The [eJOS NXJ
Tutorial

Introduction to 1eJOS and this Tutorial

This tutorial will teach you how to use 1eJOS
NXJ to run Java programs on your LEGO
MINDSTORMS NXT ®.

leJOS NXJ is a firmware replacement for the
NXT and you will need to flash the leJOS
firmware replacing the existing LEGO
Mindstorms firmware. (Don’t worry you can
put the original firmware back whenever yo
want).

The tutorial gives step by step instructions fa
setting up the 1eJOS NXJ software up on yo
PC and replacing the firmware on the NXT.
covers all supported PC operating systems:
Microsoft Windows, MAC OS X and Linux.

The tutorial will teach you how to write Java pragns that control a variety of different
types of robots. You will learn how to programtaié sensors and motors that come with
the NXT.

leJOS is not for beginners. You will need to untierd at least the basics of the Java
language to use it. However, it is much more powehan the graphical programming
environment that comes with the NXT: you will bdeato program robots with more
complex and interesting behaviors.

leJOS NXJ gives you all the power of the Java laggu You can you a variety of data
types including strings, floating point number amthys, including multi-dimensional
arrays. You can do complex mathematical calculatizssing a all the standard Java math
functions. You can program concurrent threads,yadcan use Java events.

Java is an Object Oriented environment that letsdefine your own classes and objects.
This makes program simple to understand but capdlaay degree of complexity.

leJOS NXJ has been used to program many sopheticabots for the LEGO
Mindstorms NXT. Seéttp://lejos.sourceforge.net/forum/viewforum.php?fer some
examples. It is very popular with universities amiversity students.

The tutorial will lead you on to more advanced tsBsuch as using third-party sensors
communicating with the PC, other NXTS, mobile phoaad other Bluetooth devices. It
will teach you advanced robotic programming techagsuch as behaviour
programming

What Is
leJOS NXJ?

What is 1eJOS NXJ?

Y LEJOS
1™ | Java for LEGO Mindstorms

leJOS NXJ is a Java programming environment folLB O MINDSTORMS NXT ®.
It allows you to program LEGO ® robots in Java.

It consists of:

» Replacement firmware for the NXT that includes @aJdirtual Machine.

» Alibrary of Java classes (classes.jar) that imglenthe 1eJOS NXJ Application
Programming Interface (API).

* Alinker for linking user Java classes with clagsego form a .binary file that
can be uploaded and run on the NXT.

» PC tools for flashing the firmware, uploading pams, debugging, and many
other functions.

» A PC API for writing PC programs that communicaighvleJOS NXJ programs
using Java streams over Bluetooth or USB, or uiad EGO Communications
Protocol.

* Many sample programs

As 1eJOS is a firmware replacement, the new firnewadOS NXJ firmware must be
flashed onto the NXT, and will replace the standd#&O MINDSTORMS firmware.
This wipes out any files currently held on the LE@@ware. The LEGO firmware can
be restored using the LEGO supplied software.

leJOS is an open source project hosted in the sfmige repository. It was originally
created from the TinyVM project that implementedbaa VM for the LEGO Mindstorms
RCX system. The RCX version of 1eJOS proved venpytar with the LEGO
Mindstorms Robotic Inventions Systems owners, dosecto 200,000 downloads of all
versions of leJOS have been done. The origindloawf TinyVM and the RCX version
of leJOS was Jose Solorzano.

The NXT has given the leJOS development team tpertynity to greatly expand the
capability of 1eJOS.

What are the advantages of leJOS NXJ?

There are many advantages of using 1eJOS NXJ rdtharthe NXT-G or other
programming environments for the NXT. These include

It uses the industry-standard Java language.

It provides object-oriented programming.

It is an open source project with many contributors

It allows you a choice of professional Integratesl/Blopment Environment such
as Eclipse and Netbeans that support syntax ditectiors and many other
features.

It has cross platform support — Windows, Linux, M28 X.

It is much faster than NXT-G.

It has full support for Bluetooth.

It provides highly accurate motor control.

It has advanced navigation support.

It provides Behavior classes that support the supsion architecture foe ease of
programming of complex robot behaviors.

It supports third party sensors.

It supports remote monitoring and tracing of yaddS NXJ program from the
PC.

It provides trigonometry and other Math functions

It supports the J2ME LCD user Interface includingnw graphics functions.

It supports multithreading.

It supports listeners and events.

It supports safe memory management with garbadectioin

It has USB support including Java streams over dS&BUSB debugging.

It supports standard Java Communication streams

It has a flash file system accessed by the standeaado classes.

It supports data logging and remote capturing efitlys.

It has sound support including playing 8-bit WA\e§

It provides dozens of sample programs.

It supports remote execution from the PC using iG@amd.

The Web site has online forums to help solve aoplems you might have, to
share projects ideas, and to communicate with ¢weldpment team.

It has telerobotics support via standard TCP/IKesitsc

It supports NXT to NXT Bluetooth communications.

It supports Bluetooth communication with other degi.

It supports two-way communication with RCX via thparty adapters such as the
Mindsensors NRLink.

It provides compatibility with Lego CommunicatioRsotocol, so that many tools
that work with the standard LEGO firmware, also kvaith leJOS.

It has an easy to use menu system.

It is widely used by universities and other edwratstablishments.

It has computer Vision and speech support via iCanmn

Getting
Started
on

Microsoft
Windows

Getting started on Microsoft Windows

This section tells you how to get started if yo@ ins Microsoft Window. If you use
Linux or MAC OS X, see the sections at the enchief locument.

To get started on Microsoft Windows you will needtalled on your PC:

* The LEGO Mindstorms software.
e The libusb-win32 filter driver.

* A Java Standard Edition SDK.

» Apache ant (optional)

e The leJOS NXJ software.

You will then need to set up environment varialwes/our PC and start a command
window to type commands into.

When all that is done, your PC is ready. You theadto flash the 1eJOS NXJ firmware,
and after that you can compile and run your firsigpam.

These steps are described in the sections below.

LEGO Mindstorms software

You will need the LEGO Mindstorms software instdlten your PC, as its USB driver is
used by leJOS. Follow the LEGO instructions toatst.

Libusb

You will also need the libusb-win32 filter driveryeu can download it from
http://libusb-win32.sourceforge.net/#downloads .

On Windows XP systems, you can just download itexetute it.

On Windows Vista systems, however, you must ingtall Windows XP compatibility
mode. To do this:

1. Download libusb-win32-filter-bin-0.1.12.1.exe (thersion current @ 27/09/07)

2. Right click on this file. Select Properties | Conilpéity Click the "Run this
program in compatibility mode" box and select "Womgs XP (Service Pack2)"
from the drop down list.

3. Right click again and select "Run as Administrat&dllow the installation
instructions.

You should install libusb in a folder that does hate spaces in its name — for example,
do not install it in “Program Files”.

Run the libusb test program and it will list thédukevices plugged into your computer.

Java SDK

You will need a Java Standard Edition SDK on yoQr Pou can download the latest
from http://java.sun.comfollow the instructions for installing it. leJO®J works has
been tested with versions 1.5 and 1.6, but willmaitk with earlier version.

Apache ant

Apache ant is useful for running the 1eJOS sampig®u have a Java IDE on your
system, such as Eclipse, it might already be ilestal¥ou can download ant from
http://ant.apache.org/bindownload.clgistalling ant is simple — you just unzip it irdo
folder of your choice (e.g. c:\ant). leJOS needslanor later.

Installing 1eJOS

You can download 1eJOS NXJ for Windows from
http://lejos.sourceforge.net/p technologies/nxtloyvnloads.phpUnzip it to a folder of
your choice (e.g. c:\lejos0.6). Note that it creaesubfolder called lejos_nxj.

Settting up environment variables

You need to set:

Env. Var. Value Example

NXJ_HOME | the folder you installed C:\lejos0.6\lejos_nx]
leJOS NXJ into

JAVA_HOME | the folder you installed the| C:\Program Files\Java\jdk1.6.0_06
Java SDK into

ANT_HOME | the folder you installed ant| C:\ant
into

PATH Add the bin folders for %NXJ_HOME%\bin;%JAVA_ HOME%\bin;
Java, 1eJOS and ANT %ANT_HOME%\bin;%PATHY%

You can set these environment variables for altsuse the PC by going to Control Panel
> System > Advanced > Environment Variables andtarg them or editing existing
values.

Using a Command Window

You can start a command window by Start > Run gpohg cmd.

Typeset to list environment variables and check they drsed up correctly.

Flashing the NXJ firmware

Make sure your NXT is attached to the PC by its W&Ble, and switch it on by pressing
the orange button.

Then in your command window, typejflash to flash the [eJOS NXJ firmware. You
will see some messages on your command windowthenNXT should show the 1eJOS
splash screen and then the 1eJOS menu.

Compiling
and
running
your
first program

Compiling and running your first program

Java programs need to be compiled to class filEgdéhey can be run. For [eJOS NXJ,
all the class files that are to be run on the NX¢€ded to be linked to produce a binary
file (with the extension .nxj) and this must thenuploaded to the NXT.

To run a sample program, such as the View.java kgrfgllow these steps:

Start a command window, and change directory to/ieer sample folder:

cd %NXJ_HOMEN\ samples \ View

Compile the program with thexjc command:

nxjc View.java

Then link, upload and run it with timxj command:

nxj —rView

You should see the menu of the View sample on Ho(F.

Setting up
the
Eclipse IDE

Setting Up the Eclipse IDE

Programming for 1eJOS NXJ is best done using aghatted Development Environment.
IDEs have syntax-directed editors that immediasklgw you any syntax errors in your
program, rather than waiting until you compile iregram and then showing a list of
errors. This, together with color coding of the ey automatic formatting of the code,
prompting for method names and signatures, expgratid collapsing parts of your
program, and many other editing features, makestiogeyour program a much faster
and more enjoyable experience. But the advantdgbe dDE do not end there: they also
help you with creating and building projects, deing, generating documentation, and
creating user interfaces. Java IDEs put all the 3wa tools and a variety of third-party
tools at your fingertips. They make supporting nieals simple, either by use of plug-ins
or by integration of external tools.

IDEs are easy to set and use and you should useftrall your leJOS programming —
even the simplest of projects.

This tutorial concentrates the Eclipse Java Integr®evelopment Environment, as this
is currently the most popular one for 1eJOS prognens, but there are many other Java
IDEs, such as Netbeans and BlueJ, each with tiagirstrengths,
There are three ways of building 1eJOS prograntafipse:

* Using external tools

e Using ant build files

* Using a leJOS plug-in
It is worth understanding all of these techniquethay each have there advantages, and
a combination of the techniques may well work lbesyour projects.
Setting up Eclipse
Creating aleJOS project
Creating external tools

Using ant build files

Installing and using the 1eJOS plugin

Programming
with
eJOS NXJ

Writing
Your
First Program

Writing your first [leJOS NXJ program

Let us start with a simple “Hello World” program.e\Will create a HelloWorld class in
the default java package:

public cl ass HelloWorld

{
}

leJOS requires the standam@in method for the program entry point:

public cl ass HelloWorld

{
public static voi d main (String[] args)
{

}
}

Recent versions of 1eJOS NXJ support the standaaSystem.out.printin method and
scroll the output on the NXT LCD screen.

public cl ass HellowWorld

{

public static void main (String[] args)

{
System. out .printin("Hello World");
}
}

If you run this program as it is, it will displayaio World” and then immediately return
to the menu, so you will not be able to see whdtdplayed (unless you are very quick).

We either need the program to sleep for a whildltiw the text to be read, or to wait for
a button to be pressed. Let us wait for a buttdmetpressed. To do this we need to
include the 1eJOS NXJ Button class in the progfuaiton is in the lejos.nxt package.
We can either include lejos.nxt.Button or lejos.hid allow any of the standard lejos.nxt
classes to be used in the program. The Button biess method waitForPress() that
waits for any button to be pressed. You can findvwat methods a class supports by
looking at the API documentation:

{2 Button (leJOS NXT APl documentation) - Windows Internet Explorer E]@@

@k . |t http:/flejos.sourceforge.net/p_technologiesfnxt/nxj/apifindex. html V‘ e P, i | R~
v e |f_ésuttun {le305 NAT APT document ation) | | far - B d® - bpage - G- @- 3 E 3
e [The Right button. =

All Classes

Packages Method Snmmary

; = !

sl i ve:¢laddButtonListener (ButtonListener aListener)

val Adds a listener of button events.

ava lang -

ava util 7e*%|calliisteners ()

javax microedition ic | Call Button Listeners.

javax microedition lcdui 8 e ——

rbi] Return the 1D of the button.

Ao ===

ArithmeticException |1sBressed()

ArrayindexOuiOBoundsExc | Check if the button is pressed. ||

ArraylList ——

readButtons(}

ArrayRecycler =
; i Low-level AP that reads stats of buttons.

