Dirk W. Hoffmann

Godel's
Incompleteness
Theorems

@ Springer



Godel’s Incompleteness Theorems



Dirk W. Hoffmann

Godel’s Incompleteness
Theorems

A Guided Tour Through Kurt Godel’s
Historic Proof

@ Springer



Dirk W. Hoffmann

Fakultt fiir Informatik und
Wirtschaftsinformatik

Hochschule Karlsruhe

Karlsruhe, Baden-Wiirttemberg, Germany

ISBN 978-3-662-69549-4 ISBN 978-3-662-69550-0 (eBook)
https://doi.org/10.1007/978-3-662-69550-0

This book is a translation of the original German edition “Die Godel’schen Unvollstindigkeitssitze,” 2nd
edition, by Dirk W. Hoffmann, published by Springer-Verlag GmbH, DE in 2017. The translation was
done with the help of an artificial intelligence machine translation tool. A subsequent human revision was
done primarily in terms of content, so that the book will read stylistically differently from a conventional
translation. Springer Nature works continuously to further the development of tools for the production of
books and on the related technologies to support the authors.

Translation from the German language edition: “Die Godel’schen Unvollstéindigkeitssétze” by Dirk W.
Hoffmann, © Springer-Verlag GmbH Deutschland 2017. Published by Springer Berlin Heidelberg. All
Rights Reserved.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH,
DE, part of Springer Nature 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer
Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

If disposing of this product, please recycle the paper.


https://doi.org/10.1007/978-3-662-69550-0

“Logic will never be the same again.”

John von Neumann



Preface

For thousands of years, it was the unspoken assumption of mathematics that
every mathematical statement can be either proved or disproved. In 1931, Kurt
Godel laid this long-held dream to rest. The young mathematician had discov-
ered that the notion of truth and the notion of provability cannot coincide. In
any sufficiently expressive formal system, statements exist that can neither be
proved nor disproved within the system.

Godel’s work has fundamentally changed our view of mathematics. It is a jewel
of our cultural heritage, ranking on par with Einstein’s work on the theory of
relativity [18] or Heisenberg’s work on the uncertainty principle [39]. All three
define fundamental limits we cannot overcome.

Since their discovery, many authors have dealt with Godel’s incompleteness
theorems and shed light on their mathematical and philosophical implications.
For the first time, I read about the incompleteness theorems in Douglas Hofs-
tadter’s famous book Gdodel, Escher, Bach [61] in my senior year of high school.
I was quickly captivated by the theorems and wanted to delve deeper into the
subject: I wanted to know what Godel had really proved. Yet, even my first
glance at the original paper made me resign. The entire presentation was so
formal that I could not understand it, even rudimentarily. I wished for a book
that explained the original proof in comprehendible words, but such a book did
not exist.

Since then, many years have passed in which I could never detach myself men-
tally from the incompleteness theorems. As a result, two books eventually came
into being. One is the book I missed for so long and is now in your hands; it is
my very personal attempt to fill the gap I just described. The other is Limits of
Mathematics (Grenzen der Mathematik [59]), which addresses a similar subject
with a different objective. While the present book deals in detail with Godel’s
historical proof, the other is closer in style to a classical textbook. It covers
a broader array of themes and explores diverse ideas and thoughts that are
somewhat distant from the epicenter of the incompleteness theorems. It also
introduces the fundamental principles of classical mathematical logic, crucial
for understanding the present text.

I hope you find this book enjoyable, and I welcome any comments or suggestions
from all readers.

Karlsruhe, 30 March 2024 Dirk W. Hoffmann
Vil



About this Book

The subsequent chapters feature a complete reproduction of Gédel’s original
article, divided into annotated sections. The original passages are printed on a
shaded background to visually separate them from the surrounding text. Apart
from that, the layout of the original work has been largely retained. Only the
footnotes, which are numerous in Gédel’s work, are treated differently. To
create a smooth reading experience, they appear at the end of the referencing
text fragments.

The original manuscript has been marginally modified at seven locations to
rectify a few known errors. Specifically, the changes are those listed in Gédel’s
collected works under ‘Textual Notes’ [36]:

*175:25 ne K qe K
177:12 18a 19a
177:33 18a 19a
180:15 auch R auch R
184:7 u* R(nGlx)v u* R(nGlx)*v
187:5 rekursiv rekursiv
*189:30 Existenz Existenz von aus x

The entries in the first column correspond to the pages and lines in Gdédel’s
original manuscript. Goédel himself made the two alterations marked with an
asterisk. They originate from a manually corrected manuscript that was part
of his estate.

Godel had written his work in German. As a German-speaking author, this
came in handy, given that the initial two editions of this book explicitly targeted
the German market. With no language barrier present, I could concentrate
entirely on the substantive aspects of Gédel’s work. In 2023, my publisher asked
me to translate the book into English, an opportunity I readily embraced as it
offered access to a significantly broader audience. Nevertheless, the translation
process was not solely a linguistic challenge for me; it also influenced the book’s
conception. First and foremost, I had to decide whether to retain Godel’s work
in its original German form or to replace it with an English translation. On the
one hand, I was hesitant to exclude the German original since the mathematical
presentation of Godel’s proof is only one aspect of this book, albeit a crucial one.

IX



X About this Book

From the outset, my objective has been to present not just the mathematical
facets of the incompleteness theorems but also, and foremost, to convey Godel’s
very own account. I regard his original work as a precious part of our scientific
heritage, and this book is my modest contribution to helping readers access its
breathtaking content.

On the other hand, I understood that the majority of English-speaking readers
might grapple with the German language, even with additional linguistic ex-
planations in the surrounding text. As a result, I've chosen to adopt a hybrid
approach. This English edition of the book showcases Godel’s article in both
its original German form and an English translation.

In the past, three translations emerged during Gédel’s lifetime: the initial one
crafted by Bernard Meltzer in 1962 [68], followed by Elliott Mendelson’s rendi-
tion in 1965 [69], and the third by Jean van Heijenoort in 1967 [35]. I've chosen
to present Mendelson’s translation alongside the German original in this book.
Minor adjustments have been made compared to the published version in [69],
predominantly revolving around three aspects. First, I've slightly reformatted
the text to better align with the layout of the German original, facilitating ease
of reference between the texts. Second, I've restored the page references within
Godel’s text to their original numbers to assure consistency with the German
original. The third alteration pertains to typography: where Godel utilizes
italics to signify a specific semantic meaning, Mendelson’s translation utilizes
capitalized letters. In this book’s reprint, I've reverted to using italics to mirror
the style of the German original. Beyond these subtle adjustments in layout
and typography, the wording of Mendelson’s translation remains unchanged
and is reproduced verbatim in this edition.

Acknowledgements

I take the opportunity to thank the Institute for Advanced Study in Princeton
for granting permission to reprint Goédel’s historic paper in the original German.
Furthermore, I thank Dover Books for granting permission to reprint Elliott
Mendelson’s English translation. Finally, I thank Hal Prince for providing
several helpful comments on my published logic books and writing his own on
Godel’s historic paper [82]. Hal’s book explores the same subject but sheds
light on it from a different angle. T am grateful to him for having written this
insightful piece.



Bird’s-Eye View

Theorem I to IV
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Theorem IX

Godel’s original paper comprises 4 parts and establishes a
total of 11 theorems. Part 1 features a proof sketch eluci-
dating the fundamental concept behind his argument [H].
Part 2 initiates the detailed exposition of the proof, com-
mencing with the introduction of a formal system named
P, which is central to the subsequent argument [F]. Af-
terward, Godel introduces the notion of primitive-recursive
functions and establishes elementary properties about this
class of functions by proving Theorems I to IV [K]. Subse-
quently, Gédel meticulously demonstrates that many meta-
mathematical concepts concerning formal systems are ex-
pressable using primitive-recursive definitions M. He then
continues to prove Theorem V, which reveals a significant
relationship between formulas within a formal system and
primitive-recursive relations B]. This is followed by The-
orem VI, the main result of his work. Godel calls it the
general result on the existence of undecidable propositions
M. The third part draws various conclusions from the gen-
eral result. Theorem VII establishes a connection between
arithmetic and primitive-recursive relations, while Theo-
rem VIII asserts the existence of undecidable statements
within arithmetic [¥]. This theorem is commonly referred
to as the first incompleteness theorem in modern terms.
Through Theorems IX and X, Goédel concludes that the
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decision problem of first-order predicate logic remains un-
M [193 - 196] solvable within P []. The fourth section outlines the proof
of Theorem XI, now recognized as the second incomplete-

Bird's-Eye View

M [196 —198] mness theorem. [H].

Page Overview

The following overview indicates where the various pages of Godel’s historic

paper are discussed in this book.
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1 Introduction

“Kurt Gddel’s achievement in modern logic is sin-
gular and monumental — indeed it is more than a
monument, it is a landmark which will remain vis-
ible far in space and time.”

Attributed to John von Neumann

For Rudolf Carnap, Herbert Feigl, Kurt Gddel, and Friedrich Waismann, a
steamboat trip along the Baltic coast marked the end of a long journey from
Vienna to Koénigsberg. Joined in Swinemiinde by two other scientists, Kurt
Grelling, and Hans Hahn, all six disembarked on September 4, 1930 [14]. The
objective of their trip was to participate in the 2nd Conference on Epistemology
of the Exact Sciences, hosted by the Berlin Society for Empirical Philosophy
in the East Prussian metropolis from September 5 to 7. On this late summer
day, there was nothing to suggest that September 7, 1930, would later be
remembered as the day that changed mathematics forever.

This year, the conference centered around the foundations of mathematics.
The philosophical-sounding topic of the conference must be put in its historical
context. In the 1930s, mathematics was not yet the isolated discipline we know
today, and mathematical and philosophical questions were tightly intertwined.
Accordingly, there was a great demand for a conceptual foundation on which
mathematics could be solidly built.

Three philosophical perspectives dominated the mathematics of the early twen-
tieth century, presented in three 60-minute tutorials on the first day. First,
the German philosopher Rudolf Carnap introduced Logicism [8]. Next, the
Dutch mathematician Arend Heyting spoke about Intuitionism [41]. Last, the
Austro-Hungarian-born mathematician John von Neumann lectured on For-
malism. From today’s perspective, Formalism was the most important of the
three philosophical views, as it propagated the approach that would later shape
all of modern mathematics: the axiomatic method. The historical roots of ax-
iomatic thinking trace back to ancient Greece, where our journey continues.

1.1 The Axiomatic Method

The axiomatic method employs the idea of logically deducing statements from
a set of a priori established assumptions. It is disputed among historians to
whom the intellectual authorship of this several thousand-year-old idea should

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, 1
part of Springer Nature 2024
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Figure 1.1: An original fragment of
Euclid’s Elements

be attributed. Some believe that axiomatic thinking dates back to the Greek
scholar Eudoxos of Knidos [40]; others trace it back to Plato and Aristotle [60].

The axiomatic method was popularized by a man about whom little is known:
Euclid of Alexandria. Euclid was born around 360 BC and likely attended the
Platonic Academy in Athens for a time. His contributions to Greek philosophy
were comparatively small [3], unlike classical mathematics, where he made
significant contributions. He became best known for his work Elements, which
summarized the preceding three hundred years of Greek mathematics. His
work consisted of 13 so-called books, which we would rather call chapters today.
Euclid’s Elements stands as the most successful writing in mathematical world
literature. Over the years, it has been translated into countless languages, and
new editions still appear at regular intervals.

First and foremost, Euclid’s Elements is notable for its methodology. The
author had taken an axiomatic approach to develop geometry, deriving all
theorems from a set of elementary facts established a priori. Today, we are all
in Euclid’s tradition when we state the basic facts of a mathematical theory
in advance and adhere to strict rules when deriving new theorems. In [40],
Harro Heuser calls the axiomatic method the lifeblood of mathematics and the
greatest contribution the remarkable Greek people have made to mathematics.
He does not exaggerate in any way.

The most famous passages of Euclid’s Elements are part of the first book.
Among the numerous definitions, postulates, and axioms, the five postulates
listed in Figure 1.2 are the most important [19]. They are what we call theory
axioms today.

Viewed from a modern perspective, two peculiarities of FEuclid’s work stand
out:

B Despite its axiomatic character, Euclid’s Elements is far less formal than
modern mathematical writings. Although Fuclid derived the geometry theo-
rems deductively, his presentation was deficient in many respects. In various
passages, his logical conclusions rely on unspoken facts that are intuitively
correct but underivable from the axioms. Furthermore, the applied logical
apparatus is not formally defined.
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Let the following be postulated:

Postulate 1: “To draw a straight line from any point to any
point.”

Postulate 2: “To produce a finite straight line continuously
in a straight line.”

Postulate 3: “To describe a circle with any centre and dis-
- tance.”

Postulate 4: “That all right angles are equal to one another.”

Postulate 5: “That, if a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than two right angles.”

Figure 1.2: The five postulates of Euclidean geometry (from [19])

B Euclid did not utilize a dedicated formula language. He formulated all defi-
nitions, postulates, and axioms colloquially, as well as the derived theorems.
Consequently, he represented all mathematical objects in the same language
he used to talk about these objects.

Euclid’s axiomatic method remained almost unchanged for over 2000 years.
It was not until the end of the nineteenth century that it awakened from its
slumber. At that time, all of a sudden, it underwent a metamorphosis that was
about to change its face completely in just a few years.

The development was significantly driven by the German mathematician David
Hilbert (Figure 1.3). Born in Konigsberg in 1862, Hilbert was unusually versa-
tile, shifting his scientific focus several times. In addition to significant contri-
butions to logic and the foundations of mathematics, he made momentous dis-
coveries in algebraic geometry, analysis, number theory, and theoretical physics.
His scientific legacy is among the most valuable ever left by a single mathe-
matician.

Hilbert spent most of his professional career at the mathematics faculty in Got-
tingen, where Gauss, Dirichlet, and Riemann had achieved great achievements
years before. Hilbert’s appointment in 1895 marked a new beginning for the
faculty. It allowed Gottingen to regain its old glory, which had begun to fade
towards the end of the nineteenth century.

Hilbert was an advocate of the axiomatic method and the figurehead of the
formalists. He unfailingly articulated his perspective in numerous publications
and lectures using easily comprehensible language. Hilbert’s exceptional clarity
of expression makes his writings a pleasure to read, even decades after his death.
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Figure 1.3

Davib HILBERT
1862 — 1943

At this point, we want to let him speak for himself and quote from a lecture he
gave in 1917 to the Swiss Mathematical Society. He explained his formalistic
position with the following words:

“When we assemble the facts of a definite, more-or-less comprehensive
field of knowledge, we soon notice that these facts are capable of being
ordered. This ordering always comes about with the help of a certain
framework of concepts in the following way: a concept of this framework
corresponds to each individual object of the field of knowledge, and a
logical relation between concepts corresponds to every fact within the
field of knowledge. This framework of concepts is nothing other than the
theory of the field of knowledge. |...| If we consider a particular theory
more closely, we always see that a few distinguished propositions of the
field of knowledge underlie the construction of the framework of concepts,
and these propositions then suffice by themselves for the construction, in
accordance with logical principles, of the entire framework. [...] These
fundamental propositions can be regarded from an initial standpoint as
the azxioms of the individual fields of knowledge.”

“Wenn wir die Tatsachen eines bestimmten Wissensgebietes zusammen-
stellen, so bemerken wir bald, daf diese Tatsachen einer Ordnung fihig
sind. Diese Ordnung erfolgt jedesmal mit Hilfe eines gewissen Fachw-
erkes von Begriffen in der Weise, dafs dem einzelnen Gegenstande des
Wissensgebietes ein Begriff dieses Fachwerkes und jeder Tatsache inner-
halb des Wissensgebietes eine logische Beziehung zwischen den Begriffen
entspricht. Das Fachwerk der Begriffe ist nichts anderes als die Theo-
rie des Wissensgebietes. [...] Wenn wir eine bestimmte Theorie ndher
betrachten, so erkennen wir allemal, dak der Konstruktion des Fachw-

erkes von Begriffen einige wenige ausgezeichnete Sétze des Wissensgebi-
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etes zugrunde liegen und diese dann allein ausreichen, um aus ihnen nach
logischen Prinzipien das ganze Fachwerk aufzubauen. |[...] Diese grundle-
genden Sétze kénnen von einem ersten Standpunkte aus als die Aziome

der einzelnen Wissensgebiete angesehen werden.”

David Hilbert [49, 42]

Towards the end of the nineteenth century, Hilbert impressively demonstrated
the fertility of the ground he had chosen for the refoundation of mathematics.
In his book Foundations of Geometry, published in 1899, he introduced several
axioms that allowed all the propositions of Euclidean geometry to be derived
with an accuracy way beyond that of Euclid’s Elements. However, to achieve
this goal, Hilbert had to opt for an axiomatic system far more complex than
its historical counterpart. While the theorems of Euclid’s Elements are derived
from five main postulates, Hilbert’s system comprises a total of 21 axioms
divided into five groups. There are

B 8 axioms of connection (Group I),

B 4 axioms of order (Group II),

B 1 axiom of parallels (Group III),

B 6 axioms of congruence (Group IV), and

B 2 axioms of continuity (Group V).

It would be short-sighted to consider Hilbert’s axioms merely as a refinement
of Euclid’s postulates, for in one crucial aspect, they were entirely new. For
thousands of years, people understood axioms to express basic facts about the
real world, which, according to Aristotle, are “neither capable nor in need of
proof,” and for just as long, they were used to define mathematical objects.
For instance, the seventh book of Euclid’s Elements contains the following
definition of the natural numbers [19]:

B “A unit is that by virtue of which each of the things that exist is called one.”

B “A number is a multitude composed of units.”

For Hilbert, all attempts to define mathematical objects by virtue of their
nature were doomed to fail. Each definition merely reduces a concept to other
concepts that in turn require a definition. In Euclid’s axioms, these are concepts
such as unit, thing, and multitude. Since the chain of definitions cannot be
continued indefinitely, one has to stop at a certain level and accept its terms
and concepts as given. But which level is the proper one? Is it Euclid’s level
of things, units, and multitudes, or perhaps the level of the natural numbers
themselves?
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Hilbert tackled the problem simply by refraining from defining mathemati-
cal objects by virtue of their nature. Consequently, his axiom systems never
describe these objects as such; instead, they solely concentrate on their re-
lationships and the resulting logical conclusions. More precisely, in Hilbert’s
axiomatization of geometry, it does not matter what the terms point, line, and
plane mean by their nature. All that matters is that they relate to each other
as the axioms dictate. Thus, even if the terms point, line and plane were re-
placed by the terms beer mug, bench and table, the result may still be called
an axiomatization of Euclidean geometry. It is said that Hilbert once explained
his formalistic standpoint with this example, but no reliable source is known.

1.2 Formal Systems

Hilbert’s formalistic approach has established a perspective in mathematics
that distinguishes between an object level and a meaning level. For the object
level, artificial formula languages were created, conforming to well-defined con-
struction rules. Later, logical reasoning was added to the object level through
textual transformation rules. From now on, it was possible to treat every ax-
iom and every derived theorem as a mere chain of symbols that could be trans-
formed according to a particular set of rules. In the resulting formal systems,
mathematics had become a mechanical game akin to a game like chess.

As a result of this formalization, vaguely defined concepts, such as conducting
a proof, could suddenly be grasped with mathematical precision, giving rise
to a new mathematical branch called proof theory. In 1923, Hilbert described
this new branch of mathematics with the following words:

“Everything that previously made up mathematics is to be rigorously for-
malized, so that mathematics proper or mathematics in the strict sense
becomes a stock of formulae. [...| Certain formulae that serve as building-
blocks for the formal edifice of mathematics are called axioms. A proof
is a figure that must intuitively appear to us as such; it consists of infer-

ences using the inference-schema

(G}

G —-%

T
where in every case each of the premisses — that is, the formulas & and
& — T — either is an axiom, or results directly from an axiom by sub-
stitution, or agrees with the end-formula ¥ of an inference that appears
earlier in the proof, or results from such an end-formula by substitution.
A formula shall be called provable if it either is an axiom, or results from
an axiom by substitution, or is the end-formula of a proof.”

“Alles, was im bisherigen Sinne die Mathematik ausmacht, wird streng

formalisiert, so dafs die eigentliche Mathematik oder die Mathematik
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in engerem Sinne zu einem Bestande an Formeln wird. |[...] Gewisse
Formeln, die als Bausteine des formalen Gebdudes der Mathematik di-
enen, werden Axiome genannt. FEin Beweis ist eine Figur, die uns als
solche anschaulich vorliegen muss; er besteht aus Schliissen vermége des

Schlufsschemas

(G}
G-

T
wo jedesmal jede der Pramissen, d.h. der betreffenden Formeln & und
& — ¥, entweder ein Axiom ist bzw. direkt durch Einsetzung aus einem
Axiom entsteht oder mit der Endformel ¥ eines Schlusses iibereinstimmt,
der vorher im Beweis vorkommt bzw. durch Einsetzung aus einer solchen
Endformel entsteht. FEine Formel soll beweisbar heifsen, wenn sie en-
tweder ein Axiom ist bzw. durch Einsetzen aus einem Axiom entsteht

oder die Endformel eines Beweises ist.”

David Hilbert [51, 43]

Hilbert’s proof theory is of such central importance for understanding Gédel’s
work that we want to examine two specific examples closely. We introduce
both of them in two steps. In the first step, we define the syntax of the formal
system, that is, we agree on a set of symbols, together with a set of rules that
determine how these symbols can be chained together to symbol strings called
formulas. In the second step, we introduce the axioms and the inference rules.
They define how new theorems can be obtained from the axioms and what has
already been proven.

System B

The first example, called system B, is based on an artificial language that
has little in common with ordinary mathematics. The syntax is given by the
alphabet {0, M, (,)} and the following set of rules:

Definition 1.1 Syntax of system B

The language of system B is defined as follows:

1. [J and W are formulas.

2. If ¢ and ¢ are formulas, then so is (o).

For instance, the symbol strings

O, m, (WD), (Om), (O0)m), (O(0m)), (00) (mm)), ((m(mm))((00)0))
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Table 1.1: Axioms and inference rules of system B

Axioms of system B

Inference rules of system B

are formulas, but the following are not:
Om, (W), AEE, (OE0), (O0)(m)

Table 1.1 summarizes the axioms and inference rules of system B. With W,
there exists a single axiom. Thus, every proof must begin with this formula.
Six rules are available for deriving new theorems. Rules (S1) to (S3) permit the
replacement of the symbols B and [J with other symbol combinations, whereas
rules (S4) and (S5) allow brackets to be shifted back and forth. Note that
the three placeholders ¢, v, and x must be appropriately substituted with
other formulas before the rule is applied. Rule (S6) is the only one capable of
shortening a formula. It states that repeating subexpressions of a certain kind
may be replaced with the symbol [J. All inference rules are meant to be used
as it is common in so-called rewriting systems, that is, replacements may be
applied not only to whole formulas but also to any subexpression.

It is time to look at some examples:

B Example 1: Derivation of ((H(HE))((0O0)0))

.- | (B1)
2. - (mWD) (S1,1)
3. F (mO)D) (S1,2)
4 ((m(mm)0) ($3,3)
5. F ((m(mm))(00)) (S2,4)
6. = ((m(mm))((0O)0)) (S2,5)
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B Example 2: Derivation of (M)

N (B1)
2. F (mO) (S1,1)
3. F (m(mm)) (S3,2)
40 ((mm)m) (v, 1, x = W] (55,3)
5. F ((mO)m)m) (S1,4)
6. = ((mO)(mO))m) (S1,5)
7. F (Om) [0 =m,¢ =1]] (S6,6)

Even though system B is far off from any practical use, it nicely illustrates the
core ideas of Hilbert’s proof theory. The following definition recaps what we
have covered so far:

Definition 1.2 Formal System, Proof

A formal system consists of

W a set of axioms and

W a set of inference rules.

A formal proof is a chain of formulas @1, @a, ..., ., which is formed ac-
cording to the following rules:

B ¢; is an axiom, or

B ; is derived from preceding formulas by applying an inference rule.

The last formula of the proof chain is called the proven theorem. The
symbolic expression - ¢ indicates that ¢ is a theorem.

The definition also clarifies the meaning of the symbol ‘F’, which you might
have already spotted in the derivation sequences. It expresses that a formula is
provable, that is, it can be derived from the axioms by repeated application of
inference rules. Always remember that every axiom is also a theorem, proven
trivially through a chain with a single element, where the axiom serves as both
the starting and ending formula.

Before proceeding to the next example, let us consider whether the formula
(MM) is derivable from the axioms. Please take a moment and try to construct
a suitable derivation sequence on your own. We will provide the answer to this
question in just a few pages.
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The structure of the next example system quite closely resembles the one

Hilbert had in mind for the refoundation of mathematics. System E utilizes
the alphabet {0,s,(,),=,>,,—} and adheres to the following syntax rules:

‘)\A Definition 1.3 Syntax of system E

The language of system E is defined as follows:

W 0is a term.
B If o is a term, then so is s(o).

B If 0 and 7 are terms, then the following expressions are formulas:

(c=71),(c>71),~(c=1), ~(c >71)

B If ¢ and ¢ are formulas, then so is ¢ — 1.

In contrast to the first example, system E distinguishes between terms and
formulas. Every string of the form

0,5(0),5(s(0)),s(s(s(0))), s(s(s(s(0)))), - - -

is a term, but not a formula. Formulas are created by combining two terms
with a symbol from the set {=,>,—}. Among others, we can construct the
following formulas according to the syntax definition provided above:

(0=0),(0>0),~(0=0),-(0>0),(s(s(0)) =s(0)),(0=0) = (0>0)

Table 1.2 summarizes the axioms and inference rules. System E provides six
axiom schemata, from which the axioms are obtained by replacing each of the
two placeholders, ¢ and 7, with a term. Since these terms can be chosen
arbitrarily, each schema generates an infinite number of axioms.

The inference apparatus of system E is comparatively sparse. New theorems
can only be deduced via the law of detachment, more commonly known as
modus ponens (MP). It is the primary inference rule of classical logic and
states in words that ¢ is true if ¢ is true and v can be inferred from .

Once again, let’s look at some examples:

B Example 1: Derivation of (s(s(s(0))) > s(0))



1.2 Formal Systems 11

Table 1.2: Axioms and inference rules of system E

Axioms of system E

(c =0) (A1) (c>7) = (c=7) (A4)
(c =0) = (s(o) > 0) (A2) (c>7)—= —(r=0) (A5)
(c>71)—=(s(o) >7) (A3) (c>7)—= —(r>0) (A6)

Inference rules of system E

3. F (s(s(0)) >s(0)) (MP, 1,2)
4. F (s(s(0)) > s(0)) — (s(s(s(0))) > s(0)) [ =s(s(0)), 7 =s(0)] (A3)
5. F (s(s(s(0))) > s(0)) (MP, 3,4)

L F (s(s(0)) = s(s(0))) [0 =s(s(0))] (A1)
2. (s(s(0)) = s(s(0))) = (s(s(s(0))) > s(s(0))) [0 =s(s(0))] (A2)
3. F (s(s(s(0))) > s(s(0))) (MP, 1,2)
4 (s(s(s(0))) > s(s(0))) = —(s(s(0)) = s(s(s(0)))) (A5)

[0 =s(s(s(0))), 7 = s(s(0))]
5. B —=(s(s(0)) = s(s(s(0)))) (MP, 3,4)

Up to this point, we have studied system E solely at the syntactic level, where
theorems are nothing more than strings of symbols manipulated mechanically
according to a predetermined set of rules.

We will now introduce a semantic level by assigning a substantive meaning to
the individual formula components. For the sake of simplicity, let’s agree on
the abbreviation

7 = s(s(...s(0)...)) (1.1)

which allows us to write down the proven theorems in a compact manner:

(3>1) denotes (s(s(s(0))) > s(0))
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—(2=3) denotes —(s(s(0)) = s(s(s(0))))
Now, each formula can be readily assigned a substantive meaning as follows:

states n € N

3|

states n =m

S
[
3

3
V
333

states n > m

-

states n #=m

A/:TA/‘\
I
3

) states n <m

Vv
3

-

n
@ — Y states “p implies ¢”

On the meaning level, it is possible to speak about true and false statements. In
the following, the symbol ‘=’ labels a formula as substantively true, in analogy
to the already introduced symbol ‘F’, which expresses that a formula is formally
provable.

\
\\

7&\& Definition 1.4 Provability relation, Model relation

The provability relation ‘+’ has the following meaning;:

F ¢ < Formula ¢ is formally provable
V¢ <= Formula ¢ is not formally provable

The model relation ‘=’ has the following meaning;:

E ¢ & Formula ¢ is substantively true
E£ ¢ < Formula ¢ is substantively false

Always keep in mind that the relations ‘-’ and ‘=’ depend on the underlying
formal system and the selected interpretation, respectively. A formula that
is provable in a particular formal system may be unprovable in another, just
like a true formula can become false when the substantive meanings of its
symbols change. In short, provability and truth are two unrelated notions,
each independently determined by the choice of the formal system and the
substantive interpretation of the formula symbols.

For each formula ¢, the following four cases must be distinguished:

B ¢ is substantively true and formally provable (= ¢ and + @)
B ¢ is substantively true but formally unprovable (= ¢ and I @)
B ¢ is substantively false but formally provable (= ¢ and F ¢)

B ¢ is substantively false and formally unprovable (B~ ¢ and ¥/ ¢)
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’ True formulas (= @) ‘ ’ False formulas (F ¢) ‘

=(0=0)
-(0>0 =(s(0) = s(0))
~(s(0) > s(0)) ~(s(0) > 0)
~(s(s(0)) > s(s(0))) ~(s(s(0)) > 0)
~(s(s(s(0))) > s(s(s(0)))) ~(s(s(s(0))) > s(0))
~(s(s(s(s(0)))) > s(s(s(s(0))))) (s(s(0)) = s(s(s(0))))

’ Unprovable formulas (i ¢) H Provable formulas (F ¢) ‘

Figure 1.4: Quadrant representation for the formal system E

Figure 1.4 graphically visualizes the four cases by distributing the formulas
across four quadrants. All provable formulas appear in the upper two quad-
rants, and all unprovable formulas in the lower two. Thus, a formula’s vertical
position is solely determined by the axioms and inference rules of the underlying
formal system. Similarly, the chosen interpretation determines the horizontal
position. True formulas appear on the left and false formulas on the right.

1.3 Metamathematics

Formal systems allow mathematics to be performed with utmost precision.
Proofs become mechanically verifiable, thus eliminating all doubts about their
validity or invalidity. Moreover, formal systems exhibit a peculiarity that opens
up an entirely new perspective on the mathematical method. Due to their
strictly formal character, these systems can be made the subject of mathemati-
cal investigations themselves, that is, mathematical reasoning can be employed
to prove statements about a formal system. Along these lines, a metamathe-
matics emerges, existing side by side with ordinary mathematics.
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Do you remember the exercise we gave you above? We asked you to clarify
whether the formula (HM) is a theorem of system B. We are dealing here with
a classical question of metamathematics since it makes a statement about the
system that cannot be answered within. The language of B does not even offer
the necessary means to formulate this question.

From a metatheoretical perspective, a surprisingly simple answer can be given
based on the following observation:

[
-~ In every theorem of system B,
?— the symbol B occurs an odd number of times.

A quick analysis of the axioms and inference rules verifies the property. The
single axiom M has an odd number of W’s, and the inference rules inherit this
property from the premise to the conclusion. Because the formula (HE) con-
tains an even number of W’s, it can never be the end formula of a proof chain.
Quod erat demonstrandum: We have just conducted our first metamathemat-
ical proof, albeit a very simple one.

Hilbert described the purpose of metamathematics in the following way:

“In addition to this formalized mathematics proper, we have a mathe-
matics that is to some extend new: a metamathematics that is necessary
for securing mathematics, and in which — in contrast to the purely for-
mal modes of inference in mathematics proper — one applies contentual
inference, but only to prove the consistency of the axioms. In this meta-
mathematics we operate with the proofs of mathematics proper, and
these proofs are themselves the object of contentual investigation.”

“Zu der eigentlichen so formalisierten Mathematik kommt eine gewisser-
mafien neue Mathematik, eine Metamathematik, die zur Sicherung jener
notwendig ist, in der — im Gegensatz zu den rein formalen Schlufsweisen
der eigentlichen Mathematik — das inhaltliche Schlieflen zur Anwendung
kommt, aber lediglich zum Nachweis der Widerspruchsfreiheit der Ax-
iome. In dieser Metamathematik wird mit den Beweisen der eigentlichen
Mathematik operiert, und diese letzteren bilden selbst den Gegenstand

der inhaltlichen Untersuchung.”

David Hilbert [51, 43|

In this passage, Hilbert explicitly addressed consistency, one of the four ques-
tions of particular interest in metamathematics:
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Definition 1.5 Meta-properties of formal systems

B Consistency (1= I p or I =)
A formal system is consistent or non-contradictory if no formula is
provable along with the negation of that formula.

B Negation completeness (1 F p or - =)
A formal system is negation complete if, for each formula, the formula
itself or its negation is provable.

B Correctness (17 b ¢ implies = ¢)
A formal system is correct or sound if every provable formula is sub-
stantively true.

B Completeness (1 |= ¢ implies F ¢)

A formal system is complete if every substantively true formula is prov-
able.

Keep in mind that the properties of consistency and negation completeness
refer exclusively to the syntactic level of a formal system. As they do not rely
on the notion of truth, they are meaningful even for uninterpreted formulas.
In particular, these notions can be applied to all formal systems capable of
negating formulas at the symbolic level, and nearly all logics in use today utilize
the symbol ‘=’ for this purpose. The example system E already offered this
symbol for precisely this reason. The first example, system B, had no means
of negating a formula, rendering the question of whether the formal system is
consistent or negation complete meaningless.

The properties of correctness and completeness establish a connection between
the syntactic and the semantic level. They are only meaningful when the
symbols of a formal system can be interpreted such that each formula represents
a substantively true or substantively false statement.

The quadrant representation in Figure 1.4 offers a graphical interpretation for
both properties. If a formal system is correct, no substantively false formula
is provable, resulting in an empty upper right quadrant. If a system is com-
plete, every substantively true formula is provable, thus leaving the lower left
quadrant empty.

1.3.1 Consistency

In the past, two approaches for conducting consistency proofs have been es-
tablished. We will apply both to demonstrate system E’s consistency in the
following two sections.
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I
\~@/, If the formal system E were

T contradictory, the complementary formula pair would create a
' contradiction in arithmetic.

Object level
(Syntax)
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(Semantics)

Figure 1.5: A relative consistency proof for the formal system E. By specifying a model,
the model’s consistency transfers to the object level.

1.3.1.1 Proof of Consistency at the Semantics Level

One way to prove the consistency of a formal system is to provide a model,
that is, an interpretation that renders all theorems of the formal system sub-
stantively true. Above, we have already constructed a model for system E by
identifying the terms 0, s(0), s(s(0)), etc., with the natural numbers and as-
signing the symbols ‘=" and ‘>’ their usual meaning. That way, each axiom
became a true statement of number theory, and the modus ponens inference
rule inherited the truth of the premises to the conclusion. Consequently, all

theorems of system E became true statements of number theory.

Now, if there were a formula ¢ with the property that both ¢ and —¢ were
derivable from the axioms, a contradiction in the realm of natural numbers
would arise (Figure 1.5). Conversely, if we trust arithmetic, the consistency of
the formal system E is the inevitable consequence.

Hilbert had similarly proven the consistency of his axiom system for Euclidean
geometry. He constructed a specific range of numbers such that any provable
relationship between two geometric objects corresponded to a provable relation-
ship between two elements of this number range and vice versa. Consequently,
every derivable contradiction would have become visible as a contradiction in
arithmetic.

What is crucial about this method is that it does not prove the consistency of
a formal system in an absolute sense. The proof relies on the assumption that
arithmetic is free of contradictions and transfers this property to the formal
system. Proofs of this kind are thus called relative consistency proofs.
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But is a relative consistency proof for system E meaningful at all? A brief
look at the axioms and inference rules reveals that E is a small fraction of
arithmetic, capable of proving no more than elementary statements about the
arrangement of natural numbers. Hence, we have backed up our consistency
proof with an argument that builds upon the consistency of a more complicated
and, therefore, less reliable system.

In reality, the situation is even worse. If we tried to formalize the model-
theoretic arguments, we would have to rely on knowledge and reasoning from
set theory. In Chapter 2, we will discover that this puts us on less stable ground
than it might seem.

Consequently, if a relative consistency proof is insufficient to back up the con-
sistency of system E, there is only one way out: to prove consistency in an
absolute sense. Fortunately, providing such a proof for system E is not too
challenging, as we will now observe.

1.3.1.2 Proof of Consistency at the Syntax Level

Our goal is to prove the consistency of system E without referring to interpre-
tations, models, or any other semantic concept. For this purpose, we perform
a classical proof of contradiction by assuming the existence of a formula ¢ such
that both ¢ and —p are derivable from the axioms. We will now show that
this assumption is incompatible with the structure of the formal system. As
the language rules do not allow to form a formula of the form —(¢ — v), it is
sufficient to distinguish two cases:

B Case 1: Assume - (0 =7) and - =(0 = 7)

Any formula of the form (o0 = 7) must have been created by instantiating
axiom schema (Al). In that case, however, o and 7 are identical terms, so
it remains to resolve whether a formula of the form

—(oc =o0) (1.2)

can be derived from the axioms. The modus ponens rule can output this

formula only if the formula
(0 >0) (1.3)

has been proven already. Then, and only then, formula (1.2) could be de-
rived via an instance of (A4) or (A5). However, a formula of type (1.3) must
have been produced via axiom schema (A3). Consequently, a formula of the
form

(0 > s(0)) (1.4)

has to be part of the proof chain. To prove (1.4), we need a theorem of the
form (o > s(s(0))), and we can repeat this argument as many times as we
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like. For each number n, the formula

(0 >s(s(...5(0)...))) (1.5)
W—/

n-mal

would have to be proven already, contradicting the finiteness of a proof
chain.
B Case 2: Assume - (o > 7) and F —(0 > 1)

The formula (o > 7) can only be derived via axiom schema (A6) and the
formula (7 > o). Thus, (7 > ¢) must appear somewhere in the proof chain.
If o equals 7, this formula is identical to (1.3) and, as stated above, is un-
provable. If o and 7 are different terms, one of the two formulas (¢ > 7) and
(7 > o) must have the form (1.5) and, as stated above, is also unprovable.

This proves the consistency of E. O

In fact, our example system fulfills an even stronger property. Since all provable
formulas are substantively true, system E is not only consistent but also correct.

1.3.2 Completeness

Now that consistency is assured, let us investigate whether system E is com-
plete. For this purpose, let’s take another look at Figure 1.4. The entries in
the lower left quadrant already suggest that E is incomplete, as true formulas
exist that are not derivable from the axioms. Indeed, the unprovability of those
formulas can be easily recognized. A formula of the type

—(o > 0) (1.6)

is only derivable if the formula (o0 > o) appears earlier in the proof chain.
However, it was stated above that this formula is unprovable in E.

This can be solved by adding the schema
(c=71)—= (1 >0) (AT)

to the axioms. Since the formula (o = o) is a theorem for every term o, all
formulas of the type (1.6) are now provable.

However, the extended system is still incomplete, as with

there is yet a formula that is substantively true but underivable from the ax-
ioms.
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Figure 1.6

GOTTFRIED WILHELM LEIBNIZ
1646 — 1716

Formal systems that are simultaneously correct and complete are the dream
of most mathematicians. Every true mathematical statement expressible in
the formal system’s artificial languages would be provable while ensuring no
substantively false statement would ever be derivable from the axioms. In such
systems, the notions of provability and truth perfectly align. There, and only
there, the provable formulas are the true statements.

The idea of linking concepts and thoughts with objects of a formal language
originates back to the seventeenth century. It traces back to Gottfried Wilhelm
Leibniz, undoubtedly one of the most extraordinary scholars of the late seven-
teenth and early eighteenth centuries (Figure 1.6). It would be narrow-minded
to reduce his person to a scientist, a philosopher, or a jurist. Leibniz, born 1646
in Leipzig, Germany, made significant contributions in all these areas, and con-
ventional standards can hardly measure his life’s work. Therefore, we want
to join all those who, for lack of alternatives, refer to Leibniz as a universal
scholar. This title is not very telling, but none could be more honorable.

Leibniz based his views on several great principles, with the Principle of Con-
tradiction and the Principle of Sufficient Reason being the most prominent.
The latter expresses the belief that every effect is preceded by a cause and
that nothing in the world happens without reason. In Leibniz’s words, it is the
principle,

“l...] in virtue of which we hold that there can be no fact real or existing,
no statement true, unless there be a sufficient reason, why it should be
so and not otherwise, although these reasons usually cannot be known
by us.”

“|...] en vertu du qvel nous considerons qv’aucun fait ne sauroit se trouver

vray ou existent, aucune Enonciation veritable, sans qv’il y ait une raison
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Calculus Ratiocinator

Characteristica Universalis

Figure 1.7: Throughout his life, Leibniz believed in the possibility of creating a calcu-
lus ratiocinator capable of mechanically determining the truth value of a formalized
statement.

suffisante, pour qvoy il en soit ainsi, et non pas autrement; quoyque ces

raisons le plus souvent ne puissent point nous etre connues.”

Gottfried Wilhelm Leibniz [65]

Leibniz envisioned a universal language expressive enough to describe all of hu-
man knowledge. This characteristica universalis was to be a symbolic language,
very similar to the one we use in modern mathematics. Within this language,
he wanted to encode the objects and concepts of the real world to make their
relationships visible at the syntactic level.

Leibniz firmly believed that the truth value of any formalized statement was
calculable. This was to be done with the calculus ratiocinator, a fixed set of
rules meant to operate much like the algorithmically working computers of our
age (Figure 1.7). With such a set of rules, we could tackle all outstanding
problems without fear. We would be ready to answer each of them, starting
with the famous Leibnizian saying: Calculemus — Let us calculate!

With his visionary idea, Leibniz was far ahead of his time, but until his death,
neither he nor any other scholar succeeded in bringing it to life. But then,
more than 200 years later, signs of an imminent incarnation began to emerge.
Hilbert’s axiomatic method seemed to bring a characteristica universalis within
reach — at least for the field of mathematics.

1.3.3 Hilbert’s Program

With the development of the axiomatic method, Hilbert also pursued a practical
interest. He sought to resolve a dispute that arose at the beginning of the
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Figure 1.8

LEOPOLD KRONECKER
1823 — 1891

twentieth century, revolving around which concepts and methods should be
permitted in mathematics and which should not.

Leopold Kronecker is credited with saying, “The good Lord made the integers,
all else is the work of man.”® The German mathematician was one of the
most prominent and also one of the most vehement opponents of the new
mathematics invented by his student Georg Cantor. Towards the end of the
nineteenth century, Cantor had begun experimenting with certain sets, formerly
called manifolds, which stretched the concept of infinity in a way that was
considered improper at the time. By repeatedly combining infinite sets of
accumulation points into new sets, Cantor obtained significant results in the
field of Fourier series. [6, 84]. However, his constructions seemed so adventurous
that several renowned mathematicians rejected them.

Most critics believed that his wildly constructed sets must never be regarded
as a self-contained whole, but this is precisely what Cantor had in mind. He
had formed his manifolds according to the same principles used today for the
construction of ordinal numbers and treated each set as an independent, self-
contained individual. What is today considered a standard method of math-
ematics seemed strange to many mathematicians at the time. The severity
of his alleged wrongdoing was assessed quite differently back then. For some,
Cantor’s mathematics was seen as a frivolous but harmless liaison with the
actual infinite, while others considered it a dangerous play with fire.

Chapter 2 will reveal why the expressed concerns were partly justified. This
much in advance: Cantor went a step too far. Just like the German mathe-
matician Gottlob Frege, whose work will be discussed in detail later, Cantor
had, initially unnoticed, opened a gateway to logical antinomies. What had

2)“Dije ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk” [98]
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Figure 1.9

GEORG CANTOR
1845 — 1918

begun as a play with fire was about to become a conflagration, and the new
mathematics was on the verge of engulfing a blazing inferno.

At the beginning of the twentieth century, the Dutch mathematician Luitzen
Brouwer initiated another attack. He not only criticized the reckless handling of
infinity but also questioned long-established basic principles of classical mathe-
matics. At the core of Brouwer’s philosophy was the idea of constructive math-
ematics. The intuitionists accepted a statement as true only if constructive
proof would back it up. Likewise, they only considered those mathematical
objects to exist that could be explicitly constructed. In this respect, intu-
itionism is a counterpoint to Platonism, which grants mathematical objects an
independent existence in the realm of thought. There, the truth or falsity of
a statement is a static property that exists independently of the real world.
Platonists see mathematics merely as a tool for unveiling the truth value of a
proposition through deductive reasoning.

The intuitionists behind Brouwer vehemently refused to assign a truth value
to a statement if it could not be determined constructively. In doing so, they
openly opposed the principle of excluded middle (tertium non datur), which
asserts that either a statement or its negation must be true. With his intuition-
istic program, Brouwer attacked mathematics at its core since all derivations
that proved a statement by excluding its opposite were now rejected.

Throughout his life, Hilbert was bothered by the intuitionists, and he did ev-
erything to protect mathematics against their attacks. In his famous treatise
On the Infinite from 1926, he defended the methods that entered mathematics
through Cantor’s way of thinking, with the well-known quote:

“No one shall drive us out of the paradise which Cantor has created for

us.”
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“Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand

vertreiben koénnen.”

David Hilbert [46, 44]

For Hilbert, the principle of excluded middle was integral to the mathematical
method, and the idea of removing it was simply inconceivable to him. In 1928,
he expressed his view with the famous words:

“Taking the principle of excluded middle from the mathematician would
be the same, say, as proscribing the telescope to the astronomer or to the
boxer the use of his fists.”

“Dieses Tertium non datur dem Mathematiker zu nehmen, wéire etwa, wie
wenn man dem Astronomen das Fernrohr oder dem Boxer den Gebrauch

der Fauste untersagen wollte.”

David Hilbert [48, 45]

Hilbert regarded the axiomatic method as an instrument for settling the on-
going dispute. For him, the correctness of the criticized concepts was beyond
question, and he was confident that he could back them up with formal argu-
ments. Hilbert’s program began in the 1920s and is motivated in [43] with the
following words:

“My investigations in the new grounding of mathematics have as their
goal nothing less than this: to eliminate, once and for all, the general
doubt about the reliability of mathematical inference. We can see how
necessary such an investigation is, if we think of how changeable and
imprecise the intuitions of even the most distinguished mathematicians
have been in this area, or if we remember that the inferences that were
previously regarded as the most certain in mathematics have been chal-
lenged by some of the most renowned mathematicians of modern times”

“Meine Untersuchungen zur Neubegriindung der Mathematik bezwecken
nichts Geringeres, als die allgemeinen Zweifel an der Sicherheit des math-
ematischen Schliefsens definitiv aus der Welt zu schaffen. Wie nétig eine
solche Untersuchung ist, gewahren wir, wenn wir bedenken, wie wech-
selnd und unpriézise die diesbeziiglichen Anschauungen oft selbst der her-
vorragendsten Mathematiker waren, oder wenn wir uns erinnern, dafs von
einigen der namhaftesten Mathematiker der neuesten Zeit die bisher fiir

die sichersten gehaltenen Schliisse in der Mathematik verworfen werden.”

David Hilbert [51, 43]

The realization of his project would have required constructing a formal system
capable of representing all concepts and methods of classical mathematics. The
natural, rational, and real numbers would be present, along with the concept



24 1 Infroduction

Hilbert envisioned constructing a formal system
expressive enough to formalize classical mathematics.
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From the inside, the system would From the outside, the system would
represent classical mathematics, appear as a set of rules to derive
encompassing all concepts that were theorems mechanically. If its
controversially discussed at the time consistency were provable with finite
and rejected by some means, all methods existing within
mathematicians as inadmissible. the system would be safeguarded

against contradictions.

Figure 1.10: Hilbert’s program

of sets, which was controversial at the time. Proof methods would also be
available, including accepted methods such as direct proof, as well as contro-
versial principles like transfinite induction or the law of excluded middle. From
the inside, the system would resemble the mathematical framework we know,
embedded within a complete formal system in the sense of Definition 1.5.

From the outside, the system would appear as a complex set of rules, operating
on the same basic principles as our example systems B and E. What would
appear as a proof in classical mathematics, when viewed from the inside, would
appear as a sequence of mechanical operations on symbol strings when viewed
from the outside.

Hilbert planned to exploit this dual view to prove the consistency of classical
mathematics. Such a proof should be conducted from the outside, that is, a
mathematically precise analysis of all axioms and inference rules should ensure
that no contradictions are derivable within the system. We have shown above
how such a proof can be performed for simple formal systems like our example
system E. If a similar proof succeeded for the system Hilbert had in mind,
all methods within the system would be safeguarded against contradictions.
In short, this was the objective of what is today known as Hilbert’s program
(Figure 1.10).
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Figure 1.11

JOHN VON NEUMANN
1903 — 1957
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Of course, we would gain nothing if such a proof utilized the same potentially
unsafe methods it was meant to back up. Hilbert intended to carry out the
proof exclusively with finite means. Roughly speaking, this term refers to all
proof methods the disputants considered legitimate at the time. Arguments
that relied, for example, on the law of excluded middle had to be avoided, just
as any argument that treated infinite collections of objects as a totality.

Initially, Hilbert’s program went according to plan since it turned out that
consistency could indeed be proved for distinct areas of mathematics. Based
on the initial successes, it seemed only a matter of time before the consistency
of all classical mathematics could be assured by finite means. Hilbert’s program
seriously threatened Brouwer and his followers, for they knew: If Hilbert were
to present flawless proof in the intuitionistic sense, it would be the death blow
to their philosophical movement.

At this juncture, we pause our journey through the history of mathematics
and return to where it all began. It was noon in Konigsberg when John von
Neumann (Fig. 1.11) concluded his talk about formalism with a summary of
the current state of Hilbert’s program:

“Although the consistency of classical mathematics has not yet been
proved, such a proof has been found for a somewhat narrower mathe-
matical system. |[...| Thus Hilbert’s system has passed the first test of
strength: the validity of a non-finitary, not purely constructive mathe-
matical system has been established through finitary constructive means.
Whether someone will succeed in extending this validation to the more
difficult and more important system of classical mathematics, only the
future will tell.”

“Der gegenwirtige Stand der Dinge ist dadurch gekennzeichnet, daf
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die Widerspruchsfreiheit der klassischen Mathematik immer noch un-
bewiesen ist, dagegen dieser Beweis fiir ein etwas engeres mathematis-
ches System bereits gegliickt ist. |[...| Dadurch hat Hilberts System
die erste Kraftprobe bestanden: die Rechtfertigung eines nicht finiten
und nicht rein konstruktiven mathematischen Systems ist mit finit-
konstruktiven Mitteln gegliickt. Ob es gelingen wird, diese Rechtferti-
gung am schwierigeren und wesentlicheren System der klassischen Math-

ematik zu wiederholen, wird die Zukunft lehren.”

John von Neumann [74, 72]

Von Neumann had no idea how close the answer to this question already was.

1.4 The Incompleteness Theorems

The second day began with lectures by Hans Reichenbach and Werner Heisen-
berg about the impact of quantum mechanics on the concepts of physical truth
and causality. On the agenda for the afternoon was a 60-minute lecture on the
history of pre-Greek mathematics and three 20-minute short lectures on the
foundations of mathematics. The short lectures were given by Arnold Scholz,
Walter Dubislav, and Kurt Godel.

In his talk On the Completeness of the Logic Calculus, Gédel discussed what
is now known as the completeness theorem. He had proven the theorem in his
dissertation, thereby solving a critical foundational question in mathematical
logic. The completeness theorem makes a statement about first-order predicate
logic, or PL1 for short, thoroughly discussed in Section 6.2.2. Godel proved that
PL1 is complete if this term is restricted to the derivability of universally valid
formulas. To anticipate: A universally valid formula becomes a true statement
under all possible interpretations of its predicate and function symbols.

For the formalists, G6del’s completeness theorem was a significant milestone.
It seemed to bring the realization of Hilbert’s program within reach, and no
one suspected the hope for its early completion to be shattered by the very
next morning.

1.4.1 The First Incompleteness Theorem

On the agenda for the third and final day was a discussion on the foundations of
mathematics, opened up by a longer lecture by Hans Hahn. Alongside Rudolf
Carnap, John von Neumann, Arend Heyting, and Kurt Gédel were also present.
Our protagonist only spoke up towards the end of the session in his typical
reserved and precise manner:
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Figure 1.12

KURrT GODEL
1906 — 1978
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“One can — assuming the consistency of classical mathematics — even
give examples of sentences |[...| that are indeed correct in content, but
unprovable in the formal system of classical mathematics.”

“Man kann — unter Voraussetzung der Widerspruchsfreiheit der klassis-
chen Mathematik — sogar Beispiele fiir Sétze [...] angeben, die zwar
inhaltlich richtig, aber im formalen System der klassischen Mathematik

unbeweisbar sind.”

Kurt Godel [9]

What the young mathematician expressed that morning was the first public
formulation of what is now known as the first incompleteness theorem. With
the terminology from Definition 1.5, Gédel’s statement can be formulated as
follows:

Theorem 1.6 Gobdel, 1930

Every consistent formal system expressive enough to formalize ordinary
mathematics is incomplete.

Godel discovered that in every sufficiently expressive formal system, it is pos-
sible to formulate true statements that are not provable within the system.
In short, the concepts of truth and provability cannot coincide. This result
destroyed the hope of all those who, like Hilbert, believed in the existence of
a consistent and, at the same time, complete formal system for mathemat-
ics. A characteristica universalis, as Leibniz envisioned it, cannot exist. Born
centuries ago as a visionary dream, it will remain as such forever.



28 1 Infroduction

1.4.2 The Second Incompleteness Theorem

Immediately after the discussion, John von Neumann sought a conversation
with Gddel. Unlike most other listeners, who received Gédel’s comment rather
impassively, he appeared to have immediately grasped the significance hidden
in the somewhat casual remark.

Several weeks later, von Neumann wrote a letter to Godel. After the Konigs-
berg conference, he extensively studied the incompleteness theorem and made
another shattering discovery. His letter of November 20, 1930, begins with the
following words:

“Dear Mr. Godel!

I have recently been dealing with logic again, using the methods that you
have so successfully used to reveal undecidable properties. In doing so, I
have achieved a result that seems remarkable to me. I was able to show
that the consistency of mathematics is unprovable.”

“Lieber Herr Godel!

Ich habe mich in der letzten Zeit wieder mit Logik beschéftigt, unter Ver-
wendung der Methoden, die Sie zum Aufweisen unentscheidbarer Eigen-
schaften so erfolgreich beniitzt haben. Dabei habe ich ein Resultat erzielt,
das mir bemerkenswert erscheint. Ich konnte ndmlich zeigen, dass die

Widerspruchsfreiheit der Mathematik unbeweisbar ist.”

John von Neumann [37]

Von Neumann had discovered Gddel’s second incompleteness theorem. Simply
put, this theorem states that a formal system strong enough to formalize the
first incompleteness theorem cannot prove its own consistency.

The first incompleteness theorem was a hard blow for Hilbert’s program, but
what the second incompleteness theorem stated was like a walk to the scaffold.
Here is the reason: If it is impossible in the system of classical mathematics to
prove the consistency of classical mathematics, a fortiori such a proof cannot
succeed if we restrict ourselves to a limited number of proof methods. But
this was the core of Hilbert’s ambitious program: proving the consistency of
classical mathematics with finite means.

1.5 On Formally Undecidable Propositions

Von Neumann’s letter came too late, as shortly after the conference in Konigs-
berg, Godel had independently discovered the second incompleteness theorem
himself. As early as October 23, 1930, he sent a summary to the Vienna
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Academy of Sciences and submitted the completed article on November 17,
1930 [31, 14].

In 1931, the Monthly Journal for Mathematics and Physics published Gédel’s
article under the somewhat awkward-sounding title

Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I1).
Von Kurt Godel in Wien.

1) Vgl. die im Anzeiger der Akad. d. Wiss. in Wien (math.-naturw. Kl1.) 1930,
Nr. 19 erschienene Zusammenfassung der Resultate dieser Arbeit.

Kurt Godel

On Formally Undecidable Propositions of
Principia Mathematica and Related Systeme 1)

1) Cf. the summary of the results of this paper which appeared in the
Anzeiger der Akad. d. Wiss. in Wien (math.-naturw. Kl1.) 1930, Nr. 19.

Godel intended the article to be the first of two parts. In the announced second
part, he planned to provide a detailed proof of the second incompleteness the-
orem, which he had only outlined. However, this never came to fruition. Most
mathematicians found Goédel’s arguments in the presented form so convincing
that he saw no need to publish a sequel. The gaps were later filled by David
Hilbert and Paul Bernays [56].

Let’s postpone the details for now and let Gédel speak instead:

1.

Die Entwicklung der Mathematik in der Richtung zu groéBerer
Exaktheit hat bekanntlich dazu gefiihrt, dal weite Gebiete von ihr
formalisiert wurden, in der Art, dal das Beweisen nach einigen
wenigen mechanischen Regeln vollzogen werden kann. Die umfas-
sendsten derzeit aufgestellten formalen Systeme sind das System der
Principia Mathematica (PM)2) einerseits, das Zermelo-Fraenkel-
sche (von J. v. Neumann weiter ausgebildete) Axiomensystem der
Mengenlehre ®) andererseits. Diese beiden Systeme sind so weit, daB
alle heute in der Mathematik angewendeten Beweismethoden in ihnen
formalisiert, d. h. auf einige wenige Axiome und SchluBiregeln zuriick-
gefiihrt sind.
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2) A. Whitehead und B. Russell, Principia Mathematica, 2. Aufl.,
Cambridge 1925. Zu den Axiomen des Systems PM rechnen wir insbesondere
auch: Das Unendlichkeitsaxiom (in der Form: es gibt genau abzdhlbar viele
Individuen), das Reduzibilitits- und das Auswahlaxiom (fiir alle Typen).

3) Vgl. A. Fraenkel, Zehn Vorlesungen iiber die Grundlegung der Men-
genlehre, Wissensch. u. Hyp. Bd. XXXI. J. v. Neumann, Die Axiomatisierung
der Mengenlehre. Math. Zeitschr. 27, 1928. Journ. f. reine u. angew. Math. 154
(1925), 160 (1929). Wir bemerken, da man zu den in der angefiihrten Literatur
gegebenen mengentheoretischen Axiomen noch die Axiome und Schlufiregeln des
Logikkalkiils hinzufiigen muf,, um die Formalisierung zu vollenden. — Die
nachfolgenden Uberlegungen gelten auch fiir die in den letzten Jahren von
D. Hilbert und seinen Mitarbeitern aufgestellten formalen Systeme (soweit diese
bisher vorliegen). Vgl. D. Hilbert, Math. Ann. 88, Abh. aus d. math. Sem. der
Univ. Hamburg 1(1922), VI(1928). P.Bernays, Math. Ann. 90. J. v. Neumann,
Math. Zeitschr. 26 (1927). W. Ackermann, Math. Ann. 93.

1.

It is well known that the development of mathematics in the
direction of greater precision has led to the formalization of exten-
sive mathematical domains, in the sense that proofs can be carried
out according to a few mechanical rules. The most extensive formal
systems constructed up to the present time are the system of Prin-
cipia Mathematica (PM)?), on the one hand, and, on the other hand,
the Zermelo-Fraenkel axiom system for set theory®) (which has been
developed further by J. v. Neumann). Both of these systems are so
broad that all methods of proof used in mathematics today can be
formalized in them, i.e. can be reduced to a few axioms and rules
of inference.

2) A. Whitehead and B. Russell, Principia Mathematica, 2nd edition. Cam-
bridge, 1925. Among the axioms of the system PM we also include, in particular,
the axiom of infinity (in the form: there exist precisely denumerably many individu-
als), the axiom of reducability and the axiom of choice (for all types).

3) Cf. A. Fraenkel, “Zehn Vorlesungen iiber die Grundlegung der Mengen-
lehre.” Wissensch. u. Hyp., Vol. XXXI. J. v. Neumann, “Die Axiomatisierung der
Mengenlehre.” Math. Zeitschr. 27 (1928). Journ. f. reine u. angew. Math. 154
(1925), 160 (1929). We note that, in order to complete the formalization, one must
add the axioms and rules of inference of the logical calculus to the set-theoretic ax-
ioms and rules of inference of the logical calculus to the set-theoretic axioms given
in the literature just cited. The arguments that follow also hold for the formal sys-
tems constructed recently by D. Hilbert and his co-workers (so far as these have
been published up to the present). Cf. D. Hilbert, Math. Ann. 88, Abh. aus d.
math. Sem. der Univ. Hamburg I (1922), VI (1928); P. Bernays, Math. Ann. 90;
J. v. Neumann, Math. Zeitschr. 26 (1927); W. Ackermann, Math. Ann. 93.

The article begins with a brief survey of early twentieth-century mathematics.
In particular, Gédel mentions the Principia Mathematica and the Zermelo-
Fraenkel set theory as the two major formal foundations of mathematics. Both
systems were born out of necessity, dating back to when mathematics expe-
rienced one of its greatest crises. It was the time when mathematics became
tangled in the webs of set-theoretic antinomies, with little hope of an easy way
out.
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Godel refers to the mentioned systems multiple times, and his opening remarks
make one very clear: To understand Gédel’s work, one must understand history.
For this reason, let us leave the article behind and travel into the past once
again. This time, the destination of our journey is the mathematics of the late

nineteenth and early twentieth centuries.
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“The fundamental thesis [...], that mathematics and
logic are identical, is one which I have never since
seen any reason to modify.”

Bertrand Russell [92]

In this chapter, we will delve deeper into the history of mathematical logic and
introduce various concepts crucial for comprehending Gédel’s work. Our jour-
ney starts in Section 2.1 with a short visit to the late nineteenth century. Here,
we will acquaint ourselves with Gottlob Frege, who not only made significant
contributions to the development of modern logic but also stands as one of the
tragic figures in the annals of science. Section 2.2 will discuss the contributions
of Giuseppe Peano, in particular, his axiomatic foundation of natural numbers.
The endeavors of Frege and Peano were pivotal in the life of our next protago-
nist, Bertrand Russell. Section 2.3 will derive Russell’s antinomy and explain
why it damaged mathematics at its core. Subsequently, we will open up the
monumental work that Gédel mentions in the title of his paper: the Principia
Mathematica. Finally, Section 2.4 will discuss modern set theory and provide
an overview of the various axiomatic systems invented to put mathematics on
solid ground.

2.1 The Logicist Program

The history of mathematical logic is closely intertwined with the life of Gottlob
Frege, who was born on November 8, 1848, in the Mecklenburg town of Wismar.
After completing his early education at his birthplace, Frege enrolled at the
University of Jena in 1869, where he crossed paths with Ernst Abbe. The
former director of Carl Zeiss AG not only served as an influential teacher but
also became a lifelong supporter. It may have been one of Abbe’s suggestions
that led Frege to transfer from Jena to the prestigious mathematics faculty
in Gottingen in 1871. Here, Frege specialized in Geometry and earned his
doctoral degree in 1873. In 1874, he submitted his habilitation thesis in Jena
and secured an Extraordinarius position in 1879 after several years of private
lecturing.
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Figure 2.1

GOTTLOB FREGE
1848 — 1925

2.1.1 Begriffsschrift

That very same year, Frege published his first major work titled Begriffsschrift,
eine der arithmetischen nachgebildete Formelsprache des reinen Denkens [28].
The booklet of only 88 pages was fundamental to developing mathematical
logic. It is no exaggeration when some authors refer to 1879 as “the most
important date in the history of logic since Aristotle” ®.

Frege’s Begriffsschrift initiated a philosophical movement that is now referred
to as Logicism. It adopts the perspective that mathematics is a branch of
logic rather than logic being a branch of mathematics. Frege firmly believed
that all mathematics could be developed within logic and envisioned defining
mathematical entities, such as natural numbers, by breaking them down into
fundamental logical principles.

Frege understood that he needed to create an artificial language many times
more precise than all natural languages developed throughout human history.
The creation of this language is the content of the Begriffsschrift. In the preface,
he writes:

“To prevent anything intuitive from penetrating here unnoticed, I had to
bend every effort to keep the chain of inferences free of gaps. In attempt-
ing to comply with this requirement in the strictest possible way I found
the inadequacy of language to be an obstacle; no matter how unwieldy
the expressions I was ready to accept, I was less and less able, as the
relations became more and more complex, to attain the precision that
my purpose required. This deficiency led me to the idea of the present
ideography.”

2)“das wichtigste Datum in der Geschichte der Logik seit Aristoteles” [3]
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“les]| musste alles auf die Liickenlosigkeit der Schlusskette ankommen. In-
dem ich diese Forderung auf das strengste zu erfiillen trachtete, fand ich
ein Hindernis in der Unzuldnglichkeit der Sprache, die bei aller entstehen-
den Schwerfilligkeit des Ausdruckes doch, je verwickelter die Beziehungen
wurden, desto weniger die Genauigkeit erreichen liefs, welche mein Zweck
verlangte. Aus diesem Bediirfnisse ging der Gedanke der vorliegenden

Begriffsschrift hervor.”

Gottlob Frege [28, 21|

Frege demanded mathematical proofs to exhibit a precision akin to Hilbert’s
formalistic view. Nevertheless, logicism and formalism differ in crucial aspects.
Unlike Hilbert, Frege employed the axiomatic method in the Euclidean sense,
that is, he viewed the axioms as being representatives of “the true”, implying
that “the false” could never be deduced when only correct rules of inference
were applied. From this philosophical perspective, it is understandable why
Frege saw no purpose in seeking a consistency proof for his formal system. In
a letter to Hilbert from December 27, 1899, he justified his position as follows:

“I call axioms sentences that are true, but which are not proven, because
their knowledge flows from a source of knowledge different from the log-
ical one, which can be called spatial intuition. From the truth of the
axioms it follows that they do not contradict each other. This therefore
requires no further proof.”

“Axiome nenne ich Sétze, die wahr sind, die aber nicht bewiesen werden,
weil ihre Erkenntnis aus einer von der logischen verschiedenen Erken-
ntnisquelle fliesst, die man Raumanschauung nennen kann. Aus der
Wahrheit der Axiome folgt, dass sie einander nicht widersprechen. Das

bedarf also keines weiteren Beweises.”

Gottlob Frege [30]

The logical calculus of the Begriffsschrift corresponds, in essential parts, to
what modern literature recognizes as a second-order predicate logic calculus
with equality. Thus, Frege’s contributions extended well beyond the work of
George Boole and Augustus De Morgen, who had laid the foundations of mod-
ern propositional logic a few years earlier. Unlike the logic of Boole or De
Morgan, Frege’s logic was expressive enough to capture the entire core of clas-
sical mathematics.

Contemporary readers may find it challenging to recognize the similarities be-
tween Frege’s logic and modern predicate logic, primarily because of the unique
notation, which significantly diverges from current standards. Frege pioneered
an entirely novel system, organizing the elements of formulas in two dimensions.
Figure 2.2 summarizes how the elementary logic operations are represented in
this notation.
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Figure 2.2: The symbolic notation of the Begriffsschrift

While Frege’s notation did not stand the test of time, his way of formaliz-
ing logical facts did. The Begriffsschrift shaped the perspective of consider-
ing predicates as sentence functions with subjects as their arguments. Ac-
cordingly, a statement like “Socrates is a human” is represented in the form
Human(Sokrates). The statement is created by applying the sentence function
Human(x) to the argument Socrates.

