complement notion of percent on the sheet. One group of students asked 

the teacher-researcher to explain bankcard interest, indicating that this "real world" 

application of percent was not "real" to the world of all Year 8 students. 

The class discussion on percent language used in the real world occupied 

approximately ten minutes. The students were attentive during the discussion, and 

many students volunteered other examples of similar percent expressions for each 

expression presented. This activity, although impromptu, appeared to provide a good 

stimulus for generating students' thinking on the language of percent used in our 
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world. 

Reflection 

The lesson was rated as useful in providing the teacher-researcher opportunity 

to talk to students, which enabled the teacher-researcher to build students' 

understanding of the multifaceted nature of percent in various situations. The group 

activity enabled students to talk about percent notions, and the fact that all groups 

remained on task suggested that students need to be familiar with group activities in 

order for this instructional strategy to promote learning. The Group 3 students were 

more familiar with group work that students in Groups 1 and 2. 

how percent is used in our society (e.g., use of the expression 110% effort). 

Because of students' interest and contributions in this discussion, it appeared that 

structuring this into an introductory lesson on the concept of percent would be useful. 

5. 3. 6 Episode 3: Fraction equivalence and the Rule of Three 

Plan 

This lesson on fraction equivalence and the Rule of Three was planned to 

follow the format used for Group 2 in Episode 3 (see 5.2.6), but without reference to 

the diagrammatic representation of equivalent fractions. 

Action 

This lesson was implemented as planned. 

Observation 

All students remained on task throughout the lesson. The lesson appeared to 

progress at a steady pace. All students completed the exercises, and appeared to enjoy 

the immediate feedback and success in completing such exercises. The students' diary 

entries also confmned the teacher-researcher's perception of the productive nature of 

the lesson. The following comments on this lesson were taken from students' diaries: 

"One thing I learnt was how to do equivalent fractions an easier way. " 

"One thing I learnt in maths today was how to do equivalent fractions on the 

calculator. It was very helpful. " 

"One thing I learned in maths today was how to use the calculator to find 

equivalent fractions. I was pleased that I could do that exercise. " 

"I was pleased that I leamt how to work out the answer of missing fractions 

because it is a quick and easy way. We did a couple of these fractions so I 

now know how to do them properly all the time. " 

"Today in maths we learnt more about equivalent fractions and a quick way to 

work them out. I was pleased that I already knew how to do this well. " 
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Reflection 

As with Groups 1 and 2, this lesson was perceived as successful. The lesson 

appeared less complicated without reference to diagrammatic representation of 

equivalent fractions; the students appeared familiar and comfortable with the symbolic 

procedure. The "skill-drill" nature of the episode appeared to be enjoyed by the 

students, and one which appeared to contribute to the rapid acquisition, and correct 

use, of this skill. Lesson design, and planning for success, appeared to ensure this 

was a successful lesson. 

5. 3. 7 Episode 4: Interpreting and solving percent application problems 

Plan 

As with this episode for Groups 1 and 2, the plan for this episode was to 

orientate students to the three elements of percent word problems, and to provide skill 

consolidation and practice in solving percent word problems. Taking account of the 

reflection upon this episode with Groups 1 and 2, that students required further time 

for consolidation of the technique, this episode was planned to span 3 lessons. For 

the first lesson, the plan for interpreting and solving percent problems was to follow 

that used with Group 2 in Episode 4 (see section 5.2.7), except that Smarties would 

not be used to represent part, whole, percent, elements of the problems. It was 

planned that students themselves would be used to demonstrate the elements of percent 

problems. For example, 8 students would be asked to stand at the front of the room 

and the teacher-researcher would give such directions as: 

"50% of the group move towards the door, how many is that?" 

"4 of the group move, what percent is that?" 

"100% of the group move, how many is that?" 

The purpose of this activity was to familiarise students with the terms part, whole, 

percent, reinforcing that the whole amount is 100%, and a part of the whole amount is 

a percent of the whole. To assist students develop skill in identifying the elements 

contained in percent problems, a series of percent problems was prepared on an 

overhead transparency (OHT), accompanied by a student worksheet in which each 

question was numbered, and the terms: part_, whole_, percent_, listed. As 

each percent problem was displayed on the OHT, students would fill in their 

worksheet, stating the part, whole and percent values given in each problem. (The 

worksheet of percent problems and accompanying student sheet is located are located 

in appendix K.) For representing and solving percent problems on the number line, 

the lesson was planned to follow steps 5 to 9 in the sequence described in Episode 4 

with Group 2 (see section 5.2.7). 

The second lesson was planned to provide students with the opportunity to 
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practise interpreting and solving percent word problems by completing the structured 

worksheet (Appendix D) distributed in lesson 1, and beginning the second worksheet 

(Appendix E). Students would be provided with instruction on how to write percent 

word problems as percent equations in the form: p% of p = p at the beginning of 

lesson 2 so that they could formally complete that task on the first worksheet. 

Students would be given instruction on how to write story problems for percent 

equations at the beginning of the lesson 3. 

Action 

All lessons proceeded as planned. For the second lesson, the students' usual 

mathematics classroom was being used by another class for examinations, 

necessitating a room change for these students, and 7 minutes less for the lesson. 

Instruction on how to write percent word problems as percent equations in the form: 

~% of~ = ~ was presented. The second worksheet was available for students when 

they completed the first worksheet. In the third lesson, students continued to work on 

the problems presented on the worksheets. Four students completed all worksheets, 

and were provided with activities involving percent calculations on more investigative 

problems. 

Observation 

At the beginning of the first lesson, the majority of seated students raised their 

hands to answer such questions as: "Is 50% the part or the whole?" All students 

appeared to be readily able to interpret percent situations in terms of the elements: part, 

whole, percent. All students correctly identified the elements of the percent problems 

as they were presented on the OHT. After students were provided with a 

demonstration of the number-line procedure for solving percent problems, the 

worksheet was distributed, and the students began working quietly. The teacher­

researcher checked all students' work during class, offering individual help to students 

still experiencing difficulty. The students appeared to readily adopt the proportional 

number line method for solving percent problems. Students' diary entries tended to 

confirm the teacher-researcher's positive perceptions of the lesson. The diary entries 

also provided insight into students' reactions to the proportional number line method. 

The following comments were taken from students' diary entries, and provide 

evidence that the students found the proportional number line method simple and easy 

to use; that they found the worksheets useful; and that they enjoyed the speed with 

which they could solve percent problems using the number line method: 

"One thing I learnt in maths today was how to work out percent problems. I 

found out that part means o/o, well they mean the same thing. The new way 

we learnt to do percent problems is a lot easier than the way we learnt last 
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year, so now I can do %problems a lot easier and quicker. " 

"I think I'm getting better at percentages. I understand them better and I'm 

getting quicker at them. Using the new way is getting easier. The classes are 

interesting as I've haven't leamt% before." 

"Today I learnt how to do even more %percents. I'm really happy I'm 

getting much better at percent, and I feel much more confident. " 

"I am pleased that I have leamt more about percentages. I understand them 

more now and can work them out faster. After practising how to work 

percentages out so much the way is stuck in my head and I am sure I will use 

the ways." 

"One thing I learned today was an easier way of finding the percentage of 

something. I have used that way instead of using my own way because it is 

so easy." 

"One thing I enjoyed in maths today was doing percent sheets. I think I am 

getting better at percent because it is easier now. " 

"Percents are getting easier, and I can understand better now. That 

worksheet really helped. " 

"Percentage is so easy. I really enjoy it. I am pleased we are doing 

percentage because before I didn't have a clue what I was talking about but 

now it has become a lot clearer. " 

"I feel that I have leamt heaps more from when I first began percentage. I feel 

100% more confident in my maths." 

"One thing I leamed in maths today was how to work out percentage fractions 

by using a new way. I think I am getting better at percent and working out 

percentage problems. " 

"I was pleased that I was doing fractions and percentages today because I am 

not very good with percentage. I was taught percentages last year in grade 7 

just a little but I have forgotten. I have a little idea on how to do them. As 

you can probably see I'm not very good in maths." 

One student's diary entry indicates that this student found this lesson 

confusing. The following extract presents the student's response, and the teacher­

researcher's written reply, together with the student's response after the following 

lesson: 

"In maths today we have begun leaming about percentages. I find it pretty 

hard at the moment because we haven't been retaught how to do percentage 

yet, and we are just getting sums to do. We were given a sheet each and it 

had many problems to solve on it which most of I didn't understand." 

"DearM 
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Please let me know if it is still too hard." 

"No, I'm not still having trouble with percent. The new way you showed us 

works really well for me- I think I'll remember it really well it has helped me 

a lot. I'm now quite sure of percent." 

For the second lesson, the students worked steadily at their own pace. This 

lesson was perceived as useful to the students for consolidation of the technique. The 

students' responses in their diaries appeared to confirm that many students were 

gaining confidence in solving percent problems. The following comments were taken 

from students' diaries: 

"I think I am getting better at percent because I doing it easier and find it 

easy." 

"Today we did more practise on our new way of doing percentages. We also 

learnt how to do percent equations. Percent equations is just using part, 

whole, %. " 

"Today was a very good revision lesson for those percent questions. Going 

over and over different types of questions like that has made me more 

confident in doing those types of problems. I think I am getting better at 

percent questions and I am pleased that I have learnt this quick and efficient 

way. Thank you very much. " 

''I'm really confident with percent now so this has helped." 

"I think I am getting better at percentage now because I find it easier to work 

them out with the number line. " 

In third lesson, the students continued to work steadily at their own pace, as 

with lesson 1 and 2. Students' diary entries indicated that this lesson was useful to the 

students. The following comments were taken from students' diaries: 

"One thing I learned was how to write stories to go with equations. I was 

pleased that I could finish both sheets and that I knew what I was doing. " 

"Today in maths we learnt how to write percentage problem sentences." 

Reflection 

This episode, presented as a sequence of three lessons, was perceived as 

successful, providing students with sufficient time to develop and consolidate skills in 

interpreting and solving percent problems and in developing confidence. The 

successful nature of this episode can be seen as due to effective lesson design, together 

with students taking control of their learning by paying attention during instruction, 

and in practising problem solving skills to mastery. 
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5. 3. 8 Episode 5: Percent, common and decimal fraction equivalence 

Plan 

This teaching episode on percent, common and decimal fraction equivalence 

was planned to follow the format used in the teacher-directed manner with Group 2 in 

Episode 5 (see section 5.2.8), with the construction of the number line taking place in 

the first lesson, and the worksheet for practising percent, decimal and fraction 

conversions being implemented in the second lesson. 

Action 

The episode proceeded as planned. 

Observation 

The students constructed the number line in an orderly fashion. Some 

students began working on the exercise sheet during the first lesson as they had 

completed construction of their number line. During the second lesson, with all 

students working on the worksheet, the teacher-researcher provided individual 

assistance to students as required. Many students completed the worksheet; some 

students experienced difficulty with some of the exercises, especially in applying 

percent to fraction conversions for benchmarking and mental computation. 

Reflection 

As with Group 2, this episode appeared to be a useful practice session for 

students who already were proficient in percent, common and decimal fraction 

conversions, but unsuccessful for promoting conversions and benchmarking skills in 

students with limited knowledge of such. The lesson therefore was rated once again 

as between successful and unsuccessful. The episode was also perceived as "out of 

place" in the teaching sequence, and this perception was confmned by the classroom 

teacher. The classroom teacher's observations of the episode were that the students 

had not achieved as much during this episode in comparison to the previous episode. 

She also stated that she thought the students did not enjoy this episode as much as they 

had when working on percent problems in the previous episode. 

5. 3. 9 Episode 6: Language of percent increase and decrease 

Plan 

This teaching episode on the language of percent increase and decrease, was 

planned to take 2 lessons, following the format used with Group 2 in Episode 6 (see 

section 5.2.9), with the language of percent increase the focus of the first lesson, and 

the language of percent decrease and the worksheet the focus of the second lesson. 
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Action 

The episode was implemented as planned. 

Observation 

On the multiple choice item presented to students at the beginning of the 

lesson, the majority of students selected the incorrect response. During the course of 

the first lesson, many students altered their response to this item. The jellybeans 

appeared to be well-received, and a strong motivational force. The students worked 

cooperatively in the group activity, with the activity generating a lot of discussion on 

percent increase and decrease situations. The students' diary responses indicated that 

the pacing of the episode was suitable, and that the jellybeans were well-enjoyed. The 

following comments were taken from students' diaries: 

"One thing I learned in maths today was how to do increase percent problems. 

I won 6 jellybeans because I answered a question right. We also wrote down 

some words that mean to increase and decrease so we can use them in the 

sentences we have to write. We never learnt how to do increase/decrease % 

problems last year so this is something new to me, but it is not that hard so 

that is good. " 

"I learnt a lot in maths class today. I now know how to write 3 plain and 

simple sentences which explain about percent. I even got some jelly beans 

because I knew the answer to one of the questions and I finished first. I 

really enjoyed class today." 

"Today I learnt quite a lot about increase and decrease. I was given an 

excellent understanding of how to draw a diagram and write sentences to 

show an increase or decrease in something from the original amount. " 

"I was having a bit of trouble with increase and decrease but I now 

understand them a lot better using the new way. " 

"Today we learnt a new sort of percentage problem. And how to put it out. 

We also learnt some more words for increase and decrease. These problems 

are written in two ways. The first way is to say how much it went up by and 

the second is to look at it from the whole." 

"I think I am getting better at doing increase problems and doing diagrams. 

One thing I learned in maths today were other words that you could use 

instead of increase and decrease I really like doing the problems and they are 

fun." 

Reflection 

This episode was evaluated as successful in familiarising students' with the 

varying language used in percent increase and decrease situations. The successful 

197 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



nature of the episode appears to be attributable to both careful lesson design and 

sustaining student interest and attention. Students' diary entries support the successful 

rating of this episode. 

5.3.10 Reflection upon implementation of teaching episodes 

Reflection upon implementation of this unit of work was perceived as highly 

successful, with only one episode in the sequence rated as less than successful. In 

Table 5.10, the success rating of each episode is presented. 

Presentation of the metacognitive training was perceived as successful, and 

appeared to provide a common language which the teacher could use to focus students' 

attention upon the tasks at hand. The key points noted in student diaries upon 

completion of the metacognitive training episode indicated that the purposes of the 

episode were achieved. The students were taught the "art of memory" (Norman, 

1980); they were provided with explicit instruction in metacognitive strategies for 

improved task performance (Cole & Chan, 1990); they were aware that they were in 

control of the amount of effort they expended in learning (Weinstein & Mayer, 1986). 

Students' diary entries also showed evidence of the use of metacognitive related 

language as a result of this section of the teaching sequence with students describing 

things as "old ways", "own ways" and "new ways"., The students' own spontaneous 

differentiation between their old ways and new ways indicated that they were thinking 

about their own learning in a language shared with the teacher-researcher. The 

mediating role of the teacher in linking students' prior knowledge and new knowledge 

through language is a key factor in cognitive apprenticeship teaching models (Reid & 

Stone, 1991). 

Table 5.10 

Success rating of teaching episodes for Group 3 

Episode Topic 

1 Metacognitive training 

2 Concept of percent 

3 Fraction equivalence and the Rule of Three 

4 Interpreting and solving percent problems 

5 Percent, common and decimal fraction 

equivalence 

6 The language of percent increase and decrease 
* S = successful 

U = unsuccessful 
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The concept of percent episode was rated as successful in that it enabled the 

teacher to focus directly on various concepts of percent used in the real world, and to 

interact with students in small group situations. The inclusion of the discussion of the 

language of percent used in the real world appeared valuable with many students 

contributing their ideas. This additional activity within the lesson supports the 

suggestion that instruction which capitalises on students' intuitive notions of percent 

promotes understanding of percent (Glatzer, 1984). 

Episodes 3, 4 and 6 which directly related to proportional number line 

method, were rated as successful. The lessons were structured in accordance with 

successful teaching principles, in that: the lessons were designed to enable students to 

experience success whilst avoiding situations that lead to failure (Cole & Chan, 1990); 

opportunity was provided to enable successful task performance so that positive 

attitudes could be promoted (Mercer & Miller, 1992); opportunity to practice skills to 

automaticity was provided (Derry, 1990); automaticity of skill led to successful 

problem solving performance through limiting cognitive load (Resnick & Ford, 1984; 

Sweller, 1988, 1989, 1992). The lessons in these episodes also can be seen to align 

the ten components of effective instruction (Mercer & Miller, 1992 - see section 

3.4.2), particularly in relation to monitoring students' progress on tasks, providing 

immediate feedback and provision of systematic and explicit instruction based on 

careful planning and lesson design. The episodes were also rated as successful due to 

the students' own decisions to apply effort, and to enable themselves sufficient 

opportunity to practice skills to automatic level (as per Anderson, 1985). The 

students' diary entries show their understanding of the need to practise new skills to 

take control of forgetting. The metacognitive training appears to have had a positive 

influence on students' effort applied during these episodes. 

The episode on conversions between percent, fractions and decimals (episode 

5) was rated as midway between satisfactory and unsatisfactory. Similar to reflections 

upon this episode with Group 1 and 2 students, this episode appeared out-of-context, 

and did not appear useful in building students' percent knowledge, other than to jog 

memories of conversion learnt in prior mathematics lessons. 

In this teaching experiment, the entire teaching sequence was implemented as 

planned. Teacher factors and student metacognitive factors appeared to harmonise 

with Group 3. Teacher factors which influenced successful implementation were that 

lesson design and sequence was appropriate, variety in instruction assisted students to 

maintain attention, and opportunities were given to enable students to experience 

success. Student metacognitive factors which influenced successful lesson 

implementation included students' application of effort to maintain attention, utilisation 

of goal-directed behaviour, practise of skill to mastery. Teacher and student factors in 

combination appeared to minimise the influence of other factors of time, school 
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environment and curriculum issues. Due to applied student effort and streamlined 

instruction, sufficient time was available to implement all teaching episodes and to 

provide students with more opportunity to apply and consolidate skills. Student 

metacognitive factors also controlled school context factors, in that disruptions to 

normal school routine (for example, a room change) did not disrupt implementation of 

instruction. 

Of implementation of the teaching sequence, the classroom-teacher expressed 

interest in the proportional number line method trialled, and stated that the students had 

learnt a lot in a short time. She stated that the metacognitive program was an extremely 

valuable experience for the students, and noted that many students adopted the 

language of the program (such as old way, paying attention, forgetful brain, self­

control) throughout the unit. Of the percent unit, she felt that many students had 

achieved a good understanding of percent, and were much more confident in their 

approach to mathematics. She expressed her interest in the Rule of Three method as a 

means for solving all percent calculations. She acknowledged that there is very little 

time available to develop the concept of percent as proportion, as well as provide 

students with opportunities to practise solving percent problems, and to develop an 

understanding of percent increase. Of the percent increase procedure, the teacher 

stated that, if there had been opportunity for the students to practise solving percent 

increase problems, the notion of percent increase may have been consolidated. She 

stated, however, that she felt the diagrammatic representation of percent increase 

situations was a useful visual image. 

5.3.11 Reflection upon pre-, post- and delayed posttests and 

instruction 

Implementation of this unit with Group 3 was rated as successful. Pre and 

posttest scores also indicate an overall successful performance on the posttest (76%) 

compared to the pretest (44%). The successful nature of implementation of the unit of 

work perceived by the teacher-researcher, and the classroom teacher, appears to be 

reflected in the posttest scores. Similar to test scores for Group 2, Group 3 test scores 

on each section of the test show improved performance after instruction. Students' 

proficiency in conversions and benchmarking (Section II) increased from 42% on the 

pretest to 75% on the posttest. The teaching episode directly related to this topic was 

rated as between unsuccessful and successful, and, similarly to Group 2, test scores 

can be interpreted as reflective of this rating. Implementation of the episode was seen 

as unsuccessful for helping students develop understanding of equivalence and 

therefore skill in percent conversions and benchmarking, but successful in providing 

students who already possess such skills the opportunity to practise those skills. 

Students' test scores on intuitive and principled-conceptual items of the test (Section I) 
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improved as a result of instruction, with pretest scores of 72% and posttest scores of 

86%. Students' performance on items relating to the use of percent increase language 

changed in a positive direction on the posttest, with more students successfully 

interpreting the language of percent increase (see Figure 5.11 in section 5.3.2). The 

episode on the language of percent increase was rated as successful, and test scores 

appear to align with this perception. The most dramatic increase in performance on the 

posttest for Group 3 was in Section III (percent calculations and problem solving) with 

a posttest score of 67% compared to a pretest score of 19%. The proportional number 

line method was the predominant strategy used by students on the posttest. The 

episodes directly relating to developing this method as a key process were rated as 

successful, and test results appear to support the perceived successful nature of these 

episodes. Results on this section of the test are similar to those of Group 2 students. 

Reflection upon delayed posttest scores and instruction indicate that the 

successful rating of implementation of the teaching sequence with Group 3 students is 

reflected in the delayed posttest results. The primary focus of instruction was to assist 

students become proficient in percent calculations and percent problem solving. 

Delayed posttest results indicate that students have retained this knowledge and 

continued to use the proportional number line method as a key process. The delayed 

posttest scores do indicate decay of knowledge relating to percent increase. Even 

though instruction on percent increase within this unit was rated as successful, and 

posttest scores (Section I - intuitive, principled-conceptual percent knowledge) show 

greater positive performance on items relating to percent increase, delayed posttest 

results indicate that the influence of instruction upon retention of this knowledge was 

not permanent. 

5.3.12 Directions for Teaching Experiment 4 

In Teaching Experiment 3, the use of 0/N in the classroom upon a specific 

mathematical difficulty did not occur. In Teaching Experiments 1 and 2, full 

implementation of the metacognitive training episode did not occur, and thus 0/N was 

not discussed with the students. In Teaching Experiment 3, the 0/N strategy was 

presented to the students, but the tightness of the timeframe did not allow an 0/N 

lesson to be trialled. For Group 4 students, percent, decimal and fraction conversions 

had already been covered in class, thus this episode within the unit of work was not 

necessary. It was decided to implement the unit of work with Group 4 students to 

compare results with Group 3 students, and to trial 0/N in a whole class situation. 

201 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



5. 4 Teaching Experiment 4 
5. 4.1 Overview of report on Teaching Experiment 4 

The results of Teaching Experiment 4 are reported in five sections. The pre-, 

post- and delayed posttest results are presented in section 5.4.2. In section 5.4.3, an 

overview of the teaching sequence comprising six teaching episodes is presented, with 

implementation of the teaching episodes described in section 5.4.4. Implementation of 

0/N is described in section 5.4.5. Reflection upon implementation of the teaching 

episodes is presented in section 5.4.6, with reflection upon pre-, post and delayed 

posttests and instruction presented in section 5.4.7. 

5. 4. 2 Pre-, post-, and delayed posttest results 

For Group 4 students, only two parts of the Percent Knowledge Test were 

utilised. Section II of the Percent Knowledge Test was deleted, due to the deletion of 

the episode on decimal, fraction and percent conversions. Tests scores in total and on 

Section I (intuitive, principled-conceptual knowledge) and Section III (percent 

calculations and problem solving) for Group 4 are presented in Table 5.11. 