Asser

" lwaitForPress()
wait for some button to be pressed

#|waitForPressindRelease (]
‘Wait until the button is released.

.]Iethuds inherited from class java.lang.Object

ETConnecticn
BTlnputSiream eguals, getClass, hashCode, notify, nocifyAll, toString, wait, wait

BTOutpuisStream
BTRemoteDevice
Buftton
ttonCounter = 2
Eulfond istener _F]e]d Detail
Choice
ChoiceGroup ENTER
Class

ClassCastException
ClasshiotFoundException &
" &

€D Internat A 100w -

public static final Button ENTER

ey

The API documentation is on the 1eJOS wseb sitdragidded in the [eJOS download in
lejos_nxt/docs/apidocs/index.html.

The complete HelloWorld program is:

i mport lejos.nxt.*;
public cl ass HellowWorld

public static void main (String[] args)

{
System. out .printin("Hello World");

Button. wai t For Press();

Controlling
the
Hardware

LCD,
Buttons

and
Sound

LCD, Sound and Buttons

The NXT can be used as a simple computer with ad tiSplay, 4 buttons and sound
capabilities. These functions are supported by @B, Button, and Sound classes.

LCD

The LCD can be used in text mode and graphics mode.

Text LCD methods

As a text display, the NXT LCD screen is 16 chaexctvide and eight characters deep. It
is addressed using (X, y) co-ordinates as follows:

v
X

x ranges from 0 to 15, and y from O to 7.
The methods to write to the LCD in text mode are:-

+ public static drawString(String str, int x, int y);

This draws a string of text to the LCD screen sigrat text co-ordinate (X,
y)-

e drawString(String str, int x, int y, boolean invert

This variant of drawString supports inverting thgt drawing white characters on a
black background.

* public static drawlInt(int i, int X, int y);

This draws an integer starting at co-ordinate (x;ifie integer is left aligned and takes
up as many characters as are necessary.

« public static drawlInt(int i, int places, int X, in};

This variant of drawint right-aligns the integedasdways uses the number of characters
indicated byplaces.

» drawChar(char c, intynt y, boolean invert);

This draws a character at text co-ordinate (X, it wptional inversion of the character.

* public static clear();

Clears the display.

Example:
i mport lejos.nxt.*;
i mport java.io.*;
public cl ass LCDTest
{
public static voi d main (String[] args)
t hr ows Exception
{
LCD. dr awSt ri ng("Free memory:" , 0, 0);
LCD. drawString("RAM:" , 1,1, true);
LCD. drawl nt ((i nt) System. get Runti ne().freeMemory(), 6, 8, 1);
LCD. drawstring("Flash:" , 1,2, true);
LCD. dr awl nt (File. freeMenory(), 6, 8, 2);
Thread. sl eep(2000);
}
}
Buttons

The NXT buttons are accessed by static fields:

e Button.ENTER
e Button.ESCAPE
e Button.LEFT

e Button.RIGHT

To test is a button is pressed, you use:
* public final boolean isPressed();

Example:

i nport lejos.nxt.*;
publ i c cl ass ButtonPresses

public static voi d main (String[] args)
t hr ows Exception

while (true)({

LCD. cl ear ();
| f (Button. ENTER.isPressed()) LCD. drawstri ng("ENTER",0,0);
i f (Button. ESCAPE.isPressed()) LCD. dr awSt ri ng("ESCAPE",0,0);
i f (Button. LEFT.isPressed()) LCD. drawStri ng("LEFT" ,0,0);
i f (Button. Rl GHT.isPressed()) LCD. drawSt ri ng("RIGHT" ,0,0);

To wait for a specific button to be pressed andastd, you use:
* public final void waitForPressAndRelease() thromeiruptedException;

Example:

i mport lejos.nxt.*;

public cl ass ButtonTest

{

public static voi d main (String[] args)
t hr ows Exception

Button. ENTER.waitForPressAndRelease();
LCD. drawst ri ng("Finished" | 3, 4);
Thread. sl eep(2000);

To wait for any button to be pressed, you do:

e public static int waitForPress();

The returns the id of the button that is pressed.

To specify a listener to listen for button evemtsthis button, you:

* public synchronized void addButtonListener (Buttmténer aListener)
See “Listeners and Events” below for how buttotehgrs work.

To read the current state of all the buttons, you d

e public static native int readButtons();

Sound

There is a static method to play a tone:

public static playTone(int aFrequency, int aDuration);

Example:

i mport lejos.nxt.*;

public class Tune {

/I NOTE: This tune was generated from a midi using Guy

/I Truffelli's Brick Music Studio www.aga.it/~guy/I ego

private static final short[] note={
2349,115, 0,5, 1760,165, 0,35, 1760,28, 0,13, 1 976,23,
0,18, 1760,18, 0,23, 1568,15, 0,25, 1480,103, 0 ,18, 1175,180, 0,20, 1760,18,
0,23, 1976,20, 0,20, 1760,15, 0,25, 1568,15, 0, 25, 2217,98, 0,23, 1760,88,
0,33, 1760,75, 0,5, 1760,20, 0,20, 1760,20, 0,2 0, 1976,18, 0,23, 1760,18,

0,23, 2217,225, 0,15, 2217,218};

public static voi d main(String [] args) {
for(inti=0ji< note.length ;i+=2){
final short w= note[i+1];
final int n= noteli;
i f (n!=0) Sound. pl ayTone(n, w*10);
try {Thread. sl eep(w*10);} cat ch (InterruptedException e) {}

There are methods that use playTone to play atyasfesounds. These are compatible
with the RCX version of 1eJOS:

* public static void systemSound (boolean aQueu¢dGode);
The aQueued parameter is ignored on the NXT.

The values of code are:

code =0 Short beep
code=1 Double beep

code =2 Descending arpeggio
code =3 Ascending arpeggio
code =4 Long, low buzz

There are also methods for each of the system sound

e public static void beep();

* public static void twoBeeps();

* public static void beepSequence();

* public static void beepSequenceUp();
* public static void buzz();

This is also a method to produce a rest when piggitune:
e public static void pause(int t);

leJOS NXJ can also play 8-bit WAV files. To plagse you do:

Controlling
the
Sensors

Controlling the Sensors

The NXT comes with four sensors; the touch serikersound sensor, the light sensor
and the ultrasonic sensor.

Touch Sensor

To use a touch sensor, you create an instancetththed to a sensor port, using the
constructor:

* public TouchSensor(ADSensorPort port);

The port is usually SensorPort.S1, S2, S3 or Sdit lbould be a remote sensor port (see
the RemoteNXT class) or a port attached to a thady port expander. It can be an
instance of any class that implements the ADSemsbnfterface. (“AD” stands for
“Analog/Digital” — the touch sensor is an exampl@n Analog to Digital sensor).

To test is the touch sensor is pressed, you usskhessed() method:

* public boolean isPressed();

Example:

i mport lejos.nxt.*;

public class TouchTest {
public static void main (String[] args) t hr ows Exception

TouchSensor touch = new TouchSensor(SensorPort. S1);

whi | e (touch.isPressed());
LCD. drawSt ri ng("Finished" , 3, 4);
Thread.sleep(2000);

}
}

Light Sensor

To use a light sensor, you create an instanceatfathed to a sensor port, using the
constructor:

* public LightSensor(ADSensorPort port);

The port is usually SensorPort.S1, S2, S3 or Sdit lbould be a remote sensor port (see
the RemoteNXT class) or a port attached to a thady port expander. It can be an
instance of any class that implements the ADSemsbnfterface. (“AD” stands for
“Analog/Digital” — the light sensor is an examplieam Analog to Digital sensor).

Example:

i mport lejos.nxt.*;

public cl ass LightTest {
public static voi d main (String[] args)
t hr ows Exception

LightSensor light = new LightSensor(SensorPort. S1);
while (true){

LCD. dr awi nt (light.readValue(), 4, 0, 0);
LCD. dr awl nt (light.readNormalizedValue(), 4, 0, 1);
LCD. dr awl nt (SensorPort. Sl.readRawValue(), 4, 0, 2);
LCD. dr awl nt (SensorPort. Sl.readValue(), 4, 0, 3);
Thread.sleep(2000);

}

}

Sound Sensor

The sound sensor is an Analog/Digital sensor.pgpsus two modes:

To use a sound sensor, you create an instancattédhed to a sensor port, using the
constructor:

e public SoundSensor(ADSensorPort port);

The port is usually SensorPort.S1, S2, S3 or Sit lbould be an instance of any class
that implements the ADSensorPort interface.

Example:

i mport lejos.nxt.*;
public cl ass SoundScope {

public static voi d main (String[] args) t hr ows Exception {
SoundSensor sound = new SoundSensor(SensorPort. S1);

whi | e ('Button. ESCAPE.isPressed()) {

LCD. cl ear ();
for(int i=0;i<100;i++) {

LCD. set Pi xel (1,i,60 - (sound.readValue()/2));
Thread. sl eep(20);

}

}
}
}

The above example gives a graphical display ofxag the sound reading varies over a
two-second period.

Ultrasonic Sensor

The Ultrasonic Sensor is an 12C sensor. The clabs¢support 12C sensors all extend
the 12CSensor class.

Example:

i mport lejos.nxt.*;

public cl ass SonicTest {

public static voi d main(String[] args) t hr ows Exception {
UltrasonicSensor sonic = new
UltrasonicSensor(SensorPort. S1);

whi | e(!Button. ESCAPE.isPressed()) {

LCD. cl ear ();

LCD. dr awSt r i ng(sonic.getVersion(), 0, 0);
LCD. dr awSt r i ng(sonic.getProductID(), 0, 1);
LCD. dr awsSt ri ng(sonic.getSensorType(), 0, 2);
LCD. dr awl nt (sonic.getDistance(), 0, 3);

Controlling
the
Motors

Controlling the Motors

Motors connected directly to the NXT motor ports t& accessed using static variables:

* Motor.A
* Motor.B
* Motor.C

The most basic methods for controlling motors are:
* public setSpeed(int speed);
* public forward();
* public backward();

e public stop();
* public flt();

flt() puts the motor in float mode and it will graceyutome to reststop() stops the
motor immediately.

By default, the speed of a motor is regulated leyntiotor’s regulation thread. This keeps
the motor running at the desired speed, by chartbmgower applied to the motors.

You can determine how well this is working by gadtthe actual speed of the motor:
e public int getActualSpeed()

If you do not want speed regulation, you can call:
* public void regulateSpeed(boolean yes)

and switch regulation off. When motors are not beggulated, you may wish to set the
power directly, rather than to set the speed. Tthaoyou can call:

* public synchronized void setPower(int power)

The direction of the motor can be changed with:
* public void reverseDirection();
The built-in tachometer in the NXT motor can bedraad reset by:

* public void resetTachoCount()
* public int getTachoCount()

The tachometer can be used to rotate a motor laygle, in degrees. The angle can be
negative.

e public void rotate(int angle);
* public void rotate(int angle, boolean immediateR&Xu

An absolute rather than relative angle can alsspeeified:

« public void rotateTo(int limitAngle);
e public void rotateTo(int limitAngle,boolean immeti&eturn);

You can test if a motor is moving by:
* public boolean isMoving();

This is useful to test if the motor has finishethtimg. isMoving() returns true when the
Motor is moving for any reason (e.g. forward() eckward() have been called), and not
only if a rotate operation is in place. To speailiig test to see if a rotate operation is
currently in progress, call:

e public boolean isRotating()
The angle that you are currently rotating to camléermined by calling:
e public int getLimitAngle()

The regulation thread also implements smooth atéba to prevent jerking motion
when speed is increased or decreased. This camitohed on and off, by:

* public void smoothAcceleration(boolean yes)
There are set of methods for getting informatioawlthe current state of the motor:

e public int getSpeed()

e public int getMode()

* public int getPower()

* public boolean isRegulating()
e public boolean isForward()

e public boolean isBackward()
* public boolean isFloating()

As well as controlling speed regulation and smaatteleration, the regulation thread
also controls rotation and bringing the motors smeoth stop at the limit angle. If a
motor is being used in a very simple way that dag#sequire any of these regulation
functions, you can shut down the regulation thigadalling:

e public void shutdown()

Other
Hardware

Reading the Battery

There are two static methods to get the battertagel

* public static native int getVoltageMilliVolt();
* public static float getVoltage()

Example:

i nport lejos.nxt.*;

public cl ass BatteryTest {

public static voi d main (String[] args) t hr ows Exception {
LCD. drawst ri ng("Battery: " + Battery. get Vol t age(),0,0);
Thread. sl eep(2000);

}
}

Controlling
wheeled
vehicles

Controlling Wheeled Vehicles

One of the most common form of robots created ugiagMindstorms NXT are wheeled
vehicles, and leJOS contains several classespghaifisally support wheeled vehicles.