To express “All humans are mortal” in the notation of the Begriffsschrift, one
would write:

Mortal(a (2.1)

\/-I: Human(a

Frege was well aware of the significance of his novel concept and believed it
would take a firm place in logic. In the preface of his Begriffsschrift, we find:

“In particular, I believe that the replacement of the concepts subject and
predicate by argument and function, respectively, will stand the test of
time.”

“Insbesondere glaube ich, dass die Ersetzung der Begriffe Subject und
Praedicat durch Argument und Funktion sich auf die Dauer bewédhren

wird.”

Gottlob Frege [28, 21|

Frege was right. In modern notation, formula (2.1) looks quite familiar to us:

Vx (Human(x) — Mortal(x))
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B Propositional logic axioms
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T
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a

Figure 2.3: The axioms of the Begriffsschrift

Today, we are so accustomed to this structural style that we rarely consider its
origin. Few are aware that we resort to the formal framework introduced with

Frege’s Begriffsschrift when writing down logical facts.

2.1.2 Axioms of the Begriffsschrift

In §14 to §22 of the Begriffsschrift, Frege introduces nine axioms, summarized in
Figure 2.3. They are the fundamental building blocks of his logical framework
and break down into two groups. The first group consists of six propositional
logic axioms. The remaining three axioms relate to predicate logic; they de-
scribe the basic properties of sentence functions and equality. To reveal their

meaning, we first translate them into modern notation:

§14 : A— (B—A)

§15 : (C—=>(B—=A)) = ((C—=B)—= (C—A))
§16 : (D—-(B—=A)) = (B— (D—A))

§17 : (B—A) = (-A — -B)

§18 : - —A = A

6§19 : A— ——A

§20 : c=d — (F(c) = F(d))

821 : c=c

O N O Ot = W N =
NN NN N N NI
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§22 : Vx F(x) = F(c) (F.9)

Frege provided two inference rules for the deduction of theorems: the rule
of detachment and the rule of substitution. We are already familiar with the
former: it is identical to the modus ponens we’ve extensively used in Section 1.2
for deriving theorems within the formal system E. The rule of substitution is
novel, stating that replacing a variable of an axiom or a theorem with another
expression yields a new theorem.

Frege’s propositional axioms are complete, as they are sufficient to derive all
true formulas of propositional logic. They are not minimal, though. The Polish
mathematician Jan Yukasiewicz has demonstrated that the number of axioms
can be reduced without sacrificing a single theorem. In [67] he writes:

“Frege is the founder of the modern propositional calculus. His sys-
tem, which does not even seem to be known in Germany, is based on
the following 6 axioms: ‘CpCqp’, ‘CCpCqrCCpqCpr’, ‘CCpCqrCqCpr’,
‘CCqpCNgNp’, ‘CNNpp’, ‘CpNNp’. The third axiom is superfluous, for
it is derivable from the first two. The last three axioms can be replaced
by the sentence ‘CCNpNqCqp’.”

“Frege ist der Begriinder des modernen Aussagenkalkiils. Sein System,
das nicht einmal in Deutschland bekannt zu sein scheint, ist auf folgenden
6 Axiomen aufgebaut: ‘CpCqp’, ‘CCpCqrCCpqCpr’, ‘CCpCqrCqCpr’,
‘CCqpCNgNp’, ‘CNNpp’, ‘CpNNp’. Das dritte Axiom ist iiberfliissig,
denn es ist aus den beiden ersten ableitbar. Die drei letzten Axiome

kénnen durch den Satz ‘CCNpNqCqp’ ersetzt werden.”

Jan Lukasiewicz [67]

Apart from the quotation’s content, the notation used for writing down the
formulas is particularly remarkable. To achieve a compact representation,
Fukasiewicz developed a distinct notation, called Polish notation today, in
honor of the inventor’s origin. In this notation, Cpq stands for P — Q, and
Np stands for =P, where the symbols p and ¢ are placeholders for arbitrary
formulas. With this knowledge, we can gradually translate Lukasiewicz’s three
axioms into modern notation:

(Q—P)
—_~
Cp Cgqp = P—=(Q—P)

(Q—=R) (P—Q) (P—R)
= ~~
CCp Cqr C Cpg Cpr = P=>(Q—=R)—=(P—=-Q)— (P—=R)
———— —— ———

P—(Q—R) (P—»Q)—(P—R)

CCNp Ng Cgp = (-P—=-Q) = (Q—P)
AV
-P "Q (Q‘)P)

(-P—=-Q)
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The proposed axioms have passed the test of time. Many contemporary text-
books use these axioms as the axiomatic foundation for propositional logic.

2.1.3 Formalization of Arithmetic

Frege strongly believed that his Begriffsschrift would provide a suitable formal
framework for executing his logicist program. Initially, everything proceeded
according to plan, and with his second major work, The Foundations of Arith-
metic [25] (Die Grundlagen der Arithmetik [22]), published in 1884, he reached
an important milestone. In this book, he attempted to develop arithmetic
within a logical framework, which he believed was only possible by solidly
defining the concept of numbers. Frege had chosen a set-theoretic approach,
thus basing his work on the conceptual framework that Cantor had invented.
Among others, this enabled him to compare quantities based on their cardinal-
ities.

Frege’s original wording is rather challenging to understand because he did
not use the term set. Instead, he employed the German word Begriffsumfang,
which loosely translates to conceptual scope or conceptual extent. Therefore,
we do not reproduce Frege’s definition in its original but its the set-theoretic
formulation given in [3]:

“(i) The cardinality of a set X is the totality of all sets that have the
same cardinality as X. (ii) n is a number if a set X exists such that n
is the cardinality of X. (iii) O is the cardinality of the empty set. (iv)
1 is the cardinality of the set that consists only of 0. (v) The number n
is the successor of the number m if there is a set X and an element a
of X such that n is the cardinality of X and m is the cardinality of the
set X without the element a (i.e., of X\{a}). (vi) n is a finite (natural)
number if n is an element of all sets Y for which the following holds: if 0
is an element of Y, and if k is an element of Y, then so is the successor
of k.”

“(i) Die Michtigkeit einer Menge X ist die Gesamtheit aller Mengen,
die gleichméchtig zu X sind. (ii) n ist eine Zahl, wenn eine Menge X
existiert, so dass n die Machtigkeit von X ist. (iii) 0 ist die Machtigkeit
der leeren Menge. (iv) 1 ist die Méachtigkeit der Menge, die nur aus 0
besteht. (v) Die Zahl n ist der Nachfolger der Zahl m, wenn es eine
Menge X und ein Element a von X gibt, so dass n die Méchtigkeit von
X ist und m die Méchtigkeit der Menge X ohne das Element a (also von
X\{a}). (vi) n ist eine endliche (natiirliche) Zahl, wenn n ein Element
aller Mengen Y ist, fiir die gilt: 0 ist Element von Y, und ist k Element
von Y, dann auch der Nachfolger von k.”

Thomas Bediirftig, Roman Murawski [3]
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Figure 2.4: Excerpt from the 1st volume of Grundgesetze der Arithmetik. The dis-
played page contains the definition of law V, which made Frege a tragic figure in the
history of science. This law opens a gateway for paradoxes.

In hindsight, reducing the natural numbers to sets may seem negligent. Today,
we know that Frege relied on a construct less intuitive and considerably more
uncertain than the object he was trying to justify. Back then, however, he
knew nothing about the dangers hidden in naive set theory, still waiting to be
discovered.

The Foundations of Arithmetic was written entirely in colloquial language.
After publishing the book, Frege began translating the concepts into the logic
of the Begriffsschrift. The result was The Fundamental Laws of Arithmetic,
divided into two volumes. The first volume appeared in 1893, and the second
in 1903 (cf. [26, 27]).

To put arithmetic on solid grounds, Frege supplemented the axioms of the
Begriffsschrift with several basic arithmetic laws. Particularly well-known is
the fifth basic law from the first volume (Fig. 2.4). It is called the Basic law of
course-of-values and reads like this:

(V)
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The expression ¢ f(€) denotes the course-of-values of function f. The term refers
to the set representation of f, in which the arguments are combined with their
function values to form ordered pairs:

ef(e) = {(z,y) ly = f(2)}

Now, we can easily see what the fifth basic law is saying: Two functions f and
g are identical if and only if they map each argument to the same value.

The law becomes particularly interesting when f and g represent what Frege
called concepts. In this case, the functions map their arguments to “the true”
or “the false” and are thus nothing but predicates. Frege referred to the course-
of-values of a concept as the conceptual scope (“Begriffsumfang”). In the logic
of the Begriffsschrift, each conceptual scope is uniquely associated with a set
that includes precisely those objects mapped to “the true”. In modern notation,
this is the set {z | F(z)}, which allows us to rewrite basic law V as follows:

{z| F(z)} ={z | G(2)} & Vz (F(2) & G(2))

Frege was unaware of the explosive power hidden in this scheme. Without
realizing it, he had compromised the foundation of his logic at a critical point
and opened a gateway for paradoxes. This flaw remained unnoticed for many
years, and an ever-growing edifice of thought was erected on unstable ground.
But how could the contradictions in Frege’s logic remain undiscovered for so
long?

It happened mainly for two reasons. Firstly, set theory was a developing branch
of mathematics, and even renowned mathematicians were still inexperienced
in dealing with the novel structures. Much more important in this context,
however, is the fact that the scientific community largely ignored Frege’s con-
tributions. They were neither noticed in the annual mathematical reports nor
cited by Dedekind, who was also working on a formal justification of the nat-
ural numbers at that time. Kronecker did not mention them either, and even
Cantor considered Frege’s contributions largely insignificant.

From early on, Frege knew that finding an audience would be challenging for
his ideas. In the preface of the Begriffsschrift, he explicitly pointed out:

“I hope that logicians, if they do not allow themselves to be frightened
off by an initial impression of strangeness, will not withhold their assent
from the innovations that, by a necessity inherent in the subject matter
itself, I was driven to make.”

“Ich hoffe, dass die Logiker, wenn sie sich durch den ersten Eindruck des
Fremdartigen nicht zuriickschrecken lassen, den Neuerungen, zu denen
ich durch eine der Sache selbst innewohnende Notwendigkeit getrieben

wurde, ihre Zustimmung nicht verweigern werden.”

Gottlob Frege [28, 21]
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Figure 2.5

GIUSEPPE PEANO
1858 — 1932

Back then, he was still optimistic that his ideas would sooner or later find the
acceptance they deserved. In the preface of the first volume of his Foundations
of Arithmetic, however, he already sounded more pessimistic:

“With this, I arrive at a second reason for the delay: the despondency
that at times overcame me as a result of the cool reception, or rather, the
lack of reception, by mathematicians of the writings mentioned above,
and the unfavourable scientific currents against which my book will have
to struggle.”

“Hiermit komme ich auf den zweiten Grund der Verspidtung: die
Muthlosigkeit, die mich zeitweilig iiberkam angesichts der kiihlen Auf-
nahme, oder besser gesagt, des Mangels an Aufnahme meiner Schriften
bei den Mathematikern und der Ungunst der wissenschaftlichen Stré-

mungen, gegen die mein Buch zu kidmpfen haben wird.”

Gottlob Frege [29, 23]

The great esteem in which we hold his work today came too late for Frege.
Worn down by the long struggle for acceptance and acknowledgment, the un-
covering of the paradoxes in 1902 was a blow from which he never recovered.
He considered his life’'s work a failure and published only a few insignificant
articles afterward. On July 26, 1925, Gottlob Frege died at 76 as a lonely and
bitter man.
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2.2 The Natural Numbers

The next stop on our journey is Spinetta, a small Italian village in southwestern
Piedmont, where Giuseppe Peano was born on August 27, 1858. Aside from
other mathematical contributions, Peano has influenced the modern way of
phrasing mathematical facts like few others. Peano was born into a peasant
family and spent his early years on a farm near Cuneo. After proving himself
an exceptionally talented boy in school, his parents sent him to Turin at the
age of 12, where he resided with his uncle for the next few years. During that
time, Peano attended high school and studied mathematics at the university.
His extraordinary performance paved the way for a smooth academic career.
In 1880, Peano earned his doctorate from the University of Turin, and after
working as a research assistant for several years, he was appointed a professor
in 1889.

Peano devoted a large part of his scientific life to the formulario project. His
goal was to describe mathematical knowledge in a symbolic language, precise
enough to allow mathematical statements to be formally derived from a set of
axioms defined a priori. The outcome of this work is the Formulario Mathe-
matica, published in five volumes between 1895 and 1908.

Many of Peano’s philosophical views trace back to Leibniz. The following
quote from [3] is worth mentioning. It shows that Peano apparently believed to
have realized Leibniz’s dream of a characteristica universalis with his symbolic
language:

“After two centuries, this ‘dream’ of the inventor of calculus has become
reality. We have indeed fulfilled the task set by Leibniz.”

“Nach zwei Jahrhunderten ist dieser ‘ITraum’ des Erfinders der Infinitesi-
malrechnung Wirklichkeit geworden. Wir haben ndmlich die von Leibniz
gestellte Aufgabe erfiillt.”

Giuseppe Peano [3]

2.2.1 Arithmetices Principia

We will not delve into the details of the Formulario Mathematica in this book
but instead focus on an earlier work: the Arithmetices Principia of 1889. It is
one of Peano’s most influential publications, which later appeared as an English
translation titled The principles of arithmetic. The following quotes refer to
the version reprinted in [79].

The Arithmetices Principia was Peano’s first attempt to develop an axiomatic
foundation for classical mathematics. He had come to believe that mathemat-
ics had reached a point where colloquial language was no longer sufficient to
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Figure 2.6: Evolution of logic symbols over time

describe the increasingly complex concepts with the necessary precision, and
just like Frege, Peano saw the solution in the creation of an artificial language:

“Questions that pertain to the foundations of mathematics, although
treated by many in recent times, still lack a satisfactory solution. The
difficulty has its main source in the ambiguity of language. That is why
it is of the utmost importance to examine attentively the vary words we
use. My goal has been to undertake this examination, and in this paper
I am presenting the results of my study, as well as some applications to
arithmetic. I have denoted by signs all ideas that occur in the principles
of arithmetic, so that every proposition is stated only by means of these
signs.”

Giuseppe Peano [79]

The passage is reminiscent of the preface of the Begriffsschrift. However, Peano
was unaware of this or any of Frege’s other publications back then, as he cited
Frege for the first time in 1891 [78].

Working independently for many years, the two mathematicians devised widely
different solutions. While Frege created a highly developed logical apparatus
in a difficult-to-understand notation, Peano achieved the opposite. On the one
hand, Peano’s logical framework was far less mature than Frege’s. On the other
hand, Peano had created a symbolic language capable of expressing logical facts
in a remarkably elegant and precise manner. Many of Peano’s symbols have
withstood the test of time and are still used today in either their original or
slightly modified form.

Figure 2.6 shows how some common logic symbols have matured over time. The
symbols ‘U” and ‘"Y’, which are used in the Arithmetices Principia to denote the
disjunction (OR) and the conjunction (AND), respectively, had been introduced
by Peano in 1888 for the union and the intersection of sets [76]. In set theory,
they are still in use today. In logic, however, they were eventually replaced by
‘v’ and ‘A’. For the implication operator, Peano wrote a rotated C (‘D’). This
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symbol was later replaced by ‘D’ and eventually by ‘—’. He also introduced the
element symbol ‘€’; but with a different font, making it look like ‘¢’. Finally,
Peano invented the existential quantifier ‘3’, which is still used today in modern
predicate logic.

In addition to the symbols mentioned above, Peano invented a distinct notion
for grouping expressions. In particular, he proposed to replace the parenthesis
symbols ‘(" and ‘)’ with dots to structure formulas concisely. The core idea is
so simple that a few words suffice to explain his dot notation:

“To understand a formula divided by dots we first take together the signs
that are not separated by any dot, next those separated by one dot, next
those separated by two dots, and so on.”

Giuseppe Peano [79]

Peano illustrated his notation with the following example:
ab.cd:ef.gh:k (2.2)

With the previously quoted explanation in our mind, it is easy to translate this
expression into an ordinary parenthesized formula:

1. “We first take together the signs that are not separated by any dot,”
15 (ab) . (cd) : (ef). (gh):.k

2. “next those separated by one dot,”
1 ((ab)(cd)) : ((ef)(gh)):-k

3. “next those separated by two dots,”

1 (((ab)(cd))((ef)(gh))): k
4. “and so on.”

1=~ ((((ab)(cd))((ef)(gh)))k)

The following examples originate from the Principia Mathematica, which exten-
sively uses Peano’s symbolism. The symbol ‘D’ is a typographical refinement
of Peano’s logical implication operator ‘D’.

B Example 1: pD>q.D:qDr.D.pDr

pPD>qg.D:qDr.D.pDr = (pDq).D:(qDr).D.(pDr)
=(P29)D:((adr)>(pDr))
(P2a)D((@dr)>(p2Dr)

1z In modern notation: (p—q) = ((q—=r) = (p—7r))
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“if p implies q, then if q implies r, p implies r” [99]

B Example 2: pVq.D:.p.V.qDr:D.pVr

pvVg.D:.p.V.gqDr:D.pVr = (pVvVq).D:.p.V.(gDr):D.(pVr)
= (pPvVa)D:u(pV(@Dr):D(pVr)
(pva)D:((pV(@>dr)>(pVr)
= (pva)D((pV(@Ddr)Dd(pVvr)

1&” In modern notation: (pVvq) = ((pV(g—=r)) = (pVr))

“if either p or q is true, then if either p or ’q implies r’ is true, it follows that
either p or r is true.” [99]

The examples illustrate why Peano’s dot notation did not stand the test of
time. Unlike in the parenthesized expressions, the grouping is not immediately
apparent in some dotted formulas. To make matters worse, Peano assigned the
dot a double meaning. It served not only as a replacement for parentheses but
also as a symbol for the AND operation.

Theoretically, this is not an issue, as it is unambiguous whether a dot acts as a
grouping symbol or a logical operator. In practice, however, the double usage
significantly affects readability, demonstrated vividly by the next example:

B Example 3: pVqg:p.V.qDr:D.pVr

Vag):p.V.(@Dr):D.(pVr)
vVa):(pV(gDr):D(pVr)
pVa):(pV(gDr))D(pVr)
PVa)A(PV(aDr))D(pVr)

pvq:p.V.gqDr:D.pVr =

15" In modern notation: ((pVag)A(pV(q—r))) — (pVr)
“if either p or q is true, and either p or ’q implies r’ is true, then either p or

r is true.” [99]

For most mathematicians, the dot notation is a relic of the past that hardly any
young scientist can relate to. This is one of the reasons why it is challenging
to read historical texts such as the Principia Mathematica today.

2.2.2 Axioms of the Arithmetices Principia

So far, we have primarily commented on Peano’s notation, which, in reality,
constitutes the less significant part of his 1889 contribution. The Arithmetices
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1eN.

aeN.D.a=a

a,beN.Dia=b6.=.5=a.
a,b,ceND.a=bb=cDa=c
a=bbeN:D aeN.

aeN.D.a+ 1eN.
a,beNDia=b.=.a+1=50+1,
aeNDa+1==1,

keK- lek xeN.zek: 0,2+ 1k::0.NDE.

S e Al o o

Definitions
10. 2=141;3=2+1;4 =3+ 1;and so forth.

Figure 2.7: Characterization of the natural numbers in Peano’s symbolic language [79]

Principia ranks among the most important pieces of mathematical world liter-
ature mainly because of their contents. Therein, Peano formulated the famous
five axioms that unambiguously characterize the structure of the natural num-
bers. When contemporary mathematicians talk about the Peano axioms, they
mean the axioms 1, 6, 8, 7, and 9 in Figure 2.7 (usually in this order). Let’s
take a closer look and sort out what these formulas are all about:

). 1eN.

Peano uses the symbol ‘N’ to represent the natural numbers. Therefore, the
axiom is the same as the formula

l1eN (PA.1)

and states:
“1 is a natural number.”

His choice to let the natural numbers begin with 1 instead of 0 holds little
significance. The crucial aspect here is the fixed starting point of the number
sequence, which is 1 in Peano’s work. Substituting the symbol 1 with 0 in
all axioms will make the sequence start at 0.

H 6. aeN.D.a+ 1eN.

In modern notation, the axiom appears in the following shape:
aceN=a+1€eN (PA.2)

The axiom asserts that the successor of a natural number is also a natural
number. Because ‘4’ is a function, the successor is uniquely determined,
allowing us to express the substantial meaning of the axiom as such:

“Every number has a unique successor.”



48 2 Foundations of Mathematics

H 8. aeNDa+1==1.

The minus symbol preceding the equal sign expresses logical negation. Thus,
in modern notation, the axiom corresponds to the following formula:

aceN=>a+1#1 (PA.3)
The axiom states:
“All successors are different from 1.”
Or, which is equivalent and a more common formulation today:

“1 is not the successor of any natural number.”

7. a,beN.Dia=b.=a+1=b+1.

In modern notation, this formula reads as follows:
a,beN=(a=bsa+1=0b+1)

The axiom states that two numbers are equal if and only if their successors
are. The direction from left to right follows from the definition of equality,
making the following form equivalent:

a,beN=(a+1=b+1=a=0)
Reversing the direction of the inner implication results in
a,beN=(a#b=a+1#b+1) (PA.4)
which is the form utilized by most contemporary textbooks:

“Different numbers have different successors.”

9. keK-lekrxeNzekD,. 2+ 1ek::0.NOE.

In Peano’s terminology, the expression k ¢ K states that k is a set, allowing
us to rephrase the axiom as follows:

leMAVz ((zreNAzeM)=x+1eM)=NCM (PA.5)

In colloquial terms, the axiom states:

“If a set M contains the number 1 and for every natural number x from M
also its successor x + 1, then all natural numbers are contained in M.”

For systems such as Go6del’s system P, where only natural numbers exist as
individuals, the wording can be slightly simplified:

“If a subset M C N contains the number 1 and for every element n also its
successor n + 1, then M = N.”
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Next, let us consider an arbitrary property of the natural numbers, rep-
resented by the predicate symbol P, and write P(z) if the number x has
the property P. Then we may choose for M the set {x € N | P(z)} and
reformulate the axiom as follows:

“If P(1) holds and the property P inheres from every natural number x to
its successor, then the property P applies to all natural numbers.”

At this point, the meaning of Peano’s fifth axiom becomes evident. It en-
capsulates the fundamental principle of mathematical induction.

Peano’s approach to the natural numbers is appealing due to its simplicity.
Unlike Frege, who developed a cumbersome conceptual framework for the same
purpose, Peano achieved the same goal with only a few elementary definitions.
The reason is simple: Unlike Frege, Peano refrained from justifying the natural
numbers according to their nature. He primarily created his symbolic language
to eliminate the ambiguities of everyday language.

“In this way, one fixes a unique correspondence between thoughts and
symbols, a correspondence not found in everyday language.”

“Auf diese Weise fixiert man eine eindeutige Korrespondenz zwischen
Gedanken und Symbolen, eine Korrespondenz, die man in der Um-
gangssprache nicht findet.”

Giuseppe Peano [3]

Peano adopted the same pragmatic view that can be encountered in nearly
all disciplines of modern mathematics, where ontological arguments are rarely
made. Today, it is mainly philosophers who keep the discourse alive.

Peano’s pragmatic approach led to a logical apparatus that separated the object
level from the meta-level far less precisely than the one devised by Frege. As
an example, let us consider the proof for the statement “2 is a natural number”,
represented by the formula 2 ¢ N:

B Arithmetices Principia ([79], page 94):

Proof:

P1.0: 1eN (1}
1[a] (P 6) .O: 1:eND1+1eN - (2)
(1) (2) .0: 1+1eN 3)
P10.D: 2=1+1 (4)
4).(3).(2,1 + ) [a,b](P5H)Y:D: 2N (Theorem).

Peano handles axioms and theorems with a precision reminiscent of the proofs
of Frege and Hilbert. In every line, he meticulously describes the substitutions
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0 0 0
a) (T)—>O—>(l) b) O—>%)—>(l) ) ©@—0—0— -
©—0+—0 O+—0O ©0—0—0—

Figure 2.8: All three structures fulfill the first two Peano axioms.

necessary to obtain a particular formula from one of the axiom schemata. How-
ever, the derivation of new theorems happens by itself. Two different inference
rules can be identified in this short proof, though not explicitly mentioned.
One is the modus ponens, which is already well known to us and utilized to
derive formula (3) from formulas (1) and (2). The other is needed to derive the
formula in the last line and shaped as follows:

®
Y

PN — X
X

This rule is logically flawless but has yet to be defined anywhere. It becomes
apparent that Peano conducted proofs just like they were conducted outside of
mathematical logic, breaking them down into a series of basic logical steps that
any serious mathematician would consider legitimate. However, unlike Frege
and Hilbert, Peano refrained from defining a formal inference calculus.

2.2.3 Dedekind’s Isomorphism Theorem

This section addresses two questions that naturally arise in the context of the
Peano axioms. First, we aim to determine whether these axioms are adequate
for uniquely defining the natural numbers. Second, we will explore whether all
five of them are needed.

Each of us has a mental conception of the chain-like structure of the natural
numbers, and at first glance, it may seem that the first two Peano axioms
uniquely describe this structure. Figure 2.8 exposes this impression as deceptive
by exhibiting three structures that satisfy the first two Peano axioms without
being isomorphic to the natural numbers. To uniquely characterize the natural
numbers, additional constraints must be satisfied. Figure 2.9 shows that all
three remaining axioms are required to eliminate the non-isomorphic structures
from Figure 2.8. Among the examples shown, only the chain-like structure of
the natural numbers does indeed fulfill all five Peano axioms.

Adding axioms 3 to 5 eliminates all of our example structures containing a
cycle, which raises the question of whether the axioms are strong enough to
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Figure 2.9: Only the structure of the natural numbers fulfills all five Peano axioms.

cancel out all cyclic structures. The analysis presented in Figure 2.10 answers
this question positively.

The absence of cycles is a significant result and expressible in the form of an
arithmetic property:

Theorem 2.1 Absence of cycles in the natural numbers

The five Peano axioms imply:

r+n#x (for all n > 1)

Whether the Peano axioms uniquely characterize the natural numbers has yet
to be settled. What has been said so far does not rule out the existence of
cycle-free structures not listed in Figure 2.9, yet fulfilling all Peano axioms.

The German mathematician Richard Dedekind was the first to precisely answer
this question (Figure 2.11). His interest in this matter arose in the second half
of the nineteenth century when the discussion about the nature of numbers
was in full swing. Most attempts of the time were so vague and imprecise that
Dedekind saw the need to tackle the problem with mathematical precision.
Over the next few years, his work on this matter was repeatedly interrupted,
but 1888 he finally succeeded. That year, he published a paper titled “Was
sind und was sollen die Zahlen?” [15] (“What are numbers and what should
they be?” [16]), which is, in retrospect, one of his most significant scientific
contributions.

In §9.126, he proved a theorem, which is reprinted in its original wording in
Figure 2.12 and referred to by Dedekind as the Theorem of Definition by In-
duction. In this theorem, formula

H(N)3Q
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Suppose there is a structure that contains a cycle while simultaneously
satisfying all five Peano axioms. . .

Case 1 Case 2

If 0 were part of the cycle, If 0 were not part of the cycle,
0
A 0 O
(& ol
b ~

é Contradiction to (PA.3)

then 0 would have a predecessor, the 5th Peano axiom would imply
contradicting the 3rd Peano axiom. that the cycle must be reachable
from 0.
o BY (PA.5)

4 ©
Contradiction to (PA.4)

This, in turn, would result in at least
one element having two predecessors,
which contradicts the 4th Peano
axiom.

Figure 2.10: The five Peano axioms imply the absence of cycles in the structure of the
natural numbers.

expressed that ¢ maps the natural numbers into the set 2, thus being a function
of the following form:

P :N—Q
The formulas
P(l) = w
P(n') = 6(n)

denote a recursion scheme, which Dedekind later utilizes to define addition,
multiplication, and exponentiation on the natural numbers. w is the base el-
ement, and the function 6 is the recursion rule, defining the function value
¥(n + 1) by the previous value ¥ (n). Dedekind writes n’ for the successor of
the natural number n.

Contemporary literature refers to the Theorem of Definition by Induction as
Dedekind’s recursion theorem, usually formulated as follows:
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( Figure 2.11
RICHARD DEDEKIND
1831 — 1916
126. Satz der Definition durch Induktion. Ist eine be- Was find wnd was follen
liebige (dhnliche oder undhnliche) Abbildung 6 eines Systems £ in P 3
sich selbst und auferdem ein ‘bestimmtes Element o in & gegeben, Suplen?
so gibt es eine und nur eine Abbildung 3 der Zahlenreihe N, welche :
den Bedingungen | Rike Doetint,
L y@)3L,
IL (1) = w,

III. ¢ (n') = 6 ¢ (m) geniigt, wo n jede Zahl bedeutet.
Beweis. Da, wenn es wirklich eine solche Abbildung % gibt,

Recursion Theorem (Dedekind)

If Qisaset,we Q, and 6 : Q — Q, then there is a unique ¢ : N — Q
with:

Y(0)=w and Y(n+1)=~0(x(n)) for alln € N

Figure 2.13 illustrates the recursion theorem graphically. The way function
maps the natural numbers onto the elements of the set 2 makes it irrelevant
whether the successor of a natural number n is determined before v is applied
or if ¢ is applied first, followed by an application of 8. The recursion theorem
ensures that v always exists and is uniquely defined.
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Figure 2.13: Illustration of Dedekind’s recursion theorem

Next, we will discuss what Dedekind’s recursion theorem can tell us about the
Peano axioms. In the following consideration, let

(N,0,+1)

be the structure of the natural numbers, where +1 denotes the successor oper-
ation. Furthermore, let
(Qa OQv +Q]-)

be another structure with its own zero and successor operation, also fulfilling
all five Peano axioms.
Now, let 6 : Q — Q be the following function:

Oz)=x4+q1

Dedekind’s recursion theorem guarantees the existence of a mapping ¢ with
the following two properties:

¥(0) = 0q (2.3
Y +1) =9() +tal 2

>~
—_ —

Property (2.4) identifies the mapping ¢ as a homomorphism, and it takes little
effort to extend our understanding of v even further:

B ¢ is injective wVaVy (z) =y(y) =z =y

If the contrary were true, there would be a natural number z and some
n > 1 with ¥(z) = ¢¥(z +n)
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TrT+n

T
N@—+1-20—+1 20— +11 20— +1 20— +1>-

Q @— +ol 2QO— +o1 2O~ +a1 2O~ +al O~ +al >

U(z) = W(a +n)

Because of ¢¥(z 4+ 1) = ¥(z) +q 1, it follows that ¢ (z + n) = ¥(z) +q n.
Thus,
¥(z) = ¢(x) +an,

contradicting Theorem 2.1. Consequently, 1) must be injective.

B ¢ ist surjective i Vy dz (x) =y
Let U be the set of all y € 2 with a preimage:

U = {yeQ|¢(z,) =y for some z, € N}

Property (2.3) implies that the element Oq belongs to U. Furthermore, for
any y € U, the relationship

y+al=1v(xy)+al=1p(z,+1)

shows that y +q 1 also has a preimage. Consequently, for every y € U, its
successor y +q 1 also belongs to U. From the 5th Peano axiom, it follows
that U comprises all elements of 2, which implies by the definition of U that
every element of €2 has a preimage.

A homomorphism being both injective and surjective is called an isomorphism
(Figure 2.14). The existence of such a mapping implies that N and Q are struc-
turally identical, that is, they may only differ in the naming of their elements.
Thus, we have just proved Dedekind’s isomorphism theorem:

Theorem 2.3 Isomorphism Theorem (Dedekind)

Every structure that satisfies all five Peano axioms is isomorphic to the
structure of the natural numbers.

Dedekind’s isomorphism theorem proves that the five Peano axioms uniquely
characterize the natural numbers. We will return to the Peano axioms in
Chapter 4, where Go6del integrates them into his formal system P to restrict
the domain of possible interpretations to the set of natural numbers.
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Figure 2.14: Two structures are isomorphic if their elements can be bijectively mapped
to each other such that it is irrelevant whether an operation is performed on the
elements of one structure or the corresponding elements of the other. If such a
mapping exists, both structures are structurally identical and may only differ in the
naming of their elements.

2.3 Principia Mathematica

The previous sections have emphasized how important the work of Frege and
Peano was for the foundation of mathematics. Frege’s predicate calculus and
Peano’s accurate notation are the key ingredients of modern mathematical
logic, but neither of the two scientists succeeded in combining them in a syn-
ergistic way. This brilliant achievement was reserved for our third protagonist,
whose life and work will be discussed more closely in this section.

Bertrand Arthur William Russell was born on May 18, 1872, as the third child of
a British aristocratic family. When he was two years old, his sister and mother
died of diphtheria, and when his father passed away a few years later, Bertrand
fell into the care of his grandparents. His grandfather was the two-time British
Prime Minister Lord John Russell, who resided with his family in Pembroke
Lodge, a substantial stately residence in Richmond Park, near London. When
the grandfather died in 1878, his grandmother took sole responsibility. Russell
grew up in a wealthy, sheltered environment and never attended public school.
Instead, he was taught by private tutors at Pembroke Lodge.

As a child, Russell discovered his passion for mathematics, and above all else,
he was captivated by Euclid’s Elements. The enormous fascination he felt as a
child was to last into adulthood.

“At the age of eleven, I began Euclid, with my brother as my tutor.
This was one of the great events of my life, as dazzling as first love. I
had not imagined that there was anything so delicious in the world. |...]
From that moment until Whitehead and I finished Principia Mathemat-
ica, when I was thirty-eight, mathematics was my chief interest, and my
chief source of happiness.”
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Figure 2.15

BERTRAND RUSSELL
1872 — 1970

\ttans b

Bertrand Russell [93]

What Russell adds to this quote is equally remarkable. It reveals that he was
already beginning to cultivate a profound philosophical perspective on math-
ematical concepts and methods at an exceptionally young age. He started to
develop a logicism way of thinking, which became a recurring theme throughout
his later work:

“Like all happiness, however, it was not unalloyed. I had been told that
Euclid proved things, and was much disappointed that he started with
axioms. After first I refused to accept them unless my brother could offer
me some reason for doing so, but he said: ‘If you don’t accept them we
cannot go on’, and as I wished to go on, I reluctantly admitted them pro
ten. The doubt as to the premisses of mathematics which I felt at that
moment remained with me, and determined the course of my subsequent

work.”

Bertrand Russell [93]

In addition to many positive days of his youth, Russell also recounts some
negative ones in his autobiography. He grappled with loneliness in Pembroke
Lodge and the social pressures of the Victorian era, which part of the reason
he regarded his admission to the prestigious Trinity College in 1890 as a libera-
tion. In Cambridge, he thrived in the company of his peers, and the university
provided the ideal environment to nurture and further develop his exceptional
intellect.

Russell’s exceptional talent for mathematics and philosophy, which had already
been noticed by his private tutors at Pembroke Lodge, was quickly recognized
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at Trinity College. One of the professors was the British philosopher and
mathematician Alfred North Whitehead. He advocated for Russell from the
beginning, and shortly after, a close friendship was to develop.

A pivotal event in his later life occurred in his fourth year of study when Russell,
almost by accident, encountered the works of Frege and Cantor:

“During my fourth year I read most of the great philosophers as well as
masses of books on the philosophy of mathematics. James Ward was
always giving me fresh books on this subject, and each time I returned
them, saying that they were very bad books. [...| In the end, but after I
had become a Fellow, I got from him two small books, neither of which
he had read or supposed of any value. They were Georg Cantor’s Man-
nigfaltigkeitslehre, and Frege’s Begriffsschrift. These two books at last
gave me the gist of what I wanted, but in the case of Frege I possessed
the book for years before I could make out what it meant. Indeed, I did
not understand it until I had myself independently discovered most of
what it contained.”

Bertrand Russell [93]

After graduating in 1894, Russell seized the opportunity to conduct research
at Cambridge without teaching obligations. As part of these activities, he
traveled to Paris in July 1900 to attend the Second International Congress of
Mathematicians. In hindsight, this congress ranks among the most important
in the history of science. David Hilbert gave a groundbreaking speech that
provided a glimpse of the century to come by presenting a list of problems
that were still unsolved at the time but were of utmost importance for the
future development of mathematics. Besides others, he addressed a question
directly related to Godel’s work: The consistency of the arithmetic axioms.
The question was answered many years later by the second incompleteness
theorem in an utterly unexpected way:

“But above all I wish to designate the following as the most important
among the numerous questions which can be asked with regard to the
axioms: To prove that they are not contradictory, that is, that a finite
number of logical steps based upon them can never lead to contradictory
results.”

“Vor allem aber mdéchte ich unter den zahlreichen Fragen, welche hin-
sichtlich der Axiome gestellt werden kénnen, dies als das wichtigste Prob-
lem bezeichnen, zu beweisen, dass dieselben untereinander widerspruch-
slos sind, d.h., dass man aufgrund derselben mittelst einer endlichen
Anzahl von logischen Schliissen niemals zu Resultaten gelangen kann,

die miteinander in Widerspruch stehen.”

David Hilbert [50, 47]
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The arithmetic axioms Hilbert refers to are the five Peano axioms discussed in
Section 2.2. Giuseppe Peano himself participated in the congress, so it hap-
pened that the paths of our protagonists crossed. For Russell, the encounter
with Peano was a lasting experience that would significantly influence his sci-
entific future:

“The Congress was a turning point in my intellectual life, because I there
met Peano. I already knew him by name and had seen some of his work,
but had not taken the trouble to master his notation. In discussions at
the Congress I observed that he was always more precise than anyone
else, and that he invariably got the better of any argument upon which
he embarked. As the days went by, I decided that this must be owing
to his mathematical logic. [...] It became clear to me that his notation
afforded an instrument of logical analysis such as I had been seeking for
years, and that by studying him I was acquiring a new and powerful
technique for the work that I had long wanted to do.”

Bertrand Russell [93]

In the following months, Russell intensively studied Peano’s work. Mentally,
he was in line with Frege, but he could not consistently develop Frege’s ideas
due to the lack of a precise notion. The meeting with Peano was to bring
about a lasting change. Suddenly, Russell had a symbolic language at hand,
allowing him to express his ideas more precisely than ever before. Notations
and concepts previously vague and fuzzy now appeared precise and clear. After
all, the Congress of Mathematicians in Paris had become a turning point in
Russell’s life. It marked the beginning of a period of intellectual creativity,
which he remembered himself with the following words:

“The Whiteheads stayed with us at Fernhurst, and I explained my new
ideas to him. Every evening the discussion ended with some difficulty,
and every morning I found that the difficulty of the previous evening had
solved itself while I slept. The time was one of intellectual intoxication.
My sensations resembled those one has after climbing a mountain in a
mist, when, on reaching the summit, the mist suddenly clears, and the
country becomes visible for forty miles in every direction. For years, I
have been endeavoring to analyze the fundamental notions of mathemat-
ics, such as order and cardinal numbers. Suddenly, in the space of a
few weeks, I discovered what appeared to be definitive answers to the
problems which had baffled me for years. And in the course of discov-
ering these answers, I was introducing a new mathematical technique,
by which regions formerly abandoned to the vaguenesses of philosophers
were conquered for the precision of exact formulae. Intellectually, the
month of September 1900 was the highest point of my life.”

Bertrand Russell [93]
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Russell planned to publish his insights in the book The Principles of Mathe-
matics and began working on the manuscript in September 1900. Initially, the
pages flowed so quickly from his pen that he had already completed four out
of seven parts by the beginning of winter. In May 1901, Russell suddenly ran
into trouble:

“I thought the work was nearly finished, but in the month of May I had
an intellectual set-back almost as severe as the emotional set-back which
I had had in February. Cantor had a proof that there is no greatest
number, and it seemed to me that the number of all the things in the
world ought to be the greatest possible. Accordingly, I examined his
proof with some minuteness, and endeavored to apply it to the class of
all the things there are. This led me to consider those classes which are
not members of themselves, and to ask whether the class of such classes
is or is not a member of itself. I found that either answer implies its
contradictory.”

Bertrand Russell [93]

2.3.1 Cantor’s Theorem

Russell’s difficulties were caused by an antinomy, which is now referred to as
Cantor’s Antinomy in honor of its discoverer. It arises when the concept of the
actual infinite is handled carelessly, for example, by treating the set of all sets
as a totality.

Georg Cantor discovered the contradictory character of the set of all sets to-
wards the end of the nineteenth century. He noticed that the assumption that
a set L has the same cardinality as the set

M= {f|f:L—{0.1}}

leads to a contradiction. In colloquial language, M is the set of all functions
mapping L into the range {0,1}.

Let’s take a closer look at Cantor’s line of argument and assume the existence
of a bijection 8 between the sets L and M. Then M could

“be thought of in the form of a unique function of the two variables © and
z: o(z, z), so that by each specialization of z an element f(z) = ¢(z, z)
of M is obtained and conversely every element f(x) of M arises from
o(z, z) through a single specific specialization of z.”

“in der Form einer eindeutigen Funktion der beiden Veranderlichen x und
z: (x, z) gedacht werden, so dass durch jede Spezialisierung von z ein

Element f(x) = ¢(x,z) von M erhalten wird und auch umgekehrt jedes
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Figure 2.16: Visualization of the Cantor function ¢(z, z)
Element f(z) von M aus ¢(z,z) durch eine einzige bestimmte Spezial-
isierung von z hervorgeht.”
Georg Cantor [7]
Cantor’s words correspond to the following definition (Figure 2.16):
ol2,2) = (B()(a) (5,2€ 1)

Next, Cantor used the principle of diagonalization to turn ¢(z, z) into a func-
tion with a single variable:

“If we understand by g(z) that unique function of x, which only takes
the values 0 or 1 and is different from p(z,z) for every value of z, |...]”

“Denn versteht man unter g(x) diejenige eindeutige Funktion von x,
welche nur die Werte 0 oder 1 annimmt und fiir jeden Wert von x von

o(w, x) verschieden ist, |[...|”

Georg Cantor [7]

In modern notation, g(z) is the function depicted in Figure 2.17:

_Jo it p(x,z) =1
9(@) = {1 if o(z,z)=0

The elements p(z,x) are the diagonal elements of .

The definition of g(x) leads to a contradiction, as Cantor mentions after the
previous quote:

“...] on the one hand, g(z) is an element of M, on the other hand,
g(z) cannot result from any specialization z = zo from ¢(x, z), because
(20, 20) is different from g(zo).”

“l...] so ist einerseits g(x) ein Element von M, andererseits kann g(x)
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Figure 2.17: The principle of diagonalization. From the diagonal elements ¢(z,z) a
new function g(z) is derived, which differs from each function in M at the diagonal
position.

durch keine Spezialisierung z = zo aus ¢(x, z) hervorgehen, weil ¢(zo, o)

von g(zo) verschieden ist.”

Georg Cantor [7]

Consequently, we have to give up the assumption about the existence of a
bijection between L and M.

We can strengthen this result even further. Since L can be mapped into M
injectively by assigning each y € L the function mapping y to 1 and all other
elements to 0, M is at least as large as L. As a result, we get:

Theorem 2.4 Cantor’s Theorem, 1892

For every set L, the set
{r1f:L—{0,1}}

has a greater cardinalty than L itself.

Georg Cantor proved this theorem in 1892. Contemporary textbooks typically
present Cantor’s theorem in a modernized form, which identifies each function
of the form f : L — {0,1} with a subset of L. This is easily achievable one-
to-one by including in the subset precisely those elements x € L satisfying
flz)=1:

feAzel] f(z)=1}
This way, M can be identified with the set of all subsets of L. The set of

all subsets of L is the power set of L, denoted by 2%, enabling us to rewrite
Theorem 2.4 in its modern form:
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Theorem 2.5 Cantor’s Theorem, modern formulation

For every set L, the power set 2” has a greater cardinality than L itself.

The theorem is usually proved by assuming L and 2% have the same cardinality,
which implies the existence of a bijective mapping 8 : L — 2%. For each
element x € L, one of two cases must hold: Either z belongs to the image
element (z € 5(x)), or it does not (z ¢ 5(z)). Consequently, the image set 2-
can be divided into two subsets

{8(z) | = € B(x)} (2.5)
{B(z) |z & B(x)} 2.6

and for all , B(x) must be contained in one or the other. Next, let us consider
the set

G :={zel|z¢pB)} (2.7)

which includes exactly those elements of L that map into the set (2.6). Because
[ is a bijection, L must contain an element g with the property:

Blg) =G (2.8)

As for all elements from L, either g € G or ¢ ¢ G must hold. However, both
cases immediately lead to a contradiction:

2.7 2.8
gec ) gap) Woea

2.7 2.8
géG E gep) Pyea

Consequently, no bijective function 3 : L — 2% can exist.

At first glance, the argument seems quite distinct from the original proof, but
upon closer examination, it becomes apparent that we are offered old wine in
new bottles. To see why, let us begin by rewriting the definition of the Cantor
function ¢ as follows:

2 2) = 1 ifzep(z)
ple,2) {o ited B(2)

Considering only the diagonal elements, we get:

B 1 ifzepx)
pla,z) = { 0 ifzdB)
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Thus, Cantor’s function g(z) can be denoted as follows:

5 = 0 ifzef(z)
9(@) {1 it x ¢ B()

Colloquially speaking, g characterizes the subset of L that contains precisely
those elements that do not appear in the subsets assigned to them. This set
is identical to the set G used above in the revised proof. Thus, the modern
variant also utilizes Cantor’s diagonalization principle, although not as clearly
as the original proof of 1892.

Overall, Cantor’s theorem reveals a remarkable property of power sets: It ex-
poses that the power set operation always creates a set with a greater cardi-
nality than the original set itself. Consequently, there can be no maximum
infinity.

Cantor was aware of this fact long before 1892. In fact, he had already proved
the result as early as 1883 but with a more complex method than his newly
developed diagonalization scheme.

“I have already shown in the ‘Foundations of a General Theory of Man-
ifolds’ (Leipzig 1883; Math. Annalen Vol. 21) by completely different
means that the cardinalities have no maximum; there it was even proven
that the totality of all cardinalities, if we think of them ordered by their
size, forms a ‘well-ordered set’, so that there is a next larger one in na-
ture for every cardinality, but also a next larger one follows any endlessly
increasing set of cardinalities.”

“Ich habe bereits in den ‘Grundlagen einer allgemeinen Mannigfaltigkeit-
slehre’ (Leipzig 1883; Math. Annalen Bd. 21) durch ganz andere Hilfs-
mittel gezeigt, dass die Méchtigkeiten kein Maximum haben; dort wurde
sogar bewiesen, dass der Inbegriff aller Méchtigkeiten, wenn wir letztere
ihrer Grésse nach geordnet denken, eine ‘wohlgeordnete Menge’ bildet,
so dass es in der Natur zu jeder Machtigkeit eine nédchst grofere gibt,
aber auch auf jede ohne Ende steigende Menge von Méchtigkeiten eine

néchst grékere folgt.”

Georg Cantor [7]

Since no maximum infinity exists, we must never regard the set of all sets as a
totality. If there were such a set, let’s call it V', we would obtain the relation
|V| < |2Y| due to theorem 2.5. By definition, however, all elements of 2" are
contained in V', implying |2V'| < |[V|. The resulting contradiction |V| < |V] is
called Cantor’s antinomy. It clearly shows that the union of all sets is not a
set itself.

Related mental constructs lead to akin contradictions. As early as 1897, the
Italian mathematician Cesare Burali-Forti noted that if the set ) of all ordinal
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numbers were to exist, it would be an ordinal number itself. Like all ordinal
numbers, {2 would not only have a direct successor 2+ 1 but would also satisfy
the relation Q < Q4 1. However, by definition, the ordinal number Q41 would
be an element of €2, making it smaller than 2. The resulting contradiction
Q < Q is known as the Burali-Forti paradox. It shows that the union of all
ordinal numbers is also too large to exist as a self-contained whole.

With a similar argument, it can be proved that the set of all cardinal numbers
cannot exist either. The above quotation shows that Cantor was unaware of
this in 1892, for he still called the totality of all cardinalities (“Inbegriff aller
Maéchtigkeiten”) a well-ordered set.

For Cantor, however, the potential danger of forming sets that could not be
considered closed entities was not a pressing problem. He had faith in math-
ematical intuition and believed he could determine, on a case-by-case basis,
whether a set’s definition was legitimate or not.

2.3.2 Russell’s Anfinomy

Paradoxes unveil their dark power when mathematics is carried out within a
formal system where proving a statement is akin to a mechanical process. In
such a system, there is no place for mathematical intuition, as a rigid set of
rules decides whether a logical conclusion is valid. This explains why Russell
could not ignore the discovered antinomy. He was trying to replicate all notions
and concepts of classical mathematics in a formal system, so any contradiction
formally derivable within the system would render his project meaningless.

On June 16, 1902, Russell wrote a letter to Frege reporting his discovery. The
original letter was written in German and translated into English years later.
Figure 2.18 shows a reprint of the English translation taken from [94]. After
a friendly introduction, Russell quickly gets to the point and describes the
discovered antinomy, first in a logical and then in a set-theoretical formulation.
In the ensuing two sections, we will look at both variants.

2.3.2.1 Llogical Formulation of the Antinomy

To bring the logical variant of Russell’s antinomy to life, we must utilize second-
order predicates, available in higher-order logics. They are similar to ordinary
predicates, but expect a predicate in at least one argument position.

Defining second-order predicates is straightforward. Almost any formula can
be considered the definition of such a predicate simply by treating all predicates
occurring in it as free (predicate) variables. For example, T and F with

T(P) := IxP(x)



66

2 Foundations of Mathematics

Friday’s Hill.
Haslemere.

16 June 1902
Dear colleague,

For a year and a half I have been acquainted with your “Grundge-
setze der Arithmetik”, but it is'only now that I have been able to
find the time for the thorough study I intended to make of your
work. I find myself in complete agreement with you in all essentials,
particularly when you reject any psychological element in logic and
when you place a high value upon an ideography for the foundations
of mathematics and of formal logic, which, incidentally, can hardly
be distinguished. With regard to many particular questions, I find
in your work discussions, distinctions, and definitions that one secks
in vain in the works of other logicians. Especially so far as function
is concerned (§9 of your Begriffsschrift), I have been led on my own
to views that are the same even in details. There is just one point
where I have encountered a difficulty. You state that a function,
too, can act as the indeterminate element. This I formerly believed,
but now this view seems doubtful to me because of the following
contradiction. Let w be the predicate: to be a predicate that cannot
be predicated of itself. Can w be predicated of itself? From each
answer its opposite follows. Therefore we must conclude that w is
not a predicate. Likewise there is no class (as a totality) of those
classes which, each taken as a totality, do not belong to themselves.
From this I conclude that under certain circumstances a definable
collection does not form a totality.

I am on the point of finishing a book on the principles of mathe-
matics and in it I should like to discuss your work very thoroughly.
I already have your books or shall buy them soon, but I would be
very grateful to you if you could send me reprints of your articles
in various periodicals. In case this should be impossible, however, I
will obtain them from a library.

The exact treatment of logic in fundamental questions, where sym-
bols fail, has remained very much behind; in your works I find the
best I know of our time, and therefore I have permitted myself to
express my deep respect to you. It is very regrettable that you have
not come to publish the second volume of your Grundgesetze; I hope
that this will still be done.

Very respectfully yours,
Bertrand Russell.

The above contradiction, when expressed in Peano’s ideography,
reads as follows:

w=clsNzz(z~ex). Diwew. =.w~ew.

I have written to Peano about this, but he still owes me an answer.

Figure 2.18: Letter from Russell to Frege dated June 16, 1902 [94]
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F(P) := =3xP(x)

are two unary second-order predicates with the argument P.

We stay in safe waters as long as we use first-order predicates as arguments
in T and F. When second-order predicates are permitted, more care must be
taken (cf. [54]). In this case, the self-predicating expressions T(T) and F(F)
are well-defined, both of them calling for a closer examination:

B The formula T(T) corresponds to
Ix T(x)

and claims the existence of an object x with the property T. Since T expects
a predicate as argument, this may be rephrased as: There is a predicate P
with the property T:

IP T(P)

Resolving the definition of T a second time results in:
3P Ix P(x)

This formula can be phrased as follows: There exists a predicate P and
an individual z such that P(x) is true. Or, more concisely: There is a
satisfiable predicate. This is a true statement.

B The formula F(F) corresponds to
—-Jdx F(x)

and denies the existence of an object x with the property F. Similar to the
first case, the statement can be rephrased as: There is no predicate P with
the property F':

-3P F(P)

Again, this formula can be rewritten by replacing F with its definition:
-3P -3Ix P(x)

This formula states that there is no predicate P which is true for no x.
Or, more concisely: There are no unsatisfiable predicates. This is a false
statement.

The predicates defined so far do not cause any harm: T(T) is a true statement,
and F(F) is a false statement. However, we get into stormy waters when turning
our attention to Russell’s predicate w:

w(P) = =P(P)
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Colloquially speaking, w applies exactly to those predicates P for which P(P) is
false. Thus, w is “the predicate of being a predicate that cannot be predicated
of itself”. According to what has been said above, w(F) is true and w(T) is
false.

To evoke Russell’s antinomy, let us ask whether w “can be predicated of itself’
(w(w)) or not (—~w(w)). In fact, “from each answer its opposite follows”:

ww) = —~w(w)

w(w) = —ww) = ww)
Or, in short:

This is the logical formulation of Russell’s antinomy.

2.3.2.2 Set-Theoretic Formulation of the Antinomy

The set-theoretic formulation of the antinomy is even easier to understand. In
precise form, Russell describes it at the end of his letter in Peano’s symbolic
language:

w=csNzs(x~ex). Diwew. =.w~cw.

The acronym ‘cls’ is an abbreviation for class. Thus, in modern terms,
w = cls

expresses that w is a set. The expression
T~EXT

means x ¢ x, which allows the left-hand side of the implication to be rewritten
as:

w = {z|xda} (2.9)

In words, w is the set of all sets that do not contain themselves. The definition
of w immediately leads to a contradiction when asking whether this set contains
itself or not:

weEw = wéw
wWEW = weEwWw

Or, more concisely:
wWEW & wEw
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This is the set-theoretic formulation of Russell’s antinomy. Russell’s discov-
ery makes unmistakably clear “that under certain circumstances a definable
collection does not form a totality.”

2.3.2.3 In Ruins

Frege quickly replied. In his letter of June 22, reprinted in Figure 2.19 in an
English translation, he first thanked Russell for his interest in his work. Frege
then acknowledged the fundamental correctness of Russell’s observation. To-
wards the end of the letter, he politely pointed out that the logical formulation
of Russell’s antinomy is not reproducible with his concepts. Frege’s logic ex-
plicitly prohibits the application of a predicate to itself, implying the expression
P(P) is not well-defined.

Nevertheless, Frege admitted that his logic was not immune to the set-
theoretical formulation of the antinomy. The set of all sets that do not contain
themselves could be defined, albeit not as simply as initially presumed. For
Frege, this was a disaster. Russell’s antinomy had laid bare a fundamental flaw
in his logic that cosmetic corrections could not remedy. The timing of this
discovery couldn’t have been worse either. At the end of his reply, Frege hinted
that he had been just about to finish the second volume of the Basic Laws of
Arithmetic.

Despite the devastating news, Frege’s reply was candid and composed, making
it likely he had yet to fully realize that his work, which had taken up many
years of his life, lay in ruins. Notably, the afterword of the second volume of
his Basic Laws of Arithmetic already reflected a much more pessimistic tone
than his hastily penned letter:

“Hardly anything more unfortunate can befall a scientific writer than to
have one of the foundations of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of Mr. Bertrand Russell,
just when the printing of this volume was nearing its completion.”

“Finem wissenschaftlichen Schriftsteller kann kaum etwas Unerwiin-
schteres begegnen, als dafs ihm nach Vollendung einer Arbeit eine der
Grundlagen seines Baues erschiittert wird. In diese Lage wurde ich durch
einen Brief des Herrn Bertrand Russell versetzt, als der Druck dieses Ban-

des sich seinem Ende néaherte.”

Gottlob Frege [29, 24]

At first glance, it may not be immediately apparent how Russell’s antinomy
can be derived from Frege’s basic law V, so let’s delve deeper. First of all, we
need to find a way to express the property of self-inclusion within Frege’s logic.
To understand how this can be achieved, let’s briefly examine the implications
of the relationships « € x and z ¢ x:
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Jena, 22 June 1902
Dear colleague,

Many thanks for your interesting letter of 16 June. I am pleased that
you agree with me on many points and that you intend to discuss
my work thoroughly. In response to your request I am sending you
the following publications: |...|

I received an empty envelope that seems to be addressed by your
hand. I surmise that you meant to send me something that has
been lost by accident. If this is the case, I thank you for your kind
intention. I am enclosing the front of the envelope.

When I now read my “Begriffsschrift” again, I find that I have
changed my views on many points, as you will see if you compare
it with my “Grundgesetze der Arithmetik”. I ask you to delete the
paragraph beginning “Nicht minder erkennt man” on page 7 of my
“Begriffsschrift”, since it is incorrect; incidentally, this had no detri-
mental effects on the rest of the booklet’s contents.

Your discovery of the contradiction caused me the greatest surprise
and, I would almost say, consternation, since it has shaken the ba-
sis on which I intended to build arithmetic. It seems, then, that
transforming the generalization of an equality into an equality of
courses-of-values (§9 of my Grundgesetze) is not always permitted,
that my Rule V (§20. S. 36) is false, and that my explanations in
§31 are not sufficient to ensure that my combinations of sings have
a meaning in all cases. I must reflect further on that matter. It is
all the more serious since, with the loss of my Rule V, not only the
foundations of my arithmetic, but also the sole possible foundations
of arithmetic, seem to vanish. Yet, I should think, it must be possi-
ble to set up conditions for the transformation of the generalization
of an equality into an equality of courses-of-values such that the es-
sentials of my proofs remain intact. In any case your discovery is
very remarkable and will perhaps result in a great advance in logic,
unwelcome as it may seem at first glance.

Incidentally, it seems to me that the expression “a predicate is pre-
dicted of itself” is not exact. A predicate is as a rule a first-level
function, and this function requires an object as argument and can-
not have itself as argument (subject). Therefore I would prefer to
say “a concept is predicted of its own extension”. If the function
¢(€) is a concept, I denote its extension (or the corresponding class)
by €@(e) (to be sure, the justification for this has now become ques-
tionable to me). In ¢(ep(e)) or ep(e) N ép(e) we then have a case in
which the concept ¢(e) is predicated of its own extension.

The second volume of my Grundgesetze is to appear shortly, I shall
no doubt have to add an appendix in which your discovery is taken
into account. If only I already had the right point of view for that!

Very respectfully yours,
G. Frege.

Figure 2.19: Frege’s answer to Russell dated June 22, 1902 [30]
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B Case l: z€x

In this case, there can be no predicate that is true for the elements in x but
not for x itself. Therefore, the following formula must be a true statement:

—3P (x={y [P(y)} A =P(x))

B Case 2: x ¢z

In this case, there is a predicate that is true for all elements in x, but not
for x itself. Therefore, the following formula must be a true statement:

P (x={y | P(y)} A =P(x)) (2.10)

Putting both cases together, formula (2.10) is precisely true if x is a set that
does not contain itself. It can be rephrased in the following logically equivalent
form:

VP (x={y[P(y)} = P(x) (2.11)

In Frege’s logic, the set {y|P(y)} is denoted by ¢P(e). Thus, formula (2.11)
can be expressed in the following form, which we will abbreviate as W(x):

W(x) := VP (x = ¢P(e) = P(x))

The predicate W(x) applies to those sets that do not contain themselves. Con-
sequently, éW(e) is Russell’s set w. It includes precisely those sets that do not
contain themselves.

At this juncture, let’s take another look at Frege’s basic law V depicted in
Figure 2.4. By substituting a with ¢W(¢), the law allows us to conclude the
following;:

eW(e) = eQ(e) — (W(eW(e)) <> Q(eW(¢)))

This formula can be weakened into

EW(€) = €Q(e) = (W(EW(e)) — Q(eW(e)))
which is logically equivalent to:

W(EW(e)) — (eW(e) = ¢Q(e) — Q(eW(e)))

Since Q can represent any predicate, Frege’s logic allows us to draw the follow-
ing conclusion:

W(W(€)) — VP (2W(e) = eP(e) — P(EW(e))) (2.12)

A closer look at this formula reveals that we have slipped the predicate W into
the formula for a second time, as the right-hand side of the implication now
matches the expression =“W(éW(e)). Therefore, formula (2.12) is the same as

W(EW(e)) — =W(W(e)) (2.13)
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On the other hand, the definition of the universal quantifier implies:
VP (W(e) = eP(e) = P(eW(e))) = (eW(e) = eW(e) — W(eW(e)))
eW(e) = eW(e) is always true, simplifying the formula to:
VP (eW(e) = eP(e) — P(eW(e))) — W(eW(e))

The left-hand side corresponds to =W (eW(¢)), allowing for the following reduc-
tion:

—“W(eW(e)) — W(eW(e)) (2.14)
Together, (2.13) and (2.14) yield the contradiction we were looking for:

SW(RW(e)) > W(EW(e)) (2.15)

According to this formula, the set of all sets that do not contain themselves is
contained in itself exactly when it is not. An untenable situation! As harmless
as the fifth basic law may seem, it opens a gateway for Russell’s antinomy,
unmasking Frege’s logic as contradictory.

Unlike Cantor, who had encountered similar paradoxes years earlier, Frege im-
mediately recognized their explosive power. To him, it was clear that we cannot
rely on intuition to determine whether a mathematical definition describes an
existing set. Well-defined rules had to be established, but after the discovery of
the antinomy, Frege had yet to learn what they should look like. As the years
passed, his confidence gradually turned into resignation. When his wife also
passed away, he fell into a deep depression from which he never recovered.

Initially, Russell could not solve the problem either and reluctantly decided to
publish The Principles of Mathematics without a satisfactory answer [90]:

“Trivial or not, the matter was a challenge. Throughout the latter half
of 1901 I supposed the solution would be easy, but by the end of that
time I had concluded that it was a big job. I therefore decided to finish
The Principles of Mathematics, leaving the solution in abeyance.”

Bertrand Russell [93]

In contrast to Frege, Russell firmly believed in finding a way to keep the set-
theoretic antinomies at bay. Unmistakably, the contradictions arose from the
composition of sets that are, in a sense, too large to be considered a totality.

Russell knew that eliminating the antinomies required a delicate balance. On
the one hand, the underlying logic had to be constrained to prevent the for-
mulation of self-referential statements like Russell’s antinomy. On the other
hand, the restricted logic needed to remain expressive enough to encompass all
the concepts and conclusions of classical mathematics. Russell reflected on the
events of 1903 and 1904 as follows:
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“I was trying hard to solve the contradictions mentioned above. Every
morning I would sit down before a blank sheet of paper. Throughout
the day, with a brief interval for Iunch, I would stare at the blank sheet.
Often when evening came it was still empty. [...|] the two summers of
1903 and 1904 remain in my mind as a period of complete intellectual
deadlock. It was clear to me that I could not get on without solving the
contradictions, and I was determined that no difficulty should turn me
aside from the completion of Principia Mathematica, but it seemed quite
likely that the whole of the rest of my life might be consumed in looking
at that blank sheet of paper.”

Bertrand Russell [93]

2.3.3 Type Theory

Russell made his breakthrough in 1906. That year, he developed ramified type
theory as an effective bulwark against the paradoxes. Russell first described
the theory in his 1908 paper Mathematical Logic as Based on the Theory of
Types. Nevertheless, it gained the most recognition for its application in the
Principia Mathematica. Russell writes:

“The following theory of symbolic logic recommended itself to me in
the first instance by its ability to solve certain contradictions, of which
the one best known to mathematicians is Burali-Forti’s concerning the

greatest ordinal.”

Bertrand Russell [91]

Russell continues with a detailed analysis of the discovered antinomies. He
explains that all antinomies, as different as they may seem, share a crucial
characteristic: self-reference.

“In all the above contradictions (which are merely selections from an in-
definite number) there is a common characteristic, which we may describe
as self-reference or reflexiveness. [...] In each contradiction something is
said about all cases of some kind, and from what is said a new case seems
to be generated, which both is and is not of the same kind as the cases

of which all were concerned in what was said”

Bertrand Russell [91]
In the third section, he reveals the basic idea of type theory:
“A type is defined as the range of significance of a propositional function,

i. e, as the collection of arguments for which the said function has values.”

Bertrand Russell [91]
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This colloquial description aligns well with the modern meaning of types. In
fact, in its most general form, the notion of a type was not a new idea at the
time. Even Euclid made a strict distinction between points and lines, thereby
establishing a rudimentary type system.

Russell utilized types to invalidate certain formulas that were permissible un-
der the old syntax. He designed his type system to act as a filter that elimi-
nated potentially paradoxical formulas at the syntactic level. After thoroughly
analyzing the antinomies, he decided to banish all formulas from logic that
somehow refer to themselves. In [91], Russell formulated this basic idea in the
form of a guideline, which he referred to as the vicious circle principle:

“The division of objects into types is necessitated by the reflexive fallacies
which otherwise arise. These fallacies, as we saw, are to be avoided
by what may be called the ’vicious-circle principle’; i.e., 'no totality
can contain members defined in terms of itself’. This principle, in our
technical language, becomes: ’Whatever contains an apparent variable
must not be a possible value of that variable.” Thus whatever contains
an apparent variable must be of a different type from the possible values
of that variable; we will say that it is of higher type. Thus the apparent
variables contained in an expression are what determines its type. This
is the guiding principle in what follows.”

Bertrand Russell [91]

To keep self-referential formulas out, Russell formulated two hierarchical or-
ders. In combination, they form the ramified type theory of the Principia
Mathematica (cf. [62]).

The first hierarchy requires that the arguments of a predicate must always be
of a lower type than the predicate itself. At the lowest level are the individual
objects. They constitute the domain or universe of an interpretation, embody-
ing the conceptual entities upon which logical formulas make statements at the
semantic level. In Go6del’s system P, for instance, the individual objects are
the natural numbers.

The next higher hierarchy level is formed by the individual predicates (first-
order predicates), whose arguments are individual elements. Above them are
second-order predicates, which expect at least one individual predicate among
their arguments, and this hierarchy extends ad infinitum.

The type system of the Principia Mathematica is defined in colloquial language
and sometimes remains ambiguous. Nowadays, formal definitions exist for the
concept of type, such as the following;:
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The set of (simple) types is recursively defined:

B i and () are types.

B Ifr,..., 7, are types, then (71,...,7,) is also a type.

i and () are the base types, which can be combined recursively into complex
structures. By successively applying the syntax rules given above, the following
types, among others, can be derived:

1503 (0 (15 (1,15 (0)s (G 0); (G, ()5 (G 1), (1), 15 - -

In this type system, i represents the type of individual objects and () the type
of propositional logic variables, which may be formally considered as zero-place
individual predicates. The definition extends to expressions like (i), (i,i), and
(i,i,i), which are the types of unary, binary, and ternary individual predicates,
respectively. The meaning of the other types is analogous. For instance, ((i),i)
represents the type of a second-order predicate that expects a unary individual
predicate as its first argument and an individual element as its second.