Table 5.11 

Pre- and Posttest Means (%)for Group 4 Students on the Percent Knowledge Test in 

Total and for Section I and Section III 

Pretest 

Posttest 

Components of the Percent Knowledge Test 

Total Section I Section II 

44% 

84% 

75% 

90% 

NIA 

NIA 

Section III 

12% 

77% 

From Table 5.11, it can be seen that Group 4 test scores overall and within 

each section increased, with a dramatic positive change in posttest scores for Section 

III (percent calculations and problem solving). From Table 5.11, it can be seen that, 

like Groups 1, 2 and 3 students, Group 4 students' intuitive and principled-conceptual 

percent knowledge, prior to instruction, was much greater than their percent 

calculation and problem solving skills. Graphical representation of the pre- and 

posttest scores are presented in Figure 5.15 highlighting the change in pre- and 

posttest scores in total and in the two test sections. 
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Figure 5.15 Graphical representation of Group 4 students' pre- and posttest 

means (%) in total, and in each test section. 

As for Groups 1, 2, and 3, Group 4 students' test results were analysed for 

diagnostic purposes. Pre- and posttests were scored to identify specific items to which 

students responded incorrectly. Thus, for each section of the pre- and posttest, the 

number of students incorrectly responding to individual items, was tallied. 

Representation of the number of incorrect responses to each item on Section I 

(intuitive, principled-conceptual percent knowledge) and Section III (percent 

calculations and problem solving) are presented in Figures 5.16 and 5.17 respectively. 

30 
28 
26 • pre 

24 
D post 22 

20 
1 8 
1 6 
1 4 
1 2 
1 0 

8 
6 
4 
2 
0 

Figure 5.16. Group 4 students pretest (n=23) and posttest (n=29) incorrect 

scores on Section I (intuitive, principled-conceptual percent knowledge) of the 

Percent Knowledge Test. Graph indicates number of students incorrectly 

responding to particular items. 
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In Figure 5 .16, it can be seen that, on the Pretest, Group 4 students 

experienced most difficulty with items 7a-c, which relate to interpretation of the 

multiplicative and additive language of percent increase. Posttest scores indicate 

positive change in performance after instruction, but also indicates that students 

continued to experience difficulty in interpreting the additive and multiplicative 

language of percent increase situations (items 6c and 7 c). 

Figure 5.17 indicates that, Section III of the pretest (percent calculations and 

problem solving) was not well-attempted by the students. 

30 
28 
26 
24 
22 
20 
1 8 

1 6 
1 4 
1 2 
1 0 

8 
6 
4 
2 
0 

-

D. 0, n D. o. D 

• pre 

D post 

Figure 5.17. Group 4 students' pretest (n=23) and posttest (n=29) incorrect 

scores on Section III (percent calculations and problem solving) of the Percent 

Knowledge Test. Graph indicates number of students incorrectly responding 

to particular items. 

From Figure 5.17, it can be seen that, on the pretest, some students could successfully 

perform calculations of percent equations and solve percent problems, but mainly 

those of Type I (items la and 2a). Type II and Type III percent equations (items 1b 

and 1c), and percent problems (items 2b-c) were not successfully completed by 

students. In Figure 5.17, it can also be seen that no student used diagrams to assist 

percent problem solving (item 3), and only a minority of students could successfully 

express percent problem solutions in words (item 4). Posttest results indicate greater 

facility in solving percent problems and performing percent equations after instruction. 

The majority of Group 4 students successfully performed percent calculations of all 
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three types (items la-c), and also successfully solved percent problems (items 2a-c) on 

the posttest. All Group 4 students, except 1, could use diagrams to solve percent 

problems (item 3), and all students except 2 could express soltuions to percent 

problems in words (item 4). Facility in solving multistep word problems showed 

improvement (item 5a-d). 

As with Groups 1, 2 and 3, there was a change of strategy employed by 

Group 4 students in solving percent calculations and problems. On the pretest, 

students utilised a variety of procedures for successfully solving Type I problems, 

including decimal multiplication, use of the calculator percent button, and fraction 

multiplication (e.g., 15% of 24 is? = 15
/ 100 x 21

/ 1 = 3.6). For Type II problems, one 

student wrote the solution in approximate terms (e.g., 27 is what percent of 350 = 
approximately 7.7); other answers showed no working and thus solution strategy 

could not be determined. For the majority of students, no attempt was made on any of 

the items, and thus performance was rated as unsuccessful. Other unsuccessful 

responses showed an incorrect fraction procedure for a Type II equation (27 is what 

percent of 350 = 27%/100 x 350
/ 1); an incorrect combination of procedures for a Type III 

problem (53% of 65 = 3% of 65 = 1.95; (65 x 2) + 1.95 = 131.95). On the posttest, 

successful performance on all three types of problems carne from students using the 

proportional number line method or from directly using a proportion equation. 

Unsuccessful performance carne from incorrect placement of numbers on the number 

line, or incorrect placement of numbers directly in the proportion equation. Of the two 

students who successfully completed all three types of percent calculations and 

problems on the pretest, they used a proportion equation on the posttest. Thus, their 

posttest results showed adoption of the number line method over their own other 

methods (which were difficult to determine as they responded to these items on the 

pretest with an answer only, and no working). 

Delayed posttest scores for Group 4 are presented in Table 5.12 where 

student performance on every item of the test is displayed. 

Table 5.12 

Delayed Posttest Means(%) on Individual Test Items for Group 4 Students 

Item 2 3a 3b 3c 4a 4b 4c Sa 5b 

Score 100 96 100 92 92 100 96 92 46 29 

% % % % % % % % % % 

From Table 5.12, it can be seen that test performance was high for all items, 

except items 5a and 5b. Students' proficiency in percent calculations (items 3a-c) and 

interpreting and solving percent problems (items 4a-c) remained high after a delay of 8 
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weeks after instruction. Solution strategy was the proportional number line method or 

proportion equation without the number line representation. Group 4 students 

performed well on items 1 and 2, which related to interpreting the language of percent 

increase and decrease (100% and 96% proficiency respectively), but not so well on 

applying that knowledge to problem situations (item 5a and 5b ). Compared to Group 

3 students, Group 4 performed better on the delayed posttest indicating greater 

retention of knowledge. 

Students' scores on individual items of the delayed posttest are graphically 

displayed in Figure 5 .18, and serve to highlight the particular items with which 

students experienced difficulty. 

100% 

80% 

60% 

40% 

20% 

0% 
..- C\J co .0 C) co .0 C) co .0 

C") C") C") "¢ "¢ "¢ 1.() 1.() 

Figure 5.18. Graphical representation of Group 4 students' delayed posttest 

means(%) by item. 

5. 4. 3 Planned teaching episodes 

The planned teaching episodes for Group 4 are presented in Table 5.13. The 

table provides the number and title of each teaching episode, together with the number 

of actual lessons taken for implementation. The sequence of episodes for Group 4 

was the same as for Groups 2 and 3, however, the percent, common and decimal 

fraction equivalence episode was deleted, moving the episode on percent increase and 

decrease to episode 5. A new episode on 0/N was created, and implemented as the 

final episode in this unit. 

A total of 12 class periods were spent with Group 1. Seven lessons were 

directly on the topic of percent, with a further 2 lessons used for metacognitive training 

and 1lesson being used for an Old Way/New Way trial. Pre- and posttesting occupied 

1 day prior to and immediately following implementation of the unit of work. The 

deletion of the episode on percent, common and decimal fraction equivalence resulted 

in deletion of Section II of the Percent Knowledge test (conversions and benchmarks), 

thus reducing the amount of time required for pre- and posttesting. 
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Table 5.13 

Plan ofTeaching Episodes for Group 4 

Episode Topic 

1 

2 

3 

4 

5 

6 

Metacognitive training 

Concept of percent 

Fraction equivalence and the Rule of Three 

Interpreting and solving percent problems 

The language of percent increase and decrease 

Old Way/New Way trial on the multiplicative 

language of percent increase 

5. 4. 4 Implementation of teaching episodes 

Lessons 

2 

1 

1 

3 

2 

1 

The episodes implemented with Group 4 followed the same plan as 

corresponding episodes implemented with Group 3 students. In all episodes, student 

and classroom-teacher data supported the teacher-researcher's perceptions that all 

episodes were implemented successfully. Students' diary entries on various lessons 

within the unit reflected similar sentiments to those written by Group 3 students (see 

Observation sections 5.3.4 through to 5.3.9). As such, a report on implementation of 

this unit of work with Group 4 students will not be presented here. In episode 6, 0/N 

was trialled as a whole group exercise. The focus of the 0/N trial was upon the 

concept of percent increase. This episode is the only episode not trialled with any 

other groups. A detailed description of implementation of this episode is presented in 

the next section under the four subheadings of plan, action, observation and reflection. 

5. 4. 5 Episode 6: Multiplicative language of percent increase using Old 

Way/New Way 

Plan 

This lesson was planned to provide students with an opportunity to revise the 

topic of percent and also to trial a whole class "Old Way/New Way" on interpretation 

of percent increase problems. Anticipating that many students could still be confused 

in interpreting percent increase problems, this lesson was planned to begin with the 

multiple choice item being presented to students on an OHT. The students would be 

asked to select the appropriate response, writing either a, b, c, or d in their notebooks. 

The students would then be grouped according to those who selected the correct 

response and those who did not. Those who selected the appropriate response would 

be provided with a revision sheet of percent problems; the other students would 

engage in an 0/N trial, of the following steps: 

1. Hand out a worksheet upon which Old Way and New Way columns are 

written. Simultaneously, present this worksheet as an OHT. 
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2 . Direct students to complete steps in 0/N trial: 

OLD WAY - 200% increase is the same as 200% of the original 

NEW WAY - draw diagram, 

0% 

100% 

+200% 

300% 

and write: 200% increase is the same as 300% of the original. 

3. Direct individual students to differentiate between the Old Way and the New 

Way a total of 5 times. 

4. Provide students with 5 practice examples. 

5 . Students then continue on the extension/revision activities as the other 

students. 

Action 

The lesson proceeded as planned. The students quickly moved to their two 

groups so that the teacher could address the "0/N" students together as one group as 

the other students worked independently. During the 0/N procedure, all students were 

attentive and followed the directions as given by the teacher-researcher, completing the 

appropriate section of the worksheet as directed. For the difference between the old 

way and the new way, various students were asked to describe the difference in their 

own words. The differences stated were that: in the new way, a diagram is first drawn 

to represent the situation; that the number line is extended past 100% for increase; the 

increase was added on to the diagram; the diagram can be read in relation to the amount 

of increase or in relation to the original; the old way links 300% increase to 3 times 

increase; the old way does not consider the original whole. At the generalisation 

phase, the students worked individually, and the teacher provided immediate feedback 

on individual student's progress. All students completed the generalisation problems 

appropriately, although in some instances, the teacher-researcher had to ask various 

students: "Is that your old way or your new way?" The students then would quickly 

correct themselves. The 0/N students then worked on the worksheets being completed 

by the other students in the class. At the end of the lesson, all students handed in the 

sheets they had been working on. 

Upon analysis, one student's worksheet showed unexpected evidence of 
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proportional reasoning. This particular student had been working on representing data 

on a pie chart. The student had calculated data as percentages, and then calculated the 

segment of the circle needed to represent each percentage. On the worksheet, the 

student had written: 65 I 100 = xI 360, thus indicating a proportion equation for converting 

percent to degrees in a circle. 

Reflection 

Prior to implementation of this episode, the teacher-researcher felt that 

presenting the 0/N sequence would be "strange" to the students, and that there was a 

need to "sell" the procedure to students to encourage them to participate and pay 

attention. However, during this episode, all students remained attentive and 

cooperative. The worksheet was designed to minimise the amount of writing required 

of the students, and this appeared to help students to "see" the sequence of steps to 

follow in the 0/N trial, and its structure appeared to assist them to remain on task. 

Having various students describe the difference between the old way and the new way 

appeared to be useful to the whole class as it provided the opportunity for all students, 

who shared a common misconception to hear how other people "mis"-interpreted 

percent increase situations; that is, to share their personal "old ways". Discriminating 

differences a total of 5 times was perceived by the teacher-researcher as rather tedious, 

however all students remained cooperative during this phase. During the 

generalisation stage, the students appeared to be challenged to pay attention to the 

differences between the old way and the new way, as they needed to interpret the 

problems on their own. The 0/N trial at a whole class level, was perceived by the 

teacher-researcher as well-received by the students, although the teacher-researcher did 

feel slightly uncomfortable "telling" the students the new way 5 times. The whole 

class 0/N trial appeared to be at odds with the teacher-researcher's usual teaching 

style, and hence the feelings of uncomfortableness. This reaction can be interpreted 

within the CMP framework, which states that old knowledge interferes with new 

knowledge. In this instance, old teaching styles were interfering with trialling of a 

new style. The teacher-researcher clearly was engaging in a personal 0/N trial, to 

continue with the episode, consciously differentiating between an old style of teaching 

and a new style required when implementing an 0/N lesson. The teacher-researcher 

could feel the tendency to lapse into a re-teaching mode; to present to students the 

activities to represent percent increase, rather than advancing through the 

differentiation of the old way and new way 5 times. The teacher-researcher was 

experiencing proactive inhibition (Lyndon, 1989), protecting a usual style of teaching 

from change. The students, however, participated well in this activity, and negative 

feelings towards the 0/N trial were not exhibited by the students. 

The 0/N activity was trialled in a relatively experimental and tentative fashion. 
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Guidelines for such trials are virtually non-existent in mathematics, with prescriptive 

descriptions for conducting 0/N trials available, thus far, only for spelling errors 

(Lyndon, 1989) and erroneous subtraction algorithms (Dole, 1993); which may both 

be regarded as focusing on remediation of procedural skills rather than conceptual 

knowledge. There is a strong call in the literature for teaching approaches that 

overcome students' inappropriate knowledge at a conceptual level, encapsulated in the 

words of Mansfield and Happs (1992, p. 453) who stated that, "Many students will 

come to the mathematics classroom with a number of misconceptions about topics to 

be taught. Research has clearly indicated that these misconceptions act as barriers to 

the acquisition of new conceptual knowledge." The interfering effects of prior 

knowledge were evident with the Group 4 students in this study. The students had 

been presented with instruction on the language of percent increase and decrease 2 

days prior to presentation of the 0/N activity. At the beginning of that particular 

percent increase episode, the majority of students failed to correctly interpret the 

language of percent increase situations, however, at the end of the two lessons, 

students were demonstrating greater facility with such language. The 0/N episode 

took place 2 days after that episode. In 2 days, 12 students failed to correctly interpret 

percent increase situations, and thus participated in the 0/N trial. The preconception or 

misconception of percent increase language was the focus for unlearning and hence the 

0/N trial. Unlearning of prior knowledge may be the key to laying a pathway for 

acquisition and retention of knowledge (Ausubel, 1968; 1985). The fact that students 

still had difficulty interpreting the language of percent increase so soon after instruction 

indicates the longevity of prior knowledge and the power of proactive inhibition, as 

emphasised by Lyndon (1989; 1995) and serves to underscore the words of Ausubel 

relating to unlearning. After conventional teaching, retention of knowledge on the 

language of percent increase for many Group 4 students was decaying. Experimenting 

with 0/N for changing conceptual knowledge appears to be a worthwhile pursuit. 

At the beginning of the 0/N trial, students' errors in interpreting percent 

increase situations were identified rapidly. The students were informed that an 0/N 

would be trialled and students participated appropriately, with no indication of negative 

feelings towards exposing errors in front of their peers. Due to the metacognitive 

training received by the students, the purpose of the 0/N trial could be linked directly 

to the function of memory and the controlling of forgetting. The trial thus proceeded 

with the teacher-researcher mediating between the students' own ways and the new 

way, using appropriate language; an approach which links to the cognitive 

apprenticeship model (Reid & Stone, 1991). The utilisation of errors in the 0/N 

strategy as the beginning point to affect knowledge change is similar to procedures 

suggested by others, such as Borassi (1994) and Rauff (1994). Presenting students 

with metacognitive training prior to use of 0/N, appeared to enable the 0/N trial to 
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proceed in a positive and non-threatening way, as suggested by students' cooperative 

behaviour throughout this trial. Trialling of 0/N therefore has presented some 

interesting points for discussion. 

Also within this lesson, unexpected evidence of the development of 

proportional reasoning for one student was obtained. This student's response 

supports the value of the Rule of Three procedure being used to promote proportional 

reasoning. The spontaneous link made by this student suggests that instruction which 

presents a procedure for problem solving in a relatively "rote" fashion may not be 

perceived as a meaningless procedure for all students. Such a finding conflicts with 

the strong words of Cramer et al. ( 1992), who stated that "the cross product algorithm 

is efficient, [yet] it has little meaning. In fact it is impossible to explain why one 

would want to find the product of contrasting elements from two different rate 

pairs ... The cross-product rule has no physical referent and therefore lacks meaning for 

students and for the rest of us as well" (p. 170). In light of the student's response in 

this study, it appears that the cross-product rule can be meaningful to students, and 

thus should possibly be a consideration for promoting meaning for all students in 

future proportion instruction. 

5. 4. 6 Reflection upon implementation of teaching episodes 

Implementation of this unit of work was perceived as proceeding in a smooth 

manner, with all episodes rated as successful. The unit of work, as a whole, appeared 

sequential, and the deletion of the percent, decimal and common fraction episode 

appeared to assist in contributing to the sequential flow of the unit. The metacognitive 

training was implemented effortlessly, and was perceived as enjoyable for the 

students, the classroom-teacher and the teacher-researcher. The 0/N trial was readily 

engaged in by the students. 0/N may have proved difficult to trial if the students had 

not been involved in the metacognitive training prior to this trial. The justification for 

the trial had been provided through these introductory sessions. The 0/N trial itself 

was perceived by the teacher-researcher to be "uncomfortable" to implement, as asking 

students to do "old ways", then "new ways" in a sequence 5 times, was an unusual 

request. The students, however, did not seem to react in the same way. The 0/N trial 

was deemed as successful as all students were readily differentiating between "old 

ways" and "new ways" during the 0/N generalisation phase. 

Throughout implementation of the unit of work, the students remained on­

task and attentive. Their diary entries revealed a level of confidence in their ability to 

perform percent calculations. Also, informal interviews with students suggested that 

they found the method for solving percent equations easy and useful. At various times 

during the teaching episodes, several students showed the teacher-researcher their own 

methods for solving percent equations, but all stated that they wanted to use the 

211 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



method shown in class, because, as one student said, "I don't have to try to guess 

whether to multiply or divide, I just know where the numbers go." 

The classroom teacher stated that she felt the whole unit, including the 

metacognitive training, had been extremely successful, and that she would like to 

continue experimenting with the procedure with further classes. Of the whole class 

0/N trial, the teacher said she would be interested in the effect such a procedure had on 

the students' performance of such problems, but was not confident to trial the method 

herself. The teacher felt that the students' percent problem solving performance, as 

well as their understanding of percent, had greatly improved since implementation of 

the unit. 

5 . 4. 7 Reflection upon pre-, post- and delayed posttests and instruction 

Implementation of this unit of work was rated as successful, and comparison 

of pre- and posttest results indicates positive improved performance as a result of 

instruction. The overall prestest score for Group 4 was 44%, and the posttest score 

was 84%, which reflects the teacher-researcher's perception of the successful nature of 

this unit of work. Students' pretest score for Section I (intuitive, principled­

conceptual knowledge) was 75%, indicating a high level of real-world percent 

knowledge prior to instruction. After instruction, the posttest score for this section of 

the test was 90%, which reflects the successful ratings of all episodes in this teaching 

sequence, particularly the episodes on the language of percent increase. Students' 

pretest score for Section III (percent calculations and problem solving) was 12%, 

indicating minimal proficiency prior to instruction. After instruction, the posttest score 

on this section of the test was 77%. Such a large positive change indicates the 

successful nature of the unit of work in assisting students to build computational 

knowledge of percent. The posttest results aligns with the successful rating of the 

episodes on percent calculations and interpreting percent problem situations. 

Reflection on delayed posttest scores and instruction indicate that, similar to 

Group 3 students, the successful rating of implementation of the teaching sequence is 

reflected in the delayed posttest results. After a delayed period, students' proficiency 

with percent calculations and solving percent problems was high, and development of 

this knowledge .was the primary focus of the teaching episodes. Group 4 students' 

proficiency with interpreting and solving problems relating to percent increase 

situations was also relatively high on the delayed posttest. When this result is 

compared to Group
1
3 students, difference in instruction between the 2 groups is the 

inclusion of the 0/N episode on the language of percent increase with Group 4 

students. Delayed posttest results appear to indicate that the 0/N episode influenced 

Group 4 students' greater positive performance with percent increase language, and 

limiting the decay of this knowledge. The inclusion of the 0/N episode appears to 
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have lasting effects on conceptual development of percent increase, and therefore 

contributed to the successful rating of implementation of the unit, and students' 

positive performance on the posttest and delayed posttest. 

5. 5 Results across Teaching Experiments 1, 2, 3 and 4 
5. 5 .1 Overview 

Results of the four teaching experiments collectively, are discussed in this 

section. In section 5.5 .2, the success rating of particular teaching episodes is 

overviewed, and highlights the value of reflection upon implementation to create a 

successful teaching program. A summary of the structure of the teaching program is 

presented in section 5.5.3. In section 5.5.4, pre- and posttest results across the four 

teaching experiments are compared, and discussed in terms of instruction. This 

section highlights the influence of instruction upon knowledge change and growth, 

and successful task performance. In section 5.5.5, implementation of instruction in 

real classrooms is addressed. A summary of key points from this section is presented 

in section 5.5.6. 

5. 5. 2 Implementation of the teaching episodes across the four groups 

A summary of the success rating upon implementation of the teaching episodes 

across the four groups is presented in Table 5.14. 

Table 5.14 

Summary of Success Rating of Each Teaching Episode for Each of the Four Groups 

Groups 

Group Group Group Group 

1 2 3 4 

Metacognitive training u U-S s s 
Concept of percent u u s s 
Fraction equivalence and the s s s s 
Rule of Three 

Interpreting and solving U-S s s s 
percent problems 

Percent, common and u U-S U-S N/A 

decimal fraction equivalence 

The language of percent U-S s s s 
increase and decrease 

S =Successful 
U = Unsuccessful 
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Tracking each teaching episode across the four groups shows that episodes 

which were rated as unsuccessful upon first implementation with Group 1, were 

finally rated as successful with Group 4, or earlier with Groups 2 and 3. Throughout 

the study, it was seen that several teaching episodes underwent modification as a result 

of reflection upon implementation. In the discussion to follow, modifications to each 

teaching episode are described across the four teaching experiments, revealing the 

influence of planning and reflection upon successful implementation. 

The first episode within each teaching program was the metacognitive training 

episode. For the metacognitive training component of the teaching program, the CMP 

as suggested by Lyndon (1995) was adapted into a teaching episode comprising of 

two lessons. The two lesson sequence enabled the two main topics within the CMP 

(remembering and forgetting) to be addressed separately. Presenting these two topics 

to the students was to exemplify the need for two categories of learning strategies: 

strategies to assist remembering, and strategies to overcome accelerated forgetting. 

The two strategies incorporated into the CMP for these purposes were the Look-Say­

Cover-Write-Check (LSCWCh) strategy and the Old Way/New Way (0/N) strategy, 

for remembering and accelerated forgetting respectively. The metacognitive training 

episode in this study was thus designed around providing students with a rationale for 

the need for such particular learning strategies, through discussion of issues relating to 

human remembering and forgetting. 

In this study, the metacognitive training episode was rated as unsuccessful for 

Group 1, unsuccessful-successful for Group 2, and successful for Groups 3 and 4. 