Pilot

The Pilot class is used to control vehicles witb independently driven wheels, that can
turn on the spot.

It steers such a vehicle using two regulated motyslot does not keep track on the
position or bearing of a robot — that is the joladiavigator.

The Pilot constructor needs to know the diametéhefwvheels of the vehicle and the
width of the track, i.e. the distance between #ers of the tracks of the two wheels.
These measurements can be in any units as it ratilbebetween them that is important,
not the measurement units.

The Pilot constructor also needs to know what Motoe used, and whether driving them
forwards drives the robot forward or backward.

The constructors are:

* public Pilot(float wheelDiameter,float trackWidthgtbr leftMotor, Motor
rightMotor)

* public Pilot(float wheelDiameter,float trackWidthgtbr leftMotor, Motor
rightMotor, boolean reverse)

Use the second constructor if you need to seteerse Boolean.
The main methods of a pilot are:

* public void setSpeed(int speed);

* public void forward()

* public void backward()

e public void stop()

e public void rotate(int angle)

e public void rotate(int angle, boolean immediateRedu

* public boolean isMoving()

* public void travel(float distance)

* public void travel(float distance,boolean immedidéurn)
* public void steer(int turnRate)

* public void steer(int turnRate, int angle)

* public void steer(int turnRate, int angle, boolé@amediateReturn)

setSpeed sets the speed of the robot in degrees per sexowndheel rotation.

forward moves the robot forward until it is stopped ortheo movement method is
called.backward moves the robot backwardsop stops the robot.

rotate rotates the robot on its axis by the number ofelegispecified. If you want the
thread to do other things while the robot is roigtiuse the second variant of the method
and set immediateReturn = true.

CompassPilot

The CompassPilot is an extension of the Pilot dlaasimplements the same methods,
but uses a compass sensor to ensure that thelpdstnot deviate from the correct angle.

It needs a HiTechnic or Mindsensors compass sgatggged in to one of the sensor
ports.

The constructors are:

* public CompassPilot(SensorPort compassPort, flib@ehiDiameter,float
trackWidth,Motor leftMotor, Motor rightMotor)

* public CompassPilot(SensorPort compassPort, flib@eDiameter,float
trackWidth,Motor leftMotor, Motor rightMotor, booda reverse)

* public CompassPilot(CompassSensor compass, floatwiameter,float
trackWidth,Motor leftMotor, Motor rightMotor)

* public CompassPilot(CompassSensor compass, floatWwiameter,float
trackWidth,Motor leftMotor, Motor rightMotor, booda reverse)

Navigator

TachoNavigator

CompassNavigator

Debugging
1eJOS NXJ
Programs

Error handling and debugging

leJOS NXJ provides several features for error hagaind debugging, including:

* Exceptions
» Data Aborts
* USB Debugging

The Remote Monitoring and Tracing facility, whichdescribed in its own section below,
can also be used for debugging.

Exceptions

Most of the standard Java language exception dassesupported by leJOS, and user
can create their own exception classes.

Example:
The following simplified version of the Exceptionsieexample demonstrates what

happens for an exception that is not caught —ighddise an ArraylndexOutOfBounds
exception.

i mport lejos.nxt.*;

public cl ass ExceptionTest {
public static voi d main (String[] args)
{
SensorPort p = SensorPort. PORTS[5];
}
}

Data Aborts

If the 1eJOS firmware crashes you will normally at® Abort. The screen shows the PC
value where the failure occurred, and other detditbe failure.

The screen is something like:

The most common reason for data aborts is execatfitg that is not a leJOS NXJ
binary, or executing an incomplete 1leJOS NXJ file.

If you get a data abort in any other case, you lsh@port trhe error to the 1eJOS
development team by posting the details on the3eN®J forums.

Remote USB Debugging

Tracing statements can inserted into leJOS NXJrprog using the lejos.nxt.Debug
class.

To start debugging, you use one of the static gpaethods:

* public static void open(int timeout)
* public static void open()

This waits for the PC based monitor to connect.
To run the debug monitor on the PC, you exeoujdebug.
This connects to the debugger on the NXT over USiBe-USB cable must be connected.

If you use the variant of open with a timeout, #its the specified number of seconds
and if the debug monitor has not connected, precedthout debugging.

Debug statements can be output using the method:

e public static void out(String s)
If no successful open statement has been exedbheedebug output is discarded. If there
was a successful output, the string appears odatdout in the window or terminal that

nxjdebug was run from, on the PC.

When debugging is completed, you should call thgcstlose() method:

* public static void close()

Bluetooth
Communications

Bluetooth Communications

leJOS supports a multitude of methods of commuimigdti XT to NXT, PC to NXT,
Mobile phone to NXT, NXT to remote Bluetooth devietc.

Java Data Streams over Bluetooth

leJOS NXJ supports data streams over BluetoothHUStl
The initiator program for a Java data stream ovaet®oth can be on a NXT, a PC, a

mobile phone or another device that supports thet®bth Serial Port Profile (SPP).

Receiver

The receiver program on the NXT wait for a conrectby calling one of the
waitForConnection methods in the Bluetooth class.:

* public static BTConnection waitForConnection(bytel);
* public static BTConnection waitForConnection();

The second version of waitForConnection assumedefaailt pin: “1234”,

You need to ensure that Bluetooth power and vigilakre on. The leJOS NXJ start-up
menu can be used to do this.

Example:

BTConnection btc = Bluetooth. wai t For Connect i on();

Input and output streams or data input and outjpeidsis can then be opened by calling
the following methods from the BTConnection class:

e public InputStream openinputStream() throws IOExicep

* public OutputStream openOutputStream() throws I@Exon;

» public DatalnputStream openDatalnputStream() thri@sxception;

* public DataOutputStream openDataOutputStream(Wwhl@®Exception;

Example:

DatalnputStream dis = btc.openDatalnputStream();
DataOutputStream dos = btc.openDataOutputStream();

Data items can then be read from the Datalnput®tisa

* public final int read(byte b[]) throws IOException

* public final int read(byte b[], int off, int lenhtows IOException
» public final boolean readBoolean() throws IOExcepti

* public final byte readByte() throws IOException

* public final short readShort() throws IOException

* public final int readInt() throws IOException

* public final char readChar() throws IOException

* public final float readFloat() throws IOException

* public String readLine() throws IOException

Data can be written to the DataOutputStream by:

* public synchronized void write(byte b[], int offitilen) throws IOException
* public final void writeBoolean(boolean v) throwsH&ception

* public final void writeByte(int v) throws IOExcepin

* public final void writeShort(int v) throws IOExceph

* public final void writeChar(int v) throws IOExceph

* public final void writeInt(int v) throws IOExceptio

» public final void writeFloat(float v) throws IOExp#&on;

* public final void writeChars (String value) throW3Exception

Example:

for(int i=0;i<100;i++) {
i nt n=dis.readint();
LCD. drawi nt (n,7,0,1);
LCD. refresh();
dos.writelnt(-n);
dos.flush();

The DatalnputStream, DataOutputstream and BTCoiumecan then be close using the
close() method.

The full BTReceive example is:

public cl ass BTReceive {
public static void main(String [] args) t hr ows Exception
{
String connected = "Connected"
String waiting = "Waiting..."
String closing = "Closing..."
while (true)
{
LCD. dr awst r i ng(waiting,0,0);
BTConnection btc = Bluetooth. wai t For Connect i on();
LCD. cl ear ();
LCD. dr awst r i ng(connected,0,0);
DatalnputStream dis = btc.openDatalnput Stream();
DataOutputStream dos = btc.openDataOutp utStream();
for(int i=0;i<100;i++) {
i nt n=dis.readint();
LCD. dr awl nt (n,7,0,1);
dos.writelnt(-n);
dos.flush();
}
dis.close();
dos.close();
Thread. sl eep(100); // wait for data to drain
LCD. cl ear();
LCD. dr awst r i ng(closing,0,0);
btc.close();
LCD. cl ear ();
}
}
}
NXT Initiator

To initiate a Bluetooth connection from one NXTatwother NXT, you first need to add
the receiver NXT to the initiator NXT’s Bluetootlewices.

To do this, you go to the Bluetooth menu in th®©IBINXJ start-up menu and select
“Search”. Providing the Bluetooth power is on amlhility is on for the receiving NXT,
it will be found and you can select “Add” to addatthe initiator’s Bluetooth devices.

To check it is in the Devices list, you can sel@xvices” from the Bluetooth menu of

the initiator NXT.

You can then create a BTRemoteDevice class omitiator NXT:

Example:

BTRemoteDevice btrd = Bluetooth.getKnownDevice(ngme

You can connect to the remote device by its addvelsish you can get by:

public byte[] getDeviceAddr()

You can then connect to the remote device by cptlime of the connect() methods in the
Bluetooth class:

public static BTConnection connect(BTRemoteDeveamaoteDevice)
public static BTConnection connect(byte[] devicedrad
public static BTConnection connect(byte[] devicedradbyte([] pin)

Example:

BTRemoteDevice btrd = Bluetooth. get KnownDevi ce(name);
i f (btrd == nul 1) {
LCD. clear();
LCD. drawstri ng("No such device"
Thread. sl eep(2000);
System. exi t (1);
}

BTConnection btc = Bluetooth.

, 0, 0);

connect (btrd);

i f (btc==
LCD.
LCD.
Thread.

nul 1) {

cl ear ();

dr awst ri ng("Connect fail"
sl eep(2000);

, 0, 0);

System. exi t (1);

}

Having got a BTRemoteDevice object you can operd#ta input and output streams
and read data as in the receiver example above.

The complete BTConnectTest example, which workih@snitiator program for the
BTReceive receiver program, is:

public cl ass BTConnectTest {

public static voi d main(String[] args) t hr ows Exception {
String name = "NXT";
LCD. drawstri ng("Connecting..." , 0, 0);
LCD. refresh();
BTRemoteDevice btrd = Bluetooth. get KnownDevi ce(name);
i f (btrd == nul 1) {

LCD. clear(;

LCD. drawstri ng("No such device" ,0,0);

LCD. refresh();
Thread. sl eep(2000);
System. exit (1);

}
BTConnection btc = Bluetooth. connect (btrd);
i f (btc== nul 1) {
LCD. clear();
LCD. drawstring("Connect fail" , 0, 0);
LCD. refresh();
Thread. sl eep(2000);
System. exit (1);
}
LCD. cl ear();

LCD. drawstri ng("Connected" , 0, 0);
LCD. refresh();

DatalnputStream dis = btc.openDatalnputStream();
DataOutputStream dos = btc.openDataOutputStream()

for (i nt i=0;i<100;i++) {
try{
LCD. draw nt (i*30000, 8, 0, 2);
LCD. refresh();
dos.writelnt(i*30000);
dos.flush();
} cat ch (IOException ioe) {

LCD. drawstri ng("Write Exception
LCD. refresh();

try{
LCD. drawl nt (dis.readint(),8, 0,3);

LCD. refresh();
} cat ch (IOException ioe) {

LCD. drawstring("Read Exception"

LCD. refresh();

try{

LCD. drawstring("Closing... " ,0,0);

LCD. refresh();
dis.close();
dos.close();
btc.close();

} cat ch (IOException ioe) {

LCD. drawstring("Close Exception” , 0, 0);

LCD. refresh();
}

LCD. clear();

LCD. drawstri ng("Finished" 3, 4);
LCD. refresh();

Thread. sl eep(2000);

, 0, 0);

, 0, 0);

PC Initiator

A PC program can initiate a connection to a NXT apdn a Java data stream.
The API on the PC is different to the NXT API. Seapidocs.

To connect to the NXT, you need a NXTComm objeat ttan be obtained using the
NXTCommFactory class:

* public static NXTComm createNXTComm(int protocol)

Example:

NXTComm nxtComm = NXTCommFactory. creat eNXTComm(NXTCommFactory. BLUETOOTH);

The reason for using a factory method is that thezeseveral implementations of comms
drivers for Bluetooth and USB on the PC and thetbagis used depends on what
operating system you are using and the contertis okj.properties file.

You can connect to the NXT by address or by dowe®loth inquiry:

To connect by address, you create a NXTInfo ohjsttg the constructor:

e public NXTInfo(String name, String address)

Example:

NXTInfo nxtinfo = new NXTInfo(“NXT", “00:16:53:00:7 8:48");

To find the available NXTs doing a Bluetooth inguiiyou do:

NXTInfo[] nxtinfo = nxtComm.search(“NXT", NXTCommFa ctory.BLUETOOTH);

if (nxtInfo.length == 0) {
System.out.printin("No NXT Found");
System.exit(1);

Once you have a NXTInfo object, you can call therqp method of the NXTComm
object to connect to the NXT:

* public boolean open(NXTInfo nxt) throws NXTCommEgten;

Once the NXT is open, you can obtain an InputStraacthan OutputSttream, by calling
the getinputStream() anf getOutputStream() metloddse NXTComm object:

* public OutputStream getOutputStream();
e public InputStream getinputStream();

From these you can construct a DatalnputStreanadataOutputStream and send data
to the receiving NXT.