By arranging the n free variables of a formula ¢ in a specified order, ¢ can be
assigned a type in a straightforward manner. If the first free variable corre-
sponds to an object of type 71, the second to an object of type 75, and so forth,
then (71,...,7,) is the type of ¢.

The following examples provide clarity:

m(g;) = (x=x) 1w Type(p1) = (i)
wz(\Flj,) = (PV=P) 1 Type(p2) = (())
ws(\i;) =VP (P(x)V-P(x)) 1w Typ(es) = (i)
w(\Flj,) i=Vx 3y P(x,y) 15 Type(pa) = ((i,1))
ws(\Fj,,ié)) = Vx (P(x) = Q(x)) 1= Type(es) = ((i), (i)
0. ) = 3x(P(x,y) VQ((x)) w1 Type(ps) = ((i,1), (i), 1)

Restricting the syntactically valid formulas to well-typed expressions success-
fully banishes self-referential formulas like P(P).
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Back then, Russell was unsure whether this kind of typing would suffice to keep
all antinomies at bay and thus decided to implement another layer of safety. To
understand his motives, let us examine the third example formula mentioned
above:

w3(x) = VP (P(x) V=P(x)) (2.16)

The type of 3 is (i), as the only free variable x is an individual variable.
Additionally, the formula contains a universal quantifier that makes a statement
about all unary single predicates of type (i). This leads to a situation where
the formula quantifies over the same objects it belongs to, thereby violating
the vicious circle principle.

To prevent self-references of this kind, Russell introduced a second hierarchy
that distinguished formulas based on their syntactic structure, resulting in the
ramified type theory. The second hierarchy emerged by assigning each for-
mula an ordinal number whose value was independent of the first hierarchy
level. In addition, he imposed restrictions on the expressiveness of all quan-
tifiers. Henceforth, they were no longer permitted to quantify over arbitrary
objects but only over objects of a particular order. As an example, consider

the following formula:
VP3 (P(x) vV =P(x)) (2.17)

The universal quantifier no longer refers to all individual predicates but only
those of order 3. Each formula is assigned an ordinal number that exceeds by
one the ordinal numbers of all the formulas it references. In our example, this
ordinal number is the number 4. Since, per definition, the ordinal number of
a formula is greater than all ordinal numbers the quantifiers refer to, a self-
reference, as seen in (2.16), can no longer arise.

Ramified type theory solved the problem of self-reference by strong means —
and harsh consequences. In particular, the constraints imposed by the second
hierarchy had restricted the expressiveness so much that it became difficult or
even impossible to formulate many mathematical facts. Russell was aware of
the dilemma and sought to weaken some restrictions by introducing a reducibil-
ity axiom. The outcome was a theory that achieved its intended purpose but
appeared unnatural. Little remained of the beauty and elegance that mathe-
maticians have always striven for.

In the preface of the second edition of the Principia Mathematica, Russell and
Whitehead justified the presence of the reducibility axiom as follows:

“This axiom has a purely pragmatic justification: it leads to the desired
results, and to no others. But clearly it is not the sort of axiom with

which we can rest content.”

Bertrand Russell, Alfred North Whitehead [100]

Later, Russell’s ramified type theory was significantly simplified by Frank
Plumpton Ramsey. The British mathematician had shown that the second
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hierarchy only contributed to the avoidance of so-called semantic paradoxes
that arose from mixing the object level with the meta-level [83]. If a formal
language, as it is common today, is strictly separated from its associated met-
alanguage, the semantic paradoxes disappear. Thus, Ramsey had shown that
the second hierarchy level is unnecessary to avoid the antinomies, which is also
why Godel does not mention Russell’s ramified type theory anywhere in his
work. In Chapter 4, you will find that Godel’s system P is built upon a more
elementary type system, easily understandable with the knowledge acquired in
this section.

Although type theory in its original form plays no significant role today, its
historical significance has to be acknowledged. Russell laid the foundation
for a new field of research that would yield numerous insights over the years.
Type theory received stimulating impetus, especially in the second half of the
twentieth century, from the burgeoning field of computer science. In this area,
various type systems emerged, playing crucial roles in the theory of program-
ming languages, in compiler construction, as well as in hardware and software
verification [58]. Readers who want to delve deeper into the modern branches
of this field of research may enjoy the detailed account given in [62].

2.3.4 The Logic of the Principia Mathematica

Russell’s ramified type theory paved the way for one of the paramount writings
in mathematical world literature: the Principia Mathematica (Figure 2.20).

“After [I discovered the theory of types| it only remained to write the
book out. Whitehead’s teaching work left him not enough leisure for this
mechanical job. I worked at it from ten to twelve hours a day for about
eight month in the year, from 1907 to 1910.”

Bertrand Russell [93]

Over several years of work, Russell and Whitehead assembled an axiomatic
foundation for essential branches of classical mathematics. Upon opening, it
becomes immediately apparent that the Principia Mathematica is not an ordi-
nary book. This monumental work teems with thousands upon thousands of
symbolic definitions and derivations, occasionally punctuated by explanatory
text passages. The sample page in Figure 2.21 showcases the extraordinary
style in which this work is composed.

Financially, however, the publication was a disaster, as Russell noted in his
biography:

“The University Press estimated that there would be a loss of £600 on
the book, and while the syndics were willing to bear a loss of £300, they
did not feel that they could go above this figure. The Royal Society very
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Figure 2.20: Title page of the Pricipia Math-
PRINCIPIA MATHEMATICA ematica from 1910

ALFRED NORTH WHITEHEAD, SeD., F.RS
Fellow snd late Locturer of Teisity College, Carsbeidge

axD

BERTRAND RUSSELL, MA, F.RS.

Lectures snd laie Fellow of Trinity €

VOLUME |

Cambridge
at the University Press

1910

generously contributed £200, and the remaining £100 we had to find
ourselves. We thus earned minus £50 each by ten years’ work.”

Bertrand Russell [93]

The Principia Mathematica comprises more than 1800 pages, divided into three
volumes. The first volume appeared in 1910, and the second and third followed
in 1912 and 1913. Volume I commences with a detailed explanation of the
goals and methodologies of the Principia Mathematica. It continues with an
idiomatic introduction to type theory, followed by Part I, which is the most
significant in the context of this book. It consists of a comprehensive account
of mathematical logic, divided into five sections labeled A to E. In Section
A, Russell and Whitehead start by developing their calculus’s propositional
component, subsequently extending it to a typed predicate logic in Section B.

The Principia Mathematica refers to axioms as primitive propositions, abbre-
viated as Pp. The propositional axioms are listed in Figure 2.22. Little effort
is needed to translate them into modern notation, except for the first axiom:

Taut: (pVp)—p ( )
Add: q— (pVaq) ( )
Perm: (pVvq)— (qVp) (PM.4)
Assoc: pV(qVr) = qV(pVr) ( )
Sum: (q—=r)—=(pVg—=pVr) ( )

Unlike Frege, who had chosen negation ‘=’ and implication ‘—’ as the basic
connectives, Russell and Whitehead relied on disjunction ‘v’ and implication
‘=’ in their axioms. The plaintext names Taut, Add, Perm, Assoc, and Sum
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SECTION A] CARDINAL COUPLES 379
#5442, Fiae2. JiBCa.qlB.B+a.=.LBet*a
Dem.

Foxbdd. DbFna=tzvity. s
BCa.q!B.=:f8=A.v.B=t2.v.B=ty.v.B8=a:g18:

[(#24'58°56.451°161] Zif=1z.v.B=1t%.v.B=a %))
b.%54:25. Transp . #5222. Db izy . Dtz v ey tw. t'av iy tiy:
[#1312] Dhlia=iteviy.aty.d.att’z.aft'y @)
Fo(D)(2).DFta=t'zvity.24y.D1.
BCa.qi1B.Bta.=:8=tz.v.B=1ty:
[%51-285] z=:(gs).zea . B=12:
[%37°6] z:Beta 3

Fo(3) - %11°1135 . %54'101 . O k. Prop
¥5443. F:iq Bel.DianfB=A.=.avBe2

Dem.
Fok5426. Db a=tz.B=1y.D:ravBe2.=.24y.
[%51-231] Sanify=A.
[%1312] z.anf8=A 1)
Fo(1).%11-1185.D

Fi(ge, ) .a=tz.B=¢y.D:avBe2.2.anf8=A )
Fo(2). #1154 .%521. O F . Prop

From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1 =2,

Figure 2.21: Probably the most famous page of the Principia Mathematica. It shows
how the formally developed theory of ordinal numbers can be utilized to derive the
arithmetic relationship 14+ 1 = 2.

are also taken from the Principia. Most of the time Russell and Whitehead
referenced axioms by their names rather than by their numbers.

The first axiom was formulated in colloquial language and did not sound very
meaningful at first glance: “Anything implied by a true premiss is true”. At
second glance, it becomes clear that this formulation hides a well-known infer-
ence rule: The modus ponens. Russell and Whitehead express themselves more
precisely on page 99, where they formulate the inference rule in the context of
predicate logic:

#*1-11. When ¢ can be asserted, where z is a real variable, and ¢z D Yz can
be asserted, where z is a real variable, then Y& can be asserted, where z is
a real variable. Pp.
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The following are the primitive propositions employed in the calculus
of propositions. The letters “ Pp” stand for “ primitive proposition.”

(1) Anything implied by a true premiss is true Pp.
This is the rule which justifies inference.
(2 F:pvp.D.p Pp
t.e. if p or p is true, then p is true.
(3) F:q.2.pvg Pp,
t.e. if q is true, then p or ¢ is true.
(4) b:pvg.D.qvp Pp,
t.e. if p or g is true, then ¢ or p is true.
(6) F:pv(gvr).d.qv(pvr) Pp,
1.8, if either p is true or “g or r” is true, then either ¢ is true or “p or r”
is true.

(6) F:gdr.Dd:pvg.d.pvr Pp,
t.e. if ¢ implies 7, then “p or ¢ ” implies “p or r.”

Figure 2.22: Propositional axioms of the Principia Mathematica [99]

Next, we want to see the logic of the Principia Mathematica brought to action.
For this purpose, we will look at a few selected proofs from the 1st volume.

B Principia Mathematica, Volume I, Page 104:

%206. F:.gD7.02:pJ¢.D.pOr
Dem.
[Sum“—:—’] F1.g27.D:i~pvg.D.~vpyr 1)

[(1).(*1:01)] +:.¢D7.D:pD¢.D.pd7r

The proof of Theorem *2.05 consists of two derivation steps. In the first
step, an instance of the 6th axiom (Sum) is formed by substituting the
placeholder p with ~p. In the second step, the disjunction is replaced by
the implication operator according to the following definition:

#*101. pOg.=.~pvg Df

After freeing the formulas from the dust of their old-fashioned notation, a
trivial proof comes to light:

I.F (@q—=r)—=((-pVq) = (-pVr)) (PM.6)
2. F

—~~

q—=r1)—=((p—=q) —(p—r) (Def)
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The next two proofs are just as easy to understand. With #2.1, Russell and
Whitehead yield a prominent propositional theorem: the law of excluded mid-
dle (lat. tertium non datur).

B Principia Mathematica, Volume I, Page 105:

%208. F.pOp
Dem.
[*2'05}3—;—&%)‘] Fupvp.D.p:Dup.dD.pvp:D.pIp (1)
[Taut) F:pvp.d.p (@)
{(1)«(2).%1111] Fup.D.pvp:D.pdp 3)
[2:07)] F:p.D.pvp (4)

[(8)(4)%111] F.pOdp
*21. F.~pvp [Id. (*1°01)]
After replacing the dot symbols with parenthesis using Peano’s rules and

swapping the symbols ‘~’ and ‘D’ for ‘=" and ‘—’, respectively, the derivation
sequences appear in this guise:

8

L F ((pvp)—=p) = ((p—=(pVP)—=(P—p) (*2.05)
2.k (pVp)—p (PM.2)
3.5 (p=(Vvp)—(—p (MP, 2,1)
4L F p=(pVp) (PM.3)
5. F p—p (MP, 4,3)
LF p=p (¥2.08)
2. F —pVp (Def)

In Section B of the Principia Mathematica, Russell and Whitehead introduced
the universal quantifier ‘Y’ and the existential quantifier ‘3’. In addition, they
supplemented the axioms with a series of elementary propositions of predicate
logic. Among the numerous definitions given at the beginning of this section
were these:
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B Principia Mathematica, Volume 1, Page 135:
*903. (z).¢z.v.p: =.(2).pavp Df
¥04 p.v.(2).¢z: =.(z).pvez Df
*906. (q4z).¢z.v.p:=.(gz).¢pzvp Df
*908. p.v.(go).¢z: =.(gz).pveéz Df
*907. (2).d2.v.(qy) . Yy:=:(2):(Fy). pzvyy Df
*908. (gy).Yvy.v.(z).¢pz:=:(z):(Fy) . Yyyvez Df

The first four definitions allow the scope of a quantifier in a disjunctively
connected formula to be limited to those parts in which the quantified vari-
able occurs freely. Modern predicate logic also formalizes this fact, but not
in the form of a definition, but in the form of an axiom:

VE(pV) = (pVVEY) (for all p with € & ) (2.18)

The notation & ¢ ¢ expresses that the variable £ does not occur freely in
o, that is, each occurrence of &, if there is any, falls within the scope of a
quantifier. In modern formulations of predicate logic, this axiom is sufficient
to derive the other variants of quantifier shifting.

On the next page, further axioms follow:
B Principia Mathematica, Volume 1, Page 136:

#¥9L  F:igr.D.(q2). ¢z Pp
*911. F:dazvey.D.(qz). ¢z Pp

Proposition *#9.1 is of high relevance. Below, we will show that it is equivalent
to a well-known axiom of modern predicate logic. Equally important is this
one:

B Principia Mathematica, Volume 1, Page 137:
Feldy]-D.(z). ¢z Pp.

The square brackets play a unique role, which Russell and Whitehead explain
on page 137:

“l...] if we put
t oy, D (x).0x’

that means: ‘However y may be chosen, ¢y implies (x).¢x’ which is in
general false. What we mean is: ‘If ¢y is true however y may be chosen,
then (z).¢x is true.” But we have not supplied a symbol for the mere
hypothesis of what is asserted in 4+ .¢y’, where y is a real variable, and
it is not worth while to supply a symbol, because it would be very rarely
required. If for the moment, we use the symbol [py] to express this
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hypothesis, then our primitive proposition is

F:[¢y]. D .(x).¢x Pp. ”

Immediately after introducing this axiom, Russell and Whitehead point out its
true purpose: it is meant solely to derive new theorems:

“In practice, this proposition is only used for inference, not for impli-
cation. [...] This process will be called ‘turning a real variable into an

apparent variable.””

When expressed in the form of an inference rule, the axiom takes on the fol-
lowing form:

G
VX7 (®)

(G) is referred to as the generalization rule. In addition to the modus ponens,
it is the second important rule of inference in modern predicate logic.

The last proof we will look at in this section is this one:
B Principia Mathematica, Volume 1, Page 138:

*92. F:(z).¢z.D. ¢y _
The above proposition states the principle of deduction from the general
to the particular, 1.e. “ what holds in all cases, holds in any one case.”

Dem.
F.%21.DF.~¢yv ey 1)
F.%91.DF:~gyvey.d.(ga) ~pavy (2)
Fo(1)(2).%111. D¢ . (go) c~pz v dy 3)
[(3).(%905))] bi(ga).~pz.v. dy “4)

[(4)-(#901.%1:01)] F:(z).¢z.D. ¢y

Again, this sequence can be translated easily into a modern-looking proof:

LoF =9(y) Voly) (+2.1)
2. F 29(y) Voly) = Ix (mo(x) V o(y)) (*9.1)
3. F Ix(mo(x) V ély)) (MP, 1,2)
4k Ix—o(x) V ély) (+9.05, 3)
5. F —Vx é(x) V d(y) (Def)
6. F Vxo(x) = o(y) (Def)
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Table 2.1: A complete axiom system for first-order predicate logic

(pVe) = (PM.2)
Y= (pVY) (PM.3)
(pVeY) = (Vo) (PM.4)
(b= x) = (VY —=pVy) (PM.6)
V& @ — g€ + o] (for every collision-free substitution) (2.19)
VE(p V) = (pVVEY) (for all o with £ & o) (2.18)
R MP) —E— @)

In present-day predicate logic, this theorem exists in a very similar form as an
axiom:
V& — ¢[€ < o] (for all collision-free substitutions) (2.19)

In (2.19), the substitution of £ with o happens through syntactic replacement,
that is, every free occurrence of the variable £ is textually replaced by the
character sequence o. This way, however, a variable that occurs freely in ¢
may end up in the scope of a quantifier. Such collisions must be prohibited as
they can lead to substantively false formulas. In Section 4.1.2, we will provide
an in-depth discussion of the concept of substitution and illustrate the proper
application of this axiom.

The discussed axioms, definitions, theorems, and inference rules of the Principia
Mathematica were not randomly chosen. Written side by side, as done in
Table 2.1, they form an axiom system commonly used in modern textbooks for
defining first-order predicate logic. The propositional axioms are sometimes
chosen differently, though, as many contemporary authors prefer f.ukasiewicz’s
axioms presented in Section 2.1.2.

It is not a mistake that Russell’s fifth axiom (Assoc) is not listed, as in 1926,
Hilbert’s student Paul Bernays showed that the propositional logic axioms are
not independent. In Section 4.3, we will reveal how to deduce the fifth axiom
from the others.

Overall, the considerations in this section have shown that a familiar logic
lies beneath the seemingly complex structure of Russell’s type theory. All
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axioms and rules of inference employed in modern predicate logic have their
counterparts in the Principia Mathematica, in either the same or a similar form.
It is primarily the antiquated notation that prevents us from recognizing this
connection right away.

In hindsight, it becomes evident that Russell and Whitehead played a signif-
icant role in popularizing formal mathematics. Their work was a compelling
showcase for the precision and expressive power of formal systems in general
and predicate logic in particular. Thus, one may wonder if students should
work through the 1800 pages as part of their training. The honest answer is
no. The logic presented in the Principia Mathematica is, in many ways, too
immature to replace modern textbooks, and its intricate type theory is mainly
obsolete in contemporary logic.

Nevertheless, the Principia Mathematica is still relevant today. Russell and
Whitehead formalized classical mathematics to such an extent that the notion
of proof reduces to the symbolic manipulation of symbol strings. In particular,
it is noteworthy that the authors did not just demonstrate their method on
selected examples but applied it in meticulous hard work to large parts of
mathematics. In this sense, the over 1800 pages are empirical proof for the
formalistic and logicistic belief that formal systems can model all concepts
and inference methods of ordinary mathematics. The Principia Mathematica
demonstrated that formal mathematics works and this is their true significance.

The intellectual endeavor required to compose such a monumental work is hard
to quantify. What is evident, however, is that the ten years dedicated to the
Principia Mathematica shaped Russell’s mind:

“l...] I always found myself hoping that perhaps Principia Mathematica
would be finished some day. Moreover the difficulties appeared to me in
the nature of a challenge, which it would be pusillanimous not to meet
and overcome. So I persisted, and in the end the work was finished, but
my intellect never quite recovered from the strain. I have been ever since
definitely less capable of dealing with difficult abstractions than I was
before. This is part, though by no means the whole, of the reason for the
change in the nature of my work.”

Bertrand Russell [93]

In the following years, Russell withdrew almost entirely from logic, redirecting
his focus toward social and philosophical matters. He made significant con-
tributions in these fields and was honored with the Nobel Prize for Literature
in 1950. Russell became world famous, and many people nowadays associate
his name exclusively with his philosophical work. Many do not know that the
renowned philosopher Bertrand Russell was also one of the greatest mathe-
maticians ever.
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Figure 2.23

ERNST ZERMELO
1871 — 1953

2.4 Axiomatic Set Theory

The next stop on our journey is Berlin, where Ernst Friedrich Ferdinand Zer-
melo was born on July 27, 1871. His father, Theodor Zermelo, was a high
school teacher and had six children with his wife Maria Auguste. Ernst was
the only son and grew up with an older and four younger sisters. Several tragic
events punctuated Zermelo’s life. At the age of seven, he had to cope with the
loss of his mother shortly after the birth of his youngest sister. Then, in 1889,
just before his high school graduation, he and his sisters tragically lost their
father, leaving them as orphans. His parents had made financial provisions,
but the guardianship court ordered that most of the assets had to be spent
for the care of the younger sisters. As he grew up, Zermelo’s life changed for
the better. Due to his excellent academic performance, he was granted two
scholarships, allowing him to enroll at the Berlin Friedrich Wilhelm University,
now known as the Humboldt University.

Zermelo had a wide range of interests and attended lectures in mathemat-
ics, physics, and philosophy. As was customary at the time, he spent a few
semesters at other universities. This led him to take part in a lecture at the
University of Halle-Wittenberg by a man whose scientific work would play a
key role in his life: Georg Cantor. At that time, however, set theory was neither
one of Zermelo’s fields of interest nor covered in the lecture mentioned above;
Cantor was lecturing on elliptical functions.

After earning his doctorate in 1894, Zermelo initially worked as an assistant to
Max Planck at the Berlin Institute for Theoretical Physics. In 1897, he relo-
cated to Gottingen, rekindling his focus on mathematics. The tranquil univer-
sity town, steeped in tradition, not only provided Zermelo with an exceptional
working environment. With the appointment of David Hilbert, Go6ttingen rose
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to prominence as the world’s leading center for mathematics. In the summer
of 1898, Zermelo got acquainted with set theory in a lecture by Arthur Schoen-
flies and in a seminar by Felix Klein [17]. In 1899, he habilitated in statistical
mechanics and later worked as a private lecturer at the university. It was the
influence of David Hilbert that gradually shifted his interest to the foundations
of mathematics. In [112], Zermelo writes:

“Already 30 years ago, when I was a private lecturer in Géttingen, I
began to deal with the fundamental questions of mathematics under the
influence of D. Hilbert, to whom I owe most of my scientific development,
especially with the fundamental problems of Cantor’s set theory, which
only came to my full awareness in the then so fruitful cooperation of the
Gottingen mathematicians. It was the time when the ‘antinomies’, the
apparent ‘contradictions’ in set theory, attracted the most general atten-
tion and prompted both qualified and unqualified pens to the boldest as
well as the most anxious attempts at solutions.”

“Schon vor 30 Jahren, als ich Privatdozent in Gé6ttingen war, begann
ich unter dem FEinflusse D. Hilberts, dem ich iiberhaupt das meiste in
meiner wissenschaftlichen Entwickelung zu verdanken habe, mich mit
den Grundlagenfragen der Mathematik zu beschéftigen, insbesondere
aber mit den grundlegenden Problemen der Cantorschen Mengenlehre,
die mir in der damals so fruchtbaren Zusammenarbeit der Gottinger
Mathematiker erst in ihrer vollen Bedeutung zum Bewufitsein kamen.
Es war damals die Zeit, wo die ‘Antinomien’, die scheinbaren ‘Wider-
spriiche’ in der Mengenlehre, die allgemeinste Aufmerksamkeit auf sich
zogen und berufene wie unberufene Federn zu den kiihnsten wie zu den

angstlichsten Losungsversuchen veranlafsten.”

Ernst Zermelo, 1930

Zermelo drew his attention to a problem that Hilbert had identified as one
of mathematics’s most compelling and fundamental questions. This question
continues to captivate mathematicians today: the continuum hypothesis.

2.4.1 Continuum Hypothesis

The continuum hypothesis (CH), conjectured by Georg Cantor, postulates a
relationship between the cardinality of a set M and the cardinality of its power
set 2M . To understand its exact formulation, let us recall Cantor’s Theorem,
proven on page 63. This theorem states that the power set 2™ has a greater
cardinality than M itself. For instance, Cantor’s theorem implies the following
hierarchy:

N 2N
IN| < 2V < 22 < 22" | < 122 | <...
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Cantor employed the Hebrew letter Aleph (R) to label the cardinalities of in-
finite sets. The smallest infinity corresponds to the cardinality of the natural
numbers and is denoted by the cardinal number Xy. No smaller infinities than
IN| exist, as all infinite subsets of N can be bijectively mapped onto N. The
cardinal number X; denotes the next larger infinity, and so on. If a set M has
the cardinality X,,, then 2% denotes the cardinality of the power set 2.

It is straightforward to demonstrate that the set of real numbers, denoted as
R, has the same cardinality as the power set of natural numbers. Symbolically,
this equivalence is expressed as follows:

IR| = |2V] = 2% (2.20)

Hence, the set of real numbers has a greater cardinality than the set of natural
numbers. Cantor was captivated by the question of whether additional infinities
were hiding between the sets N and R. In a letter to Richard Dedekind dated
July 11, 1877, he conjectured this was not the case.

In his letter, Cantor formulated his hypothesis in a rather intricate manner. If
he were to phrase it today, Cantor would probably use a formulation similar to
this one:

“Every infinite subset of the real numbers has the cardinality of the nat-
ural numbers or the cardinality of the real numbers.”

Or, more concisely:
“There is no set M with |[N| < |M| < |R|.”

Assuming the continuum hypothesis were true, the real numbers would be
second in the infinitely long list of infinities. Symbolically, this conjecture is
expressed in the following form:

IR| £ Xy (2.21)
According to (2.20), this can be rewritten as
280 LN
Extrapolating this equation to
A (2.22)

leads to the generalized continuum hypothesis (GCH). In colloquial terms, this
hypothesis states that the power set operation moves seamlessly from one in-
finity to the next (Figure 2.24).
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Figure 2.24: The generalized continuum hypothesis conjectures that the powerset op-
eration does not skip any infinities while traversing from one infinity to the next.

Cantor continued to work on the continuum hypothesis until the end of his
life. Several times, he believed he had found a proof. Other times, Cantor
thought he had successfully refuted the hypothesis. But errors kept cropping
up, constantly shattering his perceived successes. No matter how hard he tried,
he was denied solving this great riddle of set theory during his lifetime.

Hilbert regarded the resolution of the continuum hypothesis as a matter of ut-
most urgency, emphasizing it in his speech at the second International Congress
of Mathematicians in Paris. He placed it prominently at the top of his renowned
list of unsolved problems:

“Two systems, i.e., two assemblages of ordinary real numbers or points,
are said to be (according to Cantor) equivalent or of equal cardinal num-
ber, if they can be brought into a relation to one another such that to
every number of the one assemblage corresponds one and only one definite
number of the other. The investigations of Cantor on such assemblages
of points suggest a very plausible theorem, which nevertheless, in spite
of the most strenuous efforts, no one has succeeded in proving. This is
the theorem:

Every system of infinitely many real numbers, i.e., every assemblage of
numbers (or points), is either equivalent to the assemblage of natural
integers, 1, 2, 3,... or to the assemblage of all real numbers and therefore
to the continuum, that is, to the points of a line; as regards equivalence
there are, therefore, only two assemblages of numbers, the countable as-
semblage and the continuum.
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From this theorem it would follow at once that the continuum has the
next cardinal number beyond that of the countable assemblage; the proof
of this theorem would, therefore, form a new bridge between the count-
able assemblage and the continuum.”

“Zwei Systeme, d. h. zwei Mengen von gewéhnlichen reellen Zahlen (oder
Punkten) heifsen nach Cantor dquivalent oder von gleicher Méchtigkeit,
wenn sie zu einander in eine derartige Beziehung gebracht werden kénnen,
dafs einer jeden Zahl der einen Menge eine und nur eine bestimmte Zahl
der anderen Menge entspricht. Die Untersuchungen von Cantor iiber
solche Punktmengen machen einen Satz sehr wahrscheinlich, dessen Be-
weis jedoch trotz eifrigster Bemiihungen bisher noch Niemandem gelun-
gen ist; dieser Satz lautet: ‘Jedes System von unendlich vielen reellen
Zahlen d.h. jede unendliche Zahlen- (oder Punkt)menge ist entweder
der Menge der ganzen natiirlichen Zahlen 1, 2, 3, ... oder der Menge
sadmmtlicher reellen Zahlen und mithin dem Continuum, d.h. etwa den
Punkten einer Strecke aequivalent; im Sinne der Aequivalenz giebt es
hiernach nur zwei Zahlenmengen, die abzédhlbare Menge und das Con-
tinuum.” Aus diesem Satz wiirde zugleich folgen, dafl das Continuum
die nédchste Maéchtigkeit tiber die Maéchtigkeit der abzahlbaren Mengen
hinaus bildet; der Beweis dieses Satzes wiirde mithin eine neue Briicke

schlagen zwischen der abzdhlbaren Menge und dem Continuum.”

David Hilbert, Paris, 1900 [50, 47|

2.4.2 Well-Ordering Theorem

Equally important are the words that follow. Let’s listen again:

“Let me mention another very remarkable statement of Cantor’s which
stands in the closest connection with the theorem mentioned and which,
perhaps, offers the key to its proof. Any system of real numbers is said
to be ordered, if for every two numbers of the system it is determined
which one is the earlier and which the later, and if at the same time this
determination is of such a kind that, if a is before b and b is before c,
then a always comes before c. The natural arrangement of numbers of
a system is defined to be that in which the smaller precedes the larger.
But there are, as is easily seen infinitely many other ways in which the
numbers of a system may be arranged.”

“Es sei noch eine andere sehr merkwiirdige Behauptung Cantors erwahnt,
die mit dem genannten Satze in engstem Zusammenhange steht und die
vielleicht den Schliissel zum Beweise dieses Satzes liefert. Irgend ein
System von reellen Zahlen heifst geordnet, wenn von irgend zwei Zahlen
des Systems festgesetzt ist, welches die friihere und welches die spétere
sein soll, und dabei diese Festsetzung eine derartige ist, dafs, wenn eine
Zahl a friiher als die Zahl b und b friiher als c ist, so auch stets a friiher
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als c erscheint. Die natiirliche Anordnung der Zahlen eines Systems heile
diejenige, bei der die kleinere als die friihere, die grofiere als die spétere
festgesetzt wird. Es giebt aber, wie leicht zu sehen ist, noch unendlich

viele andere Arten, wie man die Zahlen eines Systems ordnen kann.”

David Hilbert, Paris, 1900 [50, 47]

Hilbert’s description aligns with the classical definition of a totally ordered set:

Definition 2.7 Partial order, total order

Let M be a set and ‘<’ a binary relation on M.

B ‘<’ is a partial order on M, if it is

e irreflexive, <=l
® asymmetric, and 1z From = < y follows y £ =
® transitive. 15" From z < y and y < z follows = < z

B ‘<’ is a linear order or total order on M, if

® ‘<’ is a partial order, and

e all elements are strongly connected.
1z For all x and y with z # y, either z <y or y < x

Ordered sets are abundant in mathematics. For instance, the well-known num-
ber sets N, Z, Q, and R are totally ordered by the standard less-than relation
‘<’. Hilbert continues:

“ If we think of a definite arrangement of numbers and select from them
a particular system of these numbers, a so-called partial system or as-
semblage, this partial system will also prove to be ordered. Now Cantor
considers a particular kind of ordered assemblage which he designates as
a well ordered assemblage and which is characterized in this way, that
not only in the assemblage itself but also in every partial assemblage
there exists a first number. The system of integers 1, 2, 3, ... in their
natural order is evidently a well ordered assemblage. On the other hand
the system of all real numbers, i. e., the continuum in its natural order, is
evidently not well ordered. For, if we think of the points of a segment of
a straight line, with its initial point excluded, as our partial assemblage,
it will have no first element.”

“Wenn wir eine bestimmte Ordnung der Zahlen ins Auge fassen und aus
denselben irgend ein besonderes System dieser Zahlen, ein sogenanntes
Teilsystem oder eine Teilmenge, herausgreifen, so erscheint diese Teil-

menge ebenfalls geordnet. Cantor betrachtet nun eine besondere Art
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von geordneten Mengen, die er als wohlgeordnete Mengen bezeichnet
und die dadurch charakterisirt sind, dafl nicht nur in der Menge selbst,
sondern auch in jeder Teilmenge eine friiheste Zahl existirt. Das System
der ganzen Zahlen 1, 2, 3, ... in dieser seiner natiirlichen Ordnung ist
offenbar eine wohlgeordnete Menge. Dagegen ist das System aller reellen
Zahlen, d. h. das Continuum in seiner natiirlichen Ordnung offenbar nicht
wohlgeordnet. Denn, wenn wir als Teilmenge die Punkte einer endlichen
Strecke mit Ausnahme des Anfangspunktes der Strecke ins Auge fassen,

so besitzt diese Teilmenge jedenfalls kein friihestes Element.”

David Hilbert, Paris, 1900 [50, 47]

Thus, Cantor was not interested in arbitrary orders but only in those that lead
to what is known as a well-ordering.

A\Q Definition 2.8 Well-Ordering

Let M be a set and ‘<’ a binary relation on M.

B ‘<’ is a well-ordering on M, if

e ‘<’ is a total order on M, and

e cvery non-empty subset N C M has a smallest element.
1" There exists an © € N with x < y for all y € N with y # =

Among the already mentioned sets N, Z, Q, and R, only N is well-ordered
by the standard less-than relation ‘<’. In this set, every non-empty subset
contains a minimal element, that is, an element that is smaller than all other
elements within that subset.

We reach a pivotal point in Hilbert’s speech:

“The question now arises whether the totality of all numbers may not be
arranged in another manner so that every partial assemblage may have a
first element, i. e., whether the continuum cannot be considered as a well
ordered assemblage — a question which Cantor thinks must be answered
in the affirmative. It appears to me most desirable to obtain a direct
proof of this remarkable statement of Cantor’s, perhaps by actually giv-
ing an arrangement of numbers such that in every partial system a first
number can be pointed out.”

“Es erhebt sich nun die Frage, ob sich die Gesamtheit aller Zahlen nicht in
anderer Weise so ordnen lift, dafs jede Teilmenge ein friihestes Element
hat, d.h. ob das Continuum auch als wohlgeordnete Menge aufgefafst
werden kann, was Cantor bejahen zu miissen glaubt. Es erscheint mir
héchst wiinschenswert, einen direkten Beweis dieser merkwiirdigen Be-

hauptung von Cantor zu gewinnen, etwa durch wirkliche Angabe einer
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Figure 2.25: One of infinitely many well-orderings of the integers.

solchen Ordnung der Zahlen, bei welcher in jedem Teilsystem eine friih-

este Zahl aufgewiesen werden kann.”

David Hilbert, Paris, 1900 [50, 47|

Apparently, Cantor considered it possible to find an arrangement of the real
numbers that fulfills the definition of a well-ordering.

Well-ordering the integers rather than the real numbers does not impose any
problems. To ensure that every non-empty subset of Z contains a minimal
element, it suffices to arrange the integers according to the following scheme
(Figure 2.25):

0<1<—-1<2<-2<3<-3<4<4<b<-b<b6<-6<...

With a similar scheme, the set of rational numbers Q can be well-ordered, too
(Figure 2.26):

1 1 2 1 1 2 3 1 1 3 4 3 2 1
0<i<—-1<i<3<—5<-9<3<3<—3<-3<i<2<i<i< ..

By definition, 0 is the smallest number in this sequence, followed by the frac-
tions whose absolute sum of numerator and denominator equals 2. Then come
the fractions whose absolute sum equals 3, and so on. The chosen order ensures
that each non-empty subset contains a minimal element.

Hilbert and his colleagues puzzled whether the real numbers could also be
well-ordered. But unlike the integers and the rational numbers, the contin-
uum resisted all attempts to construct such an order explicitly. For Hilbert,
deciding the well-ordering hypothesis was a pressing problem. Around 1900,
he suspected it might hold the key to resolving the even more significant con-
tinuum hypothesis.

Eventually, Zermelo turned his attention to the mysteries of well-ordered sets,
leading to a breakthrough in 1904. That year, he presented a proof that decided
the well-ordering hypothesis positively [111]:
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Figure 2.26: One of infinitely many well-orderings of the rational numbers. The gray-
shaded fractions are unreduced and only listed to emphasize the enumeration scheme.

Theorem 2.9 Well-Ordering Theorem (Zermelo, 1904)

Every set can be well-ordered.

Zermelo’s proof marked the beginning of a development that eventually gave
rise to axiomatic set theory. However, at the time of publication, the proof was
regarded with suspicion and triggered many adverse reactions. Understanding
the historical events requires a closer look at Zermelo’s line of reasoning.

The proof that every set M can be well-ordered unfolds in four steps:
1. Zermelo introduces the notion of ~-sets, which are well-ordered subsets
of M with certain additional properties.
2. He demonstrates that the elements within v-sets are consistently ar-
ranged. For any given set of y-sets, there exists a unique relation, denoted

as ‘<’, that well-orders the elements in each ~-set.

3. Zermelo defines the set L, as the union of all y-sets and proves that the
relation‘<’ also establishes a well-ordering on L.

4. Finally, Zermelo shows that L, is a 7-set itself, containing all elements
of M. This implies that ‘<’ well-orders the entire set M.

Having roughly outlined the proof, let us fill some of the gaps:
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Example 1
Choice function ~-sets Ordering
({1} 1
W((2) = 2
V() = 3 v
1({1,2}) =1 v = 2 2<3<1
V{23 = 3 My = {2.3)
Y({L3) = 3 M= s
7({17273}) = 2
Example 2
Choice function y-sets Ordering
({1} 1
({2} = 2
G({3h) = 3 oo
({12} = 2 v = 1<2<3
W23 = 2 M~ 3
(L3 = 3 W= L2
7({172’3}) =1

Figure 2.27: Each choice function « leads to a well-ordering, here demonstrated on
the finite set {1,2,3}. This property constitutes the core of Zermelo’s proof of the
well-ordering theorem.

Step 1

The definition of y-sets relies on a choice function v, mapping every non-empty
subset M’ C M to an arbitrary element within M’. To put it in Zermelo’s
words:

“Imagine that with every subset M’ there is associated an arbitrary el-
ement m) that occurs in M’ itself : let m} be called the ‘distinguished’
element of M'. This yields a ‘covering’ y of the set M by certain elements
of the set M.”

“Jeder Teilmenge M’ denke man sich ein beliebiges Element m' zugeord-
net, das in M’ selbst vorkommt und das ‘ausgezeichnete’ Element von
M’ genannt werden mdoge. So entsteht eine ‘Belegung’ v der Menge M

mit Elementen der Menge M von besonderer Art.”

Ernst Zermelo [111, 104]
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The two examples in Figure 2.27 illustrate how the choice function « may look
like for the set {1,2,3}.

The selection function is utilized in the next definition:

Definition 2.10

A subset M., of M is a y-set, if

B )M, is well-ordered and

B y(M\A,) =a for all a € M,

A, is the Initial segment of M., containing all elements smaller than a.

According to this definition, a v-set is a well-ordered set M., with the addi-
tional property that the distinguished element of M\ A, is the minimal ele-
ment of M,\A,. This formulation already suggests that there is little freedom
in constructing ~y-sets.

As an example, let us consider the set M = {1,2,3} and the first function from
Figure 2.27. The simplest ~-set is the empty set. The next-simplest y-sets
are those with a single element. For every ~y-set of the form {a;}, the initial
segment A,, is empty. Therefore, we have:

ar = y(M\D) = v({1,2,3}) = 2
Consequently, {2} is the only y-set with a single element.

A similar argument applies for v-sets {a1,as} with two elements. If ay is the
smaller element, then, as before, a1 = v({1,2,3}) = 2. As a result, the larger
element as is also uniquely determined:

az = y(M\{a1}) = 7({1,3}) = 3

Thus, {2,3} is the only ~-set with two elements, and within this set, the or-
dering relation 2 < 3 holds.

In the same way, the uniquely determined ~y-set {a1, as, as} with three elements
can be obtained. The smallest element is equal to 2, the next larger element is
equal to 3, and the largest element a3 must satisfy:

ag = y(M\{a1,a2}) = 7({1}) = 1

Thus, {1,2,3} is the only y-set with three elements, and within this set, the
ordering relation 2 < 3 < 1 holds.
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Step 2

All four calculated ~-sets 0, {2}, {2,3} and {2,3,1} share a crucial property:
When considered as ordered sequences, one set is always the initial segment of
the other:

(¢ is the initial segment of 2 ...
. is the initial segment of 2 <3 ...
. is the initial segment of 2 <3 < 1.

The example has demonstrated why this has to be the case, at least for finite
sets. The 7-sets are created deterministically by successively adding a uniquely
determined element. With a generalized argument, Zermelo established this
property not only for finite but for arbitrary ~y-sets. In his original proof, this
consideration is the subject of point (5):

“(5) Whenever M/, and M/ are any two distinct ~-sets (associated, how-
ever, with the same covering « chosen once for all!), one of the two is
identical with a segment of the other.”

“5) Sind M., und M!/ irgend zwei verschiedene vy-Mengen (die aber zu
derselben ein fiir allemal gewéhlten Belegung ~ gehoren!), so ist immer

eine von beiden identisch mit einem Abschnitte der anderen.”

Ernst Zermelo [111, 104]

This interim result leads to interesting conclusions. If two elements a and b
are contained in two different 7-sets, the ordering relationship between a and
b must be the same in both sets. This property is part of point 6 in Zermelo’s
proof:

“6) Consequences. If two y-sets have an element a in common, they also
have the segment A of the preceding elements in common. If they have
two elements a, b in common, then either in both sets a < b or in both
sets b < a.”

“6) Folgerungen. Haben zwei y-Mengen ein Element a gemeinsam, so
haben sie auch den Abschnitt A der vorangehenden Elemente gemein.
Haben sie zwei Elemente a, b gemein, so ist in beiden Mengen entweder
a <boderb<a.”

Ernst Zermelo [111, 104]

Step 3

Zermelo refers to an element that occurs in any ~-set as a y-element and defines
L., as the set of all y-elements. For the examples in Figure 2.27, L, is the set
{1,2, 3}, that is, the set M itself.
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The elements of L., can be ordered by applying the order in which they occur in
the individual ~-sets. This is justified by the prior results. For two y-elements
a and b, property (5) guarantees the existence of a y-set containing both, and
property (6) ensures that the order relations are consistent across all v-sets.
Hence, the larger y-set can be utilized to determine the smaller element among
a and b. Zermelo expresses this idea as follows:

“If a and b are two arbitrary vy-elements and if M/, and M are any
two vy-sets to which they respectively belong, then according to (5), the
larger of the two y-sets contains both elements and determines whether
the order relation is a < b oder b < a. According to (6) this order relation
is independent of the y-sets selected.”

“Sind a, b zwei beliebige v-Elemente und M/, und M! irgend zwei ~-
Mengen, denen sie angehéren, so enthélt nach 5) die gréfere der beiden
v-Mengen beide Elemente und bestimmt die Ordnungsbeziehung a < b
oder b < a. Diese Ordnungsbeziehung ist nach 6) unabhéngig von der

Wahl der verwendeten y-Menge.”
Ernst Zermelo [111, 104]

The two examples in Figure 2.27 yield the orderings 2 <3 <1 and 1 <2 < 3,
respectively.

Step 4

Next, Zermelo proves two central properties of L. :

“(7) If we call any element of M that occurs in some vy-set as “y-element’,
the following theorem holds: The totality L~ of all y-elements can be so
ordered that it will itself be a ~y-set, and it contains all elements of the
original set M. M itself is thereby well-ordered.”

“7) Bezeichnet man als “y-Element’ jedes Element von M, das in irgen-
deiner y-Menge vorkommt, so gilt der Satz: die Gesamtheit L. aller
v-Elemente lafst sich so ordnen, daf sie selbst eine y-Menge darstellt,
und umfaft alle Elemente der urspriinglichen Menge M. Die letztere ist
damit selbst wohlgeordnet.”

Ernst Zermelo [104, 111]

This quote is followed by paragraphs (I) to (V), proving the stated properties.
With the proof of (7), he had crossed the finish line, as it was now established:
L., is itself a y-set and thus well-ordered. Since the set L. contains all elements
of M, the relation ‘<’ must be a well-ordering on M.
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The proof of the well-ordering theorem caused a great stir among mathemati-
cians and boosted Zermelo’s academic career. In 1905, he was appointed pro-
fessor at the University of Gottingen.

2.4.3 Criticism of Zermelo’s Proof
2.4.3.1 The Axiom of Choice

Hilbert’s dream of deciding the continuum hypothesis through the well-ordering
hypothesis did not come true. Zermelo’s proof neither revealed how a corre-
sponding order on the real numbers could be constructed, nor did it provide
any clue on how the continuum hypothesis could be decided.

The proof is non-constructive for a simple reason: the utilization of the choice
function . Zermelo had no need to care about the details of this function
because his proof only required its mere existence for any given set M. For finite
sets, a choice function can always be constructed in the demonstrated manner,
thus affirming the question of its existence. However, the situation becomes
significantly more challenging for infinite sets, as the elements cannot be listed
one after the other. Zermelo believed this was only a matter of representation,
not affecting the existence of such a function. Even if it is infeasible to explicitly
write down the definition of a choice function for a complex set, he thought it
should still be possible to prove its existence. However, despite all efforts, such
a proof was never found.

Today, we know the proof Zermelo had been looking for does not exist, with
far-reaching consequences: We are compelled to replace certainty with belief
by simply postulating the existence of a choice function. This is precisely the
purpose of the axiom of choice (AC), which, in its simplest form, reads as
follows:

“Every set of non-empty sets has a choice function.”

An equivalent formulation is this one (Figure 2.28):

“Let M be a set of non-empty sets. Then one element can be taken from
each set of M and the chosen elements be combined into a new set.”

Another equivalent formulation is the well-ordering theorem itself. That is
because the well-ordering theorem not only follows from the axiom of choice,
but the axiom of choice also follows from the well-ordering theorem. The proof
builds upon the following train of thought: Suppose M is a set of non-empty
sets. Now, the well-ordering theorem states that the union of all sets contained
in M has a well-ordering, and from this, it follows that each set from M contains
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Does a choice
set also exist for
infinite sets?

Figure 2.28: Illustration of the axiom of choice

a minimal element. Combining the minimal elements into a new set then yields
a choice set for M.

For short, the axiom of choice and the well-ordering theorem are equivalent.
Consequently, we can postulate the well-ordering theorem as an axiom just
as well as the axiom of choice, which puts us in a precarious situation. The
axiom of choice looks like a trivial statement. At the same time, it is equivalent
to a theorem whose substantive meaning is not entirely convincing, even at a
second glance. Overall, this raises the question of whether we can fully trust
our intuition and whether the axiom of choice indeed describes a trivial truth.

Based on considerations of this kind, numerous mathematicians had turned
against Zermelo, including notable figures such as Giuseppe Peano, Emile Borel,
and Henri Poincaré [10, 84]. Borel regarded Zermelo’s proof merely as a con-
tradiction of the axiom of choice, as it implied the absurd assertion that all sets
could be well-ordered. Peano saw no way to deduce the axiom from elementary
principles, thus doubting its correctness. Whether it described an intuitively
convincing fact was irrelevant to him.

The debate over the axiom of choice divided the scientific community, and
both camps occasionally lapsed into polemics. For instance, Zermelo pointed
out in [105] that Russell’s antinomy could be easily written down in Peano’s
logic with a few pen strokes:

“Of course, there remains to Peano a simple way of proving the theo-
rems in question, as well as many others, from his own principles. He
need only use Russell’s antinomy, lately much discussed, since, as is well
known, everything can be proved from contradictory premisses.”

“Freilich hdtte Herr Peano noch ein einfaches Mittel, die in Frage ste-
henden Satze wie noch viele andere aus seinen eigenen Prinzipien zu be-
weisen. Er brauchte nur von der neuerdings viel erérterten ‘Russellschen
Antinomie’ Gebrauch zu machen, da sich aus widersprechenden Prdamis-

sen bekanntlich alles beweisen lasst.”
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Ernst Zermelo [110, 105]

Zermelo had no proof for the axiom of choice, and we have already foreshadowed
that he had no chance of finding one. The astonishing fact that AC is neither
provable nor disprovable within classical mathematics was established in two
stages. In 1938, Kurt Godel showed that adding the axiom does not generate
contradictions in classical mathematics [33]. The proof was later completed in
1963 by Paul Cohen. The American mathematician succeeded in proving that
the negation of AC does not lead to contradictions either [11].

The independence of AC implies that we are free to choose between mathemat-
ics with the axiom of choice and mathematics without; neither bears the risk of
creating contradictions. However, the question remains: Which mathematics
should we adopt? Which one feels right?

B Option 1: Accepting AC

If the axiom of choice is accepted, there is no need to worry about choice
functions, as they exist by definition. With the help of AC, many theorems
known in classical mathematics can be proved, such as the theorem that
every vector space has a basis. On the other hand, theorems are provable
that put our intuition to the test. A well-known example is the Banach-
Tarski paradox. It states that a sphere can be split into a finite number
of parts in a way that makes it possible to reassemble them into two new
spheres, each having the same size as the original sphere [2].

B Option 2: Rejecting AC

Rejecting the axiom of choice renders several established mathematical the-
orems false. The well-ordering theorem becomes a false statement within
this mathematical framework, and not every vector space has a basis. Inter-
estingly, some counterintuitive theorems would also cease to hold, including
the mentioned theorem by Banach and Tarski.

The intellectual wounds inflicted by the heated debate surrounding the axiom
of choice have mainly healed by now. Most contemporary mathematicians
consider the axiom of choice legitimate, and hardly anyone still demands its
banishment today.

2.4.3.2 Non-Predicative Definitions

The French mathematician Henri Poincaré attacked Zermelo’s proof from a
different angle. He directed his criticism towards the definition of the set L.,
which consists of all elements occurring in some y-set. L. is, as Zermelo has
shown, also a v-set and thus referenced in its definition. Poincaré commented
on this matter as follows:
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“The union of all M, can only mean the union of all those M., in whose
definition the set I" does not occur. Consequently, that M., which con-
sists of I' and the distinguished element of E— I', must be excluded. Al-
though I am quite inclined to accept Zermelo’s axiom [axiom of choice],
I reject his proof.”

“La somme logique de tous M., cela doit vouloir dire la somme logique
de tous les M., dans la définition desquels ne figure pas la notion de I'; et
alors le M., formé par I' et I’élément distingué de ¥ — I" doit étre exclu.
Aussi, quoique je sois plutot disposé a admettre 'axiom de Zermelo, je
rejette sa démonstration.”

Henri Poincaré [81]

Poincaré used F and I' to denote Zermelo’s sets M and L., respectively.

Does Poincaré’s criticism remind you of the Principia Mathematica? If so, you
have already developed a good sense of the sentiments of mathematicians in
the first half of the twentieth century. The same point of criticism led Russell
to formulate his vicious circle principle, discussed in Section 2.3.3.

244 Zermelo’s Axioms

After the criticism had surfaced, Zermelo initially insisted on the correctness
of his arguments. Four years later, however, he presented a revised proof
that addressed the issue of using a non-predicative definition. This revised
proof appeared in 1908 in an article titled A new proof of the possibility of
a well-ordering [110, 105]. In this work, Zermelo introduced four axioms that
postulated all the properties a set must satisfy for the proof to succeed. These
axioms were part of a more elaborate axiom system described by Zermelo in
the same journal, in an article titled Investigations on the Foundations of Set
Theory I [109, 106]. In hindsight, this work was of utmost importance for
modern mathematics, as it laid the foundation for axiomatic set theory.

For Zermelo, the definition of sets was a tightrope walk. If his work was to
have practical use, the definition had to be broad enough to include all sets
that did not cause any harm. At the same time, he had to be careful not to
open a gateway for antinomies. Zermelo opted for a constructive approach by
establishing several rules that allowed sets to be constructed from other sets in
specific ways. Here are four of his fundamental rules:

B The empty set 0 is a set. 1" Axiom of empty set
B If M and N are sets, then {M, N} is a set. 15~ Axiom of pairing
B If M is a set, then | J M is a set. 15~ Axiom of union

B If M is a set, then 2 is a set. 1= Axiom of power set
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Herein, |J M is a shorthand notion for:

U =

xeM

Zermelo supplemented these laws with the axiom of definiteness, stating that
two sets are equal if and only if they contain the same elements.

Let us examine the full extent of these axioms. If they sufficed to establish the
existence of all ordinary sets, they should, at the very least, entail the existence
of the union, the intersection, and the difference of two sets M and N, denoted
by MUN, MNN,and M \ N, respectively. The existence of M UN is easy to
prove. The pairing axiom guarantees the existence of {M, N}, and the axiom
of union ensures the formation of the set | J{M,N} = M U N. However, as
things stand, the axioms are too weak to form intersections or complements.
To ascertain the existence of

MNN :
M\ N :

{zr|zeMAzeN}
{zr|lzeMANzgN}

the so-called comprehension schema is needed, which, in its general form, reads
as follows:
“If p is a formula, then {z | ¢(x)} is a set.”

However, Zermelo could not include the comprehension schema in this general
form, as the choice ¢ = = ¢ x brings forth Russell’s antinomy. Therefore, he
opted for the weaker separation schema:

B If M is a set and ¢ is a formula, then {z | 2 € M A ¢(x)} is a set.

15" Axiom schema of separation

Like in the general comprehension schema, ¢ can be substituted with any for-
mula. However, the axiom schema can be safely employed, as  operates solely
on the elements of another set. The axiom does not permit the aggregation of
arbitrary elements but only to separate elements from an already established
set.

With the separation schema in hand, it is straightforward to define the inter-
section and the difference of two sets:

MNN = {z|ze(MUN)Ap(x)} with p(z) ==z € M Az €N
M\N = {z|zeMAnpx)} with p(x) =2 & N

Can we now construct all the sets we are familiar with? The answer is no, as
our current methods only allow us to generate finite sets. To delve into the
realm of the infinite, the so-called transfinite, the existence of infinite sets has
to be backed up axiomatically.
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m {0, {0}, {{0}},{{{0}}},...} is a set. 15 Axiom of infinity

Below, we will refer to the postulated set as Zermelo’s number sequence, ab-
breviated as Zjg.

Still, the discussed axioms do not suffice to generate all sets that are generally
considered harmless. Among the first to notice this gap was the German-
Israeli mathematician Abraham Fraenkel. In his 1922 publication titled Zu
den Grundlagen der Cantor-Zermelo’schen Mengenlehre, he gives the following
example:

“The seven Zermelo axioms are not sufficient to establish set theory. To
prove this assertion, consider the following simple example: Let Zy be
[Zermelo’s number sequence] [...|; the power set $1Z, (set of all subsets of
Zy) is denoted by Z1, Z1 by Za, etc. Then the axioms, as their exam-
ination easily shows, do not allow the formation of the set {Zy, Z, ...},
and therefore also not the formation of the union set.”

“Die sieben Zermeloschen Axiome reichen nicht aus zur Begriindung der
Mengenlehre. Zum Nachweis dieser Behauptung diene etwa das fol-
gende einfache Beispiel: Es sei Zy die [Zermelo’sche Zahlenreihe] [...]; die
Potenzmenge $1Zy (Menge aller Untermengen von Zg) werde mit Z1, 474
mit Zy bezeichnet usw. Dann gestatten die Axiome, wie deren Durch-
musterung leicht zeigt, nicht die Bildung der Menge {Zoy, Z1, ...}, also
auch nicht die Bildung der Vereinigungsmenge.”

Abraham Fraenkel, 1922 [20]

To permit the formation of the set

z
92%0 522 0

{Z0,71,...} = {Zy,2%0,227 22" 22" (2.23)
Fraenkel introduced the so-called replacement schema:

“If M is a set and each element of M is replaced by a ‘thing of the domain
$B°, then M again becomes a set.”

“Ist M eine Menge und wird jedes Element von M durch ein ‘Ding des
Bereiches B’ ersetzt, so geht M wiederum in eine Menge iiber.”

Abraham Fraenkel, 1922 [20]
This schema guarantees the following;:

B If M is a set and f is a function that assigns a set to each element of M,
then

{f(x) |z € M}

is a set.
1" Axiom schema of replacement
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The replacement schema permits the derivation of Fraenkel’s example set
0,21, ...} from Zermelo’s number sequence using the following function:
Zo,7Z f Z lo’ b ing the following functi

Zo forzx =10

2% for z = {0}
flz) = 2222 for z = {{0}}

22 forz = {{{0}}}

As a side effect, adding the replacement schema allows us to eliminate the sep-
aration schema and the pairing axiom, as both become derivable as theorems.

However, one last problem remains: The axioms formulated so far allow us
to construct certain sets explicitly, but they do not exclude the existence of
others. To keep such uninvited guests at bay, Fraenkel formulated the Axiom
of Limitation:

“|It] is clear that the axiom system does not have a ‘categorical charac-
ter’, i.e., it does not completely determine the totality of sets. [...], so
here the indicated evils can be remedied by a ‘limitation axiom’ to be set
up as the ninth and last axiom, which imposes on the concept of set or
more conveniently on the domain B the smallest extent compatible with
the other axioms.”

“|Es| geht hervor, dass das Axiomensystem keinen ‘kategorischen
Charakter’ besitzt, ndmlich die Gesamtheit der Mengen nicht vollstdndig
festlegt. [...], so kann hier den angegebenen Ubelstinden durch ein als
neuntes und letztes Axiom aufzustellendes ‘Beschranktheitsaxiom’ abge-
holfen werden, das dem Mengenbegriff oder zweckméfiger dem Bereich
B den geringsten mit den tbrigen Aziomen vertraglichen Umfang aufer-

legt.”
Abraham Fraenkel, 1922 [20]

John von Neumann was dissatisfied with the formulation, as the axiom ex-
plicitly referred to the others. In his own set theory, developed in 1925, he
replaced it with an equivalent axiom that prohibited infinitely descending in-
clusion chains. In 1930, Zermelo adopted this revised axiom in the following
form:

“Every (regressive) chain of elements, in which each link is an element of
the preceding one, terminates with a finite index at a primal element.”

“Jede (riickschreitende) Kette von Elementen, in welcher jedes Glied El-
ement des vorangehenden ist, bricht mit endlichem Index ab bei einem

Urelement.”

Zermelo, 1930 [107]
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This is Zermelo’s axiom of foundation. It denies the existence of infinitely
descending inclusion chains of the form My > My 3 My > ...

Together, the presented axioms constitute the Zermelo-Fraenkel set theory
(ZF). Adding the axiom of choice (AC) yields ZFC (Zermelo-Fraenkel set the-
ory with Choice), which most contemporary mathematicians widely accept as
the formal foundation of mathematics. This also clarifies the precise meaning
of the above formulation: the axiom of choice or its negation “does not generate
contradictions in classical mathematics”. It expresses that the sets ZF U {AC}
and ZFU{—AC} are consistent, provided no contradictions are derivable within
ZF itself.

Over the course of time, other axiom systems have been proposed. Examples
are the set theory of Wilhelm Ackermann [1] and the lesser-known Morse-Kelley
set theory [63, 71]. The most famous descendant is the Neumann-Bernays-
Godel set theory, NBG in short. This theory distinguishes between sets and
classes. For instance, in ZF and ZFC, the set of all sets is not permitted to
exist, but in NBG, it exists as a class. This approach avoids antinomies not
by excluding contentious objects but by categorizing them as classes. Classes,
however, are subject to significant limitations, such as not being allowed as
elements of sets or other classes. Another notable property of NBG set theory
is its finite axiomatizability, which means it is definable without resorting to
axiom schemata.

Developing an axiom system for set theory was a tremendous achievement, yet
Zermelo was denied one challenge for the rest of his life: proving the consis-
tency of his axioms. Zermelo tried hard to preempt the looming criticism his
set theory might lead to antinomies, but the proof was unexpectedly elusive.
Ultimately, he had no option but to publish his axiom system without formal
assurance.

In 1910, Zermelo accepted an offer from the University of Zurich, but due to
declining health, he had to relinquish his chair just six years later. From that
point on, he lived in Breisgau, Germany, and worked as an honorary professor
at the University of Freiburg starting in 1926.

After Godel published the incompleteness theorems in 1931, it became evident
why Zermelo failed to prove the consistency of his axiom system. The expressive
power of ZF and ZFC is equivalent to classical mathematics, and according to
Godel’s second incompleteness theorem, no system of such expressiveness can
prove its own consistency. In short, the consistency of ZF or ZFC is unprovable
with the methods of classical mathematics.

Zermelo never accepted the proofs of the incompleteness theorems and be-
came one of Godel’s most vigorous opponents. When both met in September
1931 at the meeting of the German Mathematicians Association in Bad El-
ster, Zermelo left no doubt about what he thought of the young man’s absurd
results. Initially, he refused any conversation, but a personal discussion even-
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tually took place, remaining surprisingly civil. Just six days later, however,
Zermelo claimed to have discovered an error in the proof, followed by a corre-
spondence in which Godel tried hard to elucidate his derivation. Zermelo was
not swayed by the provided arguments and finally made his criticism public in
1932 [108]. Godel was no man of confrontation and made no further attempts
to settle the dispute.

Zermelo taught at Freiburg until 1935. That year, the National Socialists re-
voked his permission to teach, and he was not allowed to return to the university
until 1946. By that time, however, the health of the now seventy-five-year-old
was already so impaired that he could no longer lecture. Ernst Zermelo died
on May 21, 1953, in Freiburg at the age of 81.

This is where our journey into the history of mathematical logic comes to an
end. It is time to set the stage for the true subject of our interest: Godel’s
proof of the incompleteness theorems. So let it be: Curtain up!
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“One of Crete’s own prophets has said it: ‘Cretans
are always liars, evil brutes, idle bellies’”
Epistle of Paul to Titus, 1:12-14

Having acquired the necessary knowledge in Chapter 2 to comprehend both the
formal details and the philosophical dimensions of the incompleteness theorems,
the time has come to return to Goédel’s work. In the few passages quoted so far,
Godel had taken stock of the mathematics of the early twentieth century. With
the Principia Mathematica and the Zermelo-Fraenkel set theory, he mentioned
two of the predominant axiomatic systems of that era. While these terms were
still empty shells towards the end of Chapter 1, they appear in bright colors
before our mind’s eye after our historical excursion. We are now well-equipped
to master the rest of Godel’s work. So let us listen again!

Es liegt daher die Vermutung nahe, daf diese Axiome
und Schlufregeln dazu ausreichen, alle mathematischen Fragen, die
sich in den betreffenden Systemen iiberhaupt formal ausdriicken
lassen, auch zu entscheiden. Im folgenden wird gezeigt, daf dies
nicht der Fall ist,

It is reasonable therefore to make the conjecture that
these axioms and rules of inference are also sufficient to decide all
mathematical questions which can be formally expressed in the given
systems. In what follows it will be shown that this is not the case,

The Principia Mathematica and Zermelo-Fraenkel set theory are two axiomatic
systems expressive enough to formalize the concepts and conclusions of clas-
sical mathematics, implying that any classical proof written down with pencil
and paper is reproducible in these systems. As a result, the Principia Math-
ematica and Zermelo-Fraenkel set theory would be complete in the sense of
Definition 1.5 if the concepts and conclusions of mathematics were sufficient to
either prove or disprove any mathematical statement, and this was an unspoken
assumption for thousands of years.

This explains why completeness was subordinate to the scientific discussion for
so long. Many considered completeness a fundamental trait of mathematics,
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which they never seriously questioned. It is also worth noting that Russell,
Whitehead, and Zermelo established their systems when set-theoretical anti-
nomies were ubiquitous. In the face of the antinomies, consistency became a
central concern, attracting the interest of most mathematicians like no other.

After being freed from the antinomies at the beginning of the twentieth cen-
tury, many mathematicians believed that the Principia Mathematica and the
Zermelo-Fraenkel set theory would provide what they had been after for so
long: a correct and complete formal system for ordinary mathematics. In the
passage quoted above, Gddel announces his intention to refute this very belief:
The systems he mentioned (and not only these!) contain undecidable state-
ments, that is, neither the statement itself nor its negation can be derived from
the axioms.

3.1 Arithmetic Formulas

Right at the outset of his work, Gédel reveals a noteworthy aspect of the first
incompleteness theorem:

sondern daf es in den beiden angefiihrten
Systemen sogar relativ einfache Probleme aus der Theorie der ge-
wohnlichen ganzen Zahlen gibt*), die sich aus den Axiomen nicht

4) D. h. genauer, es gibt unentscheidbare Sitze, in denen auBer den logi-
schen Konstanten: ~— (nicht), \/ (oder), (z) (fiir alle), = (identisch mit) keine
anderen Begriffe vorkommen als + (Addition), . (Multiplikation), beide bezogen
auf natiirliche Zahlen, wobei auch die Priifixe (z) sich nur auf natiirliche Zahlen
beziehen diirfen.

174 Kurt Godel,

entscheiden lassen.

but rather that, in both of the cited systems,
there exist relatively simple problems of the theory of ordinary whole
numbers which cannot be decided on the

4) More precisely, there exist undecidable sentences in which, other than the
logical constants: — (not), \/ (or), (z) (for all), = (identical with), the only con-
cepts occurring are + (addition), . (multiplication) (of natural numbers), and where
the prefix (z) refers only to natural numbers.

174 Kurt Godel,

basis of the axioms*).
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In order to find undecidable statements, there is no need to resort to exotic
branches of mathematics; we are going to find them at the heart of this science
in the well-known theory of ordinary integers.

In footnote 4, Godel points out what he means by arithmetic statements. Syn-
tactically, these are formulas in which, besides the propositional connectives
and the predicate quantifiers, only the arithmetic operators ‘+’ and ‘x’, as
well as the equality operator, may occur. Semantically, the formulas are inter-
preted over the range of the natural numbers. Today we refer to such formulas
as formulas of Peano arithmetic or, more briefly, PA formulas.

Let’s look at an example:

“Vn(=(n+n=n)V
Vo' (n"=nV-o(nxn=n")vVv
Vo (=(n”" =n"+1n") Vv
Vx (Vy 7 (x=n"xy)VVy(x=n"4+n"+n"+y) V=
Vp(p=n'V-Vy(Vz-(yxz=p)V(y=n"Vy=p))V
Va(q=n"vV-Vy(Vz-(yxz=q)V(y=n"Vy=q))V

~(x=p+q)))))))

The formula can be written down more concisely with the help of the existential
quantifier ‘3", the conjunction operator ‘A’, and the implication operator ‘—’.
As usual, these operators serve as syntactic abbreviations, namely:

I = VE e

oA = a(mp V)
p =P = DV

This allows us to rewrite the example formula as such:

In(n+n=nA
In’ (=(n"=n)An" xn"=n"A
In” (n” =n"+n" A
Vx(Fyx=n"xyAJyx=n"4+n"+n"+y—(
Ip(~(p=n)AVy(@z(yxz=p)=(y=n"Vy=p))A
dq (n(@=n)AVy(@z(yxz=q) = (y=n"Vy=q)) A
x=p+aq)))))))

To uncover its substantive meaning, let us inspect the individual components:
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B n+n=n

This formula is true if and only if n is interpreted as a natural number n
fulfilling the condition n + n = n. Since only 0 meets this requirement, we
may mentally substitute each occurrence of n with that number.

B —-(n"=n)An"xn"=n

This formula is true if and only if n’ is interpreted as a natural number n’ that
is different from 0 and simultaneously fulfills the condition n’-n’ = n'. Only
1 satisfies this requirement, so we may mentally substitute each occurrence
of n” with that number.

[} r.'//:n/_|_nl

From what has been said so far, the meaning of this formula is easy to grasp.
After forcing variable n’ to be interpreted as the number 1, this formula is
true if and only if n” is interpreted as the number 2.