With Group 1, the entire metacognitive training program was not fully implemented as 

planned. As described in section 5 .1.4, contributing factors included disruptions to 

instruction, students' lack of attention, and students' resistance to a non-mathematical 

content lesson during time tabled mathematics classes. Students' lack of attention was 

also attributed in part to poor lesson design and lack of activities to assist students 

understand the psychological concepts associated with human memory and forgetting. 

In the episode, students experienced difficulty differentiating between recall and 

recognition memory, and also the function of proactive inhibition (PI) in protecting 

prior knowledge. For Group 2 students, instruction was modified to exemplify 

recognition and recall memory. The LSCWCh strategy was well-received by students 

after these activities. The second lesson in the episode, dealing with forgetting, was 

not fully implemented with Group 2. The contributing factor appeared primarily to be 

the necessary room change as required for another school activity, and also shortened 

lesson time as a result. For Groups 3 and 4, the episode was fully, and successfully, 

implemented following the original plan for Group 2. 

As a result of trialing CMP in this study, it was seen that CMP incorporated 
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into a metacognitive training episode was most successfully implemented when 

instruction was carefully planned and sequenced to incorporate exemplary activities. 

Although the CMP states that learning is dependent upon paying attention, and that the 

individual is in control of the amount of attention he/she chooses to pay, careful lesson 

design and planning of instruction by the teacher assisted students to maintain 

attention. The metacognitive training episode in this study followed the planned 

sequence described in Chapter 4 section 4.5 (metacognitive training), with additional 

activities for promoting understanding of the concepts presented. 

The second episode in the teaching program related to the concept of percent. 

The concept of percent episode, presented to Group 1 students, commenced with 

students being asked to explore percent uses presented in newspapers. Upon 

reflection, this episode did not appear to promote students' understanding of percent in 

the real world, as the students did not analyse the ways percent was presented in the 

media. For Group 2 students, an entirely different episode was presented where 

students were asked to explore a real-world collection in a variety of mathematical 

ways (i.e., as fractions, decimals, percents, graphically, ratio, and so on). This 

episode also did not appear to promote students' real-world percent knowledge, 

although students actively engaged in the activity, as Group 1 students did in their 

corresponding activity. For Groups 3 and 4 students, the episode used with Group 1 

students was replanned. Various uses of percent in newspapers were presented to 

students, and in groups, they were required to discuss questions relating to real-world 

transactions, such as bank interest, profit, loss, discount and statistical uses of 

percent. The replanned episode with these groups appeared to be useful in promoting 

discussion of percent amongst students, and in providing the teacher-researcher 

opportunity to individually ask students questions relating to percent. 

The third episode in the teaching program was on fraction equivalence and the 

Rule of Three. The aim of the episode was to introduce students to a procedure for 

finding equivalent fractions. The episode was implemented without any linkage made 

to the topic of percent. The episode began with demonstrations of the traditional 

method for changing a fraction into an equivalent form. The students' attention was 

then drawn to the placement of the numbers in the two equivalent fractions, where the 

initial fraction is given and the required denominator of the equivalent fraction form. 

The Rule of Three procedure was demonstrated, and stated in the words of Robinson 

( 1981 ), "Multiply the two numbers across from one another and divide by the other 

number" (p. 6). Practice of the Rule of Three was then provided, with students given 

sets of 10 exercises with the unknown in various positions within the equivalent 

fraction pairs. 

In the study, this episode was rated as successful upon initial implementation 

with Group 1 students, and the structure of the episode remained unchanged in all four 
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teaching experiments. Of all episodes in the study, this particular episode was the only 

one which was rated as successful from first implementation. Reflections upon 

implementation of this episode with all groups suggested that the successful nature of 

the lesson was due to several factors, including that the episode enabled students to 

experience success and thus they felt confident about their mathematical ability; the 

lesson was structured to provide students with immediate feedback on performance 

and thus provided students the opportunity to develop a skill to automaticity, thus 

reducing cognitive load; the episode contributed to students' sense of normality and 

expectations in that they "did maths" during a mathematics lesson. Instruction in the 

episode could be described as clear, clean, and direct. The lesson was not cluttered 

with superfluous description and was without mathematical analysis of the procedure. 

As a means to an end, this episode served its purpose in providing students with a 

procedure to solve proportion equations. 

Interpreting percent problems was the focus of the fourth episode in the 

teaching program. Instruction in this episode was modified after implementation with 

Group 1. Initial instruction with Group 1 began with students being presented with a 

Type I percent application problem in which the elements: part, whole, percent, were 

identified. The vertical number line was then drawn, and positioning of the elements 

on the number line demonstrated. A proportion equation as an equivalent fraction was 

constructed corresponding to placement of elements on the number line representation. 

The Rule of Three was suggested to complete the calculation and thus solve the 

problem. The students were then provided with a symbolic Type I percent problem 

(e.g., 16% of 58= L1) and were asked to construct a real world problem to match the 

given equation. 

Upon implementation of this episode, it was apparent that the sequence of 

instruction required modification. Contributing factors were that students actively 

resisted paying attention to a new procedure for solving familiar Type I percent 

problems, and that too much information and too little time for consolidation of steps 

involved in the new procedure, was given. During the episode, modifications were 

made, where only unfamiliar Type II problems were exhibited to draw students' 

attention away from the familiar Type I problems. The steps in the proportion number 

line method were demonstrated, but students were not required to write real-world 

situations to match the percent exercises. Upon reflection, this episode was recreated 

for Group 1 into an episode on solving percent problems. To assist students 

intemalise the sequence of steps in the proportional number line method, a worksheet 

(Appendix D) was created to serve as a scaffold. The worksheet appeared to serve this 

purpose well for Group 1 students, who solidly completed the problems presented. A 

second worksheet (Appendix E) was designed to enable students to practise their skill 

in the proportional number line method without providing the scaffolding assistance. 
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The two episodes on interpreting percent problems and solving percent 

problems implemented with Group 1, were condensed into one episode on interpreting 

and solving percent problems for Groups 2, 3 and 4. To assist students identify 

elements of percent situations as comprising a part, a whole and a percent, a real world 

situation was presented. A series of Type II and III problem situations was shown to 

students, and students were provided with practice in identifying the three elements 

given in each situation. Type I problems were also shown. In the next phase of the 

episode, a Type II problem was presented, and the students identified the two given 

elements and the unknown element. For introduction to the number line 

representation, students were asked to draw a number line indicating 0% and 100% 

positions. Students were then asked to rotate their number line from its traditional 

horizontal position to a vertical position where 100% was at the bottom of the number 

line. Rotation of the number line from a horizontal to a vertical position is depicted in 

Figure 5.19. 

--------~~0% 
0% 100% 

100% 

Figure 5.19. Horizontal to vertical rotation of the 0-100% number line. 

From Figure 5.19, it can be seen that through rotation of the number line, the 

0-100% scale falls naturally on the left side of the vertical number line. Students' 

attention was then drawn to the dual-scale nature of the number line with the percent 

scale falling on the left-hand side, and the quantity on the right-hand side. Instruction 

then focussed on placing the information given in the problem onto the number line, 

constructing the proportion equation and solving the problem using the Rule of Three. 

To assist students consolidate the steps in the proportion number line method, the 

worksheet (Appendix D) was presented, followed by the further practice but less 

structured second worksheet (Appendix E). For Group 2, 3 and 4 students, this 

episode was rated as successful. 

The fifth episode in the teaching program, on percent, common and decimal 

fraction equivalence was modified slightly across the three groups. but mainly in 

instruction given in the first part of the episode on construction of the oversized 

number line. The episode was perceived as useful in providing students with a visual 

model of fraction, percent and decimal equivalent forms, and in providing students 

with an opportunity to practise their percent conversions and benchmarking skills. 
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The episode was perceived as not so useful for ass1stmg students, with limited 

knowledge of, and skill in, equivalence and conversions, to develop such knowledge 

and skill. The episode was perceived as "out-of-place" in the context of the teaching 

program. It could be argued that conversions link more closely to the notion of 

percent as it relates to fractions and decimals, and traditionally, instruction in such was 

for the purpose of assisting students perform percent calculations (Parker & Leinhardt, 

1995). As percent calculations were taught via the proportional number line method, 

percent to decimal and fraction conversions were unnecessary in this teaching 

program. As a peripheral component of the teaching program, instruction was not 

modified significantly to focus on promoting notions of equivalence. The episode was 

included for completeness, and to fulfil requirements of the syllabus. In light of 

reflection upon implementation, it may have been better to omit this episode, and slot it 

into another teaching program for developing equivalence concepts. 

The last episode in the teaching program, on the language of percent increase 

and decrease, was created as an extension to the fourth episode on interpreting and 

solving percent problems. Upon implementation with Group 1, this episode was 

modified for Groups 2, 3 and 4. With Group 1, the first phase of this episode began 

with diagnosis of students' misinterpretation of percent increase situations. This 

appeared to be a useful introduction to the lesson, as it immediately enabled the 

number of students who misinterpreted the percent increase situation to be identified 

and also served to draw students' attention to the focus of the lesson. To help students 

visualise a percent increase as a change to the original whole, a number of situations 

were presented, relating to real-world increase situations of weight and height 

increase. For Group 1 students, such situations were demonstrated using various 

props, and representation of each situation via cardboard sections (see section 5.1.9). 

As the episode progressed, such situations were then modelled using a collection of 

objects (jellybeans) with the situation being represented on the proportional number 

line, extended beyond 100%. Percent discount situations were modelled the same 

way. To provide students with practice in identifying the multiplicative and 

additive/subtractive nature of percent increase and decrease situations, a worksheet 

was created (Appendix F) to encourage students to discuss the language of percent 

increase and decrease. For Group 1, this episode was rated as unsuccessful­

successful. After implementation of the episode with Group 1, the episode was 

replanned in a more streamlined manner for Groups 2, 3 and 4, and a successful rating 

of this episode was achieved with these groups. 

In this study, the teaching program was implemented across the four groups 

following the action-research spiral (Kemrnis & McTaggart, 1990). Through the 

actions of planning, acting, observing, reflecting and replanning, the episodes within 

the teaching program were modified and finally implemented in a totally successful 
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manner. A successful program of instruction was thus created. 

5. 5. 3 Summary of the teaching program 

Overall, the teaching program can be seen to consist of both metacognitive 

training, and instruction on the mathematical topic of percent. The primary focus of 

the instruction on percent was on developing students' percent problem solving skills 

through application of the proportional number line method. Secondary to this was 

instruction for developing percent conversions and benchmarking skills, and the 

concept of percent as it relates to the real world. Thus, the teaching program consisted 

of three instructional components: (i) metacognitive training; (ii) essential percent 

instruction for percent problem solving; and (iii) ancillary instruction for percent 

conceptual and associated skills development. Essential percent instruction for percent 

problem solving was regarded as instruction pertaining to the proportional number line 

method and included the teaching episodes of: (i) fraction equivalence and the Rule of 

Three; (ii) interpreting and solving percent problems; and (iii) the language of percent 

increase and decrease. Two other episodes specific to the topic of percent which were 

seen as ancillary to the main instruction in the proportional number line method were: 

(i) the concept of percent; and (ii) percent, common and decimal fraction equivalence. 

These episodes were included in the teaching program for the purposes of building 

students' real-world knowledge of percent use in our culture, and in promoting 

understanding of percent in a mathematical sense in relation to its equivalence to 

common and decimal fractions. The metacognitive training component was seen as a 

blanket surrounding the program of percent, but also separate to the teaching program, 

with elements of the CMP feeding into and supporting the teaching sequence at various 

points. The three components and associated teaching episodes of the teaching 

program used in this study are represented in Figure 5.20. 

0 •fraction equivalence and the Rule 
of Three 
•interpreting and solving percent 
problems 
•the language of percent increase 
and decrease 

0 •the concept of percent 
•percent, common and decimal 
fraction equivalence 

Figure 5.20. Diagrammatic representation of the components of the teaching 

program for the study. 
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5 . 5. 4 Pre- and posttest results and instruction across the four groups 

Pre- and posttest scores on the Percent Knowledge Test for the four groups, 

were combined to compare test performance for each group prior to instruction, and to 

analyse performance after instruction. These combined results are presented in Table 

5.15. These results are graphically presented in Figure 5.21 to highlight change 

across each group. 

Table 5.15 

Pre- and Posttest Results by Group Across the Four Teaching Experiments 

Group Test 

Group 1 pretest 

posttest 

Group 2 pretest 

posttest 

Group 3 pretest 

posttest 

Group 4 pretest 

posttest 

100% 

80% 

60% 

40% 

20% 

0% 

Components of the Percent Knowledge Test 

Section I Section II 

60% 60% 

69% 54% 

64% 41% 

79% 70% 

72% 42% 

86% 75% 

75% N/A 

90% N/A 

Gp1 Gp2 Gp3 

Section III 

10% 

33% 

7% 

48% 

19% 

67% 

12% 

77% 

Gp4 

D pre 

• post 

Total 

43% 

52% 

37% 

66% 

44% 

76% 

44% 

84% 

Figure 5.21. Pre- and posttest means (%) in total for Groups 1 - 4 students 

on the Percent Knowledge Test. 

From Figure 5.21, it can be seen that the students within each of the four 

groups in the study, performed similarly on the Percent Knowledge pretest. It 

appears, therefore, that prior to instruction, all four groups of students began from a 

similar knowledge base. Looking at the posttest scores overall, in Figure 5.21, the 

change in posttest results between the four groups shows a positive trend in scores, 
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with Group 4 scoring a higher posttest score overall to the other three groups. 

Pre- and posttest scores for each of the three sections (intuitive, principled­

conceptual percent knowledge; conversions and benchmarks; and percent calculations 

and problem solving) of the Percent Knowledge Test for each group are presented in 

Figures 5.22, 5.23 and 5.24 respectively. 

100% 

80% 

60% 

40% 

20% 

0% 

Gp1 Gp2 Gp3 Gp4 

D pre 

• post 

Figure 5.22. Pre- and posttest means (%) on Section I (intuitive, principled­

conceptual percent knowledge) of the Percent Knowledge Test for each of the 

4 groups. 

From Figure 5 .22, it can be seen that, for each of the four groups, pretest 

performance was similar and also quite satisfactory ( 60% or better for each group). 

Thus, all four groups' intuitive and principled-conceptual percent knowledge was 

similar prior to instruction. After instruction, posttest results show an increased test 

performance for all groups, with greatest increased performances from Group 1 (60% 

- 69%) and Group 4 (75% - 90% ). Diagnostic analysis of specific items on this 

section of the test for each group indicated that students in each of the groups 

experienced difficulty on similar test items (compare Figures 5.2, 5.7, 5.11 and 5.16). 

These items related to understanding of bank interest, the additive and multiplicative 

language of percent increase and decrease, and posing of real world percent problems. 

Posttest results indicate that all four groups still experienced difficulty with these 

intuitive, principled-conceptual knowledge items, but these items were handled 

considerably better by Group 4 students than all other students (see Figure 5.16). One 

episode in the teaching sequence specifically focussed on developing students' 

understanding of the multiplicative and additive/subtractive language of percent 

increase and decrease, and implementation of this episode was rated as moderately 

successful with Group 1, and successful with Groups 2, 3 and 4. Groups 1, 2 and 3 

did not perform significantly better on such items in this section of the posttest; Group 

4 students, however, did. The difference in instruction for Group 4 between Groups 

1, 2 and 3 was that an Old way/New Way trial was implemented with Group 4 on the 
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language of percent increase and decrease. Group 4 student' better performance on 

these items within the intuitive, principled-conceptual section of the posttest appear to 

indicate that 0/N contributed to greater understanding of percent increase language. 

Figure 5. 23 shows pre- and posttest scores for each Group on Section II 

(conversions and benchmarks). 

100% 

80% 

60% 

40% 

20% 

0% 

Gp1 Gp2 Gp3 Gp4 

D pre 

• post 

Figure 5.23 Pre- and posttest means (%) on Section II (conversions and 

benchmarks) of the Percent Knowledge Test for each of the 4 groups. 

From Figure 5.23 it can be seen that pretest scores shows similar performance 

by Groups 2 and 3 (41% and 42% respectively) prior to instruction compared with 

Group 1 (60% ). After instruction, posttest scores for Group 2 and 3 show 

considerable and similar positive change (70% and 75% respectively) and a minimal 

but negative change for Group 1 (54%). Looking at success ratings of the episode 

focussing on this section of the test, there is an unsuccessful rating for implementation 

with Group 1, and a middling rating for implementation with Groups 2 and 3 . 

Success ratings of this episode appear to reflect test scores. The episode was rated as 

of little value to Group 1 students, and posttest results show little change. For Groups 

2 and 3, the episode was rated as useful for students who already possessed skills and 

knowledge of fraction equivalence, but not for students who did not possess such skill 

and knowledge. Test results show positive change but for only approximately two­

thirds of the class. The teacher-researcher's reflections on implementation of this 

particular episode with each group indicate dissatisfaction with the episode. The 

teacher-researcher continually stated that the episode interrupted the flow of the 

teaching sequence, and appeared to be at odds with the proportional nature of percent 

being presented in all other episodes. Such reflections suggest that this episode may 

need contextualising to cater to the needs of all learners, possibly as an episode in a 

separate teaching program. 

Figure 5.24 shows pre- and posttest results for each group on Section III 

(percent calculations and problem solving) of the Percent Knowledge Test. 
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100% 

80% 

.60% 

40% 

20% 

0% 

Gp1 Gp2 Gp3 Gp4 

D pre 

• post 

Figure 5.24. Pre- and posttest means (%) on Section III (percent 

calculations and problem solving) of the Percent Knowledge Test for each of 

the 4 groups. 

From Figure 5.24, it can be seen that, prior to instruction, all four groups 

performed similarly, and unsatisfactorily, on this section of the test (all scores less 

than 20% ). It appears that, prior to instruction students in all four groups had little 

success in performing percent calculations and solving percent problems. After 

instruction, students' performance across all four groups showed great improvement. 

The greatest improvement was for Group 4, with a pretest score of 12% and a posttest 

score of 77%. Posttest scores for Groups 1 and 2 did not reach 50% (33% and 48% 

respectively) but the score for Group 3 did (67%). Success ratings of implementation 

of teaching episodes relating to this section of the test compare with test scores. With 

Group 1, the episode on interpreting and solving percent problems was rated as only 

moderately successful. Group 1 results show moderate improvement as compared to 

pretest scores (1 0% to 33% ). For Groups 2, 3 and 4, episodes relating to interpreting 

and solving percent problems were rated as successfully implemented; posttest results 

show greater performance with such items on the posttest for each of these groups. 

Successful implementation of the episode, therefore, appears to have contributed to 

greater test performance. 

5.5 .5 Real-world school context 

Implementation of the teaching episodes within authentic classrooms, factors 

beyond control of the teacher-researcher were seen to impinge upon the success rating 

of particular episodes. Three main factors were (i) school timetable and time 

constraints; (ii) distractions outside the classroom; and (iii) the curriculum. 

Throughout the teaching experiment, implementation of the teaching episodes 

was constrained by the school timetable and lesson time allocation. The teaching 

program was designed to fit within allocated time for teaching percent in the school 

year. For all groups in the teaching experiment, this was two weeks, or a total of ten 
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class periods. For Group 1, instruction directly on percent spanned the allocated ten 

lessons; for Groups 2 and 3, instruction spanned nine lessons, and for Group 4, 

instruction spanned seven lessons (the episode on percent, common and decimal 

fraction equivalence was not included with Group 4 - see section 5.3.12). The 

teaching program thus conformed to timetable requirements. However, the timetable 

constraints did impinge upon delivery of the program in that little time could be 

afforded to enable students to fully consolidate their new knowledge and skills, and 

for the teacher-researcher to carry out informal discussions with students through 

group problem solving activities. The need to advance through the program was a 

frequent reason for moving on to the next teaching episode without proper 

implementation of the prior episode. 

Related to the timetable constraints was allocated class lesson time. For each 

group within the study, the allotted lesson time was 40 minutes. Given that students 

took approximately 5 minutes to settle into the mathematics classroom, instructional 

time was thus effectively 35 minutes. Lesson planning therefore had to be clear and 

precise to make valuable use of every minute in the lesson period. Through reflection 

upon events in every teaching episode, instruction was seen to be modified throughout 

the study to ensure that instruction was sequential, clear and precise. As the study 

progressed, better lesson planning contributed to successful delivery of instruction 

within the allotted lesson time. 

As the study was conducted in authentic classrooms, typical disruptions 

occurred which influenced implementation of the teaching program. Such disruptions 

included room changes, students' lateness to class, interactions amongst students prior 

to mathematics classes. Such disruptions were more frequent and more distracting 

with Groups 1 and 2 students, than with Groups 3 and 4. On several occasions with 

Group 1 and 2, lessons failed due to such disruptions as a student's late arrival to class 

(Episode 1, section 5.1.4), switching of room from a mathematics classroom to a 

science lab (Episode 1, section 5.2.4) a lunchtime "incident" (Episode 4, section 

5.2.7). 

Another factor constraining the development of the teaching program was the 

constraint of the curriculum. For the mathematical topic of percent, the school 

mathematics syllabus states that developing students' skill in percent, common and 

decimal fraction conversions is required in the teaching program. For authenticity, 

such an episode was included in the teaching program for this study, but was seen to 

"interfere" to an extent, with the sequential flow of the program. Inclusion of such an 

episode was regarded as inhibiting engagement of students in more real-world percent 

problem solving investigations where their new knowledge of percent applications 

could be utilised. 

224 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



5. 5. 6 Summary of key points 

Results across the four teaching experiments were discussed in this section. 

The teaching program as it was moulded and refined through implementation across 

the four groups was summarised. Pre- and posttest results across the four groups 

were compared and results were analysed in terms of the success ratings of episodes 

within the program. Through modification of the teaching program across the four 

teaching experiments, a successful program was developed which appeared to 

influence the positive change in students' percent knowledge and problem solving 

performance. Factors which impinged upon implementation of the teaching episodes 

within the study were also outlined thus highlighting the factors which influence 

classroom instruction and research. 

CHAPTER SUMMARY 
In this chapter, results of the study were presented. Results of each teaching 

experiment, comprising pre- and posttest scores, and a detailed description of 

implementation of teaching episodes, were given. This chapter concluded with 

comparison of results across the four teaching experiments. In this chapter, results 

highlighted the influence of instruction upon students' percent knowledge change and 

growth, and the real classroom factors which influence implementation of instruction. 

Discussion of issues emerging from the study is the focus of the next chapter. 
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CHAPTER 6 
DISCUSSION 

CHAPTER OVERVIEW 
From the results of the study, a multitude of issues pertaining to teaching and 

learning percent in particular, and teaching and learning mathematics in general, have 

arisen. In this chapter, four main issues have been selected for discussion: percent 

problem solving; percent knowledge and instruction; metacognition; and diagnostic­

prescriptive instruction. These issues are discussed in sections 6.1, 6.2, 6.3, and 6.4 

respectively. 

6 .1 Percent problem solving 
6 .1.1 Overview 

The focus of this section is on issues associated with the proportional number 

line method in relation to the development of percent problem solving proficiency. In 

section 6.1.2, prior research in the field of percent instruction and its relation to the 

advent of the proportional number line method is discussed. The effectiveness and 

efficiency of the proportional number line method for percent problem solving is 

described in sections 6.1.3 and 6.1.4 respectively. A model of percent problem 

solving incorporating the proportional number line method is presented in section 

6.1.5. A summary of key points is presented in section 6.1.6. 

6 .1. 2 The proportional number line method and prior research 

The proportional number line method as a procedure for percent problem 

solving consists of four steps: 

1 . Interpretation of percent problems and exercises as comprising three elements: 

part, whole, percent. 