The complete BTSend sample is in the samples folder

Programming
Listeners,
Events
and
Threads

Listeners and Events

leJOS implements a listener thread that listenpéoticular events.
The listener thread supports:

* Button Listeners
* Sensor Port Listeners

Button listeners are used to detect when a bustpnassed, whatever your program is
doing at the time.

To listen for a press of a specific button, you thoad!:

Example:

i mport lejos.nxt.*;
public cl ass ListenForButtons

public static voi d main (String[] args)

Button. ENTER.addButtonListener(new ButtonListener() {
publ i ¢ voi d buttonPressed(Button b) {
LCD. drawstri ng("ENTER pressed" ,0,0);
}
publ i c voi d buttonReleased(Button b) {
LCD. cl ear(); ();
}
Dk
whi | e (true);
}

Java Threads

When a Java program starts, there is a singledhteming — the main thread.

Many of the 1eJOS classes start extra threads mgrfor various purposes, for example:

Button and SensorPort star a listener threadténisrs are used

Each Motor has a regulator thread

The Bluetooth class starts a thread to talk tsdparate Bluetooth chip
Each Timer object starts a timer thread

User program can create their own threads by ssdid@ Thread, and then using the start
method to start the thread. Note that the Runnal®eface is not implemented by 1eJOS,
and new threads cannot be created by implementimp&ble classes. User threads in
leJOS must subclass Thread and implement the metf)od.

Background threads that do not need to terminatedar for the user program to
terminate, should be marked as daemon threadsllinygcsetDaemon(true).

When using threads, care should be taken with gogreey issues. When data items are
accessed by multiple threads, synchronizationggessary to ensure that data is not read
when it is in an inconsistent state.

leJOS supports the standard Java synchronizatichanesms: synchronized methods
and synchronized statements using a monitor objéetre are some restrictions in the
way leJOS handles concurrency and synchronizatese-the leKOS NXJ
README.html file.

As an example of a leJOS thread, consider the dtatis thread in the 1eJOS StartUpText
menu. This is used to keep the display of the balteel up to date, by reading its value
every second, and to indicate when the menu sagiphg files or doing other
communication from the PC:

cl ass Indicators ext ends Thread
{
private bool ean io = fal se;
publ i ¢ voi d ioActive()
{
io = true;
}
public voidrun()
String dot = .
String [] ioProgress = { , : k
i nt iolndex =0;
i nt millis;
whi | e(true)
{
try
{ o
if (io)
{
iolndex = (iolndex + 1) % ioPro gress. length ;
LCD. dr awSt r i ng(ioProgressJiolndex], 13, 0);
io = fal se;
}
el se
t .
millis = Battery. getVoltageM | |i Volt () +50;
LCD. dr awl nt ((millis - millis%1000)/1000,13,0);
LCD. dr awSt r i ng(dot, 14, 0);
LCD. dr awl nt ((millis% 1000)/100,15,0);
Thread. sl eep(1000);
} cat ch (InterruptedException ie) {}
}
}
}

The main method starts this thread by:

Indicators ind = new Indicators();
ind.setDaemon(true);
ind.start();

leJOS
Utility
Classes

Utilities

Timer

Behavior
Programming

Behavior programming

Programming Behavior with |leJOS NXJ

When most people start programming a robot, thextbf the program flow as a series
of if-thens, which is remeniscent of structuredgreanming (Figure 1). This type of
programming is very easy to get started in andlhaedjuires any thought or design
beforehand. A programmer can just sit at the coerpand start typing. The problem is,
the code ends up as spaghetti code; all tanglechdplifficult to expand. The behavior
control model, in contrast, requires a little mplanning before coding begins, but the
payoff is that each behavior is nicely encapsulatitdin an easy to understand structure.
This will theoretically make your code easier talarstand by other programmers
familiar with the behavior control model, but manmgportantly it becomes very easy to
add or remove specific behaviors from the ovetalicsure, without negative
repercussions to the rest of the code. Let's exatmmw to do this in 1eJOS NXJ.

Figure 1: Structured programming visualized.

The Behavior API

The Behavior APl is very simple, and is composedrdy one interface and one class.
The Behavior interface is used to define behavibng Behavior interface is very
general, so it works quite well because the indigldmplementations of a behavior vary
widely. Once all the Behaviors are defined, thesygiven to an Arbitrator to regulate
which behaviors should be activated. All classetsiaterfaces for Behavior control are
located the lejos.subsumption package. The APthiBehavior interface is as follows.

lejos.subsumption.Behavior

* boolean takeControl()

Returns a boolean value to indicate if this behastimuld become active. For example, if
a touch sensor indicates the robot has bumpedmtibject, this method should return
true.

* void action()

The code in this method initiates an action whenlidhavior becomes active. For
example, if takeControl() detects the robot haficed with an object, the action() code
could make the robot back up and turn away fronottject.

e void suppress()

The code in the suppress() method should immegitgaiinate the code running in the
action() method. The suppress() method can alaséeé to update any data before this
behavior completes.

As you can see, the three methods in the Behavierface are quite simple. If a robot
has three discreet behaviors, then the programitiaregd to create three classes, with
each class implementing the Behavior interface.eQhese classes are complete, the
code should hand the Behavior objects off to thethator to deal with.

lejos.subsumption.Arbitrator

* public Arbitrator(Behavior [] behaviors)

Creates an Arbitrator object that regulates wheh efthe behaviors will become active.
The higher the index array number for a Behavlog,ligher the priority level.

Parameter: an array of Behaviors
e public void start()

Starts the arbitration system.

The Arbitrator class is even easier to understaad Behavior. When an Arbitrator

object is instantiated, it is given an array of Bébr objects. Once it has these, the start()
method is called and it begins arbitrating; de@divhich behaviors should become
active. The Arbitrator calls the takeControl() nadlon each Behavior object, starting
with the object with the highest index number ia #iray. It works its way through each
of the behavior objects until it encounters a béarahat wants to take control. When it
encounters one, it executes the action() methaladfoehavior once and only once. If
two behaviors both want to take control, then ahb/higher level behavior will be
allowed (Figure 2).

suppressed

Figure 2: Higher level behaviors suppress loweell&ehaviors.

Now that we are familiar with the Behavior APl untée]OS, let's look at a simple
example using three behaviors. For this exampleyiNg@rogram some behavior for a
simple robot with differential steering. This robwitl drive forward as it's primary low-
level behavior. When it hits an object, a high ptjobehavior will become active to back
the robot up and turn it 90 degrees. There wib &ls a third behavior which we will
insert into the program after the first two havermeompleted. Let's start with the first
behavior.

As we saw in the Behavior interface, we must img@atthe methods action(),
suppress(), and takeControl(). The behavior foring forward will take place in the
action() method. It simply needs to make motorsd @ rotate forward:

public void action() {
Motor.A.forward();
Motor.C.forward();
}

That was easy enough! Now the suppress() methdah&el to stop this action when it is
called, as follows:

public void suppress() {
Motor.A.stop();
Motor.C.stop();

So far, so good. Now we need to implement a methoell Arbitrator when this
Behavior should become active. As we outlined egrthis robot will drive forward
always, unless something else suppresses it, s@éhmavior should always want to take
control (it's a bit of a control freak). The take@ol() method should return true, no
matter what is happening. This may seem counteitivet, but rest assured that higher
level behaviors will be able to cut in on this b@bawhen the need arises. The method
appears as follows:

public boolean takeControl() {
return true;

}

That's all it takes to define our first Behaviordtiave the robot forward. The complete
code listing for this class is as follows:

import lejos.subsumption.*;
import lejos.nxt.*;

public class DriveForward implements Behavior {

public boolean takeControl() {
return true;

}

public void suppress() {
Motor.A.stop();
Motor.C.stop();

}

public void action() {
Motor.A.forward();
Motor.C.forward();
}
}

The second behavior is a little more complicatedhtthe first, but still very similar. The

main action of this behavior is to reverse and tinen the robot strikes an object. In this

example, we would like the behavior to take contrdly when the touch sensor strikes
an object, so the takeControl() method will be wiedi as follows:

public boolean takeControl() {
return Sensor.S2.readBooleanValue();

}

For the action, we want the robot to back up anateovhen it strikes an object, so we
will define the action() method as follows:

public void action() {
/I Back up:
Motor.A.backward();
Motor.C.backward();
try{Thread.sleep(1000);}catch(Exception €) {}
// Rotate by causing one wheel to stop:
Motor.A.stop();
try{Thread.sleep(300);}catch(Exception e) {}
Motor.C.stop();

Defining the suppress() method for this behaviajuge easy in this example. The
action() method above is the sort of method thas reery quickly (1.3 seconds) and is

usually high priority. We can either stop it deadsbopping motor movement, or we
could wait for it to complete the backing up mareuvo keep things simple, lets just
stop the motors from rotating:

public void suppress() {
Motor.A.stop();
Motor.C.stop();

The complete listing for this behavior is as follow

import lejos.subsumption.*;
import lejos.nxt.*;

public class HitWall implements Behavior {
public boolean takeControl() {
return Sensor.S2.readBooleanValue();

}

public void suppress() {
Motor.A.stop();
Motor.C.stop();

}

public void action() {
// Back up:
Motor.A.backward();
Motor.C.backward();
try{Thread.sleep(1000);}catch(Exception e) {}
/I Rotate by causing only one wheel to stop:
Motor.A.stop();
try{Thread.sleep(300);}catch(Exception €) {}
Motor.C.stop();

We now have our two behaviors defined, and itisrgple matter to make a class with a
main() method to get things started. All we needdas create an array of our Behavior
objects, and instantiate and start the Arbitrasostzown in the following code listing:

import lejos.subsumption.*;

public class BumperCar {
public static void main(String [] args) {
Behavior b1 = new DriveForward();
Behavior b2 = new Hitwall();
Behavior [] bArray = {b1, b2},
Arbitrator arby = new Arbitrator(bArray);
arby.start();

The above code is fairly easy to understand. Tisetfivo lines in the main() method
create instances of our Behaviors. The third lilaegs them into an array, with the
lowest priority behavior taking the lowest arragéx. The fourth line creates the
Arbitrator, and the fifth line starts the Arbitrati process. When this program is started
the robot will scurry forwards until it bangs iraa object, then it will retreat, rotate, and
continue with its forward movement until the powseshut off.

This seems like a lot of extra work for two simpkhaviors, but now let's see how easy it
is to insert a third behavior without altering asode in the other classes. This is the part
that makes behavior control systems very appe&ingbotics programming. Our third
behavior could be just about anything. We'll have hew behavior monitor the battery
level and play a tune when it dips below a cerawel. Examine the completed

Behavior:

import lejos.subsumption.*;
import lejos.nxt.*;

public class BatteryLow implements Behavior {
private float LOW_LEVEL,;

private static final short [] note ={

2349,115, 0,5, 1760,165, 0,35, 1760,28, 0,13, 1976,23,
0,18, 1760,18, 0,23, 1568,15, 0,25, 1480,103, 0,18,
1175,180, 0,20, 1760,18, 0,23, 1976,20, 0,20, 1760,15,
0,25, 1568,15, 0,25, 2217,98, 0,23, 1760,88, 0,33, 1760,
75, 0,5, 1760,20, 0,20, 1760,20, 0,20, 1976,1 8, 0,23,

1760,18, 0,23, 2217,225, 0,15, 2217,218};

public BatteryLow(float volts) {
LOW_LEVEL = volts;

}

public boolean takeControl() {
float voltLevel = (ROM.getBatteryPower() * 10 / 355);
int displayNum = (int)(voltLevel * 100);
LCD.setNumber(0x301f, displayNum, 0x3004);
LCD.refresh();
return voltLevel < LOW_LEVEL;

}
public void suppress() {
/I Nothing to suppress

}

public void action() {
play();
try{Thread.sleep(3000);}catch(Exception €) {}
System.exit(0);

}

public static void play() {
for(int i=0;i<note.length; i+=2) {
final short w = note[i+1];
Sound.playTone(note[i], w);
try {
Thread.sleep(w*10);
} catch (InterruptedException e) {}
}
}
}

The complete tune is stored in the note arraynat@i and the method to play the notes is
at line 30. This behavior will take control onlytife current battery level is less the
voltage specified in the constructor. The takeGua()tmethod looks a little inflated, and
that's because it also displays the battery chartfee LCD display. The action() and
suppress() methods are comparatively easy. Actimkesia bunch of noise, then exits the
program as soon as it is called. Since this behatops the program, there is no need to
create a suppress() method.