These early examples demonstrate how natural numbers can be referenced
within an arithmetic formula. To simplify things further, we allow the natural
numbers to occur as constant symbols. Adopting the syntax of the formal
system outlined in Section 1.2, we will employ the symbol 7 to denote the
numerical value n. Additionally writing & # ¢ for —(§ = () transforms the
original formula into:

Vx (Fyx=2xyAJyx=3+y—(
Fp(p#TAVy(Fz(yxz=p) = (y=1Vy=p)A
Jqq@#FIAVy(Fz(yxz=q) = (y=1Vy=q)) A
x=p+q))))

Now, the remaining subformulas can be understood with little effort:

Hdyx=2xy

This formula is true if and only if x is interpreted as an even number. For
clarity, we abbreviate subformulas of this kind by the expression even(x).

B dyzxy=x

This formula is similar in structure to the previous one. It is true if and
only if z and x are interpreted such that the number assigned to z divides
the number assigned to x. In the following, we express this property by the
ordinary mathematical notation z | x.

mdyx=3+y

This formula is just as easy to understand. It is true if and only if the variable
x is interpreted as a natural number greater than 2. In the following, we
express this fact by x > 2, or equivalently, by x > 3.
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With the proposed simplifications, we can represent the example formula in a
much cleaner and more concise way:

Vx (even(x) Ax >2 — (
Ip(p#AIAVY(Ylp—=(y=1Vy=p)A
Jq@#IAVy(yla=(y=1Vy=q)) A
x=p+aq))))

WpALAVy(ylp—=(y=1Vy=p))
This formula is true if and only if p is interpreted as a natural number # 1
that is divisible only by 1 and itself. This is equivalent to the statement “p
is a prime number”, which we will shortly express as prime(p).

Applying the new abbreviation lets the initial formula shrink to:
Vx (even(x) Ax > 2 — Jp (prime(p) A 3q (prime(q) Ax=p+q)))

In this form, the formula unveils its true face. It encompasses Goldbach’s strong
conjecture, which remains one of the most renowned open questions in number
theory to this day (Figure 3.1):

“Every even integer n > 2 can be written as the sum of two primes.”

Goldbach’s (strong) conjecture

The conjecture is named after Christian Goldbach. In 1742, the German math-
ematician postulated in a letter to Leonhard Euler that any natural number
greater than 2 is expressable as a sum of three prime numbers. His hypothesis
hides in a hastily formulated marginal note, depicted in Figure 3.2. Be aware
that Goldbach considered the number 1 to be a prime number. Therefore, in
contemporary terms, his original conjecture must be reformulated to state that
any natural number greater than 2 is expressable as a sum of three numbers,
each being either prime or equal to 1.

Today, the historical formulation is referred to as Goldbach’s weak conjecture,
as it is deducable from the strong variant.

Whether Goldbach was right, we do not know. Despite mounting evidence,
formal proof is still pending. Is Goldbach’s conjecture perhaps a statement in
the Godelian sense, which cannot be proven in the system of classical math-
ematics? The fact that neither a proof nor a counterexample has been found
for such a long time may nourish this suspicion, but it does not offer certainty.
Let us recall that the famous conjecture of Pierre de Fermat that the equation
a™4b" = ¢™ has no solutions in the positive integers for n > 2 resisted all proof
attempts for over three hundred years. It was not until 1995 that the British
mathematician Andrew Wiles was able to present a flawless derivation of the
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Figure 3.1: According to Goldbach’s strong conjecture, all even numbers n > 2 can
be written as the sum of two prime numbers. In the diagram above, the even num-
bers are plotted on the z-axis, and the data points indicate the number of possible
decompositions. Goldbach’s conjecture is true exactly when the z-axis is free of data
points.
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conjecture can be demonstrated in summo
rigore in the case of n+ 1, if it succeeds in
the case of n, and n+1 can be divided into
two prime numbers. The demonstration
is very easy. At least it seems that every
number greater than 2 is an aggregate of

three prime numbers.”

Figure 3.2: Original formulation

of Goldbach’s (weak) conjecture

Taniyama-Shimura conjecture, from which Fermat’s Last Theorem emerged as
a corollary [102, 95].

Godel’s undecidable statements bear significant similarities to the conjectures
of Goldbach and Fermat. All three originate in number theory and can be
expressed in simple terms with the additive and multiplicative properties of
the natural numbers. However, their complexities couldn’t be more different.
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Figure 3.3

PIERRE DE FERMAT
1607 — 1665

Unlike Goldbach’s and Fermat’s conjectures, which can be written down suc-
cinctly with a few pen strokes, G6del’s formulas are true monstrosities, far too
vast to be conveyed in plain text.

Godel had already stressed the connection between his undecidable formulas
and the conjectures of Goldbach and Fermat in Konigsberg when he first pub-
licly formulated his incompleteness theorem. We've previously come across his
words on page 27, although a portion of the quote was replaced by ellipses for
didactic reasons. With our current knowledge, we are now able to comprehend
the full quote:

“One can — assuming the consistency of classical mathematics — even give
examples of sentences (namely those of Goldbach’s or Fermat’s type) that
are indeed correct in content, but unprovable in the formal system of clas-
sical mathematics.”

“Man kann — unter Voraussetzung der Widerspruchsfreiheit der klassis-
chen Mathematik — sogar Beispiele fiir Sdtze (und zwar solche von der
Art des Goldbach’schen oder Fermat’schen) angeben, die zwar inhaltlich
richtig, aber im formalen System der klassischen Mathematik unbeweis-
bar sind.”

Kurt Godel [9]

entscheiden lassen. Dieser Umstand liegt nicht etwa an der speziellen
Natur der aufgestellten Systeme, sondern gilt fiir eine sehr weite
Klasse formaler Systeme, zu denen insbesondere alle gehoren, die
aus den beiden angefiihrten durch Hinzufiigung endlich vieler Axiome
entstehen %), vorausgesetzt, daB durch die hinzugefiigten Axiome keine
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5) Dabei werden in PM nur solche Axiome als verschieden gezihlt, die aus
einander nicht blo durch Typenwechsel entstehen.

This situation does not depend upon the special
nature of the constructed systems, but rather holds for a very wide
class of formal systems, among which are included, in particular, all
those which arise from the given systems by addition of finitely many
axioms °),

5) In PM only those axioms are considered distinct which do not arise from
each other by a change of types.

In this passage, Gdédel provides a glimpse of the far-reaching implications of
his results. He is about to demonstrate the incompleteness of a specific for-
mal system, which he refers to as system P. This system is a basic varia-
tion of the Principia Mathematica but also expressable in the terminology of
Zermelo-Fraenkel set theory. However, this doesn’t imply that Godel has only
demonstrated the incompleteness of these two systems. A significant part of
his findings is that his proof applies to all formal systems that are expressive
enough to make statements about the additive and multiplicative properties of
natural numbers. Consequently, formal systems such as the Principia Math-
ematica and Zermelo-Fraenkel set theory cannot be completed, that is, it is
impossible to escape the incompleteness theorems by adding a finite number
of axioms. Each additional axiom tears a hole at another location and exposes
new undecidable statements.

Let us accept these preliminary remarks, vague as they may be. In Section 6.1.2,
Godel will precisely state when a formal system gets into the pull of the first
incompleteness theorem and why every attempt for its completion is doomed
to fail.

To be entirely accurate, we need to revise some of what has just been said.
vorausgesetzt, dafl durch die hinzugefiigten Axiome keine

falschen Sitze von der in FuBnote*) angegebenen Art beweisbar
werden.

assuming that no false sentences of the kind given in
footnote 4 become provable by means of the additional axioms.

With this additional remark, Godel highlights a fundamental property common
to all formal systems that involve the ordinary propositional logic apparatus.
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Such a system can only be incomplete if it is consistent. The reason for this
is simple: If a contradictory pair of formulas ¢ and —¢ can be derived from
the axioms, then every other formula is derivable, too. This implies that all
substantively true formulas are provable, making the formal system, useless as
it may be, complete in the sense of Definition 1.5. This topic will be revisited on
page 177, where it will be demonstrated step by step how arbitrary statements
can be proven from a contradictory pair of formulas.

Wir skizzieren, bevor wir auf Details eingehen, zunidchst den
Hauptgedanken des Beweises, natiirlich ohne auf Exaktheit Anspruch
zu erheben.

Before we go into details, let us first sketch the main ideas of
the proof, naturally without making any claim to rigor.

In this passage, Godel announces his agenda: He will start by sketching the
general line of reasoning without claiming to be exact. Due to the complexity of
the subject and the disturbing result, this decision was not only a wise move but
also fits well with the structure of this book. Staying aligned with the original
work, we can intuitively approach Gédel’s first incompleteness theorem without
having to introduce a tangle of definitions, propositions, and derivations. There
is no need to worry, though, as Godel will supply all the details later.

3.2 The Arithmetization of Syntax

Die Formeln eines formalen Systems (wir beschrinken
uns hier auf das System PM) sind duBerlich betrachtet endliche
Reihen der Grundzeichen (Variable, logische Konstante und Klam-
mern bzw. Trennungspunkte) und man kann leicht genau prizisieren,
welche Reihen von Grundzeichen sinnvolle Formeln sind und
welche nicht®).  Analog sind Beweise vom formalen Standpunkt
nichts anderes als endliche Reihen von Formeln (mit bestimmten
angebbaren Eigenschaften).

6) Wir verstehen hier und im folgenden unter ,Formel aus PM“ immer
eine ohne Abkiirzungen (d. h. ohne Verwendung von Definitionen) geschriebene
Formel. Definitionen dienen ja nur der kiirzeren Schreibweise und sind daher
prinzipiell iiberfliissig.
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The formulas of a formal system (we limit ourselves here
to the system PM) are, considered from the outside, finite sequences
of primitive symbols (variables, logical constants, and parentheses or
dots) and one can easily make completely precise which sequences
of primitive symbols are meaningful formulas and which are not®).
Analogously, from the formal standpoint, proofs are nothing but finite
sequences of formulas (with certain specifiable properties).

6) By a “formula of PM”, we always understood here and in the sequal a
formula written without abbreviations (i.e. without use of definitions). Definitions
serve only to make writing briefer and are therefore theoretically superflous.

The content of this passage sounds familiar to us. In Chapter 2, we have learned
that the formulas of a formal system are finite series of elementary symbols,
and by adhering to precisely defined syntax rules, it becomes straightforward
to determine which series of symbols are meaningful formulas and which are
not. In addition, we have seen that proofs, when viewed formally, are nothing
but a finite series of formulas with certain specifiable properties.

Fir metamathematische Betrachtungen
ist es natiirlich gleichgiiltig, welche Gegenstinde man als Grund-
zeichen nimmt, und wir entschlieBen uns dazu, natiirliche Zahlen 7)
als solche zu verwenden. Dementsprechend ist dann eine Formel
eine endliche Folge natiirlicher Zahlen®) und eine Beweisfigur eine
endliche Folge von endlichen Folgen natiirlicher Zahlen.

7) D. h. wir bilden die Grundzeichen in eineindeutiger Weise auf natiirliche
Zahlen ab. (Vgl. die Durchfithrung auf S. 179.)

8) D. h. eine Belegung eines Abschnittes der Zahlenreihe mit natiirlichen
Zahlen. (Zahlen konnen ja nicht in rdumliche Anordnung gebracht werden.)

Naturally, for metamathematical con-
siderations, it makes no difference which objects one takes as prim-
itive symbols, and we decide to use natural numbers”) for that
purpose. Accordingly, a formula is a finite sequence of natural
numbers ®) and a proof-figure is a finite sequence of finite sequences
of natural numbers.

7) That is, we map the primitive symbols in one-to-one fashion onto the
natural numbers. (Cf. page 179) to see how this is done.)

8) That is, a mapping of a segment of the natural number sequence into the
natural numbers. (Numbers, of course, cannot be spatially ordered.)

In these few lines, Gédel describes a pivotal aspect of his proof. He emphasizes
that the choice of the alphabet used to write down formulas is mostly irrelevant.
For instance, it does not matter whether the logical implication is symbolized
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by ‘D’, as Russell did, or by the more modern variant ‘—’. Just as well, and this
is a key element in the proof of the first incompleteness theorem, formulas can
be represented by natural numbers. The transition from symbols to numbers
is called the arithmetization of syntax and the process of mapping a formula
to a number as Gddelization. The numerical representation of a formula ¢ is
called the Gédel number of ¢, abbreviated by "¢™.

The fact that every string of characters, thus every formula and every proof of
a formal system, can be Gddelized is not particularly surprising in the informa-
tion age. A sequence of characters can be arithmetized simply by typing it into
a computer console and interpreting the memory image as a natural number.

Let us try the aforesaid on three formulas from the Principia Mathematica,
namely those three that conclude the proof of Theorem *2.08 on page 81.

B Example 1: p1:=(p— (pVp)) = (p—p)

echo "(p->(pvp))->(p->p)" | hexdump

28 70 2D 3E 28 70 76 70 29 29 2D 3E 28 (p->(pvp))->(

70 2D 3E 70 29 p->p)
W T = 28702D3E2870767029292D3FE28702D3E702916 (Hexadecimal)
— 3522663200367977117319339317059413685989417 (Decimal)

B Example 2: ¢; :=(p — (pV p))

echo "(p->(pvp))" | hexdump

28 70 2D 3E 28 70 76 70 29 29 (p->(pvp))
i Tyl = 28702D3E28707670292916 (Hexadecimal)
= 190963954738685029656873 (Decimal)

B Example 3: (p — p)

echo "(p->p)" | hexdump

28 70 2D 3E 70 29 (p->p)

1 T3 = 28702D3E702916 (Hexadecimal)
= 44462260514857 (Decimal)
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The fact that @3 was obtained by applying the modus ponens from ¢; and
(2 can now be formulated arithmetically by expressing the syntactic transfor-

mation as a numerical equation involving the Gédel numbers "7, T2 and
ek 16 12
T = Ty - 16 11582 -16 Tps!
1 P2 + + 3

‘>0

This approach generalizes to arbitrary formulas. A formula @3 is derived from
two formulas, ¢ and o, by modus ponens if and only if the Gédel numbers
P17, "o and T3 satisfy the relationship

T = Ty 1671+ 111582 . 16%1(#3) 4,7
where {(¢3) denotes the number of characters in 3. Replacing [(p3) with
3([logig @3] +1)
results in
Corm = Ty 160816 P +5 4 11589 . 1gllog16 s+ | Cipy ™

which is an ordinary equation of number theory. This becomes even more
apparent after replacing the placeholders "7, "o, and "3 with ordinary
variables x, y and z:

z = y-161°8162%5 4 11582 . 1610816 20+ 4 4 (3.1)

With (3.1), we have successfully constructed an equation conveying two sub-
stantively different meanings:

B The first meaning is arithmetical. Equation (3.1) establishes a numerical
relationship between three natural numbers, x, y, and z, and corresponds
to an ordinary statement from number theory.

B Apart from that, the equation has a metatheoretical meaning. If z, y, and z
are substituted with the Godel numbers of 1, s, and @3, then (3.1) is true
exactly when @3 can be derived from ¢ and ¢; using the modus ponens
rule of inference.

In summary, this unveils a pivotal isomorphism between formal systems on
one hand and ordinary arithmetic on the other. Every syntactic manipulation
carried out within a formal system can be interpreted in an arithmetic context.
Simultaneously, a wide range of number-theoretic formulas can be understood
as metatheoretic statements about formal systems (Figure 3.4).

Please note that the chosen Goédelization method is one of many. As a matter
of fact, the selected variant would be highly unsuitable for proving the first in-
completeness theorem, as most syntactic operations are cumbersome to express,
leading to complex arithmetic relations. This is why Godel, as Section 4.5 will



3.2 The Arithmetization of Syntax

Formal System

121
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between between
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¥3 + s

Figure 3.4: The procedure of Gédelization. Formulas and proofs are mapped to natural
numbers, thereby creating an isomorphic image in the realm of arithmetic.

demonstrate, has chosen a completely different, mathematically more pleasant
encoding.

Later in the article, a laborious part follows in which G&del works through
an extensive list of meta-statements, translating them into an equivalent list
of arithmetic definitions. You will observe that a wide range of concepts and
properties is expressable through arithmetic definitions, including simple ones,
such as the property of a character being a variable, as well as more intricate
ones, such as the property of a character string being a well-defined formula, a
proof chain, or the end formula of such a chain.

The latter example holds particular significance and means the following: There
exists an arithmetic formula F'(v), which becomes a substantively true state-
ment if and only if v is interpreted as the Gédel number of a provable formula.
In Gédel’s words:

Die meta-
mathematischen Begriffe (Sétze) werden dadurch zu Begriffen (Sitzen)
tiber natiirliche Zahlen bzw. Folgen von solchen®) und daher (wenig-
stens teilweise) in den Symbolen des Systems PM selbst ausdriickbar.
Insbesondere kann man zeigen, da die Begriffe ,,Formel®“, ,.Beweis-
figur”, ,beweisbare Formel“ innerhalb des Systems PM definierbar
sind, d. h. man kann z. B. eine Formel F'(v) aus PM mit einer freien
Variablen v (vom Typus einer Zahlenfolge) angeben ), so daB F'(v)
inhaltlich interpretiert besagt: v ist eine beweisbare Formel.

9) m. a. W.: Das oben beschriebene Verfahren liefert ein isomorphes Bild
des Systems PM im Bereich der Arithmetik und man kann alle metamathema-
tischen Uberlegungen ebenso gut an diesem isomorphen Bild vornehmen. Dies
geschieht in der folgenden Beweisskizze, d. h. unter ,,Formel®, ,,Satz*, , Variable“ etc.
sind immer die entsprechenden Gegenstidnde des isomorphen Bildes
zu verstehen.

10) Es wire sehr leicht (nur etwas umstidndlich), diese Formel tatsichlich

hinzuschreiben.
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Metamathe-
matical concepts (assertions) thereby become concepts (assertions)
about natural numbers or sequences of such, 9) and therefore (at least
partially) expressible in the symbolism of the sytem PM itself. It can
be shown, in particular, that the concepts “formula”, “proof-figure”,
“provable formula*“ are definable within the system PM, i.e. one can
produce, 1°) for example, a formula F'(v) of PM with one free vari-
able v (of the type of a sequence of numbers) such that F'(v), when
intuitively interpreted, says: v is a provable formula.

9) In other words: the process described above provides an isomorphic image
of the system PM in the domain of arithmetic and one can just as well carry out all
metamathematical arguments in this isomorphic image. This occurs in the following

sketch of the proof, i.e. by “formula”, “sentence”, “variable”, etc., one is always to

understand the corresponding objects of the isomorphic image.
10) It would be very easy (though somewhat tedious) actually to write this
formula down

The construction of F(v) is an essential building block in the proof of the first
incompleteness theorem and will be addressed in detail later in this book. Re-
member that only the axioms and inference rules determine whether a formula
is provable. As a result, F'(v) will be different for every formal system.

3.3 | Am Unprovable!

At this point, Gédel’s work reaches its first climax. Godel outlines the con-
struction of a formula A that is undecidable within the logic of the Principia
Mathematica. A and —A are both unprovable; neither can be derived from the
axioms by repeated application of inference rules.

Nun
stellen wir einen unentscheidbaren Satz des Systems PM, d. h. einen
Satz A, fir den weder A noch non-A beweisbar ist, folgender-
malfen her:

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 175

Eine Formel aus PM mit genau einer freien Variablen, u. zw. vom
Typus der natiirlichen Zahlen (Klasse von Klassen) wollen wir ein
Klassenzeichen nennen.

Now
we obtain an undecidable proposition of the system PM, i.e. a propo-
sition A for which neither A nor non-A is provable, as follows:
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On formally undecidable propositions of Principia Mathematica etc. 175

A formula of PM with exactly one free variable, which is of
the type of the natural numbers (class of classes), will be called a
class-expression.

In the German original of this passage, Godel coins the term Klassenzeichen,
which plays a fundamental role throughout the rest of his work. This term
sounds rather unusual even to native German speakers, as it is virtually non-
existent in the German language. English-speaking writers usually translate
it as class expression [13, 82|, class sign [35], or statement form [101]. Godel
employs the term to describe a formula with a single free variable interpreted
as a natural number.

Die Klassenzeichen denken wir uns irgend-
wie in eine Folge geordnet'!), bezeichnen das n-te mit R (n)

11) Etwa nach steigender Gliedersumme und bei gleicher Summe lexiko-
graphisch.

We think of the class-expressions ordered
in a sequence in some manner '), we denote the n-th by R (n),

11) Say, according to increasing sum of the terms, and lexicographically for
equal sums.

Since the class expressions are countable, we can think of them as being ar-
ranged in some sequence:

©0(£), 01(£), 92(8), ©3(£), 0a(€), ¢5(8), - .. (3.2)

We call ¢,,(§) the n-th class expression. In his original paper, Godel uses a
slightly different terminology and denotes the n-th class expressions with R(n).
Thus,

R(n) = @n(§).

und
bemerken, daf sich der Begriff , Klassenzeichen” sowie die ordnende
Relation R im System PM definieren lassen.
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and
we note that the concept “class expression” as well as the ordering
relation R can be defined in the system PM.

This sentence is of particular significance. It asserts that the concept of a class
expression and the ordering relation mentioned above are both definable within
the system of the Principia Mathematica. That is, there exists a formula ¥ (&)
which is true exactly when the free variable ¢ is interpreted as the Gédel number
of a class expression, and another formula (€, ¢) which is true exactly when
¢ is interpreted as the number n and ¢ as the Godel number of the n-th class
expression.

In most formal languages, natural numbers have a direct correspondence in
the form of unique symbol strings. For example, recall Section 1.2, where we
integrated such a notion into the example system E by treating the expression
n as the following syntactical abbreviation:

n times

By substituting the free variable £ in a class expression «(§) with an expression
of the form 7, a closed formula «(7) is obtained. In his proof sketch (and only
there!), Godel uses the somewhat peculiar notation [a;n] for this formula:

jasn] = a(m)

Godel again anticipates a result from the main part of his article and emphasizes
that for any class expression «(§), the process of substituting the free variable
& by the sign for the natural number n can also be characterized arithmeti-
cally and thus turns out to be definable within PM, the logic of the Principia
Mathematica:

Sei « ein beliebiges
Klassenzeichen ; mit [oc; n] bezeichnen wir diejenige Formel, welche
aus dem Klassenzeichen o dadurch entsteht, dal man die freie
Variable durch das Zeichen fiir die natiirliche Zahl n ersetzt. Auch
die Tripel-Relation « = [y; z] erweist sich als innerhalb PM definierbar.

Let « be an arbitrary
class expression; by [x;n] we denote that formula which arises from
the class-expression « by substitution of the symbol for the natural
number n for the free variable. The ternary relation = [y;z] also
turns out to be definable within PM.
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wo(¢) OB ~o(1) ¢o(2) wo(3) wo(4) ©o(q)
e1(§) ¢1(0) RAGOE ©1(2) »:(3) ¢i(4) ©1(q)
w2(8)  ©2(0)  @a(1) MEMIOAM ©2(3)  a(4) ©2(q)
3(6) @30 | ws(D) a2 3(d) 3(3)
01(€)  9a(0)  wa(1)  @a(2) a(3) |RAE) ©4(q)
es(€)  s5(0)  ws(I) ¢s5(2) 9s5(3)  ws(4) ©5(q)
2a®) 2@ 0D 0@ 9B @@ N .0 |

Figure 3.5: Excerpt from the infinite table of class-expression instances. Later, Godel
will show that the main diagonal contains an undecidable formula ¢q(q), that is,

neither ¢q(q) nor —p4(gq) is provable.

For a better understanding of the main argument that follows, it is helpful
to imagine all class expressions being arranged in an infinite table, as shown
in Figure 3.5. The table is structured such that the n-th class expression
appears in the n-th row, and each column contains a specific instance of that
formula. In particular, the instance in the n-th column is obtained by replacing
the free variable of the class expression with the expression . The diagonal
elements ¢, (m), located on the main diagonal of the table, are of particular
interest. They are created by instantiating the n-th class expression with the

term representation of the natural number n.

Nun definieren wir eine Klasse K natiirlicher Zahlen folgendermalBen :

€]

ne K= Bew R (n);n] ')

(wobei Bew = bedeutet: =z ist eine beweisbare Formel).

Da die Be-

griffe, welche im Definiens vorkommen, simtlich in PM definierbar
sind, so auch der daraus zusammengesetzte Begriff K, d. h. es gibt
ein Klassenzeichen S'2), so daB die Formel [S; 7| inhaltlich gedeutet

besagt, daBl die natiirliche Zahl n zu K gehort.

11a) Durch Uberstreichen wird die Negation bezeichnet.

12) Es macht wieder nicht die geringsten Schwierigkeiten, die Formel S

tatsdchlich hinzuschreiben.

We now define a class K of natural numbers in the following way:

(@

ne K= Bew R (n);n] ')
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(where Bew r means: x is a provable formula). Since the concepts
occurring in the definiens are all definable in PM, so also is the con-
cept K which is built up from them, i.e. there is a class-expression
S12) such that the formula [S; n], intuitively interpreted, says that the
natural number n belongs to K.

11a) The bar above denotes negation.
12) Again there is not the slightest difficulty in actually writing down the
formula S.

In our notation, the definition of Gédel’s set K reads as follows:

K = {n| ¥ on(m)}

Accordingly, K contains a natural number if and only if the n-th diagonal
element is unprovable:
neK & Vo,(n) (3.3)

Godel points out that the membership relation for K is definable within the
logic of the Principia Mathematica and any related system. More precisely,
Godel asserts the existence of a formula S(€) that becomes a true statement
if and only if the free variable £ is replaced by the term representation 7 of a
natural number n from the set K. In short:

ES@) & nek (3.4)

An important observation follows: S(§) is a formula with exactly one free
variable and thus a class expression itself!

S ist als Klassen-
zeichen mit einem bestimmten R (¢) identisch, d. h. es gilt

S=R(q)

fir eine bestimmte natiirliche Zahl gq.

As a class expression,
S is identical with some definite R (g), i.e.

S=R(q)

holds for some definite natural number g.

The line of reasoning is compelling: If S(€) itself is a class expression, it must
appear in some row of the table of all class expressions. If we denote the row
number, just as Godel did, with ¢, then S(&) is identical to the formula ¢4 ():

S(€) = q(&) (3.5)
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Is the diagonal element ¢¢(g) or its negation provable?

¢ !

cme1 [ Fea@ | = Fenl@ ]=>[ ek = te |

case2 [ Fo@ | = @ |=[ ek |=[ Fe@ |

Figure 3.6: Godel’s line of reasoning. The assumption that the diagonal element 4 (q)
is provable leads to a contradiction, just as the assumption that its negation —4(q)
is provable.

Substituting & with the term g yields ¢4(g), which is the formula we have been
looking for: Neither the formula itself nor its negation is provable, assuming
that the underlying formal system is correct. Let us see why (Figure 3.6):

B Case 1: Suppose ¢,(q) is provable.

Assuming the formal system is correct, every provable formula is substan-
tively true (- ¢4(q) implies |= ¢4(g)). According to (3.5), ¢4(q) is the same
as S(g), which means, according to (3.4), that ¢ is a member of K. Now it
follows from (3.3) that ¢4 (g) is unprovable.

B Case 2: Suppose —,(q) is provable.

In this case, ¢4(g) is substantively false, which means, according to (3.5)
and (3.4), that K does not contain ¢g. Then, according to (3.3), there is a
proof for ¢,(q), contradicting the property of correct formal systems that
no formula is derivable together with its negation.

We have finally crossed the finish line: Assuming the formal system is correct,
©q(q) is an undecidable statement, that is, neither ¢, (g) nor —¢,4(q) is provable.
In Godel’s words, the argument sounds like this:

Wir zeigen nun, dafl der
Satz [R(q); ¢]**) in PM unentscheidbar ist. Denn angenommen
der Satz [R(q);q] wiére beweisbar, dann wire er auch richtig,
d. h. aber nach dem obigen ¢ wiirde zu K gehoren, d. h. nach (1)
es wiirde Bew [R(q); q] gelten, im Widerspruch mit der Annahme.
Wire dagegen die Negation von [R (¢); ¢] beweisbar, so wiirde ge K,
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d. h. Bew[R(q);q] gelten. [R(q); q] wire also zugleich mit seiner
Negation beweisbar, was wiederum unméglich ist.

13) Man beachte, daB ,,[R(q); ¢ (oder was dasselbe bedeutet ,,[S; ¢]*) bloB
eine metamathematische Beschreibung des unentscheidbaren Satzes ist.
Doch kann man, sobald man die Formel S ermittelt hat, natiirlich auch die
Zahl ¢ bestimmen und damit den unentscheidbaren Satz selbst effektiv hinschreiben.

We now show that
the proposition [R (q); ¢] '®) is undecidable in PM. For, if the propo-
sition [R (q); ] were assumed to be provable, then it would be true,
i.e. according to what was said above, ¢ would belong to K, i.e.
according to (1), Bew[R(q); q] would hold, contradicting our as-
sumption. On the other hand, if the negation of [R(q);q] were

provable, then ge K would hold, i.e. Bew|[R (q);q] would be true.
Hence, [R(q); q] together with its negation would be provable, which
is again impossible.

13) One should observe that “[R(q); ¢|” (or the synonymous “[S; ¢]”) is
merely a metamathematical description of the undecidable proposition. Nevertheless,
as soon as one has obtained the formula S, one can, of course, also determine the
number ¢, and thereby effectively write down the undecidable proposition itself.

Let us take a closer look at footnote 13. First, Godel points out that the string
[S; ¢], in our notation, the string ¢,(g), is only a metamathematical description
of the undecidable proposition and not the proposition itself. However, this
does not mean we could not write down the undecidable formula in plain text.
It would indeed be possible since we could explicitly construct S(£) and thus
theoretically be able to determine its position in the sequence (3.2). This
position is the number g. If we then replaced in S(€) all occurrences of the free
variable { with the term g, we would obtain the undecidable formula ¢4(g) in
plain text.

In practice, however, we would quickly run into problems. The formula would
soon become so monstrous that after just a few construction steps, we would
have used up our earthly repertoire of ink and paper. Therefore, we better
refrain from any attempt in this direction.

Next, let us interpret the content of ¢,(q) substantively. First, (3.3) can be
utilized to rewrite (3.4) as follows:

= S(m) & ¥ on() (3.6)

©q(q) is the formula S(g). Thus (3.6) lets us derive:

Fvq(@) &V pq(q) (3.7)
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Now, the substantive meaning of ¢, (q) is right in front of us:
“I am unprovable!”

The above considerations have revealed the trickiness of Go6del’s approach.
Through the principle of diagonalization, he managed to construct a formula
©q(g) that makes a metatheoretical statement about itself. The formula pos-
tulates its unprovability and thus cannot be proven, assuming the underlying
formal system is correct.

3.4 Godel, Richard and the Liar

The self-reference described above is reminiscent of two well-known paradoxes
that Godel immediately addresses:

Die Analogie dieses Schlusses mit der Antinomie Richard
springt in die Augen; auch mit dem “Liigner” besteht eine nahe
Verwandtschaft'*), denn der unentscheidbare Satz [R(q);q| besagt
ja, daB ¢ zu K gehort, d. h. nach (1), daB [R(q); ¢] nicht beweisbar
ist. Wir haben also einen Satz vor uns, der seine eigene Unbeweis-
barkeit behauptet %).

14) Es ldBt sich iiberhaupt jede epistemologische Antinomie zu einem der-
artigen Unentscheidbarkeitsbeweis verwenden.

15) Ein solcher Satz hat entgegen dem Anschein nichts Zirkelhaftes an
sich, denn er behauptet zunichst die Unbeweisbarkeit einer ganz bestimmten
Formel (némlich der g¢-ten in der lexikographischen Anordnung bei einer be-
stimmten Einsetzung), und erst nachtriglich (gewissermalien zufillig) stellt sich
heraus, da diese Formel gerade die ist, in der er selbst ausgedriickt wurde.

The analogy of this result with Richard’s antinomy is immedi-
ately evident; there is also a close relationship ') with the Liar Para-
dox, for the undecidable proposition [R (g); ¢] says that ¢ belongs to
K, i.e. according to (1), that [R(q);q| is not provable. Thus we
have a proposition before us which asserts its own unprovability '°).

14) Every epistemological antinomy can be used for a similar proof of unde-
cidability.

15) Contrary to appeareances, such a proposition is not circular, for, to begin
with, it asserts the unprovability of a quite definite formula (namely, the g-th in the
lexicographical ordering, after a certain substitution) and only subsequently (acciden-
tially, as it were) does it turn out that this formula itself is precisely the one whose
unprovability is expressed.

Although knowing anything about the abovementioned paradoxes is unneces-
sary to execute Godel’s proof, they give valuable clues as to why undecidable
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... the lier tells the
untruth, then ...

... the lier tells the truth,
then ...

Figure 3.7: The Liar Paradox. Both the assumption that the liar is telling the truth
and the assumption that he is lying lead to contradictions.

propositions must exist in any sufficiently expressive formal system. So, let’s
take a closer look!

3.4.1 The Liar Paradox

The liar’s paradox arises whenever a statement substantively denies its truth.
In its purest form, it emerges from the simple exclamation:

“I am lying!”

Figure 3.7 illustrates why asking whether this statement is true or false puts
us in a precarious position. On the one hand, the statement cannot be true, as
it claims to be false. On the other hand, it cannot be false either since this is
precisely what it claims.

The Liar Paradox exists in various forms and can also arise even if a sentence
does not directly refer to itself. The following example demonstrates that
an indirect statement extending over several sentences can produce the same
contradictory result:

Socrates: “What Plato says is false!”

Plato: “What Socrates says is true!”

When comparing the liar’s paradox with the undecidable formula ¢, (q), a strik-
ing similarity catches the eye: self-reference. Godel’s formula ¢, (g) postulates
its unprovability, thus making a statement about itself, just like the alleged
liar does. However, there is a crucial difference: unlike the liar, the formula
©q(q) does not claim its falsehood but merely its unprovability. At first, the
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15 Godel’s formula ¢4 (q) states: “I am unprovable!”

In formal systems that are correct Dropping the assumption of
and complete, the formula vq(q) completeness makes the contradiction
generates the same circular disappear. The formula is true, but
reasoning as the liar’s paradozx. unprovable.

The formula is
false, then ...

... the formula is
true, then ...

... the formula is
false, then ...

true.

Figure 3.8: GOdel’s main argument generates the same contradictory self-reference
that underlies the liar’s paradox. However, the contradiction disappears when the
assumption about the existence of a correct and, at the same time, complete formal
system is dropped.

difference sounds marginal because, in formal systems that are both correct
and complete, the true statements and the provable statements are identical.
In these systems, whether to ask about truth or provability is synonymous.
Indeed, assuming the underlying formal system is both correct and complete
makes it a victim of the same vicious circle in which the liar is trapped: On
the one hand, if ¢,(q) were true, it would be unprovable, contradicting com-
pleteness. On the other hand, if ¢, (q) were false, it would be provable, which
is impossible in a correct formal system (Figure 3.8 left).

Unlike in the case of the liar paradox, we can break the vicious circle by drop-
ping the completeness assumption (Figure 3.8 right). In this case, only the
assumption that ¢, (q) is false leads to a contradiction, but not the assumption
that it is true. In incomplete formal systems, and only in these, formulas can
exist that are true but unprovable.

It is important to note that the pure existence of Gédel’s undecidable formula
does not create an antinomy, even if it may seem so from a distance. The
antinomy arises only when a formula with the substantive meaning of ¢,(q) is
supposed to exist within a formal system that is both correct and complete.
In an incomplete formal system, however, the notions of truth and provability
do not coincide, which is the crucial property that makes the contradiction
disappear.
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3.4.2 Richard’s Antinomy

Richard’s antinomy was pronounced in 1905 by the French mathematics teacher
Jules Richard in a letter to the editor of the journal Revue générale des sciences
pures et appliquées and published in the June issue of the same year [85]. The
contribution was reprinted in 1906 in the Acta Mathematica [86] and later
translated into English. The quotes given below refer to the version in [87].

Richard wrote his letter when the theories of ordinal and cardinal numbers were
floundering due to antinomies, and he believed he could provoke similar contra-
dictions with much simpler means. Richard thought he had found antinomies
in the realm of real numbers — the continuum:

“It is not necessary to go so far as the theory of ordinal numbers to
find such contradictions. Here is one that presents itself at the moment
we study the continuum and to which some others could probably be
reduced.”

Jules Richard [87]

At the outset, Richard observed that some real numbers have a colloquial de-
scription while others do not. This discovery led him to define a set, containing
all real numbers for which such a description exists. His letter contained a de-
tailed description of how he intended to define this set, which we are going to
refer to as Richard’s set E:

“I am going to define a certain set of numbers, which I shall call the set
E, through the following considerations. Let us write all permutations of
the twenty-six letters of the French alphabet taken two at a time, putting
these permutations in alphabetical order; then, after them, all permuta-
tions taken three at a time, in alphabetical order; then, after them, all
permutations taken four at a time, and so forth. These permutations
may contain the same letter repeated several times; they are permuta-
tions with repetitions. [...] The definition of a number being made up
of words, and these words of letters, some of these permutations will be
definitions of numbers. Let us cross out from our permutations all those
that are not definitions of numbers.”

Jules Richard [87]

Following Richard’s instructions, an infinitely long table is created, encom-
passing all finite sequences that can be crafted with the letters of our alphabet.
While many sequences lack meaningful content, some will describe a number
(Figure 3.9 left). The numbers definable in this manner constitute Richard’s
set I.

At this point, we are on the verge of giving rise to Richard’s antinomy.
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LET P BE THE DIGIT
IN THE NTH DECIMAL
PLACE OF THE NTH
NUMBER OF THE SET
E. LET US FORM A
NUMBER HAVING 0 FOR
ITS INTEGRAL PART
AND, IN ITS NTH
DECIMAL PLACE, P+1
IF P IS NOT 8 OR 9,
AND 1 OTHERWISE.

NUMBER THREE » 0 3, n 0 0 0 0 0

ONE THIRD » 0 o , 3 3 3 3 3

SUCCESSOR OF SIX » 0 7 , 0 0 n 0 0 0

FOURTH PRIME NUMBER . 0 7 , 0 0 0 n 0 0

THE ULTIMATE ANSWER . 4 2 0 0 0 0 n 0
>

Applying the principle of
diagonalization yields a number that
cannot be a part of the table. However,
as the principle of diagonalization can be
— described colloquially,

the number must nonetheless
occur within the table.

Figure 3.9: Richard’s antinomy arises from the imprecision of colloquial language,
implying the construction of a number which is demonstrably non-constructible.

“Now here comes the contradiction. We can form a number not belonging
to this set. ‘Let p be the digit in the nth decimal place of the nth number
of the set E; let us form a number having 0 for its integral part and, in
its nth decimal place, p + 1 if p is not 8 or 9, and 1 otherwise.” This
number N does not belong to the set E. If it were the nth number of the
set E, the digit in its nth decimal place would be the same as the one in
the nth decimal place of that number, which is not the case.”

Jules Richard [87]

Richard’s argument sounds compelling. On the one hand, the principle of
diagonalization allows us to construct a number x that cannot be contained in
the table, implying x ¢ FE. On the other hand, a colloquial description of the
diagonalization method must appear somewhere in the table, implying x € E.
Thus, we have found a number that simultaneously satisfies x € F and = ¢ E.
An untenable situation!

Richard’s antinomy arises from a self-reference embedded in the construction
of the diagonalization statement. Assuming the diagonal statement appears in
the n-th row, the statement expresses that the n-th digit — which is its own di-
agonal digit — is different from itself. This assumption leads to a contradiction
for any specific numerical value. The fact that the principle of diagonaliza-
tion evokes Richard’s antinomy puts it in direct proximity to the proof of the
first incompleteness theorem: Godel’s undecidable formula appears on the di-
agonal of the table of all class expression instances. We cannot stress enough
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that Godel’s construction produces a contradiction only in formal systems that
are both correct and complete. Abandoning completeness resolves this contra-
diction, a crucial distinction that sets Gddel’s argument apart from classical
antinomies.

Richard’s antinomy highlights the need for caution when handling colloquial
phrases. Natural language is powerful yet imprecise, allowing us to pen down
self-referential and self-contradictory statements easily. At the same time,
Richard’s example illustrates that contradictions are not always as apparent
as in the case of the liar; a second look is needed to unveil the underlying
self-reference.

The Liar’s Paradox and Richard’s Antinomy are known as semantic antinomies,
as they exploit the imprecision of colloquial language to blend object and meta-
language deliberately. In formal logics that strictly separate both language
levels, these antinomies typically vanish.

3.4.3 When Is a Formal System Affected?

In the next section, Godel outlines the properties that a formal system must
exhibit for the argumentation of the proof sketch to be applicable:

Die eben auseinandergesetzte Beweismethode

176 Kurt Godel,

laBt sich offenbar auf jedes formale System anwenden, das erstens
inhaltlich gedeutet tiber geniigend Ausdrucksmittel verfiigt, um die
in der obigen Uberlegung vorkommenden Begriffe (insbesondere den
Begriff “beweisbare Formel”) zu definieren, und in dem zweitens
jede beweisbare Formel auch inhaltlich richtig ist.

The method of proof which has

176 Kurt Godel,

just been explained can obviously be applied to every formal system
which, first, possesses sufficient means of expression when interpreted
according to its meaning to define the concepts (especially the con-
cept “provable formula”) occurring in the above argument; and, sec-
ondly, in which every provable formula is true.

Godel states that the proof sketch applies to any formal system satisfying two
properties. Firstly, the formal system must have sufficient means of expression
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to define the term “provable formula” within its object language. Secondly,
every provable formula must be substantively correct. As a result, we can only
follow the line of argument in those formal systems that are correct in the sense
of Definition 1.5.

From this point onward, Godel begins to fill in the gaps in the proof sketch.
In the following passages, he meticulously explains what it means to define a
mathematical term or concept within a formal system. He also derives in detail
under which conditions such a definition is possible or impossible.

Die nun folgende
exakte Durchfithrung des obigen Beweises wird unter anderem die
Aufgabe haben, die zweite der eben angefiihrten Voraussetzungen
durch eine rein formale und weit schwichere zu ersetzen.

In the precise
execution of the above proof, which now follows, we shall have the
task (among others) of replacing the second of the assumptions just
mentioned by a purely formal and much weaker assumption.

This sentence contains a compelling announcement. Godel states that in the
exact execution of the above proof, he will significantly weaken the second
of the abovementioned conditions: the correctness of the underlying formal
system. It was important to him not to base the proof of the incompleteness
theorems on the semantic concept of truth, as he created his work at a time
when set-theoretical paradoxes were still widely discussed, and many of his
contemporaries were skeptical or even hostile towards the concept of truth. It
was a time when, in Gédel’s words,

“a concept of objective mathematical truth [...] was viewed with the
greatest suspicion and rejected as meaningless in wide circles.”

“ein Konzept der objektiven mathematischen Wahrheit [...| mit grofStem
Misstrauen betrachtet und in weiten Kreisen als bedeutungsleer zuriick-

gewiesen wurde.”

Kurt Godel [14]

This brings up an important matter: Godel’s first incompleteness theorem ex-
ists in several variants, with three of the most significant shown in Figure 3.10.
At the very top is the semantic variant, which Godel refers to in his proof
sketch. It is the weakest of the three, making a statement about correct for-
mal systems — those in which all provable statements are substantively true.
At the very bottom is the syntactic variant. It dispenses with the substantive
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Semantic variant of the first incompleteness theorem
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Syntactic variant of the first incompleteness theorem
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Figure 3.10: Three variants of the first incompleteness theorem. The semantic variant
is the weakest, and the syntactic variant is the strongest formulation.

interpretation of formulas, thus not referencing the semantic concepts of cor-
rectness and completeness at any point. These concepts are replaced by the
purely syntactic notions of consistency and negation completeness.

Godel initially aimed to prove the syntactic variant but fell short of fully re-
alizing his objective. He was compelled to slightly strengthen the assumption
by requiring the underlying formal systems to be w-consistent. Section 6.1 will
define this term and elaborate on its meaning. Just this much in advance:
Every w-consistent formal system is consistent, but not vice versa.
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Thus, the variant of the first incompleteness theorem proved by Gédel is slightly
weaker than its syntactic counterpart but considerably stronger than the se-
mantic variant. Since 1936, we know that the syntactic variant is also correct.
That year, the American logician Barkley Rosser proved that the assumption
of w-consistency is replaceable with ordinary consistency [89, 13].

In the final section of the proof sketch, Gddel highlights that the first incom-
pleteness theorem leads to a remarkable conclusion:

Aus der Bemerkung, dass [R(q); g] seine eigene Unbeweis-
barkeit behauptet, folgt sofort, dass [R(g);gq] richtig ist, denn
[R(q); ¢q] ist ja unbeweisbar (weil unentscheidbar). Der im System
PM unentscheidbare Satz wurde also durch metamathematische Uber-
legungen doch entschieden. Die genaue Analyse dieses merkwiirdigen
Umstandes fiihrt zu tiberraschenden Resultaten, beziiglich der Wider-
spruchsfreiheitsbeweise formaler Systeme, die in Abschnitt 4 (Satz XI)
nédher behandelt werden.

From the remark that [R(q); ¢] asserts its own unprovability it
follows immediately that [R(q); ¢] is true, since [R(q); ¢] is indeed
unprovable (because it is undecidable). The proposition undecidable in
the system PM is thus decided by metamathematical arguments. The
precise analysis of this remarkable circumstance leads to surprising
results conerning consistency proofs of formal systems, which will be
treated in more detail in Section 4 (Theorem XI).

Proposition XI, mentioned at the end of the paragraph, is the second incom-
pleteness theorem. It asserts that a formal system expressive enough to formal-
ize the proof of the first incompleteness theorem cannot prove its consistency.
In the first chapter, we have already alluded to the far-reaching consequences of
this theorem in philosophical terms. For most mathematicians, it manifests the
impossibility of Hilbert’s program: proving the consistency of classical mathe-
matics with finite means.



®

Check for
updates

4 System P

“Just as languages like Greek or Sanskrit are his-
torical facts and not absolute logical necessities, it
is only reasonable to assume that logics and math-
ematics are similarly historical, accidental forms of
expression.”

John von Neumann [73]

In the previous chapter, we have successfully mastered the first part of Gédel’s
historic paper. Having thoroughly worked through the proof sketch, we now
understand Godel’s lines of reasoning in proving the first incompleteness theo-
rem. For the exact execution of the proof, we first describe the formal system
for which Gddel will prove the existence of undecidable propositions.

2.

Wir gehen nun an die exakte Durchfiihrung des oben skiz-
zierten Beweises und geben zunidchst eine genaue Beschreibung des
formalen Systems P, fiir welches wir die Existenz unentscheidbarer
Sidtze nachweisen wollen.

2.
We pass now to the rigorous execution of the proof sketched
above, and we first give a precise description of the formal system P
for which we wish to prove the existence of undecidable propositions.

With system P, Godel defines a formal system capable of formulating state-
ments about the natural numbers. The title of his article already reveals the
formal system he was inspired by: the Principia Mathematica (PM) by Russell
and Whitehead. P is essentially the system obtained when the logic of PM is
superposed upon the Peano axioms.

P ist im wesentlichen das System, welches
man erhilt, wenn man die Peanoschen Axiome mit der Logik der
PM 16) tiberbaut (Zahlen als Individuen, Nachfolgerrelation als un-
definierten Grundbegriff).

16) Die Hinzufiigung der Peanoschen Axiome ebenso wie alle anderen
am System PM angebrachten Abinderungen dienen lediglich zur Vereinfachung
des Beweises und sind prinzipiell entbehrlich.
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P is essentially the system which
one obtains by building the logic of PM around Peano’s axioms
(numbers as individuals, successor relation as undefined primitive
concept). 1)

16) The addition of Peano’s axioms, as well as all other changes made in the
system PM, serve only to simplify the proof and are theoretically dispensable.

We will introduce System P in the same way as the example system E used
in Section 1.2 to illustrate the basic properties of formal systems. First, we
define the syntax, that is, we specify which symbol strings form a well-defined
formula and which do not. Second, we introduce a semantic level by assigning
a substantive meaning to the individual language elements. Third, we supply
the axioms and inference rules for deriving new theorems.

4.1 Syntax

Die Grundzeichen des Systems P sind die folgenden:

I. Konstante: ,,oo“ (nicht), ,\/“ (oder), ,,II (fiir alle), ,,0°
(Null), ,,f“ (der Nachfolger von), ,,(*, ,,)* (Klammern).

II. Variable ersten Typs (fir Individuen, d. h. natiirliche

Zahlen inklusive 0): .21, .y, 215 . ...
Variable zweiten Typs (fiir Klassen von Individuen): ,20°,

Variable dritten Typs (fiir Klassen von Klassen von Individuen):

77:1:3“7 uy3“7 7,23“, 5000
usw. fiir jede natiirliche Zahl als Typus'?).

17) Es wird vorausgesetzt, daB fiir jeden Variablentypus abzihlbar viele
Zeichen zur Verfiigung stehen.

The primitive symbols of the system P are the following:

I. Constants: “oo” (not), “\/” (or), “II” (for all), “0” (zero),
“f” (the successor of), “(”’, “)” (parentheses).

II. Variables of the first type (for individuals, i.e. natural num-
bers including 0): “z;”, “y,”, “z1”,....

Variables of the second type (for classes of individuals):

9 2

“@7, ‘Yo7, @7, ...
Variables of the third type (for classes of classes of individuals):

13 29

“,’L’3”, y3 s 452357’ .
— Etc., for every natural number as type.'7).

17) It is assumed that, for each type, denumerably many variables are at our
disposal.
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The primitive signs ‘e’ and ‘I’ are no longer in use today. Utilizing the modern
symbols ‘=’ (negation) and ‘v’ (universal quantification), the definition reads

as follows:

Definition 4.1 Primitive signs of System P
The formulas of system P are built from the following primitive signs:
B, VY (Logical operators and quantifiers)
m 0 (Constant)
| f (Unary function symbol)
mC ey (Grouping symbols)
Hx,vy,, 2z, - (Variables of type i)

Make sure to keep an eye on the indices of the variables! In mathematics
and modern logic, it usually doesn’t matter whether a variable is named x;
or xp. The indices have no semantic meaning and are only used to generate
a sufficiently large amount of identifiers. In type theory, and thus in Goédel’s
system P, things are different, as the index defines the type of a variable and,
therefore, its hierarchy level. Consequently, x; and x, differ not only in name
but also in their substantive meaning.

In the following, we will frequently substitute variables with placeholders. If
the type of a variable is irrelevant, we use placeholders such as & or ¢ with no
index. To emphasize that a variable has type i, we write & or (; instead. To
sum up:

&, ¢, ... represent arbitrary variables (e.g., x1, y2, or z3).
&1, (1, ... represent arbitrary variables of type 1 (e.g., x1, y1 or z3).
s, (o, ... represent arbitrary variables of type 2 (e.g., xa, y2 or z»).

Next, Godel points out a peculiarity that distinguishes his formal system from
the Principia Mathematica. While the latter allows the formation of expressions
like x(x1,y1), Godel’s system P restricts all variables of higher type to be unary
predicates. For instance, it is permissible to write xa(x1), but not xa(xg,y1).
Godel points out that this is not a restriction in the strict sense: Constructs
of this kind are superfluous, since relations can be defined as classes of ordered
pairs, and ordered pairs in turn as classes of classes.

Anm.: Variable fiir zwei- und mehrstellige Funktionen (Rela-
tionen) sind als Grundzeichen iiberfliissig, da man Relationen als
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Klassen geordneter Paare definieren kann und geordnete Paare
wiederum als Klassen von Klassen, z. B. das geordnete Paar a, b
durch ((a), (a, b)), wo (z,y) bzw. (z) die Klassen bedeuten, deren
einzige Elemente z, y bzw. z sind '#).

18) Auch inhomogene Relationen konnen auf diese Weise definiert werden,
z. B. eine Relation zwischen Individuen und Klassen als eine Klasse aus Ele-
menten der Form: ((z2), ((z1), 22)). Alle in den PM iiber Relationen beweis-
baren Sitze sind, wie eine einfache Uberlegung lehrt, auch bei dieser Behand-
lungsweise beweisbar.

Remark: Variables for functions (relations) of two or more ar-
guments are superfluous as primitive symbols, since one can define
relations as classes of ordered pairs and ordered pairs, in turn, as
classes of classes, e.g. define the ordered pair a, b by ((a), (a,b)),
where (x, y) denotes the class whose only elements are z and y, and
(z) that whose only element is x.'%)

18) Inhomogeneous relations can also be defined in this way, e.g. a
relation between individuals and classes as a class of elements of the form
((z2), ((z1), z2)). All theorems about relations provable in PM are, as is eas-
ily seen, also provable under this method of treatment.

4.1.1 Terms and Formulas

Godel continues to broaden his terminology. Among others, he introduces
distinct character combinations, referred to as expressions of the first type:

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 177

Unter einem Zeichen ersten Typs verstehen wir eine Zeichen-
kombination der Form:

a, fa, ffa, fffa... usw.

wo a entweder O oder eine Variable ersten Typs ist. Im ersten
Fall nennen wir ein solches Zeichen Zahlzeichen. Fir n> 1
verstethen wir unter einem Zeichen n-ten Typs dasselbe wie
Variable n-ten Typs.

On formally undecidable propositions of Principia Mathematica etc. 177

By a term of the first type we mean a combination of sym-
bols of the form:
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a, fa, ffa, fffa, ..., etc,

where a is either 0 or a variable of the first type. In the first
case we call such an expression a numeral. For n > 1 we mean
by a term of the n-th type just a variable of the n-th type.

If G6del were publishing today, he would likely refer to expressions of the first
type as terms.

Definition 4.2 Terms of System P

In system P, terms are formed according to the following rules:

B 0 is a term.
B Every variable & of type 1 is a term.

B If o is a term, then f ¢ is also a term.

For any variable &7, that is, any variable of type 1, the symbol strings

El?fglaffglafffflv
are terms. Some examples are:

xl,fxl,ffxl,fffxl,...

yi, fyr, ffyy, fFffyg, ...
Zl;le,fle,ffle,...

Terms can also be formed without variables:
0,fo,ffO,fffoO0,... (4.1)

Godel refers to terms with no variables as “Zahlzeichen”. “Zahl” is the German
word for number, and “Zeichen” means sign or symbol. The name explains
itself as soon as the symbols are given a substantive meaning: Godel identifies
the symbol 0 with the natural number 0 and the symbol f with the successor
operation. Hence, in terms of content, each “Zahlzeichen” represents a specific
natural number.

Over time, the term “Zahlzeichen”, along with many others used by Godel,
has faded from the German vocabulary. Today, native German speakers would
surely understand the individual word components but might struggle to rec-
ognize the meaning of the compound word as it was understood during Goédel’s
time. Today, German native speakers would likely choose the Latin word “Nu-
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meral” instead. Most contemporary translations of Godel’s paper opt for the
same word, eliminating the need for translation.

The expressions of higher types are even easier to understand, as they are
identical to the variables of higher types. I.e., xa, y2, zo are expressions of type
2, x3, y3, z3 are expressions of type 3 and so on.

Next, Godel introduces elementary formulas:

Zeichenkombinationen der Form a (b), wo b
ein Zeichen n-ten und a ein Zeichen n + l-ten Typs ist, nennen wir
Elementarformeln.

Combinations of symbols of the form a (b), where b is a term of
the n-th type and a is a term of the (n + 1)st type, will be called
elementary formulas.

In the remainder of this book, we will use the term atomic formula instead of
elementary formula, as the former is more common today.

’;\A Definition 4.3 Atomic formulas of System P

In System P, atomic formulas are formed according to the following rules,
where &; and (; denote variables of type i, and ¢ denotes a term:

[ | 52(0')
n fn+1(§n) (17, > 2)

For instance, x2(x1) and x3(xz) are atomic formulas, but x3(x;) is not. The
established syntax rules reflect the elementary principle of type theory that a
predicate of type n 4+ 1 expects an argument of type n.

Die Klasse der Formeln definieren wir als die
kleinste Klasse '), zu welcher simtliche Elementarformeln gehdren
und zu welcher zugleich mit a, b stets auch oo (a), (a) V (b), zII (a)
gehoren (wobei z eine beliebige Variable ist)'°*). (a)V/ (b) nennen

wir die Disjunktion aus @ und b, oo (a) die Negation und zII (a)
eine Generalisation von a.

19) Bez. dieser Definition (und analoger spiter vorkommender) vgl.
J. Lukasiewicz und A. Tarski, Untersuchungen iiber den Aussagenkalkiil,
Comptes Rendus des séances de la Société des Sciences et des Lettres de Var-
sovie XXIII, 1930, Cl. IIL



4.1 Syntax 145

19a) zII (a) ist also auch dann eine Formel, wenn z in a nicht oder nicht
frei vorkommt. In diesem Fall bedeutet zII (a) natiirlich dasselbe wie a.

We define the class of formulas as the
smallest class'?) to which all elementary formulas belong and
to which oo (a), (a)V(b), zII(a) (where z is an arbitrary
variable) 1°%) also belong whenever a and b belong. We call (a)V/ (b)
the disjunction of a and b, oo (a) the negation of a, and zII(a) a
generalization of a.

19) With respect to this definition (and similar ones later), cf. J. Lukasiewicz
and A. Tarski, “Untersuchungen iiber den Aussagenkalkiil.”, Comptes Rendus des
séances de la Société des Sciences et des Lettres de Varsovie XXIII, 1930, CIl.
I

19a) Thus, zII(a) is also a formula when z does not occur or does not
occur free in a. Naturally, in this case, Il (a) has the same meaning as a.

In this passage, Godel defines the rules for the construction of formulas:

Definition 4.4 Formulas of System P

In System P, formulas are formed according to the following rules:

B All atomic formulas are formulas.

B Let £ be a variable. If ¢ and v are formulas, so are:

* —(p) (Negation)
® (o) V(¥) (Disjunction)
e V¢ (p) (Generalization or universal quantification)

We will also employ the usual abbreviations:

(@) = (¥) == (=(p) V(¥) (Implication)
(@) A () = =((=(p) V (=(¥))) (Conjunction)
(@) < (¥) == ((¢) = (@) A () = () (Equivalence)

€ (@) = ~(VE (~(9))) (Existential quantification)

Based on the above definition, the following strings of symbols constitute well-
defined formulas:

(Vx2 ((x2(f x1)) = (x2(0)))) (4.2)
(Vx2 ((x2(f x1)) = (x2(f y1)))) = (Vx2 ((x2(x1)) = (x2(y1)))) 4.3
((x2(0)) A (Vx1 ((x2(x1)) = (x2(f x1))))) = (Vx1 (x2(x1))) (4.4)
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\v4 —
3 - A \ o
stronger weaker
binding binding

Figure 4.1: Binding rules for formulas of the formal system P

Keep in mind that the new operators are not integral parts of the formal lan-
guage. They are syntactic abbreviations with the sole purpose of letting us
write down formulas more concisely.

The following symbol strings do not qualify as formulas in a strict sense, as the
subexpressions are not fully parenthesized:

—|VX2 (Xz(f Xl) — (X2(O))) (45)
Vxz (x2(f x1) = xe(f y1)) = V2 (x2(x1) = (x2(y1)))
XQ(O) A VXl (X2(X1) — Xz(f Xl)) — VXl X2(X1) (47)

Because these formulas are more accessible for us to read than their fully brack-
eted counterparts (4.2) to (4.4), we will take the liberty of omitting parentheses
whenever it seems appropriate. Binding rules define where we ought to fill in
the omitted pairs of parentheses to obtain native formulas of system P. In
particular, the following rules apply (Figure 4.1):

‘v’ and ‘3’ bind the strongest.
3

=’ binds stronger than ‘A’.

‘A’ binds stronger than ‘V’.

‘V’? binds stronger than ‘—’ and ‘<’.

According to these rules, the quantifier in the formula below refers only to the
part left of the implication symbol:

Vxq xa(x1) = x3(x2)
Fully parenthesized, the formula looks like

(Vx1 x2(x1)) = x3(x2)
and must be strictly distinguished from this variant:

Vx1 (xa(x1) = x3(x2))
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Next, we establish binding rules for expressions where the same operator re-
peats multiple times. For this purpose, we declare the negation operator right-
associative and all binary operators left-associative. The following examples
clarify the meaning of these terms:

= = 2(=(-p))
eVYVx = (Vi) Vx
p—=PY—=x = (=)= x

A variable may occur as a bound variable or as a free variable. The occurrence
of a variable ¢ is bound if £ is embedded in a subformula of the form V¢ ¢ or
3¢ p; otherwise, it is free. The following example demonstrates that a variable
may occur both free and bound within the same formula:

Bound variable Bound occurrences
VE( ... ) Vxy x2(x1) = Vxo X2 (x1)
Quantifier Scope Free occurrences

Today, most mathematicians call a formula with no free variables a closed
formula and speak of an open formula otherwise. In the 1930s, these terms
had not yet been coined, making Gédel’s words sound quite unusual to today’s
readers:

Satzformel heilt eine Formel, in
der keine freie Variable vorkommt (freie Variable in der bekann-
ten Weise definiert). Eine Formel mit genau n-freien Individuen-
variablen (und sonst keinen freien Variablen) nennen wir n-stelliges
Relationszeichen, fir n = 1 auch Klassenzeichen.

A sentence is a formula in
which no free variables occur (free variables being defined in the
usual way). A formula with exactly n free individual variables (and
otherwise no free variables) is called an n-ary predicate, for n =1
also a class expression.

What we now call a closed formula is termed Satzformel in Godel’s text.
English-speaking authors usually translate this term to sentential formula or,
as seen above, simply to sentence. A formula with exactly n free variables of
type 1 is called n-stelliges Relationszeichen in the original, which translates to
n-ary relation sign. For n = 1, Godel uses the term Klassenzeichen, which most
English-speaking authors translate to class expressions. Make sure to memorize
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the latter term. The proof sketch has already demonstrated the crucial role of
class expressions in Godel’s line of reasoning.

A formula with all variables of higher type being bound is
P B a sentence or sentential formula if it has no free variable,
@ W a relation sign if it has at least one free variable,

B a class expression if it has exactly one free variable.

4.1.2 Substitutions

Unter Subst a (3) (wo a eine Formel, v eine Variable und b
ein Zeichen vom selben Typ wie v bedeutet) verstehen wir die
Formel, welche aus a entsteht, wenn man darin v iberall, wo es
frei ist, durch b ersetzt?°).

20) Falls v in a nicht als freie Variable vorkommt, soll Subst a (}f) = a sein.
Man beachte, dal “Subst” ein Zeichen der Metamathematik ist.

By Subst a (}) (where a is a formula, v is a variable, and b is
a term of the same type as v) we understand the formula which arises
from a when we replace v, wherever it is free, by b 2°).

20) In case v does not occur as a free variable in a, then Subst a (}j) =a.

One should note that “Subst” is a metamathematical symbol.

A substitution creates a formula from another by replacing all free occurrences
of a variable with an expression of the same type. More precisely, for any given
formula (&) with the free variable &,

pl¢ « a] (4.8)

denotes the formula that results from ¢ by replacing all free occurrences of &
with o. If it is evident from the context which variable is to be replaced, (4.8)
is abbreviated by

e(0).

This notation has already been employed in the proof sketch.

The typing rules require a variable & to be substituted by an expression of the
same type. Consequently, a variable of type 1 may be replaced by any term.
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A variable of type i with ¢ > 2, however, may only be replaced by another
variable of type 1.
The subsequent substitutions adhere to the typing rules and are thus valid:

eiyi] vV ok e0 vV g f0] vV
o x| ¥V Pl vy2] ¥V Olxp 23] ¥

The following three substitutions are prohibited as they create type conflicts:
pxi -yl X @[xp 0] b 4 Ylxa +— fx1] X

Let’s look at some more specific examples. Since Gddel uses a notation that
feels very unusual for us, all substitutions are given twice: first in Goédel’s
original notation and then in a modern variant:

B Godel’s notation:

Subst o M as(21) (G) = a2 a2(0)
Subst 2 [ zo(z1) () = 22 Mas(y,)

B Modern notation:

(VXZ X2(X1))[X1 — 0] = Vxo X2(0)
(Vx2 x2(x1))[x1 <= y1] = Vxz x2(y1)
If the substituted variable appears both free and bound, the bound occurrences

remain untouched, as the following examples demonstrate:

B Godel’s notation:

Subst 2y T zo(z1) —> 2 Man(z1) (5)) = z1 Man(2) —> 22 M aa(y,)
Subst 21 [T 2o (21) —> 2 M an(z1) (42) 21 Myy(zr) = 22 M an(ay)

B Modern notation:

(VXl X2(X1) — VXQ X2(X1)) [Xl < yl] = (Vxl X2(X1) — VXQ Xz(yl))

(Vx1 xa(x1) = Vx2 xa(x1)) [X2 < y2] = (Vx1 y2(x1) = VX2 x2(x1))

The original formula remains unaltered if the substituted variable does not
occur freely anywhere.

The next example demonstrates a peculiarity:
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B Godel’s notation:

Subst (B y; ) (72(71) & Y (1)) (ii) = (Ey)(22(11) &y (y1))

B Modern notation:

(3y1 (xa(x1) Ay2(y1))) [xa <= y1] = 3y1 (xa(y1) Aya(y1))

The substitution creates a so-called collision since it replaces a free variable
with a variable that will become bound at the insertion point. In the following,
mainly collision-free substitutions will matter.

In footnote 20, Godel points out that “Subst” is a metamathematical symbol.
Being not a native language element of P, it fundamentally differs from symbols
such as ‘V’ or ‘=’, which are part of the object language.

Last but not least, Gédel introduces the concept of type elevation:

Wir sagen, da eine Formel a eine
Typenerhdohung einer anderen b ist, wenn a aus b dadurch ent-
steht, daB man den Typus aller in b vorkommenden Variablen um
die gleiche Zahl erhoht.

We say that a formula a is a
type elevation of another formula b when @ arises from b by raising
the type of all variables occurring in b by the same number.

A formula v is obtained from a formula ¢ by type elevation if, for an arbitrary
natural number n > 1, each variable ; is replaced with the variable &;,,. For
instance, from

Vxa (x2(x1) = x2(y1))

the following formulas can be obtained:
Vx3 (x3(x2) = x3(y2))

Vxq (x4(x3) = x4(y3))
Vx5 (x5(xa) — xs5(ya))

4.2 Semantics

Having agreed on how the primitive symbols of system P can be combined into
complex formulas, we will now assign a substantive meaning to all language
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components. Similar to the example system E discussed in Section 1.2, we
define the semantics by the model relation ‘=", Its exact definition relies on
the concept of interpretation, which is introduced first.

Definition 4.5 Interpretation

An interpretation I is a mapping with the following properties:

B [ maps the term 0 to the natural number 0.
B [ maps every term of the form f o to the natural number I(o) + 1.

B ] maps each variable &1 (i > 0) to an element of the set P*(N).

P*(N) denotes the power set of order i and is defined recursively:

PUN) == N PH(N) = 2P'®

Among others, this definition states the following:

B /(&) is a natural number.
= e.g., 42
B /(7m) is the natural number n.
iweg,dforn=ffff0

B /(&) is a set of natural numbers.
w e.g., {2,3,5,7,11,13,17,19,23,...}

B /(&3) is a set of sets of natural numbers.
i e.g., {{0,1},{1,2},{2,3},{3,4},{4,5},...}

B /(&) is a set of sets of sets of natural numbers.

i e g, {{{0},{0, 11}, {{1}. {1, 2}}, {{2},{2,3}},.. .}

An interpretation allows us to assign a substantive meaning to each formula
of P. We will write I = ¢ to express that ¢ becomes a substantively true
statement when the variables are interpreted according to I. Formally, the
model relation is defined as follows:

L;\ Definition 4.6 Model relation

Let I be an interpretation. The model relation I = ¢ is defined induc-
tively:
I'E&(G) = 1(G) € 1(&i41)
ITE-p & I
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ITEeVY & ITEporlEY
IEVYE ¢ & Forall Ne PYN), I, v E @

An interpretation I with I = ¢ is called a model for .