2. Placement of part, whole, percent amounts on the dual-scale number line, 

stressing the relationship of the whole to 100%, and part to percent. 

3. Construction of the proportion equation. 

4. Solving of the proportion equation using the Rule of Three. 

Using this method, successful completion of percent problems relies on 

application of the Rule of Three procedure. Instruction in the Rule of Three must 

precede instruction in the proportion number line method. Results of the study have 

shown that the proportional number line method enabled students to operate 

competently and confidently on percent problems, and to successfully carry out 

percent calculations. This study has indicated that the proportional number line 
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method is a valuable method for percent problem solving. 

Previous research into instruction in percent has provided no such methods. 

Of studies into the teaching of procedures for percent problem solving, Parker and 

Leinhardt (1995) concluded that, to date, no single best method for instruction was 

apparent. However, previous research has provided suggestions for important 

elements of effective percent instructional programs. Three particular studies (Mason, 

1975; Maxim, 1982; Tredway & Hollister, 1963), reviewed by Parker and Leinhardt, 

provided useful insights into percent instruction, and directions which research into 

this field should take. Tredway and Hollister's (1963) study showed how holistic 

instruction of the three types of percent problems and the use of visual representations 

were a positive inclusion for instruction over drill and practice methods. Mason's 

(1975) study suggested how the multiplicative and additive relationships in percent 

situations could be emphasised, and proposed a method where conversions between 

percent and decimals could be avoided. Maxim's (1982) study proposed the key areas 

of difficulty for students in solving percent problems, as poor fraction knowledge, 

difficulty of the percent symbol, and interpreting word problems, and suggested that 

these need to be taken into consideration when planning percent instruction. 

In this study, findings and suggestions from the above studies were taken on­

board. This study has provided a clear sequence for instruction in percent which can 

be seen to be a study culminating from prior research. Like the Tredway and Hollister 

(1963) study, this study utilised a powerful visual representation, but it was not the 

lOxlO grid adopted by those researchers. Also, like the Tredway and Hollister study, 

this study suggests the value of presenting all three types of percent problems to 

students intermingled, rather than in a lock-step fashion. Like the Mason (1975) 

study, this study has shown how the additive and multiplicative relationships of 

percent increase situations can be described, but in a much clearer and simpler fashion 

than the method shown by Mason. This study has also shown how to overcome 

students' poor fraction knowledge, percent problem interpretation, and difficulty with 

the percent symbol, which hindered students' performance in the study by Maxim 

(1985). 

Results of this study can be seen to link and build on the results of the study 

conducted by Allinger (1985) (see section 2.3.2). Allinger's instructional sequence 

for percent problems included construction of proportion equations from percent 

situations, emphasis of the notion that percent means hundredths and that the whole 

relates to hundredths, and the use of the cross-multiply technique via a calculator to 

solve proportion equations. Allinger's instructional sequence, however, only related 

to Type I and Type II percent situations. Thus, the instructional sequence presented in 

this study goes beyond Allinger's study in that all three types of percent problems 

were dealt with, as well as exposing students to the additive and multiplicative nature 
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of percent situations, which Allinger did not. 

The relatively recent study by Lembke and Reys ( 1994) on percent 

instruction, does not relate to this study. Their findings suggested that intuitive 

percent notions should be fostered to enable students to spontaneously develop their 

own computational procedures for percent situations. Year 5 students in the Lembke 

and Reys study did this, however, Year 7 students did not. The Lembke and Reys 

study offered important suggestions for instruction prior to students being presented 

with formal procedures, but did not assist students who have already received such 

instruction, like the students in this study. 

The sequence of instruction developed in this study can be seen to be an all­

encompassing sequence, drawn and built on research from previous studies to clarify 

the components of effective percent instruction. 

6 .1. 3 The effectiveness of the proportional number line method for 

percent problem solving 

As presented in Chapter 5 (particularly section 5.5.4), all students in the study 

displayed poor percent problem solving and calculation skills prior to instruction (all 

groups scored less than 20% for this section of the Percent Knowledge Test). On the 

posttest, all students in all groups displayed greatly improved performance on such 

percent problem solving and calculation activities. The predominant method utilised 

by students for percent problem solving was the proportional number line method. 

Results of the study, therefore, indicate that instruction in the proportional number line 

method led to greatly enhanced student problem solving skill. This study has shown 

that, the proportional number line method proposed in Chapter 2 (section 2.4.2), is an 

effective method for percent problem solving for Year 8 students. 

The effectiveness of the proportional number line method can be attributed to 

its valuable features which respond to stated requirements for percent instruction: (i) 

that instruction must be developed which assists students to read, interpret and define 

relationships between percent problem components; (ii) a solid representation of 

percent is required; and (iii) instruction in percent must aim to build students' 

understanding of percent as a proportion (Parker & Leinhardt, 1995). 

One of the difficulties students experience in percent problem solving is in 

problem interpretation and understanding of the relationship between the component 

parts of the problem (Parker & Leinhardt, 1995). To help students read, interpret, and 

define relationships between percent components, in this study students were 

instructed to interpret the elements of percent situations in terms of part, whole and 

percent. This step in the proportional number line method was adapted from research 

on the use of a part-part-whole schema to assist students in identifying addition and 

subtraction problems (Mahlios, 1988; Resnick, 1982; Wolters, 1983). Students were 
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presented with a part-whole-percent schema for interpreting percent problems, and for 

identifying the relationships between the elements within problems. In this study, 

students readily developed proficiency in identifying the part, whole and percent 

components of percent situations (see sections 5.1.7, 5.2.7 and 5.3.7) and in 

analysing the relationships between elements of the percent situations, encapsulated by 

the following diary entry from a Group 3 student: "One thing I learnt in maths today 

was how to work out percent problems. I found out that part means percent, well they 

mean the same thing." For this student, the part-whole-percent schema assisted her to 

see the relationship between the quantity whole in problem situations with 100%, and 

the quantity part as a percent. The part-whole-percent schema, therefore appears to 

provide a clear and powerful linkage to the components of percent situations and 

interpretation of those components as a comparison to a standard base of 100. 

Within the proportional number line method, the dual-scale number line was 

proposed as a solid representation of percent. The number line model was selected as 

a visual model from suggestions that visual models are a vital link in developing 

students' problem solving skills (e.g., Post & Cramer, 1989; Streefland, 1985). 

Leinhardt (1988) stated that appropriate mathematical models are those which serve to 

explain algorithms; which embody the principles of the calculation procedures; and 

which may provide students with a mechanism for solving new problems. As used in 

the study, the dual-scale number line was seen to fulfil all such requirements. It very 

simply, but very powerfully served to represent all three types of percent situations as 

statements of proportion; it enabled percent situations to be interpreted as part/whole 

situations comparing to an equivalent fraction with a denominator of 1 00; it assisted 

students perform the algorithm in its ability to organise the elements within the percent 

situation into a statement of proportion and therefore a proportion equation. Most 

importantly, the dual-scale number line simply lent itself to dealing with percentages 

greater than 100%. By extending the number line beyond the 100% mark, the change 

to the original whole could be represented and easily visualised on the extended 

number line. The dual-scale number line used in this study provided a solid 

representation of percent as a proportion, and easily lent itself to representing percent 

increase and decrease situations. Not only that, it was readily adopted by students in 

the study, and therefore was seen to be an accessible and viable model for percent 

problem solving with Year 8 students. 

The dual-scale number line is a relatively unexplored representation for 

percent situations, with the 10x10 grid more commonly used for developing percent 

conceptual understanding (Cooper & Irons, 1987; Reys et al., 1992), and for 

representing percent situations for solution (Bennett & Nelson, 1994; Cooper & Irons, 

1987; Weibe, 1986). The number line model used in this study appears to be superior 

as a representation for percent problems, and for visualising solution procedures as the 
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number line caters to all three types of percent problems. The IOxlO grid model 

suggested by Weihe (1986) caters only to Type I and II problems, and that proposed 

by Cooper and Irons (1987) caters only to the simpler Type I problems. Bennett and 

Nelson (1994) described how the 10x10 grid could represent all three types of percent 

situations, and assist solution of such problems, but their approach is extremely 

complicated, relying predominantly on students' mental computational and conversion 

skills for successful use. One of the criticisms of the use of the lOxlO grid for solving 

percent problems is that it does not readily represent percents greater than 100% 

(Parker & Leinhardt, 1995). To show, for example, 120% using a 10x10 grid, two 

grids are required, which would thus show 2 wholes rather than a change to the 

original whole. In this study, it was seen that the dual-scale number line readily 

catered to percents greater than 100%. Other representations for percent suggested in 

the literature, include the triangular representation (Boling, 1985; Teahan, 1979) and 

the "is-of' percent mnemonic (McGivney & Nitschke, 1988 - see section 2.2.5). 

Both these representations require students to "fit" particular values within the percent 

situation into the representation. These representations can be seen to be somewhat 

limited when compared to the number line or even the 10x10 grid, as they do not 

accurately represent the "hundredthsness" of percent. They also do not appear to have 

the potential to develop students' principled-conceptual knowledge as a result of their 

use. 

As a representation to assist percent problem solving, the value of the dual­

scale number line can also be seen in its power to embody the concept of percent as a 

proportion. According to English and Halford (1995), the essence of understanding a 

mathematical concept is to have a "mental representation or model that faithfully 

reflects the structure of that concept" (p. 18). The dual-scale number line provides a 

clear picture of percent as a statement of proportion (Dewar, 1984 ), and it was through 

experience with such a number line that, at least one student, developed understanding 

of percent as a proportion (see section 5.4.5). As described in section 5.4.5, one 

student utilised the proportion equation to solve a problem relating to degrees in a 

circle to construct a pie graph. The student's written response indicated that the 

student saw a relationship between 65% as 65
/ 100 and x/360 to convert 65% to number of 

degrees to shade on the pie graph. As a result of this study, it was seen that the dual­

scale number line as a representation for percent situations can lead to development of 

proportional understanding. In this study, it was also seen that student utilisation of 

the dual-scale number line was high after instruction, with students abandoning their 

own previous methods for percent problem solving and calculation. 

Posttest results also showed that many students began to shorten the number 

line model to straight construction of the proportion equation. It is hypothesised that 

this short version reflects the growth of proportional knowledge in students, in that 
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they were seeing a percentage situation as equivalent to a part/whole fraction situation. 

Although students' understanding of the proportional nature of the dual-scale number 

line could not be gleaned from pen and paper test results, the number line model 

appeared to be internalised by students in that many students dispensed with drawing 

the number line and simply constructed the proportion equation. The students 

positioned the numbers in the proportion equation as they would be positioned on the 

number line (although it is acknowledged that a small percentage of students did place 

numbers incorrectly in the proportion equation). Hiebert and Carpenter (1992) 

suggested that the physical representation of a mathematical notion experienced by 

students influences the way that notion is internalised. 

In this study, the number line model was internalised as a proportion equation 

for the majority of students, with the percentage part/whole being equivalent to the 

quantity part/whole. The number line therefore provided a representational link 

between the elements within the percent situation and the proportion equation, and as 

the number line appeared to faithfully reflect the structure of percent as a proportion, it 

promoted students' understanding of percent as a proportion that could be linked at a 

later time to students' prior knowledge of the proportional representation. 

As the students in this study internalised the number line as a model for 

percent as a proportion, it can be argued that the number line model contributed to their 

conceptual understanding of percent as a proportion, although this was not directly 

determined. The number line did, however, lead to the growth of proportional 

understanding for the student mentioned above who exhibited transfer of knowledge 

when she spontaneously constructed a proportion equation in a non-percent but 

proportional situation. 

This evidence of knowledge transfer as a result of internalisation of a mental 

model strongly suggests the appropriateness of this model for representing percent as a 

proportion, and may answer the call by Parker and Leinhardt (1995) when they stated 

a "solid representation of percent may be one key to unlocking the door to an 

understanding of percent" (p. 465). 

6 .1. 4 The efficiency of the proportional number line method for 

percent problem solving 

The efficiency of the proportional number line method can be seen in its ready 

adoption by the students in this study, and its utilisation of the Rule of Three 

procedure for percent calculations. 

Analysis of students' responses on pre- and posttests on Section III show 

that, after instruction, there was a change in students' procedures for performing 

percent calculations and solving percent problems, with the majority of students in all 

groups using the proportional number line method. Across all four groups, there was 
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a greater utilisation of the proportional number line method, or simply the proportion 

equation for solving the three types of percent problems. This strategy is different to 

the various strategies employed by students prior to instruction, which included 

decimal multiplication, use of calculator percent button, fraction multiplication, and 

trial and error. In this study, it was seen that students appeared to abandon their own 

strategies for solving the three types of percent problems and to adopt the proportional 

number line method. Group 3 students' diary responses indicate that the number line 

method was a preferred method for percent equations and problem solving, as students 

found it quick and easy. The following responses provide this evidence: 

"The new way we learnt to do percent problems is a lot easier than the way 

we learnt last year, so now I can do percent problems a lot easier and 

quicker." 

"Using the new way is getting easier." 

"I am pleased that I have learnt more about percentages. I understand them 

more now and can work them out faster." 

"I think I am getting better at percentage now because I find it easier to work 

them out with the number line." 

"I use that way (number line method) instead of using my own way because it 

is so easy. " 

Clearly, the number line strategy was readily adopted by students, particularly 

Group 3 and 4 students, and was seen by students as a simple procedure for 

successful calculation of percent equations and problems. 

For solving proportion equations, and therefore percent problems, the 

students in this study were taught the Rule of Three procedure. Students developed 

facility with this procedure in a short period of time, and enjoyed the speed with which 

it enabled them to complete calculation of percent equations. These reactions are 

similar to those of students in the research study conducted by Allinger (1985) who 

provided Year 10, low achieving students with the procedure for the same reason. 

The Rule of Three taught to students simply as a procedure has been 

questioned due to its seeming meaninglessness (Cramer et al., 1992). Others have 

suggested that it should not be directly taught, but should be borne from experiences 

for conceptual development of ratio and proportion (Hart, 1981; Streefland, 1985; 

Robinson, 1981). However, building students' proportional knowledge and 

reasoning skills is a slow and gradual task as such knowledge and skill is dependent 

upon various rational number concepts, such as, equivalence, division, ratio (Post et 

al., 1988). Development of proportion knowledge, therefore, is not a simple and 

straight forward task, which could be "added on" prior to instruction in percent. The 

dilemma here is that, in this study the Rule of Three enabled successful operation in 
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the domain of percent, but meaningful application would depend upon building 

conceptual knowledge of proportion. Thus, like the study by Allinger ( 1985), the 

decision was made to teach the Rule of Three for successful percent problem solving. 

In this study, it was seen that application of the Rule of Three contributed to successful 

performance. The provision of procedures for successful problem solving 

performance is supported by Noddings (1990) who stated that concentration on 

procedures may actually interfere with students' construction of important concepts 

and principles. In this study, the procedure was seen as peripheral to representation of 

percent as a proportion. 

Inclusion of practice of the Rule of Three in the instructional sequence may 

appear to work against Parker and Leinhardt' s (1995) calls for percent instruction to be 

away from practise of mechanical procedures. However, in this study, the Rule of 

Three was a minor, but essential component of the instructional sequence to enable 

completeness in percent problem solving. Other components of the proportional 

number line method provided students with a wider understanding of percent as a 

proportion; thus the Rule of Three procedure was not the sole component of the 

instructional sequence. The proportional number line method added a dimension to the 

instructional sequence in that students were provided with a very old and once 

esteemed mathematical procedure (Swetz, 1992), and investigation into the origins of 

the procedure potentially would provide for an interesting investigation (Resnick & 

Omanson, 1987). Also, inclusion of the Rule of Three enabled successful problem 

computation, and thus students were immersed in solving a variety of percent 

problems using a proportional method. Immersion in problem solving tasks can 

actually lead to the development of underlying key concepts (Lo & Watanabe, 1997). 

6 .1. 5 A model for percent problem solving incorporating the 

proportional number line method 

The proportional number line method can be seen to incorporate four 

elements: a percent schema for interpreting percent situations in terms of their 

component parts; a representation which embodies percent as a proportion; a structure 

for symbolisation of the percent situation as a proportion equation and hence an 

equivalent fraction; and a procedure for generating the equivalent fraction. These four 

elements are incorporated into a model for percent problem solving as follows: 

1 . Percent situations contain three elements, which can be identified as part, 

whole, percent. In any percent problem, two elements are given, and solution 

requires finding the third. The three types of percent problems give the three 

different combinations of the three elements: 

Type I e.g. 25% of 60 = ~ part=~, whole=60, percent= 25% 

Type II e.g.~% of 60 = 15 part= 15, whole=60, percent=~% 
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Type III e.g. 25% of~= 15 part= 15, whole=~, percent= 25% 

2. A dual-scale number line can represent the elements of the percent problem. 

For each of the three different types of percent problems, the elements are 

located in different places: 
0% 

? ? 15 15 

60 100% 60 ? 

Type I Type II Type III 

3 . The percent situation can be written as a proportion equation taken directly 

from the number line: 

Type I 

25 = .1_ 

100 60 

Type II 

_1_=12. 

100 60 

Type III 

25 = .1.5. 
100 ? 

4. The Rule of Three procedure enables solution of the proportion equation, and 

therefore the percent problem: 

Type I 

25 = .1_ 

100 60 

25 X 60 + 100 = 15 

Type II 

_1_ = 15 

100 60 

15 X 100 + 60 = 25% 

Type III 

25 = .1.5. 
100 ? 

15 X 100 + 25 = 60 

In the above description, the three different types of percent problems (Type 

I, II and III) are given to show the different placement of the elements on the number 

line according to the problem types. To use the proportional number line method, 

students do not need to identify whether the percent problem is a Type I, II, or III 

problem; they merely need to identify elements of the problem in terms of part, whole 

or percent. For placement of elements on the number line, students need to recognise 

that the "whole" corresponds to 100% and thus these two amounts are on the same 

level either side of the number line. The percentage and part are on the same level, 

with the percentage located on the scale between 0% and 100% and the corresponding 

part at the same level on the other side of the number line. The proportional number 

line method, therefore is not a traditional/case procedure (see section 1.1.5) for percent 

where solution depends on application of one of three rules for solving each Type or 

Case. 

The dual-scale number line of the proportional number line method lends itself 
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to representation of percent increase problems. When used in this way, it clearly 

exemplifies the additive and multiplicative nature of percent increase situations. Figure 

6.1 shows representation of the percent increase situation of: A baby's mass increased 

25% in 3 months from its birthweight of 3156g. 

0% 

100% 3156g 
+25% 

125% ? 

Figure 6.1. The dual-scale number line representing the additive and 

multiplicative nature of percent increase situations. 

From Figure 6.1, it can be seen that this percent increase situation can be interpreted 

two ways. The baby's new mass can be seen as its original mass plus 25% more. It's 

new mass can also be seen as 125% of its original mass. Therefore, two calculation 

procedures are possible. Either, by finding 25% of the original mass and adding this 

to the original mass to determine the new mass. Or, by calculating 125% of the 

original mass (using the Rule of Three: 100
/ 125 = 3156/?) to determine the new mass. 

The proportional number line method can also be used for percent decrease 

situations. In Figure 6.2, the number line depicts the problem: A shirt costing $75 

was reduced 35% in a sale. How much would the shirt cost now? 

? 
-35% 

$75 

Figure 6.2. The dual-scale number line representing the subtractive and 

multiplicative nature of percent decrease situations. 

To place 65% on the number line, the problem needs to be clearly interpreted using 

complementary percent principle knowledge: a 35% discount is the same as 65% of the 

original amount. A subtraction takes place, and thus the number line model shows the 

subtraction. The situation can thus be interpreted in two ways: the shirt is discounted 

35%; or, the shirt now costs 65% of the original amount. Similarly, calculation can 

also proceed in two ways. Either, 35% of the original cost can be found, and 
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subtracted from that cost, or calculate 65% of the original cost using the Rule of Three 

(
65

/ 100 = 1
/ 75). Using a subtractive application takes percent discount problems from a 

two-step procedure to a one-step procedure. The number line thus organises elements 

within percent problems, particularly increase and decrease problems, so that 

interpretation can occur. 

The proportional number line method appears to be a simple, yet powerful 

representation for percent situations as proportions, and more importantly, for 

developing understanding of the additive (and subtractive) and multiplicative nature of 

percent increase (and decrease). 

6. 1. 6 Summary of key points 

In this section, the proportional number line method and percent problem 

solving were discussed. The power of the proportional number line method was seen 

in its effectiveness to assist students interpret percent problems, to provide a solid 

representation of percent, and a means to develop students' understanding of percent 

as a proportion. The proportional number line was also seen as an efficient means for 

percent problem solving as students in this study readily adopted the method, and the 

inclusion of the Rule of Three procedure enabled efficient solution of percent 

calculations. Also in this section, results of this study were compared to other studies 

into percent instruction, and it was seen that the model of percent problem solving 

proposed, builds and extends results of previous studies. 

6. 2 Percent knowledge 
6. 2 .1 Overview 

In this section, percent knowledge is discussed. In section 6.2.2, the growth 

of students' percent knowledge through utilisation of the proportional number line 

method for percent problem solving is discussed. In section 6.2.3, change in 

students' principled-conceptual percent increase and decrease knowledge is discussed 

in relation to instruction. In section 6.2.4, permanence of students' percent 

knowledge after instruction is discussed through presentation of results of delayed 

posttest scores. A model of percent instruction and a model of percent knowledge is 

presented in section 6.2.5 and 6.2.6 respectively, generated through analysis of results 

of this study. A summary of key points is presented in section 6.2. 7. 

6. 2. 2 The proportional number line method within the model of 

percent knowledge 

To use the proportional number line method to assist percent problem solving 

requires both concrete and computational percent knowledge. Concrete percent 

knowledge associated with the proportional number line method is the ability to 
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construct the dual-scale number line to represent real-world percent situations, and to 

use this scale to estimate percentages. Computational percent knowledge associated 

with the proportional number line method is the ability to solve the percent problem 

(proportion equation) using the Rule of Three procedure. 

In the teaching program, with its focus on developing students' problem 

solving skills, students' concrete and computational percent knowledge associated 

with the proportional number line method were actively and overtly promoted through 

instruction. Via the Percent Knowledge Test, it was determined that instruction 

contributed to the development of such concrete and computational percent knowledge 

as students adopted the proportional number line method for percent problem solving. 

Principled-conceptual percent knowledge associated with the proportional 

number line method was not overtly promoted during the teaching program, and was 

not directly determined via the Percent Knowledge Test. Principled-conceptual percent 

knowledge associated with the proportional number line method is (i) that percent is a 

comparison to a standard base of 100; (ii) that every fraction is a percent if the 

denominator is 100; and (iii) that any fraction can be converted to an equivalent 

fraction of specified denominator or numerator through solving for the unknown (or 

using the Rule of Three). 