To insert this Behavior into our scheme is a ttitéak. We simply alter the code of our
main class as follows:

public class BumperCar {

public static void main(String [] args) {
Behavior b1 = new DriveForward();
Behavior b2 = new BatteryLow(6.5f);
Behavior b3 = new HitWall();
Behavior [] bArray = {b1, b2, b3};

Arbitrator arby = new Arbitrator(bArray);

arby.start();

Note: The voltage level of the NXT at rest is diffiet from the voltage when in action.
The voltage level at rest might be 7.8 V, but whetors are activated they naturally
cause a drop in the voltage reading. Make surgdhage threshold used in the
BatteryLow constructor is low enough.

This example beautifully demonstrates the real fiemebehavior control coding.
Inserting a new behavior, no matter what the regtecode looks like, is simple. The
reason for this is grounded in object orientedgtestach behavior is a self contained,
independent object.

TIP: When creating a behavior control system, [iast to program each behavior one at
a time and test them individually. If you codethi behaviors and then upload them all
at once to the NXT brick, there is a good chanbagwill exist somewhere in the
behaviors, making it difficult to locate. By prognening and testing them one at a time it
makes it easier to identify where the problem waduced.

Behavior coding is predominantly used for autonosnalots - robots that work
independently, on their own free will. A robot acontrolled by a human would likely
not use behavior programming, although it woulgbssible. For example, a robot arm
with four joystick movements could have a behatworeach direction of movement. But
as you may recall, behaviors are ordered with thledst order taking precedence over
lower order behaviors. Who is to say that pushéfigdn the joystick would take
precedence over pushing up? In other words, behewordrol in anything other than
autonomous robots is largely overkill.

Advanced Behavior Coding

It would be nice if all behaviors were as simpldtasexamples given above, but in more
complex coding there are some unexpected resalt€#m sometimes be introduced.
Threads, for example, can sometimes be difficuttaty from the suppress() method,
which can lead to two different threads fightingepthe same resources - often the same
motor! Another problem that can potentially ocaumulti-threaded programs is that
events go undetected, such as touch sensor hagseTdre a few of the pitfalls we will be
examining in this section. Let's start by lookirigvhat is generally the least complicated
of the three Behavior methods to implement; the@datrol() method.

Note: The behavior control APl used by leJOS NXa msodified version of the model
proposed by Rodney Brooks. His model is all don@atowest level possible - the
motors. This prevents higher level classes fromdpased in behaviors. For example, the
Navigator class accesses the motors of the NXTtjreso with the original behavior
control model Navigator could not be used. Alsdaath motors are moving forward, and
a higher level behavior takes command it is natrcleall lower level motor movements
should be stopped. What if the higher level behasdy uses one of the motors? Should
the other keep moving forward? And will this leadodd behavior? These are the
problems the 1eJOS Behavior Control API tries tdrads.

Coding Foolproof takeControl() Methods

It is important for takeControl() methods to bep@ssive in behavior control systems.
When a bumper collides with an object, the robostnstop or reverse direction
immediately; otherwise it will continue to move Waard into the object. Sometimes when
an event occurs, such as a touch sensor pregmaip@am misses the event because the
RCX is executing another thread. By the time isgetthe takeControl() method the
sensor has been released and the program missepdgunity to activate the proper
behavior action. In this section we will learn htmmake fool-proof takeControl()
methods.

In the above example we used single indicatorstadtaer or not to take control. For
example, it took one reading from the Sensor dlasdeck if the touch sensor was hit.
The takeControl() method can also make a decisidake control based on a number of
different values. It could initiate an action ifstfacing east, the light reading is greater
than 60, and the temperature is less than 20 degree

public boolean takeControl() {
boolean pass = false;
if(direction == EAST)

if(Sensor.S1.readValue() > 60)
if(Sensor.S2.readValue() < 20)
pass = true;

return pass;

}

Likewise, a different behavior could just as eashgck on the same data, only react
differently based on different values. For examplether Behavior could initiate a
different action if the robot is facing west, tight reading is less than 60, and
temperature is greater than 20 degrees. So a cahdhitiate an unlimited number of
responses with only a few sensors at its dispdsas. leads to another point about
implementing the takeControl() method.

With the Arbitrator cycling through all the takeQuoi() methods, there could be a
significant delay in checking a condition, suchwdether a touch sensor has been tapped.
It's a feature of the imperfect world we live imthwhen the robot strikes an object, the
touch sensor may not remain pressed. It sometim@sdes off the object into a position
where the bumper is no longer pressing on the tsaokor. You may have noticed in the
example that it relies on checking touch very aoftéthat if the touch sensor is
momentarily activated, but the Arbitrator missas fact? The solution is to use a
SensorListener, and have it set a flag to inditte#esvent has occurred. Let's take the
HitWall Behavior from the example above and modifso it uses a SensorListener:

import lejos.subsumption.*;
import lejos.nxt.*;

public class HitWall implements Behavior, SensorLis tener {
boolean hasCollided:;

/I Constructor:

public Hitwall() {
hasCollided = false;
SensorPort.S2.addSensorListener(this);

}

public void stateChanged(Sensor bumper, int oldV alue, int newValue) {
if(bumper.readBooleanValue() == true)
hasCollided = true;
}

public boolean takeControl() {
if(hasCollided) {
hasCollided = false; // reset value
return true;
} else
return false;
}

public void suppress() {
Motor.A.stop();
Motor.C.stop();

public void action() {
/I Back up:
Motor.A.backward();
Motor.C.backward();
try{Thread.sleep(1000);}catch(Exception e) {}
/I Rotate by causing only one wheel to stop:
Motor.A.stop();
try{Thread.sleep(300);}catch(Exception e) {}
Motor.C.stop();

The above code implements a SensorPortListenehameck implements the
stateChanged() method. It is important to add &msar listener to Sensor.S2, as shown
in line 10. Notice the stateChanged() method de¢simply return the value of the
bumper Sensor; rather, if the Sensor value isttree it changes the hasCollided variable
to true. If, on the next pass, the sensor valti@ise then hasCollided will remain true
until takeControl() has seen the hasCollided valiece takeControl() sees there has
been a collision, then hasCollided is reset badklse (line 20). With this new code, it
should be impossible for the robot to miss anyisiolhs with the bumper!

Coding Solid action() and suppress() Methods

In order to code functional action() and supprepais, it is necessary to understand how
arbitration works. Arbitrator cycles through eadhts Behaviors, checking the
takeControl() method to see if the action() for Behavior should be executed. It starts
with the highest priotiry method and goes dowrhilbwest priority Behavior. As soon

as it comes across a behavior that wants to takieadpit executes suppress() for the

previous Behavior (assuming it is not a higher l¢hreead), then runs the action() method
for the current Behavior. As soon as the actiorg)had returns, it then starts looping
again, checking each behavior. If the takeContfabin the previous Behavior continues
to say true, it does not run action() again. Thigriportant; a single Behavior can not be
executed twice in a row. If it could, it would cdastly be suppressing itself. If Arbitrator
moves on to another Behavior, when that behaviomtetes then it will call action on

the lower level behavior again.

Note: If you would like to remove any mystery abadiiat goes on in the Arbitrator class,
take a look at the source code located in srcietdiegos/subsumption/Arbitrator.java.

To program individual behaviors it is importantuiederstand the fundamental
differences between types of behaviors. Behavito@& come in two basic varieties:

» Discrete actions which finish quickly (e.g. backam turn)
» Actions that start running and keep going an imdefiperiod until they are
suppressed (e.g. driving forward, following a wall)

One final word of advice. Discrete actions exeartee and return from the action()
method call only when it has completed its behavibiese types of Behaviors generally
do not need any code in the suppress() method beaace the action is done there is
nothing to suppress. The second type of action 8oree runs in a separate thread,
although not always. For example, the Motor.A.fa¢amethod call acts like a thread
because the motor keeps turning after the methadhe In actuality, this is not a thread,;
the RCX just turns on an internal switch to actviiite motor. An example of a true
thread would be complex behavior, such as walbWaithg. The action() method could
start a thread to begin following a wall until theppress() method is called. Be careful of
never ending loops! If one were to occur within #ugion() method then the program
would become stuck.

Summary

So why use the Behavior API? The best reason isusecin programming we strive to
create the simplest, most powerful solution possielen if it takes slightly more time.
The importance of reusable, maintainable code bas demonstrated repeatedly in the
workplace, especially on projects involving morartlone person. If you leave your code
and come back to it several months later, the thihgt looked so obvious suddenly don't
anymore. With Behavior control, you can add andaesrbehaviors without even

looking at the rest of the code, even if therel@@r more bahaviors in the program.
Another big plus of behavior control is programmeas exchange Behaviors with each
other easily, which fosters code reusability. Heaidrof interesting, generic behaviors
could be uploaded to websites, and you could simpjal the behaviors you want to add
to your robot (assuming your robot is the corrgpetof robot). This reusability of code
can be taken forward even more by using standdf@3eNXJ classes such as the
Navigation API.

Third-
Party
Sensors

Third Party sensors and other devices

leJOS NXJ supports many third party sensors. Tloentain vendors of third party
sensors are Mindsensors and HiTechnic.

Most of the third party sensors and 12C sensorseatehd the 12CSensor class but there
are also Analog/Digital sensors such as the iTecGiyro sensor and the IR Seeker.

There are also other I2C devices supplied by ting garties, that are not sensors, but are
multiplexers or adapters.

The RCX Motor Multiplexer for Mindsensors is an exale of a multiplexer. It allows up
to 4 RCX motors to be connected to a NXT sensdrau to be independently
controlled.

The Mindstorms NRLink-Nx infra-red communicaticexapter is an example of an
adapter. It allows two-way communication betwdeNXT and RCXs. It also allows
control of Power Function motors.

I2CSensor

The 12CSensor class implements the basic methaodséessing 12C sensors including
getData and SendData.

It also includes methods that are implemented bihall2C sensors, including
getVersion, getProductID and getSensorType.

The method signatures are:

* public int getData(int register, byte [] buf, irn)
* public int sendData(int register, byte [] buf, iah)
* public int sendData(int register, byte value)

* public String getVersion()

e public String getProductID()

e public String getSensorType()

leJOS NXJ uses 7-bit I2C addresses, whereas I12iCalspecification often give them as
8-bit addresses with the least significant bitteetero. Most I12C sensors use a default
address of 0x01, which such specifications givex@2. Most 12C devices allow the
address to be changed.

The setAddress method can be used to set the addsed to talk to the 12C device — it
defaults to O0x01.

Individual 12C devices have registers that candaglrand written and registers that can
be used to execute commands. Each 12C device tlassathat extends I12CSensor and
has methods to access the registers and executertireands specific to that sensor.

The 12CSensor class can be used to implement adé2{ce explorer that reports what
devices are connected to which sensor sing whidhead — see the 12CDevices sample.
This is possible as all the NXT 12C sensors aneémtlevices support the getVersion,
getProductID and getSensorType methods.

Compass Sensor

There are compass sensors sold both by HiTechdibyaMindsensors. A single 1eJOS
class — CompassSensor supports both of these.

The main method of CompassSensor is:

* public float getDegrees()
* public float getDegreesCartesian()

Color Sensor

The HiTechnic color sensor is supported by the €3#asor class.

Acceleration (Tilt) Sensor

The range of HiTechnic and Mindsensors acceleragmsors are supported by the
TiltSensor class.

Gyro Sensor

The HiTechnic Gyro sensor is supported by the Ggns8r class.

IRSeeker

The HiTechnic IR Seeker sensor is supported byRIseeker class.

RCX Motor multiplexer

The Mindsensors MTRMX-Nx sensor is supported byRIGXMotorMultiplexer class.

Optical Distance Sensor

The Mindsensors range of Dist-Nx infra-red distaseesors are supported by the
OpticalDistanceSensor class.

Advanced
Communications

External
Bluetooth
Devices

External Bluetooth devices

The NXT can connect to external Bluetooth devitas implement the Serial Port Profile

(SPP).

Such devices can be searched for on the Bluetoetlurand added to the known devices.

GPS

leJOS supports external Bluetooth GPS receivetsstigport the NMEA protocol via the
GPS and NMEASentence classes. NMEASentence ifitg akass used by GPS, and is

not directly accessed.

One such device that has been tested with leJOSd\tKé Holux M-1200.

Most such devices have a PIN that is required tmeot to them, but it may have a

default value such as “0000".