The notation I¢,nx has not been used before. It denotes the interpretation that
maps & to N and is otherwise identical to I:

N if¢=¢
I(¢) otherwise

Ig/n(C) = {

The substantive meanings of the logical operators ‘A’, ‘=’ ‘>’, and the exis-
tential quantifier ‘3’ follow directly from the above definition:

TEeANY & TEpand I =9

IEp—y & Ik implies I =1

IEpeoy © I=gpifandonlyif I v
I'E3&1 ¢ < I, N E ¢ holds for some N € PY(N)

As an example, consider the formula
Vxy (x2(x1) Vy2(x1)) (4.9)
and an interpretation I with

I(xo) == {0,2,4,6,8,10,...} (1 all even numbers)
I(y2) == {1,3,5,7,9,11,...} (r= all odd numbers)

Then, the following holds:

I |=x2(x1) < I interprets the variable x; as an even number.

I Eya(x1) < I interprets the variable x; as an odd number.
From this, it follows for all n € N:

Ly yn = %2(x1) Vy2(x1)

That, in turn, means that formula (4.9) becomes a substantively true statement
under the interpretation I:

I'=Vx (x2(x1) Vya(x1))

After all, the result is not surprising, as the formula states a trivial arithmetic
fact under the chosen interpretation:

“Every natural number is even or odd.”
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Next, let us consider an interpretation I’ with:

I'(x2) == {0,2,4,6,8,10,...} ()= all even numbers)
I'(y2) == {0,1,4,9,16,25,...} (1= all square numbers)

In this case, the chosen interpretation is no longer a model for the given formula:
I' PV X1 (xa(x1) V ya(x1))

This result again aligns with our expectations, as the formula now corresponds
to the false statement:

“Every natural number is even or a square number.”

Now, the next two notions should be easy to understand:

Definition 4.7 Logical Consequence, Equivalence

B ¢ is a logical consequence of ¢, denoted as ¢ |= v, if the following
holds:

Ity = IEY
(s Every model of ¢ is a model of 1).)

B ¢ and v are equivalent, denoted as ¢ = ¥, if the following holds:

pEYandy =

(1 ¢ and 1) have the same models.)

The notion ¢ = 1 generalizes to sets of formulas. If M is such a set, then

M (4.10)

states that if an interpretation I is a model of all formulas in M, it is also a
model of ¢. If M is the empty set, then (4.10) expresses that any interpretation
is a model of . In this case, we call ¥ a true formula and simply write

=9

instead of ) |= 1. Again, let us examine some examples:

E 3x2 3yo (Vxq xa(x1) Vya(x1))
EVxy Jyr Ve (x2(x1) = %2(y1))
= x2(x1) = Ixq x2(x1)

VX1 (xa(x1) V ya(x1))
F Jy1 Vxg =V xa (%2(x1) = xa(y1))
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|;'é X2(X1) — VXl X2(X1)

A pivotal scenario unfolds for closed formulas. If ¢ is such a formula, it is either
true for all interpretations (= ¢) or false for all interpretations. In the latter
case, the negated formula —¢ is true for all interpretations (= —¢). Thus,
if only closed formulas are considered, there is precisely one formula that is
substantially true and one that is substantially false among ¢ and —p.

- L In system P, for every closed formula ¢,
@— either = ¢ or = = holds.

Remember that such a relationship cannot be established for open formulas.
For instance, the formula

© = VXl X2(X1)

neither satisfies |= ¢ nor = -y, as both ¢ and —p become substantively false
under certain interpretations.

4.2.1 Definition of Equality

The ability to quantify over arbitrary variables classifies Godel’s system P as a
higher-order logic. Unlike in first-order logic, where quantification is confined
to individual variables (variables of type 1), P allows variables of higher types
to be bound. The following colloquial description of the universal quantifier
elucidates the substantive meaning of quantifying over higher types:

B Vx; ... = “For all natural numbers, ...”
B Vx, ... = “For all properties of natural numbers, ...”
B Vx;3 ... = “For all properties of properties of natural numbers, ...”

The freedom of talking about the properties of natural numbers renders system
P highly expressive. For instance, it allows us to define a relation that plays a
key role in mathematics: equality. In this context, to “define” means to specify
a formula ;q(£1, (1) that is true precisely when the two free variables &; and
(1 are interpreted as the same individual:

I'E i, G) & 1(6) =1(G)

For the construction of ¢jq, we need a characterization of equality that the
linguistic means of system P can capture. The solution to this problem is
provided by Leibniz:
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“The same are those that can be substituted everywhere, preserving
truth.”

“FEadem sunt quae sibi ubique substitui possunt, salva veritate.”

Gottfried Wilhelm Leibniz [12]

This quote describes Leibniz’s famous principle of identity. It states that &;
and (; represent the same individual if and only if no property can distinguish
them. In other words, any property applying to & also applies to (; and vice
versa. Leibniz’s characterization of equality can be readily expressed within
Godel’s system P by the following formula:

§1=C = Vxo (x2(&1) © x2(C1)) (4.11)

By type elevation, the definition of equality can be generalized as follows:

&= G = Vxip1 (xiy1(&) < xir1(G)) (i>1)

It is an essential result of mathematical logic that quantification over the in-
dividual domain, which is the set of natural numbers in the case of P, is in-
sufficient to define equality. As a result, first-order logics, including first-order
predicate logic (PL1), must incorporate the equality sign as a distinct symbol
with special semantics. Consequently, PL1 and PL1 with equality must be
clearly distinguished. In formal systems such as P, such differentiation is not
necessary. The system is expressive enough to define equality by its own means,
particularly by quantifying over a variable of higher type.

4.2.2 Definition of Natural Numbers

With the definition of equality at our fingertips, it is easy to pen down equations
(4.5) to (4.7) in a concise way:

fxy £0 (4.12)
le :fyl — X1 =YVY1 (4.13)
X2(0) A\ VXl (X2(X1) — X2(f Xl)) — VXl X2(X1) (414)

The formulas unveil their true colors in this representation: They are three of
the five Peano axioms, uniquely characterizing the natural numbers.

After familiarizing ourselves with the semantics of G6del’s system P, it is time
to introduce its axioms and inference rules.
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4.3 Axioms and Inference Rules

Formalizing the Peano axioms in the language of P is a prerequisite for proving
theorems about natural numbers. Thus, it comes as no surprise that Godel
begins with precisely these axioms:

Folgende Formeln (I bis V) heilen Axiome (sie sind mit Hilfe
der in bekannter Weise definierten Abkiirzungen: ., D, =, (Ex), = ')
und mit Verwendung der iiblichen Konventionen iiber das Weglassen
von Klammern angeschrieben) 2):

2. fm=fyydDm=uy
3. Ty (0) .x 10 (IQ (Il) D X2 (fl‘l)) O a I (Ig (1’1))

21) g1 =y, ist, wie in PM I, * 13 durch 2o IT (22 (1) D 22 (y;)) definiert
zu denken (ebenso fiir die hoheren Typen).
22) Um aus den angeschriebenen Schemata die Axiome zu erhalten, mufB
man also (in II, III, IV nach Ausfiihrung der erlaubten Einsetzungen) noch
1. die Abkiirzungen eliminieren,
2. die unterdriickten Klammern hinzufiigen.
Man beachte, dal die so entstehenden Ausdriicke ,,Formeln* in obigem Sinn
sein miissen. (Vgl. auch die exakten Definitionen der metamathem. Begriffe S.182fg.)

The following formulas (I through V) are called axioms (they are
written with the help of the abbreviations: ., D, =, (Fz), = 21),
which are defined in the well-known way, and with the use of the
usual conventions on the omission of parentheses 22):

L 1. N(fxl = 0)
2. fm=fyndm=uy
3. X2 (O) .x 10 (332 (.T1) D I (fIl)) D Il (CEQ (.731))

21) As in PM I, *13, z1 =y; is to be thought of as defined by
pI(w2 (1) D 22(yy)) (similarly for higher types).
22) In order to obtain the axioms from the schemata as written, one must
therefore (after performing the permitted substitutions in II, III, IV)
1. eliminate abbreviations,
2. add omitted parentheses.
One should observe that the resulting expressions must be “formulas” in the
above sense. (Cf. also the precise definitions of the metamathematical concepts on
page 182 ff.)

Translating the three formulas from the original paper into modern notation
yields the three formulas (4.12), (4.13) and (4.14). It is not a mistake that
Godel only mentions three of the five Peano axioms. The first two Peano
axioms are implicitly formalized, as 0 is incorporated into the language of P as
a constant symbol, and the successor operation f as a function symbol.

Do you recall Dedekind’s isomorphism theorem from page 557 It allows us to
resolve an apparent contradiction you may have already noticed. Definition 4.5
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explicitly stipulates that the symbols 0 and f are interpreted as zero and
the successor operation on the natural numbers, respectively. Godel himself,
however, left them undefined. Let us recall his words from page 139:

P is essentially the system which
one obtains by building the logic of PM around Peano’s axioms (numbers as
individuals, successor relation as undefined primitive concept). 1)

When the symbols 0 and f remain undefined, they can interpreted freely, as
long as the interpretation is compatible with the axioms. The fact that they
nonetheless have their intended substantive meaning follows from Dedekind’s
isomorphism theorem, which asserts that the Peano axioms uniquely charac-
terize the natural numbers up to isomorphism. Thus, only one interpretation
for the symbols 0 and f is possible: the interpretation of the symbol 0 as zero
and of the symbol f as the successor operation.

Formulas or sets of formulas that possess a unique substantive meaning are said
to be categorical. In the case of the Peano axioms, categoricity ensures that
the symbols 0 and f are assigned their intended substantive meaning as defined
in Definition 4.5. Conversely, this implies that we had no semantic freedom in
this definition. Any other interpretation of 0 and f would have conflicted with
the axioms of P.

Footnotes 21 and 22 are significant. In the former, Godel defines equality as
follows:

X1 =Yy1 = VXQ (X2(X1) — X2(y1)) (415)

The formula is meant to hold not only for the two specific variables x; and y;,
but for any variable of type 1. Generalized, (4.15) reads like this:

61 = Cl = VXQ (X2(§1) — X2(C1)) (416)

Godel uses this scheme also for higher types:

§i=Ci = Yxirr (xir1(&i) = xi11(Gi)) (4.17)

This formula slightly differs from our definition, which originates directly from
Leibniz’s characterization of equality. On page 155, we have agreed on the
following:

§i =G = Vi1 (xir1(&) < xit1(Gi) (i>1)

Godel’s definition originates from the Principia Mathematica. At first sight, it
seems to be weaker than Leibniz’s variant. However, it is easy to check that
both definitions are equivalent. If

Xit1(&i) = xit1(Gi)
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is always true, no matter which relation is associated with x;;1, then the rela-
tionship is also always true for the complementary relation. Hence, if

Vxir1 (Xit1(&i) = xi1(Gi)) (4.18)

is a true formula, so is

Vi1 (mxig1(&) — ~xir1(G)), (4.19)

and this formula is equivalent to

Vxir1 (Xir1(Gi) = xir1(8i))- (4.20)

Together, (4.17) and (4.20) exhibit the equivalence between Godel’s definition
of equality and Leibniz’s principle of identity. On page 185, we will revisit the
outlined derivation. In particular, we will formalize the argument within P and
derive (4.20) step by step from the axioms.

In footnote 22, Gédel emphasizes that the formulas in their depicted form are
no native formulas of P. To obtain those, one must therefore still

“1. eliminate abbreviations”,

oo x2 IT (o x2(f x1) V x2(0))
oox2 IT (o xa(f x1) Vxo(fy1)) Vxo IT (oo x2(x1) V x2(y1))
oo (o (eox2(0) V coxi I (cox2(x1) Vx2(f x1)))) V xi I (x2(x1))

“2. add omitted parentheses”:

oo (e IT (2 (x2(f x1))) V (x2(0))))
(@0 (e IT (e (x2(f x1))) V (x2(F y1))))) V O IT((@2 (x2(f x1))) V (x2(f 1))
(oo (@ (00 (x2(0))) V (o0 (xa T (@2 (x2(x1))) V (x2(f x1)))))))) V (xa I (x2(x1)))

These formulas are the three Peano axioms expressed in the native language of
the formal system P. Admittedly, they look pretty confusing in this form, and
their true meanings are hardly recognizable.

Next, Godel introduces a series of propositional axioms:

178 Kurt Godel,
II. Jede Formel, die aus den folgenden Schemata durch Einsetzung
beliebiger Formeln fiir p, g, 7 entsteht.

1. pVpDp 3. pNVq¢Dq\Vp

2. pDpVq 4. (pD>gD(rvpDdrVQ.
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178 Kurt Godel,

II. Every formula which arises from the following schemata by
substitution of arbitrary formulas for p, ¢, 7.

1. pVpDp 3. pVgDqVp
2. pDpVyq 4. (pD> g D(rvpDdrVy.

We already know these axioms from page 80, Figure 2.22. They correspond
to the axioms (2), (3), (4), and (6) of the Principia Mathematica. Godel also
notes that these axioms are understood as schemata, with variables p, ¢, and
r being placeholders that any other formula can replace.

Immediately after, Godel introduces two axioms of predicate logic:

III.  Jede Formel, die aus einem der beiden Schemata
1. vII(a) D Subst a (7)
2. vII(bVa) D b\Voll(a)

dadurch entsteht, daB man fiir a, v, b, ¢ folgende Einsetzungen vor-
nimmt (und in 1. die durch ,,Subst“ angezeigte Operation ausfiihrt):

Fiir a eine beliebige Formel, fiir v eine beliebige Variable,
fir b eine Formel, in der v nicht frei vorkommt, fiir ¢ ein Zeichen
vom selben Typ wie v, vorausgesetzt, dal c keine Variable ent-
hilt, welche in a an einer Stelle gebunden ist, an der v frei ist2?).

23) ¢ ist also entweder eine Variable oder O oder ein Zeichen der Form
f-...fu, wo u entweder O oder eine Variable 1. Typs ist. Bez. des Begriffs ,.frei
(gebunden) an einer Stelle von o vgl. die in FuBnote 24) zitierte Arbeit I A 5.

III. Every formula which results from one of the two schemata

1. vII(a) D Subst a (¥)
2. vII(bVa)D bVoll(a)

by making one of the following substitutions for a, v, b, ¢ (and car-
rying out in 1. the operation indicated by “Subst”):

For a an arbitrary formula; for v an arbitrary variable; for b
a formula in which v does not occur free; and for ¢ a term of the
same type as v, assuming that c¢ contains no variable which is bound
at a place in @ at which v is free??).

23) ¢ is therefore either a variable or O or a term of the form f.... fu,
where w is either O or a variable of the first type. With respect to the concept “free
(bound) at a place of a”, cf. I A5 of the paper cited in footnote 24).
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In modern notation, these two axioms look like this:

Vén o = 9lén o) (if the substitution is collision-free)
VEMWV @) — (Y VYE ) (if £ does not appear freely in 1)

Let’s look at an example. From schema III.1, the following axiom can be
derived:

Vxp ya(x1) = ya(y1)

Keep in mind that the schema is only applicable under two conditions:

B The type of 0,, must match the type of the substituted variable. For instance,
it is not permitted to choose x; for &, and y, for o,. If it was, the formula

Vx1 y2(x1) = ya(y2)
would be an axiom which is incompatible with the syntactic structure of P.

B The substitution must be collision-free, that is, the substitution must not
bind a variable that occurs freely in o,,. The following example demonstrates
why this rule is crucial for the correctness of the calculus:

Vxi 3yr (x1 #y1) = 3y1 (y1 # y1)

This formula is substantively false, yet it would be an axiom if we waived
the restriction to collision-free substitutions.

IV. Jede Formel, die aus dem Schema
1. (Bu) (vII (u(v) = a))

dadurch entsteht, daB man fiir v bzw. w beliebige Variable vom
Typ n bzw. n-+1 und fir o eine Formel, die « nicht frei ent-
hélt, einsetzt. Dieses Axiom vertritt das Reduzibilitdtsaxiom (Kom-
prehensionsaxiom der Mengenlehre).

IV. Every formula which results from the schema
1. (Bu) (vII (u(v) = a))

by substituting for v (for w) an arbitrary variable of the type n (of
type n+ 1), and for a any formula which does not contain u free.
This axiom represents the axiom of reducability (comprehension ax-
iom of set theory).

Here, Godel introduces an axiom that is already familiar to us. It closely
resembles to the axiom of comprehension discussed on page 103. Fortunately,
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there is no need to fear antinomies, as the type system of P prevents the
formation of contradictory totalities, such as the set of all sets.

Further down, the equivalence between Godel’s and Leibniz’s definition of
equality will be proved using Go6del’s comprehension schema. It will be key
to reproduce the inference from (4.18) to (4.19), outlined on page 158, within
the formal system P.

V. Jede Formel, die aus der folgenden durch Typenerhohung ent-
steht (und diese Formel selbst):
1o I (2 (1) = 9y (11)) D 22 = Yy
Dieses Axiom besagt, dal eine Klasse durch ihre Elemente
vollstindig bestimmt ist.

V. Every formula which arises from the following by type elevation
(and this formula itself):
1oz U (12 (1) = v (21)) D 22 = ¥o.
This axiom asserts that a class is completely determined by its
elements.

To get a grip on this formula, suppose that the interpretation I assigns the sets
X C Nand Y C N to the variables xo and y,, respectively. Then, the axiom
expresses the following substantive relationship:

zeXsoreY)=X=Y

In colloquial terms, this symbolic expression reads like this: If X and Y contain
the same elements (z € X < z € Y), then X and Y are identical (X =Y).
This relationship is the principle of extensionality of set theory. In its general
form, it states that the meaning of an expression is determined entirely by its
scope, that is, by the objects it names or describes. In the context of set theory,
the principle expresses that a set is solely determined by its elements.

Next, Godel directs his attention to the logical inference apparatus:

Eine Formel c heiit unmittelbare Folge aus a und b (bzw.
aus a), wenn a die Formel (oo (b)) V (¢) ist. (bzw. wenn c¢ die Formel
vII (a) ist, wo v eine beliebige Variable bedeutet). Die Klasse der
beweisbaren Formeln wird definiert als die kleinste Klasse von
Formeln, welche die Axiome enthédlt und gegen die Relation ,,un-
mittelbare Folge* abgeschlossen ist 2*).

24) Die Einsetzungsregel wird dadurch iiberfliissig, daB wir alle moglichen
Einsetzungen bereits in den Axiomen selbst vorgenommen haben (analog bei
J.v. Neumann, Zur Hilbertschen Beweistheorie, Math. Zeitschr. 26, 1927).
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A formula c is called an immediate consequence of a and b
(of a) if a is the formula (oo (b)) V (¢) Gf c is the formula vII (a),
where v denotes an arbitrary variable). The class of provable formulas
is defined as the smallest class of formulas which contains the axioms
and is closed with respect to the relation “immediate consequence” 24).

24) The rule of substitution has been rendered superfluous by our having
carried out all possible substitutions in the axioms themselves (as in J. v. Neumann,
“Zur Hilbertschen Beweistheorie”, Math. Zeitschr. 26, 1927).

Here, Godel stipulates that the provable formulas include precisely those that
are a direct consequence of the axioms or already proven formulas. According
to his definition,

B ¢ is an immediate consequence of the formulas ¢ and —¢ V 9,

B V¢ ¢ is an immediate consequence of the formula ¢ for each variable &.

Writing —¢ V ¢ more concisely as ¢ — 1, the two inference rules look like this:

’ ©
% (M) VEp (@)

The first rule is the well-known modus ponens. The second rule is commonly
referred to as the Generalization Rule, which can be applied to bind free vari-
ables with a universal quantifier. At this point, the axioms and inference rules
are fully defined and summarized in Table 4.1.

4.4 Formal Proofs

The time has come to breathe life into Godel’s system. We begin with a
straightforward example: the proof of x2(0) — x2(0):

5
1. F X2(0) — XZ(O) V X2(0) (11.2)
2. F X2(0) V Xz(O) — X2(0) (Hl)
3. F (X2(0) V XQ(O) — X2(0)) —

(=x2(0) V (x2(0) V x2(0)) — (—x2(0) V x2(0))) (IL.4)
4. F (x2(0) V x2(0) = x2(0)) —
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Table 4.1: Gédel’s system P

Axiom Group I (Peano Axioms)

~(fx1 = 0) (L1)
fX]_:fy]_—>X1:y1 (12)
X2(0) /\VXl (X2(X1) — X2(f X]_)) — \V/X]_ X2(X1) (13)

Axiom Group II (Propositional Logic Axioms)

Vo= (IL.1)
o=V (I1.2)
VY=V (IL.3)
(=)= (XVe—=xVY) (11.4)

Axiom Group IIT (Predicate Logic Axioms)

Vén @ = @lén < 0on) (if the substitution is collision-free)  (III.1)

VE(WV )= (WVVEp) (if € does not occur freely in 1)) (II1.2)

Axiom Group IV (Comprehension)

FEnt1 Vi (€nt1(Cn) > @)  (if £ntq does not occur freely in )  (IV.1)

Axiom Group V (Extensionality)

Vx1 (x2(x1) < y2(x1)) = x2 =y2 (V.1)
2 4
ELA (MP) oo (@)
((x2(0) = x2(0) V x2(0)) — (x2(0) — x2(0))) (Def, 3)
5. F  (x2(0) = x2(0) V x2(0)) — (x2(0) — x2(0)) (MP, 2,4)

6. F x2(0) — x2(0) (MP, 1,5)
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The proof chain commences with three axioms, derived from the schemata II1.2,
II.1, and I1.4 by applying the following substitutions:

[p < x2(0), 9 < x2(0)] (applied to I1.2)
[p = x2(0)] (applied to IL1)
[p <= x2(0) V x2(0), 9 <= x2(0), x ¢ —x2(0)] (applied to I1.4)

The transition from 3. to 4. is not a genuine derivation step. Despite the
different appearances of both formulas, they are factually the same, as only the
subexpressions

—x2(0) V (x2(0) V x2(0)) and —x2(0) V x2(0)
have been replaced with their respective equivalent representations
x2(0) = x2(0) V x2(0) and x2(0) — x2(0).

The formulas in the last two lines were derived by repeatedly applying the
modus ponens inference rule to previous members of the proof chain.

The next proof follows the same scheme but leads to a slightly different theo-
rem:

— o)
@Y 00 ]

1. B x(f 0) = x2(f 0) V x2(f 0) (I1.2)
2. F x(f 0) Vxo(f 0) — x2(f 0) (IL.1)
3. F (x(f 0) Vxo(f 0) = x2(f 0)) —

(=x2(f 0) V (x2(f 0) V x2(f 0)) — (—x2(f 0) V x2(f 0))) (I1.4)
4. F (x(f 0) Vxo(f 0) = x2(f 0)) —

((x2(f 0) = x2(f 0) Vxo(f 0)) = (x2(f 0) — x2(f 0))) (Def, 3)
5. F  (xa(f 0) = x2(f 0) Vxa(f 0)) — (x2(f 0) — x2(f 0)) (MP, 2,4)
6. b xo(f 0) = x2(f 0) (MP, 1,5)

In fact, both proofs are structurally identical. Using the same scheme, the
theorem ¢ — ¢ can be derived for any formula ¢. Therefore, we will replace
subformulas with placeholders whenever possible. The outcome is a proof tem-
plate that turns into an actual proof by replacing the placeholders accordingly.

For the above example, the proof template looks like this:

V2
>

P )
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LFyp—=pVe (IL.2)
2. F Vo= (I1.1)
3.F (pVe—=9) = ((meVpVe) = (e V) (IL.4)
L E (pVe—=9)=((p—=eVe) = (90— 0) (Def, 3)
5ok (p=eVve) = (e =) (MP, 2,4)
6. F o= (MP, 1,5)

To simplify the derivation of theorems, we will supplement the inference rules of
system P with the barbara syllogism, which we will refer to as the modus bar-
bara (MB) in the proofs below. This rule implements classical chain inference,
expressable in our notation as such:

=P
Y — (MB)

=X

It is important to note that the new inference rule does not require any alter-
ation to the formal system P, as it is replicable through existing means. Every
proof employing the modus barbara can be translated into another proof that
no longer relies on this rule. The following proof fragment shows how the
formula ¢ — x can be derived natively from ¢ — ¢ and ¥ — x within P.

Justification of (MB)

1. =P
2. Y
3. (W—=x)—= (pVY = —pVy) (I1.4)
LE @W=x)=(e—=¢)=(@—=X) (Def, 3)
5. F (p—=9) = (0= x) (MP, 2,4)
6. F p—x (MP, 1,5)

The new inference rule allows for a more concise presentation of formal proofs.
Using the new rule, the proof template for our example theorem shrinks to just
three lines:

ﬁ‘-a\: ‘V‘g

g0 (0
1. F p=pVe (I1.2)
2.F Vo= (I1.1)
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Three additional inference rules can be justified in a similar manner:

= =Y
DL DR
XVeo—=xVy (bL) eVXx =Y Vx (DR)
=Y (IL)

X —=¢) = (x =)

Justification of (DL)

1. =Y

2. F (p=9) = (XVe = x V) (IL.4)
3. F xVe—xVy (MP, 1,2)

=N,

@Q\ﬂ ) Justification of (DR)
1. =P

2.F xVe—xVy (DL, 1)
3. F pVx—=>xVe (IL.3)
4. F oVx—=xVY (MB, 3,2)
5 F xVy—=>9vVy (11.3)
6. F pVx =Y Vy (MB, 4.5)

Justification of (IL)

1. =Y
2. F (V) = (x V) (DL, 1)
3.F (x—=e) = (x— ) (Def, 2)

4.4.1 Propositional Logic Theorems

We will proceed to derive additional theorems in P, commencing with the proof
of the propositional logic theorems listed in Table 4.2.

The theorems (H.x) originate from the renowned textbook Principles of The-
oretical Logic by David Hilbert and Wilhelm Ackermann, first published in
1928. The book has seen six editions and, for many years, stood as a premier
textbook in mathematical logic. In the initial three editions, the two authors
utilized the same axiom system as Godel, allowing for a one-to-one replication
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Table 4.2: Theorems of system P

Theorem Group 1: Propositional Logic
(p=¥) = (x> 9) > (x =)
AR
V@
= identical with Frege’s axiom (F.6)

- — identical with Frege’s axiom (F.5)
(o= ¥) = (b — —p) identical with Frege’s axiom (F.4)
(pAY) =~V
oV = = (e AY)
~(pVY) = 9 A
) e Ay = (e V)
) pAY YA
H12) oAy =
)
)

= © 0 N O Ot = Ww N -

PAY =Y
eV @®VX) =Y VI(eVx)
F3) (2> W—-x) > ®—>(p—=x)

) eV VX) = (pVY) VX

) (pVY)Vx—= eV (V)
H17) (e AY)AX = oA AX)

) =W =AY
Al (p=@W—=x) =AY = Xx)
2) (pAY=x) 2= (W —x)
3) eV(eVY) eV
) (= (p—=9) = (p—9)
eV AX) = (pVYP)A(pVX)
(V) A(pVx) =@V (¥AX)
AWV X) = (eAY) V(e AX)
@AYV (eAX) > oA ([P VX)
o= Y=y
(=W —=x) = (e—=v)= (¢ = x)
o = (¢ = 9)

> H 0 e D
N R oy ot N =
=171 71E21E

BN
~
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of the proofs in the formal system P. In subsequent editions, however, the ax-
iom system was replaced by another. As a result, the original proof sequences
are no longer present in those editions.

Despite its age, Hilbert and Ackermann’s book is still a worthy read, retaining
much of the clarity and rigor that distinguished it from the beginning. However,
there are a few aspects to consider when reading the original text. For instance,
Hilbert and Ackermann used the expression ¢ 1 as shorthand for the disjunction
(¢ V 9) rather than the conjunction (¢ A ), as it is common today.

In addition to the examples from Hilbert and Ackermann, Table 4.2 also in-
cludes theorems prefixed with the letters F or A. The theorems labeled (F.x)
are part of Frege’s axiom system, discussed on page 37. The theorems labeled
(A.z) do not originate from any historical source.

LF (p=9) = (xVe—=xVY) (11.4)
2.F (g=9) = (x = 9) = (X = ¥) (Def, 1)

I.F p=pVe (I1.2)

2. F V- (IL.1)
3. F o= (MB, 1,2)

= Q)

@eve {3
2. F mpVe—pVop (IL.3)
3. F pV-p (MP, 1,2)

= ;@9

@y 1)
1. F =pV-omp (H.3)
2. F o= g (Def, 1)




4.4 Formal Proofs 169

1. F = = (H.4)
2. F @V-ap—=pV-ammp (DL, 1)
3.F eV (H.3)
4. F V- (MP, 3,2)
5 F Voo = mmp Ve (I1.3)
6. F Ve (MP, 4,5)
7. F mp oo (Def, 6)
=40, o e

(@ (o 0) = (v - )

.k = - (H.4)
2. F —pVY = Vo (DL, 1)
3. F mpVah = ) Vg (I1.3)
4. F oV — Ve (MB, 2,3)
5.8 (p=9) = (¢ = o) (Def, 4)

The formulas (H.4), (H.5), and (H.6) are already known to us from Sec-
tion 2.1.2. They are part of the axiom system of the Begriffsschrift and identical
to the formulas (F.6), (F.5), and (F.4) on page 37. Formula (H.6) justifies sev-
eral new inference rules that will come in very handy for us:

% (INV) % (INV)
=Y =Y
XA@—= XA (KL) OAX =AY (KR)

Due to their substantive proximity, we use the same abbreviation (INV) for the
first two inference rules.

22

1. =P

Justification of (INV) (First variant)

2. F (p=9) = (¢ = o) (H.6)
3k - — g (MP, 1,2)
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2.k (mp = ) = (oY = ) (H.6)
3. F o (MP, 1,2)
4ok o (H.4)
5. F o (MB, 4,3)
6. F o —op (H.5)
7.k Y=o (MB, 5,6)

1. =Y

2k —p = —p (INV, 1)
3. F ax VoY= oy Ve (DL, 2)
LB (VoY = ox V) = (2(ox Vo) = (o V) (H.6)
5. F a(=x Vo) = o(mx V) (MP, 3,4)
6. F xNe—=>xAY (Def, 5)
@‘©§ Justification of (KR)

1. =

2. F = - (INV, 1)
3. F = V-axy = eV oy (DR, 2)
doE (Y Vax = ooV ox) = (2o Vox) = (59 vV ox) (H.6)
5. F (=@ V-ox) = (- Voy) (MP, 3,4)
6. F pAx =Y AXx (Def, 5)

LoF == V) = —pV (H.5)
2. F (eAY) = oV (Def, 1)

L b Vo (g V) (1.4)
2. F —p V= (e AY) (Def, 1)
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2. F mmp VoY) — Vo) (DR, 1)
3.k = (H.5)
4. F oV =V (DL, 3)
5. F mmoV o — oV (MB, 2,4)
6. B —(pVe) = (= Vo) (INV, 5)
7. F —\((p \Y ’Q[J) — 2 A —VL/} (Def. 6)
2
=&

(@ or ooy . (HD)
2. F VY = VY (DR, 1)
3.k Yo (H.4)
4. F ==V — V- (DL, 3)
5 F oV — V- (MB, 2,4)
6. b (V) = (9 V) (INV, 5)
7. F oA — (e V) (Def, 6)

23
=
o
1. F =9 V=ap— —pV -y (I1.3)
2. B (= V) = (Y Vnp) (INV, 1)
3.F pAY—= YA (Def, 2)
f«M\e }
(&=
2. b =(mp V) = —mp (INV, 1)
3. B pAY = (Def, 2)
4. F ——p— (H.5)
5.F @AYo (MB, 3,4)
IL.F YvAhNp—= (H.12)
2. F oANY =Y ANy (H.11)

3.k oA (MB, 2,1)
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The forthcoming theorem matches the fifth propositional logic axiom of the
Principia Mathematica. The formal proof originates from the 1926 article Ax-
iomatic Investigation of the Propositional Calculus of the Principia Mathemat-
ica [5], in which Paul Bernays summarized the results of his 1918 habilitation
thesis [4]. Through this derivation, Bernays demonstrated that the fifth axiom
of the Principia is redundant and can be safely deleted from the list of axioms.

10.
11.
12.
13.
14.

.‘FTTTTTTTTTTTTTT

16.F
17.F
18.F
19.+

eV (@VXx) =DV (pVX)

X—=>xVep (I1.2)
XV —=pVx (IL.3)
X = eVX (MB, 1,2)
X—=>eVx) = @VXx—=vV(eVx) (IL.4)
YV =YV (pVX) (MP, 3,4)
(VX =Y V(eVX) =2 (@eV VX)) = eV@V(eVX)) (IL.4)
eV (VX)) = eV @VI(eVX)) (MP, 5,6)
eV V(pVx) = @ VI(eVX) Ve (113)
eV VX)) = @V (eVX) Ve (MB, 7.8)
= pVX (IL.2)
pVX = (pVX) VY (IL.2)
(pVX)VY =YV (pVX) (IL.3)
eVx—=1YV(eVX) (MB, 11,12)
=YV (pVYX) (MB, 10,13)
(=¥ VipVx)) —
(VeVX)Ve—= @ VeVx)V@VieVx)) (IL.4)
WVeVX)Ve—=@V(eVx) V@ VipVx) (MP, 14,15)
WV(eVX)V®@V(eVX)—=9V(eVx) (IL1)
WV(eVX)Ve—=1PV(pVx) (MB, 16,17)
V@V =Y VI(eVy) (MB, 9,18)

From this theorem, the third axiom of the Begriffsschrift is quickly derivable.
It differs from (H.14) only in notation.

1. F
2. F
3. F

oV (=P VX) = V(=9 VX) (H.14)
V(P —=x) = WV (p—X) (Def, 1)
(=@ —=x) =@ —=(p—x) (Def, 2)
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This theorem justifies another handy inference rule, referred to as the Exchange
Rule and abbreviated as ER.

o= (Y= x) (ER)

@Y 1
L o=@ —=x

2.8 (o=@ —=x) = @ —=(p—x) (F.3)
3.k v=(e—=x) (MP, 1,2)

L F YVx—=xVy (I1.3)
2.F oV (@VX) 2 eV(XVY) (DL, 1)
3.F oV (xVY) = xVieVy) (H.14)
L E V@ VX) = xV(eV) (MB, 2,3)
5. F xVipVvey) = (pVve) Vi (11.3)
6. F oV (VX)) = (pVY)Vx (MB, 4,5)

PVYIVX =V (P VX)

L F (pVi)Vx—=xV(pVY) (11.3)
2. F xVipVvey) 2oV V) (H.14)
3.k (pVY)VXx = eV (X VY) (MB, 1,2)
doF xVy—=9Vx (IL.3)
5. F pv(xVvey) = eV (V) (DL, 4)
6. F (pVi)Vx =V (V) (MB, 3,5)

CAD)AX = oA (W AYX)

L b (= V) = =V X (15)
2. F =V am(m9Vox) = e V(-9 V) (DL, 1)
3.k meV(wV-ox) = (me V) Voy (H.15)
4k 2V oa(mp Vox) = (me V) Vo (MB, 2,3)
5. b g V) = (i V) (H.4)
6. F —xV(mpV—1) = axV-oa(-e V) (DL, 5)
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(7 V=) V=x = 2x V(e V) (IL.3)
(7 V=) Vox = mx Vo (mp V) (MB, 7.6)
=XV (= Vp) = et V) Vi (IL.3)
(7 V) Vox = mm(me V) Vo (MB, 8,9)
(= V=m(=p V mx)) = —(—p V) Vomx (MB, 4,10)
(=2(me V) Vox) = (o V(o Vo)) (INV, 11)
(=l AY) vV ox) = (= V(Y Ax)) (Def, 12)
(PAY)AX = AP AX) (Def, 13)

o= (Y= pAY)

(mp V) V(= V) (H.3)
(7 V) V(=9 V—th) = =V (=9 V =(=p V) (H.16)
@V (Y V(- V1)) (MP, 1,2)
eV (Y V(e AY)) (Def, 3)
= W —=eny) (Def, 4)

(me V) = (e V p) (H.4)
(V=) Vx = —=(mp V1)V x (DR, 1)
@V (= Vx) = (e V) Vx (H.15)
eV (P Vx) = (me V) Vox (MB, 3,2)
(= (@ —=x) = (2= V=) = X) (Def, 4)
(p= W —=x) = (pAY = x) (Def, 5)

Lo ==(=pV=y) = (mp vV —y) (H.5)
2. F = V) Vi = (me V) Vo (DR, 1)
3.F (meV)Vyx = eV (Y V) (H.16)
4. F ==(-pV )V = oV (- Vy) (MB, 2,3)
5. F (R V) = x) = (9 = (Y — X)) (Def, 4)
6. F (pAY = x) = (p— (¥ —x) (Def, 5)
o

L F oV(pVy) = (pVe) VY (H.15)
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2. F (V)= (IL.1)
3.F (pVeo)Vi = oV (DR, 2)
1. F oV(pVy) =V (MB, 1,3)
L F =V (mpVi) = —pVy (A.3)
2.F (p= (=)= (p =) (Def, 1)
L F bAY = (H.12)
2. F oV AX) = eV (DL, 1)
3.F YAx—x (H.13)
4. F oV AX)—=pVYX (DL, 3)
5o F oV = (VX = (e V) A(p VX)) (H.18)
6. F oVEAX) = (VX = (pVY)A(pVX)) (MB, 2.,5)
T.F eVx = (VR AX) = (VYY) Alp VX)) (ER, 6)
8. F oV AX) = (VI AX) = (pVY)A(p VX)) (MB, 4,7)
9. F (VW AX) = (VR AX) = (V) A (P VX)) —

(VW AX) = (pVY)A(p VX)) (A4)
10.F oV AX) = (V) A(pVX) (MP, 8,9)

® N e A WD
T T T T T T T T

©
-

10.+
11.F

12.F

Y= (X 2> Y AX) (H.18)
(X2 YAX) = (VX = eV (YAX) (11.4)
Y= (VX =V AX) (MB, 1,2)
VX = =V (¥ AX) (ER, 3)
W =oV@AX) = (VY =oV(pV (W AX))) (11.4)
VX (VY=o V(pV (P AX)) (MB, 4.5)
eV(eVWAX) eV (YAX) (A.3)
(V= oV(eVWAX)) = (VY =V ([ AX) (L, 7)
PVXx = (VY =9V (YAX)) (MB, 6,8)
VY = (pVXx =V (¥ AX) (ER, 9)
(VY = (pVXx =9V ®AX))) =

(V)N (e VX) =@V (Y AX)) (A1)
(V)N (VX)) =9V (PAX) (MP, 10,11)
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(W VX)) = (@A) V(pAx)

Lo E (2 V) A(mpV=x) = = V(=9 A=) (H.20)
2. B ==V (Y AX)) = (e V) A (2 V ix) (INV, 1)
3. B A((me V) A=V mx)) = a(me V) Via(me V) (H.7)
4ok == V(=Y A=x)) = (2 V) Va (e Vi) (MB, 2.3)
5. F 2=V (=Y Ax) = (e AY) V(e AX) (Def, 4)
6. F vA-x—= (VY (H.10)
T.F eV (Ax) = e V(P Vx) (DL, 6)
8. F ==V = VX)) = (e V(Y Ax)) (INV, 7)
9. F oAV X) = (= V(=P A-x)) (Def, 8)
10.F oA (W VXx) = (@AY)V(pAX) (MB, 9,5)

LF =pV (= Aax) = (me V1) A(mp V-x) (H.19)
2. F (= V=) A (= VX)) = (2 V(= A X)) (INV, 1)
3. F (= V) V(e Vax) = (e V) A (2 V) (H.8)
4. F (e V=)V a(—eVox) = (- V(aY A -x)) (MB, 3,2)
5. F (@AY VI(eAX) = 2(=p V(=Y A =x)) (Def, 4)
6. B =(Vx)—= = A-x (H.9)
7. 2 Vo V) = e V(e A=) (DL, 6)
8. F ==V (=Y A=x)) = (2 V(Y VX)) (INV, 7)
9. F ==V (Y Ax) = @AV x) (Def, 8)
0.5 (e AY) V(e AX) = @AWV X) (MB, 5.,9)

The following two theorems correspond to the remaining axioms of the Begrifi-
sschrift, namely Frege’s axioms (F.1) and (F.2).

=
2

o)

=S

¥

g

I.F p=pVvw (I1.2)
2. F oV =5 Ve (I1.3)
3. F ooV (MB, 1,2)
4 F o= @ =) (Def, 3)
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10.
11.
12.
13.
14.

16.
17.
18.
19.
20.

',
|_
l_
l_
l_
',
k
k
s
l_
l_
',
l_
l_
l_
l_
',
|_
l_
l_

PV (H.2)
Vo= (mpV = (mp Vo) A(me V1)) (H.18)
eV = (e V) A(mp V) (MP, 1,2)
(= V) A (mpV —h) = =p V(o A ) (H.20)
eV = = V(o Ay) (MB, 3,4)
eV (e A=) = (o A=th) V- (11.3)
eV h = (@A) Vg (MB, 5,6)
W — =) (H.4)
VY = oV oy (DL, 8)
(2 Vo) = (e V) (INV, 9)
PN = (= 1) (Def, 10)
(A=) Vo = =(p = 9P) Vg (DR, 11)
VvV =h = (=) Ve (MB, 7,12)
eV (2 Vx) = (me V)V x (H.15)
(p= (¥ —=x) = (V) Vx (Def, 14)
(e V) Vx = (m(p = ¥) V) V x (DR, 13)
(e = ¥) V=) Vx = (e =)V (mp VX) (H.16)
(mp V) Vx = =(p =)V (=~ V) (MB, 16,17)
(V) Vx = ((p =) = (¢ = X)) (Def, 18)
(=@ —=x) = ((g—=v) = (p—=X) (MB, 15,19)

At this juncture, we have achieved a significant intermediate result: All propo-
sitional logic axioms of the Begriffsschrift are theorems of P. Consequently, any
propositional formula derivable within the logical calculus of the Begriffsschrift
is also provable in Gédel’s formal system P. The reverse also holds, implying
that both propositional logic inference apparatuses are equivalent.

The next theorem fulfills our promise from page 117 where we have claimed that
in each formal system that includes the ordinary propositional logic apparatus,
any other formula is derivable from a contradictory pair of formulas. The
following theorem elucidates the rationale behind this phenomenon:

= WO
B
Lk =)= o (H.5)
2. F 2V =YV (DR, 1)

3. F YVop = opVY (I1.3)
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LF oV —p oV (MB, 2,3)
5. F (= ) = (9 — ) (Def, 4)
6. F —p— (- — ) (F.1)
7. F o= (=) (MB, 6,5)

Now, if for some formula ¢, both ¢ and —¢ were theorems, any other formula
1 would be derivable by applying the modus ponens twice on (A.7):

— any other formula ¢ can be derived.

—
o
S i © and
‘@e\,‘»’ From ¢ and

1. %)

2. e

3.F o= (=) (A7)
4. F o= (MP, 2,3)
5. F (MP, 1,4)

4.4.2 Hypothesis-Based Proving

In this section, we will introduce a descriptive tool for presenting proof tem-
plates in a more compact and concise manner. The reduction builds upon
the idea of permitting not only axioms and previously proven theorems within
a proof chain but also allowing other formulas intended as hypotheses. The
following example illustrates a proof involving a hypothesis:

>4
a.' )
Eé‘gx,@_.f The hypothesis Vx; xa(x1) implies Vy1 x2(y1)

L. VX1 Xa(x1) (Hyp)
2. F Vxyxa(x1) = xa(y1) (I11.1)
3. F xaly1) (MP, 1,2)
4. F Vyi xa(y1) (G, 3)

The formula Vy; xp(y1) is clearly not a theorem of P since the proof relies on
the assumption that Vx; x2(x1) is a theorem. Strictly speaking, the following
has been proven:

“If Vx1 x2(x1) is a theorem, then Vy; x»(y1) is also a theorem.”

The implication operator describes such if-then relationships within the ob-
ject language. Therefore, it is tempting to assume that the above derivation
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sequence is convertable into a proof for the theorem

Vxq xa(x1) = Vy1 xa(y1)-

With some effort, this is indeed possible:

=)
(@ vt ovet)
(&)

1. F Vxg xa(x1) = Vx1 xa(x1) (H.0)
2. F ¥xy xa(x1) = xa(y1) (IIL.1)
3. B (Vxyxa(x1) = xa(y1)) = (Vx1 xa(x1) = (Vx1 x2(x1) = x2(y1))) (F.1)
4. F ¥xg xe(x1) = (Vxq1 xe(x1) = x2(y1)) (MP, 2,3)
5. F (Vx1 xa(x1) = (Vx1 x2(x1) = x2(y1))) —

(Vxa xa(x1) = Vxa xa(x1)) = (Vx1 x2(x1) = x2(y1))) (F.2)
6. B (Vx1 x2(x1) = Vx1 x2(x1)) = (Vx1 x2(x1) = %2(y1)) (MP, 4,5)
7. F Vx1xa(x1) = x2(y1) (MP, 1,6)
8. F Vyi (Vx1 xa(x1) = x2(y1)) (G, 7)
9. F Vyi (mVx1 xa(x1) V xa(y1)) (Def, 8)
10.F Vy;1 (5 x1 xa(x1) Vxa(y1)) = (V%1 x2(x1) V Vy1 x2(y1)) (I11.2)
11.F =Vxg xa(x1) V Vy1 xa(y1) (MP, 9,10)
12.F Vxg xa(x1) = Vy1 xa(y1) (Def, 11)

The derivation is based on the idea of translating the original proof chain

¢1,¢2a¢37¢4

into a chain of the following form:

V1 xo(x1) = 1, .., Vxaxa(xa) = 2, Wxaxa(xa) = 3, Wxaxo(xa) = s
Proceeding from one line to the next requires several intermediate steps, each
marked in gray within the proof. From the above example, we can readily
observe how to construct these intermediate steps:

B The hypothesis ¢ is transformed into ¢ — ¢ via (H.0).

B Axioms are translated into the appropriate form via (F.1).

B The application of the modus ponens is simulated using (F.2).

B The application of the generalization rule is simulated using (II1.2).

For the sake of clarity, we will adopt the following notation for proofs that
depend on hypotheses in the described form:
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1. VXl X2(X1) (H‘ p)
2. F Vxgxa(x1) = xa(y1) (ILIL1)
5k ) (P, 12
4. F Vyi xa(y1) (G, 3)

5. F Vxyxa(x1) = Vyi xa(y1) (DT)

The acronym DT refers to the Deduction Theorem, a fundamental theorem in
mathematical logic. It establishes a general relationship between the semantic
inference relation and the syntactic implication operator, formally justifying the
representation of a proof chain in the form utilized by our example. Further
details about this theorem are provided in [70].

Earlier, we have stated that any formula qualifies as a potential hypothesis.
We will now show that this is only partially correct. To quickly identify the
issue, let’s return to the derivation sequence from page 179. In line 10, we have
generated the instance

Vyl (ﬂVxl X2(X1) V Xg(yl)) — ("VXl X2(X1) V Vyl Xg(yl))

from axiom schema (II1.2) to shift the left universal quantifier to the right. We
could only form this instance because the variable y; did not appear freely in
the hypothesis. This observation reveals a significant limitation of hypothesis-
based proofs: We must avoid binding variables via the generalization rule if they
appear freely in the hypotheses. Only then is it possible to form the instances
of (II1.2) needed to transform the proof into a valid derivation sequence.

The following example illustrates the significance of this rule. When ignored,
it is easy to prove substantively false statements:

LN
'La\d o o r \
I@g@’ A putative proof of xo(x1) — Vx1 x2(x1)

1. X2(X1) (va>
2. + VXl X2(X1) (G 1)
3. F X2(X1) — VXl Xz(Xl) (DT)

At first glance, the proof appears correct, yet it produces the formula
X2(X1) — VXl X2(X1)

which we have already identified as substantively false on page 153. The error
is quickly identified. The free variable x; of the hypothesis xa(x1) gets bound
in the second line via the generalization rule.
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Next, we will explore a property of the formal system P that plays a crucial
role in the main part of Godel’s proof. We already know that Gdédel proves
the incompleteness of P; in particular, he proves that for at least one formula
o, neither ¢ nor - can be derived from the axioms. Thus, the following
question arises: Can the formal system P become contradictory if one of the
two formulas, for instance ¢, is added to the axioms? The answer is no and
readily justifiable with the knowledge acquired above.

The argument runs as follows: If the system extended by ¢ were contradictory,
then the formula —¢ would be derivable, too. However, because -y was not
derivable before, the proof must utilize the new axiom, implying that ¢ appears
somewhere in the proof chain. If the formula ¢ is put to the front, then the
proof must have the following general shape:

O Y1,y (4.21)

Similar to what we did above, we can translate this proof into a proof of the
original (unextended) system by prefixing each member of the proof chain with
( as a hypothesis:

PPy, @ W, @ Wy, @ = TP (4.22)

The result is a proof for ¢ — =, which can be extended as follows:

(@Yo,

L. F o= g
3. F (p—= ) = - (Def, 2)
4. F - (MP, 1,3)

Consequently, =@ would be a theorem of P, contrary to the assumption. Over-
all, this means that it is safe to add an undecidable formula to the axioms
without endangering the consistency of the formal system:

If ¢ is undecidable in P, then P remains consistent when supplementing
the axioms with .

Note that Theorem 4.8 applies to any formula, but our argument is only correct
if ¢ contains no free variables. If ¢ is an open formula, the proof is a bit more
involved but follows the same line of reasoning. In particular, it must then
be argued over the universal closure Y€V (...p to transition from (4.21) to
(4.22).
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Table 4.3: Theorems of system P (continued)

Theorem Group 2 (Predicate Logic)

(P1)  VE(p > ) = (VE@ - VEW)

(P2)  VE(p ) = FEp > 3EW)

(P.3) pl o] — 3 (if the substitution is collision-free)
Py o3y

(P.5) VEWV @) = VEYV (if ¢ does not occur freely in ¢)
(P.6) VEW =) = (Y = VE @) (if & does not occur freely in 1)
(P.7) VE(W — o) = (FEY — @) (if £ does not occur freely in 1)
(P.8) VEp =V €+ (] (if the substitution is collision-free)
(P.9) 3 p — AC pl€ + (] (if the substitution is collision-free)
(P.10)  x2(0) = (Vx1 (x2(x1) = x2(f x1)) = VX1 X2(x1))

4.4.3 Predicate Logic Theorems

Next, we will prove a series of theorems from predicate logic, as summarized
in Table 4.3.

1. ¥p)
yP)

)

k )

. )

Ck )

F )

8. Ve (G, 7)

9. F YEp o VEY (DT)
10.F VE(p =) = (VEp = VL) (DT)

1. VeE(p—) (Hyp)
2. F Vé(p =)= (=) (IIL.1)
3.F oo (MP, 1,2)
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1 F = - (INV, 3)
5.k VE (= ) (G, 4)
6. F VE(~ = —p) = (VE = VE ) (P.1)
7. b VEp o VE (MP, 5,6)
8. F —VEnp— VE (INV, 7)
0. F Jep—3cy (Def, 8)

10.F Y€ (p— ) = (3E o = IEY) (DT)

(P.1) and (P.2) justify two additional inference rules:

pl€ « o] = I ¢ (if the substitution is collision-free)

1. B V& —p = € + o] (ITL.1)
2. B 2l o] = VE (INV, 1)
3.k o] = TEp (Def, 2)
4. F €+ o] = p[€ « o] (H.4)
5. F ¢+ o] =3 (MB, 4,3)

@Y. . )

LF g€« & =3y (P.3)
2. F p—=3dEp ( )

L YEWVY) (Hyp)
2 F VE@WVe) oYV (IIL.1)
3. F YV (MP, 1,2)
4. F Vo=V (I1.3)
5.k @V (MP, 3,4)
6 VE(pV ) (@ 5)
7. F YE(pVY) 2 oVVEY (I11.2)
8. F pVVEY (MP, 6,7)
9. F oVVEY = VEY Vo (I1.3)
10.F YEP Vo (MP, 8,9)
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1I.E YE(@W Vo) > VEYV (DT)
(@d@ VE(W — o) = (b = VE ) (if £ does not occur freely in ¢) (P.6)
I. B VE(W V)= 9 VVEp (111.2)
2.F Ve =)= (= VEp) (Def, 1)

d@)’ VE(W — o) = (FEY — @) (if £ does not occur freely in ¢) (P.7)

L VEW =) (Hyp)
2. F VE( V) > VEY Ve (P.5)
3. F VEW @) S VEDV (Def, 2)
LF VeV (MP, 1,3)
5. F V&) — YV E ) (H.4)
6. F VEV o —VEV o (DR, 5)
7. R VEwW Ve (MP, 4,6)
8. F V&Y= (Def, 7)
9. F 3y oo (Def, 8)
0. VEW—9) = (BEY - 9) (D7)

The last three proven theorems are variants of axiom (II1.2), permitting us to
rearrange quantifiers under certain conditions. To represent proof chains more
concisely, we will utilize the last two in the form of inference rules:

% (if € does not occur freely in ) (BA)
%:i) (if ¢ does not occur freely in ¢) (BE)

The following two theorems articulate the principle of bounded renaming, stat-
ing that we may replace a quantified variable with another as long as no colli-
sions occur.

D)

2. F VE&p— [+ (] (IH 1)
3. F pled] (MP, 1,2)
1k VClE (] (G, 3)
5. F VEp V(o€ (] (DT)
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€ — 3¢ p[€ (] (if the substitution is collision-free)  (P.9) ‘

1. B V¢l (] = VE (P.8)
2 b V€ —p Y e ¢ (] (INV)
3. F FEp =3Il (] (Def, 2)

The final theorem provides an alternative formulation of the principle of induc-
tion, eliminating the need for the conjunction operator ‘A’:

X2(0) — (Vxl (X2(X1) — X2(f Xl)) — Vxl X2(X1:):)

1. F x(0) AVX1 (xa(x1) = x2(f x1)) = VX1 X2(x1) (1.3)
2. B (x2(0) AVxg (x2(x1) = x2(f x1)) = Vx1 X2(x1)) —

(x2(0) = (Vx1 (x2(x1) = xa2(f x1)) = Vx1 x2(x1))) (A.2)
3. F x2(0) = (Vx1 (xa(x1) = x2(f x1)) = ¥x1 %2(x1)) (MP, 1,2)

4.4.4 Theorems About Equality

In this section, we will prove the theorems listed in Table 4.4, all dealing with
equality. Always keep in mind that the equality operator is not a native lan-
guage element of P but merely the abbreviation for the following expression:

&= G = Vxipr (xiy1(&) = xir1(G)) (4.23)

We start by proving this definition equivalent to the formula obtained from
Leibniz’s Principle of Identity on page 155:

& =G o= Vi (Xi+1(£i) > Xz‘+1(Ci))

To establish equivalence, it has to be shown that the implication operator in
(4.23) is reversible. The following theorem reveals that this is indeed the case.

£ = Gi = Vxip1 (Xir1(Go) = xiv1(&2))

L. &1=0 (Hyp)
2. F Vxa (x2(&1) = x2(G1)) (Def, 1)
3. B xe (x2(&1) = %2(C1)) = (y2(61) = y2(C1)) (IIL.1)
4o F ya(&r) = y2(G) (MP, 2,3)
5.0 V& (ya(&1) < xe(&1)) (Hyp)
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Table 4.4: Theorems of system P (continued)

Theorem Group 3: Equality

(G.1) & = Gi = Vi1 (xit1(G) = xiv1(&5))
(G.2) 0= 0;
(PM 13.16) o;,=7;— 7, =0;
(PM 13.17) oy =7; — (i = pi = 04 = pi)
(G.3) o =T7; — (0i = pi = Ts = ps)
(G.4) i=Ti = (pi=Ti = 0i = pi)
(G.5) i =T — (Ti # pi — 0; 7 pi)
(G.6) i = Ti = (00 # pi — Ti # pi)
(G.7) 0i =T — (pi # T — 0; F pi)
(G.8) or=m1—for=fn
6. B V& ((ya(&) = ~x2(&1)) A (mx2(&1) = v2(61))) (Def, 5)
7o V& ((y2(&1) = =x2(&1)) A (mx2(é1) = y2(&1))) —
((y2(&1) = —x2(£1)) A (—x2(&1) = y2(61))) (IIL.1)
8 (y2(&1) = x2(&1)) A (mx2(é1) — y2(&1)) (MP, 6,7)
9. B (y2(&) = x2(80)) A (mx2(&1) = v2(61)) = (mx2(&1) — y2(&1))
(H.13)
10.F —x2(&1) — y2(&1) (MP, 8,9)
1. —xa(&) — y2(G1) (MB, 10,4)
12.F V& ((y2(&1) = —x2(61)) A (mx2(61) = y2(61))) —
((y2(G1) = —x2(C1)) A (mx2(C1) = v2(C1))) (IIL.1)
13 (ya(C1) = =x2(C1)) A (=x2(C1) — y2(¢1)) (MP, 6,12)
LA (y2(G) = =x2(C1)) A (mx2(C1) = y2(C1)) = (y2(Ca) = —x2(Ch))
(H.12)
15.F ya(G1) = %2 (1) (MP, 13,14)
16.F —x2(&1) — —x2((1) (MB, 11,15)
17.F x(&) = x (&) (INV, 16)
18.F Vxa (x2(C1) = x2(61)) (G, 17)
19.F V& (ya(61) < ~x2(81)) = Vxa (x2(C1) = x2(61)) (DT)
20.5 Vyz (V& (y2(§1) ¢ ~x2(61)) = Vxz (x2(C1) = x2(&1))) (G, 19)
21 Vya (V& (v2(81) < x2(61)) V VX2 (x2(C1) — x2(61))) (Def, 20)
22.5 Vyo (V& (y2(&1) < —x2(&1)) V Ve (x2(C1) = x2(61))) —

Vy2 =V &1 (y2(61) <> —x2(€1)) V Vxa (x2(C1) = x2(61)) (P.5)
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23.F Vys V& (ya(&r) & x2(&1)) VVx2 (x2(C1) = x2(&1))  (MP, 21,22)
24.F —Vyp V& (ya(&1) & x2(&1)) = Vxa (x2(C1) = x2(&1))  (Def, 23)
255 Fy2 V& (y2(&1) ¢ =x2(&1)) = Vxa (x2(C1) = x2(&1)) (Def, 24)
26.F Fya V& (y2(&1) & —x2(&1)) (IV.1)
27.F Vxa (x2(¢1) = x2(&1)) (MP, 26,25)
28.F & =0 — Vxe (x2((1) = x2(&)) (DT)

The proof proceeds analogously for the higher types.

o)

2
1. Xz((fl) — X2(O’1) (H.())
2. F VXQ (XQ(O’l) — Xz(Jl)) (Gu 1)
3. F o1=o01 (Def, 2)

The proof proceeds analogously for the higher types.

The following two theorems are part of the first volume of the Principia Mathe-
matica. They postulate the symmetry and transitivity of the equality relation.

[{@gu,_ Y o — 17— 7 — o, (PM 13.16)
L. o1="T1 (Hyp)
2. F o1=71 = Vx (x2(11) = %2(01)) (G.1)
3. B Vxa (xa(71) = x2(01)) (MP, 1,2)
4. F m =0 (Def, 3)
5 F o1=mm—>mn=01 (DT)

The proof proceeds analogously for the higher types.

(PM 13.17)

1. o1=T1 (Hyp)
2. m=pm (Hyp)

3. F Vxa (xe(01) = x2(71)) (Def, 1)

4. F Vxa (xe(01) = x2(11)) = (x2(01) = %2(11)) (I1L.1)

5. F xa(o1) = x2(11) (MP, 3,4)

6. F Vxo (x2(11) = x2(p1)) (Def, 2)

7. F Vxa (xa(11) = x2(p1)) = (xa(m1) = x2(p1)) (IIL.1)
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8. F xa(m) = xa(p1) (MP 6,7)

9. F xa(01) = x2(p1) (MB, 5,8)

10.F Vxa (x2(01) = x2(p1)) ( %)

1.F oy =p (Def, 10)

12F m=pr—=0o1=m (DT)
Bk o1=m—=(nn=p1—01=p) (bT)

The proof proceeds analogously for the higher types.

2. F oi=1 > T =04 (Pl\[ 13.16)
3. F O'iZT,'—>(O'¢=pi—)T7;:pi) (l[B, 2,1)

o, =T = (pi=Ti = 0, = pi) x.4)
2. F Ti:pi—>(ai:7'i—>ai=pi) ( 1)
3. F Pi =Ty — Ti = pPs (Pl\llil(})

The three most recently proven theorems justify the following inference rules,
all labeled with the same abbreviation (GL) due to their structural similarity:

O; = T; O; =Ty O; = T;
Ti = pPi 0 = p; pi=T; (GL)
0= pPi Ty = Pi 0 = pPi

The subsequent three theorems appear nearly identical, differing only in using
the crossed-out equal sign instead of the standard equality operator. Formally,
© # 1 is the abbreviation for (¢ = ).

r{fq}{«@} i = Ti Ti 7 Pi — 05 7 Ps)
1. o, =T; (Hyp)
2. oi=p (Hyp)
3.k Ti=p; (GL, 1,2)
4. F oy=pi—=>1=p; (DT)
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5. B m#Fpi—oiFpi (INV, 4)

6. b o,=1— (1 # pi = 01 F# pi) (DT)

1. o, =T (Hyp)

2. Ti = pi (Hyp)

3. F o,=p; (GL, 1,2)

4. F 1,=pi— 0, =p; (DT)

5. F 0iF# pi— Ti # pi (INV, 4)

6. b oy=1— (0:% pi = Ti 7 pi) (DT)

—=4o)

E@‘j\"- 0i=T; — (pi # Ti = 07 % p;)

L o= (Hyp)

2. oi = p; (Hyp)

3 F pi=m (GL, 1,2)

4. F o,=p;— pi =Ty (DT)

5. F piFET =0 F pi (INV, 4)

6. b oj=1i— (pi # 7i = 0i # pi) (DT)

The proven theorems lead straight to the following inference rules:

0y =T; 0; =T; 0, =T;
Ti 7 Pi 0i # pi pi# Ti (UG)
o F pi Ti # pi o F pi

The next theorem is the reversal of the second Peano axiom (I.2) with the fol-
lowing substantive meaning: If two numbers are equal, so are their successors.

ﬁ@

=G (Hyp)
2. B Vxo (x2(&1) = x2(C1)) (Def, 1)
3. B Vxe (x2(&1) = x2(Cr)) = (y2(&1) — y2(G1)) (ITL.1)
4oF ya(&) = y2(G) (MP, 2,3)
5. V& (y2(&) € xef &) (Hyp)
6. F V& ((va(&) = xe(f &) A O2(f &) = v2(61))) (Def, 5)

(
7. V& (&) = xo(f &) A (xa(f &) = y2(&1))) —
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((y2(&1) = x2(f &1)) A O (f &1) = y2(&1))) (IIL1)
8. F (y2(&) = xao(f &) A (2(F &1) = y2(&1)) (MP, 6,7)
9. F (ya(€1) = xo(f &1)) A (xa(f &1) = y2(&1)) = (xe(f &) — y2(&1))
(H.13)
10.F xo(f &) = y2(&1) (MP, 8.,9)
11.F xo(f &) = y2(61) (MB, 10,4)
125 V& ((y2(61) = xe(f &) A (x2(f &) = y2(&1))) —
((y2(€1) = x2(f C1)) A (x2(f C1) = y2(C1))) (IIL.1)
13 (ya(Ca) = xa(f C1)) A (x2(f C1) = y2(C1)) (MP, 6,12)
L (y2(G) = xe(f Q) A (2(f G) = y2(C1)) = (y2(G) = x(f G1))
(H.12)
15.F ya(G1) = xo(f ¢1) (MP, 13,14)
16.F xo(f &) = xo(f ¢1) (MB, 11,15)
17.F ¥xo (xo(f &1) = xo(f G1)) (G, 16)
185 V& (v2(&1) € x2(f &) = Vxe (xa(f &1) = x2(f 1)) (DT)
19.F Vys (V& (ya(&1) & xo(f &) = Vxa (xo(f &) = x(f (1)) (G, 18)
20.F Vya (=V& (ya(&1) ¢ xao(f £&1)) VVxo (xo(f &1) — xo(f (1)) (Def, 19)
21.F Vys (V& (ya(&1) ¢ xao(f &1)) VVxo (x2(f &1) = xo(f (1)) —
Vy2 2V &1 (y2(61) < xa(f &1)) V Vxa (x2(f 1) — xo(f (1)) (P.5)
22.F Vyp V& (ya(&) < xa(f &1)) VVxa (xo(f &) — xof (1)) (MP, 20,21)
23.F —Vyp =V & (ya(&1) & xa(f &1)) = Vxa (xa(f &) = xo(f (1)) (Def, 22)
24.F Fya V& (ya(&1) & xo(f &) = Vxo (xo(f &) = xo(f (1)) (Def, 23)
25.F Fya V& (v2(&1) & xo(f &1)) (IV.1)
26.F Vxo (xo(f &) = xo(f (1)) (MP, 25,24)
27.F & =0 — Vxo (xo(f &) = xo(f (1)) (DT)
2. G=¢G—=>F& =1 (Def, 27)

4.4.5 Numerical Theorems

Before moving on with the proof of numerical theorems, let us focus on a
previously unaddressed footnote on page 140. The focus of our interest is
Godel’s footnote 16:

16) The addition of Peano’s axioms, as well as all other changes made in the system

PM, serve only to simplify the proof and are theoretically dispensable.

In this footnote, Gédel highlights a property of system P that we have already
exploited in the context of the deduction theorem. We have demonstrated
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how to transform a derivation sequence that utilizes a hypothesis 1 to prove a
formula ¢ into a standard derivation sequence for the formula

= .

Similarly, we can translate any derivation sequence that proves a formula ¢ by
using the Peano axioms (I.1) to (I.3) into a derivation sequence for the formula

(I.1) A (1.2) A (1.3) — .

Godel refers to this property when he says that the addition of Peano’s axioms,
as well as all other changes made in the system PM, serve only to simplify the
proof and are theoretically dispensable.

Similarly, non-native operations, such as addition or multiplication, can be
defined within P. To see how, let us assume that P provides function symbols
alongside predicates. Then, we can consider an expression such as

XX 2 =x+x
as a placeholder for the formula

©ADD.1 A PADD.2 A PMUL.1 A PMUL.2 — X X 2 = X + X (4.24)

where papp.1 to YmuL.2 are defined as follows:

c+0=0 (ADD.1)
o+fr="Ff(c+7) (ADD.2)
ox0=0 (MUL.1)
oxfr=(ocx1)+0 (MUL.2)

In practice, however, we would soon run into problems. For one thing, we
would have to consistently deal with complex formulas, and each of those for-
mulas needed to be laboriously dissected before an interesting proof step could
be carried out. For another thing, P does not offer freely definable function
symbols. Hence, we cannot write down formula (4.24) in the given form. We
would be compelled to encode the functions as relations, further complicating
our task.