Descriptions of concrete, computational, and principled-conceptual percent 

knowledge associated with the proportional number line method suggest the embedded 

and specific nature of principled-conceptual percent knowledge in relation to the 

concrete and computational knowledge of particular percent procedures. In accordance 

with Leinhardt' s ( 1988) definitions of concrete, computational and principled­

conceptual mathematical knowledge, defining principled-conceptual percent 

knowledge is dependent upon the concrete representation and the computational 

procedures selected for percent calculations and problem solving. As Leinhardt stated, 

concrete knowledge is "the frequently pictorial systems ... that often serve as a basis for 

demonstration or explanation of an algorithm" (p. 121), computational knowledge is 

the "procedural knowledge of mathematics, the algorithms and procedures for 

operations" (p. 121), and principled-conceptual knowledge is the "underlying 

knowledge of mathematics from which the computational procedures and constraints 

can be deduced" (p.121). 

By definition, students' concrete and computational knowledge would be 

relatively simple to determine, as it would reflect in their ability to complete particular 

mathematical calculations and procedures. Students' principled-conceptual 

knowledge, however, would be more difficult to determine because of its covert 

nature. The underlying principles and concepts associated with the proportional 

number line method were not overtly the focus of instruction in the teaching program, 

however, it was seen that, for one student at least, the underlying principles of the 
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proportional number line method were gleaned as a result of developing concrete and 

computational percent knowledge associated with the proportional number line 

method. The student referred to here spontaneously transferred knowledge of the 

proportional number line method to a non-percent, but proportional, situation. This 

student's response indicates that, as a result of being presented with a model for 

representing percent situations as proportions, the student developed the principled­

conceptual percent knowledge described previously. The proportional number line 

method thus directly influenced this student's construction of knowledge about 

proportion which transferred to other situations. Instruction in the proportional 

number line method, unexpectedly enabled a transfer measure (Hiebert & Weame, 

1991) of the effect of this key process upon cognitive activity, with this student 

transferring the key process spontaneously to another task not presented in the original 

instruction. Such a spontaneous transfer indicates the power of the proportional 

number line method to promote principled-conceptual percent knowledge. 

6. 2. 3 Principled-conceptual percent knowledge of percent increase 

In this study, students received direct instruction to promote their principled­

conceptual percent knowledge of percent increase and decrease situations. As stated in 

the model of percent knowledge proposed in Chapter 2 (section 2.4.4 ), principled­

conceptual knowledge of percent increase and decrease language consists of: the 

additive/subtractive percent increase principle where percent increase/decrease 

situations are interpreted as an added or subtracted change to the original whole; and 

the multiplicative percent increase/decrease principle where percent increase/decrease 

situations are interpreted as a multiplicative change to the original whole. Students' 

concrete percent knowledge of the dual-scale number line was built upon to promote 

students' understanding of the additive/subtractive and multiplicative knowledge of 

percent increase/decrease situations. Within the teaching program, one entire episode 

was devoted to the language of percent increase and decrease. In the Percent 

Knowledge Test, particular items were constructed specifically to provide a snap-shot 

of students' principled-conceptual knowledge of the additive/subtractive and 

multiplicative language of percent increase/decrease, before instruction, and directly 

after instruction. On the Percent Knowledge Test, these items were items 6a-c and 

items 7a-c of Section I. Students' scores on the additive/subtractive items (items 6a, 

6b and 6c) were combined to give a singe score for students' additive/subtractive 

percent knowledge and similarly with the multiplicative items (items 7a, 7b and 7c). 

Scores for these items across the four groups are presented in Table 6.1. 
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Table 6.1 

Pre- and Posttest Means (%)for Additive and Multiplicative Language of Percent 

Items on the Percent Knowledge Test Across the Four Groups 

add. 

mult. 

Group 1 Group 2 Group 3 

pre-

59% 

27% 

post-

47% 

26% 

pre-

53% 

28% 

post-

67% 

48% 

pre-

79% 

23% 

post-

82% 

62% 

pre-

88% 

36% 

Group 4 

post-

80% 

83% 

Looking across the table at pretest scores for each group it can be seen that 

students' interpretation of the additive language of percent increase situations is 

generally satisfactory (greater than 50%), with Group 3 and 4 students displaying 

greater interpretation of such items. Posttest scores for all groups are generally similar 

to pretest scores, indicating little change in interpretation of additive percent situations 

after instruction. Looking across the four groups at items relating to multiplicative 

understanding of percent increase, it can be seen that students in all four groups 

experienced difficulty with such language, with pretest scores around 30%. Posttest 

scores, however, show change in interpretation of multiplicative percent items for 

groups 2, 3, and 4, but not for Group 1. Group 1 posttest scores reflect little change 

compared to pretest scores. Comparing posttest scores between Groups 2, 3 and 4, 

there appears to be a positive trend in scores with Group 2 showing a 20% increase, 

Group 3 showing a 39% increase, and Group 4 showing a 47% increase. This trend 

is similar to the trend in test scores for all groups overall (refer Chapter 5, section 

5.5.4), and as discussed in Chapter 5, appears to reflect success ratings of instruction. 

The teaching episode specifically focussing on the language of percent increase and 

decrease was rated as unsuccessful-successful for Group 1, and successful for Groups 

2, 3 and 4. 

In terms of knowledge change and growth with respect to the 

additive/subtractive and multiplicative language of percent, the results of this study 

appear to suggest that students' knowledge of additive percent language was relatively 

unchanged as a result of instruction, although students' knowledge of this language 

was generally well-developed prior to instruction. Results do appear to suggest that 

instruction was effective for promoting students' understanding of the multiplicative 

language of percent increase, with greatest knowledge increase occurring with Group 

4. Group 4 students not only were provided with instruction directly related to the 

language of percent increase and decrease as were Groups 2 and 3, but also engaged in 

an 0/N trial (to be discussed in section 6.4). Instruction received by Group 4 students 

appears to have promoted students' knowledge of the multiplicative language of 

percent increase to a much greater extent than instruction received by Groups 2 and 3 , 

239 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



although instruction for Groups 2 and 3 was effective in promoting students' 

multiplicative understanding to a satisfactory level. 

As described in section 5.1.9, the teaching episode for the language of percent 

increase and decrease implemented with Group 1, began with physical representation 

of percent increase situations (using 1 kg bags of sugar to simulate a baby's growth, 

and so on), and cardboard strips to represent the original plus the percent increase. 

This method of representing percent increase situations was replaced with the number 

line (familiar to the students for percent problem solving) extended beyond 100%. 

This change in representation and focus of instruction appeared to assist students to 

interpret percent increase situations, as the extended number line was the only 

representation for percent increase situations used with Groups 2, 3 and 4, who were 

the students who exhibited greater facility in interpreting the language of percent 

increase and decrease. The results reported here appear to further support the dual­

scale number line as a powerful representation for percent situations. 

The focus of this episode within the teaching program reflects the attempt to 

develop students' multiplicative understanding of percent situations as proportions. 

As discussed in Chapter 2 (section 2.3.3), development of multiplicative structure is a 

necessary element of proportional reasoning (Behr et al., 1992). In Chapter 2, Behr, 

Harel, Post and Lesh's (1992) suggested activities for the development of 

multiplicative structures were summarised, describing activities to enable students to 

explore "change". The example given was that students should explore change to 

numbers in both additive and multiplicative ways, where, for example an additive and 

multiplicative change to 4 can result in 8 (add 4 or multiply by 2), but that such a 

multiplicative change will not hold for 13 changing into 17, but an additive change 

will. Behr et al. stated that representation of change (or difference) in both additive 

and multiplicative terms will promote proportional reasoning. The dual-scale number 

line can be seen to serve this function, through presentation of the proportional number 

line method as described in section 6.1.5. It can be argued that the dual-scale number 

line to represent percent increase situations, used in this study, successfully and 

simultaneously modelled both additive and multiplicative change in percent increase 

and decrease situations. Changes to the whole which occur in percent increase and 

decrease situations can be readily represented on the dual-scale number line, with the 

number line extended beyond the 100% mark for increase situations, and travelling 

backwards from 100% on the number line for percent decrease situations. Visually, 

the additive or subtractive change and the multiplicative change in percent increase and 

decrease situations is thus facilitated by the number line representation. The dual-scale 

number line therefore, is a representation which can be seen to faithfully reflect the 

structure of the concept; a vital aspect to evaluating the appropriateness of a 

representation (English & Halford, 1995). 
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In this study, students' ability to interpret the multiplicative nature of percent 

increase and decrease situations was greatly enhanced through instruction, but 

students' understanding of the additive/subtractive nature of percent increase and 

decrease situations remained relatively unchanged. This suggests that further explicit 

instruction is required to develop and link such knowledge to promote further 

understanding of percent as a statement of proportion, and therefore develop students' 

proportional reasoning. 

6. 2. 4 Permanence of percent knowledge 

To provide an indication of the permanence of percent knowledge change after 

instruction, a delayed posttest was administered to Groups 3 and 4 approximately 8 

weeks after instruction. Results of these delayed posttests for Group 3 and 4, 

presented previously in Chapter 5 (Figure 5.14 in section 5.3.2 for Group 3, and 

Figure 5.18 in section 5.4.2 for Group 4) have been combined in Table 6.2. As listed 

in the Taxonomy of delayed posttest items (see Appendix B), the test contained items 

relating to 5 areas of percent knowledge: the additive language of percent increase; the 

multiplicative language of percent increase; percent calculations; percent problem 

solving; and two-step increase problems. Students' scores for items in these 5 

categories correspond to the 5 scores for each group given. It is also seen from Table 

6.2, that there is one score for item 3 and item 4, whereas in the figures presented in 

Chapter 5, three separate scores for each item (3a, 3b and 3c and 4a, 4b and 4c) were 

presented. Items 3 and 4 correspond to percent calculations and percent problem 

solving of the three types ofpercent situations, and as students' scores on these items 

were similar for the three types of percent situations, scores were combined to indicate 

performance in general on these two items. Combination of scores also occurred for 

item 5 to give one score for two-step percent problem solving. 

Table 6.2 

Delayed Posttest Means (%)for Group 3 and 4 

Item 1 2 3 

Group 3 82% 29% 76% 

Group 4 100% 96% 95% 

4 

83% 

96% 

5 

12% 

38% 

From Table 6.2 it can be seen that, for percent calculations and problem 

solving of the three types of percent situations (items 3 and 4), student performance 

was high. Group 4 students' performance was much greater than Group 3 with scores 

of 95% and 96% respectively for items 3 and 4. Students' methods for percent 

calculations and problem solving was predominantly the proportional number line 

method. Group 4 students' two-step problem solving was generally better than group 
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3 (item 5), although neither group scored 50%. For additive and multiplicative 

language of percent increase items (items 1 and 2), Group 4 scored higher than Group 

3 on both items. Group 3 students performed better on the additive language item 

(item 1) than the multiplicative item (item 2). 

Analysis of the delayed posttest results suggests that the proportional number 

line method was well retained by students several weeks after instruction, and students 

continued to successfully perform percent calculations and solve percent problems 

using the method. Students' principled-conceptual knowledge of the additive and 

multiplicative percent increase principles was greater overall for Group 4 than Group 

3, particularly the principle of multiplicative percent increase. As previously stated 

(section 6.2.3, section 5.5.4), the difference in instruction between Group 3 and 4 

was that Group 4 underwent an 0/N trial on the multiplicative language of percent 

increase, whereas Group 3 students did not. The 0/N trial, therefore, appears to have 

contributed to students' permanence of this knowledge over time. 

6. 2. 5 A model of percent instruction 

As stated in section 5.5.2, the teaching program consisted of metacognitive 

training and percent instruction. Percent instruction comprised essential percent 

instruction for percent problem solving, and ancillary instruction for percent concept 

and associated skill development. Essential percent instruction for percent problem 

solving related to the proportional number line method. The embodiment of the 

proportional number line method is the dual-scale percent number line. As discussed 

in section 6.1.3, the power of the dual-scale number line lies in the fact that it provides 

a solid representation of percent; it faithfully reflects the nature of the concept of 

percent as a proportion; it is simple to construct and to extend as necessary; its dual­

scale organises the elements of percent situations; it represents all percent situations 

within the conceptual field; and it simultaneously can represent the additive and 

multiplicative change inherent in percent increase and decrease situations. In this 

study, the dual-scale number line was introduced to students as a means to represent 

percent situations after analysis of a number of percent problems of the three types. 

The other steps in the proportional number line method were also introduced to 

students during this time. As a result of this sequence of instruction, students 

developed proficiency in solving the three types of percent problems, and thus 

developed concrete and computational percent knowledge. It was through the 

provision of a concrete model and a prescriptive method for solving percent problems 

that students developed such knowledge. This sequence of instruction also appeared 

to lay the foundation for the development of principled-conceptual percent knowledge 

as well as proportional reasoning skills. 

This approach to instruction is at odds with instructional approaches which 
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advocate providing students with experiences to enable them to develop their own 

percent problem solving skills, computational procedures, and principled-conceptual 

knowledge (Behr et al., 1992; Hiebert & Carpenter, 1992; Streefland, 1985). Also 

this approach of introducing students to percent problem solving of the three types of 

percent problems before practising computational skills via engagement in percent 

exercises, is at odds with the type of instruction which, as suggested by Resnick 

(1992), appears to be based on learning hierarchies and the notion that simpler skills 

must be learned before students can apply these skills to problem situations. Of these 

two approaches to instruction, it can be seen the first "discovery" approach would be a 

valuable approach for initial instruction in percent, and the second "skills before 

application" approach would possibly stifle students' ability to develop principled­

conceptual links amongst procedures presented (as suggested by Resnick, 1992). For 

the Year 8 students in this study, who had received prior instruction in percent and 

engaged in activities to develop their conceptual understanding of percent, the 

approach to instruction presented appeared to be rich in its power to promote students' 

percent problem solving skills and broaden their knowledge of percent. 

A model of percent instruction is proposed, depicted in Figure 6.3. The 

teaching program in this study commenced with instruction in the proportional number 

line method; this led to the development of concrete and computational percent 

knowledge for percent problem solving, and appeared to lead to the development of 

proficiency in percent problem solving. Through percent problem solving experience, 

it is suggested that principled-conceptual percent knowledge was developed, or at least 

students were exposed to the following percent principles (as outlined in the model of 

percent knowledge proposed in section 2.4.4): (i) the concept of percent as part of a 

whole where the whole has 100 parts; (ii) the concept of percent as a comparison to a 

standard base of 1 00; (iii) the complement principle where every percent part has a 

complement part to total the whole of 100%; (iv) the fraction-equivalence principle that 

every fraction is a percent if the denominator is 100; (v) the additive/subtractive percent 

increase/decrease principle where percent increase/decrease situations are interpreted as 

an added or subtracted change to the original whole; (vi) the multiplicative percent 

increase/decrease principle where percent increase/decrease situations are interpreted as 

a multiplicative change to the original whole; and (vii) there are only three types of 

percent problem situations. The instructional sequence, depicted in Figure 6.3 was 

seen to flow and draw from students' prior knowledge of related mathematical topics 

of decimal-fractions, ratio, proportion. For this model of percent instruction, it is 

proposed that through instruction in the proportional number line method, concrete and 

computational percent knowledge will develop, students' experience in percent 

problem solving will increase, which will lead to the development of principled­

conceptual percent knowledge. In this model of percent instruction, it is proposed that 
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through instruction on the proportion number line method, knowledge of associated 

mathematical topics of fractions, decimals, ratio, proportion is enhanced, and 

knowledge of the Rule of Three is developed. Future instruction can then build on this 

knowledge. 

Concrete and computational percent 
knowledge 

Experience in percent solving 

Figure 6.3. A model of percent instruction as the foundation to promoting 

percent knowledge and associated mathematical knowledge. 

This model is based on the belief of teacher efficacy. Smith ( 1996) stated that 

teacher efficacy is the degree to which teachers believe they directly influence their 

pupils' achievement. High teacher efficacy, according to Smith, results in higher 

student outcome; the creation of learning environments by the teacher which are 

responsive to students; teachers who spend more time with students experiencing 

learning difficulty; classrooms which make productive use of group work; and 

teachers who are willing to try new ideas and innovations in the classroom. The down 

side of high teacher efficacy, according to Smith, is that such teachers regard 

themselves as the holders of subject knowledge, and that they see their role as one of 

transmission of knowledge to students. According to Smith, teachers thus tend to use 

a "telling" model of teaching, where the students' role is to listen, watch and practise, 

and the teacher's efficacy is measured through student achievement on computational 

tasks. Smith suggests that an "action model" of teaching is required to align 

curriculum reform, where students not only learn computational skills, but also 

mathematical reasoning and number sense. Action models are those which engage 

students in problem situations, and the teacher is a collaborator, facilitating students' 

construction of knowledge. However, the route to developing action models of 
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teaching for teachers with a high teacher belief efficacy, according to Smith, is not 

clear. 

The model of percent instruction presented in Figure 6.3 is an intermediate 

view to the models provided by Smith, and it is proposed that it does provide direction 

for teachers with high teacher efficacy beliefs. The model in Figure 6.3 shows how 

direct teaching of a method for problem solving enables students to construct and 

enhance their own knowledge of percent and related mathematical topics through 

engagement in percent problem solving. The proportional number line method, 

created in response to the need for instruction to develop students' understanding of 

percent, can be seen to act as a bridge between teaching for computation and problem 

solving proficiency, and teaching to assist principled-conceptual percent knowledge 

development. Smiths' telling teaching model versus the active teaching model can be 

regarded as two extremes of a continuum. A telling model for percent would be seen 

to promote students' percent computational proficiency. An action model would take 

more time than a school curriculum could afford. The model for percent instruction 

presented in Figure 6.3 is a clean, direct model midway between two extremes. 

The model of instruction in Figure 6.3 can also be seen as a type of 

pedagogical mediation model as advocated by Vygotsky (Schmittau, 1993a, 1993b). 

The essence of pedagogical mediation, according to Schmittau ( 1993a) is that 

instruction focuses on exposing the structures of mathematical topics so that students 

can see interrelationships amongst concepts and thus engage in problem tasks which 

require higher order thinking. Instruction is focussed, presenting students with 

carefully sequenced learning tasks and activities to enable them to extract the 

mathematical structure of the topic. This approach is different to a "discovery 

learning" approach of a constructivist nature, and is based on the belief that students 

do not need to "discover" or rediscover mathematical concepts which already exist and 

have been historically and culturally constructed. The pedagogical mediation 

philosophy states that scientific concepts (as distinct from everyday concepts; hence 

mathematical concepts are regarded as scientific concepts) "objectively exist and need 

only to be individually appropriated" (Schmittau, 1993b, p. 16). The essence of 

pedagogical mediation is summarised by Davydov (cited by Schmittau, 1993b) in the 

following manner: 

Formal education must find a mode of presentation within which, through 

adequately constructed activity, the child can appropriate the objective 

essences of scientific concepts in their essential systematic interrelatedness. 

In the absence of such pedagogical mediation scientific concepts can be 

expected to be appropriated only with difficulty or not at all. (p. 16) 

Pedagogical mediation, therefore, provides pathways for all students to enable 
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them to extract the essence of mathematical concepts. Pedagogical mediation links to 

the notion of teacher efficacy and belief in teacher influence upon learning. The 

proposed model of percent instruction can be seen to be a model of pedagogic 

mediation in the topic of percent as it enabled students to become proficient percent 

problem solvers, it assisted students to make connections between the three types of 

percent problems and to link percent to other mathematical topics. The model of 

percent instruction gives rise to a model of percent knowledge, as presented in the next 

section. 

6. 2. 6 A model of percent knowledge 

led to the development of students' percent knowledge. It was seen that the 

proportional number line method, and particularly the dual-scale number line led to the 

development of percent problem solving proficiency and conceptual percent 

knowledge. From results of this study, and from percent literature, a model of percent 

knowledge is suggested. 

Percent knowledge consists of two main elements, or nodes, these being: (i) 

percent concepts and (ii) percent applications. In the literature, suggestions are 

provided for (i) promoting the concept of percent in learners (as presented in Chapter 

2, section 2.1 ), and (ii) assisting students to solve percent application problems (as 

presented in Chapter 2, section 2.2). Models and strategies for solving percent 

applications frequently are proposed to promote students' principled-conceptual 

percent knowledge so that percent problems can be solved meaningfully (e.g., Bennett 

& Nelson, 1994; Cooper & Irons, 1987; Dewar, 1984; Haubner, 1992; Weibe, 1986). 

However, some models and strategies appear to exist in isolation and are seen to link 

not to principled-conceptual knowledge of percent [see, for example, models and 

strategies suggested by Boling (1985); Teahan (1979); McGivney & Nitschke (1988); 

presented in Chapter 2, section 2.2.5). It is suggested therefore that particular models 

and strategies, firmly embedded within principled-conceptual percent knowledge, may 

serve to promote knowledge of percent applications and percent concepts, and thus 

serve as a bridge between these two percent knowledge nodes. It is also suggested 

that solving of percent problems increases experience with real-world applications of 

percent, and this may serve to then draw principled-conceptual percent knowledge to a 

higher level of understanding. Therefore, a model of percent knowledge is proposed, 

consisting of the following four elements: 

1. Two knowledge nodes (percent concepts and percent applications); 

2. Connections between the two nodes; 

3. Models and strategies; 

4. Real-world experience and principled-conceptual knowledge. 
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Pictorially. the components of the proposed model of percent knowledge are presented 

in Figure 6.4. The model of percent knowledge is presented in further detail in section 

6.3.4 to incorporate metacognition. 

Models and strategies 

Re::tl-world experience 

Principled-conceptual kowledge 

~---connections -----'~ 

~----------------~f / 

Figure 6.4. Components of :1 model of percent kno\vledgc. 

6. 2. 7 Summary of key points 

In this section, students' development of percent knowledge was discussed. 

Students' computational and concrete percent knowledge was described, and the 

relationship of the development of such knowledge to the development of principled-

conceptual percent knowledge was discussed. Students' intemalisation of the 

proportional number line method was hypothesised through presentation of delayed 

posttest scores. Two models were proposed as a result of analysis of the change and 

growth, and permanence of percent knowledge for students in this study. A model of 

percent instruction suggested how the teaching program presented to students in this 

study promotes students' percent knowledge, and enhances prior knowledge of 

associated mathematical topics. and also lays the foundation for building and extending 

such knowledge through further instruction. A model of percent knowledge was 

suggested, consisting of four components, to be addressed further in section 6.3.4. 
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6. 3 Metacognition 
6. 3 .1 Overview 

The focus of discussion in this section is metacognition. In section 6.3.2, the 

application of metacognitive skills for each group in the study is described, and related 

to successful implementation of the metacognitive training episode of the teaching 

program. In section 6.3.3, the interplay of metacognition and domain specific 

knowledge is discussed, particularly in how metacognitive awareness promoted 

greater application of metacognitive skills and successful task performance. In section 

6.3.4, the models of percent instruction and percent knowledge, presented in section 

6.2 are modified to include metacognitive training and metacognition respectively. A 

summary of key points is presented in section 6.3.5. 

6 . 3. 2 Metacognitive skills and successful task performance 

Chan (1993) stated that successful learners are those with strongly developed 

metacognitive skills and knowledge, such as self-directed goal setting, planning of 

work tactics, self-monitoring of progress and evaluation for self-improvement. The 

development of metacognitive skills can be facilitated by provision of metacognitive 

training programs (Chan, 1993; Kirby & Williams, 1991). In this study, the 

Conceptual Mediation Program (CMP) (Lyndon, 1995), which is a collection of ideas, 

concepts, and learning strategies drawn from psychology literature, was incorporated 

into a metacognitive training episode. As discussed previously (see section 5.5.2) the 

metacognitive training episode (adapted from the CMP), was implemented entirely 

with Groups 3 and 4, but only partially with groups 1 and 2. 