To connect to a GPS device, you do:

final byte[] pin = {(byte) '0', (byte) '0', (byte)
BTRemoteDevice btGPS = Bluetooth.getKnownDevice(nam

i f (btrd == nul 1) {
LCD. drawstring("No such device" , 0,0);
Thread. sl eep(2000);
System. exit(1);

}

btGPS = Bluetooth.connect(btrd.getDeviceAddr(), pin

i f(btGPS == null)
LCD. drawstring("No Connection” ,0,1);
Thread. sl eep(2000);
System. exit(1);
} else {
LCD. drawstring("Connected!" ,0,1);

}

GPSgps= null;
InputStream in;

try{
in = btGPS.openlnputStream();

gps = new GPS(in);
LCD. drawstring("GPS Online" 0, 6);
} cat ch(Exception e) {
LCD. drawstring("GPS Connect Fail" , 0, 6);
Thread. sl eep(2000);
System. exi t (1);

‘0", (byte) '0%;

e);

As you see from this example, the GPS construata@s the input stream from the
Bluetooth connection as a parameter:

* public GPS(InputStream in)
It uses the NMEASentence class to process mes@agasn as sentences) from the
Bluetooth device. Current only the $GPGGA sentehaegives the current latitude,
longitude and altitude, is processed.

To read the current values of latitude, longitudd altitude, you use the methods:

* public float getLatitude()
* public float getLongitude()
* public float getAltitude()

You can also get the time stamp correspondingdsetivalues by:

public int getTime()

Controlling
a remote
NXT

Controlling a remote NXT

The RemoteNXT class allows one NXT running leJOE&atatrol another, remote NXT,
running leJOS or the standard LEGO firmware. Isube LEGO Communications
Protocol (LCP) over Bluetooth to control the remiN€T.

Currently, the class is limited and 12C and RCXss¢s are not supported, and the motors
must be used in a simple way as the regulatiorathienot used.

To access a remote NXT, you use the constructor:

* public RemoteNXT(String name) throws IOException

Example:
try{
LCD. drawstri ng("Connecting..." ,0,0);
nxt = new RemoteNXT("NXT");

LCD. clear();
LCD. drawstri ng("Connected" ,0,0);
Thread. sl eep(2000);
} cat ch (IOException ioe) {
LCD. clear();
LCD. drawstri ng("Conn Failed" ,0,0);
Thread. sl eep(2000);
System. exi t (1);

The name of the remote NXT must have already bddadato the known devices of the
initiating NXT by do a Bluetooth search followed tAdd” fron the [eJOS NXJ
Bluetooth menu.

The constructor opens the connection and creaséanices of the remote motor and
Sensor ports.

It is then possible to get access to informatiooualbhe remote NXT by using the
methods:

* public String getBrickName()

e public String getBluetoothAddress()
e public int getFlashMemory()

* public String getFirmwareVersion()
* public String getProtocolVersion()

Example:

LCD.dr awst r i ng(nxt.getBrickName(), 0, 6);
LCD.dr awst r i ng(nxt.getFirmwareVersion(), 0, 7);
LCD.dr awst r i ng(nxt.getProtocolVersion(), 4, 7);
LCD.dr aw nt (nxt.getFlashMemory(), 6, 8, 7);

There are also methods that act on the remote NXT:
* public byte deleteFlashMemaory()

A remote Battery object is created that can be tsggt the voltage of the remote
battery using the normal Battery methods.

Example:

LCD. drawString("Battery: " + nxt. Batt ery .getVoltageMilliVolt() 0,4); Object

s are

also created for the sensor ports of the remote .N)Ki€se are accessed as S1, S2, S3 and
S4.

Local sensor objects can then be created using fha@$s and use exactly as if they were
connected to a local sensor port.

Example:

LightSensor light = new LightSensor(nxt.S1);

LCD.drawString("Light: " + light.readValue(),0,5);

Motor objects are created for the remote motorgyTdre named A, B and C.

These can be used in the normal way, e.g:

nxt.A.setSpeed(360);
nxt.A.forward();
nxt.A.stop();
nxt.A.backward();

Infra-red
Communications

IR Communications

There are two third-party adapters available foncwnication by infra-red with the
RCX and other devices such as the Power Functidorsidhe Mindsensors NRLink-Nx
and the HiTechnic IRLink. Currently only the NRLHNx is supported by leJOS NXJ.

Communicating
with the
RCX

RCX Communications

RCXLink

IR communication is supported by the RCXLink clalse constructor is:
* public RCXLink(I2CPort port)

For example:

RCXLink link = new RCXLink(SensorPort.S1);

The NRLink-Nx supports a set of macros in ROM aidPROM that can be used to
send messages to the RCX using the LEGO RCX IRpobtThe EEPROM macos can
be overwritten allowing the user to define theimomvacros.

Macros can be run by:
e public void runMacro(int addr)

There are convenience methods for running the RGidros:

* public void beep()

e public void runProgram(int programNumber)
* public void forwardStep(int id)

* public void backwardStep(int id)

* public void setRCXRangeShort()

* public void setRCXRangeLong()

* public void powerOff()

* public void stopAllPrograms()

A new macro in the EEPROM address range can beeateby:

e public void defineMacro(int addr, byte[] macro)

There is a convenience method to define and ruaaan

PF Motors

Power Function Motors are not yet supported by £5XJ.

Advanced
User
Interfaces

Advanced User Interfaces

TextMenu

For applications that require input from the usartiie NXT buttons, the TextMenu class
can be used. It displays a text menu on the LCDa#lod/s the user to use the NXT
button to move through menu items, select a mexm dr cancel a menu.

TextMenu is used by the 1eJOS NXJ start-up mend adgo by some sample programs
such as View.

A text menu is constructed by one of:

e public TextMenu(String[] items)
e public TextMenu(String[] items, int topRow)
e public TextMenu(String[] items, int topRow, Stritige)

The top row defaults to zero (the top row of thd)ClIf a title is specified, it is
displayed on the top row and the menu moves dowerlina. A title can be reset by:

* public void setTitle(String title)
The items array specifies the names of the memsit&hese can be reset by:

* public void setltems(String|[] items)
The menu is displayed from topRow downwards tddbigom line of the screen. If there
are more items than will fit on the screen, theniteames will scroll. Menu item names
can be up to 15 characters. If the string is lonther first 15 characters will be displayed.

The current menu item is indicated by a “>" at stert of the line.

To display the menu and wait for the user to sedadtem, you use one of the select()
methods:

* public int select()
* public int select(int selectedindex)

selectedIndex specifies the item in the items attiayis selected as the current item. It
defaults to zero — the first item in the array.

select() suspends the current thread waiting fuger to select and item. It returns the
index of the item that the user selects. The us®ils through the menu with the LEFT
and RIGHT keys and selects an item using ENTERSIEAPE is pressed, select()
returns -1. This is typically used to cancel thenmand return to a previous one. The
menu can also be quit by another thread calling:

* public void quit()
This causes select() to return -2.

TextMenu allows you to build a menu system withraghus. See
src/startup/StartUpText.java (the leJOS NXJ stprtaenu) or the View sample for
examples of this. You can display as many lineseafder information above menus as
you require.

Graphics

Using RCX sensors and motors with the conversion
cables

RCX motors and sensors can be connected to the iy the conversion cables that
can be purchased from LEGO.

RCX Motors

The RCX motors do not have inbuilt tachometer andasnot support the advanced
functions of the NXT motors such as the rotate rantate To methods and the speed
regulation.

A simpler class is used to support the RCX motibtsas similar methods to the Motor
class in the RCX version of 1eJOS.

To use an RCX motor you create an instance of tB¥NRotor class using the
constructor:

* public RCXMotor(BasicMotorPort port)

Example:

RCXMotor rcxMotor = new RCXMotor(MotorPort.A);

The methods supported by RCX motors are:

* public void setPower(int power)
e public int getPower()

* public void forward()

e public boolean isForward()

* public void backward()

* public boolean isBackward()
* public void reverseDirection()
* public boolean isMoving()

* public void flt()

* public boolean isFloating()

e public void stop()

* public boolean isStopped()

e public int getMode()

Using
RCX
Sensors

RCX Sensors

RCX sensors, other than the touch sensor, aresagivsors that have voltage applied for
all but the short period every three millisecondgewthe measurement is taken.

RCX Light Sensor
The RCX light sensor is supported by the RCXLight®e class.
The constructor is:

e public RCXLightSensor(LegacySensorPort port)

For example:

RCXLightSensor light = new RCXLightSensor(SensorPor t.S1);

The RCX light sensor is automatically activatedcaoent is applied to it and the LED
comes on. It can be passivated and activated ékplic

The methods are:

e public int readValue()
e public void activate()
* public void passivate()

RCX Touch Sensor

As the RCX touch sensor is a passive sensor sitoildre NXT version, it is supported
by the standard TouchSensor class.

RCX Rotation Sensor

The RCX rotation sensor is not currently suppoligdeJOS NXJ.

RCX Temperature Sensor

The RCX rotation sensor is not currently suppoltgdeJOS NXJ.

Using the
development
version
of 1eJOS

Using the Subversion version of eJOS

Reference

leJOS
menu
system

The 1eJOS NXJ Menu System

Main menu

When leJOS NXJ starts, it displays the 1eJOS NX or 3 seconds and then displays
the main menu:

MYNXT BT
>Run Default
Files
Bluetooth
System

The top lines shows the free RAM on the left, amallattery voltage on the right.

It then shows a menu |mplemented by the TextMeassclYou can scroll through the
|

menu using th&8 and®=1 keys, and select a menu item usmg. key. You can

quit a menu and return to the previous one by p‘rnge- key. On the main menu,
this shuts down the NXT.

Files menu

When you select the “Files” menu item, the filesnnés displayed:

MYNXT BT
>View.nxj
SoundScope.nxj
LCDTest.nxj

When you select a particular file, the file submendisplayed:

MYNXT BT
View.nxj
>Execute program
Delete file

The other menus are the Bluetooth and the Systemusne

System menu

The System menu looks like:

MYNXT BT
System
Free flash 96000
Battery 7.6
Freeram 47512
>Format

The format menu item wipes out all the flash memdgteting all files.

Bluetooth menu

MYNXT BT
Bluetooth
Status on vis
>Power off
Devices
Search
Visibility

The status line shows if power is on and wheredthace is visible to Bluetooth searches.

The Power on/power off menu item allows Bluetoativpr to be turned on and off.
When power is off, battery power is saved, but willnot be able to connect to the
device, or make an outward connection to anotheéceeover Bluetooth. You will also
not be able to change the friendly name of theatevi

The Visibility menu item switches visibility of thaevices to Bluetooth inquiries on and
off. When it is on the status line displays “visidawhen it is off, “invis”.

Devices

The Devices menu item lists the devices currentihe Known Devices list for you
NXT.

Devices
>NXT1
>NXT2
>HOLUX_ M-1200

Selecting a specific device will show details of it

Devices
NXT1
001653007848

0 00 4

>Remove

The first line give the name, the second the addiea®d the third the status of the four
possible Bluetooth connections.

The “Remove” menu item allows the device to be resdofrom the Known device list.

Search

Selecting “Search” from the Bluetooth menu, starBluetooth inquiry. The display is
cleared and the first line displays “Searching.. Hisltakes about 10 seconds.

When the search is finished a menu of all the Bloit devices found, is displayed:

Found
>NXT1
>HOLUX_ M-1200
>MyPhone

All discoverable devices that support an SPP @ik displayed. This includes other
NXT, GPS devices, mobile phones etc.

Selecting one of the devices gives the followingpthy:

Found
NXT1
001653007848

>Add

Selecting Add, adds the device to the list of kr@vices. This makes connecting to the
devices from leJOS programs much easier.

PC
Command-
line
Tools

Using the [eJOS NXJ command line tools

The tools for compiling, linking and uploading 1ES®IXJ programs are:

* nxjc

e nxjlink

e nxjupload
* nxj

nxjc — compile a 1IeJOS NXJ program

Compiles one or more java files.
Usage: nxjc <java-files>
Example: nxjc View.java

nxjc calls javac with parameters:
e —source 1.3
e —targetl.l
* —bootclasspath <bootclasspath>
* <java-files>

-bootclasspath is set because leJOS does noteistatidard java.lang classes but has its
own versions in classes.jar.

-source 1.3 and —target 1.1 are set because & M does not support the latest java

source and class file versions.

nxjlink — link a leJOS NXJ program

Calls the 1eJOS linker.

Usage: nxjlink [-v|--verbose] [-a|--all] class <binary>

Example: nxjlink —v Tune —o Tune.nxj

Links the specified class with any classes thagférences in the current directory and
with the standard leJOS classes from classes.@otiuce a binary NXJ program that

can be uploaded and run.

The —v or —verbose flag causes a list of class sand method signatures included in
the binary to be output to the standard output.

The linker removes methods that are not used. §pea&ior —all to include all
methods whether they are used or not.