We will take a path reminiscent of Peano’s Arithmetices Principia to work
around the technical difficulties and make addition and multiplication integral
parts of our formal language. In particular, we will treat the symbols ‘+’ and
‘X’ as native language elements and utilize the formulas (ADD.1), (ADD.2),
(MUL.1), and (MUL.2) as additional axioms. The resulting formal system will
be referred to as system P’ to distinguish it from Gdédel’s system P formally.
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Table 4.5: Theorems of system P’

Theorem Group 4: Numerics

(M.32) o1=m—0o1+p=71+p
( ) o01=0+01

M.32g) for+mn=Ff(o1+m)
(M.3.2h) o14+7 =7 +01

(N.1) o1=T1—01+01=T1+T1
(M.3.5b) o1 x1 =0

(M.3.5¢) o1 x2=01+01

(N.2) ff(o1x2)=for+fo
(N.3) ff(o1x2)=(foy)x2

(M.3.5h) 01 #0— 3z (01 =1 2z;)

(N.4) T#01%x2

(N.5) o1=0—0,x2=0

(N.6) ffo=mx2—>7m#0

(N.7) Jz101 =21 x2— 3z ffor =21 x2
(N.8)

Elzlffalzzl Xi—)E'ZlUl:leg

The theorems we aim to prove in P’ are summarized in Table 4.5. All theo-
rems marked with (M.xz) are taken from [70], and the derivation sequences are
adaptations of the proofs presented in this book.

=TT —01+p1=T1+p1

Let (&) == (o1=m—w o +&=711+&)

1. o1 =T1 (Hyp)
2. F o14+0=0, (ADD.1)
3.F m4+0=mn (ADD.1)
4. F o014+0=m (GL, 2,1)
5. F 014+0=7m+0 (GL, 4,3)

6. F o1=11 —>01+0=711+0 (DT)

VO ST Gisuetion stert is proven e ol

8. or=11—o1+&=11+& (Hyp)
9. g1 —1T1 (HVp>
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10.F o1 +& =11+ & (MP, 9,8)
1.k o1 +f&=f(o1+&) (ADD.2)
R2F n+féa=f(n+&) (ADD.2)
BE og+&a=n+& —>f(o1+&)=f(n+&) (G.8)
ME flor+&)=f(n+&) (MP, 10,13)

15.F Ul—l—ffl =f (01+£1) —
(f (0‘1 +§1) =f (Tl +§1) — o1 +f & = f (Tl +§1)) (Pl\[ 13.17)
(

16.F f(o1+&)=f(n+&)—o+f&a=Ff(n+&) MP, 11,15)

17 oy +f&=f(n+&) (MP, 14,16)

18.F o1+f&=n+f& (GL, 17,12)

Ok oo=nn—oa+fa=n+f& (DT)

2. (f &) (Def, 19)

2LF (or=n—oa+&=n1+8&&) = (&) (DT)

22,8 (&) = »(f &) (Def, 21)

2.5 Va @a) = vlfa) @ ﬁztdi}éaioper;;Zpt?seproven (G, 22)

2 P(0) > (V& (&) > B(F 1)) > V& B(E) (P.10)

25 Ve (&) = Bl &) = V& () (MP, 7.24)

2%. V& $(E) (MP, 23,25)

21 V& (o= — o +&=m+&) (Def, 26)
28.F V& (o= voa+&=m1+&)—

(1= —o1+p1=71+p1) (IIL.1)

29.F oy=m—o1+pr=m+pm (MP, 27,28)

(@Yo o]

Let ¥(&) == (& =0+&)

5.

1
2
3.
4

.k

040=0 (ADD.1)
F 040=0-50=0+0 (PM 13.16)
F 0=0+0 (MP, 1,2)
- v @ ﬁztdgil;ioezngrih; proven (Def, 3)

L=0+& (Hyp)
6. F ¥(&) (Def, 5)
TR 04+f&=f(0+&) (ADD.2)
8. F &=0+& =& =F(0+&) (G.8)
0. F fa—=f(0+6&) (MP, 5,8)
10 f6G=Ff0+&) > O0+f&E=f0+&) = f&E=0+F&) (G4
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11.

12
13.+
14.+
15.+

16.F
17.F
18.F
19.+
20.+
21.F

FO+f&=f0+&) = f&=0+F6 (MP, 9,10)
LG =044 (GL, 9,7)
=0+ —F&=0+F8 (DT)
V& (G=0+&G =& =0+f&) (G, 13)
Ve la) = wlf &) @ gfdi@éop?zozgf];pt?:pmven (Def, 14)
P(0) = (V& (Y(&1) = ¥(f &) — V& ¥(&)) (P.10)
V& (&) = o(f &) = Vé v(&) (MP, 4,16)
V& (&) (MP, 15,17)
V& (& =0+&) (Def, 18)
Vé (& =0+&) = (01 =0+01) (ITL.1)
o1 =0+o01 (MP 19,20)

Let ¥(&1) == (for+& =1 (01 +&1))

S o o
T T T T T T

10.
11.
12.
13.
14.

16.F
17.F
18.F

19.+
20.+F

for+0=fo; (ADD.1)
o1+0=0; (ADD.1)
o1+0=0; —>f(61+0)=fo; (G.8)
f(oy+0)=Ff o (MP, 2,3)
for+0="f (o1 +0) (GL, 1,4)
Vo) @] ﬁztdihcgopszgfi;r;};es proven (Def, 5)
for+& ="f(o1+&) (Hyp)
F for+&=Ff(o1+&)=ffor+&)=Fff(01+&) (G.8)
Ef(for+&)=Fff(o1+&) (MP, 7,8)
F for+f&=Ff(Ffo1+&) (ADD.2)
F fop+f&=F1f(o1+&) (GL, 10,9)
Foop+f&=F(o1+&) (ADD.2)
Foo+f&=Ff(o1+&)>f(or+f&)=Ff(01+&) (G.8)
F f(or+f&)=1Ff(01+&) (MP, 12,13)
F for+f& =1 (o1+f&) (GL, 11,14)
for+&=Ff(o1+&) = for+f&=1f (o1 +f&) (DT)
Y(&1) — P(f &) (Def, 16)
Ve (i) = wlf &) @] ﬁfdggtsioprf Z)Lfl;’pt?se proven (G, 17)
P(0) = (V& (P(&1) = ¥(f &) = V& ¥(&)) (P.10)

V& (0(&) = o(f &) = V& ¥(&) (MP, 6,19)
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21 F Ve (&) (MP, 18,20)
22.F V& (&) = (m) (IIL.1)
23 (m) (MP 21, 22)
2.k for+m=f(01+7) (Def, 23)
Let ¥(&) == (o1 +& =& +01)
1.F o1+0=0 (ADD.1)
2. F 01=0+0; (M3.2f)
3. F 01+0=0+0; (GL, 1,2)
4. F (0) (Def, 3)
9. o1+& =8 +o1 (Hyp)
6. F o1 +f&=F(01+&) (ADD.2)
Tk f&4or=f(&+01) (M3.2g)
8. F on+& = +o0r—=f(o1+&)=f (& +o1) (G-8)
9. F f(oi+&)=f (& +o1) (MP, 5,8)
10.F oy +f&=1f (& +01) (GL, 6,9)
1I.F o1+f&=f& +01 (GL, 10,7)
12.F o1 +& =640 oo+ T&=f& 401 (DT)
13.F (&) — o(f &) (Def, 12)
LE Ve ((E) - ol &) (@, 13)
155 9(0) = (V& (Y(&) = »(f &) = V& ¥(&)) (P.10)
16.F V& (¥(&) = o(f &) = V& ¥(&) (MP, 4,15)
17.F Ve (&) (MP, 14,16)
8 F V&oau+&=G+01 (Def, 17)
19F V& ou+& =8 +01 201+ =711+01 (IIL.1)
200k o1 +m =71+ 01 (MP, 18,19)

1.

o1 —1T1
2. o1=1 v o1+o0o1 =11 +01
3. F o1+tor=11+01
4. F m+or=01+711
5 F o1+o1=01+7
6. F o1=m—o1+n=mn+mn
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7.k o1+mi=m+71 (1\[P, 1./6)
8 F oy+o1=m11+711 (GL 57)
9. F o= —So1t+oi=m+n (DT)

.f

L F oyxf0=01 %0401 (MUL.2)
2. F o1 x0=0 (MUL.1)
3. F o1 x0=0—01x0+01=0+4+0; (M.3.2¢)
4. F 01 x04+01=0+01 (MP, 2,3)
5. F o1 xf0=0+4o0 (GL, 1,4)
6. F o1=0+0 (M.3.2f)
7.F 01=0+01 —=0+01 =01 (PM 13.16)
8. F 04+o01=01 (MP, 6,7)
9. F oy xf0=o0; (GL, 5,8)
10.F oy x1=0y (D(,f 9)
o
1. F oy xfl=01x14+0; (MUL.2)
2. F oy x1=o0 (M.3.5b)
3. F oixl=01—=01x1+0,=01+01 (M.3.2¢)
4. F oy x1+o1=01+01 (MP, 2,3)
5. F oixfl=014+01 (GL, 1,4)
6. F o1 x2=014+01 (Def, 5)
2
@y\j ffo1x2)=fo+fo;
1. F o1 x2=01+01 (M.3.5¢)
2. F oy x2=01+01 = f (61 x2)=f(01+01) (G.8)
3. F f(o1x2)=f (61 +01) (MP, 1,2)
4. F o1+foy1=f(o1+01) (ADD.2)
5. F fo1x2)=01+fo; (GL, 3,4)
6. F fo1x2)=01+fFfor —>ff(o1x2)=f(01+Ff01) (G.8)
7.k ff(o1x2)=f(01+f01) (MP, 5,6)
.k for+for=f(o1+f01) (M.3.2¢g)
F ff(o1x2)=for+fo; (GL, 7.8)
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1. F ff(oyx2)=(foy)+(for) (N.2)
2. F (fo1)x2=(foy)+(f o1) (M.3.5¢)
3.k ff(o1x2)=(foy)x2 (GL, 1,2)

rgg@f 01#0—3z; (01 = (M.3.5h)

Let ¢(&) == (& #0—3z1 (&G =fz1))
1Lk 0=0 (G.2)
2.F 0=0>(Vz1 0#£fz —-0=0) (F.1)
3. F V2, 04fz —»0=0 (MP, 1,2)
4. F 0#£0—Vz10#4f z; (INV, 3)
5 F 0#£0—=30="fz (Def, 4)
OO S L et proven e
7. f&H=F& (G, 2)
8 F (f&a=fQ)a+&l—3Tznf&="1fz (P.3)
9. F Az f& =17 (MP, 7,8)
100.F 3538 =fz1 5> (& A0 > Tz f & =1 279) (F.1)
1. f& #0322, (& =f2z71) (MP, 9,10)
12.F ¥(f &) (Def, 11)
135 (f &) = (V(&) = o(f &) (F.1)
14.F ¥(&) = o(f &) (MP, 12,13)
1.8 V& (Wi6) = v(f &) @J ﬁztdi}izlz;opsgi’pt?seproven (G, 14)
16.F (0) = (V& (¥(&1) = »(f &) = V& ¥(6)) (P.10)
ITE Ve (9(6) > 9(f &) = Ve v(&) (MP, 6,16)
18.F V& (&) (MP, 15,17)
19.F VE(E £0— 3z (6 =Fz)) (Def, 18)
20k V€& #A0—3zy (&1=Fz71)) 2> (61 #0—= 3z (01 =1 z1)) (ITL.1)
21,k 01 #£0— 3z (61 =fz1) (MP, 19,20)

(@i ()
Let (&) == & x2#1

1.F 0x2=0+0 (M.3.5¢)
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T T T T T

0=0+0 (M.3.2f)
0x2=0 (GL, 1,2)
T+40 (I.1)
0x2#1 (UG, 3/4)
YO S Gtuction start 1o proven et o)
f&x2=10 (Hyp)
CE ff (G x2)=Ff&Ex2 (N.3)
Foff(&x2)=f0 (GL, 8,7)
b ff(Ex2)=f0=f (& x2)=0 (1.2)
o f(ax2)=0 (MP, 9,10)
f&x2=f0—-f (& x2)=0 (DT)
fE1x2)#0=f& x2#F0 (INV, 12)
f(61x2)#0 (I.1)
f&x2#£10 (MP, 14,13)
iF &) (Def, 15)
(&) = (V(&) > B(F &) (F.1)
(&) = vl &) (MP, 16,17)
va (e = 9 &) @ ﬁztdggz‘joprfg?pt?seproven (G, 18)
P(0) = (V& ($(&) = ¥(f &) = V& ¥(&)) (P.10)
YV (V&) = (f &) = Va v(&) (MP, 6,20)
VL ¥(&) (MP, 19,21)
V& (&) = ¢(o1) (IT1.1)
¥(o1) (MP 22,23)
o1 x2#1 (Def, 24)
Il=01x2—0x2=1 (PM 13.16)
o1 X2#1—>1#01x2 (INV, 26)
T40, %32 (MP, 25,27)

o1 =0— 01 x2=0

> o a W

o1 =0 (Hyp)
F o1=0—=>01+01=0401 (M.3.2¢)
F o1+01=0+01 (MP, 1,2)
F o1=0+0, (M.3.2f)
F 0=0+4+o0; (GL, 1,4)
F 0=o0;+0; (GL, 5,3)
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7 F oy x2=014+01 (M3.5¢)

8. F o1 x2=0 (GL, 7.6)
9. F 01=0—0,x2=0 (DT)
=0

1. ffop=7mx2 (Hyp)
2. F ffor #0 (L.1)
3. F mx2#0 (UG, 1,2)
4. F m=0—-1x2=0 (N.5)
5. F mx2#0—=1 #0 (INV, 4)
6. F m#0 (MP, 3,5)

7. F ffor=mx2—=1#0 (DT)

f'“’f:_@:}

1. o1 =21 X2 (H}"P)
2. F ff(zx2)=fz x2 (N.3)
3.k o1=z1x2—>for =1 (21 x2) (G.8)
4. F foy=f(z1 x2) (MP, 1,3)
5. F for=f(z1x2) > ffor=ff(z1x2) (G.8)
6. b ffop="Fff(z1x2) (MP, 4,5)
7.k ffor=fz; x2 (GL, 6,2)

8. F oy=z1 x2—>ffor=fz; x2 (DT)

9. F ffor=fzix2—=3z1ffo1=21 x2 (P.3)

10.F oy =z1x2—=3z1ffor =21 x2 (MB, 8,9)

1.k Vzi (o1 =21 x2—= 3z ff oy = 21 X 2) (G, 10)

12F Jz101 =21 x2—3z1ffo1 =21 x2 (BE, 11)

Hzlffalzzlx§—>32101221><§

1. ffor=2z1x2 (Hyp)
2. F ffor #0 (L.1)
3. F 21 x240 (UG, 1,2)
4. F z1=0—2,x2=0 (N.5)
5. F z1x2#0 52,40 (INV, 4)
6. F 21 #0 (MP, 3,5)
7. F 21 £0—>3y1z1="fy; (M.3.5h)
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8. E!ylzlzfyl
z1="Fy

10.F zi=fyi=2zi+z=fy1+fyr
1. z+z1=Ffy1+fy;
12F z1 x2=z14+271
1Bk z1x2=fy;+fy
4F ffy1x2)=fy1+fy1
15.F z1x2=1f(y; x2)
16.F ffor="ff(y1 x2)
17k z1=fy; > ffor=1f(y1 x2)

-
F Vyi(zi=fyr > ffor=1f(y1 x2))
19.F Fyrzi=Ffy; > Fy1 ffor=Fff(y1 x2)
F 3yiffor=ff(y; x2)

F 3yiffor=Fff(y1x2) >3z ffo=FFf (21 x2)
22.F 3z ffor=ff (z x3)

2.k ffor=z1x2—=3z1ffoy=ff (21 x2)
24 ffop=ff(z1x2) >for="1(z1x2)
25,k for=f(z1x2) > 01=23 X2

26.F ffop=ff(z1x2) 201=21%x2

21k Vzy ffor=ff(z1x2) 201 =21 x 2)
28.F Fzyffor=ff(z1x2) >3Jz101=23 x2
29.F ffor=z1x2—=3z101 =21 X2

30k Vzy (ffor =21 x2—3z1 01 =23 X 2)
31, Az ffor=z1x2—=3dz101 =21 x2

4 System P

(MP, 6,7)
(Hyp)
(N.1)

(MP, 9,10)
(M.3.5¢)

(GL, 12,11)

(N.2)

(GL, 13,14)

(GL, 1,15)
(DT)

(G, 17)
(E, 18)
(MP, 8,19)
(P.9)
(MP, 20,21)
(DT)
(1.2)

2)

)

)

)

)

)

)

(L
(MB, 24,25

(G, 26

(E, 27
(MB, 23,28
(G, 29
(BE, 30

At this point, our journey into the depths of the formal system P comes to
an end. We have developed a profound understanding of how mathematical
statements can be formalized and mechanically proved within this system.

4.5 The Arithmetization of Syntax

Godel continues by discussing a principle we have already covered in the proof
sketch: the arithmetization of syntax. This term refers to the concept of making
the syntactic relations between the objects of a formal system visible on the
arithmetic level. The formulas and proofs of a formal system are translated
into natural numbers, called Gdédel numbers today. Godel calculates them

according to the following scheme:
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Wir ordnen nun den Grundzeichen des Systems P in folgender
Weise eineindeutig natiirliche Zahlen zu:

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 179

“0 .1 ey LT (.1
S TN B R B KON

ferner den Variablen n-ten Typs die Zahlen der Form p" (wo p
eine Primzahl > 13 ist). Dadurch entspricht jeder endlichen Reihe
von Grundzeichen (also auch jeder Formel) in eineindeutiger Weise
eine endliche Reihe natiirlicher Zahlen.

We now set up a one-to-one correspondence of natural numbers
to the primitive symbols of the system P in the following manner:

On formally undecidable propositions of Principia Mathematica etc. 179
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and furthermore, to the variables of n-th type we assign the numbers
of the form p"” (where p is a prime number > 13). Thus, to every
finite sequence of primitive symbols (hence also to every formula),
there corresponds in a one-to-one fashion a finite sequence of positive
integers.

In this paragraph, Goédel associates each elementary symbol of P with a unique
natural number, allowing him to interpret each formula as a finite sequence of
those numbers. As examples, let us consider the following formulas:

w1 = (xg = x1 Vxg) = (x1 = x1)

$2 -
QDS = X1 7 X1

X1 = X1 VXg

Y1, P2, and @3 are typed variants of the formulas we have already employed in
the proof sketch for precisely this purpose. Before the transformation can be
performed, we need to translate 1, @2, and @3 back into native formulas of
P. Eliminating the implication operators and adding the missing parentheses
leads to the following intermediate result:

p1 = (2((=(x1)) V ((x2) V (x2)))) V ((=(x1)) V (x1))
2 = (=(x1)) V ((x1) V (x1))
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p3 = (2(x1)) V(x)

Now, suppose every elementary symbol is associated with a unique natural
number. In that case, every finite series of basic symbols corresponds one-to-
one to a finite series of natural numbers. For our example formulas, the number
series look like this:

B Formula ¢

1 11 5 17 13 11 17 7 17 13 13 11 5 17 13 11 13
t ¢t ¢t ¢ ¢ 3 3 t ¢ ¢ ¢ t & 3
(= (= (xa))V(xa)Vix))))Vv((=(xx))Vvix))
$t ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 8 ¢ ¢ 8 3
5 11 11 13 7 11 13 11 13 13 7 11 11 13 7 17 13
B Formula o
11 11 13 7 11 13 11 13
t ¢ ¢ ¢ ¢ ¢ % ¢
(m(xx) )V (x)V(x))
$1 ¢ ¢t 8 ¢ ¢ ¢ ¢
5 17 13 11 17 7 17 13

Next, Godel merges the number sequences into a joint number.

Die endlichen Reihen natiir-
licher Zahlen bilden wir nun (wieder eineindeutig) auf natiirliche
Zahlen ab, indem wir der Reihe nj,ns, . . . ng die Zahl 2™ . 3"2. . .pk"k
entsprechen lassen, wo p; die A-te Primzahl (der GroBe nach) be-
deutet. Dadurch ist nicht nur jedem Grundzeichen, sondern auch
jeder endlichen Reihe von solchen in eineindeutiger Weise eine
natiirliche Zahl zugeordnet.

We map (again in a one-to-
one fashion) the finite sequences of positive integers into the natural
numbers by letting the numbers 2. 3"2. . . p,"* correspond to the se-
quence nj,ng, . .., N, where p, denotes the A-th prime number (ac-
cording to magnitude). Hence, a natural number is correlated in one-to-
one fashion not only to every primitive symbol but also to every finite
sequence of such symbols.
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Godel maps the sequence nq,no, ..., n, to the joint number

U u 7
p11'p22'~~~'pkka

where p; denotes the k-th prime number in order of increasing magnitude. In
this way, not only each elementary symbol but also every finite series of such
symbols maps to a natural number one-to-one. Following this procedure, our
example formulas transform into the following Godel numbers:

B Formula ¢4

Fp = oll g5 pll =1l 195 13l 1717 . 1918 .0313 . 297.
31137t 4117 4313 . 477 . 53 . 5917 L6113 . 6713,
711 .73 . 797 . 83 . 89 . 97° . 101" - 103'7 - 1073
109" - 1137 - 127" - 1317 . 1373 . 139"3
= 98309379256648010998694098902047834543010949148965052893476416558776
01497906299539901003018882018112021855293763962877924545568422603274
14613148558236967014701813263836229078798743453844050933651214802546
26066957528161301442907703295621529085048807277633952431429268315089
93097725804871410180155615888353385242130774535009000299441704355129
15632329611232254282244955965611770425001200568394025766532779612183
02842427876447991943828850940151965812150580175837781145409317919606
59919928836442349636456339092598275323484124760384042792070594415966

16992636210756951055901143805693210861250345733499075481311673241938
897246706665735005161274900000000000

B Formula o

FQO2—| — 211 . 35 X 511 X 717 . 1113 . 1313 . 177 . 1911 . 2311 . 2917
-31'%.377 . 41" . 4317 4773 . 53"

= 20816340182285939507081673729054187946247451498229633758212038396303
44617044217843976144724806833582142202298384808952021761173276228524
56658772475657409416340416536805506963553798003748479958478542965596
38288262952126681596509700000000000

B Formula 3

Fps? =237 50 71T 111 13 . 177 191 L 2317 291

= 40890336639361224855361068360540692836688628695014618709774435684319
15064626002860178737797847194727262534294700000000000

These early examples make one very clear: Godel takes no account of the size
of the numbers. Even for short formulas, the Gédel numbers become so huge
that writing them down as decimal numbers becomes a formidable task.



204 4 System P

The numbers grow even more dramatically when proofs are encoded. Remeber
that a proof is a finite sequence

P1, P2, P35 - -+ Pk

of formulas. To translate these into a natural number, we first determine the
Godel numbers of the individual formulas. After that, we use the number of
the i-th formula as the exponent of the i-th prime number p; and form a joint
product:

al ’—QP2—| FLPB—l V—ka“l

-
r i - ¥1
P1,92,P3, -+, LE = D1 %) *Ps3 pk
Encoding our example formulas this way yields the following number:
92'13%51171111%131117171919231%2973111371141174319477531 1 591761126713 71197313
79783'1891197510111 103 7107'3109*31137127 1311713731393

'3211355117171113131317719112311291731133774111431747135313
52113551171711131313177191123172913

This number is truely gigantic, with its decimal places far surpassing our uni-
verse’s estimated count of elementary particles. Therefore, we are well advised
to keep the Gédel number in its factorized representation.

Die dem Grundzeichen (bzw. der Grund-
zeichenreihe) a zugeordnete Zahl bezeichnen wir mit ® (a).

The number corresponding to the prim-
itive symbol (or sequence of primitive symbols) a will be written

® (a).

In modern terminology, the number Godel refers to as ®(a) is known as the
Gddel number of a. It’s worth noting that Gédel employs the symbol ® for both
primitive symbols and sequences of primitive symbols. Although it is generally
clear from the context which of the two is meant, the notation occasionally
leads to ambiguities. In ®(0), for instance, ® may refer to the symbol 0 or a
string of length 1 containing 0 as its sole symbol. In the first case, ®(0) equals
1; in the second case, ®(0) equals 2! = 2.

We will address this issue by restricting Godel’s notation ®(x) to primitive
symbols only. For the Gédel number of a formula ¢, we will use the notation
T, which is already familiar to us from the proof sketch. This notation is the
one most commonly used today.
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\ Note: In our notation,

P
\@— B ®&(z) denotes the Gédel number of a symbol and

B "z denotes the Gédel number of a string of symbols.

Next, Godel points out that any relation between the syntactic objects of a
formal system also has an arithmetic interpretation:

Sei nun
irgend eine Klasse oder Relation R (aj,as. . .a,) zwischen Grund-
zeichen oder Reihen von solchen gegeben. Wir ordnen ihr diejenige
Klasse (Relation) R (21, 25 . . . @,) zwischen natiirlichen Zahlen zu,
welche dann und nur dann zwischen x;, 2y ...z, besteht, wenn
es solche a1, ay...a, gibt, daB z; = ® (a;) (1=1,2,...n) und
R(a1, as. . .ay,) gilt

Assume
given now any class or relation R (aj,as...a,) between primi-
tive symbols or sequences of such symbols. We correlate to it that
class (relation) R’ (21, 2. ..z,) of natural numbers which holds for
1, T2 . . . T, when and only when there exist a;, as . . . a, such that
% =®(a;) 1=1,2,...,n) and R (a1, ag, . . .,a,) is true.

In Gédel’s own account, R refers to a relation

that establishes a relationship between n strings, where %* denotes the set of
all finite strings formable with the primitive symbols contained in the set . R
has an isomorphic image in the domain of natural numbers, that is, the relation

R/ g N'IL

with:
("1 T2, TR ) €ER i (@1,92,...,0n) €ER

More concisely, this relationship can be stated as:
R ("o, T2, "o ) i R(p1,02,- .-, ¢n)
For instance, the unary relations (predicates)

Ry = {p € X*| ¢ is a variable}
Ry := {p € X" | pis aformula}
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R3 = {p € ¥" | ¢ is a sentence formula}
Ry := {p € X" | v is an axiom}
Rs := {p € " | p is a provable formula}

have the following isomorphic images:

R} := {n € N|n is the Gédel number of a variable}

R, := {n € N|n is the Gédel number of a formula}

R} := {n € N|n is the Gédel number of a sentence formula}

R} := {n € N|nis the Godel number of an axiom}

R. := {n € N|n is the Godel number of a provable formula}
Consequently, every meta-statement about a formal system has a counterpart

in arithmetic.
the statement

“There is

For instance, at the syntax level — the level of symbol strings —
about the existence of undecidable formulas reads:

a sentence formula o, such that neither ¢ nor the negation of

o are provable formulas.”

On the arithmetic level, the corresponding statement goes like this:

“There is

a natural number n, which is the G6del number of a sentence

formula ¢, such that neither n nor the number corresponding to the

Gédel number of the negation of ¢ is the Gédel number of a provable

formula.”

This formulation sounds rather cumbersome. For this reason, Godel introduces
a distinctive italic notation that is used consistently throughout his subsequent

work.

Diejenigen Klassen und Relationen natiirlicher

Zahlen, welche auf diese Weise den bisher definierten metamathema-
tischen Begriffen, z. B. ,,Variable®, ,,Formel®, ,,Satzformel®, ,,Axiom*,
,beweisbare Formel“ usw. zugeordnet sind, bezeichnen wir mit
denselben Worten in Kursivschrift. Der Satz, daB es im System P
unentscheidbare Probleme gibt, lautet z. B. folgendermafien: Es gibt
Satzformeln a, so daB weder a noch die Negation von a beweis-
bare Formeln sind.

Those classes and relations of natural
numbers which correspond in this manner to the previously defined
metamathematical concepts, e.g. ‘“variable”, “formula”, “sentence”,
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“axiom”, “provable formula”, etc., are denoted by the same words
in italics. For example, the proposition that there exist undecidable
problems in the system P becomes: There exist sentences a such
that neither a nor the megation of a is a provable formula.

Godel associates the italic notation with a distinct semantic meaning. When
he typesets a term upright, he refers to a relation at the syntax level. When
he typesets a term in italics, he refers to the corresponding relation at the
arithmetic level.

‘ Note: In Godel’s work,

N
\@ — W terms printed upright refer to the syntactic level and

B terms printed in italics refer to the arithmetic level.

At this juncture, our investigation of Gédel’s system P comes to an end.
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S5 Primitive-Recursive Functions

“Number rules the universe.”
Pythagoras [88]

After defining the formal system P, Gédel proceeds with an interim discussion
spanning several pages. He introduces a class of number-theoretical functions,
today referred to as primitive-recursive functions.

5.1 Definition and Properties

Wir schalten nun eine Zwischenbetrachtung ein, die mit dem
formalen System P vorderhand nichts zu tun hat, und geben zunichst
folgende Definition: ~Eine zahlentheoretische Funktion 23) @ (z1,2s. . . 27,)
heift rekursiv definiert aus den =zahlentheoretischen Funktionen
(z1, @2 .. . 2p—1) und w(xy, oo . . . T, 1), wenn fir alle zy . . . ,, k29)
folgendes gilt:

@ 0,22...2,) =V (2. ..2,)

2
ek+1l,a0...2,)=pk, ok z2...2,), 2. .. 7). @

25) D. h. ihr Definitionsbereich ist die Klasse der nicht negativen ganzen
Zahlen (bzw. der n-tupel von solchen) und ihre Werte sind nicht negative ganze
Zahlen.

26) Kleine lateinische Buchstaben (ev. mit Indizes) sind im folgenden
immer Variable fiir nicht negative ganze Zahlen (falls nicht ausdriicklich das
Gegenteil bemerkt ist).

We now introduce a digression which, for the moment, has
nothing to do with the system P, and, first, we present the fol-
lowing definition: A number-theoretic function?®) @(z1,2s...x,) is
said to be recursively defined from the number-theoretic functions
WY(z, 22. .. 2y—1) and p(z1, 2. .. 2,1) if the following holds for
all 2. . .z, k2°):

@0 0,22...2,) =V (22...2,)

(2

e(k+1l,a...2,)=pk ok z2...2,), 22...2).

25) That is, its domain of definition is the class of non-negative integers (of
n-tuples of such integers) and its values are non-negative integers.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, 209
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26) Small Roman letters (possibly with subscripts) are, in what follows, al-
ways variables for non-negative integers (in case nothing is expressly said to the
contrary).

Godel describes what is now known as the schema of primitive recursion:

\
\\

B é\& Definition 5.1 Primitive recursion

Let g : N*~! — N and h : N**! — N be two functions over the natural
numbers. A function f : N — N is defined according to the schema of
primitive recursion if it satisfies:

FO0,20,... x,) = g(xa,...,2,)
fE+1,20,...,xn) = hik, f(k,xo,...,xn), 22, ..., 2p)

Many number-theoretical functions can be defined recursively, including addi-
tion, multiplication, and exponentiation of natural numbers:

add(0, z
add(k+ 1,z

= s(add(k,x))

)

)

mult(0,2) = 0

mult(k + 1,2) = add(mult(k, z),z)
)
)

pow(0,z) = 1

pow(k + 1,z) = mult(pow(k,x),x)

The first two schemata are already familiar to us. We have used them on
page 191 in a slightly modified form to integrate addition and multiplication
into system P.

Characterizing arithmetic functions this way is not Gédel’s invention. Similar
formation schemata were already employed in 1861 by Hermann Graffmann in
his Lehrbuch der Arithmetik fiir h6here Lehrveranstaltungen. On pages 17 and
18, Grafmann defines multiplication as follows:

“Under a - 1 (read a times one or a multiplied by one) one understands
the size a itself, i.e. a-1 = a. [...]| Multiplication with the other numbers
(except 1) is determined by the following formulas: a-(8+ 1) = a-B+a,
where (8 is a positive number.”
“Unter a - 1 (gelesen a mal eins oder a multiplicirt mit eins) versteht
man die Grésse a selbst, d. h. a-1 = a. [..] Die Multiplikation mit
den iibrigen Zahlen (ausser 1), wird durch folgende Formeln bestimmt:
a-(B+1)=a-B+a, wof eine positive Zahl ist.”

Hermann Grafimann, 1861 [38]
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Figure 5.1

HERMANN GRASSMANN
1809 — 1877

On page 73, he similarly introduces exponentiation:

“To exponentiate a number with a whole number means to link both
numbers in such a way that, if the second is zero, the result is 1, and if
the second increases by 1, the result multiplies with the first number, or
under the power a", read a to the n-th, one understands the connection

n+1

for which the formulas a° = 1 [and] a =a"a apply.”

“Fine Zahl mit einer ganzen Zahl potenziren heisst beide Zahlen so
verkniipfen, dass, wenn die zweite null ist, das Resultat 1 wird, und
wenn die zweite um 1 wéchst, das Resultat sich mit der ersten Zahl mul-
tiplicirt, oder unter der Potenz a", gelesen a zur n-ten, versteht man
n+1

diejenige Verkniipfung, fiir welche die Formeln a° = 1 [und] a =a"a

gelten.”

Hermann Grafimann, 1861 [3§]

Another mathematician who employed the schema of primitive recursion to es-
tablish the fundamental arithmetic operations on natural numbers was Richard
Dedekind. The corresponding definitions can be found on pages 44 to 49 of his
renowned work What are numbers and what should they be?:

Page 44: “[..] and call this number the sum which arises from the
number m by the addition of the number n, or in short the sum of the
numbers m, n. Therefore by (126) this sum is completely determined by
the conditions

IL. m+1=m
. m+n =m+n).”
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Figure 5.2

R6zsA PETER
1905 — 1977

Page 47: “[...] and call this number the product arising from the number
m by multiplication by the number n, or, for short, the product of the
numbers m, n. This therefore by (126) is completely determined by the

conditions
II. m-1=m
L. mn =mn+m.”
Page 49: “[...] and call this number a power of the base a, while n is

called the exponent of this power of a. Hence this notion is completely
determined by the conditions

I o' =a

Richard Dedekind, 1888 [16]

Dedekind utilized the term n’ to represent the number n+1. For many contem-
porary authors, this is still the preferred convention for naming the successor
of a natural number.

Below, Godel will employ the concept of primitive recursion to define the class of
primitive-recursive functions. However, he will refer to them simply as recursive
functions since the term primitive-recursive did not yet exist in 1931. This term
was first coined in 1934 by the Hungarian mathematician Rézsa Péter, who was
renowned for many significant contributions to recursion theory. Subsequently,
it was adopted by David Hilbert and Paul Bernays in the first volume of their
influential book Foundations of Mathematics, thus quickly becoming an integral
part of the mathematical vocabulary [57].
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The term recursive function is still used today but refers to something different
now. Today, a recursive function is generally understood as a computable
function. All primitive recursive functions are computable, but not vice versa.

Eine zahlentheoretische Funktion ¢ heiit rekursiv, wenn es
eine endliche Reihe von zahlentheor.Funktionen @;, @>...@, gibt, welche
mit ¢ endet und die Eigenschaft hat, dal jede Funktion ¢y der Reihe
entweder aus zwei der vorhergehenden rekursiv definiert ist oder

180 Kurt Godel,

aus irgend welchen der vorhergehenden durch Einsetzung entsteht?7)
oder schlieflich eine Konstante oder die Nachfolgerfunktion z+ 1

ist.

27) Genauer: durch Einsetzung gewisser der vorhergehenden Funktionen
an die Leerstellen einer der vorhergehen-
den, z. B. o (1,22) = @p [@q (21, 22), @r (22)]

(p, ¢, 7 < k). Nicht alle Variable der linken Seite miissen auch rechts vorkommen
(ebenso im Rekursionsschema (2)).

A number-theoretic function ¢ is said to be recursive if
there exists a finite sequence of number-theoretic functions @;, @...@,
which ends with ¢ and has the property that each function @y of the
sequence either is defined recursively from

180 Kurt Godel,

two of the preceding functions, or results2”) from one of the preced-
ing functions by substitution, or, finally, is a constant or the successor
function z + 1.

27) More precisely: by substitution of some of the preceding functions for
the arguments of one of the preceding functions, e.g. @g(z1,22) = @p [@q (z1.22),
@r (22)] (p, ¢, 7 < k). Not all variables of the left side have to occur on the right
(likewise in the recursion schema (2)).

In a more contemporary formulation, the definition reads like this:

Definition 5.2 Primitive-recursive function

The following functions are primitive recursive:

(PR1) The zero function 1 null(z) ;=0
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(PR2) The successor function 1 s(z) =+ 1
(PR3) The projection functions 0 (21, .., ) =T
Furthermore, two recursive construction rules apply:

(PR4) If h : N¥* = N and g1,...,gr : N* — N are primitive-recursive,
then so is the following function that arises from h by substitution:
f(‘rlv e 7'1'77«) = h(gl(xh M ,mn), e 7gk(m17 R 75En))
(PR5) If g : N*=! — N and h : N*™! — N are primitive-recursive, then
so is the following function that arises from ¢ and h by primitive
recursion:

f(07(11'2,...,$n) = g($2,...7mn)
flk+1,22,...,20) h(k, f(k,@2,...,Tn), T2, ..., Tn)

The modern definition differs from Gdodel’s version in two aspects:

B Instead of declaring all constant functions as primitive-recursive, only the
zero function is declared as such. This suffices since all constant functions are
constructible from the zero functions and the successor function by applying
the substitution scheme.

B The modern definition declares all projections as primitive-recursive,
whereas Godel’s definition nowhere mentions these functions. To under-
stand why Godel could do without them, we first convince ourselves that
the identity function, mapping each natural number to itself, is also primitive
recursive. The function can be easily derived using the schema of primitive
recursion:

id(0) == 0 (PR5)
id(k+1) == s(id(k)) & id(z) = 2

Now, the projection functions 7' can be obtained by substitution:

i (x1, ., xy) = 1d(id(z;)) (PR4)

0 (T, Tn) = T

Note that the construction relies on an additional freedom that Gédel grants
himself in footnote 27. In particular, he permits that not all variables on the
left-hand side must necessarily appear on the right. Indeed, the construction
would not succeed otherwise, as not even the definition of the identical
mapping precisely corresponds to the schema of primitive recursion. Strictly
interpreted, the definition stipulates that the outer function must have at
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least two argument positions. The successor function s, however, is a unary
function.

From a mathematical perspective, Godel’s footnote 27 is rather informal,
which is why most modern definitions take a slightly different route and
declare all projections as primitive-recursive. As the following examples
demonstrate, the projection functions prove versatile in flexibly combining
functions with different signatures, rendering Godel’s informal rule obsolete.

The following series of primitive-recursive functions shows how addition, mul-
tiplication, and exponentiation can be defined by primitive recursion:

fiw) = () (PR2)
IS
f2(m17x2,$3) = Wg(l’l,IE27I3) (PR3)
1s=d
fa(z1,22,23) = fi(fe(z1, 22,23)) (PR4)
&
fa(z) = mi(x) (PR3)
IS
f500,2) == fu(z) (PR5)
f5(k+1>x) = fS(kuf5(k7x)vx) @fs(kax):iv‘f'k
fo(w1, w9, 23) == 73 (21, 22, 3) (PR3)
IS
Jr(xy, w2, 23) = f5(fo(21, 22, 23), fo(21, 22, 73)) (PR4)
1S5
fs(x) := null(z) (PR1)
IS5
fo(0,z) = fs(x) (PR5)
fok+1,2) = fr(k, fo(k,x),2) w2 folk,x) =k
fio(z) = fi(fs(z)) (PR4)
&
f11(1317332,l“3) = f9(f2(l“1,$27$3),f6(3«“1,$27$3)) (PR4)
1S
f12(0,2) == fio(2) (PR5)

f12(k+1,$) = fll(k7f12(k7m)vx) @le(k,LE):ZEk
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In this series, addition is in 5th place, multiplication is in 9th place, and expo-
nentiation is in 12th place.

The next concept only plays a marginal role. Godel defines the level of a
primitive-recursive function as the length of the shortest series producing that
function:

Die Linge der kiirzesten Reihe von «;, welche zu einer
rekursiven Funktion ¢ gehort, heiit ihre Stufe.

The length of the shortest sequence of @;’s belonging to a re-
cursive function @ is called its rank.

Assuming that the series printed above is the shortest to define our example
functions, their levels can be directly read off. Addition is a function of level 5,
multiplication is a function of level 9, and exponentiation is a function of level
12. Godel refers to the level whenever he proves a statement about primitive-
recursive functions by induction. For such a proof to succeed, each function
must belong to a certain level, but its specific value is usually irrelevant.

Next, we will convince ourselves that the predecessor function

o(@) = {0 if 2 =0

x —1 otherwise

and the function computing the (saturated) difference
. r—y ifx>y
z—y = :

0 otherwise

are also primitive-recursive. For this purpose, it is sufficient to continue the
above formula series as such:

fis(wr, w0) = i (21, x2) (PR3)
b

f14(0,2) = fs(x) (PR5)
fualk+1,2) = fis(k, f1a(k,z)) =

fis(x) i= fra(fa(z), fa(z)) (PR4)

1 fi5(x) = p(@)

fro(wr, a2) v= 73 (w1, 22) (PR3)
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Jir(z1, 22) = fi5(fi6(z1,272)) (PR4)
e
f18(0,z) = fa(z) (PR5)
fis(k+1,2) = fir(k, fis(k,x)) =
Jro(z1,22) = fig(fie(w1,22), fi3(w1,72)) (PR4)

1= fio(z1,22) = 21 — T2

Let’s take a closer look at the last function. Besides its functional meaning,
which is to calculate the saturated difference, it also has a relational meaning.
Its function value is 0 exactly when the number z is less than or equal to y:

r<y & fio(z,y) =0

Thus, whether for two given numbers x and y the relationship x < y holds can
be decided by calculating the function value fig9(z,y).

By associating the existence or non-existence of a relation with the function
value in the way described, we can extend our vocabulary with the notion of
primitive-recursive relations:

Definition 5.3 Primitive-recursive relation

A relation R between the natural numbers z4,...,x, is called primitive-
recursive if a primitive-recursive function f with the following property
exists:

R(z1,...,xn) & f(z1,...,2,)=0

f is called the characteristic function of R.

As no fundamental difference exists between sets and unary relations, defining
the concept of primitive-recursive sets is just a stone’s throw away. It arises as
a particular case from Definition 5.3, with the following wording:

Definition 5.4 Primitive-recursive set

A set M C N is called primitive-recursive, if a primitive-recursive function
f with the following property exists:

zeEM & f(x)=0

f is called the characteristic function of M.
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Godel’s words read very familiar now:

Eine Relation
zwischen natiirlichen Zahlen R (z; . . .x,) heiBt rekursiv2®), wenn es
eine rekursive Funktion @(z; . . .z,) gibt, so daB fir alle 21,25 . . . z,

R(zy...zp)c0@ (21...2,) =0]2).

28) Klassen rechnen wir mit zu den Relationen (einstellige Relationen).
Rekursive Relationen R haben natiirlich die Eigenschaft, daB man fiir jedes
spezielle Zahlen-n-tupel entscheiden kann, ob R (z...z,) gilt oder nicht.

29) Fiir alle inhaltlichen (insbes.
auch die metamathematischen) Uberlegungen
wird die Hilbertsche Symbolik verwendet. Vgl. Hilbert-Ackermann, Grund-
ziige der theoretischen Logik, Berlin 1928.

A relation
among natural numbers R (z;...x,) is called recursive?®) if there
exists a recursive function @(z; . . .x,) such that, for all x1,25 . . .z,

R(zy...zp)c0 @ (z1...2,) =0]2).

28) We consider classes as relations (one-place relations). Naturally, recursive
relations R have the property that, for every particular n-tuple of numbers, one can
decide whether or not R (1 . . .zy) holds.

29) In all informal (in particular, metamathematical) considerations Hilbert’s
symbolism is employed. Cf. Hilbert-Ackermann, Grundziige der theoretischen Logik,
Berlin 1928.

In this context, Gédel uses the symbol ‘ o’ to express the equivalence between
the left-hand and right-hand sides, spoken as if and only if (“genau dann,
wenn”). It is synonymous with the symbol ‘<’, which we use today for the
same purpose.

Footnote 28 is significant. Godel points out that all primitive-recursive relations
are decidable, that is, it is always possible to answer the question of whether n
given numbers x1, ..., x, satisfy the relation R or not. All that is required is to
calculate the function value f(z1,...,2,), with f being the primitive-recursive
function associated with R. If the result equals 0, then (x1,...,z,) is in R;
otherwise (x1,...,x,) is not in R.

Next, Godel establishes four fundamental theorems regarding primitive-
recursive functions and relations.

Es gelten folgende Sitze:

I. Jede aus rekursiven Funktionen (Relationen) durch
Einsetzung rekursiver Funktionen an Stelle der Variablen
entstehende Funktion (Relation) ist rekursiv; ebenso jede
Funktion, die aus rekursiven Funktionen durch rekursive
Definition nach dem Schema (2) entsteht.
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The following theorems hold:

I. Every function (relation) resulting from recursive functions
(relations) by substitution of recursive functions for variables is re-
cursive; likewise, every function which arises from recursive functions
by recursive definition according to schema (2) is recursive.

Let’s look at a specific example. According to this theorem, the function

mult(0, z) := null(z)
mult(k 4+ 1,2) = add(73(k, mult(k, z), ), (5.1)

3

3

is primitive-recursive, as it has been created from other primitive-recursive
functions through the scheme of substitution and the scheme of primitive recur-
sion. Note that Gédel includes this theorem primarily for the sake of complete-
ness, as its correctness directly follows from the ability to translate a composite
formula into a series of formulas, where the substitutions are performed step
by step. We already know what this series looks like for the example formula
(5.1). It is the series formed from the formulas fi,..., fo defined above.

Despite its unspectacular appearance in terms of content, Theorem I offers
a high degree of comfort. It permits us to forgo the elaborate construction
of formula series and represent primitive-recursive functions in the compact
notation employed in (5.1).

II. Wenn R und S rekursive Relationen sind, dann
auch R, RV S (daher auch R &S).

Il. If R and S are recursive relations, then so are R and v
R\/ S (hence also R & S).

This theorem asserts that if R and S are m-ary primitive-recursive relations,
then the following relations are also primitive-recursive:

R = {(x1,...,20) | (w1,...,7,) € R}
RV S = {(z1,...,2n) | (x1,...,2,) € Ror (x1,...,2,) € S}
R& S = {(z1,...,2n) | (z1,...,2n) € Rand (z1,...,z,) € S}

We will continue to use the notation R as it is still common today. Since
relations are sets, we will employ the standard set notations RU S and RN S
instead of RV S and R & S, respectively.
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A few pen strokes suffice to complete the proof of Theorem II:

B Complementary relation R

If R is a primitive-recursive relation, then there exists a function fr with
(z1,...,2n) € R & frlz1,...,2,) =0
Consequently,
(r1,...,2,) €ER & a(fr(z1,...,2,)) =0

with « being defined as follows:

a@) = {1 ifz=0

0 otherwise

Function « is primitive-recursive, as it is easily derivable from saturated
subtraction and the constant 1:

alz) = 1-x

The composition of o and fg is also primitive-recursive according to the
substitution scheme, and so is R.

B Union relation RU S
If R and S are primitive-recursive relations, then there exist functions fr
and fg with

(ml,...,xn) €ER & fR(xl,...,a:n) =

0
(1,...,2n) €S & fs(x1,...,2,) =0

Then

(x1,...,2,) ERUS < B(fr(z1,...,20), fs(x1,...,25)) =0 (5.2)

with 8 being defined as follows:

0 ifz=0o0ry=0
Blz,y) = .
1 otherwise

Since 8 can be obtained from multiplication, saturated subtraction, and the
constant 1, it is also primitive-recursive:

Blr,y)=1-(1<-z-y)

Thus, the function on the right-hand side of (5.2) is also primitive-recursive,
and sois RUS.
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B Intersection relation RN S

The assertion follows directly from the reducibility of the intersection to the
complement and union:

RNS = RUS O
III. Wenn die Funktionen ¢ (¢), ¥ () rekursiv sind, dann
auch die Relation: @(r) = P(y) 2°).

30) Wir verwenden deutsche Buchstaben [, 1) als abkiirzende Bezeichnung
fiir beliebige Variablen-n-tupel, z. B. z1 z2. .. 2y.

II. If the functions ¢ (), ¥ (v) are recursive, then so is the
relation: @(r) = W(p)2°).

30) We use German letters [, I) as abbreviations for arbitrary n-tuples of vari-
ables, e.g. =1 22 . . . Tn.

For any n-ary function f and m-ary function g, both being primitive-recursive,
Theorem III states that the relation R C N*™™ with

R = {(xlwuvxnayla"’aym) | f(il’1,...,$n) :g(ylvvym)}
is also primitive-recursive.
This is also easy to see. If f and g are primitive-recursive, so is

YTy oy T, Y1y Ym) = aae) - ald)) with

ci= flxy,....,20) — g1, Ym)
d = gyr,- ym) — f(@1,.. ., 20)

For this function, the following holds:

0 if f(z1,.- - 2n) =91y Ym)
1 otherwise

’Y(xla"’?xnayla"wym) - {
Consequently,
(xla“'axnvylv"'aym) €ER & ’Y(‘Tlv"'axn»ylw-wym)zo

which proves R to be primitive-recursive.

In footnote 30, Godel explains the meaning of the small old German letters
appearing in various places in his work. They serve as a compact notation for
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arbitrary tuples of variables:

t = (z1,...,20),

n = (y17~"7ym)7 ete.

The letters appear again in the very next theorem:

IV. Wenn die Funktion ¢ (¢) und die Relation R (z, )
rekursiv sind, dann auch die Relationen S, T

S(t.p) oo (E7) [z S @ () & R (z,p)]
T(e.p) oo (2) [z2 @ (1) —> R(z,)]

sowie die Funktion 1

W(en) = ex[z < @) & R (2,p)],

wobei ¢ x F (z) bedeutet: Die kleinste Zahl z, fiir welche F(z) gilt
und 0, falls es keine solche Zahl gibt.

IV. If the function @ () and the relation R (z, 1) are recursive,
then so are the relations S and T

S (e.0) oo (Ex) [z < @ (1) & R (2,0)]
T(.p) oo (2) [z= @ () = R(z,p)]
as well as the function

B(e.y) = ex[z < @(r) & R (z.y)],

where ¢z F'(z) denotes: the smallest number z for which F ()
holds, and O if there is no such number.

To facilitate the comprehension of Theorem IV, we confine our analysis to the
scenario where ¢ represents an empty variable list. In this context, Gddel’s
words would read as follows:

IV. If the constant ¢ and the relation R (z,v) are recursive, then so
are the relations S and T'

S()eo (Ex)[z< ¢ & R(x,y)]
T(y) oo (7) [z = @ —> R ()]
as well as the function
Y(v) = ex[z= @ & R (7.p)],
where ez F'(z) denotes: the smallest number z for which F'(z)
holds, and O if there is no such number.

To dissect Godel’s words, let’s start by translating the definitions of S, T', and
1) into a form that is more accessible to us:

(y1,-.-,Ym) € S :& there exists an x with x < ¢ and (z,y1,...,ym) € R
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(Y1, ym) €T = forallz <o, (z,y1,...,ym) € R
(Y1, ,Ym) = the smallest x with z < ¢ and (x,y1,...,ym) € R,

or 0, if no such z exists

Let’s start by considering the function . Theorem IV assumes that R is a
primitive-recursive relation, implying the existence of a function — later denoted
by Goédel as p — with the following property:

(xvylv"'vym) € R < p(xayh‘"?ym) = 0
Using this function, we can rewrite the definition of ¥ as follows:

(Y1, .-, Ym) = the smallest z with z < ¢ and p(x,y1,...,Ym) =0,

or 0, if no such z exists

Godel proves function 1 to be primitive recursive with a smart move. First, he
constructs a function x(x,y1,...,ym), which allows the value ¥ (y1,...,¥ym) to
be calculated elegantly. Then, he proves that y is a primitive-recursive function
and that this property transfers to .

The abovementioned function y is defined as follows:

X(Ovylv"'aym) =0
n+1if pn+1y,...,ym) =0 and

X(n+17y17"'7ym) = X(nayla"'7ym):0 (53)
X(n,y1,---,Ym) otherwise

To understand the meaning of x, consider the two examples in Figure 5.3.
The plotted values illustrate that x remains 0 until p becomes 0 for the first
time. From this point onward, the value of x equals the smallest n satisfy-
ing p(n,y1,...,ym) = 0, and this value persists indefinitely. Consequently,
¥(y1,.-.,Ym) can be easily computed as

w(yla"'7ym):X(Soayla"wym)' (54)

To prove that ¢ is primitive recursive, it suffices to demonstrate that x is a
primitive-recursive function, which is what we will do next.

We begin by slightly rewriting the definition of x. It holds that

X(anla"'ay’fﬂ) =0
x(n+Ly,.oym) = (n+1)-a+ x4, ym) - (1= a)

with

I 1 ifp(n+1,y1,...,ym) =0 and x(n,y1,...,Ym) =0
) 0 otherwise
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Example 1 Example 2
5 5
4 4
3 >§ 3
2 2 ﬁ
1 1
» . .
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
B =o(n,y1,. . ym) B =o(n,y1,. . ym)
B =Xy, ym) B =Xy, ym)

Figure 5.3: If p(0,y1,...,Ym) # 0, the function ¢ can be calculated via the primitive-
recursive function .

By utilizing the primitive-recursive function « defined above, we can easily
calculate the value of a:

a = a(p(n + 17y17 e 7ym)) : Q(X(n7y1, e 7ym))

This concludes the proof of function x being primitive recursive.

However, we are not quite finished yet. For the examples in Figure 5.3, the func-
tion x works splendidly, but we have missed a critical case. If p(n,y1,...,Ym)
equals 0 for n = 0 and n = 1, then x(1,y1,...,ym) is equal to 1, but the
function value should be 0.

For this reason, we must adjust Definition (5.3) to account for this particular
case. The following modification fulfills our needs (Figure 5.4):

X(O7y17~--aym) =0

n+1if p(07y177ym) 7é0 and
p(n+17y17'--aym =0 and
X(n+ 17y17~ . aym) = ) (55)
X(n7y17"'aym) =0

X(n,y1,...,Ym) otherwise

The modification does not change the property of x being primitive-recursive.
It is

X(07y17~~~;ym) =0
X(n+1ay1a"'7ym) = (n+1)a+x(nayla>ym)(l_a)
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Original variant Modified variant

N W e Ot
N W e Ot

® =y s .

> n > n
o 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7
=0y, ,ym) B=ony1,...,ym)
’:X(Vnﬂyl’-"yym) f:X(n’ylw-':ym)

Figure 5.4: The modified variant is also correct for p(0,y1,...,ym) = 0.

with
a = oz(oz(p(O,yl, B ym))) : oz(p(n + 1ay13 cee ayM)) : O‘(X(”a Yty ey ym))
This completes the first part of the proof.

Next, we turn to the relations S and T'. With v being primitive recursive, we
can easily show that S is primitive recursive, too. It holds that:

(Y1,---,Ym) €S < (,y1,...,Ym) € R for some z with x < ¢
& (1, Ym),Yis - Ym) ER (5.6)

The relation 7T is also primitive recursive, as it can be reduced analogously.
First, the following applies to the complementary relation 7"

(Y1, ym) €T < Not for all z with x < ¢, (2,91,...,Ym) € R
< (2,91, ,Ym) € R for some x with z < ¢

Given the primitive recursiveness of R, established by Theorem II, this property
extends to T" and subsequently to T', as has just been proven.

If you’ve been able to follow the explanations above, you’ll find no further
difficulties in understanding the proofs in Gédel’s original words:

Satz 1 folgt unmittelbar aus der Definition von ,rekursiv®.
Satz II und III beruhen darauf, dal die den logischen Begriffen
—, V, = entsprechenden zahlentheoretischen Funktionen

o (z),B (z,9), v (z,9)
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namlich:

a(0)=1; a(z) =0 fiir 240
B (0,2) =B (2,0) =0; B (z,y) =1, wenn z,y beide % 0 sind

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 181

Y (z,y) =0, wenn z = y; vy (z,y) =1, wenn zFy

rekursiv sind, wie man sich leicht iiberzeugen kann. Der Beweis
fiir Satz IV ist kurz der folgende: Nach der Voraussetzung gibt es
ein rekursives p(z, p), so daB:

R (z,v) oo [p (z,p) = 0].

Wir definieren nun nach dem Rekursionsschema (2) eine
Funktion x (z, y) folgendermaRen:

x(0,9) =0
x(n+1Ly)=(n+1).a+x(ny).o(a)®)

wobei a = o [a (p (0,1))] . [p (n+ 1, v)] . e [x (m, )]

X (n+1,p) ist daher entweder = n+ 1 (wenn a = 1) oder =
=x (n,v) (wenn a=0)32). Der erste Fall tritt offenbar dann und
nur dann ein, wenn samtliche Faktoren von a 1 sind, d. h. wenn gilt:

R(0,9) &R (n+1,) &[x (n.v) = 0].

Daraus folgt, daB die Funktion x (n,p) (als Funktion von n
betrachtet) 0 bleibt, bis zum kleinsten Wert von 7, fiir den R (n, )
gilt, und von da ab gleich diesem Wert ist (falls schon R (0,p) gilt,
ist dem entsprechend x (n, t)) konstant und = 0). Demnach gilt:

¥ (£, 0) =% (9 ().v)
SEo)o R (), ]

Die Relation 7' 1#Bt sich durch Negation auf einen zu S analogen
Fall zurickfithren, womit Satz IV bewiesen ist.

31) Wir setzen als bekannt voraus, daB die Funktionen z -y (Addition),
z . y (Multiplikation) rekursiv sind.

32) Andere Werte als 0 und 1 kann a, wie aus der Definition fir o er-
sichtlich ist, nicht annehmen.

Theorem I follows directly from the definition of “recursive”.
Theorems II and III depend upon the fact that the number-theoretic
functions

«(z), B(z.y), v(z.y)
corresponding to the logical concepts — , \/, =, namely:
a(0)=1; a(z) =0 for x40
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B (0,z) =B (2,0) =0; B (z,y) =1 if z and y are both 5 0

On formally undecidable propositions of Principia Mathematica etc. 181

Y(z,y) =0 ifz=y; y(z,y) =1 ifzFy

are recursive, as one can easily confirm. The proof of Theorem IV is
briefly the following: By hypothesis, there exists a recursive p (z, 1)
such that

R (z,v) oo [p (z,v) = 0].

We now define a function ¥ (z,9), according to recursion
schema (2), as follows:

x (0,9) =0
x(n+lp)=Mm+1).atxny).oala)?)

where a = o[ (p (0,0))] . ac[p (n+1,p)] . & [x (m,p)].

X (n+1,p) is therefore either = n+ 1 (f a = 1) or =X (n, )
(if a= 0).32). Obviously the first case occurs when and only when
all factors of a are 1, i.e., when

R(0,9) &R (n+1,p) &[x (n,v) = 0].
holds.
From this it follows that the function ¥ (n, t)) (considered as
a function of n) remains 0 until the least value of n for which

R (n,v) holds, and, from there on, is equal to this value (if R (0, v)
already holds, then the corresponding x (n ) is constant and = 0).

Hence we have:
é corresponds to (5.4)

S(e,v)eo R (¢, 1), v]

écorresponds to (5.6)

The relation 7' can, by negation, be reduced to a case analogous to
that of S, thus proving Theorem IV.

31) We assume known that the functions z -+ y (addition), z .y (multiplica-
tion) are recursive.

32) As is apparent from the definition of &, a cannot assume values other
than O and 1.
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From here, the article proceeds in a notably technical manner. Godel defines
46 functions and relations, with the initial 45 being primitive recursive.

5.2 Primitive-Recursive Functions and Relations

Die Funktionen xz+y, z.y, Y, ferner die Relationen x < v,
z =y sind, wie man sich leicht iiberzeugt, rekursiv und wir defi-
nieren nun, von diesen Begriffen ausgehend, eine Reihe von Funk-
tionen (Relationen) 1—45, deren jede aus den vorhergehenden mittels
der in den Sitzen I bis IV genannten Verfahren definiert ist. Dabei
sind meistens mehrere der nach Satz I bis IV erlaubten Definitions-
schritte in einen zusammengefalit. Jede der Funktionen (Relationen)
1—45, unter denen z. B. die Begriffe ,, Formel“, , Axiom*, ,,unmittel-
bare Folge“ vorkommen, ist daher rekursiv.

The functions z+y, .9y, Y and the relations z <y, z=1y
are, as one can easily check, recursive, and we now define, starting
from these concepts, a sequence of functions (relations) 1 — 45, of
which each is defined from the preceding ones by the methods indi-
cated in Theorems I-IV. In so doing, several of the definitional steps
allowed by Theorems I-IV are often combined into one step. Each

of the functions (relations) 1 — 45, among which occur, for example,

the concepts “formula”, “axiom”, “direct consequence”, is therefore
recursive.

In the final sentence, Godel foreshadows his objectives with the functions and
relations he will soon define. As the construction progresses, he will ensure
that, for instance, the Godel numbers of all formulas, the Gédel numbers of
axioms, or the G6del numbers of formulas generated by inference rules consti-
tute primitive recursive sets. Similar examples have been utilized on page 205
to demonstrate the arithmetization of syntax.

Remember that all these considerations occur on the arithmetic level. Godel’s
constructed relations don’t directly link the formulas of a formal system; in-
stead, they connect their Gédel numbers, aka their numerical representations.
In his article, G6del expresses this fact by italicizing the words “formula”, “ax-
iom”, or “immediate consequence”.

Tables 5.1 and 5.2 provide an overview of the 45 primitive-recursive functions
and relations that Godel will introduce.



5.2 Primitive-Recursive Functions and Relations 229

Table 5.1: Godel’s primitive-recursive functions and relations

1. x/y is divisible by y

2. Prim(z) « is a prime number

3. n Prx  n-th prime number contained in =

4. n!  Factorial of n

5. Pr(n) n-th prime number

6. n Glz  n-th member of the number series

7. I(z) Length of the number series

8. xxy  Concatenation of x and y

9. R(x) Number series with = as the only element
10 FE(x) Formula z in parentheses

=
—
S
=
=1
8

x is a variable of the n-th type

x is a variable

— =
[O%) [N}
Z <
D

0 8
N
8 B
~—

Negation of x

—
W~
8
=
17

<

Disjunction of = and y

15 x Geny  Generalization of y with respect to x

16 nNx  String x with n preceding f’s

17 Z(n) String @

18 Typ,’(r) = is a symbol of the first type (term)

19 Typ, (z) x is a symbol of the n-th type

20 FElf(z) « is an elementary formula (atomic formula)

)
=
-
bS]
8
=
©
N~—

Auxiliary relation for FR(x)

22 FR(z) Auxiliary relation for Form(x)

23 Form(z) =z is a formula

24 vGebn,z  Variable v is bound at position n

25 v Frn,z  Variable v occurs freely at position n

26 v Frxz  Variable v occurs freely in x at least once

27 Sux(y) Formula z, after inserting y at position n

28 kStv,z  Auxiliary function for A(v, z)

29 A(v,z) Number of positions where v occurs freely in z

w
o
N
&5
S
—
8
@e
~—

Auxiliary function for Sb (x )
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Table 5.2: Gédel’s primitive-recursive functions and relations (continued)

31. Sb (z,)  Substitution of v by y
32. xImpy  Definition of ‘—’
2 Cony  Definition of ‘A’
xAeqy Definition of ‘<’
vExy  Definition of ‘&’

33. n Thx  n-th type elevation of x

34. Z-Az(x) xis an instance of the axiom schema I.1, 1.2, or 1.3
35. A;-Az(x) x is an instance of axiom schema IL.7

36. A-Az(xr) xis an axiom of axiom group II

37. Q(z,y,v) Auxiliary predicate to ensure collision-freeness
38. L;-Axz(z) « is an instance of axiom schema IIL.1

39. Ly-Az(z) x is an instance of axiom schema II1.2

40. R-Axz(z) « is an instance of axiom schema IV.1

41. M-Az(x) xis an instance of axiom schema V.1

42. Ax(z) «is an axiom

43. (:z: y,z) x can be derived from y and z

44. Bw(z) x is a formal proof chain of the system P

45. xBy =z is a proof for the formula y

x is divisible by y

(Primitive-recursive relation)

182 Kurt Godel,

1. zfy= (E2) [z z&z=1y. 73
x ist teilbar durch y34).

33) Das Zeichen = wird im Sinne von ,Definitionsgleichheit verwendet,
vertritt also bei Definitionen entweder = oder ©O (im iibrigen ist die Symbolik
die Hilbertsche).

34) Uberall, wo in den folgenden Definitionen eines der Zeichen (z), (Ex),
ex auftritt, ist es von einer Abschitzung fiir = gefolgt. Diese Abschitzung dient
lediglich dazu, um die rekursive Natur des definierten Begriffs (vgl. Satz IV) zu
sichern. Dagegen wiirde sich der Umfang der definierten Begriffe durch Weg-
lassung dieser Abschitzung meistens nicht dndern.
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182 Kurt Godel,

1. z/y=(E2)[zS z&z=1y.2 %)
x is divisable by y3%).

33) The symbol = will be used in the sense of “definitional equality”, and
therefore in definitions it represents either = or oo (otherwise the symbolism
is Hilbert’s).

34) Everywhere in the following definitions where one of the expressions (z),
(Ez), ex occurs it is followed by a bound for z. This bound serves only to assure
the recursive nature of the defined concept (cf. Theorem IV). On the other hand
the extension of the defined concept would, in most cases, not be changed by
omission of this bound.

In footnote 33, Godel explains how to interpret the symbols. When defining
a relation, the symbol ‘=’ has the same meaning as ‘<’. Thus, the numbers
on the left are related if and only if the right-hand side is a true statement.
When defining a function, ‘=’ corresponds to the equality sign ‘=’. In this
case, there is no statement on the right-hand side but a formula defining the

function value.
Let’s start by translating Gédel’s definition into modern notation:
xfy & dzE@Z<zANx=y-2) (5.7)
Formally, (5.7) states that the relation R C N? with
(z,y) € R :& z is divisible by y without remainder
is primitive recursive. Theorem IV makes it evident that this assertion holds.
To fully grasp footnote 34, let us consider a simplified definition of divisibility:
x/y & Jzx=y-z (5.8)

The modified variant drops the constraint z < x, yet it still defines the notion
of divisibility on the natural numbers. That is, relation (5.7) comprises the
exact same elements as relation (5.8). This is what Godel means by stating
that “the extension of the defined concept would, in most cases, not be changed
by omission of this bound”.