Throughout the study, there was evidence of much greater application of 

metacognitive skills by Groups 3 and 4 students than with Groups 1 and 2. Groups 3 

and 4 students exhibited goal-directed behaviour, such as: paying attention during all 

teaching episodes; application of practice strategies to internalise the steps of the 

proportional number line method and Rule of Three procedure; spontaneous and 

selfdifferentiation of knowledge as an "old way" or a "new way"; willingness to take 

control of PI during the 0/N trial on the language of percent increase. With Groups 1 

and 2, less goal-directed behaviour was observed, contributing to difficulties in the 

teaching-learning situation. For example, students' lack of attention and lack of self 

control rather than paying attention led to the failure of many teaching episodes; 

students' prior knowledge of solution procedures for Type I percent problems 

interfered with students' paying attention to instruction on the number line model; 

students' reluctance to practise the steps in the proportional number line method led to 

errors in construction of proportion equations; students' failure to check solutions led 

to non-detection of unsuitable problem solutions in some cases; display of avoidance 

behaviours led to non- completion of set tasks. 
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The CMP program strongly emphasises the responsibility of the individual in 

the learning situation. Clearly, in this study, Groups 3 and 4 students demonstrated 

more control of the learning process than Groups 1 and 2 students. Group 3 students' 

diary entries suggest that the metacognitive training contributed to building students' 

awareness of "self' in the learning process, as exemplified in the following student 

written responses: 

"I think I will soon be able to remember more than I used to remember 

because I know what it takes to remember. " 

"I learnt that you could train your brain to learn things. I thought you were 

either smart of not smart. I think I am getting better at teaching my brain to 

take things in better." 

"This lesson was helpful to me because now I know how my brain works I 

will take over and teach my brain to recall better. " 

"This lesson has actually taught me more about the brain and how it works. It 

has made me realise how my attention gets distracted very easy. I was 

pleased that I found out how my attention flies away. " 

The above comments suggest that the metacognitive training was responsible 

for revealing that control of the brain could be managed by the individual, which was 

evident in student use of such phrases as "teaching my brain", "I will take over", "train 

my brain". For one student in particular, it appeared that the metacognitive training 

episode suggested to her that greater levels of performance could be achieved through 

application of CMP strategies, and that it was not the case that "you were either smart 

or not smart." In terms of academic performance, Groups 3 and 4 posttest results 

showed much greater improvement in performance from pretest results, compared 

with Groups 1 and 2. Groups 3 and 4 students were thus more successful learners 

than Groups 1 and 2 students. In this study, the metacognitive training component of 

the CMP appears to have contributed to this greater level of performance. Clearly, the 

metacognitive training component of the teaching program appeared to satisfy many 

requirements of instruction to assist students become successful learners, as they 

actively influenced their own learning (Weinstein & Mayer, 1986); they worked hard 

to become experts (Baird & White, 1982); they realised that they were in control of 

their own learning (Mercer & Miller, 1992); they were convinced that their own 

efforts, persistence and application of learning strategies would contribute to 

successful task performance (Chan, 1993). 

6. 3. 3 The interplay of metacognition and domain specific knowledge 

As stated in Chapter 3 (section 3.3.5), Cole and Chan (1990) suggested that 

explicit instruction in both cognitive and metacognitive strategies is the means of 
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ensuring students' successful task performance. Cognitive strategies are generally 

defined as those strategies which assist students' performance in a specific domain; 

metacognitive strategies are those applicable over a range of situations (Cole & Chan, 

1990). In this study, instruction was planned so that students would be presented 

with metacognitive awareness and strategies for successful learning in general, and the 

proportional number line method for successful operation in the specific domain of 

percent. The interaction of metacognition and percent knowledge was seen to 

contribute to successful task performance. 

As presented in section 5.5.4 (see Figure 5.22), test scores in this study 

indicated that all groups displayed enhanced performance on percent problems after 

instruction, with Groups 3 and 4 students improving to a greater extent that Group 1 

and 2 students. In the study, Groups 1 and 2 students were not presented with the 

metacognitive training episode in its entirety; Groups 3 and 4 students were. It seems 

a reasonable hypothesis that the interplay of the metacognitive training and 

proportional number line method contributed to Group 3 and 4 students' greater level 

of successful task performance over Groups 1 and 2 students, although it is 

acknowledged that Group 3 and 4 students may have greater capacity to apply 

metacognitive skills prior to instruction. However, when presented with the 

metacognitive training, Group 3 and 4 students were more willing to listen to the key 

notions presented, and their comments indicated that the material presented made sense 

(apparent from comments presented in previous section 6.3.2). The metacognitive 

training program appeared to crystalise metacognitive thinking, which led to an 

interesting interplay between metacognitive strategies and knowledge and application 

of the dual-scale number, percent knowledge and the part-whole-percent schema. Data 

gathered in this study was insufficient for direct analysis of such interplay, and this is 

taken up in chapter 7 as a limitation to this study. 

Students' successful task performance, as a result of application of the 

proportional number line method, led to greater levels of confidence, as exemplified by 

the following Group 3 students' diary entries about the proportional number line 

method: 

"I'm really confident with percent now so this has helped." 

"I was pleased that I knew what I was doing." 

"I feel that I have learnt heaps more from when I first began percentage. I feel 

100% more corifident in mathematics. " 

"Percentage is so easy. I really enjoy it." 

"I'm really happy I'm getting much better at percent, and I feel much more 

confident. " 

The above student responses indicate that students regarded percent as an easy 
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mathematical topic, and therefore operating in the domain of percent was an enjoyable 

experience. 

Results of this study highlight the interplay of domain specific knowledge and 

metacognition in successful task performance. It has been repeatedly suggested that 

mathematical task performance is dependent upon metacognition (Flavell, 1976; 

Garofalo & Lester, 1985; Prawatt, 1989; Silver, 1982). Further, as stated in Chapter 

1 (see section 1.1.4 ), mathematical knowledge is influenced by three metacognitive 

categories of person, task and strategy knowledge (Garofalo & Lester, 1985). The 

instructional program presented in this study, promoted students' person knowledge, 

as they were confident in their own ability to operate in the domain of percent; 

students' task knowledge changed in that students came to believe that percent was an 

easy mathematical topic; and students' strategy knowledge increased through provision 

of instruction in the proportional number line method for percent problem solving. 

Similarly, instruction in this teaching program can be seen to enhance students' 

knowledge, strategic and metastrategic thinking, and disposition, which have been 

defined by Prawatt (1989) as factors influencing mathematical performance. In this 

study, it was seen that the instructional program contributed to the development of 

students' knowledge of percent; it provided students with skills for percent problem 

solving; and as a result, students developed a positive disposition and confidence in 

operating with percent. 

6.3.4 Metacognitive knowledge and instruction 

In light of results of this study, the model of percent instruction proposed in 

section 6.2.5, can be modified to include metacognitive training. A model of 

instruction which embodies the teaching sequence followed in this study is one which 

depicts instruction commencing with metacognitive training, to promote greater student 

focus on the proportional number line method for percent problem solving. In this 

model of instruction, it is proposed that through percent problem solving, conceptual 

percent knowledge is developed, which leads to enhanced knowledge of associated 

mathematics topics decimal-fractions, ratio, proportion), and also enhanced knowledge 

of the Rule of Three within problem solving contexts. The modified model of percent 

instruction is depicted in Figure 6.5. 

Comparing the two proposed models of percent instruction (Figure 6.3 and 

Figure 6.5), it is proposed that the inclusion of metacognition takes knowledge of the 

Rule of Three from a procedural level, to a principled-conceptual level of knowledge. 

Metacognition enhances percent problem solving skill and understanding of the Rule 

of Three. In this model, inclusion of metacognitive training is suggested as the means 

to application of greater metacognitive skills which leads to greater enhancement of 

knowledge of other associated mathematics topics than instruction on percent alone. 
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Concrete and computational percent 
knowledge 

Experience in percent solving 

enhanced 
imal - fractions 

Rule of Three within 
percent problem 
solvin contexts 

Figure 6.5. A model of percent instruction including metacognitive training. 

Metacognitive training within an instructional sequence may lead to greater 

application of metacognitive skills. This has implications for the model of percent 

knowledge (proposed previously in section 6.2.6). This study gives rise to two 

models of percent knowledge: (i) percent knowledge without metacognition; and (ii) 

percent knowledge with metacognition. In this study, Groups 1 and 2 students did not 

receive complete metacognitive training as planned. As discussed in sections 5 .1.11, 

6.3.2 and 6.3.3, Group 1 and 2 students exhibited limited metacognitive control in 

task performance; - they were often unfocused; they did not enable themselves to 

engage in percent problem solving consistently; they frequently searched for short-cuts 

to percent problem solving. A model of percent knowledge without metacognition is 

suggested in light of results of teaching experiments with Groups 1 and 2. Groups 1 

and 2 students were presented with models and strategies for percent problem solving; 

namely, the proportional number line method. The proportional number line method 

appeared to promote students' real-world experience with percent, but also may have 

restricted their understanding of real-world percent situations to only those presented 

in the classroom. The proportional number line method promoted students' 

understanding of the three types of percent problems and thus extends to topics related 

to percent, such as decimal-fractions, ratio, and proportion. Students' lack of focus 

upon the percent problems experienced, results in minimal growth of principled­

conceptual percent knowledge. A model of percent knowledge without metacognition 
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if presented in Figure 6.6. 

1: 
Y!Je / 

/Jro6 
/ lc,r;s 

Type II problems Percent 

Figure 6.6. A model of percent knowledge without metacognition. 

The model of percent knowledge without metacognition presented in Figure 

6.6, suggests that models and strategies serve as a bridge to: (i) link the two percent 

knowledge nodes, (ii) to pro\·ide real-world experience with percent situations, and 

(iii) assist in the development of principled-conceptual percent knowledge. 

In this study, Groups 3 and 4 students were presented with metacognitive 

training, and as stated in sections 5.3.10, 6.3.2, and 6.3.3, exhibited greater 

metacognitive control than Group 1 and 2 students, which led to enhanced task 

performance. Whether this was a result of the metacognitive training was not 

determined clearly through this study. A model of percent knowledge with 

metacognition is suggested in light of results for Groups 3 and 4 students. Like the 

model presented in Figure 6.6. a model of percent knowledge with metacognition 

depicts how models and strategies bridge the two nodes of percent knowledge, 

promoting the development of percent applications and percent concepts. With 

inclusion of metacognition, focus on percent in the real-world is accentuated, drawing 

understanding and experience of percent to a greater level than percent situations 

presented in the classroom. In this model, it is proposed that metacognition raises 

principled-conceptual knowledge of percent as students engage in percent problem 

solving. Diagrammatically. the model of percent knowledge with metacognition is 

presented in Figure 6. 7. 

In summary, the model of percent knowledge including metacognition 

proposes that percent knowledge consists of two knowledge nodes (percent 

applications and percent concepts). and these nodes are connected to each other 

through models and strategies. This model proposes that real-world experience with 

percent develops through percent problem solving. which develops knowledge of 

percent applications and percent concepts. With metacognition, it is proposed that the 

relationship between the nodes. and models and strategies, is revealed, and real-world 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



experience now encompasses the nodes as well as the models and strategies with the 

development of principled-conceptual percent knowledge. In other words, through 

application of models and strategies to real situations, students are able to see/use the 

whole schema. They are not restricted to specific models and strategies in their 

thinking; their thinking is no longer prototypical or tied specifically to one given model 

and/or strategy. 
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Figure 6. 7. A model of percent knowledge including metacognition. 

6. 3. 5 A developmental model of percent 

In this study, it was seen that students' knowledge of percent developed 

through instruction. The Percent Knowledge Test revealed that initially, students in 

this study had some conceptual knowledge of percent, and could perform percent 

calculations, primarily of Type I. Through instruction, students developed knowledge 

of the proportional number line method. Student utilisation of the proportional number 

line method appeared to lead to the development of percent concepts and percent 

applications (the two percent knowledge nodes). Although not directly measured, it 

appeared that with application of greater metacognition as a result of the metacognitive 

training, connections between models and strategies and the percent knowledge nodes 

became explicit. Metacognition promoted real-world percent experience, which led to 

development of principled-conceptual percent knowledge, contributing to development 

of the full experiential schema for percent. As a result of this study, it is suggested 

that percent knowledge may develop for students over five phases. as summarised 

below: 
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1 . Student possesses some ideas of percent; 

2. Student possesses some ideas of percent and percent applications; 

3 . Student develops knowledge of models and strategies for percent 

applications, but knowledge of percent is prototypical in that it is restricted to 

one given model and/or strategy; 

4. Student makes connections between the two knowledge nodes, made explicit 

through application of metacognition; 

5. Student has developed full experiential percent schema and percent knowledge 

is not longer prototypical. 

As a result of this study, there was some evidence of the growth of percent 

knowledge through the five phases. As stated in Chapter 5 (section 5.5.4) all students 

began from similar knowledge bases, as reflected by results of the Percent Knowledge 

Test. All four groups of students exhibited some knowledge of percent (phase 1 ), 

with some students exhibiting some knowledge of Type I percent applications (phase 

2) and all three types of percent applications (phase 3). Through instruction, and thus 

provision of models and strategies, students developed knowledge of percent and 

knowledge of all three types of percent applications. In this study, students in Groups 

1 and 2 appeared to reach phase 3 of the developmental model, and it is hypothesised 

that for the majority of Group 1 and 2 students, connection of knowledge of percent 

applications and percent concepts was in a transitional phase. For these students, it is 

suggested that their percent knowledge at this phase was prototypical. Groups 3 and 4 

students exhibited greater metacognitive control, and this appeared to enable the 

connection between percent knowledge and percent applications to become explicit 

(phase 4). In this study, metacognition appeared to enable the schema for real-world 

experience to be extended to include the percent knowledge nodes and the development 

of principled-conceptual percent knowledge. In this developmental model, the highest 

level of percent knowledge is phase 5, where it is proposed that understanding from 

models and strategies is widened to encompass a full experiential schema; where 

principled-conceptual knowledge is linked to intuitive, concrete and computational 

knowledge, as suggested by Leinhardt's (1988) model of the development of 

mathematical knowledge. Some students in Group 4 in this study were seen to reach 

this stage of percent knowledge development (see section 6.1.3). The five phases of 

the developmental model of percent knowledge are depicted in Figure 6.8. 
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6. 3. 6 Summary of key points 

In this section, metacognitive knowledge and skills and their relationship to 

successful task performance were discussed. The metacognitive training program 

based on CMP was seen to promote students' greater task performance in this study. 

Metacognition was included within the percent knowledge model to highlight the 

interplay of metacognitive with domain specific knowledge for greater task 

performance. Models of percent knowledge, with and without metacognition were 

presented. The development of percent knowledge, as dependent upon models and 

strategies was described. The development of percent knowledge is based on the 

model of percent instruction, which can be seen to draw on the principles of pedagogic 

mediation (Schmittau, 1993a; 1993b), and beliefin teacher efficacy (Smith, 1996). In 

this study, it was seen that growth of percent knowledge was dependent upon 

instruction. 

6.4 Diagnostic-prescriptive instruction 
6.4.1 Overview 

The focus of this section 1s on diagnostic-prescriptive instruction, and 

particularly the Old Way!New Way (O!N) strategy within a model of diagnostic­

prescriptive instruction. In section 6.4.2, the O!N strategy applied to students' 

difficulties in interpreting the multiplicative language of percent increase situations is 

discussed. In section 6.4.3, incorporation of O!N in the classroom, as it occurred in 

this study is described. In section 6.4.4, the O!N as a teaching strategy, how it differs 

to good teaching and reteaching strategies, and how it was adopted by the teacher­

researcher in this study, is discussed. O!N as an integral element within a diagnostic­

prescriptive model of instruction; and the use of O!N within real classroom situations 

are discussed in sections 6.4.5. and 6.4.6 respectively. A summary of key points is 

presented in section 6.4.7. 

6 . 4. 2 Application of 0/N for dealing with prior knowledge 

The influence of prior, erroneous knowledge on acquisition of new 

knowledge in mathematics is well documented (e.g., Ashlock, 1994; Borassi, 1994; 

Confrey; 1990a; Connell & Peck, 1993; Lyndon, 1995). In this study, the O!N 

strategy for overcoming the interfering effects of prior knowledge was trialled with 

some Group 4 students who demonstrated difficulty interpreting the multiplicative 

language of percent increase. Results of this trial suggested that the O!N strategy 

assisted Group 4 students to interpret percent increase situations on the posttest better 

than students in Groups 1, 2 and 3, and that this knowledge change was permanent, as 

presented in section 6.2.4. As previously discussed in section 5.5.4, all students 

demonstrated difficulty in interpreting the additive and multiplicative language of 
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percent increase on the pretest, and Groups 1, 2 and 3 students continued to exhibit 

such difficulty on the posttest to a greater degree than Group 4. All groups were 

exposed to direct teaching on the language of percent increase and decrease; Group 4 

students engaged in an 0/N trial to overcome the misinterpretation of the multiplicative 

nature of percent increase situations. On the delayed posttest for Groups 3 and 4, 

Group 4 students demonstrated greater facility in interpreting the additive and 

multiplicative nature of percent increase situations than did Group 3. The 0/N trial, 

therefore, appears to have directly influenced knowledge change associated with the 

multiplicative language of percent increase over conventional instructional methods. 

In terms of the theoretical background of 0/N, knowledge is protected from 

change by proactive inhibition (PI), an unconscious brain mechanism which serves to 

prevent conflict of incoming information with prior knowledge (Baddeley, 1990). In 

this study, students' intuitive notions of percent increase appeared to interfere with 

correct interpretation of percent increase situations. As described in section 6.2.3, 

students' performance on tasks relating to interpreting an additive change in percent 

situations was always much greater than their performance in interpreting percent 

increase situations multiplicatively. Students' additive structures are naturally better 

developed than multiplicative structures, as students intuitively interpret proportion 

situations additively rather than multiplicatively (Hart, 1981). As seen in all groups, 

direct teaching and reteaching of interpretation of percent increase situations did not 

significantly develop students' understanding of the multiplicative language of percent 

increase. 0/N however, did. As a result of this study, it appears that 0/N can be 

implemented in large group situations to precipitate conceptual change, and not merely 

skill change, which supports conclusions of research elsewhere (Rowell, Dawson & 

Lyndon, 1990). 

6. 4. 3 Incorporation of 0/N within mathematics instruction 

In this study, the 0/N strategy was described to students as a strategy for 

taking control of accelerated forgetting, and presented within the context of the 

metacognitive training episode. The study, conducted in real classroom situations, 

highlighted the difficulty of using the 0/N strategy by the classroom teacher, but also 

highlighted the potential of this strategy in mathematics instruction. In this study, the 

0/N strategy was not used with Groups 1 and 2 during instruction due to incomplete 

implementation of the metacognitive training episode. The 0/N strategy was not used 

with Group 3 students due to classroom timetable constraints and the need to progress 

through the teaching program. Also, specific diagnosis of students' difficulties in 

mathematics had not been carried out to identify students who may have benefited 

from engaging in 0/N on an individual basis. During instruction, few systematic 

errors surfaced during the course of the teaching program. With Group 4 students, the 
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0/N strategy was trialled in a large group situation, as discussed in Chapter 5 (see 

section 5.4.5). 

The 0/N trial occurred when the teacher-researcher could group the students 

for instruction, so that students not engaging in the 0/N trial were occupied with other 

tasks not requiring teacher assistance. The teacher-researcher was thus freed to devote 

attention to the students engaged in the 0/N trial. The 0/N trial was planned in 

response to diagnosis of students' misinterpretation of the language of percent increase 

after students had received instruction on the language of percent increase. The pivotal 

role of diagnosis to detennine applicability of utilisation of the 0/N strategy was 

highlighted in this study. As a strategy for dealing with inappropriate knowledge and 

misconceptions, 0/N may be seen as similar to the conflict teaching strategy (Bell, 

1986-1987); the use of errors as springboards for enquiry (Borassi, 1985; 1994); and 

belief-based teaching (Rauff, 1994), where student errors are brought to the fore, and 

are the focus of instruction and/or discussion. The 0/N strategy, however, differs 

from these strategies in that the 0/N is a prescriptive series of steps where student 

errors and misconceptions are actively differentiated between by the students 

themselves with the help of the teacher. 0/N is a dialogue where the teacher plays a 

direct mediating role between students' knowledge and the inappropriate knowledge, 

in a similar vein to the approach suggested in the cognitive apprenticeship model of 

Reid & Stone (1991). 0/N offers the script for conceptual mediation which other 

approaches do not. 

6. 4. 4 The 0/N strategy as a teaching strategy 

In the 0/N trial, the teacher-researcher's reflections suggested that the 

students actively engaged in the 0/N trial, yet the teacher-researcher was 

"uncomfortable" with 0/N as a style of teaching. In this study, it was seen that the 

teacher-researcher had to consciously differentiate between two styles of teaching so 

that the 0/N trial did not revert to a reteaching episode. As indicated by the report on 

trialling 0/N in large group situations (see Chapter 5, section 5.4.5), 0/N was a very 

different teaching strategy which, in this study, appeared to be in conflict with the 

teacher-researcher's usual teaching style. The 0/N was implemented successfully, and 

the teacher-researcher adhered to the prescribed steps of the strategy. The 0/N 

strategy, therefore, can be seen to contrast teaching strategies suggested for teaching 

the same content in a different way, which can thus be labelled as reteaching strategies. 

0/N in this study, was seen as different to a reteaching strategy, and thus appears to be 

a strategy in a category of its own. 

As a result of using the 0/N strategy in this study as a distinct strategy for 

mediation, the true definition of the term remediation becomes apparent. Teaching 

strategies which are different ways of presenting the same content can be categorised 
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as reteaching strategies, and are the types of strategies traditionally suggested in 

programs of mathematics remediation (see, for example, Ashlock, 1994; Booker et al., 

1980; Resnick, 1982; Wilson, 1976a). These have been shown to be good teaching 

strategies (e.g., Ashlock, 1994; Wilson, 1976a) and will be successful for "filling 

gaps" in students' knowledge. These strategies are not so successful when prior 

knowledge exists (see, for example, Connell & Peck, 1993). 

In this study it was seen that, prior to implementation of the teaching 

program, students misinterpreted the multiplicative language of percent increase. 

Instruction was implemented to overcome this misinterpretation. It was found that, 

after instruction, students continued to misinterpret the language of percent increase. 

Application of the 0/N strategy assisted students to overcome this misinterpretation. 

The difference between 0/N as a teaching or reteaching strategy and a definitive 

strategy for conceptual mediation is highlighted in this study. Thus, there is a 

difference between good teaching and remedial teaching. The effectiveness of the use 

of the 0/N strategy in this study over good teaching for dealing with inappropriate 

conceptualisations indicates that good teaching strategies fall into a category distinct 

from true remediation or mediation strategies. Only strategies which attack prior 

knowledge and thus overcome the power of PI can be classed as mediation or 

remediation strategies. 