Use the —h or —help flag to print out the options.

nxjupload — upload a leJOS NXJ program

Usage: nxjupload [-bl|--bluetooth] [-u|--usb] [-dddress address] [-n|--name name] [-r|--
run] <binary>

Example nxjupload Tune.nxj

Uploads the binary (.nxj) file. By default usbiiged first and then Bluetooth. If the —
bluetooth flag is set, only Bluetooth is tried-lisb is set, only USB is tried.

When Bluetooth is used, a search for Bluetoothad=svis done, unless the —address flag
is set, when a device with the given address isected to.

The —name parameter limits the search for a NXT #ie given name. If this is not
specified, nxjupload tries to connect to each NKat it finds and will upload to the first
NXT that is successfully connects to.

If the —run parameter is specified, the programuisafter it has been uploaded.

nxj — link and upload and optional run a leJOS NXJ program

Usage: nxj [options] <class>

Example: nxj —r Tune

The nxj command links and uploads a lejOS NXJ @ogrit is the equivalent of nxjlink
followed by nxjupload.

PC
GUI
Tools

The NXJ Browser

leJOS NXJ includes a PC-based file browser for ingvand manipulating the files on
the NXT.

It is started by the nxjbrowse script. If you astng an IDE, you can set NXJ Browse up
as an external tool.

The NXJ Browser need the NXT it is connecting tobé turned on and to be running the
leJOS start-up menu. Although it should work wiaileser program is running, if the
program starts the LCPBTResponder thread, thistisatommended.

The NXJ Browser first looks for a NXT connectedW$B, and if it finds one shows just
that in the selection window.

If it cannot find a USB-connected NXT, it does ai@&booth inquiry to find any NXTs in
range and shows them in the selection window. Yyeu select the one you wish to
connect to, and press connect.

NXJ File Browser DER

Marme Protocal Address

| s Bluetooth 001653001761
sy Bluetooth 001653007548

After pressing Connect, the main browser screshasvn:

NXJ File Browser : NXT [=1E3

File Size Start Page | End Page Delete
i B 16643 2 67 L]
MemaryTeast.ny 5486 1] L] []
HelloWWorld. nyxj 5425 40 111 L]
TimeTest.ny 19675 112 188 L]
LCDTestny 7h58 1849 218 L]
SoundScope.nyj 7738 219 249 L]
HandHeldCompass nxj 11705 250 285 L]
BatteryTast nxj a24h 2196 324 L]
| Delete Files | | Upload file | | Download file | | Run program | | Defrag | | Set Name |

The NXJ browser shows you all the files on your NXdgether with their size in bytes
and their location in the file system (start pagel page). See “Understanding the 1eJOS
NXJ File System” to understand the meaning of the and end pages.

The friendly name of the NXT you are connectedstshiown in the title bar of the
Windows — the name is “NXT” in this case.

From this screen, you can:

e Delete programs

» Upload programs and other files to the NXT
* Download files from the NXT to the OC

* Run programs

» De-fragment the file system

» Set the friendly name of the NXT

Deleting programs

To delete files from the NXT, click thBelete tick boxes and pred3elete Files. The next
will make a chirping sound for each file deletedd ahe NXJ Browser display will be
updated. If the NXT is on the Files menu, its LCIl also be updated. An automatic
defrag will occur when files are deleted, so thereuld be no gaps in the file system.

Uploading files

When you clickUpload File, an Open file dialog box appears. Browse for theydu

want to upload, select it, amtick Open. NXJ Browse is not normally used for uploading
program files as this is better done usingrtkieor nxjupload tool or the leJOS Eclipse
plugin. However, it is useful for uploading WAVd# and data files for programs.

Downloading files

Files can be downloaded from the NXT to the PCddgting the NXT file and pressing
“Download”. This open a dialog that allows you &dext the folder and filename to
download the file to.

Running programs

A program on the NXT can be run by selecting it pressing “Run”. This shuts down
NXJ Browser.

De-fragmenting the file system

The NXT file system cab be defragmented (removimggaps between files) by pressing
“Defrag”. In the latest versions of [eJOS the filestem does not normally need to be
defragmented.

Setting the friendly name of the NXT
The Bluetooth friendly name of the NXT can be seplessing “Set Name”, filling in the

name (up to 16 characters) and pressing OK. Naittetlle Bluetooth power be on in
order to set the friendly name, even if the conpedb the NXT is by USB.

Remote Monitoring and Tracing

You can monitor a leJOS program over a Bluetootinection while it is running by
starting the LCPBTResponder thread and running\tkié& Monitor tool on the PC.

You an example of this, see the MonitorTest sample.

NXJ Monitor lets you see the values of sensors,thedialues of motor tachometers, in
near real-time, while your program executes.

It also lets you program displaying tracing messagendicate what it is doing. These
are displayed on the NXJ Monitor screen.

The program being monitored should include theofeilhg code in its start-up sequence:

LCPBTResponder IcpThread = new LCPBTResponder();
IcpThread.setDaemon(true);
IcpThread.start();

On the PC, the NXJ Monitor tool should be run. NW@nitor lists the NXTs available
over Bluetooth in the same way as the NXJ Browsel, and lets you choose which one
you wish to connect to.

When a connection has been made, the following eving displayed:

Socket Proxy

A program on the PC can use a Bluetooth connettidalk to a program on the NXT.
However a Bluetooth connection only works over aDmetres. If you want to
communicate with a program that is not running ¢ocal PC but which may be running
on a remote computer on the internet or a loed aetwork, then a TCP/IP socket
connection is more useful Socket connections camsbd for controlling robots at a
distance — telerobotics.

The problem is that the NXT does not support TCedifnections. The way to get round
this is to run a proxy on the local PC that impletseSocket and ServerSocket
connections. lejos.pc.tools.SocketProxy is suctoayp

SocketProxy can be used in two ways: it allows egtion as a client to a server running
on the internet, and it runs as a server allowlints on the internet to connect to it.

Running as a client

Data Logging

Datalogger

Data Viewer

The
Sample
programs

The 1eJOS NXJ sample programs

Building the samples

Notes on individual sample programs

Using
other
IDES

Other Integrated Development Environments

Netbeans

BlueJ

Understanding
eJOS NXJ

The 1eJOS NXJ version of Java

This section teaches you about the specific versiogeaJOS supported on the NXT.

leJOS NXJ does not support a completely standasioreof Java although it is getting
close to it all the time. The Java VM in the leJ@&J firmware has a very small
footprint — the whole firmware is less than 32kand this means that there are some
restrictions when compared to a full Java impleraton.

Some of these restrictions are:-

1.

8.

9.

The latest source version of Java is not suppertgali are restricted to Java
version 1.3 source.

. The Class class is not supported: there is no dyniaading of classes and no

reflection API.

The Runnable interface is not supported.

The java.lang API is not fully implemented. The maseful classes and methods
are there, but a lot of the lesser used classemetitbds are not supported.
Apart from java.lang, the only standard java paekdtat are implemented are
java.math, java.io, and java.util. These are dlldawn versions.

The only class from java.awt that is implementeReéstangle, and this is a cut
down version.

. The graphics interface for the LCD screen is basethe

javax.microedition.lcdui package, but this is opéyrtially implemented. There is
enough there to produce graphical user interfacgsfarms, lists, gauges,
images, text boxes, alerts, etc.

The Bluetooth API uses the StreamConnection interfeom
javax.microedition.io.

No other javax packages are implemented.

10.There are some restrictions in 1eJOS around thefusdializers, checking

interfaces and use of monitors — see the READMH fierfor details.

The javadocs for the 1eJOS NXJ API is availableranat
http://lejos.sourceforge.net/p _technologies/nxtapifindex.htmland is part of the 1eJOS

distribution in docs/apidocs:

= Dverview {leJOS NXT API documentation) - Windows Internet Explorer g@@

@.\— L B4 |g httpifilejos sourceforge.netfp_technologies/nxtinxifapifindes.html Vl 4| X !_:; le | B
File Edit Wiew Favorites Tools Help
U 4| @ Overvien (=305 MAT APT documnk aion) | | - B ® e Gk -@- MO E 4
2
All Classes LY Package Class Tree Deprecated Index Help
= PREV NEXT FRAMES HNOFRAMES
Packages
lava awt | Packages
lavaio 3 | v z =
i it java.awt Minimal AWT package for Rectangle class
ava util java.io Input Output support
avax microedition.io s
e e R s ~|| |javalang | Care Java classes
rINE 7 o
“'| java.uril Utilities
All Classes
AbstractRecyelable , javax.microedition.io | J2ME 'O
tractRecy Jaxa X IOeC 0N X
Activily || javax.microedition.ledui JIME LCD User Interface classes.
ActivityBase 15
ADSensorPort lejos.navigation |Navigation classes.
Aler
Arbitrator lejos.nxt Access to NXT sensors, motors, etc.
ATDi s lejos.nxt.comm | NXT communication classes
Arithmetic Exception
ArraylndexOutofBoundsEx lejos.nxt.remote ' Remote NXT access over Bluetooth
ArrayList E " = e
ArrayRecyeler lejos.rcxcomm ' Emulation of RCX communication classes
Assertion i ; : T : ;
BasicMoto lejos.subsumption Support for subsumption architecture
BasicilolorPor lejos.util More utility classes
g;aseftmm [T Package Class Tree Deprecated Index Help
BTConnection -FF'E\,’ NENT FRAMES MO FRAMES
BTlnputStream
BTOuipuiSiream
BTEemntaNauire 5.
k1]) | LB
& Internet 100 v

Java Utilities

The java.util classes supported by 1eJOS are:

e ArrayList
* BitSet

e Hashtable
¢ Queue
 Random

* Stack

e Vector

Understanding motors and motor ports

Motor classes

BasicMotor
RCXMotor
Motor

MotorPort

To use the NXT motors it is not necessary to exkpliase the MotorPort class: you can
just use the variables Motor.A, Motor.B and Motor.C

However it is useful to understand how motor partsk as they are used by:

* The Motor class

The RCXMotor class

The RemoteNXT class

The RCXMotorMultiplexer class

Remote RCX motors accessed via the RCXLink class

There is a hierarchy of interfaces defined for mgiarts:

* BasicMotorPort
« Tachometer
« TachoMotorPort

All motor ports support the BasicMotorPort integaghich allows control of a motors
power and mode (forward, backward, stop, float).

Port that supports this include:

e NXT ports connected to NXT motors

* NXT ports connected via the RCX conversion cablB@X motors
* Ports on the RCXMotorMultiplexer adapter

* Ports on remote NXTs accessed via the RemoteN>SE cla

» Ports on remote RCXs accessed via the RCXLink class

The implementations of BasicMotorPort include:

MotorPort
RemoteMotorPort
RCXPlexedMotorPort
RCXRemoteMotorPort

The tachometers that are built in to the NXT mosugport the Tachometer interface.

NXT motor ports support the TachoMotorPort integfadhich includes the
BasicMotorPort and Tachometer interfaces.

Implementations of TachoMotorPort include:

* MotorPort
* RemoteMotorPort

All this sounds rather complicated, but is simpleise:

e For NXT motors, you use Motor.A, Motor.B and Moftor.

» For RCX motors connected by conversion cable yeu us
RCXMotor(MotorPort.A), RCXMotor(MotorPort.B) or ROXotor(MotorPort.C)

* For NXT motors on a remote NXT, you use remoteNXdtiM.A,
remoteNXT.Motor.B or remoteNXT.Motor.C where rem@¥T is an instance of
RemoteNXT.

» For RCX motors connected by the RCX Motor Multipdexyou use
rcxMotorMultiplexer.A, rexMotorMultiplexer.B, rexMtmrMultiPlexer.C or
rcxMotorMultiplexer.D, where rcxMotorMultiplexer sn instance of
RCXMotorMultiPlexer.

* For RCX motors connected t remote RCXs via the Ri@Kklass you use
rcxLink.A, rexLink.B or rexLink.C where rexLink ign instance of the RCXLink
class.