The rationale behind including the estimate in Godel’s definition is simple.
Its omission would fail to ensure that the defined relation remains primitive-
recursive. For theorem IV to be applicable, the scope of the existential quan-
tifier must be limited by a natural number calculatable through primitive re-
cursion. This is the reason why these estimates consistently accompany the
forthcoming definitions.
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To succinctly denote the bound of an existential quantifier, we will frequently
use the following two abbreviations:

dz<c)p or A1 <z<e) @

The first represents
dz(z<cAhyp) (5.9)

whereas the second signifies
Jz(cr <zAz<caAp). (5.10)

Armed with this convenient notation, we can rewrite Godel’s definition as fol-
lows:
(z,y) eR & F(z<z)rx=y 2 (5.11)

2 is a prime number

(Primitive-recursive relation)

2. Prim (z2) = (E2) S 2&z2F1&z2Fc&a/z] &z > 1
z ist Primzahl.

2. Prim (z) = (Ez) [ Sa&z+1&z+r&a/z] &z > 1
Z is a prime number.

In modern notation, the definition reads like this:
Prim(z) & —-3(z<z) (z#1Az#zAz/z)ANx>1
The relation comprises precisely the prime numbers,
Prim = {2,3,5,7,11,13,17,19,23,.. .},

which is easy to see by examining the individual formula components more
closely. A natural number is a prime number if

W it is greater than 1, x> 1

B and cannot be factorized. & -
A number is factorizable if

B a natural number z < z exists, i 3 (z < x)
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B which is not equal to 1 and not equal to =z, izt 1INzH#x

B and divides z. & x/z

. nPrx n-th prime number contained in x

(Primitive-recursive function)

3. 0Prz=0
(n+1)Pre=ceyly< 2&Prim (y) &z/y& y> n Prz]
n Pr zist die n-te (der GroBe nach) in z enthaltene Primzahl 34*).

34a) Fiir 0 < n < z wenn z die Anzahl der verschiedenen in z aufgehen-
den Primzahlen ist. Man beachte, daB fir n=2+1 nPrz=0 ist!

3. 0Prz=0

(n+1)Pre=ceyly< 2&Prim (y) &z/y& y > n Prz]

nPrz is the n-th prime factor of x (according to
magnitude). 342)

34a) For 0 < n < z where z is the number of distinct prime numbers divid-
ing z. Observe that, for n=2+1, n Prx=0.

In modern notation:

O0Prxz := 0
(n+1)Prz := min{y <z | Prim(y) Ax/y Ay >nPrz}

In colloquial terms, (n + 1) Prx is

B the smallest number y less than or equal to z, i min{y <z | ...}
B which is a prime factor of z, and i Prim(y) A x/y
B greater than n other prime factors of x. iy >nPrx

Simply put, n Prz calculates the n-th prime factors of = in ascending order.
For instance, the following holds for x = 45864:

0 Pr45864 = 0 1Prz 3 Prz

1 Pr45864 = 2 1 1

2 Pr 45864 = 3 45864 = 2-2-2-3-3-7-7-13
3 Pra5864 = 7 1 1

4 Pr 45864 = 13 2 Prxz 4 Prx
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If the parameter n exceeds the number of distinct prime factors in x, then
n Prz equals 0. The same applies to the numbers x = 0 and x = 1, which have
no prime factors at all.

Factorial of n

(Primitive-recursive function)

The factorial function
nl:=1-2-3-...-n

is primitive recursive, as it can be defined in a straight-forward manner through
the schema of primitive recursion:

factorial(0) = 1
factorial(n + 1) := mult(s(n), factorial(n))

The factorial function is used in the next definition:

n-th prime number

(Primitive-recursive function)

5. Pr(0)=0
Pr(n+l)=cey[y< {Pr(n)}! +1&Prim (y) &y > Pr(n)]
Pr(n) ist die n-te Primzahl (der GroBe nach).

5. Pr(0)=0
Pr(n+l)=ceylys{Pr(n)}! +1&Prim (y) &y > Pr(n)]
Pr(n) is the n-th prime number (according to magnitude).

In modern notation:

Pr(0) :=0
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Figure 5.5

JosepPH Louis FRANGOIS BERTRAND
1822 — 1900

Prin+1) = min{y < (Pr(n))! + 1| Prim(y) Ay > Pr(n)}
Pr(n+ 1) is the smallest prime number greater than Pr(n). Thus, we have
Pr1=2, Pr2=3, Pr3=5, Prd=7, Pr5=11, Pr6=13,...
In short: Pr(n) is the n-th prime number.

Like all primitive-recursive definitions that include a minimal element (in this
case, the number y), the potential range of values must be constrained by a
number that is computable by a primitive-recursive function. Hence, for the
function Pr(n) to accurately compute the n-th prime number, this prime must
fall within the specified range. Godel chose the limit (Pr(n))! + 1 based on
Euclid’s renowned discovery about the infinitude of prime numbers. In his
proof, Euclid demonstrated that the product of the first n prime numbers

p1 P2 Pnt1l

is either a prime number itself or can be divided by a prime number greater
than p,. The estimation

ensures that the successor of the n-th prime is less than or equal to p,! + 1,
which is precisely the value G6del had chosen to limit the existential quantifier.

In fact, Godel could have further narrowed the search range by drawing upon
a result from recent mathematical history:
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Pafnuty Chebyshev Srinivasa Ramanujan Paul Erdés [64]
(1821 — 1894) (1887 — 1920) (1913 — 1996)

Figure 5.6: Key contributors to the elucidation of Bertrand’s postulate.

Theorem 5.5 Bertrand’s Postulate

For n > 1, there is always at least one prime number between n and 2n.

The postulate was proposed in 1845 by the French mathematician Joseph Louis
Francgois Bertrand, offering a crucial insight into the density of prime numbers.
Bertrand successfully demonstrated its correctness for numbers up to 3,000,000,
but he couldn’t provide a proof encompassing all numbers.

Bertrand’s conjecture was confirmed by Pafnuty Lvovich Chebyshev (Fig-
ure 5.6). The Russian mathematician was the first to provide complete proof of
the postulate in 1852. Later, the Indian mathematician Srinivasa Ramanujan
and the Hungarian mathematician Paul Erdés made further simplifications.
Today, most textbooks on number theory follow Erdés’s line of proof.

Subsequently, Gédel defines several functions and relations that establish a di-
rect link to the syntactic objects of a formal system. Once more, it’s important
to note that primitive-recursive functions and relations are arithmetic func-
tions and relations. Thus, the objects of a formal system are never referenced
directly but always indirectly through their Gédel numbers.

6. nGlzx n-th member of the number series

(Primitive-recursive function)

6. nGle=eylySc&z/(nPra)¥&z/(nPra)y1]
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n Glxz ist das n-te Glied der der Zahl z zugeordneten Zahlen-
reihe (fir » > 0 und 7 nicht groBer als die Linge dieser Reihe).

6. nGlz=ceylyS c&z/(nPra)¥&az/(nPra)y+1]

n Gz is the n-th term of the sequence of numbers correspond-
ing to the number z (for n > 0 and n not greater than the length
of this sequence).

In modern notation:
n Glz := min {y <z|z/(nPrz)A ﬁ(x/(n Prx)y“)}

On page 200, we have discussed the computation of Godel numbers. Let us
walk through the following example as a reminder:

(x2(x1)) V (y2(x1))

In the first step, the formula is translated into a series of natural numbers,
character by character:

11 11 13 7 192 17 13

t ¢ ¢ & g 3

(x2 (x1) )V(y (x1))
i £ £ ¢ ¢ g

In the second step, this series is merged into a single natural number by utilizing
the computed numbers as the exponents of prime numbers and subsequently
multiplying them together. For the formula provided above, the following prod-
uct is obtained:

9! 317 57T 11131313 177 19 . 2319 L2091 L3117 . 3713 418 (5.12)

Function n Gl z operates in the opposite direction. Given a product z in the
form of (5.12), it identifies the factor p,¥, where p,, represents the n-th prime
number, and returns the exponent y. In particular, this exponent is

B the smallest number y < z with the property that i min{y <z | ...}

B 2 is divisible by the n-th prime number to the power of y, & /(n Pra)¥

B but not by the next higher power. (= —\(:z:/(n Pr x)y+1)
Simply put, if x is the Gédel number of a formula, then n Glz is the n-th

character of this formula. If n equals 0 or exceeds the length of the formula,
then n Gl x equals 0.
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Length of the number series z

(Primitive-recursive function)

7. l(z)=eylyS 2&yPrz>0&(y+1) Pra=0]
[ (z) ist die Léinge der x zugeordneten Zahlenreihe.

7. l(z)=eylySe&yPrz>0&(y+1) Pra=0]
[ (z) is the length of the sequence of numbers correlated with

In modern notation:
l(z) = min{y<az|yPrz>0A(y+1)Prz=0}

In colloquial terms, I(x) is

B the smallest number y < z with the property that i min{y <z| ...}
B there are y different prime factors in x, =y Pra>0

B but not y + 1. i (y+1)Prz=0

For example,

12'7) = 1 (i 1 prime factor)
1(2M - 317.513) = 3 (1= 3 prime factors)
4

1(2192 23T 718y = () 4 prime factors)

Using the bracket notation "..."", this can be rephrased as:

Now, the meaning of I(z) is evident. If z is the Gédel number of a formula ¢,
then {(x) is the number of symbols in ¢.
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Concatenation of = and y

(Primitive-recursive function)

8 zxy=cez{zZ[Pr(l(z) +1(y)]* ¥&
m)[nsl(x)—=>nGlz=nGlz]&
M)0<nsl(y) > (n+i(x) Glz=n Gly]}

zx gy entspricht der Operation des “Aneinanderfiigens” zweier

endlicher Zahlenreihen.

8. zxy=cz{2=S[Pr(l(z) +1(y)]* &
m)n<l(x)—>nGlz=nGlz]&
m)0<nsl(y) = (n+i(z) Glz=n Gly}

T * y corresponds to the operation of juxtaposing two finite se-

quences of numbers.

In modern notation:

‘= mi <
e mm{z-c Vn (0 < n<iy) = (n+Ux)) Glz =n Gly)

with ¢ = (Pr(l(x)—f—l(y)))m"‘y

Vn(n<l(z) >nGlz=nGlx) A }

Since 0 Gl x equals 0 for all x, this definition is equivalent to:

x*y::min{zgc Vn(0<n<Il(z)=>nGlz=nGlz) A }

Vn(0<n<Il(y) = (n+1(z)) Glz=nGly)
with ¢ := (Pr(l(z) +1(y)))*tY

The star operator ‘*x’ maps the Gédel numbers of two formulas ¢ and v to the
Godel number of the formula ), which is the formula obtained by appending
1 to . For example:

!—y2—| * r(xl)_‘ — l_y2(x1)7

After expressing the Gédel numbers in factorized form, the equation appears
as follows:
2192 5 211,317 513 _ 2192 g1l 517 713

This representation reveals the meaning of the definition. If x is the Godel
number of ¢ and y the G6del number of v, then the Gédel number of v is
B the smallest number z with the property that

1w min{z < (Pr(l(z) +1(y))**Y | ...}

B its leading prime factors encode ¢ and
i Vn (0<n<Il(r) >nGlz=nGlx)
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B its trailing prime factors encode .
Vo (0<n<ly) = n+lilz) Glz=nGly)

It remains to be shown that z is smaller than the chosen limit
c= Pr(l(z) +1(y))* Y.

The Godel number z is of the form

2 pak

z = piM ™ psh R

with
I(z) = I(z) + (y)
The sum of the exponents belonging to ¢ is less than x, and the sum of the

exponents belonging to 1 is less than y. Thus, the sum ki + ko + ... + ky(2) of
all exponents is less than x + y, and the value of z can be estimated as follows:

k k k Kics
z2 <Pt D) PiR) e D) )
kitka+ks+...+kiz)

Di(z)
™Y

= Pia)+ily

IA

z+y
)

This is the number Go6del used to limit the scope of the existential quantifier.

Number series with = as the only element

(Primitive-recursive function)

9. R(z)=2"

R (z) entspricht der nur aus der Zahl z bestehenden Zahlenreihe
(fir z > 0).

9. R(z)=2"

R (z) corresponds to the sequence of numbers consisting of
only the number z (for z > 0).

Function R(x) maps the parameter = to the number 2%. It can be utilized to
generate the Gédel numbers of character strings containing a sole symbol. For
instance:

R(1) =2%0© = (" R(7)=22M) =ry7  R(11) =22(() = (7

R(3) =200 =rf1  R(9)=2°0D =17 R(13) =220 =")7
R(5) = 2%() =M™
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In modern notation, ‘o’ is written as ‘=’, and ‘II’ is written as ‘V’.

For the encoding of variables, Gddel utilizes the prime powers p™ with p > 17
and n encoding the type. For instance:

R(1TY) = 2%00) = 7,7 R(172) = 2%00) = ;7 R(17%) = 2%00) = Mxg?

R(191) — 9%(1) — Ty, R(192) — 92(v2) — Ty, R(193) — 9®(y3) — Cys7
R(23') =2%(@) =77 R(23%) =2%@) =rz,7  R(23%) = 2%(=) = z57

Formula z in parentheses

(Primitive-recursive function)

10. E(z) = R (11) * = %« R (13)
E (z) entspricht der Operation des ,Einklammerns* [11 und
13 sind den Grundzeichen ,,(“ und ,,)“ zugeordnet].

10. E(z) =R (11) * z * R (13)
E (x) corresponds to the operation of placing in parentheses (11
and 13 are correlated with the primitive symbols “(” and )”).

In modern notation:
E(z) == "(Tsxzx")"

If = is the Godel number of a formula ¢, then E(x) is the Gédel number of the
formula obtained by parenthesizing ¢. For example:

E(131072) = 322850407500000000000

——

— 917 _9ll 317 513
—— —_—
=y — r(xl)—l

x is a variable of the n-th type

(Primitive-recursive relation)

11. nVarz= (E2) [13 < 2< 2&Prim (2) &z = 2" & n+0
x ist eine Variable n-ten Typs.
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11. nVarz= (Fz) [13 < 2< 2&Prim (2) &z = 2"] & n+0
x is a variable of the n-th type.

In modern notation:
nVarz & n#0A3(z<z) (2> 13APrim(z) Az =2")

For any given value of n, n Varz is the unary relation containing the Godel
numbers of all variables of type n:

1Var = {17%,19,23 ...} = {®(x1), ®(y1), ®(z1),...}
2Var = {172,192,232,...} = {®(x2), ®(y2), ®(z2),...}
3Var = {17%,19%,23% ...} = {®(x3), ®(y3), ®(z3),...}

Observe the italic notation in Gédel’s writing, which is crucial for accuracy.
After all, x is a natural number, not a variable of any type. If n Varz holds,
then x is the Goédel number of a variable of type n, which is precisely the
meaning of italicized text in Godel’s work.

x is a variable

(Primitive-recursive relation)

12. Var () = (En) [n £ & n Var z]
x ist eine Variable.

12. Var (z) = (En) [n £ z&n Var z]
x is a wvariable.

In modern notation:
z€Var :& F(n<z)nVarzw
The relation Var contains the Goédel numbers of all variables:

Var = U n Var
neN

= {17t 191 231 . 172,192,232 .. 173,193,233, ..}
= {@(Xl), (I)(yl)7 @(Zl), ceey CI’(XQ), (I)(yg), (I)(Zz), “eey (I)(X:J,), (I)(yg,), @(23), .. }

Godel’s formula builds upon the idea that a variable with the Gédel number x
must have a type less than x. Thus, the property of = being the G6del number
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of a variable can be determined by checking whether z is a member of one of
the sets 1 Var to z Var.

13. Neg(x) Negation of z

(Primitive-recursive function)

13. Neg (z) = R (5) * E ()
Neg (z) ist die Negation von .

13. Neg (z) = R (5) * E ()
Neg (z) is the negation of .

In modern notation:
Neg(x) e I’NT*E(m) = Moo Tx T(T*x*l—)‘l

The function Neg maps the Godel number of a string ¢ to the Gédel number
of the string oo ().

Let’s consider the formula x,(0) as an example. Because of

"% (0)7 = 917% g1l gl 713
= 853585587034821901272970858774769618474453873295
034258222479907085949519275988125881773124029054
87114240

the following holds:

Neg("x2(0)7) = 95 . g1l 517% 711 qq1 1313 1713

= 371865352911294742240309215956275045001769407440
779444420887828028565736156317704177797501851712
572196968579626532087378116380512651451911936826
358727512166347823661742959227048664724754530010
828454318931243771650940743711544200778007507324
2187500000

=" (x(0))"

In modern notation, oo (x2(0)) is the formula —(x2(0)).
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14. zDisy Disjunction of x and y

(Primitive-recursive function)

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 183

14. z Disy= E (z) * R (7) * E (y)
x Dis y ist die Disjunktion aus z und y.

On formally undecidable propositions of Principia Mathematica etc. 183

14. 2 Disy=FE(z)* R (7) % E (y)
x Dis y is the disjunction of x and y.

In modern notation:

xDisy == E(@)«"™V '« E(y) = "(Txzx") "V x"(Txyx")"

The function maps the Godel numbers of the strings ¢ and ¥ to the Godel
number of the string (¢) V (v). For example:

"xa(x1) DisTya(x1) T = T0xe(x1)) V (ya(xa))”

‘ 15. 2 Geny Generalization of y with respect to x

(Primitive-recursive function)

15. 2 Geny= R () * R (9) * E (y)
xz Gen y ist die Generalisation von y mittels der Variablen x
(vorausgesetzt, daB z eine Variable ist).

15. 2 Geny= R () * R (9) * E (y)
x Gen y is the generalization of y by means of the variable
z (assuming that z is a wvariable).

In modern notation:

xGeny = R(z)* "1+ E(y) = R(x)*"TI(T*xy*")"
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If x is the Godel number of a symbol ¢ and y the Gédel number of a string ¢,
that is, x = ®(§) and y = "¢, then z Geny is the Gédel number of the string
&I (p). For example:

D(x2) Gen"x2(0) ' = R(P(x2)) * R(9) * E("x2(0) ")
I_X2—| * '_H—I * V_(_| * FX2(O)_\ * I_)—l

= I—X2 H (X2 (0))—l

In modern notation, xo IT (x2(0)) is the formula ¥xz x2(0).

Y 16. nNzx String « with n preceeding f's

(Primitive-recursive function)

16. O Nz==2
(n+1) Nzx=R@3)*n Nz
n N z entspricht der Operation: “n-maliges Vorsetzen des

Zeichens , f* vor z”.

16. ONz==x

(nt+1) Nz=R(3)*n Nz

n N x corresponds to the n-fold prefexing of the symbol “f” in
front of z.

In modern notation:

ONz ==z
(n+1)Nz := f'«snNzx

The function N prefixes a string with n repetitions of the symbol ‘f’. For
example:

ONT07 = 07 ONTx 7 = T
INT0T = Tf Q7 INTx " = Tfxg”
9NTOT = TffQ° INTx; 7 = ffxg?

3NTO" = Tfff0O" SN = Tfffx"
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String m

(Primitive-recursive function)

17. Z(n) =n N[R (1)]
Z (n) ist das Zahlzeichen fiir die Zahl n.

17. Z(n)=n N|[R (1))
Z (n) is the numeral for the number n.

In modern notation:
Z(n) ;= nNT0"

7 maps the natural number n to the Godel number of the formula 7. For
instance:

Z(0) = 07
Z(1) = rf o
Z(2) = Tff07

Z(n) = Tff .. .£0°
N—_——r

n times

) x is a symbol of the first type (term)

(Primitive-recursive relation)

18. Typ, (z) = (Em,n) {m,n < 2&[m =1V 1 Var m]
&z =nN[R (m)]}*)
x ist Zeichen ersten Typs.

34b) m, n < z steht fiir: m < z & n < z (ebenso fiir mehr als 2 Variable).

18. Typ,' (z) = (Em,n) {m,n < & [m =1V 1 Var m]
& =mn N [R (m)]} )
x is a term of the first type.

34b) m, n < z stands for: m < z & n < z (and similarly for more than two
variables).
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In modern notation:
z € Typ, & I(m,n<z) (m=1V1Varm) Az =nN R(m))

It is easy to see that the natural number z is contained in Typ) precisely if
it is the Godel number of a symbol of type 1. In Definition 4.2 on page 143,
a symbol of type 1 was referred to as a term, which is an expression of the
following form:

ff...fowitho=0o0r oc=§

——

n times

Thus, z is the Gédel number of a term, if

B 2 is derived from m by prefixing a series of f’s, and iz =nN R(m)
® m is the Godel number of 0, or wm=1V
® m is the Godel number of a variable of type 1 " 1 Varm

x is a symbol of the n-th type

(Primitive-recursive relation)

19. Typ, (zr) =[n=1&Typ,’ (z)] V[n>1&
(Ev){v<z&nVar v&x= R (v)}]
z ist Zeichen n-ten Typs.

19. Typ,, (z) =[n=1&Typ,’ (z
(Ev){vSz&nVarv&z
x is a term of the n-th type.

[V[n>1&
= R(v)}]

In modern notation:

. (n=1ATyp,(z)) V
v € Typ, = ( (n>1A3(v< ) (r};?farv/\x:R(U))) )

Recall that a symbol of type 2 is the same as a variable of type 2, a symbol
of type 3 is the same as a variable of type 3, and so on. Thus, x is the Godel
number of a symbol of type n, if

H n equals 1 and n=1A

B 7 is the Godel number of a term 1 Typ) ()

or
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B n is greater than 1 and =n>1A

B 2 is the Gédel number of a variable of type n. 1" n Varv Az = R(v)

x is an elementary formula (atomic formula)

(Primitive-recursive relation)

20. Elf (z) = (Ey,2,n) [y,2,n < 2& Typ,, (y)
&Typ,.1(2) &z =2z E (y)]
x ist Elementarformel.

20. Elf (z) = (E y,2,n) [y,z,n < 2&Typ,, (v)
& Typ,.1(2) &= 2% E (y)]
x is an elementary formula.

In modern notation:
z € Elf = I(y,z,n <) (Typ,(y) A Typ,41(2) Az = 2% E(y))

What Godel calls elementary formulas was called atomic formulas on page 144.
They take the form

&2(0) or &ny1(Gn)

and can be easily described with the tools developed above. =z is the Gddel
number of an elementary formula, if

B y is the Godel number of o or (,, i Typ,, (y)
B 2 is the Godel number of & or &,41, 1 Typ,,41(2)
B 2 is the Godel number of the formula,

e which begins with & or &,41,
e and is followed by o or (, in parentheses. 1 x =z E(y)

Auxiliary relation for FR(z)

(Primitive-recursive relation)

)=x2=Neg(y) Vz=y Dis 2V
v & Var (v) & 2= v Gen y|
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21. Op(zyz) =z=Neg(y)Vaz=y Dis zV
v & Var (v) & 2= v Gen y]

In modern notation:

x = Neg(y) Vv
(z,y,2) € Op & r=yDisz V
F(v < z) (Var(v) Az = v Geny)

Let x, y, and z be the Goédel numbers of the symbol strings ¢, v, and Y,
respectively. The defined relation holds among these numbers precisely when

B ¢ is the string oo (¢) or 15"z = Neg(y)
B ¢ is the string (¢) V (x) or 1z x = yDisz
® ¢ is a variable and 1" 3 (v < x) Var(v)
® o is the string £II (). iz =vGeny

Auxiliary relation for Form(x)

(Primitive-recursive relation)

22. FR(z)=n){0<n<l(z) = Elf (nGlz)V
(Ep,q) [0<p.g<n&Op(nGlz,pGlz,qGlz)}
&l (x) >0
z ist eine Reihe von Formeln, deren jede entweder Elementar-
formel ist oder aus den vorhergehenden durch die Operationen der
Negation, Disjunktion, Generalisation hervorgeht.

22. FR(z)=m){0<n<lI(z) = Elf (nGlz)V
(Ep,q)[0<p,gq<n&Op(nGle,pGla,q Gl)]}
&l (z) >0
z is a sequence of formulas each one of which is either an
elementary formula or comes from preceding ones by the operations
of negation, disjunction, or generalization.
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In modern notation:

r € FR &

Elf(n Glz) v
l(z) >0AY(0<n<lI(z)) ( 30 <p,g<n) Op(nGlz,pGlz,qGlx) )

The right-hand side is true exactly when

B z is the G6del number of a non-empty number series, and i I(z) >0
B every number in this series is the Gédel number i V(0 <n <I(zx))

e of an elementary formula or 1" Elf (n Glx)
® arises from previous formulas through i 3(0 < p,qg <n)

® negation, disjunction, or generalization. i Op(n Gla,p Glz,q Glx)

Negation, disjunction, and generalization are the three recursive construction
schemata governing the construction of formulas in Definition 4.4. Any formula
of the system P is obtained by starting with a series of elementary formulas
and subsequently combining them into more complex structures using these
schemata. For instance, the formula

x (0 (x1)) V (2 0(x1))))

is constructed as follows:

1. x2(x1) (Atomic formula)
2. —(x2(x1)) (Negation of 1.)
3. (x2(x1)) V (—(x2(x1))) (Disjunction of 1. and 2.)
4. %2 IT ((x2(x1)) V (= (x2(x1)))) (Generalization of 3.)

Arranged sequentially, we get the series

xa(x1), 7(x2(x1)), (2 (x1)) V (202 (x1))), x2 TL((x2(x1)) V (= (x2(x1))))

which is also expressable on the arithmetic level:

"xa(x1) T (%2 (x1)) T (xe(x1)) V (m(x2(x1))) T e T ((x2(x1)) V (=(x2(x1)))) !

This series is what Goédel calls a series of formulas, that is, a series of num-
bers, each being the Godel number of a formula constructed according to the
syntactic rules of the formal system P.
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23. Form(z) x is a formula

(Primitive-recursive relation)

23. Form (z) = (En) {n < (Pr[l()?]) * [t @)
& FR (n) &xz= [l (n)] Gln}?)
z ist Formel (d. h. letztes Glied einer Formelreihe n).

35) Die Abschitzung n < (Pr [l (1)2})“’““;)2 erkennt man etwa so: Die
Linge der kiirzesten zu z gehorigen Formelreihe kann hochstens gleich der
Anzahl der Teilformeln von z sein. Es gibt aber hochstens [ (z) Teilformeln
der Linge 1, hochstens [ (z) — 1 der Linge 2 usw., im ganzen also hochstens
l l 1
% <1(z)>. Die Primzahlen aus n konnen also simtlich kleiner

als Pr{[l(z)]?} angenommen werden, ihre Anzahl < [ (z)? und ihre Exponenten
(welche Teilformeln von z sind) < z.

23. Form (1) = (En) {n < (Pr[l ()?]) * [l (@)
& FR(w) &s= [l (n)] Gln}=)
z is a formula (i.e. last term of a sequence of formulas n).

35) One finds the bound n < (Pr [l (IE)Q])Il(z)Z as follows: the length
of the shortest sequence of formulas belonging to z can be at most equal to the
number of subformulas of z. There are, however, at most [ (z) subformulas of
length 1, at most [ (z) — 1 of length 2, etc., and, therefore, all together, at most

l l 1
o) Ha) 1] < I (2)%. The prime divisors of 7 can therefore all be taken smaller

than Pr {[l (z)]?}, their number < [ (z)? and their exponents (which are subfor-
mulas of z) < z.

In modern notation:

z € Form :& 3(n <c) (FR(n) Az =1(n) Gln)
with ¢ = (Pr(l(x)2))x.l(z)2

The right-hand side is true precisely if

B there is a series of formulas, and 1w 3(n < c) FR(n)
B 1 is the Godel number of the last formula of this series. & x =1(n) Gin
The natural number n is the Goédel number of this series. To ensure the

primitive-recursive nature of this relation, the range of the existential quan-
tifier must be restricted. Gddel has chosen

(Pr(l(x)?))™""

as a suitable bound. In footnote 35, he elaborates on how he reached this value.
To get a better sense of Godel’s idea, let’s consider the following formula, which
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has already been used as an example above:
¢ = xa I ((x2(x1)) V (=(x2(x1))))
Let  be the Godel number of this formula:
="l = Dell((eq) V(-0e(q))’

Furthermore, let n be the Gédel number of the shortest formula series that
generates ¢. This formula series is already familiar to us. It looks like this:

x2(x1), ~(x2(x1)), (x2(x1)) V (=(x2(x1))), x2 IL((x2(x1)) V (=(x2(x1))))
Thus, the following holds true in our example:
n o= 9 ¢1 .3 2t 5t Sloal
o1 = xo(x1)
P2 = —(x2(x1))

3 = (x2(x1)) V (=(x2(x1)))
1 = xII((x2(x1)) V (=(x2(x1))))

For other formulas, the construction adhers to the same scheme. If p; denotes
the i-th prime number, n has the following general form:

r A r A r a r A
no=mp Pl .py ¥2 .pg ¥3 e D) Pi(n)

Since the formulas @1, 2, ..., Yyn) are all subformulas of ¢, the estimate

holds, which can be used to estimate n as follows:

n < piteptpst i) (5.13)

Next, let’s look closer at I(n), the length of the formula series. For this purpose,
we first examine how many subformulas each series member contains. For the
above example formula, the following holds:

B ; contains 1 subformula I 1 itself
B ¢, contains 2 subformulas IF" (1 and @9
B (3 contains 4 subformulas IF 2 X (01, 2, and 3
B ¢, contains 5 subformulas 1T 2 X (1, P2, p3, and @y

In our example, the number of subformulas of the last series member exceeds
the number of sequence elements (n). This comes as no surprise, as the number
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of subformulas increases by at least one from one sequence element to the next.
In general, we have:

l(n) < Number of subformulas of ¢ (5.14)

Next, let us consider how many subformulas of a certain length can be contained
in ¢. For our example, we get:

B ¢ contains 1 subformula of length 4 1~ Formula ¢
B ¢ contains 1 subformula of length 7 1z~ Formula g
B p contains 1 subformula of length 16 1z~ Formula 3
B ¢ contains 1 subformula of length 20 15~ Formula ¢y

In general, the following holds:

B ¢ contains at most 1 subformula of length I(x)
B ¢ contains at most 2 subformulas of length I(z) — 1

B ¢ contains at most 3 subformulas of length I(x) — 2

B ¢ contains at most {(z) subformulas of length 1

Thus,

Number of subformulas of
I(z)

= Z Number of subformulas of length i
i=1

I(z)
@@+ W2)? ) _ @) Uw)? >
< = = — < =
= ;Z 2 2 T =g T TW
In combination with (5.14), this implies:
I(n) <l(x)? (5.15)

Consequently, the formula series producing ¢ can have no more than I(z)?
elements. Combining this result with (5.13) yields the following estimate:

n < pr1opatop3t e Dye)2”
< Pu@)2” D)2 i)t e D)2
= pl(z)zx-l(m)2

This value matches Godel’s bound on the existential quantifier.
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. vGebn,z Variable v is bound at position n

(Primitive-recursive relation)

24. v Geb n, = Var (v) & Form (z) &
(Ea,b,c) [a,b,c S x&x= ax*(vGen b) x ¢
&Form (b) &l (a) +1 < n<1(a)+1(vGen b)
Die Variable v ist in x an n-ter Stelle gebunden.

24. v Geb n, = Var (v) & Form (z) &
(Ea,b,c) [a,b,c S x&x= ax*(vGen b) x ¢
&Form (b) &l (a) +1 < n<1(a)+1(vGen b)
The wvariable v is bound at the n-th place in z.

In modern notation:
vGebn,z &

Var(v) A Form(z) A3 (a,b,c < @) ( z = ax (vGenb) x c A Form(b) A )

l(a)+1<n<l(a)+1(vGenbd)

Let v be the Gédel number of a variable £ and x the Gédel number of a formula
. Then, v Gebn, x holds true precisely when the n-th character of the formula
¢ is embedded in a subformula of the form V& (...):

P(E) =v
t
T =gl =( VE( ... ) )?

Possible locations for n

This is the case if and only if

B v is the Gédel number of a variable £, and 15" Var(v)
B z is the G6del number of a formula 1z Form(x)
B that can be divided into three parts, 1 3 (a,b,c < x)

e such that the middle part is a formula that binds &
1 = a * (v Genb) % ¢ A Form(b)

e and the n-th character is within the middle part.
1 [(a) + 1 < n <l(a) + l(vGenb)
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Let us consider the formula

= (xall(x2(x1)))V(xI(x (x))).
T e e e e e e e e ) e e e e e e e e W D
1 2 345 6 7 8910111213 1415 16 17 18 192021

¥

In this example, the following holds:

17Gebn, " < n € {2,3,4,5,6,7,8,9} (17 17 = P(x1))
172 Gebn, "o < n € {13,14,15,16,17,18, 19,20} (1 172 = B(xp))

Variable v occurs freely at position n

(Primitive-recursive relation)

184 Kurt Godel,
25. v Fr n, = Var (v) &Form (z) &v=n Gl z &

n < (z) & v Geb n,x
Die Variable v ist in x an n-ter Stelle frei.

184 Kurt Godel,
25. v Fr n,z= Var (v) &Form (z) &v=n Gl z &

n < (z) & v Geb n,x
The wvariable v is free at the n-th place in .

In modern notation:
vFrn,z & Var(v) AForm(z) Av=nGla An <I(z) A —(vGebn,z)
The right-hand side holds true precisely when the variable with the Godel

number v appears freely at the n-th position in the formula with the Godel
number z. This is the case if and only if

B v is the Gédel number of a variable &, 1 Var(v)
B z is the G6del number of a formula, and 1z Form(x)
B ¢ appears at the n-th position wov=nGlx

e within the formula and i n < I(z)

® is not bound at that position. 1" —(v Gebn, 1)
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As an example, let’s revisit

= (xall(x(xi)))V(xI(x (x))).
L o e o T o o o e o e e o L B L B L B I O I S I o )
12 3456 7 8910111213 1415 16 17 18 192021

For this formula, the following holds:

17Frn,"p" < ne {18} (1 17 = P(x1))
172 Frn,"p? < ne {5} (1 17? = ®(xp))

v Frx Variable v occurs freely in z at least once

(Primitive-recursive relation)

26. vFra= (En) [n<1(z)&v Frn, z
v kommt in z als freie Variable vor.

26. vFrz= (En) [n<1(z)&v Frn,x)
v occurs in x as a free variable.

In modern notation:
vFro e I(n<l(z))vFrnz

The right-hand side holds true precisely when the variable with the Go6del
number v appears freely at any position in the formula with the Gédel number
x.

Let us consider the following example:
(< T (x2(x1))) V (2 IT (x2(x1))).-

Listed below are instances where the relationship is true (¢/) and cases where
it is not (X):

17 FrT " v 172 Frrg™ v

For each n, 17" is the Gédel number of variable x,, and 19" is the Godel
number of variable y,,.
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Formula z, after inserting y at position n

(Primitive-recursive function)

27. Suz (y)=ez{z< [Pr(l(x) +1(y)]* "V & [(Eu,v) u,v S 2 &
z=uxR(nGlz)xv&z=uxy*xv&n=1(u)+ 1]}
Swuz (3) entsteht aus 2, wenn man an Stelle des n-ten Gliedes
von x y einsetzt (vorausgesetzt, daB 0 < n < [(x)).

27. Suz (y)=ez{zZ[Pr(l(z) + ()" "V &[(Eu,v) u,vS 2 &
r=uxR(nGle)xv&z=uxyxv&n=1(u)+1]}
Swux () arises from x by substituting y in place of the n-th term
of z (assuming that 0 < n < [(z)).

In modern notation:

Suz(y) = min{zgc

<
3 (u,v < z) < z=uxy*xvAn=1I(u)+1 >}

with ¢ := (Pr(l(z) + I(y)))* Y
To get a firm grip on this definition, let us again consider the formula

= (xall(x2(x1)))V(xI(x (x))).
T e e e e e e e e ) e e e e e e e e W D
1 2 345 6 7 8910111213 141516 17 18 192021

¥

Assuming variable x; is to be replaced with variable y, at position 5, we need
to

W split the formula ¢ i =ux R(nGlx)xv
B at position n =5 i n=1I(u)+1
Coa (7 xTxe ok T(x))) V O IT(2(x1))) !
————
B and recombine the parts with y ="y, ™. IFz=u * Yy * v

T x Tya e T(xa))) V (e I (x2(x1))) !
—_— =

u Y v

The justification for z being smaller than the chosen limit

(Pr(i(z) +U(y)))"
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aligns with the argument previously employed on page 240 concerning the star
operator ‘x’. The resulting formula has the form

k1 ko ks

ki(z
z = p1t-p2?op3 =)

. 'pl(z)
with
(z) =l(z)+1(y) — 1.

Thus, the value of z can be estimated as follows:

z < pl(z)’“ 'pl(z)kz ~p1(z)k3 e 'Pl(z)k”z)
_ pl(z)k1+k2+k3+-u+kz<z)
Pi(z)

Pi(z)+i(y

z+y

IN A

T4y
)

sy 28. kStv,x Auxiliary function for A(v, z)

(Primitive-recursive function)

28. 0 Stv,z=en{n<l(z)&vFrn,z
&(Ep)[n<p<l(z)&vFrp, x|}
(k+1) Stv,z=en{n<kStv,z&vFrn,x
&(Ep)[n<p<kStv,z&vFrp,z|}
k Stw, zist die k+ 1-te Stelle in z (vom Ende der Formel x
an gezihlt), an der v in z frei ist (und 0, falls es keine solche
Stelle gibt).

28. 0 Stv,z=en{n<l(z)&vFrn,z
&(Ep)[n< p<1(z)&v Frp, ]}
(k+1) Stv,z=en{n<kStv,z&vFrn,z
&(Ep)[n<p<kStv,z&vFrp,z]}
k Stwv, x is the (k+ 1)st place in z (counting from the end of
the formula x) at which v is free in z (and 0, in case there is no
such place)

In modern notation:

0Stv,r := min {n <l(x)

vFrn,x A
—~3(p <l(z)) (n <pAvFrp,z)

k+1Stv,x = min{n<kStv,x

vFrn,xz A
-I(p< kStv,z) (n<pAvFrp,z)
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Let v be the Godel number of a variable £ and x the Gédel number of a formula
. The function k Stv,x calculates the position in ¢, where the variable &,
counted from the right, appears freely for the (k + 1)-th time. For instance,
formula

= (xIl(x(x)))V(y(x)),

e e e e e e e e e e e L e 1
4 5 6 7 89101112 13 14 15 1617

satisfies the following:

0StD(x1), " = 15 0S5t P(x2), " = 0 0StD(y2), ! = 13

185t ®(x1), ¢ = 7 185t ®(x2), " = 0 15t P(y2), 1 =0

25t P(x1),"pT =0 25t P(x2),"pT =0 25t P(y2),"pT =0
The definition arises from the following observation: The natural number n is
the first position from the right where ¢ appears free in ¢, if
B ¢ appears free at position n and = v Frn,x
W is nowhere free between n

and the end of the formula. i —-d(p <Il(z)) (n<pAvFrp,x)

The natural number n is the (k + 2)-th position from the right (k > 0) where
& appears free in @, if
B ¢ appears free at position n and = v Frn,x

B is nowhere free between n
and the (k + 1)-th free appearance. & =3 (p < k Stv,z) (n < pAv Frp,x)

Number of positions where v occurs freely in x

(Primitive-recursive function)

29. A(vyz)=en{n<1l(z)&nStv,z=0}
A (v, ) ist die Anzahl der Stellen, an denen v in z frei ist.

29. A(v,z) =en{n=1(z)&nStv,z=0}
A (v, z) is the number of places at which v is free in z.

In modern notation:

A(v,z) = min{n <I(z) | nStv,z =0}
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According to this definition, A(v, z) is the smallest natural number n for which
n Stv,z yields 0. For example, the formula

¢ = (ell(x2(x1))) V (y2(x1))
satisfies the following;:
A(®(x1), ") =2 A(®(x2), ) =0 A(@(y2), ") =1

The meaning of A(v, x) is thus exposed: The function calculates how often the
variable with the Gédel number v appears freely in the formula with the Gédel
number z.

30. Sby, (zy) Aucxiliary function for Sb (z )

(Primitive-recursive function)

30. Sby (zy) ==
Sbii1 (v y) = Su[Shy (z4)] (’“S’;”’I)

30. Sby (zy) =z
Sbyir (zy) = Su[Sby (z3)] (54 )

In modern notation:

Sho(ay) = =
Shaes (2) = Su(She (2)) (+547)

The function Sby, (z ) replaces k free occurrences of the variable with the Godel
number v by the string with the Gédel number y. The replacement happens
from right to left. The definition builds upon the following idea: If k£ = 0,
there is nothing to do; the function returns x. If & > 0, the replacement can
be carried out recursively by

B replacing k — 1 occurrences 15 Sby, ()
B and then replacing another occurrence. 1 Su( ) (FSLee)

The following examples show the function in action:

Sbo ("xa(xa) Vy2(x1)) V z2(x1) " 57) = "Tlxa(xa) Vy2(x1)) V z2(x1)”
Sbq ('_(xz(xl) Vya(x1)) V za(x1) ™! ;Z) = T(x2(x1) Vya(x1)) Vzo(f 0)
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Sba (T2 (x1) Vya(x1)) Vzo(x1) 7 57) = "xalx1) Vya(f 0)) V zo(f 0)7
Sbhs (r(Xg(Xl) \Y yg(Xl)) V Z2(X1)—I ;Z) = r(Xz('F 0) V yz(f 0)) V Zz(f O)—I

Note that 17 is the G6del number of x;, and 24 is the Gédel number of f 0, as
can be easily verified:

707 =270 370 = 2%.31 =94

Substitution of v by y

(Primitive-recursive function)

3L. Sb(zy) =5ba (v, 0 (zy)>)
Sb (zy) ist der oben definierte Begriff Subst a (3) 7).

36) Falls v keine Variable oder z keine Formel ist, ist Sb (IZ) = ii;

37) Statt Sb [Sb (z7) %] schreiben wir: Sb (x5 %) (analog fiir mehr als
zwei Variable).

31. Sb (x Z) = SbA (v, x) ({IZZ) 36)
Sb (zy) is the concept Subst a () defined above.?7)

36) In case v is not a variable or z is not a formula, then Sb (a; Z) =1
37) Instead of Sb [Sb (z) %] we write Sb (z4 %) (and similarly for
more than two variables).

In modern notation:
Sb(zy) = Sbaqwa (Ty)

Let = be the Godel number of a formula ¢, v the Gédel number of a variable &,
and y the Gédel number of a symbol string ¢. The primitive-recursive function
A(v,z) calculates how often & appears freely in ¢. Consequently, Sba(yq) (2y)
is the Go6del number of the formula ¢, after all free occurrences of ¢ have been
replaced by o:

Sh(y) = Tple o]

For instance:
Sb (I_(X2(X1) V y2(X1)) V Zz(Xl)—I;Z) = I—(Xz(f 0) V yz(f 0)) V Zz(f 0)—I

The example reveals that Sb is the substitution function discussed in Sec-
tion 4.1.2. In footnote 36, Godel explicitly points out that Sb(zy) changes
the number x only when v is the Gédel number of a variable and x the Gédel
number of a formula. To understand the reason, let us revisit the definition of
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Fr from page 255:
v Frn,z & Var(v) A Form(zx)

If v is not the Goédel number of a variable or z is not the Gédel number of a
formula, the right-hand side is false, implying that the numbers v and x do not
satisfy the relation Fr for any n. Consequently, n Stv,z = 0 (Definition 28)
and thus also A(v,z) = 0 (Definition 29). Now, the assertion of footnote 36
follows immediately from Definition 30 and Definition 31:

Sb(zy) = Sbawa) (xy) =Sbo (xy) ==

In footnote 37, Godel introduces a concise notation for the repeated execution
of function Sb. He will use this notation extensively later on.

Y 32. xImpy, xCony, x Aeqy, vExy  Definition of ‘—', ‘A", ‘&', ‘T’

(Primitive-recursive function)

32. z Imp y= [Neg (z)] Dis y .
z Con y = Neg {[Neg ()] Dis [Neg (y)]}
z Aeq y = (z Imp y) Con (y Imp z)
v Ex y= Neg {v Gen [Neg (y)]}

32. z Imp y= [Neg (z)] Dis y
z Con y = Neg {[Neg ()] Dis [Neg (y)]}
z Aeq y = (z Imp y) Con (y Imp z)
v Ex y= Neg {v Gen [Neg (y)]}

These functions are provided merely for convenience. They define implication,
conjunction, logical equivalence, and existential quantification in terms of the
native language constructs of system P.

&y . 33. nThx n-th type elevation of x

(Primitive-recursive function)

33. n Thr=ey{y< 2z &K [k 1 (z) =
(kGlzZ13&EkGly=kGlz)V
(kGlz>13&kGly=kGlz.[1 Pr(kGlxz)]|™)|}

n Th x ist die n-te Typenerhéhung von z (falls z und n Th x

Formeln sind).
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33. nThr=-ey{y< 2 & &) [k 1 (z) —>
(kGlz=213&kGly=kGlz)V
(kGlz>13&kGly=kGlz.[1 Pr(kGl2)]™)|}

n Th x is the n-th type elevation of = (in case = and n Th x

are formulas).

In modern notation:

(kGle <13AkGly=FkGlz)V
nThz:=min{ y < z* |V(k <I(z)) (kGlz > 13 A
kEGly=kGlx-(1Pr(kGlx))™)

To get a handle on this definition, let’s take a closer look at the following
example:

9172 .39.511.75. 1111 ,13172 .1711.1919.9313.9913.3113

—_—
x2 IT (oo (x2(y1)))
[ |

type elevation
[ ]
. _d
Xo4n 11 ( DO (X2+n (YI-‘rn)))

2172+ . 39.511.75.1111.13172+7 . 1711.79191%7" . 9313.9913.3113

From this example, the following procedure emerges:

B If the k-th exponent is < 13, ik Gle <13

39.511.75.1111 .1711 .2313.2913_3113
|

type elevation

-

39_511_75.1111 _1711 _2313.2913_3113
then keep the number series as it is. iw kGly=kGlz
B If the k-th exponent is > 13, ik Gle > 13
2172 _13172 .1919
[

type elevation

2172+n ,13172‘*'" .19191+n

e then extract the exponent (which is of the form e?), ik Glx
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e determine the number e 1z 1 Pr(k Glz)
e and calculate e!*". w kGl - (1 Pr(k Glz))"”
e The result is the k-th factor of y. &k Gly=kGlz- (1 Pr(k Glx))"

It remains to be shown that the estimate y < 2®" always holds. Starting from
the equation

el es'2 er 'k
T = p17 P
the value of y can be estimated as follows:
e iltn e i2tn e iktn
y <t pe?T it
= pete o peet L et

(p181¢1>e1" . (p252i2)62" . . (pkekik)ek"

Let j be the index between 1 and k that maximizes pjejij. Then:

e e e
€4 €4 - €4 -
(I)‘7 ’ ) . (p-] ’ ) Tt (p] ’ )

er"+ex"+...ter”

<
IN

= Q%%%)
< ( i (e1tea+...+ex)”
< (\pj )
i ‘/L,TI,
< pje"])
<

/ 34. Z-Ax(x) x is an instance of the axiom schema I.1, |.2, or |.3

(Primitive-recursive relation)

Den Axiomen I, 1 bis 3 entsprechen drei bestimmte Zahlen,
die wir mit 27, 22, 23 bezeichnen, und wir definieren:

M. Z-Az(z) = (z=nV =%V = 2)

To the Axioms I, 1-3 correspond three definite numbers, which
we denote by zj, 22, 23, and we define:

M. ZAz(z) = (z=2xnV =%V 2= 2)

In a more detailed spelling:

x € Z-Az & (x =2z Va =2z Vae=z) with



5.2 Primitive-Recursive Functions and Relations 265

z1= "o (fxg =0)"
zo="fxy=fy1 Dx1=y1'
I_XQ(O) .x 101 (Xg(Xl) D) X2(f Xl)) D x II (Xg(Xl))—l

z3

The right-hand side holds true precisely when z is the Godel number of an
axiom obtained from the axiom schema 1.1, 1.2, or 1.3. The axioms are left
here in Gédel’s original notation.

Note that the formulas contain operators that are not part of the language of
the system P. To calculate the Gdel numbers accurately, these operators must
initially be substituted with their respective definitions.

&Y . 2 is an instance of axiom schema Il.i

(Primitive-recursive relation)

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 185

35. A;-Az (z) = (Fy) [y £ z&Form (y) &
z = (y Dis y) Imp y]
z ist eine durch Einsetzung in das Axiomenschema II, 1 ent-
stehende Formel. Analog werden As-Ax, A3-Ax, Ay-A x entspre-
chend den Axiomen II, 2 bis 4 definiert.

On formally undecidable propositions of Principia Mathematica etc. 185

35. A1-Az (2) = (Ey) [y £ z&Form (y) &
z = (y Dis y) Imp y]
z is a formula arising from a substitution in Axiom schema II,
1. Similarly, A-Az, A3-Ax, and A4-Ax, corresponding to axioms
II, 24, are defined.

In modern notation:
x € A;-Az & F(y < zx) (Form(y) Az = (yDisy) Imp y)

The right-hand side holds true precisely when z is the Godel number of an
instance of axiom schema II.1:

r€A-Ax & x="TpVp D ! for some formula ¢

The axiom schemata I1.2 to I1.4 can be described in a similar way:
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B Axiom schema I1.2: ¢ DoV ¥

x € Ap-Az & I(y,z < z) (Form(y) A Form(z) A z = y Imp(y Dis z))
B Axiom schema I1.3: o Vi) D¢V

x € As-Az & I(y,z < z) (Form(y) A Form(z) A
x = (yDis z) Imp(z Dis y))

B Axiom schema II1.4: (¢ D) D (x Ve D x V)

r € Ay-Az & F(y,z,w < z) (Form(y) A Form(z) A Form(w) A
2 = (y Imp z) Imp((w Dis y) Imp(w Dis 2)))

2 is an axiom of axiom group Il

(Primitive-recursive relation)

36. A-Ax(z) = A1-Ax () V As-Az (z)V As-Az (z)V
V Ay4-Az(z)
z ist eine durch Einsetzung in ein Aussagenaxiom entstehende
Formel.

36. A-Az(z) = A1-Ax () V As-Az (z)V As-Az (z)V
V Ays-Az(z)

x is a formula resulting from substitution in a sentential axiom.

In modern notation:
x € A-Ax & Ar-Ax(z)V Ag-Azx(x) V Asg-Az(x) V Ay)-Ax(z)

The right-hand side holds true precisely when z is the G6del number of an
axiom derived from one of the axiom schemata II.1 to I1.4.

Y 37. Q(z,y,v) Auxiliary predicate to ensure collision-freeness

(Primitive-recursive relation)

37. Q(zy.v) = (En,mw) [nS1(y) &mS1(2) &ws 2&
w=mGlz&wGeb n,y& v Frn,y]
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z enthilt keine Variable, die in y an einer Stelle gebunden ist,
an der v frei ist.

37. Q(zy,v) = (En,mw) [nS1(y) &m=S1(z) &wE z2&
w=mGlz&wGeb n,y& v Frn,y]
z contains no wvariable which is bound at a place in y at which
v is free.

In modern notation:

-I(n <Il(y)I(m <I(z)) I(w < 2)

(z.9,v) € Q 1 (w=mGlzAwGebn,y Av Frn,y)

In Godel’s words, the right-hand side states that z

B does not contain any 1z 3
B variable (with the Godel number w) i w=mGlz
B that is bound in y at a position n iz w Gebn,y
B where v is free. i v Frn,y

To understand the full meaning of this predicate, let’s consider the triple
(z,y,v) with

z = Tpl ="y
y = "7 =TTy (xa(x1) Aya(yr))”

v = DP(xq) é

Variable x; occurs freely at the marked position in ¢. Furthermore, the marked
position falls within the scope of a quantifier that binds y;. Consequently, ¢
contains a variable, y;, which is bound in ¢ at a position where the variable
represented by the Godel number v occurs freely. Thus, we have

(z,y,0) € Q.
On the other hand, consider the triple (2/,y',v") with
2= Tl =Tz

y' = Y7 ="y (xa(x1) Aya(yr))”
v = B(xq)
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The situation is different here because ¢ contains no variable that is bound
in 1 at a location where the variable with the Gddel number v’ occurs freely.
Thus, we have

(', y,v") € Q.
Godel will use this predicate to ensure that an applied substitution is collision-
free, which is required to derive valid instances from axiom schema III.1.

89 38. L;-Az(x) 2 is an instance of axiom schema Ill.1

(Primitive-recursive relation)

38. Li-Az(z) = (Ev,y,2,n) {v,y,2n < z&n Var v&
Typ,, (z) & Form (y) & Q (z,y,v) &
z= (v Gen y) Imp [Sb (y7)]}
x ist eine aus dem Axiomenschema III, 1 durch Einsetzung
entstehende Formel.

38. Li-Az(z) = (Ev,y,z,n) {v,y,zn < x&nVar v&
Typ, (2) & Form (5) & Q (2.y.v) &
z= (vGen y) Imp [Sb (y7)]}
x is a formula arising from axiom schema III, 1 by substitu-
tion.

In modern notation:

nVarv A Typ,,(z) A Form(y) A
x € Li-Az & F(v,y,2,n < x) Q(z,y,v) A
z = (v Geny) Imp(Sh(y 7))

The right-hand side holds true precisely when z is the Gddel number of a
formula that was obtained from axiom schema III.1. Let us recall: Axiom
schema III.1 allows,

B for a formula ¢ (with the Gédel number y), 15" Form(y)
B a type-n variable £ (with the Godel number v), and 1z n Varv

B a symbol o (with the Gédel number z)
to obtain the formula
W (Il D pl€ < o] 15 2 = (vGeny) Imp(Sb(y 7))

provided that
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B o has the type of £ 1" Typ,,(2)

B and the substitution is collision-free. 1= Q(z,y,v)

In modern notation, { Iy D ¢[€ + o] is the formula

VEp — ¢l€ o]

89 39. Ly-Ax(x) x is an instance of axiom schema III.2‘

(Primitive-recursive relation)

39. Ly-Ax(z) = (Ev,q,p) {v,q.p £ & Var (v) & Form (p)
& v Frp&Form (q) &
z = [vGen (p Dis ¢)] Imp [p Dis (v Gen ¢)]}
z ist eine aus dem Axiomenschema III, 2 durch Einsetzung
entstehende Formel.

39. Ly-Azx(z) = (Ev,q,p) {v,q,p £ & Var (v) & Form (p)
& v Frp&Form (q) &
z = [vGen (p Dis ¢)] Imp [p Dis (v Gen ¢)]}
z is a formula arising from axiom schema III, 2 by substitu-
tion.

In modern notation:

v € Ly-Az 1 I(v,q,p <) < Var(v) A Form(p) A =(v Frp) A Form(q) A )

z = (v Gen(pDis q)) Imp(p Dis(v Gen q))

The right-hand side holds true precisely when z is the Gddel number of a
formula that was obtained from axiom schema II1.2. We remember: Axiom
schema II1.2 allows us,

B for a formula ¢ (with the Godel number p), 1= Form(p)
B a formula ¢ (with the Godel number ¢) and 1 Form(q)
B a variable £ (with the Godel number v) 15" Var(v)

to obtain the formula

BT (V) D VEIL(Y) 15" = (v Gen(p Dis q)) Imp(p Dis(v Gen q))
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provided that
B ¢ does not occur freely in . 1 —(v Frp)

In modern notation, (I (p V) D @ V ETT () is the formula

VE(pVY) = pVVEY

z is an instance of axiom schema IV.1

(Primitive-recursive relation)

40. R-Az (z) = (Fu, v, y,n) [u,v,y,n < 2 & nVar v &
(n+1) Varu & u Fry & Form (y) &
z=uEx {vGen [[R(u)* E (R (v))] Aeq y]}]
2 ist eine aus dem Axiomenschema IV, 1 durch Einsetzung ent-
stehende Formel.

40. R-Az (z) = (Eu,v,y,n) [u,v,y,n < x & nVar v &
(n+1) Varu & u F'ry & Form (y) &
z=uEx {vGen [[R (u)* E (R (v))] Aeq y]}]

z is a formula arising from axiom schema IV, 1 by substitu-

tion.

In modern notation:

nVarv A (n+ 1) Varu A
x € R-Az & I (u,v,y,n < x) =(u Fry) A Form(y) A
r = uEx(vGen((R(u) * E(R(v))) Aeqy))

The right-hand side holds true precisely when z is the Gddel number of a
formula derived from axiom schema IV.1. Let us recall: Axiom schema IV.1
allows us,

B for a formula ¢ (with the Gédel number y), 15 Form(y)
B a type-n variable £ (with the Godel number v), and 1z n Varv
B a type-(n + 1) variable ¢ (with the Gdel number u) 1 (n+ 1) Varu

to obtain the formula

B (EQ)ET(C(E) =¢) & 2 = uEx(v Gen((R(u) * E(R(v))) Aeqy))
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provided that
B ( does not occur freely in . 1 —(u Fry)

In modern notation, (E {)(£I1(¢(€) = ¢)) is the formula

ACVE(C(E) < ).

Y 41. M-Axz(xz Z is an instance of axiom schema V.1

(Primitive-recursive relation)

Dem Axiom V, 1 entspricht eine bestimmte Zahl z; und wir
definieren:

41. M-Az (2) = (En) [nS 2&x=n Th z).

To axiom V, 1 corresponds a definite number 24, and we define
41. M-Az () = (En) [nSz&x=n Th z).

In modern notation:
x € M-Az &= 3I(n<z)x=nThzy with
zg 1= "x I (xa(x1) = y2(x1)) Dx2 =y2!

The right-hand side holds true precisely when z is the Gddel number of a
formula that arises from the principle of type elevation from the comprehension
axiom.

T is an axiom

(Primitive-recursive relation)

42. Az (v) = Z-Az(2)V A-Az(z)V L1-Az ()
V Ly-Az (z) V R-Ax (z) V M-Az (2)

x ist ein Aziom.

42. Az (z) =Z-Ax(z)V A-Azx (z)V Li-Az ()
V Ly-Az (z)V R-Ax (z) V M-Az (2)

T is an axiom.
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The relation Az summarizes the various axiom schematas:

Az := {n € N|n is the Gédel number of an axiom of system P}

43. Fl(z,y, 2) 2 can be derived from y and z

(Primitive-recursive relation)

43. Fl (zy2)=y=zImp a V
(Ev) [v< x & Var (v) & 2= v Gen y]
x ist unmittelbare Folge aus y und z.

43. Fl(zyz)=y=zImpzV
(Ev) [v< z & Var (v) &z = v Gen y]
x is an immediate consequence of y and z.

In modern notation:
(z,y,2) € FIl :& y=zImpa VI (v<z) (Var(v) Az =vGeny)

If z, y, and z represent the Godel numbers of the formulas ¢, v, and x, respec-
tively, then the right-hand side holds true if and only if one of the following
cases applies:

B ¢ has the form xy D ¢ Iy =zImpax

In this scenario, ¢ can be derived from v and x by modus ponens.

B For some variable &, ¢ has the form 11 15 Var(v) A x = v Geny

In this scenario, ¢ can be derived from v by generalization.

Thus, the relation FI applies to the Godel numbers "™, "7, "x 7 if and only
if the formula ¢ can be derived from the formulas ¢ and x by applying an
inference rule of the formal system P.
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2 is a formal proof chain of the system P

(Primitive-recursive relation)

186 Kurt Godel,

4. Bu(z)=n){0<n=si(z)—> Az (n Glz)V
(Ep,q) [0<p,gq<n&Fl(nGlz,p Gla, qGlz)]}
&l (z) >0

z ist eine Beweisfigur (eine endliche Folge von Formeln, deren

jede entweder Axziom oder unmittelbare Folge aus zwei der vorher-
gehenden ist).

186 Kurt Godel,

44. Bw(z) = n){0<n=<l(z)—> Az(n Glz)V
(Ep,q) [0<p,gq<n&Fl(nGlz,p Gla, qGlz)]}
&l(z) >0

z is a proof figure (a finite sequence of formulas each of
which is either an axziom or an immediate consequence of two pre-
ceding ones).

In modern notation:

Az(n Glzx) vV
€ Bw & I(z) >0AV(0<n<I(z)) 30 <p,qg<n)
Fl(n Glz,p Glz,q Glz)

The right-hand side holds true precisely when

B 7 is a non-empty number series, and i [(x) >0
B the n-th member i V(0 <n<l(x))
® is an axiom, or 1 Az(n Glx)
® is derived from preceding formulas i 3(0 < p,qg<n)
® by an inference rule. i Fl(n Glz,p Glx,q Glx)

Therefore, Bw(x) is true if and only if z is the Godel number of a formal proof.
As a set, we can write the relation Bw as follows:

Bw = {n € N|n is the Gédel number of a proof of the system P}
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2 is a proof for the formula y

(Primitive-recursive relation)

45. x By= Bw (z) &[l(z)] Glz=y
x ist ein Beweis fiir die Formel 1.

45. x By= Bw (z) &[l(z)] Glz=y
x is a proof of the formula y.

In modern notation:
By = Bw(z)ANl(z) Glz =y

The right-hand side holds true precisely when

B 2 is the G6del number of a proof chain, and 1" Bw(z)
B y is the Godel number of the last formula. i (I(z) Glz) =y
Thus, = By is true if and only if z is the Gédel number of a formal proof for
the formula with the Godel number y.

At this point, we have achieved an important result:

Theorem 5.6

The relation

B = {(To1,..., 00T €N? | @1,..., ¢, is a proof for ¢ in P}

is primitive recursive.

5.3 Decision Procedures

Godel concludes his long list of primitive recursive functions and relations with
relation 46. It deserves our special attention because it plays a crucial role in
what is yet to come:
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46. Bew x x is provable within the system P

46. Bew (z) = (Fy) y Bz

x ist eine beweisbare Formel. [Bew (z) ist der einzige unter
den Begriffen 1—46, von dem nicht behauptet werden kann, er sei
rekursiv.]

46. Bew (z) = (Fy) y B
z is a provable formula. [Bew (z) is the only one of the con-
cepts 1-46 which cannot be asserted to be recursive.]

In modern notation:
x € Bew & JyyBx (5.16)

The right-hand side holds true precisely when z is the Godel number of a
formula provable in P.

Pay attention to the comment in square brackets! It is the first time Godel
avoids making a clear statement. He answers whether this relation is primitive
recursive with the vague statement that it “cannot be asserted”. A closer look
at the right-hand side of (5.16) reveals why. Among the relations and functions
presented so far, this relation is the first to be defined with an unrestricted
existential quantifier, thus failing to meet the requirement of Theorem IV.
This does not necessarily mean that Bew is not primitive recursive, as we
would have to rule out the existence of another formula that captures Bew
while simultaneously satisfying all the requirements of a primitive-recursive
definition.

Before we lift the veil and reveal whether or not Bew is a primitive-recursive
relation, let us consider the consequences. If Bew were a primitive-recursive
function, the syntactic variant of the so-called decision problem would be solv-
able. The following definition clarifies the exact meaning of this term:

Decision problem

The syntactic variant of the decision problem is defined as follows:

B Given: A formal system and a formula ¢

B Asked: Does - ¢ hold?
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The semantic variant of the decision problem is defined as follows:

B Given: A formula ¢

B Asked: Does = ¢ hold?

This definition is a generalization of the historical formulation by David Hilbert
and Wilhelm Ackermann. The original formulation originates from [52] and
refers to a question concerning first-order predicate logic.

“The decision problem is solved if one knows a procedure that allows
a decision about the validity or satisfiability of a given logical expres-
sion through a finite number of operations. The solution of the decision
problem is of fundamental importance for the theory of all areas whose
sentences are capable of logical development from a finite number of ax-

ioms.”

“Das Entscheidungsproblem ist gel6st, wenn man ein Verfahren kennt,
das bei einem vorgelegten logischen Ausdruck durch endlich viele Op-
erationen die Entscheidung iiber die Allgemeingiiltigkeit bzw. Erfiill-
barkeit erlaubt. Die Lésung des Entscheidungsproblems ist fiir die Theo-
rie aller Gebiete, deren Sétze tiberhaupt einer logischen Entwickelbarkeit

aus endlich vielen Axiomen féhig sind, von grundsétzlicher Wichtigkeit.”

David Hilbert, Wilhelm Ackermann [52]
In a later edition of the cited textbook, the two become even more explicit:

“The decision problem must be considered the main problem of mathe-

matical logic.”

“Das Entscheidungsproblem muss als das Hauptproblem der mathema-
tischen Logik bezeichnet werden.”

David Hilbert, Wilhelm Ackermann [53]

Hilbert and Ackermann did not distinguish between a syntactic and a semantic
variant — and they didn’t need to. In first-order predicate logic, a formula is
universally valid (= ) if and only if it is provable (- ¢), making both formu-
lations equivalent. However, by generalizing the concept to arbitrary formal
systems, as done in Definition 5.7, the model relation ‘=" and the provability
relation ‘+’ no longer coincide, making the syntactic and semantic variants two
concepts that must not be confused.

We will now prove a theorem that establishes a crucial relationship between the
syntactic decision problem and the negation completeness of a formal system.
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Figure 5.7: In a formal system being both consistent and negation complete, it is
possible to decide for any given formula ¢ whether or not it is provable. In other
words, the syntactic decision problem has a solution.

Theorem 5.8

For every consistent formal system K, the following holds:

K is negation complete = K has a decision procedure

Figure 5.7 depicts a possible solution of the decision problem for consistent,
negation-complete formal systems. It proceeds as follows:

B All symbol strings constructible in the formal system’s artificial language
are enumerated in order, e. g., by first enumerating the strings of length 1,
then the strings of length 2, and so on. This way, every string will eventually
appear in the enumeration.

B All strings that do not constitute a formula sequence are discarded. The
same applies to formula sequences that do not constitute a proof. Due to
the systematic enumeration, every proof will appear at some point.

B For each string that constitutes a proof, it is checked whether the final
formula equals ¢ or —¢. In the first case, ¢ is a theorem. In the second
case, it is not.

Two important aspects are to be taken into account:

B For the algorithm to effectively solve the syntactic decision problem, it must
be guaranteed to stop for any input. This is ensured by the property of
negation completeness, stating that among the two formulas ¢ and —p, at
least one is provable. Thus, the algorithm terminates for every input after
a finite number of steps.
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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurinG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The *“computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. T hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
niitable ninmhber A ¢ laf 1 hl

Figure 5.8: In 1936, the British mathematician Alan Turing succeeded in answering
one of the fundamental questions of mathematical logic. From the undecidability of
the halting problem for Turing machines, he inferred that no decision procedure for
first-order predicate logic can exist.

B The algorithm relies on the fact that the derivability of —p implies the
non-derivability of ¢ (F —¢ implies I/ ). This is ensured by the property of
consistency, which is an explicit requirement of Theorem 5.8. In a potentially
contradictory system, however, —¢ could be provable, and yet a proof for ¢
could also appear at a later point in time. In this case, ¢ would also be a
theorem.

Is the syntactic decision problem solvable for Gédel’s system P? Theorem 5.8
would affirm this question if P were consistent and negation complete. However,
Godel will demonstrate that P cannot be consistent and negation complete
simultaneously, thus thwarting this conclusion.

If the proof relation Bew were primitive recursive, the answer would again be
yes! In this case, we could decide the question "¢ € Bew simply by calculating
the corresponding primitive-recursive function. The reverse conclusion is no less
remarkable. If there is no decision procedure for P, we would be confident that
Bew cannot be a primitive-recursive relation.

The hope of Hilbert and Ackermann to find a solution for the decision problem
of predicate logic was shattered by Alan Turing (Figure 5.8). In his famous
work “On Computable Numbers with an Application to the Entscheidungsprob-
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lem” [97, 80|, the British mathematician convincingly demonstrated the unsolv-
ability of the decision problem for first-order predicate logic, and the method
of proof can be easily transferred to the system P. Turing’s result implies that
the proof relation Bew cannot be primitive-recursive. However, Godel was un-
aware of this fact at the time of writing. Turing made his stunning discovery
in 1936, about five years after the publication of the incompleteness theorems.