6. 4. 5 0/N and diagnostic-prescriptive mathematics instruction 

The theoretical basis of 0/N is described in detail in Chapter 3 (see section 

3.5). In this study, the theoretical underpinnings of the 0/N strategy served as a blue­

print for a diagnostic-prescriptive approach to instruction (as described in section 

3.6.3). In this study, it was seen that instruction stemmed from diagnosis. Prior to 

instruction, the students in this study were presented with a pen and paper test, which 

served as a relatively simple way to determine students' percent knowledge (in relation 

to the categories of intuitive, concrete, computational, and principled-conceptual 

percent knowledge), and to diagnose, in general, students' strengths and weaknesses 

in this domain. Upon diagnosis of students' knowledge of this topic, in this study, 

instruction was seen to occur as in the diagnostic-prescriptive model of teaching 

presented in Chapter 3, section 3.6.3 (see Figure 3.1). In that model, diagnosis is the 

essential element, and instruction flows from diagnosis for the purposes of teaching 

(and/or reteaching) to build students' knowledge of a topic, or for unteaching to 

overcome interfering prior knowledge. 

The model of diagnostic-prescriptive teaching in this study proceeded in the 

following two steps: 

1 . Diagnosis of students' knowledge of the topic, including identification of 
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systematic errors and/or misconceptions. 

2. Instruction for (i) teaching (and/or reteaching), or for 

(ii) unteaching. 

These two steps are seen to be incorporated into the updated model of 

diagnostic-prescriptive mathematics tear:hing and unteaching presented in Figure 6.9. 

~ teachin>: .........__ . A reochin>: ........_ ~teaching --...__ 
J~reteacin-g ~~reteaching ~~reteaching --...,.'\.] . 

d
. · d.~ 1no · ·1• J·1.,,rno··l· < dt::H!nOSlS !agnOSlS I'"~ s S "::' :> J -

- ~unteaching__;;t ~ unteaching__.,/7 ~ unteaching/ 

Figure 6. 9. A model of diagnostic-prescriptive teaching and unteaching. 

In this model, teaching and reteaching occurs via implementation of good 

teaching strategies for building students' knowledge of the topic, and following 

Leinhardt's (1988) model of mathematical knowledge, this would be instruction to 

build students' intuitive, concrete, computational, and principled-conceptual 

knowledge. For unteaching, the 0/N strategy is utilised. 

This diagnostic-prescriptive model of instruction shares features of other such 

models. It is based on the premise that, to assist students who are experiencing 

difficulty with the study of mathematics, determining the nature of the difficulty is 

required (e.g., Ashlock, 1994; Underhill et al., 1980). It is also based on the premise 

that errors indicate knowledge (Ashlock. 1994; Ashlock et al., 1983); that errors are 

constructed knowledge (Confrey. 1990a). This model also assumes that careful 

lesson planning and sequencing of instruction will help students who are experiencing 

difficulties in mathematics (Ashlock, 1994; Ashlock et al., 1983; Connell & Peck, 

1993, Mercer & Miller, 1992). This model of diagnostic-prescriptive instruction 

differs in that it differentiates between the need for good teaching strategies to help 

children overcome difficulties in mathematics, and the need to employ strategies for 

mediation and remediation. In this model, the 0/N is incorporated as a strategy for 

remediation. 

6. 4. 6 Diagnostic-prescriptive teaching in real classrooms 

As stated in Chapter 3 (see section 3.1.2) it is when a student begins to "fail" 

that those concerned with the student's mathematical progress are alerted to the fact 

that the student is experiencing difficulty with the study of mathematics. Traditionally. 

the blame for the student's learning difficulty was attributed to the student (e.g .. 
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Kephart, 1960; Valett, 1978). However, this perception has altered to focus on 

instructional methods (MacDonald, 1972; Shapiro, 1989; Woodward & Howard, 

1994). A diagnostic-prescriptive approach to instruction has been suggested as a 

means through which students' difficulties in mathematics can be minimised (Ashlock 

et al., 1983; see also Chapter 3, section 3.3.2) as diagnosis and careful sequencing of 

instruction are the key components of such a model. 

In this study, a diagnostic-prescriptive approach to instruction was 

implemented in real classroom situations. It was found that diagnosis assisted in 

developing instruction, and that instruction incorporating good teaching strategies was 

relatively simple to implement in the classroom. In this study, implementation of the 

0/N strategy as a conceptual mediation strategy, was difficult in terms of preparing 

students for use of the strategy (that is, in providing metacognitive training) and in 

grouping students for instruction. However, it was accomplished, thus suggesting 

that the style of diagnostic-prescriptive model of teaching can be implemented in whole 

class situations. Assisting students to overcome difficulties with the study of 

mathematics can be achieved in typical classroom situations by the classroom teacher. 

6. 4. 7 Summary of key points 

In this section, the Old Way/New Way strategy was discussed in relation to a 

diagnostic-prescriptive model of instruction. Within the teaching program presented in 

this study, the 0/N strategy was seen to be a useful strategy for overcoming students' 

misinterpretation of the multiplicative language of percent increase. Trialling the use of 

the 0/N strategy within this study has served to illuminate the classroom constraints 

which may hinder successful application of such a strategy, including the need to 

acquaint students with the CMP, the requirement of careful diagnosis of students' 

specific difficulties, and the necessity to group students for application of the strategy. 

Trialling of the 0/N strategy in this study also highlighted how it is different to "good 

teaching" strategies, and therefore may not easily be adopted within a teacher's usual 

teaching style. In this section, it was seen that the 0/N strategy, or other strategies 

which deal directly with prior knowledge and proactive inhibition, should be an 

integral element of diagnostic-prescriptive instruction. 

CHAPTER SUMMARY 
discussed. The focus of the chapter was on knowledge and instruction. In this 

chapter, percent knowledge and metacognitive knowledge were seen to result in 

successful task performance. The proportional number line method was proposed as 

the means to promote percent knowledge; metacognitive training incorporating the 

CMP was proposed as the means to promote metacognitive knowledge. A model of 

percent instruction was presented, to show the pathway to creating percent knowledge 

262 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



for Year 8 students in this study. A model of percent knowledge was created through 

analysis of students' percent knowledge growth as a result of instruction. In the next 

chapter, the models of percent knowledge and percent instruction as presented m 

chapter 6, are briefly discussed, and conclusions to this study are presented. 
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CHAPTER 7 

CONCLUSIONS 

CHAPTER OVERVIEW 

In this chapter, conclusions, limitations and implications of the research conducted in 

this study are presented. There are four sections. In sections 7.1 and 7.2 

respectively, the two aims of the study are discussed, and the extent to which they 

were achieved through this research addressed. In section 7 .3, the limitations of this 

study are outlined. In section 7 .4, the implications of this study for both future 

research and classroom instruction are overviewed. 

7 .1 The first aim 
The first aim of this study, presented in Chapter 1, was to develop a program 

for effectively teaching percent applications in real classrooms which: 

(a) is diagnostic-prescriptive in that it caters for all types of learners, ranging 

from learners who have experienced limited formal instruction in percent, to 

learners who have received considerable formal instruction in percent; 

(b) is effective (in terms of student outcome) in relation to promoting students' (i) 

intuitive, concrete, computational, and principled-conceptual percent 

knowledge; (ii) percent application problem solving skill; and (iii) permanence 

of knowledge over time; and 

(c) is efficient (in terms of teacher input) of (i) teacher preparation requirements; 

(ii) time requirements to implement in the real world (i.e. in the school 

situation); (iii) resources; and (iv) cost. 

As a result of this study, a teaching program for percent, which caters to all 

learners; which is effective in terms of student outcome; and which is efficient in terms 

of teacher input, is a teaching program which has the following components: 

1 . Metacognitive training; 

2. Models and strategies for percent problem solving; 

3. Models which exemplify the additive and multiplicative relationships inherent 

in percent increase situations; 

4. Provision of practice in percent problem solving to develop real-world 

experience of percent, and thus principled-conceptual knowledge of percent. 

The teaching program implemented in this study was diagnostic-prescriptive, 

catering to all types of learners. The students in this study came from varying schools 
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and, therefore, varying backgrounds in relation to percent experience. Following 

syllabus guidelines, it was expected that the students would have received some prior, 

direct instructional experiences to develop their conceptual understanding of percent, 

and that they possibly would be able to perform Type I percent calculations. Taking 

account of expected prior experiences with the topic of percent, it was assumed that 

students in this study would have a degree of conceptual knowledge of percent, but the 

extent to which they could solve the three types of percent problems would vary. 

Pretest results confirmed this view, as pretest results indicated that students' intuitive 

and principled-conceptual percent knowledge was relatively high prior to instruction, 

but percent calculations and problem solving skills were very low. From the pretest 

results, students in this study were considered "midstream" learners, who had 

developed basic percent concepts through experience and/or instruction, and were 

"midstream" in their exposure to formal instruction on the topic of percent. The 

teaching program developed for this study focussed on instruction in the proportional 

number line method. The teaching program, with its focus on the proportional number 

line method, was presented to all students in the study. The proportional number line 

method was readily adopted by the majority of students in this study, and students' 

proficiency in percent problem solving increased. The teaching program, therefore, 

appeared to be well-suited to the Year 8 students in this study, as it catered to all 

students with their varying knowledge of percent prior to instruction. 

The teaching program implemented in this study was effective in promoting 

students' percent knowledge and percent problem solving skill, and contributed to 

permanence of such knowledge over time. In this study, it was seen that students 

developed concrete and computational percent knowledge, and rapidly became 

proficient percent problem solvers through application of the proportional number line 

method. As a result of experience in solving a variety of percent problems using this 

method, students developed principled-conceptual percent knowledge embedded 

within the proportional number line method. The proportional number line method 

was seen to be internalised by students in that they could still apply the method for 

solving percent problems some weeks after instruction was completed. 

The teaching program implemented was seen to be an efficient program on 

several fronts. It was efficient in terms of teacher preparation requirements: once the 

instructional program had been planned, and appropriate resources constructed (i.e., 

worksheets), implementation of the program occurred with the teacher-researcher 

presenting herself to the designated classroom at the designated time, without prior 

organisation of specialist materials, equipment, or a particular teaching environment. 

It was efficient in terms of time requirements: implementation of the teaching program 

spanned the allocated time for percent instruction in real classrooms imposed by the 

school timetable. It was efficient as it required no specialist resources for 
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implementation: resources used (for example, worksheets, newspapers, cardboard) 

were those typically found and used in real classroom situations, and thus the program 

was also cost-effective. 

In summary, the teaching program developed for assisting students become 

proficient percent problem solvers, was seen to successfully cater to all types of 

learners, ranging from those who had limited percent knowledge to those who had 

received extensive instruction in percent; it was an effective program as students 

became proficient problem solvers and also developed principled-conceptual percent 

knowledge; and it was an efficient program in terms of preparation requirements, time 

requirements for implementation, costs incurred, and resources required. This study 

has thus achieved the first aim. 

7. 2 The second aim 
The second aim of this study, presented in Chapter 1, was to draw 

implications for percent knowledge, percent instruction, and mathematical teaching in 

general, specifically, in terms of: 

(a) Students' knowledge of percent; 

(b) A model for teaching percent problem solving; and 

(c) A model for diagnostic-prescriptive teaching of mathematics. 

As a result of this study, a model of percent knowledge was developed. The 

model suggested that percent knowledge consists of two knowledge nodes, these 

being percent concepts and percent applications. Models and strategies serve to link 

these two knowledge nodes, enabling students to solve percent problems and thus 

build their real-world percent experience. 

Results of this study suggested a five phase developmental model of students' 

percent knowledge (as described in section 6.3.5). In this study, Year 8 students' 

percent knowledge was seen to consist of some percent ideas (phase 1), and/or some 

knowledge of percent applications (phase 2). With models and strategies, students' 

knowledge of percent concepts and percent applications developed, with models and 

strategies serving as a bridge between percent concepts and percent applications. 

Students entered phase 3 of percent knowledge development. With application of 

metacognition, connections between percent applications and percent concepts became 

explicit. Principled-conceptual knowledge of percent was developed, encompassing 

knowledge of percent concepts and percent knowledge. Students entered phase 4 of 

percent knowledge development. In the last phase (phase 5) a full experiential schema 

was developed, where all knowledge was integrated and connections between percent 

concepts and percent applications led to transfer of knowledge to other related 

mathematical topics. 

In terms of a model for teaching percent problem solving, results of this study 
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revealed how a teaching program, focusing on models and strategies for percent 

problem solving, is powerful in enabling students to become proficient percent 

problem solvers, and in promoting principled-conceptual percent knowledge. In this 

study, instruction commenced with metacognitive training, followed by direct 

instruction on the proportional number line method. Through application of the 

proportional number line method to percent problem situations, concrete and 

computational percent knowledge was developed. This knowledge provided students 

with experience in percent problem solving, and it is suggested that this led to the 

development of principled-conceptual knowledge of percent associated with the 

proportional number line method. Metacognitive training ensured greater application 

of metacognitive control, which led to greater student focus on percent problems and 

percent situations in the real-world. Development of principled-conceptual knowledge 

associated with the proportional number line method potentially may enhance 

knowledge of related mathematical topics (such as fractions, decimal, ratio, 

proportion). This instructional sequence, which presented students with a 

proportional method for percent problem solving, took account of students' prior 

knowledge in percent and other related mathematical topics (decimals, fractions, ratio, 

proportion) but did not require students to possess a specified level of knowledge of 

those topics. After instruction in percent problem solving, it appeared that the 

foundation had been laid and/or cemented for further instruction in topics related to 

percent, particularly the topic of proportion. Results ef this study, therefore, indicated 

that instruction for promoting percent problem solving led to significantly increased 

student proficiency in percent problem solving. Such instruction may also have 

promoted principled-conceptual percent knowledge, and led to enhanced development 

of knowledge of related mathematical topics. 

In terms of a model for diagnostic-prescriptive teaching of mathematics, 

results of this study suggested that effective mathematics teaching is dependent upon 

diagnosing whether instruction should proceed for teaching, reteaching or unteaching. 

As a result of this study, a model of diagnostic-prescriptive teaching, which 

differentiates between strategies for teaching and reteaching, and strategies for 

unteaching was proposed. Strategies for teaching and/or reteaching are those 

strategies for promoting students' knowledge of a topic where such knowledge does 

not yet exist. Strategies for unteaching are those which specifically focus on prior 

inappropriate knowledge and break down the psychological barrier which protects 

such knowledge from change. To determine whether to use teaching/reteaching 

strategies, or to use unteaching strategies in teaching situations, is through diagnosis to 

identify a student's learning difficulty as stemming from a lack of knowledge of the 

topic, or from the interfering effects of existing inappropriate knowledge. Therefore, 

the model of diagnostic-prescriptive teaching (proposed in section 6.4.5) has a focus 
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on diagnosis, and pathways of instruction are either for the application of good 

teaching/reteaching, or through the application of unteaching strategies. 

As a result of this study, implications for percent knowledge, percent 

instruction, and mathematics teaching in general, were drawn, specifically in terms of 

students' knowledge of percent; a model for teaching percent problem solving; and a 

model for diagnostic-prescriptive teaching of mathematics. This was the second aim 

of this study; therefore this study has achieved it second stated aim. 

7.3 Limitations 
One of the limitations of the research conducted in this study is the fact that 

students' cognitions about the proportion number line method were not delved into to 

truly provide a detailed picture of students' percent knowledge structure. The data 

collection methods of the study (pre-, post- and delayed posttests, field notes, 

students' diaries, anecdotal records, students' work samples) were suitable to match 

the design of the study where the emphasis was on attaining naturalism within the 

classroom environment. Test results and field notes assisted the teacher-researcher to 

be as unobtrusive as possible to the participants' usual school routine, but also resulted 

in under-utilisation of such data collecting methods as clinical interviews, (e.g., 

Ginsburg, 1981; Swanson, Schwartz, Ginsburg & Kossan, 1981) and video records 

and protocol methods (e.g., Ginsburg, Kossan, Schwartz & Swanson, 1983). 

The focus of the research on students' percent problem solving efficacy in this 

study can also be regarded as a limitation to the study. The Percent Knowledge Test 

as a data gathering instrument for this study was seen as useful in determining the 

extent to which students could solve percent problems of the three types as well as 

perform percent calculations. Other items on the test were constructed to determine 

students' intuitive, principled-conceptual, concrete and other computational knowledge 

as per Leinhardt's (1988) mathematical knowledge model. Assessment of students' 

percent knowledge may have been more precisely determined through construction of 

test items similar to those for Grade 5 students developed through the Math in Context 

project at the University of Wisconsin, Madison (see Van den Heuvel-Panhuizen, 

1994; Van den Heuvel-Panhuizen, Middleton & Streefland, 1995). Through the Math 

in Context project, researchers developed test items to cover key concepts and key 

abilities in Grade 5 percent, generated through students posing their own "easy" and 

"difficult" percent problems. 

Through research conducted in the study reported here, the teaching program 

with its inclusion of a metacognitive training program and the proportional number line 

method for percent problem solving, was seen to be powerful in promoting students' 

percent problem solving skills, particularly for the third and fourth groups of students 

who participated in this study. The students in Groups 3 and 4 attended a private 
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girls' college, which is a contrasting school environment to that attended by Group 1 

and 2 students. Two more limitations of this study, therefore, are that the teaching 

program was only trialled in two school environments and the student responses were 

contrasted across two environments. Linked to this is the fact that the teaching 

program was only trialled in four classroom situations; the number of teaching 

experiments conducted, therefore, limits the generalisability of the results. 

The nature of the study was exploratory, where a problem was identified, and 

through analysis of ideas on teaching percent in particular and mathematics in general, 

a teaching program was created and trialled. The research is not conclusive, but can be 

seen to be more generative, where results unearthed many other ideas and suggestions 

for further research. This is another limitation of the study. 

7.4 Implications 
The identified limitations of this study suggest the need for further research in 

this field. Primarily, results of this study have suggested the power of instruction 

which focuses on models and strategies for problem solving together with 

metacognitive training to promote knowledge. This finding leads to formulation of 

several research questions, including: 

• Does metacognitive training promote principled-conceptual knowledge of all 

mathematical topics? 

• Will provision of models and strategies for problem solving in the absence of 

metacognitive training promote principled-conceptual mathematical knowledge 

to the same degree as with metacognitive training? 

• Is instruction which focuses on methods and strategies for problem solving 

superior to a learning environment which encourages students to develop their 

intuitive strategies for problem solving? 

Further research is required to pursue such questions. 

The teaching program created and implemented in this study was successful 

for developing students' percent problem solving skills. Further research is required 

to explore implementation of the teaching program in other school environments. To 

effectively conduct such research, ideally the teaching program should be presented to 

teachers from a range of school environments as part of a professional development 

program, with teachers' implementation of the program studied. This would lead to 

interesting comparative studies. Similarly, trialling this program with Year 9 and Year 

10 students would also lead to interesting results, and insightful suggestions for 

curriculum change. Students posing their own "hard" and "easy" percent questions 

could assist the modification of the Percent Knowledge Test as a data gathering 

instrument in a similar vein to the approach taken in the Math in Context research 01 an 

den Heuvel-Panhuizen, 1994; Van den Heuvel-Panhuizen et al., 1995). Such an 

269 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



inclusion into the teaching program would also provide interesting insights into what 

particular percent problems students find difficult before and after instruction on the 

proportion number line method. 

Results of this study also suggest further research which looks inwards upon 

this study. Exploring students' cognitions about percent were not the specific focus of 

this study, but would potentially excite future research. Probing students' cognitions 

about the proportional number line method, and attempting to pin-point when students 

make cognitive leaps and the factors which precipitated such cognitive change and 

growth, would require a methodology different to the one chosen here. Clinical 

methods or teaching experiments conducted with a team for observation and 

interviewing purposes, would be suitable research methodologies for such studies. 

Another element of this study, which suggests further research, is the 

metacognitive training program based on CMP. Of particular interest would be 

research exploring the extent to which the CMP could assist students become more 

metacognitive in other mathematical topics (as well as other curriculum topics), and 

also specifically delving into students' minds to assess their level of metacognitive 

development and the influence of CMP upon such development and change. The need 

for two research studies with contrasting methodologies becomes apparent in order to 

pursue such lines of inquiry. One study would be on providing inservice training to 

teachers in the CMP and the exploring of students' application of the CMP to 

mathematics learning via a teaching experiment methodology. Another study would be 

a clinical study with CMP and the percent teaching program presented to a small 

group of students. 

Apart from the stated implications for further research, the results of this 

study have implications for instruction. The study clearly showed how the 

proportional number line method can be implemented in real classroom situations to 

promote percent problem solving. In this study, students were presented with all three 

types of percent problems, but not overtly taught to differentiate between the three 

different types of percent problems. Provision of such holistic percent instruction is at 

odds with the current approach suggested for students in Queensland schools. As 

described in section 1.2.2, instruction in percent is staggered with Type I problems 

introduced in Year 7, Type II problems in Year 8, and Type III problems in Year 9. In 

such an approach students are presented with each Type of percent problem separately, 

and various procedures taught and practiced to enable solution of the three types of 

percent problems. In this study, through the teaching program based on the 

proportional number line method, students became very competent in solving all three 

types of percent problems and in applying this knowledge to multi-step problems. 

Thus, this method of instruction appears to support the presentation of the whole 

conceptual field (Resnick, 1992) for percent and to dispense with staggering of 

270 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



instruction across three year levels. This study has shown that a holistic approach to 

percent instruction appears to demystify percent situations, and enables the 

instructional process to appear more streamlined. For application to the classroom, 

this study suggests the need to reconsider the structure of the curriculum pertaining to 

the mathematical topic of percent. 

The proportional number line method is powerful in its ability to promote 

students' knowledge and problem solving skill. The dual-scale number line within the 

proportional number line method organises elements of percent situations and 

embodies percent situations into statements of proportion. The structure of the number 

line mirrors the structure for organising multiplication and division problems as 

suggested by Vemguard (1983; 1988). Some examples, presented by Greer (1992) 

summarising V em guard's work, are in Figure 7 .1. 

The division and multiplication examples presented in Figure 7.1 can be 

represented in a similar fashion to percent problems represented on the dual-scale 

number line. In this manner, percent problems can be seen to belong to the 

multiplicative conceptual field, proposed by Vemguard (1983; 1988). The 

proportional number line method, therefore, has implications for instruction in terms 

of providing a link to other topics and building students understanding of the elements 

within the multiplicative conceptual field, as well as proportional reasoning. The 

proportional number line method has applications beyond percent. 

3 children each have 4 oranges. How many 
oranges do they have altogether? 

A boat moves 13.9m in 3.3 seconds. What is 
its average speed in metres per second? 

An inch is about 2.54cm. About how long in 
inches is 7.84cm? 

children 

1 
3 

oranges 

4 
? 

seconds metres 

3.3 

inches 

? 

? 
13.9 

em 

2.54 
7.84 

Figure 7.1. Multiplication and division problems as proportions (Greer, 

1992, p. 282, 283). 

Inclusion of the metacognitive training in the teaching program has 

implications for instruction. In this study, the metacognitive training based on CMP 
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appeared to enhance students' mathematical performance. Metacognitive trrumng 

should possibly be an integral part of mathematics instruction. As such, this would 

require teachers to attend professional development workshops on metacognitive 

training programs. Linked to metacognitive training based on CMP is the application 

of the Old Way/New Way (0/N) strategy for overcoming the interfering effects of 

prior erroneous knowledge. The theoretical background from which 0/N draws 

suggests the need for effective teaching strategies together with effective remediation 

strategies for effective teaching. Application of the effective remediation strategies in 

classroom situations suggests the use of diagnostic-prescriptive teaching approaches to 

mathematics instruction. This study has shown how this can be achieved. 