Understanding sensors and sensor ports

Sensor Ports

NXT sensor ports support three different typeseoissr:

* NXT Analog/Digital Sensors
* 12C Sensors
* Legacy RCX sensors

All sensors ports support a basic interface tHatal the type and mode of a sensor to
set. The types of sensors are:

public static final int TYPE_NO SENSOR= 0x00;
public static final int TYPE_SW TCH=0x01,;
public static final int TYPE_TEMPERATURE = 0x02;
public static final int TYPE_REFLECTI ON=0x03;
public static final int TYPE_ANGLE = 0x04;
public static final int TYPE_LI GHT_ACTI VE = 0x05;
public static final int TYPE_LI GHT_I NACTI VE = 0x06;
public static final int TYPE_SOUND_DB = 0x07;
public static final int TYPE_SOUND DBA = 0x08;
public static final int TYPE CUSTOM= 0x09;
public static final int TYPE_LOWSPEED = Ox0A,
public static final int TYPE_LOANSPEED 9V = 0x0B;
and the modes are:
public static final int MODE_RAW= 0x00;
public static final int MODE_BOCLEAN = 0x20;
public static final int MODE_TRANSI TI ONCNT = 0x40;
public static final int MODE_PERI ODCOUNTER = 0x60;
public static final int MODE PCTFULLSCALE = 0x80;
public static final int MODE_CELSI US = 0xAO0;
public static final int MODE_FARENHEI T = 0xCO;
public static final int MODE_ANGLESTEP = OxEO;

Most of the time, with [eJOS NXJ, these types amdi@s do not need to be set explicitly
as it is done by the constructor for the sensasdeeing used, e.g. TouchSensor,
LightSensor and UltrasonicSensor.

These type and mode constants are defined by tiw¢aice SensorConstants.

To allow these types and modes to be set, all sgrusts implement the interface
BasicSensorPort which extends the interface Semsst@nts.

It implements the methods:

e public int getMode();
e public int getType();

e public voidsetMode(int mode);
e public voidsetType(int type);
* public voidsetTypeAndMode(i nt type, i nt mode);

Corresponding to each of the different types ofserthere is a corresponding interface:

« ADSensorPort which extends BasicSensorPort
* LegacySensorPort extends ADSensorPort
* |2CPort extends BasicSensorPort

The implementation of the NXT sensor port — SensdrP supports all these interfaces.
The reason for separating out the different intax$ais that there are other
implementations of sensor ports that only suppanileset of these interfaces, and
different types of sensors only require particutéerfaces to be implemented:

* |2C Sensors just require 12CPort
* NXT Analog/Digital sensorsjust require ADSensorPort
* RCX sensors such as the RCX Light sensor requigatysensorPort

Port splitters like the Mindsensors Split-Nx onlypport 12C sensors and thus,
effectively, only support the I2CPort interface.

There are other implementations that only supp@iother interfaces. For example the
current implementation of remote sensor ports —&®eB8ensorPort — currently only
supports the ADSensorPort interface.

The classes for RCX Sensors multiplexers — su¢hea®rthcoming Mindsensors
version — will only support the LegacySensorPawriface.

Sensors

Each sensor supported by leJOS NXJ has a spelafis that is used to access the sensor.
Each of these sensor classes has, as a paramstesa port that supports the required
interface. Any sensor port class that implemerggnterface can be specified as the
parameter. As the SensorPort class supports alhtidaces, if the sensor being accessed
is directly connected to the NXT, the parameteusthbe one of SensorPort.S1,
SensorPort.S2, SensorPort.S3 or SensorPort.S4.

If a a port splitter is used the parameter agatukhbe one of SensorPort.S1,
SensorPort.S2, SensorPort.S3 or SensorPort.S4spéitfies the port that the splitter is
connected to. If multiple sensors are connectabedsplitter they mudst each have
different 12C addresses. Most 12C sensors can tiereaddress changed — see the
manufacturers instructions. To specify the addilestsa sensor uses, if it is not the
default, the setAddress method of I2CSensor shoeilased.

The sensor ports supported by leJOS NXJ togethértive class that supports them and

the type of sensor port they require is given aftillowing table:

Sensor Class Sensor Port Interface
LEGO NXT Touch Sensor TouchSensor ADSensorPort
LEGO NXT Light Sensor LightSensor ADSensorPort
LEGO NXT Sound Sensor SoundSensor ADSensorPort
LEGO NXT Ultrasonic Sensor UltrasonicSensor I2CPort

RCX Touch Sensor TouchSensor ADSensorPort
RCX Light sensor RCXLightSensor LegacySensorPort
HiTechnic Compass Sensor CompassSensor [2CPort
HiTechnic Color Sensor ColorSensor [2CPort
HiTechnic Acceleration Sensor TiltSensor I2CPort
HiTechnic Gyro Sensor GyroSensor ADSensorPort
HiTechic IR Seeker IRSeeker [2CPort
Mindsensors Compass Sensor CompassSensor [2CPort
Mindsensors NXTCam NXTCam [2CPort
Mindsensors Acceleration sensorns TiltSensor [2CPort
Mindsensors Dist-Nx sensors OpticalDistanceSensaCPort
Mindsensors NRLink-Nx RCXLink I2CPort
Mindsensors RCX Motor RCXMotorMultiplexer | 12CPort

multiplexer

Understanding the leJOS File System

leJOS NXJ implements a file system using flash mgnithe flash memory is read and
written in 256-byte pages. The first two pages hbéilfile table (directory) and the rest
of the pages hold user files. Files are held améiguous set of bytes — i.e they use a
single range of page numbers with no gaps. Thisvalla file to be addressed as a region
of memory.

Flash

Theflash class has methods to read and write 256-byte peEdEsh memory. It should
not be used by user programs.

File

The File class has static methods that maniputetdile system as a whole and instance
methods that give access to specify files.

Static methods:

Filelnputstream

FileOutputstream

Understanding LCP

LEGO defines a protocol called the LEGO MINDSTORMET Communications
Protocol (LCP) which is used to send commandsedcatandard LEGO firmware. The
specification is available attp://mindstorms.lego.com/Overview/NXTreme.aspthe
Bluetooth Development Kit. The commands are sepdnato direct commands and
system commands. The direct commands are descnlzegeparate document: LEGO
MINDSTORMS NXT : Direct Commands.

Direct commands are those that are designed forpusgrams and tools to use to control
robots. The system commands are designed for tioaisipload and download files and
do other administrative tasks.

leJOS NXJ emulates many of the direct and systemsands so that many tools that
work with the standard LEGO firmware also work wigdOS.

Many of the 1eJOS NXJ tools including nxj, nxjuloackjbrowse and nxjmonitor use
LCP. 1eJOS NXJ has some minor additions to LCP a&ants tools work better.

The implementation of LCP is in the lejos.nxt.coh@P class. As 1eJOS sensors and
motors work a bit differently than the standardniivare, the semantics of LCP on 1eJOS
are not always identical to the standard LEGO fiarav

The start-up menu — StartUpTextjava — uses LCRppart the 1eJOS NXJ tools and
third-party tools. This means that LCP commandsheaaxecuted over Bluetooth or
USB when the menu is running.

Understanding leJOS NXJ use of memory

The NXT has 256kb of flash memory and 64kb of RAM.

Flash memory can be read like RAM (access is alditer) but can only be written in
256-byte pages by specific hardware instructidiilash memory cannot be read while a
page is being written.

The 1eJOS NXJ firmware is written in a combinatadrC and ARM assembler code. It
consists of the initialization code, the Java VM aevice drivers for all the hardware
subsystems. The leJOS firmware is a complete fimawaplacement and has no reliance
on the standard LEGO firmware. The first 32kb a6f memory is allocated to the 1eJOS
NXJ firmware. Most code is executed from flash mgmbut a’'small amount (e.g. the
code that writes pages of flash memory) is coppelBAM. Read-only data is held in

flash memory but read/write data is copied to RAMe firmware uses a fixed size stack
and interrupt stack.

The leJOS NXJ Java VM executes one Java prograntirae. This can either be a user
program or the leJOS start-up menu. One Java progaa execute another. When this is
done the first Java program is removed from mememy, the second one is then
executed. This is how the start-up menu executeisprsgrams.

The start-up menu occupies up to 48kb of memornydtzaits at address 32k (i.e. after the
end of the firmware). The last word of the 48klnedited to the start-up menu holds the
size of the start-up menu).

Java programs execute from flash memory. Statit-oedy data is held in flash memory.
Static read-write data is copied to RAM. Objects @eated in a heap that starts at the
top of the RAM and grows downwards. The Java sstéaks at the bottom of free RAM
memory and grows up. A garbage collector frees mmgmsed by unreferenced objects
when the heap becomes full.

Understanding how the NXJ tools work

nxjflash

In order to flash firmware to the NXT, the NXT mum in firmware update mode. The
NXT is put into firmware update mode by pressing ithset button for 4 seconds or
more. This causes the NXT to run a small boot esgigprogram called SAM-BA. The
was written by Atmel, the maker of the ARM chipteit the NXT uses. SAM-BA
includes a USB driver and accepts commands sentlwd)SB link. These command
allows data to be uploaded to RAM and code to lezated. Early version of 1eJOS used
this mechanism to run in RAM before there was shflgersion of [eJOS NXJ.

On Microsoft Windows and MAC OS X, the standard I GSB drivers are used.
These come with the LEGO software, which is whyg goftware must be installed. On
Microsoft windows, when the NXT is in firmware ugdanode, a USB cable is attached
to your PC and the NXT is switched on (by pressireggorange button), if you go to
Control Panel > System > Hardware > Device Manggarwill see under “Lego
Devices” an entry for the USB driver, labelled “LEGIINDSTORMS NXT Firmware
Update Mode”.

nxjflash uses the libusb library to drive the USiBerface. On Linux libusb provides the
USB driver. On Microsoft Windows, you need to rhe tibusb-win32 filter driver. This

allows nxjflash to drive the LEGO MINDSTORMS NXTrRiware Update Mode USB

driver.

nxjflash drives libusb via a library written by OdvAnderson, called libnxt. This
supports SAM-BA commands. To flash new firmwareyptoads the firmware image a
256-byte page at a time and then executes a srAMFRsident routine to write the page
to flash memory. In this way the 1eJOS NXJ firmwdegos_nxt_rom.bin is written to
flash memory. This occupies the first 32kb of flasémory.

nxjflash also uploads the 1eJOS NXJ start-up maau3pText.bin. This menu is written
in Java and built like any other 1eJOS NXJ Javgmms. It implements the leJOS NXJ
menu system and supports threads for executing Cegomunication Protocol (LCP)
commands over USB and Bluetooth. StartUpText.lsides in flash memory starting at
address 32k. 48kb of flash memory is reservedtfdiie highest address word in the
49k. When both the firmware and the menu have be&yaded, nxjflash sends a SAM-
BA command to the NXT causing it to jump to adde=® and the [eJOS NXJ firmware
executes.

nxjupload

nxjupload uploads programs or other files over W Bluetooth. It is a command line
interface that is suitable for use from commanddeuis, ant scripts, and as an external
command from IDEs such as Eclipse.

nxjupload sends LCP system commands to the NXpkoad the file. The commands
are OPEN_WRITE, WRITE and CLOSE.

The call of nxjupload looks like:
nxjupload [options] <binary-file>

By default nxjupload first looks for a NXT connedtiey USB. If it does not find one, it
tries Bluetooth. It does a Bluetooth inquiry loogifor NXTs. It it finds any it tries to
connect to each one, and uploads the file to teedne it successfully connects to. This
means that if you have multiple NXTs, it will uptbto the one that is currently switched
on.

This behaviour can be modified by the followingiops:

* -b or —bluetooth: only Bluetooth is tried

e -uor-ush: only USB is tried

e -nor--name: the upload is done to the named NX'Bluetooth inquiry is done,
but only the named NXT is looked for.

* -d or —address <address>: the upload is to thedevith this Bluetooth address.
USB is not tried and no Bluetooth inquiry is done.

e -r or—run: run the program after upload by sendr8 T ARTPROGRAM LCP
command.

nxjupload uses the apache Commons CLI commangfimeessor.

nxjlink

nxjlink call the linker (class js.tinyvm.TinyVM).
The call looks like:

nxjlink [options] class —o <binary file>

The -cp or --classpath option is used to specifgnetihe linker looks for classes. Note
that the linker classpath is separate to the cibkagses to execute js.tinyVM.TinyVM.

The linker first looks for the specified class e tlinker classpath, and then looks for all
classes that this references to form a “closurghefclasses. The linker class path should

include classes.jar and all the user classes ipritgram. The class specified on the
command line must be the one containing the mathode The Jakarta apache Byte
Code Engineering Library (BCEL) is used to prodéesclass files.

The linker omits methods that have not been reta@minless the —a or —all flag is
specified. The way this is done uses a simple dghgurand does not manage to omit all
unreferenced methods.

The linker produces a 1eJOS NXJ binary file andwitito the file specified in the —o
parameter.

nxjlink needs to know the byte order of the prooessis producing the binary for. For
the NXT this is set by “—writeorder LE” for LittlEndian.

If the —v or —verbose flag is set, a list of thessles and methods in the binary is output to
standard out.

nxjlink uses the apache Commons CLI library for awend line processing.

nxj

The nxj command
nxjc

nxjorowse

Developing
eJOS

Developing 1eJOS

Developing Java classes

Developing the firmware

Developing PC Tools

Supporting new sensors
A/D Sensors

I2C Sensors

Getting
Started
on
MAC OS X

Getting
Started
on
Linux