CHAPTER SUMMARY 
This final chapter of the report has served to overview what was achieved 

through research conducted in this study. In this chapter, the aims of the study were 

discussed, the limitations of the study outlined, and implications of this study for both 

future research and for instruction were described. This concluding chapter has 

summarised the relationship between instruction, learning and unlearning in actual 

classrooms for the purpose of developing instruction to facilitate Year 8 students' 

access to percent knowledge for solving common percent problems. 
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Appendix A 

Percent Knowledge Test ta:xomony 

SECTION I: Intuitive, Principled-Conceptual Percent Knowledge 
Real world language - real world transactions 

1. a) % discount as less than whole 
b) % profit as more than whole 
c) %loss as less than whole 
d) % interest on borrowings as repaying more than the whole 
e) %interest on savings as receiving more than the whole 

Benchmarks 
2. a) 

b) 
c) 

Concept 

50% is half 
25% is one quarter 
10% is one in ten 

Whole is 100% 
Complement: part +part=whole 
% as part/whole - relationship 

3. a) 
b) 
c) 
d) 
e) 

Fraction as % as part/whole relationship 
Increase as more than 100% 

Percent- decimal equivalence principle 
4. Decimal hundredths expressed as percent 

Percent -fraction equivalence principle 
5 . Fraction expressed as percent 

Additive/subtractive language of decrease/increase 
6. a) Discount as whole less% discount (complement) 

b) Increase as whole plus% increase (easy- <100%) 
c) Increase as whole plus % increase (hard - > 100%) 

Multiplicative language of increase/decrease 
7. a) Multiplicative decrease/discount 

b) Multiplicative increase (easy- <100%) 
c) Multiplicative increase (hard- >100%) 

Posing real world percent situation problems 
8. a) Type 1 

b) Type 2 
c) Type 3 

SECTION II: Conversions and benchmarking 
Percent to fraction equivalence 

1. a) 2 digit b) 1 digit 

Percent to decimal equivalence 
2. a) 2 digit b) 1 digit 
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Appendix A (Cont.) 

Percent Knowledge Test taxomony 

Decimal to percent equivalence 
3. a) hundredths b) tenths c) ones & tenths 

Fraction to percent equivalence 
4. a) denominator 10 b) denominator 5 c) denominator 20 

Benchmarks (mental computation) 
5. a) 25% 

b) 50% 
c) 10% 
d) 100% 

e) 75% 

f) 
g) 
h) 
i) 

j) 

150% 
15% (10%+5%) 
30% (3 X 10%) 
60% (6 X 10%) 

331/3% (1/3) 

SECTION III: Percent calculations and problem solving 
Percent calculations 

1 . Type I percent calculations 
2 . Type II percent calculations 
3 . Type III percent calculations 

Percent problem analysis and problem solving 
4. Type I 
5. Type II 
6. Type III 

a) matching word problem to numerical expression 
b) diagrammatic representation of problem 
c) solving of problem 
d) expression of solution in words 

Multi-step problem solving 
7. Additive increase (NAEP item) 
8. Subtractive decrease (NAEP item) 
9 . Increase (hard - > 100%) 
10. Large numbers (type I) 
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Appendix B 

Delayed posttest taxonomy 

Intuitive, principled-conceptual percent knowledge 
1. Interpreting additive language of percent increase/decrease (discount) 
2. Interpreting multiplicative language of percent increase/decrease 

(increase> 100%) 

Concrete/computational percent knowledge 
3. Solving percent equations 

a) Type I 
b) Type II 
c) Type III 

Interpreting and solving percent problems 
4. a) Type I 

b) Type II 
c) Type III 

Solving two-step problems 
5. a) additive/subtractive 

b) multiplicative 
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Appendix C 

Type I, II and III percent problems for overhead transparencies 

INTERPRETING o/o PROBLEMS 

( i) Solve the following percent problems. 

1. There were 240 people in the hall. 186 people were locals. 
What percent were local people? 

2. Of the 368 people at the school, only 97 were girls. What 
percent were girls? 

3. At the concert, 587 of the 975 people were under the age of 
16. What percent were under the age of 16? 

4. 358 of the 700 bricks had faults in them. What percent of 
bricks were faulty? 

5. Of the 1 075 people interviewed, 972 said they exercised 
regularly. What percent was that? 

(ii) Write "story" problems to match the following 
equations. 

1 . L\_ 0/o Of 50 = 18 

2. L\_ 0/o Of 98 = 72 

3. L\. 0/o of 12 = 1 0 
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Appendix C (Cont.) 

Type I, II and III percent problems for overhead transparencies 

INTERPRETING o/o PROBLEMS 

( i) Solve the following percent problems. 

1. Of the 195 people at the local football match, 20°/o were 
children. How many were children? 

2. 83°/o of the cans were recycled. If there were 2547 cans, 
how many were recycled? 

3. Sally earns $275 a week and has to spend 15°/o on sport. 
How much does she spend on sport? 

4. In a school of 875 students, the measles epidemic infected 
72°/o How many students were infected? 

5. 23°/o of the 900 watches were diamond encrusted. How 
many was this? 

(ii) Write "story" problems to match the following 
equations. 

2. 16°/o of 900 = ~ 
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Appendix C (Cont.) 

Type I, II and III percent problems for overhead transparencies 

INTERPRETING o/o PROBLEMS 

( i) Solve the following percent problems. 

1. In a school, 243 of the students competed in the zone 
sports, which was 27°/o of the whole school. How many 
students attend the school? 

2. In the carton of apples, 256 were bruised, which was 75°/o of 
the apples. How many apples were in the carton? 

3. At a sale, I bought a shirt for $19.50, which was 35°/o of the 
original price. What was the original price? 

4. 72°/o of the tadpoles grew into frogs, which was 198 
tadpoles. How many tadpoles were there originally? 

5. The school has 453 girls, which is 62°/o of the total school 
population. How many students are at the school? 

(ii) Write "story" problems to match the following 
equations. 
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Appendix D 

Structured worksheet to develop the proportional number line method 

PERCENT PROBLEMS WORKSHEET 1 

For each of the following, identify: -the PART 

-the WHOLE 

- the PERCENT 

Draw a diagram to show this information. Write a percent equation to show this information. 

1. Of the 950 people at the basketball match, 490 were Raiders fans. What percent 
were Raiders fans? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of 

DIAGRAM 

% 

0% 

100% 

amount 

2. For my Science test, I got 58 out of 80. What was my percent for the test? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of = 

DIAGRAM 

% 

0% 

100% 

amount 

3. 25% of the 7018 teenagers inteNiewed said they were smokers. How many were 

smokers? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of = 
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Appendix D (Cont.) 

Structured worksheet to develop the proportional number line method 

4. In a school of 853 students, 60% travel to school by bus. How many is this? 
DIAGRAM 

PART: 
0/o amount 

0% 
WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 100% 

5. In the hospital building, there were 430 nurses in duty, which was 37% of the 
nursing staff. How many nurses are on staff? 

PART: 

WHOLE: 

PERCENT: __ _ 

EQUATION: %of ___ _ 

DIAGRAM 

% 

0% 

100% 

amount 

6. At a sale, I paid $350 for a jacket after it had been reduced 45%. What was the 
original price of the jacket? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

DIAGRAM 

% 

0% 

100% 

amount 

7. The survey reported that 35% of teenagers had experimented with alcohol before 
they were 16. If 9854 teenagers under sixteen were interviewed, how many had 
experimented with alcohol? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 
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Appendix D (Cont.) 

Structured worksheet to develop the proportional number line method 

8. The Corbett family spent $1148 for clothes last year. Their income was $12 600. 
What percentage of their income was spent on clothes? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

DIAGRAM 

% 

0% 

100% 

amount 

9. A family which has an income of $1923 per month anticipates that they will spend 
about 18% on their mortgage payment. What will their monthly mortgage payment 
be? DIAGRAM 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

% 

0% 

100% 

amount 

1 0. Mary Anne needed a score of 80% or better on a test containing 34 questions. 
How many could she miss and still the score she needed? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

DIAGRAM 

% 

0% 

100% 

amount 

11 . One school year, Bill was absent 12 days and present 168 days. What percent of 
the time was he absent? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of = 
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Appendix D (Cont.) 

Structured worksheet to develop the proportional number line method 

12. When buying a washing machine costing $400, the Bensons paid $32 deposit. 
What percentage of the purchase price was the deposit? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

1 3. What percentage of 83 is 25? 

PART: 

WHOLE: 

PERCENT: __ _ 

EQUATION: %of ___ _ 

1 4. 12 is 35% of what number? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

1 5. 90% of what number is 60? 

PART: 

WHOLE: 

PERCENT: __ 

EQUATION: %of ___ _ 

300 

DIAGRAM 

% 

100% 

DIAGRAM 
0/o 

0% 

100% 

DIAGRAM 

% 

0% 

100% 

DIAGRAM 

% 

0% 

100% 

amount 

amount 

amount 

amount 

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm

messengm
Sticky Note
None set by messengm

messengm
Sticky Note
MigrationNone set by messengm

messengm
Sticky Note
Unmarked set by messengm



Appendix E 

Percent problems worksheet 2 

PERCENT PROBLEMS WORKSHEET 2 
Solve the following problems. Draw a diagram, and show your working. 

PROBLEM DIAGRAM AND WORKING 
1 . There were 240 people in the hall. 18€ 
!Were locals. What percent were local people? 

2. Of the 368 people at the school, only 
97 were girls. What percent were girls? 

p. Of the 195 people at the football 
match, 20% were children. How many were 
phildren? 

4. 85% of the cans were recycled. If there 
were 2547 cans, how many were recycled? 

5. In a school, 243 of the students 
competed in the zone sports, which was 27% of 
he whole school. How many students attend 
he school? 

~. In the carton of apples, 265 were 
bruised, which was 75% of the apples. How 
many apples were in the carton? 

7. At the concert, 587 of the 975 people 
were under the age of 16. What percent were 
under the age of 16? 
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Appendix E (Cont.) 

Percent problems worksheet 2 

8. Sally earns $275 a week and has to 
spend 15% on sport. How much does she 
~pend on sport? 

9. 72% of the tadpoles grew into frogs, 
rvvhich was 198 tadpoles. How many tadpoles 
~ere there originally? 

10. 358 of the 700 bricks had faults in 
hem. What percent of bricks were faulty? 

11 . Of the 1 075 people interviewed, 
972 said they exercised regularly. What 
percent was that? 

12. At a sale, I bought a shirt for $19.50. 
~hich had been marked down by 35%. What 
~as the original cost of the shirt? 

13. 73% of what numbers is 450? 

14. What percentage of 75 is 43? 
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Appendix E (Cont.) 

Percent problems worksheet 2 

Write "story problems" to match the following equations. 

1 . ~% of 50 = 18 

2. ~% of 98 = 72 

3. 25% of 80 = ~ 

4. 16% of 900 =~ 

5. 65%of~=29 

6. 35% of ~ = 86 
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Appendix F 

Multiple-choice worksheet for interpreting percent increase and decrease situations 

INTERPRETING % INCREASE AND DECREASE PROBLEMS 

Group name: 

Group members: ______________________ _ 

SELECT the % INCREASE sentences which match the following situations. 

NOTE: There may be more than one correct sentence for each situation. 

1 . A baby weighs 2kg at birth. Two months later, its weight has increased 25%. The 

baby's weight now is 

a) 25% of its birthweight 

b) 25% more than its birthweight 

c) 75% more than its birthweight 

d) 125% more than its birthweight 

e) 125% of its birthweight (2) 

2. At 6:00am, there were 1 00 people lined up to buy State of Origin rugby tickets. At 

9:00am, the crowd had increased 400%. The crowd size now is 

a) 3 times the original size (i.e. 300) 

b) 4 times the original size (i.e. 400) 

c) 5 times the original size (i.e. 500) 

d) 400% of the original size 

e) 500% of the original size 

f) 400% bigger than the original size 

g) 500% bigger than the original size (3) 

3. The Mars Bar company decided to make Mars Bars 25% longer than before. Which 

of the following statements correctly describes the size of the new Mars Bar? 

a) The size of the new Mars Bar is 125% of the old Mars Bar. 

b) The new Mars Bar is 25% of the old Mars Bar. 

c) 

d) 

The size of the new Mars Bar increased by 125%. 

The new Mars Bar is 25% bigger than the old Mars Bar. 
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Appendix F (Cont.) 

Multiple-choice worksheet for interpreting percent increase and decrease situations 

4. The family size pizza is 50% bigger than the large size pizza. Which of the following 

statements correctly describes the size of the family pizza to the large pizza? 

a) The family pizza is 150% bigger than the large pizza 

b) The family pizza is 50% bigger than the large pizza 

c) In the family pizza, you get 50% more pizza than in the large pizza. 

d) The family pizza is 50% greater than the large pizza. 

e) The family pizza is 150% greater than the large pizza. (3) 

5. I am now 400% heavier than I was when I was 5. 

Which of the following statements correctly describes my mass now with what I 

weighed when I was five? 

a) I am 4 times heavier than I was at 5. 

b) I am 5 times heavier than I was at 5. 

c) My weight is 400% of my weight when I was 5. 

d) My weight is 500% of my weight when I was 5. 

e) 

f) 

My weight has increased 400% since I was 5. 

My weight has increased 500% since I was 5. (3) 

6. The population of a town increased 200% following a minor baby boom. The new 

population is now 

a) 200 times larger than the original population 

b) 200% of the old population 

c) 300% of the old population 

d) 200% larger than the old population 

e) 300% larger than the old population (2) 
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Appendix F (Cont.) 

Multiple-choice worksheet for interpreting percent increase and decrease situations 

DECREASE % PROBLEMS 

Name: 

SELECT the % DECREASE sentences which match the following situations. 

NOTE: There may be more than one correct sentence for each situation. 

1 . Registration for the SLAM DUNK coaching clinic is $400. For early enrolment there 

is a 35% reduction in the fee cost. Early registration fees are 

a) 35% of the normal registration fee of $400 

b) 35% less than the normal registration fee of $400 

c) 65% less than the normal registration fee of $400 

d) 65% of the normal registration fee of $400 (2) 

2. At Target Michael Jackson's new CD is selling for $44.95. At sale time, this CD is to 

be discounted 25%. The sale price you will pay is 

a) 75% of the original price of $44.95 

b) 25% of the original price of $44.95 

c) 125% of the original price of $44.95 

d) 75% less than the original price of $44.95 

a) 25% less than the original price of $44.95 (2) 

3. Last year, I weighed 60kg. Since I have taken up playing Squash 3 times a week, I 

have reduced my weight by 1 0%. Which of the following statements correctly 

compares my weight last year to my weight now? 

a) I weigh 1 0% of what I weighed last year. 

b) I weigh 90% of what I weighed last year. 

c) I weigh 110% of what I weighed last year. 

d) I have reduced my weight 90%. 

e) I have reduced my weight 10%. 

f) My weight has decreased by 1 0%. 

g) My weight has decreased by 90%. (3) 
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Appendix F (Cont.) 

Multiple-choice worksheet for interpreting percent increase and decrease situations 

4. Bronco football club jumpers were marked $89. At sale time, they were discounted 

40%. To buy a club jumper, you would pay 

a) 

b) 

c) 

d) 

40% of the marked price of $89 

40% less than the marked price of $89 

60% of the marked price of $89 

60% less than the marked price of $89 (2) 

5. The town of Gorgonville has a population of 28,000. After an epidemic virus swept 

through the town, 15% of people died. The population of Gorgonville is now 

a) 15% less than the original population of 28,000 

b) 85% less than the original population of 28,000 

c) 15% of the original population of 28,000 

d) 85% of the original population of 28,000 

e) reduced by 15% 

f) reduced by 85% (3) 
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Appendix G 

Worksheet for percent, common and decimal fraction conversions 

Fraction - decimal - percent equivalence 

1 . Express the following as percents 

a) 0.29 = f) 0.5 = 

b) 0.58 = g) 0.75 = 

c) 0.01 = h) 2.4 = ------

d) 0.1 = i) 1 = ---------
e) 1.25 = j) 0.25 = 

2. Express the following as fractions 

a) 52%= f) 75%= 

b) 21% = g) 10% = 

c) 11% = h) 25%= ---------
d) 8%= i) 331/3% = 

e) 50%= j) 125% = 

3. Express the following as decimals 

a) 26%= f) 25%= 

b) 17% = g) 10% = 

c) 8%= h) 110% = 

d) 80%= i) 75%= -------

e) 50%= j) 100% = 
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Appendix G (Cont.) 

Worksheet for percent, common and decimal fraction conversions 

4. Express the following as fractions 

a) 1;2= i) 1 = 

b) 1;4 = j) 47;50 = 

c) 101100 = k) 17;20 = 

d) 1;10 = I) 2 97;100 = 

e) 19;25 = m) 4;5 = 

f) 11/20 = n) 3;4 = 

g) 4;5 = o) 22;25 = 

h) 3110 = 

5. Complete the table below: 

Percent Fraction Decimal 

50% 

25% 

75% 

10% 

100% 

20% 

5% 

4% 

*331/3% 

*662/3% 

NOTE: Memorise the first 5 rows of this table 
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Appendix G (Cont.) 

Worksheet for percent, common and decimal fraction conversions 

6. Use the table to help you complete the following: 

a) 50% of 40 = ------- i) 50% of 1100 = ---------
b) 25% of40 = --------- j) 25% of 100 = --------

c) 10% of 40 = -------- k) 100% of 60 = --------

d) 50% of90 = ---------- I) 150% of 60 = ----------
e) 50% of 7806 = -------- m) 125% of 400 = --------
f) 100% of 500 = --------- n) 331 I 3% of 900 = 

g) 75% of 400 = ------- o) 15% of 60 = -------

h) 10% of 8520 = -------- p) 10% of 49,000 = 

7. Use your knowledge of fraction - decimal -percent equivalence to help you 

calculate percent equations quickly. Try these: 

a) In a bucket of 40 golf balls, 50% were white and the rest were coloured. How many 

golf balls were white? ___ _ 

b) In a class of 40 students, 25% of the students had part-time jobs. How many 

students had part-time jobs? 

c) Sally earns $450 a week. She spends 1 0% of her wage on entertainment. How 

much is this? 

d) Of the 32 children in the room, 1 00% had been immunised against measles. How 

many is this? ___ _ 

e) Of the 1200 people at the concert, 75% were under the age of 15. How many was 

this? 

f) 20% of the golf balls hit landed in the pond. If 40 golf balls were hit, how many 

landed in the pond? 
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Appendix G (Cont.) 

Worksheet for percent, common and decimal fraction conversions 

g) When the students voted, 50% said that they wanted to study Japanese instead of 

Indonesian. If 560 students voted, how many wanted to study Japanese? 

h) Of the 780 tadpoles, only 25% matured to frogs. How many was this? 

i) The Medicare levy requires wage earners to pay 1.25% of their income to Medicare. 

If a person earns $40 000 per year, approximately how much of their earnings is paid 

to Medicare? 
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Appendix H 

Stimulus worksheet for analysing a collection 

~& ~ ~MARlf~[E 
~o~~MAT~~ 
~ 

Investigate the contents of your Smarties box. 

Describe your findings in as many mathematical ways as possible. 

fractions 

decimals 

percents ratio 

graphs 

proportion 

equations 
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Appendix I 

Summary of the historical development of percent 

HISTORICAL DEVELOPMENT OF PERCENT 

Year Place 

300 BC India 

200 - 1 00 BC China 

499 India 

628 India 

1202 Italy 

1481 Italy 

1545 Italy 

1650 Italy 

1801 France 

Development 

Interest rates given in panas per month per hundred. 

K'iu-ch'ang Suan-shu (Nine chapters on the mathematical 

art) 

The Rule of Three is used to solve problems. 

Trairasiak - The Rule of Three terms: 

"Multiply the first by the desire and divide by the measure. 

The result is the fruit of the desire." 

Compound interest. 

Brahmagapta - Mercantile Rule of Three 

"In the Rule of Three, Argument, Fruit, and Requisition are 

the names of the terms. The first and last terms must be 

similar. Requisition multiplied by Fruit and divided by 

Argument, is the Produce." 

Fibonacci - after travelling through Egypt, Syria, Greece and 

Sicily, writers Liber Abaci- an arithmetic of wide scope, 

including prices of goods, barter and partnership, utilising 

the Rule of Three in these areas. 

Earliest record available on the appearance of the word 

"perceto". 

Italian manuscripts use percent symbol and Rule of Three in 

commercial problems. 

perceto, p.c. etc begins to change to 2 , the precursor to the 

modern%. 

Playfair publishes the first pie chart in his Statistical Breviary. 
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Appendix J 

Stimulus for discussion of percent language 

The language of percent 

Can we have: 
50°/o class attendance? 
90°/o class attendance? 
1 00°/o class attendance? 
11 0°/o class attendance? 

What do the following mean: 
75°/o full 
25°/o full 
1 OOo/o full 
25°/o empty 

Can you be: 
50°/o certain? 
1 00°/o certain? 
11 0°/o certain? 

How much effort is: 
50°/o effort? 
1 0°/o effort? 
1 OOo/o effort? 
11 0°/o effort? 
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Appendix K 

A collection of percent problems for analysis in terms of part, whole and percent 

INTERPRETING 0/o PROBLEMS 

1. There were 240 people in the hall. 186 people were locals. 
What percent were local people? 

2. Of the 368 people at the school, only 97 were girls. What 
percent were girls? 

3. Of the 195 people at the local football match, 20°/o were 
children. How many were children? 

4. 83°/o of the cans were recycled. If there were 2547 cans, 
how many were recycled? 

5. In a school, 243 of the students competed in the zone 
.; sports, which was 27°/o of the whole school. How many 

students attend the school? 

6. In the carton of apples, 256 were bruised, which was 75o/o of 
the apples. How many apples were in the carton? 

7. At the concert, 587 of the 975 people were under the age of 
16. What percent were under the age of 16? 

8. In a school of 875 students, the measles epidemic infected 
72°/o How many students were infected? 

9. At a sale, I bought a shirt for $19.50, which was 35°/o of the 
original price. What was the original price? 

1 0. 358 of the 700 bricks had faults in them. What percent of 
bricks were faulty? 
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Appendix K (Cont.) 

A collection of percent problems for analysis in terms of part, whole and percent 

11. Of the 1075 people interviewed, 972 said they exercised 
regularly. What percent was that? 

12. Sally earns $275 a week and has to spend 15°/o on sport. 
How much does she spend on sport? 

13. 23°/o of the 900 watches were diamond encrusted. How 
many was this? 

14. 72°/o of the tadpoles grew into frogs, which was 198 
tadpoles. How many tadpoles were there originally? 

15. The school has 453 girls, which is 62°/o of the total school 
population. How many students are at the school? 
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Appendix K (Cont.) 

A collection of percent problems for analysis in temzs of part, whole and percent 

PART WHOLE 0/o WORKSHEET 

Identify the PART, the WHOLE, and the% in each of the problems. 

1. PART WHOLE o;o 

2. PART WHOLE 0/o 

3. PART WHOLE 0/o 

4. PART WHOLE 0/o 

5. PART WHOLE 0/o 

6. PART WHOLE 0/o 

7. PART WHOLE 0/o 

8. PART WHOLE 0/o 

9. PART WHOLE 0/o 

10. PART WHOLE 0/o 

11. PART WHOLE 0/o 

12. PART WHOLE 0/o 

13. PART WHOLE o;o 

14. PART WHOLE o/o 

15. PART WHOLE 0/o 
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