54 TheoremV

Our journey through Gédel’s work has led us to Theorem V, one of the most
significant auxiliary theorems in the proof of the first incompleteness theorem.
Metaphorically speaking, this theorem bridges two distinct realms. On one side
resides Godel’s system P, extensively discussed in a separate chapter. On the
other side reside the primitive-recursive functions and relations, which are also
familiar to us by now. At its core, Theorem V states that the computation of
a primitive-recursive function is replicable within the formal system P, that is,
for any given primitive-recursive function f and any given number combination
Y,Z1,...,In, it can be proved within P whether or not y is equal to the function
value f(x1,...,2,).

Further down, it will become evident that the proof of Theorem V follows a
simple line of argument, yet it involves intricate technicalities. For this reason,
Godel merely sketches the proof, leaving out many details. Due to the lack of
complete formal justification, Theorem V may seem like the Achilles’ heel of
Godel’s work, but this fear is unfounded. A few years after the incompleteness
theorems were published, David Hilbert and Paul Bernays had fully worked out
the proof and published it in their two-volume Foundations of Mathematics 55,
56].

To convey the core idea as clearly as possible, we first derive the assertion of
proposition V for a specific example before presenting its general form. For our
investigation, we will employ the slightly extended formal system P’ from Sec-
tion 4.4.5, which significantly simplifies the formulation of statements involving
addition and multiplication compared to Godel’s original system P.

Let’s start with the following formula:
o(x1) = Jz1 (xg =21 x 2) (5.17)

With x;, the formula contains a single free individual variable, which makes it
a class expression according to Godel’s terminology. Replacing x; with a term
of the form 7 yields a closed formula that must either be substantively true or
substantively false. A closer look at the right-hand side of (5.17) reveals that
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p(n) is substantively true if and only if n is an even natural number:

Edz;0=2 x2 (= = ¢(0))
3z ff0=2x2 (b= = (2))
3z ffff0=2x2 (0= = »(4))
E-3zf0=2 x2 (= = (1))
-3z fff0=2 x2 (= = ~p(3))
-3z fffff0=2x2 (= = ~p(5))

By denoting the set of even natural numbers with
R = {0,2,4,6,8,10,...},
this relationship can be written as such:

neR = E oM
ng¢ R = o)

We say the formula ¢ semantically represents the relation R, and generalize
this concept straightforwardly:

Definition 5.9 Semantically representable relations

Let R C N™ be a relation and ¢ a formula with n free variables. R is
semantically represented by ¢ if the following holds:

(1,...,2n) ER = = o(T1,...,Tn)
(xla"'axn)gR = |:ﬁ80($7157ﬁ)

Functions can be represented in a similar fashion, as every n-ary function can
be considered a relation with an arity of n + 1:

Definition 5.10 Semantically representable functions

Let f: N" — N be a function and ¢ a formula with n + 1 free variables.
f is semantically represented by ¢ if the following holds:

y=flz1,....zn) = E ¢@T1,...,Tn)
y# f(@r,..z0) = FE-0@,71,...,T0)
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Let’s turn back to our example formula ¢. For every even natural number 7,
we can notice that the instance ¢(7) is not only true, but also provable within
P’. The following derivation shows how:

I F 0=0+0 (M.3.2f)
2. F 0x2=0+0 (M.3.5¢)
3. F 0=0x2 (GL, 1,2)
4. F 0=0x2—320=2 x2 (P.3)
5. F 32,0=2, x2 (MP, 3,4)

4o
(@ ziio-ax2 )

1. F 3210=2z; x2
2. 3210221X§—>321ff0221><§ (N?)
3.0F 3z ff0=2,x2 (MP, 1,2)

3 ©’
€

i d
|

1. F 321ff0221><§
2. F 321ff0=21><§—)321ffff0:21Xj (N?)
3.0F 3z ffffOo=2x2 (MP, 1,2)

A similar relationship holds for the odd natural numbers. If n is odd, that is
n ¢ R, then the instance —¢(m) is provable:

=

2. F Vzlf;ézl X§ (G. 1)

3. F v21T7é21 X§—>_|_\v2117521><§ <H4)

4. F —~=Vzy1#23 x2 (MP, 2,3)

5 F -3 Z1 fo= Z; X 2 (Def, 4)
=0,

G

1. + _\321f0121><§ ( )



282 5 Primitive-Recursive Functions

2.+ 321fff0=21><§—>5|21f0:21><§ (N8)
3. F ﬁﬂzlfO:zlx§—>ﬁ321fff0:zlx§ (INVQ)
4. + ﬁE'Z]fffOIZl X? (1\IP 13)
=N
XY 9
(@ 3 irfro-n2 0
1. _E|Zlfff0221><§ ( )
0 b Iz fffffO=2,x2 3z fffO=2 x2 (N.8)
3. F ﬂEIzlfff0=zlxf—)—ElzlfffffO:zle (L\TV,Q)
4. F ﬁﬂzlfffff0:zlx§ (1\[P 13>

For each natural number n, either the formula instance (@) or the formula
instance —¢(7) can be derived in the demonstrated way. In particular, the first
instance is provable when n is even and the second when n is odd. In symbolic
terms:

ne€R =t o)
né€ R =F -pm)

We say the formula ¢ syntactically represents the relation R, and generalize
this concept similar to what we did above:

Definition 5.11 Syntactically representable relations

Let R C N™ be a relation and ¢ a formula with n free variables. R is
syntactically represented by ¢, if the following holds:

(x1,...,2n) ER = F o(T1,...,Tn)
(x1,...,xn) € R = F—p(T1,...,%Tn)

Once more, the notion can be extended to functions straightforwardly:

Definition 5.12 Syntactically representable functions

Let f: N” — N be a function and ¢ a formula with n + 1 free variables.
f is syntactically represented by ¢ if the following holds:

y=flzr,...,an) = B @71, Tn)
y# fl@r,..an) = Foe@,T0,. ., T)

With the acquired knowledge, Godel’s original formulation of Theorem V is
easy to grasp:
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Die Tatsache, die man vage so formulieren kann: Jede rekur-
sive Relation ist innerhalb des Systems P (dieses inhaltlich gedeutet)
definierbar, wird, ohne auf eine inhaltliche Deutung der Formeln
aus P Bezug zu nehmen, durch folgenden Satz exakt ausgedriickt:

Satz V: Zu jeder rekursiven Relation R (z;...z,) gibt
es ein n-stelliges Relationszeichen r (mit den freien Variablen®®)
Uy, Uz . . . up), so daB fiir alle Zahlen-n-tupel (z;...z,) gilt

R (z1...12,) —> Bew {Sb (r gl(ml) . %"(xn))} 3)
R (z1...1,) —> Bew [Neg Sb (7“ gl(ml) Z(iﬁn))} “4)

38) Die Variablen i . . . u, konnen willkiirlich vorgegeben werden. Es gibt
z. B. immer ein 7 mit den freien Variablen 17, 19, 23 ... usw., fiir welches (3)
und (4) gilt.

The fact which can be vaguely formulated as the assertion that
every recursive relation is definable within the system P (under its
intuitive interpretation), is rigorously expressed by the following the-
orem, without reference to the intuitive meaning of the formulas of P:

Theorem V: For every recursive relation R (z; . . .,), there is
an n-ary predicate r (with the free variables®®) wuy,us . . . u,) such
that, for all n-tuples of numbers (1 . ..z,), we have:

R (z1...17,) —> Bew {Sb (rgl(xl) o %"(Mﬂ 3)
R (21...1,) — Bew [Neg Sb (rgl(ml) %(xn))} (4)

38) The variables uj . . . u, can be arbitrarily prescribed. There always ex-
ists, e.g. some r with the free variables 17, 19, 23, etc., for which (3) and (4)
hold.

If ¢ is the formula with the G6del number r, formulas (3) and (4) can be
rewritten as follows:

R(z1,...,2n) = Bew "o(Z1,...,Tn)" (5.18)
R(z1,...,2,) = Bew —p(T1,...,7,)" (5.19)

Bew x substantively states that the formula with the Gédel number x is prov-
able within P. Thus, (5.18) and (5.19) are the same as:

(x1,...,2n) ER = F o(T1,...,Tn)
(1,.-.,2n) € R = F —p(T7,...,T7)

Another look at Definition 5.11 reveals the meaning of Theorem V:
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Theorem 5.13 Gbdel’s Theorem V

Every primitive-recursive relation is syntactically representable in P.

As said above, formally proving Theorem V is tedious, which is why Go6del
confines himself to presenting a rough sketch of the proof:

Wir begniigen uns hier damit, den Beweis dieses Satzes, da
er keine prinzipiellen Schwierigkeiten bietet und ziemlich umsténdlich
ist, in Umrissen anzudeuten®®). Wir beweisen den Satz fiir alle
Relationen R (2 ...z,) der Form: z = @ (22...2,)%) (Wo @
eine rekursive Funktion ist)

39) Satz V beruht natiirlich darauf, daB bei einer rekursiven Relation R
fir jedes m-tupel von Zahlen aus den Axiomen des Systems P entscheidbar
ist, ob die Relation R besteht oder nicht.

40) Daraus folgt sofort seine Geltung fiir jede rekursive Relation, da eine
solche gleichbedeutend ist mit 0= @ (z1...z,), WO @ rekursiv ist.

We shall be content here to indicate the outline of the proof
of this theorem, since if offers no theoretical difficulties and is fairly
tedious. 3°) We shall prove the theorem for all relations R (z; . . . z)
of the form z; = @ (2. . .2,)*°) (where @ is a recursive function)

39) Theorem V depends of course upon the fact that, for a recursive relation
R, it is decidable on the basis of the axioms of the system P whether or not R
holds for any given n-tuple of numbers.

40) From this, its validity follows immediately for every recursive relation,
since such a relation is equivalent to 0 = @ (z1. . . ), where @ is recursive.

Godel will establish the assertion not for primitive-recursive relations, but for
primitive-recursive functions. The following theorem, briefly mentioned in foot-
note 40, demonstrates the sufficiency of this approach:

If every primitive-recursive function is syntactically representable, then so

is every primitive-recursive relation.

Proof: Let R be a primitive-recursive relation. Then there exists a primitive-
recursive function f with the following property:

(1,...,2n) ER & f(z1,...,2,)=0
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If all primitive-recursive functions are syntactically representable, then so is f.
This implies the existence of a formula ¢ satisfying

y=f(xy,....2) = F oF

T1,..., Tn)
y#f('rla"'axn) = l__‘@(yi

)
J Ty s Tr)
A fortiori, this implies

0= f(z1,..-,2n) = F ©(0,Z1,...,%0)
O;éf(xl,...,xn) = I—ﬂgp(O,xT,...,ﬁ)

which is equivalent to

(1,...,2,) ER = F ©(0,Z7,...,Ty)
(1,...,2,) € R = F —p(0,Z71,...,Ty)

At this point, we are done: Substituting y with 0 turns ¢ into a formula that
syntactically represents R. 0

Next, Godel outlines the inductive argument:

und wenden vollstindige Induktion nach
der Stufe von ¢ an. Fir Funktionen erster Stufe (d. h. Konstante
und die Funktion z -+ 1) ist der Satz trivial. Habe also ¢ die m-te Stufe.
Es entsteht aus Funktionen niedrigerer Stufe @; ... @y durch die Ope-
rationen der Einsetzung oder der rekursiven Definition. Da fiir @ . . @y
nach induktiver Annahme bereits alles bewiesen ist, gibt es zugehorige
Relationszeichen 1y . . . 13, so daB (3), (4) gilt. Die Definitionsprozesse,
durch die @ aus ;... @ entsteht (Einsetzung und rekursive Defini-
tion), konnen siamtlich im System P formal nachgebildet werden. Tut

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 187

man dies, so erhilt man aus 7y . . . 1y ein neues Relationszeichen 14),
fir welches man die Geltung von (3), (4) unter Verwendung der
induktiven Annahme ohne Schwierigkeit beweisen kann.

41) Bei der genauen Durchfithrung dieses Beweises wird natiirlich 7 nicht
auf dem Umweg iiber die inhaltliche Deutung, sondern durch seine rein formale
Beschaffenheit definiert.

and we shall use complete induction on
the rank of ¢. For functions of rank one (i.e. constants and the
function x+ 1) the theorem is trivial. Therefore let ¢ have rank m.
It results from functions of lower rank @;...@j; by the operations



286 5 Primitive-Recursive Functions

of substitution or recursive definition. Since, by inductive hypothesis,
everything is already proved for @;..@j, there exist corresponding
predicates i . . .1, for which (3) and (4) hold. The definitional pro-
cedures by which @ arises from @; ... @) (substitution and recursive
definition) can both be formally imitated in the system P. If one does

On formally undecidable propositions of Principia Mathematica etc. 187

this, then one obtains from 7y .. .7, a new predicate r*') for which
one can prove without difficulty the validity of (3) and (4) by using
the inductive hypothesis.

41) ‘When this proof is rigorously carried out, r will naturally not be defined
by this shortcut through the intuitive interpretation, but rather by its purely formal
structure.

To navigate some nasty technical difficulties, we will prove a weakened variant
of Theorem V, which replaces syntactic representability with semantic repre-
sentability.

Theorem 5.15 Goddel’s Theorem V, semantic variant

Every primitive-recursive relation is semantically representable in P.

Proof: We closely follow Godel’s line of reasoning and prove the theorem for all
primitive-recursive functions f by induction over their level, a concept defined
on page 216.

At the lowest level are the zero function, the successor function, and the pro-
jection functions. We will show that these functions are semantically repre-
sentable:

B The zero function null(x) = 0 is represented by the formula (PR1)

Cnun(y1,x1) == (y1 =0)

as this formula satisfies:

B The successor function s(xz) = x + 1 is represented by the formula  (PR2)

os(y1,x1) == (y1="fx1)
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as this formula satisfies:

&l

y=z+1 = F ¢(7,7)
y#x—’_l = ':_‘(ps<gvf)

B The projection 7' (x1, ..., x,) = x; is represented by the formula  (PR3)
Orn(Y1,X1, -3 %) = (y1 =%;)
as this formula satisfies:

y:ﬂ—?(xlw‘wxn) = ): SDTF(?wmilw”;m)
y# (@1, 20) = FE (U, 7, Tn)

This concludes the induction start. In the induction step, we must demonstrate
that the theorem’s proposition extends from the primitive-recursive functions
at a certain level to those at the subsequent level. Two cases need to be
distinguished:

B | has been created by substitution: (PR4)

f(xlv . 'axn) = h(gl(xla cee 7xn)a cee agm(xlv cee 71'71)) (520)

To maintain clarity, we confine ourselves to the cases n = 1 and m = 1; the
proof proceeds accordingly for other values. Equation (5.20) then takes this
form:

f(z) = h(g(x)) (5.21)
In a first attempt, we transform (5.21) into the following formula:

orly1,x1) == Yup (ur = g(x1) = y1 = h(u1)) (5.22)

We haven’t quite reached our goal yet, as the two function symbols g and
h are unavailable in P or P’. However, the induction hypothesis guarantees
that both g and h are semantically representable by two formulas ¢, and
¥, respectively, allowing us to rewrite (5.22) as follows:

@r(yr,xa) = Vur (pg(us,x1) = @nlys, u1))
Now, let us consider an arbitrary instance of the form ¢ (77, 77):
@f(maxil) = Vul (QDQ(Ul,Tl) — @h(m7 Ul))

The subformula ¢g4(ui,Z7) is true precisely when uy is interpreted as the
number g(x1). In this case, the subformula ¢y, (77, u1) is true exactly when
y1 is the value h(g(z1)), yielding the following relationship:

y1=h(g(z1)) = E ¢r(1,71)
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y1 # h(g(z1)) = E —pr(U1,71)

Thus, the function f obtained from substitution is represented by ¢y.

B f is derived from the schema of primitive recursion: (PR5)
Once again, we restrict ourselves to the case n = 1 for clarity.

f(0,2) == g(x)
f(k+1,2) := h(k, f(k,z),x)

Let us attempt to construct a formula 1 (x;) that holds true precisely when
xp is interpreted as the function f. As a starting point, consider:

P = Vx1 Vy1 Vki ((x2(y1,0,x1) <+ y1 = g(x1)) A
(x2(y17f ki,x1) < (Vul (Xz(u17k1,X1) — y1 = h(ki,u1,%1)))))

As before, the function symbols can be substituted by formulas that are
guaranteed to exist by the induction hypothesis:

P 1=Vxy Vy1 Vky ((xa(y1,0,x1) > @g(y1,x1)) A
(x2(y1, f ki, x1) > (Vup (xa(u1, ki, x1) = @n(y1, ki, ui,x1)))))

The auxiliary function 1(x,) enables us to semantically represent f with less
effort. The formula

or(y1, ki, x1) = Vxz (1(x2) = x2(y1, ki, x1))

serves this purpose, as the following holds:

k

A minor technical hurdle remains: x, has three parameters, a construct not
available in Godel’s system P, where variables of higher types always have a
single parameter. However, on page 141, Gddel had already indicated that this
is not an issue in the proper sense. Variables with multiple parameters can be
simulated within P by variables with a single parameter, that is, each formula
can be rewritten such that only variables with a single parameter are present.
Nevertheless, the result would be so confusing that we are well advised to leave
the formulas in their current form.

This completes the proof sketch for the weakened version of Theorem V. [

We will further illustrate the meaning of Theorem V by constructing the formu-
las for two specific primitive-recursive functions we know well by now, addition
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and multiplication:

add(0,z) = =
add(k + 1,2) = s(add(k,z))

mult(0,2) = 0
mult(k + 1,2) = add(mult(k, ), z)

Addition is semantically represented by the formula

Padd (Y1, k1,x1) = VX2 (Yada(x2) = x2(y1, k1,x1))
where 1,44 is a placeholder for:
Yadd = x1 Vy1 Vki ((x2(y1,0,x1) <> y1 =x1) A
(x2(y1,f ki,x1) <> (Vu1 (x2(u1, ki,x1) = y1 =f u1))))

With the formula ¢,qq at hand, multiplication can easily be represented, too,
by the formula

Grmutt (Y1, k1, %1) = VX2 (¥mute(X2) = X2(y1, k1, x1))
with
Ymute = Vx1 Vy1 Vky ((x2(y1,0,x1) <> y1 =0) A
(x2(y1,f ki, x1) < (Vur (x2(ug, ki, x1) = @add(y1,u1,x1)))))
For @mul, the following applies:
y=z-2 = F ouun(?,7,2) (5.23)
Y,T,Z) (5.24)

The variables z, y, and z may be substituted by arbitrary numbers. For in-
stance, the following holds:

E o omu(4,2,2) (5.25)
E ~@mu (5,2, 2) (5.26)

Godel’s Theorem V is quite similar to the weakened variant we just proved.
The only difference is that the notion of truth (‘=’) is replaced by the notion
of provability (‘+’). (5.23) and (5.24) then become:

Yy=x-z = Pmult (g; E? E)
Y,

y%IZ = F_‘(Pmult( f,f)
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Furthermore, the two instances (5.25) and (5.26) change to:

F Pmult (Z; i; i) (527)
F TPmult (Sa i: §) (528)

Hence, considerably more effort is required to prove Theorem V in its original
form. Regarding our specific example, it has to be demonstrated that the
formula instances (5.27) and (5.28) are derivable within the formal system P.
This also clarifies footnote 39, where Godel states:

39) Theorem V depends of course upon the fact that, for a recursive relation R, it

is decidable on the basis of the axioms of the system P whether or not R holds for any
given n-tuple of numbers.

We want to sketch how to construct a corresponding proof using the formula
instances (5.27) and (5.28) as examples. For this task, we exploit that every
primitive-recursive function is readily computable. For instance:

mult(2,2) = add(mult(1,2),2)
= add(add(mult(0, 2),2),2)
= add(add(0,2),2)
= add(2,2)
s(add(1,2))
= s(s(add(0,2)))
= s(s(2))
= s(3)
=4

Note that the calculation did not rely on the semantic meaning of addition
or multiplication; the correct result was obtained by strictly adhering to the
primitive-recursive definition of these functions. The proof of Theorem V builds
upon the observation that all steps are replicable within the formal system P
in reverse order. In detail, this means that the following theorems are derivable
within P, one after the other:

(@Y o.020

L F ¢s(4,3) 15" 4 = s(3)

2. F FJug (ps(4,u1) A ps(ug,2)) 1 4 = s(s(2))
3. F Fup Fvi (ws(4,u1) A ps(ur,vi) A @aga(vi,0,2)) 1 4 = s(s(add(0,2)))

4. F Jug (ps(4,u1) A paaalus, 1,2)) i 4 = s(add(1,2))
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(S IR

T

©add(4,2,2) i 4 = add(2,2)
Juy (¢add(4,u1,2) A pada(ui,0,2)) 1 4 = add(add(0, 2),2)

Jur vy (Padd (4, u1,2) A @ada (U1, vi, 2) A @mut(vi, 0,2))
1z 4 = add(add(mult(0, 2), 2), 2)

Ju; (pada(4,u1,2) A @mus(ug, 1,2)) 1z 4 = add(mult(1, 2), 2)

Omue(4,2,2) 1 4 = mult(2, 2)

Lo F —ps(5,3) 1 5 # s(3)
2 F o =Juy (ps(5,u1) A ps(ug,2)) 1T 5 # s(s(2))
3 F o —Juy vy (ps(5,u1) A @s(u1,vi) A @add(v1,0,2)) 1 5 # s(s(add(0,2)))
4 F o =3u (ps(5,u1) A @agalur, 1,2)) 1 5 # s(add(1,2))
5 F o —0ada(5,2,2) 15 5 # add(2,2)
(.i. F =3 u1 (paqd(5,u1,2) A paqalu, 0,2)) i 5 # add(add(0, 2),2)
7 F o =3u; 3vi (©add(5,u1,2) A @aga(us, vi, 2) A @mut(vi, 0,2))

1 5 # add(add(mult(0, 2),2),2)
8 F =3u1 (0aqd(5,u1,2) A Omuis (U1, 1,2)) 1z 5 # add(mult(1, 2), 2)
9 Fo—@mus(5,2,2) 15 5 # mult(2,2)

In fact, the ability to replicate the calculation within P is not particularly
remarkable. G6del’s formal system P is essentially the system of the Principia
Mathematica and, as such, capable of formalizing all of classical mathematics.
However, this does not imply that the derivation is straightforward. If we were
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to attempt to fill in the remaining proof gaps, we would have a lot of work on
our plates. This is why Godel only sketched the proof, which we take as the
opportunity to bid farewell to Theorem V at this juncture.

Finally, G6del introduces another idiom:

Ein Rela-
tionszeichen 1, welches auf diesem Wege einer rekursiven Relation
zugeordnet ist*?), soll rekursiv heiBen.

42) Welches also, inhaltlich gedeutet, das Bestehen dieser Relation ausdriickt.

A predicate
r which corresponds in this way to a recursive relation??) shall be
called recursive.

42) Which, therefore, expresses intuitively that this relation holds.

The notation of a relation sign (“Relationszeichen”) was introduced earlier on
page 148, signifying a formula with free variables, all of which are individual
variables. From what has been said so far, the origin of this term becomes
evident. It arises from the fact that any formula ¢ with n free individual
variables can be naturally associated with the following relation:

R = {(z1,....,2,) EN"| E @(TT,....Tn)}

If R is a primitive-recursive relation and the formula ¢ fulfills the property
postulated in Theorem V, that is, if

(1,...,2n) ER = + o(T1,...,Tn)
(x1,...,2n) € R = F—o(T1,...,Tn),

holds, ¢ is called primitive-recursive. In more concise terms, ¢ is primitive re-
cursive if it syntactically represents a primitive-recursive relation. The concept
just introduced also enables us to speak of primitive-recursive class expressions,
referring to primitive-recursive formulas with a single free individual variable.
Those formulas syntactically represent a primitive-recursive set. Remember
that Gddel uses the term recursive rather than primitive recursive, as he does
throughout his work.
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6 The Limits of Mathematics

“Abandon hope all ye who enter here.”

Dante’s Inferno

Before setting the stage for the grand finale, let us briefly recapitulate the
results we have achieved thus far:

B In Chapter 4, we acquainted ourselves with the formal system P and demon-
strated how formulas and proofs can be arithmetized. By assigning Godel
numbers to formulas and sequences of formulas, we could interpret the ma-
nipulation of symbol strings, and thus the conduct of a proof, on the arith-
metic level.

B In Chapter 5, we introduced the concept of primitive recursion and meticu-
lously derived 45 primitive-recursive functions and relations. Ultimately, we
discovered that crucial metamathematical concepts about formal systems
are expressible by primitive recursion.

B At the end of Chapter 5, we discussed Theorem V, establishing a link be-
tween formulas and primitive-recursive relations. Substantively, this theo-
rem states that any primitive-recursive relation is syntactically representable
within P. This means that for any given primitive-recursive relation and
number combination, it can either be proved or disproved within P whether
or not the relation holds for the given number combination.

Now, Godel will demonstrate the destructive power unleashed by combining
these three partial results in a particular manner. Lean back and enjoy the
culmination!

6.1 Godel’s Main Result

Godel starts by defining a crucial term that will remain prevalent throughout
this chapter.

Wir kommen nun ans Ziel unserer Ausfithrungen. Sei x eine
beliebige Klasse von Formeln. Wir bezeichnen mit Flg (x) (Folge-
rungsmenge von x) die kleinste Menge von Formeln, die alle Formeln
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aus x und alle Aziome enthilt und gegen die Relation ,,unmittelbare
Folge“ abgeschlossen ist.

We now come to the goal of our work. Let x be an arbitrary
class of formulas. We denote by Flg (x) (consequence set of x)
the smallest set of formulas which contains all formulas of x and
all axioms and is closed with respect to the relation of “immediate
consequence”.

Pay attention to the italic typeface! It indicates that the set x and the set
Flg(x) are both subsets of the natural numbers. In particular, the set x contains
the Godel numbers of formulas:

x={"¢1 " p2s o}

The set Flg(x) is the superset of y, which additionally contains the Godel num-
bers of all axioms of P, as well as the Godel numbers of all theorems derivable
from the axioms and the formulas encoded in x. To concisely summarize what
has just been said, we adopt the following intuitively obvious notation:

Definition 6.1

B For any set M of formulas, P U M denotes the formal system obtained
from P after augmenting the axioms by the formulas from M.

B For any set x of Gédel numbers, P U x denotes the following set:

Pux == PU{¢| ¢ €x}

With the simplified notation at hand, the sets y and Flg(x) can be characterized
as follows:

X C {n € N|n is the Godel number of a formula}

{
Flg(x) = {n € N| n is the Godel number of a theorem of PUx}  (6.1)

The next definition is just as important:

x heiflit w-widerspruchsfrei, wenn es kein
Klassenzeichen a gibt, so daB:

(n) {Sb (a ZZ’n)> ¢ Flg (x)] & { Neg (v Gen a)} ¢ Flg (x)

wobei v die freie Variable des Klassenzeichens a ist.
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We say that x is w-consistent if there is no
class expression a such that

(n) [Sb (a Zéjn)) e Flg (x)} & [ Neg (v Gen a)} ¢ Flg (x)

where v is the free variable of the class expression a.

Let us recall: A class expression is a formula ¢(£;) with a sole free individual
variable, the variable &;. Go6del stipulates that the set x is w-consistent if and
only if the following two properties do not hold simultaneously for any formula

@(&1):

B For every natural number n, 1 (n)
e the formula ¢(7) & Sb < (n)
® is provable in P U y. 1 ¢ Flg (x)

B The formula =V &; ¢(&;) 1= Neg (v Gen a)
® is provable in P U . i ¢ Flg (x)

In modern terms:

Definition 6.2 w-Consistency

The set P U y is w-consistent if the following holds:
Fo@) foralln € N = § =Vxq p(x1)

A set of Godel numbers x is w-consistent if P U x is w-consistent.

In the next sentence, Godel points out that w-consistency is a stronger property
than ordinary consistency. In particular, he states that every w-consistent
system is consistent. But, as will be shown later, the converse does not hold.

Jedes w-widerspruchsfreie System ist selbstverstindlich auch
widerspruchsfrei. Es gilt aber, wie spiter gezeigt werden wird, nicht
das Umgekehrte.

Every w-consistent system is obviously also consistent. How-
ever, as will be shown later, the converse does not hold.
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Every w-consistent set is consistent because all formulas become theorems
in an inconsistent formal system, including those formulas that cause an w-
contradiction, as defined in Definition 6.2. Thus, we have:

Theorem 6.3

Every w-consistent set is consistent.

At this point, we are on the verge of reaching the climax of Gédel’s work. It
comes in the form of Theorem VI, which asserts nothing less than the incom-
pleteness of P U x. This theorem is of such generality that all commonly used
variants of the first incompleteness theorem are derivable as corollaries.

6.1.1 Incompleteness of System P

Das allgemeine Resultat iiber die Existenz unentscheidbarer
Sitze lautet:

Satz VI: Zu jeder w-widerspruchsfreien rekursiven
Klasse x von Formeln gibt es rekursive Klassenzeichen r, so
daB weder v Gen r noch Neg (v Gen r) zu Flg (x) gehort (wobei v
die freie Variable aus r ist).

The general result on the existence of undecidable propositions
reads:

Theorem VI: For every w-consistent recursive class x of for-
mulas, there exists a recursive class expression r such that neither
v Gen 7 nor Neg (v Gen r) belongs to Flg (x) (where v is the free
variable of ).

Let us start by making the theorem more accessible to contemporary readers:

Theorem 6.4 Gbddel’s Theorem VI

Let x = {1 ,Tp2, ...} be w-consistent and primitive recursive. Then,
there exists a primitive-recursive formula ¢,.(£;1), for which neither

231 907’(51) nor —V§&; ‘191”(51)

is provable within the system P U y.

The proof commences with the definition of several relations concerning the
provability of formulas in P U x:



6.1 Gbdel’'s Main Result 297

Beweis: Sei x eine beliebige rekursive w-widerspruchsfreie Klasse
von Formeln. Wir definieren:

Bwx (z) = (n) [n<1(z) —> Az (n Glz)V (n Glz)exV  (5)

(Ep,q) {0<p,q<n&Fl(nGlz,p Glz, g Glz)}] & l(z) >0
(vgl. den analogen Begriff 44)
zBxy= Buwx (z) & [l (z)] Glz=y (6)

Bewx () = (Ey) y Bxz (61)
(vgl. die analogen Begriffe 45, 46).

Proof. Let x be an arbitrary recursive w-consistent class of for-
mulas. We define:

Bwx (z) = (n) [nS1l(z) —> Az (n Glz)V (n Glz)exV (5)
(Ep,q) {0<p,q<n&Fl(nGla,p Glz,qGlz)}] &1(z) >0
(cf. the similar concept 44)
zBxy= Buwx (z) & [l (z)] Glz=y (6)

Bewx (z) = (Fy) y Bx z (6:1)
(cf. the similar concepts 45, 46).

In modern notation, (5), (6), and (6-1) read as follows:

Az(n Glx) v

(nGlz) e x V

30 <p,g<n)
Fl(n Glz,p Glx,q Glx)

x € Bw, = l(z)>0AVY(n <lI(x))

zByy = Bu,(z) ANl(z) Glz =y
z € Bew, & JyyByx

The definition of Bw, lacks the estimate 0 < n. Adding it leads to:

Az(n Glx) vV

(nGlz) e x Vv

30 <p,qg<n)
Fl(n Glz,p Glz,q Glx)

z € Bu, = l(z)>0AVY(0<n<l[(x))

The introduced notions are extensions of the primitive-recursive relations 44
and 45 from Section 5.2 and the relation 46 from Section 5.3, respectively. All
three follow identical definition patterns, making their substantive meanings
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almost self-evident:

r € Bwy ¢ x encodes a formal proof chain of the system P U x
By "¢' < x encodes a proof for the formula ¢ in P U x
To'ec Bewy, & ¢ is provable in P U x (6.2)

Es gilt offenbar:
(z) [Bewx (z) oo ze Flg (x)] (7
(z) [Bew (z) —> Bewx ()] ®)

Obviously, we have:
(z) [Bewx (z) oo ze Flg (x)] (7
(z) [Bew (z) —> Bewx ()] ®)

In modern notation, (7) and (8) take on the following appearance:

z € Bew, & z € Flg(x) (6.3)
x € Bew = = € Bew,, (6.4)

(6.3) and (6.4) can be expressed even more conciselys as follows:
Bew C Bew, = Flg(x)

The inclusion Bew C Bew,, is immediately apparent because the set of theorems
can only increase but never decrease when the set of axioms of a formal system
is supplemented with additional formulas. For realizing Bew, = Flg(x), it is
sufficient to have another look at (6.2) and (6.1).

Next, Godel defines a primitive-recursive relation that will play a central role
in the proof of the main result:

x is not a proof for y

(Primitive-recursive relation)

188 Kurt Godel,

Nun definieren wir die Relation:
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Q (5,y) = 7 Bx [Sb (yzl?y)>} 1)

Da x Bxy [nach (6), (5)] und Sb (y Zl?y)> (nach Def. 17, 31)

rekursiv sind, so auch @ (zy).

188 Kurt Godel,

Now we define the relation:

Q (z,y) = = Bx [Sb (yzl?y)ﬂ 1)

Since z Bxy [according to (6), (5)] and Sb (y Zl?y)> (accord-

ing to Definitions 17, 31) are recursive, so also is @ (zy).

The number 19 encodes the symbol y;. Denoting the formula with the Godel
number y as ¢, allows us to rephrase this definition as follows:

(z,y) € Q & =(z By "pyly1 < 7)) (6.5)
In colloquial terms, this relationship reads as such:
(z,y) € Q & z does not encode a proof for the formula ¢,[y; <+ 7] (6.6)

In other words, if y is the Godel number of a formula ¢, with the free variable
y1, then x and y are related if and only if x does not encode a formula sequence
that derives the diagonal element ¢, () within the formal system P U .

Nach Satz V und (8) gibt es also ein
Relationszeichen ¢ (mit den freien Variablen 17, 19), so daB gilt:

51 {Sb (yzl?y)ﬂ o B [Sb (qzlzz) Zl?y))] )

15 {Sb (yzl‘?y))] B {Neg Sb <qZIZx) Zl?y)ﬂ (10)

According to Theorem V and (8), there exists therefore a
predicate q (with the free variables 17 and 19) such that the fol-
lowing hold:



300 6 The Limits of Mathematics

2By [Sb (;;Zl‘(’y))} > Bewx [Sb (quzx) Zl?y))] ©)

7By [Sb (yzl?y)ﬂ —> Bewx [Neg Sb (qzlzx) le()y)>} (10)

The relation @ is primitive recursive, thus fulfilling the prerequisite of Theorem
V. Consequently, there exists a formula with two free variables x; and y;, that
syntactically represents (). Let ¢ be the Gédel number of this formula and
1q(x1,y1) the formula itself. According to Theorem V, the following applies:

(.y) €Q = F ¥y(T.7)
(x,y) ¢Q = l__‘wq(jvg)

As per (6.6), this is the same as:

x does not encode a proof for the formula ¢,ly1 <~ 7] = F ¥,(Z,7) (6.7)
x encodes a proof for the formula ¢, [y; < 7] = F —¢4(Z,7) (6.8)

(6.7) and (6.8) are precisely the statements (9) and (10) in Godel’s article.

Wir setzen:
p =17 Gen ¢ (11)
(p ist ein Klassenzeichen mit der freien Variablen 19) und

We set:
p= 17 Gen ¢ (11)
(p is a class expression with the free variable 19) and

The number 17 encodes the symbol x;, thus making p the Gédel number of the
following formula:

©py1) == Vx1 ¢g(x1,y1)

Having a single free variable, ¢, (y1) is a class expression in Gédel’s terminology.

(r ist ein rekursives Klassenzeichen mit der freien Variablen 1743).
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43) r entsteht ja aus dem rekursiven Relationszeichen ¢ durch Ersetzen
einer Variablen durch eine bestimmte Zahl (p).

r=Sb (qzl(%)) (12)

(r is a recursive class expression with the free variable 1743).

43) r arises from the recursive predicate q by replacing one variable by a
definite numeral (p).

The number 19 encodes the symbol y;, thus making r the Gédel number of the
following formula:

pr(x1) = 1q(x1,D) (6.9)
= Yq(x1,"Vx1 Pg(x1,y1) )

Dann gilt:

Sb <pZ1£()p)> — b ([17 Gen ] Zl?p)) — 17 Gen S <qZ1?p)) (13)
= 17 Gen r **)

[wegen (11) und (12)]

44) Die Operationen Gen, Sb sind natiirlich immer vertauschbar, falls sie
sich auf verschiedene Variable beziehen.

Then we have:

S <pZ1?p>> — 5 ([17 Gen ] Zl?p)) — 17 Gen S <qZ1?p)) (13)
— 17 Gen 1)

[by virtue of (11) and (12)]

44) The operations Gen and S b naturally always commute with each other, in case
they refer to different variables.

In modern notation, Godel states the following:
_ 19
@ply1 < D] & Sb (pZ(p))

_ (Vxl 1/Jq(X17y1)) y1 < 7] b Sb <[17 Gen ¢] Zl?P)>
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=Vx1 Yg(x1,D) 15 17 Gen Sb (qzl?p)>
=Vx1 pr(x1) 1z 17 Gen r

By choosing the number p for y, (6.7) and (6.8) can be rewritten as follows:

According to what has just been said, this is the same as:

x does not encode a proof for the formula Vx; ¢,(x1) = F 9,(Z,p) (6.10)
x encodes a proof for the formula Vx; ¢,(x1) = F —¢4(Z,p) (6.11)

ferner:
Sb (q lex) zl?p)) — §b (r lem)) (14)

[nach (12)]. Setzt man nun in (9) und (10) p fiir y ein, so entsteht
unter Beriicksichtigung von (13) und (14):

z Bx (17 Gen 1) —> Bewx {Sb (rzlzm))} (15)
2 Bx (17 Gen 1) —> Bewx [Neg Sb (TZ1’(733)>} (16)

and, furthermore:

Sb (quzm) le()p)> =Sb (Tlezc)) (14)

[from (12)]. If one now substitutes p for y in (9) and (10), then,
taking into account (13) and (14), we have the result:

2 Bx (17 Gen 1) — Bewx {Sb (rzlzx))} (15)
2 Bx (17 Gen 1) —> Bewx [Neg Sb (rzlzx)ﬂ (16)

Godel’s equation (14) corresponds to

¥q(T,D) = ¢r(T),
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which can be utilized to further rephrase (6.10) and (6.11):

x does not encode a proof for the formula Vx; ¢.(x1) = F ¢, (T) (6.12)
x encodes a proof for the formula Vx; ¢,(x1) = F —¢,(T) (6.13)

(6.12) and (6.13) correspond to Godel’s equations (15) and (16), respectively.

Vx1 ¢r(x1) is the undecidable formula we have been looking for: Neither itself
nor its negation is provable within P U x. To see why, let us distinguish the
two possible cases:

B Case 1: FVxy p,(x1)
If Vx; ¢, (x1) were provable, some Godel number, say n, would encode the
proof of this formula. Then, according to (6.13):
F -, (m) (6.14)

On the other hand, the assumption F Vx; ¢, (x1) would allow us to derive
the following theorem:

F o (M)

Because of (6.14), this is only possible if x is inconsistent. Then, a fortiori
x would be w-inconsistent, contrary to our assumption.

Godels phrases the presented arguments as follows:

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 189

Daraus ergibt sich:

1. 17 Gen r ist nicht x-beweisbar*®). Denn wire dies der Fall,
so gibe es (nach 6'1) ein n, so daB n Bx (17 Gen ). Nach (16)

gilte also: Bewx [Neg Sb <r len)ﬂ, wihrend andererseits aus der

x-Beweisbarkeit von 17 Gen r auch die von Sb <TZ1(7n)) folgt. x wire

also widerspruchsvoll (umsomehr w-widerspruchsvoll).

45) 1 ist x-beweisbar, soll bedeuten: ze Flg (X), was nach (7) dasselbe besagt
wie: Bewx (z).

On formally undecidable propositions of Principia Mathematica etc. 189

From this follows:
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1. 17 Gen 7 is not x-provable*). For, were this the case, then
(according to 6-1) there would exist an n such that n Bx (17 Gen 7).
Hence, according to (16), Bewx {Neg Sb (7”21(7”))] would hold,
while, on the other hand, from the x-provability of 17 Gen r that of
Sb(r Z1(7n)> would also follow. Therefore, x would be inconsistent (a

fortiori, w-inconsistent)

45) z is x-provable shall mean: z¢ Flg (x), which, according to (7), has the
same meaning as Bewx (z).

B Case 2: - =V x1 @,(x1)

We have just shown that the formula Vx; ¢,(x1) cannot be proven, implying
that no natural number encodes a proof for this formula. Thus, according
to (6.12), the following holds:

F¢r(0), F (1), For(2), F@r(3), Fer(d),

At this point, we have crossed the finish line. On the one hand, —=Vx; ¢, (x1)
is provable by assumption. On the other hand, all instances ¢,.(77) are also
provable. x would then be w-inconsistent, contrary to our assumption.

Now, it is easy to follow Godel’s original words:

2. Neg (17 Gen r) ist nicht x-beweisbar. Beweis: Wie eben be-
wiesen wurde, ist 17 Gen r nicht x-beweisbar, d. h. (nach 6:1) es

gilt (n) n Bx (17 Gen r). Daraus folgt nach (15) (n) Bewx [Sb (rzlzn))},

was zusammen mit Bewx [Neg (17 Gen r)] gegen die w-Widerspruchs-
freiheit von x verstoen wiirde.

17 Gen r ist also aus x unentscheidbar, womit Satz VI be-
wiesen ist.

2. Neg (17 Gen 7) is not x-provable. Proof: As was just proved,
17 Gen r is not x-provable, i.e. (according to 6:1), (n)n Bx (17 Gen r)

holds. From this, we deduce, according to (15), (n) Bewx [S b (r Zl(7n))}

which, together with Bewx [Neg (17 Gen 7)], would contradict the w-
consistency of x.

Hence, 17 Gen 7 is undecidable from x, which proves Theorem VI.

This concludes the proof of the most paramount theorem in Goédel’s work.
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However, it is not yet the time to rest as the main result allows us to draw two
fundamental conclusions:

6\ Corollary 6.5

The formal system P is incomplete.

This assertion is a consequence of Theorem VI when y is taken as the empty
set. Note that the corollary implicitly assumes that the axioms of system P
are w-consistent. The reason why this assumption is not explicitly mentioned
is simple: P is essentially a formalized variant of classical mathematics. Thus,
if we could derive a contradiction in P, we could also make this contradiction
visible in ordinary mathematics. Conversely, this means that we can safely
assume the consistency of P as long as we trust ordinary mathematics.

The close relationship between P and ordinary mathematics makes it possi-
ble to replicate the notions of P and the utilized ways of reasoning in any
formal system expressive enough to formalize ordinary mathematics. Thus,
Corollary 6.5 also applies to these systems:

\ Corollary 6.6

Every consistent formal system expressive enough to formalize ordinary
mathematics is incomplete.

This is precisely the formulation of Theorem 1.6. Substantively, it corresponds
to the variant of the first incompleteness theorem that Godel presented at the
2nd Conference for Epistemology of the Exact Sciences in Konigsberg.

In the following paragraphs, Godel further generalizes his main result. Sec-
tion 6.2 will become particularly exciting as Godel demonstrates that the pre-
requisite of his main result, namely that a formal system is at least as expressive
as P, can be considerably weakened. Eventually, this brings us to the renowned
variant of the main result, now known as the first incompleteness theorem.

6.1.2 Consequences of the Main Result

The forthcoming section primarily holds historical significance. Gd&del high-
lights that the proof of the main result relies solely on arguments recognized
as legitimate by intuitionists.

Man kann sich leicht iiberzeugen, daf der eben gefiihrte
Beweis konstruktiv ist45a), d. h. es ist intuitionistisch einwandfrei
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folgendes bewiesen:

45a) Denn alle im Beweise vorkommenden Existentialbehauptungen beruhen
auf Satz V, der, wie leicht zu sehen, intuitionistisch einwandfrei ist.

One can easily convince oneself that the proof we have just
given is constructive ***), i.e. the following has been proved in an
intuitionistically unobjectionable way:

45a) For, all the existential assertions occurring in the proof rest upon Theo-
rem V, which, as is easy to see, is intuitionistically unobjectionable.

In fact, it is easy to convince oneself that the just conducted proof is construc-
tive. First, recall that all formulas used in the proof of Theorem V can be
written down explicitly, which means that Theorem V can be strengthened:

Theorem 6.7 Theorem V (constructive)

For every primitive-recursive relation R, a formula can be constructed that
syntactically represents R in P.

This theorem allows us to rewrite (6.12) and (6.13) as follows:

x does not encode a proof for the formula Vx; ¢, (x1)
= a proof for ¢, (T) can be constructed (6.15)
x encodes a proof for the formula Vxy ,.(x1)

= a proof for —,.(T) can be constructed (6.16)

Now, the two cases in the proof of Theorem VI read like this:

B Case 1: FVx; ¢,(x1)

If Vx1 ¢,(x1) were provable, some Godel number, say n, would encode the
proof of this formula. Then, according to (6.16),

a proof for -, (M) can be constructed. (6.17)
On the other hand, the assumption F Vx; ¢,.(x1) would allow us to

construct a proof for ¢ (7).

Because of (6.17), this is only possible if y is inconsistent. Then, a fortiori x
would be w-inconsistent, contrary to our assumption.
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B Case 2: F —Vx1 ¢, (x1)

We have just shown that the formula Vx; ¢,.(x1) cannot be proven, implying
that no natural number encodes a proof for this formula. Thus, according
to (6.16), the following holds:

A proof for the formula ¢, (0) can be constructed.
A proof for the formula @, (1) can be constructed.
2

A proof for the formula ¢,(2) can be constructed.

Then, x would be w-inconsistent, contrary to our assumption.

In Godel’s words, the same argument reads as follows:

Sei eine beliebige rekursiv definierte Klasse x
von Formeln vorgelegt. Wenn dann eine formale Entscheidung (aus x)
fiir die (effektiv aufweisbare) Satzformel 17 Gen r vorgelegt ist,

Assume given an arbitraty recursively defined class x
of formulas. Then, if we are presented with a formal decision (from
x) of the (effectively presentable) sentence 17 Gen r,

17 Gen ris the Godel number of Vx; ¢, (x1). When Godel says a formal decision
of the sentential formula 17 Gen r is presented, he means that either a proof
for Vx; ¢, (x1) or a proof for =Vxy ¢, (x1) is given.

The discussion above has shown the following: If, on the one hand, there is a
proof for Vx; ¢,(x1), then a proof can be constructed for any given formula.
If, on the other hand, there is a proof for —=Vx; ¢, (x1), then proofs can be
constructed for all formulas of the form ¢, (7). Therefore, in both cases, the
following holds:

SO
kann man effektiv angeben:

1. Einen Beweis fiir Neg (17 Gen 7).

we
can effectively give:

1. A proof of Neg (17 Gen 7).

1z Neg (17 Gen 7) is the Godel number of =V xy ,.(x1)
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2. Fiir jedes beliebige n einen Beweis fiir S'b (TZ1(7n)>

2. For any arbitrary n, a proof of Sb (TZ1(7n))

= Sb (TZ1(7n)

) is the Godel number of ¢, (7)

d. h. eine

formale Entscheidung von 17 Gen r wiirde die effektive Aufweisbarkeit
eines w-Widerspruchs zur Folge haben.

i.e. a
formal decision for 17 Gen r would have as a consequence the effec-
tive exhibition of an w-inconsistency.

Next, Godel discusses several generalizations of the main result. In the original
formulation of Theorem VI, he had assumed that y is a primitive-recursive
set, and from our current knowledge, it is clear why this assumption is needed.
In the proof of Theorem VI, we relied on the relation @) being syntactically
representable by a formula 4, which Theorem V guarantees for primitive-
recursive relations. However, since we do not need the property of primitive
recursivity at any other point in the proof, we can weaken the premise of
Theorem VI.

Godel follows the same line of reasoning but with a different terminology. He
refers to syntactically representable functions and relations as “entscheidungs-
definit” or simply as “decidable” in the English translation.

Wir wollen eine Relation (Klasse) zwischen natiirlichen Zahlen
R (21 ...x,) entscheidungsdefinit nennen, wenn es ein n-stelliges
Relationszeichen r gibt, so daB (3) und (4) (vgl. Satz V) gilt.
Insbesondere ist also nach Satz V jede rekursive Relation ent-
scheidungsdefinit. Analog soll ein Relationszeichen entscheidungs-
definit heifen, wenn es auf diese Weise einer entscheidungsdefiniten
Relation zugeordnet ist. Es geniigt nun fiir die Existenz von aus x
unentscheidbarer Sitze, von der Klasse x vorauszusetzen, dal3 sie w-
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widerspruchsfrei und entscheidungsdefinit ist. Denn die Entscheidungs-
definitheit iibertréigt sich von x auf z Bx y (vgl. (5), (6)) und auf @ (z,y)

190 Kurt Godel,

(vgl. (81)) und nur dies wurde in obigem Beweise verwendet. Der un-
entscheidbare Satz hat in diesem Fall die Gestalt v Gen r, wo 7 ein
entscheidungsdefinites Klassenzeichen ist (es geniigt iibrigens sogar,
daB x in dem durch Xx erweiterten System entscheidungsdefinit ist).

We shall call a relation (class) among natural numbers
R (w1 ...z,) decidable if there exists an n-place predicate r
such that (3) and (4) (cf. Theorem V) hold. In particular, according to
Theorem V, every recursive relation is decidable. Similarly a predicate
will be called decidable when it corresponds in this way to a decidable
relation. Now it suffices for the existence of [from x] undecidable sen-
tences to assume that the class x is w-consistent and decidable. For the
decidability carries over from x to x Bx y (cf. (5), (6)) and to @ (z,vy)

190 Kurt Godel,

(cf. (8'1)), and only this was used in the proof above. The undecidable
proposition has, in this case, the form v Gen 7, where r is a decidable
class expression (moreover, it even suffices that x be decidable in the
system extended by Xx).

As a theorem, the result reads as follows:

!é\ Theorem 6.8 Theorem VI, stronger variant

Let x = {"¢17,"¢27,...} be w-consistent and syntactically representable.
Then, there exists a formula ¢,.(£1), for which neither

V& 997‘(51) nor —V¢&; 997'(51)

is provable within P U x.

Next, Godel derives a variant of the main result, which replaces the requirement
of w-consistency with the weaker requirement of consistency. Before present-
ing the theorem, let us examine the consequences by revisiting the two cases
distinguished on page 303:

B Case 1: FVxy p,(x1)
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In the argument made, w-consistency plays no role at all; it hinges solely
on the consistency of the formal system. Therefore, we can adopt the proof
steps one by one.

B Case 2: I/ Vx1 o,(x1)

The line of reasoning follows up to the point where the formula instances
¢ (1) are shown to be provable:

H @r(ﬁ)’ + SQT(I)a F ‘PT(Q% - @r(g)v t QQT(Z), (6.18)

The consistency assumption doesn’t suffice to deduce If —=Vx3 ¢, (x1). How-
ever, it does lead to the conclusion that none of the formulas referenced in
(6.18) is derivable in negated form.

V _‘4107“(6)7 V _‘(PT(T)v bz _‘@T(é)a bz ﬂ507“(§)a V ﬂS‘Jr(z)a s (619)

Now, we are prepared to articulate the anticipated variant of the main result:

6\ Theorem 6.9 Theorem VI for consistent sets

Let x = {"p1,"p27,...} be consistent and syntactically representable.
Then, there exists a formula ¢, (1) with the following properties:

W V& o, (61) is unprovable. W i V&, (61)

B No counterexample can be given. 1 i~ (M) for all n € N

In Godel’s article, this theorem is hidden in the following passage:

Setzt man von x statt w-Widerspruchsfreiheit, blol Wider-
spruchsfreiheit voraus, so folgt zwar nicht die Existenz eines unent-
scheidbaren Satzes, wohl aber die Existenz einer Eigenschaft (7),
fir die weder ein Gegenbeispiel angebbar, noch beweisbar ist, dafl
sie allen Zahlen zukommt.

If one assumes merely the consistency of x, instead of its w-
consistency, then, to be sure, the existence of an undecidable proposi-
tion does not follow; however, we do obtain the existence of a prop-
erty (r) for which neither a counterexample can be given nor can it
be proved that it holds for all numbers.

Given the previous discussion, Godel’s proof is easy to understand, as it follows
the very same line of reasoning:
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Denn zum Beweise, daB 17 Gen r nicht
x-beweisbar ist, wurde nur die Widerspruchsfreiheit von x verwendet
(vgl. S. 189) und aus Bewx (17 Gen r) folgt nach (15), daB fiir jede Zahl

Sb (7’ lex)) folglich fiir keine Zahl Neg Sb (r lex)) .

For in the proof that 17 Gen r is not x-provable, only the consistency of
x was used (cf. p. 189), and from Bewx (17 Gen 7) it follows, according

to (15), that Sb <7“ lem)) holds for all numbers z; consequently, for no

number z is Neg Sb (erzI)> x-provable.

Next, Godel delivers on a promise made on page 295 by proving the existence of
formal systems that are consistent but not w-consistent. We can readily obtain
such a system by adjoining the formula —=Vx; ¢, (x1) to the axioms, or, which
is the same, by expanding the set x with the Godel number "=V x; @, (x1) ™"

X' = xU{TYxg o (xa) T}

Adjungiert man Neg (17 Gen r) zu x, so erhdlt man eine
widerspruchsfreie aber nicht w-widerspruchsfreie Formelklasse x'. %'
ist widerspruchsfrei, denn sonst wire 17 Gen r x-beweisbar. X' ist

aber nicht w-widerspruchsfrei, denn wegen Bewx (17 Gen r) und

(15) gilt: (z) Bewx Sb <7’lex)>, umsomehr also: (z) Bewxs Sb G’lex))
und andererseits gilt natiirlich: Bewx: [Neg (17 Gen r)]) *°).

46) Die Existenz widerspruchsfreier und nicht w-widerspruchsfreier x ist
damit natiirlich nur unter der Voraussetzung bewiesen, dal es iiberhaupt wider-
spruchsfreie x gibt (d. h. daB P widerspruchsfrei ist).

If one adjoins Neg (17 Gen r) to x, then one obtains a consistent,
but not an w-consistent, class of formulas x’. x’ is consistent, for, other-
wise, 17 Gen r would be x-provable. x’ is however not w-consistent, for,

by virtue of Bewx (17 Gen 7) and (15), we have (z) Bewx Sb QZIZCUQ’

and, a fortiori, (z) Bewx: S'b (r le’r)) On the other hand, of course,
Bewx [Neg (17 Gen 7)]) holds. )
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46) The existence of consistent and non-w-consistent x is, of course, only proved
under the assumption that there exists any consistent x at all (i.e. that P is consistent).

Let us examine the line of reasoning more closely. Based on the above discus-
sion, it is apparent that within P U y, neither the formula Vx; ¢,.(x1) nor the
formula —Vx; @,(x1) is provable. According to theorem 4.8, this means that
the addition of =V x; ¢, (x1) does not generate any contradictions. Thus, x’ is
a consistent set.

However, it is easy to recognize that x’ is not w-consistent. The unprovability
of Vx1 ¢,(x1) implies that no natural number = encodes the Gédel number of
a proof. Consequently, because of (6.12), the following holds for the formal
system P U x:

F ‘Pr(ﬁ)v F @T(T)v - Spr(i)v + ‘Pr(g)v H @T(Z)v s (6.20)

These formulas are thus provable in P U x’. But there is more to say about
PUy'. In PU Y/, the formula =Vx; ¢,(x1) is an axiom and thus a theorem,
too:

F V%1 ¢r(x1) (6.21)

Together, (6.20) and (6.21) show that the formal system is not w-consistent.
Hence, the substantive meaning of Theorem 6.3 cannot be reversed:

Theorem 6.10

Not every consistent set is w-consistent.

Did you wonder why Gddel bothered to include the set x in his theorems? This
set isn’t necessary to demonstrate the incompleteness of the formal system P,
as the main result yields this conclusion by substituting y with the empty set.
At first glance, the case Y = () appears to be the most intriguing.

In fact, including the set x gives the main result an unexpected punch. Since x
can be chosen almost freely, the gaps in the formal system P cannot be closed
by introducing additional axioms.

This applies as long as the axioms constitute a syntactically representable set.
In particular, the axioms of all modern formal systems meet this conceivably
weak criterion, and we would need a high degree of destructive ingenuity to
come up with a set of formulas that does not. Thus, as long as we stay within
the realm of serious mathematics, any extension of P must remain as inherently
incomplete as P itself:
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The formal system P cannot be completed.

Due to the boldness of his discoveries, Godel seemed uncertain whether his
reading audience would truly grasp Theorem VI’s weak premise. Probably to
be safe, he decided to list several specific examples.

Ein Spezialfall von Satz VI ist der, daB die Klasse x aus end-
lich vielen Formeln (und ev. den daraus durch Typenerhéhung ent-
stehenden) besteht. Jede endliche Klasse o ist natiirlich rekursiv. Sei
a die groBte in oo enthaltene Zahl. Dann gilt in diesem Fall fiir x:

zexoo (Em,n) mSz&n<a&nea & x=m Thn

x ist also rekursiv. Das erlaubt z. B. zu schlieen, daf3 auch
mit Hilfe des Auswahlaxioms (fiir alle Typen) oder der verall-
gemeinerten Kontinuumshypothese nicht alle Sitze entscheidbar sind,
vorausgesetzt, dal diese Hypothesen w-widerspruchsfrei sind.

A special case of Theorem VI occurs when the class x consists
of finitely many formulas (and possibly also those arising therefrom
by type elevation). Of course every finite class o« is recursive. Let a
be the largest number in «. Then, in this case, we have for x:

zexoo (Emyn) [mSz & n<a&nex & x=m Thn

Hence, x is recursive. This allows us to deduce that even with
the aid of the axiom of choice (for all types) or of the generalized
continuum hypothesis not all sentences are decidable, assuming that
these hypotheses are w-consistent.

In the quoted paragraph, Gédel explicitly mentions the axiom of choice, ad-
dressed in detail in Section 2.4.3.1, and the generalized continuum hypothesis,
elaborated upon in Section 2.4.1.

Beim Beweise von Satz VI wurden keine anderen Eigenschaften
des Systems P verwendet als die folgenden:

1. Die Klasse der Axiome und die Schlufiregeln (d. h. die Rela-
tion ,,unmittelbare Folge*) sind rekursiv definierbar (sobald man die
Grundzeichen in irgend einer Weise durch natiirliche Zahlen ersetzt).

2. Jede rekursive Relation ist innerhalb des Systems P defi-
nierbar (im Sinn von Satz V).

Daher gibt es in jedem formalen System, das den Voraus-
setzungen 1, 2 geniigt und w-widerspruchsfrei ist, unentscheidbare
Sitze der Form (z) F' (z), wo F eine rekursiv definierte Eigenschaft
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natiirlicher Zahlen ist, und ebenso in jeder Erweiterung eines solchen

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 191

Systems durch eine rekursiv definierbare w-widerspruchsfreie Klasse
von Axiomen. Zu den Systemen, welche die Voraussetzungen 1,2
erfiillen,

gehoren, wie man leicht bestitigen kann, das Zermelo-Fraenkelsche
und das v. Neumannsche Axiomensystem der Mengenlehre *7)

47) Der Beweis von Voraussetzung 1. gestaltet sich hier sogar einfacher als
im Falle des Systems P, da es nur eine Art von Grundvariablen gibt (bzw. zwei
bei J. v. Neumann).

In the proof of Theorem VI no properties of the system P were
used other than the following:

1. The class of axioms and the rules of inference (i.e. the
relation “immediate consequence”) are recursively definable (when the
primitive symbols are replaced in some manner by natural numbers).

2. Every recursive relation is definable within the system P (in
the sense of Theorem V).

Hence, in every formal system which satisfies assumptions
1, 2 and is w-consistent, there exist undecidable propositions
of the form (z) F'(z), where F is a recursively defined prop-
erty of natural numbers, and likewise in every extension of such a

On formally undecidable propositions of Principia Mathematica etc. 191

system by recursively definable w-consistent class of axioms. To the
systems which satisfy assumptions 1,2 belong, as one can easily con-
firm, the Zermelo-Fraenkel and the v. Neumann axiom systems for set
theory, 47)

47) The proof of assumption 1 turns out to be even simpler here than in the
case of the system P, since there is only one kind of primitive variable (resp. two
in J. v. Neumann’s system).

Godel explicitly mentioned the Zermelo-Fraenkel set theory, discussed in Sec-
tion 2.4, and the von Neumann axiom system, which serves as a precursor to
the NBG set theory, also referenced in Section 2.4. The NBG set theory did
not exist until around 1940 and is therefore not cited in Godel’s paper.

, ferner
das Axiomensystem der Zahlentheorie, welches aus den Peanoschen
Axiomen, der rekursiven Definition [nach Schema (2)] und den logischen
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Regeln besteht **). Die Voraussetzung 1. erfiillt iiberhaupt jedes System,
dessen SchluBiregeln die gewohnlichen sind und dessen Axiome (analog
wie in P) durch Einsetzung aus endlich vielen Schemata entstehen 452).

48) Vgl. Problem III in D. Hilberts Vortrag: Probleme der Grundlegung
der Mathematik. Math. Ann. 102.

48a) Der wahre Grund fiir die Unvollstindigkeit, welche allen formalen
Systemen der Mathematik anhaftet, liegt, wie im II. Teil dieser Abhandlung
gezeigt werden wird, darin, daf die Bildung immer hoherer Typen sich ins
Transfinite fortsetzen 146t. (Vgl. D. Hilbert, Uber das Unendliche, Math.
Ann. 95, S. 184), wihrend in jedem formalen System hochstens abzdhlbar viele
vorhanden sind. Man kann ndmlich zeigen, daf die hier aufgestellten unent-
scheidbaren Sitze durch Adjunktion passender hoherer Typen (z. B. des Typus w
zum System P) immer entscheidbar werden. Analoges gilt auch fiir das Axiomen-
system der Mengenlehre.

and,
in addition, the axiom system for number theory which consists of
Peano’s axioms, recursive definitions [according to schema (2)] and
the logical rules.*®). Assumption 1 is fulfilled in general by every
system whose rules of inference are the usual ones and whose ax-
ioms (as in P) result from substitution in finitely many schemata. *)

48) Cf. Problem III in D. Hilbert’s address: “Probleme der Grundlegung der
Mathematik”, Math. Ann. 102.

48a) The true reason for the incompleteness which attaches to all formal sys-
tems of mathematics lies, as will be shown in Part II of this paper, in the fact that
the formation of higher and higher types can be continued into the transfinite (cf.
D. Hilbert, “Uber das Unendliche”, Math. Ann. 95, S. 184), while, in every formal
system, only countably many are available. Namely, one can show that the undecid-
able sentences which have been constructed here always become decidable through
adjunction of sufficiently high types (e.g. of the type w to the system P). A similar
result holds for the axiom systems of set theory.

6.2 The First Incompleteness Theorem

6.2.1 Incompleteness of Arithmetic

Up to this point, Godel has based his investigations on the formal system
P, which has the expressive power of ordinary mathematics. He proceeds by
demonstrating that even formal systems with much less expressive power are
afflicted with incompleteness. Soon, we will realize that undecidable propo-
sitions exist within arithmetic. In particular, a formal system already suffers
from incompleteness if it is expressive enough to talk about the additive and
multiplicative properties of the natural numbers.

First, Godel introduces the notion of arithmetic relations and arithmetic sets:
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3.

Wir ziehen nun aus Satz VI weitere Folgerungen und geben
zu diesem Zweck folgende Definition:

Eine Relation (Klasse) heiflt arithmetisch, wenn sie sich allein
mittels der Begriffe +, . [Addition und Multiplikation, bezogen auf
natiirliche Zahlen*°)] und den logischen Konstanten \/, —, (z), =
definieren 14Bt, wobei (z) und = sich nur auf natiirliche Zahlen
beziehen diirfen 50). Entsprechend wird der Begriff ,.arithmetischer
Satz* definiert. Insbesondere sind z. B. die Relationen ,,grofer” und
kongruent nach einem Modul“ arithmetisch, denn es gilt:

z>yoo (E2) [y=z+ 2]
=y modn)co (Ez)[zt=y+2z.nVy=1z+2z.n]

49) Die Null wird hier und im folgenden immer mit zu den natiirlichen
Zahlen gerechnet.

50) Das Definiens eines solchen Begriffes mufl sich also allein mittels der
angefiihrten Zeichen, Variablen fiir natiirliche Zahlen z, y, ... und den Zeichen
0, 1 aufbauen (Funktions- und Mengenvariable diirfen nicht vorkommen). (In den
Prifixen darf statt = natiirlich auch jede andere Zahlvariable stehen.)

3.

We shall now derive further consequences from Theorem VI,
and, to this end, we give the following definition:

A relation (class) is called arithmetical, if it can be defined
by means of only the concepts +, . [addition and multiplication of
natural numbers *°)] and the logical constants \/, —, (z), =, where
() and = are to refer to natural numbers >°). The concept “arithmeti-
cal proposition” is defined in a corresponding manner. In particular,
the relations “greater” and “congruent with respect to a modulus”, for
example, are arithmetical; for we have:

z>yoo (E2) [y=z+ 2]
=y modn)co (Ez)[zt=y+2z.nVy=1z+2z.n]

49) Zero is, here and in the sequal, always counted among the natural num-
bers.

50) The definiens of such a concept must therefore be constructed only by
means of the indicated symbols, variables for natural numbers z, y, ... and the
symbols 0, 1 (function variables and set variables must not occur). (Of course, any
other number variable may occur in the prefixes instead of x.)

Godel speaks of an arithmetic relation if it can be characterized by a mathemat-
ical expression that uses no constructs other than those listed above. Examples
are the order relation ‘>’ and the congruence relation ‘=’ (modulo n). In mod-
ern notation, Godel’s definitions read as follows:

x>y & ~Jz(y=c+2) (6.22)
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z=y(modn) & Jz(z=y+z-nVy=x+2-n) (6.23)

Note that the right-hand sides of these definitions contain ordinary mathemat-
ical expressions rather than formulas of a particular formal system. On the
next pages, we will follow G6del’s words as usual while adopting a more formal
approach. Specifically, we will treat Gédel’s expressions as formulas of a formal
system equipped with the appropriate language constructs. The new formal
system 1is called PA, which is short for Peano Arithmetic. From a distance,
PA resembles Godel’s system P. Upon closer examination, however, notable
differences become apparent:

B PA is a so-called first-order logic, as it contains only individual variables.
In contrast to P, the new system assigns no special semantic meaning to
variables marked with an index, that is, xi, X2, X3, etc., are all individual
variables. The sole purpose of indices is to enlarge the pool of available
symbols.

B In PA, the numerical operators ‘+’ and ‘X’ are native language constructs.
We have already seen such a system in Section 4.4.5, where we have added
these operators to Godel’s system P to simplify the derivation of numerical
theorems.

B The equality operator ‘=’ is also native to PA because first-order logic is
too weak to capture the equality relation. Leibniz’s identity principle, thor-
oughly discussed on page 155, sheds light on why. To formally define equal-
ity, it is necessary to quantify a variable of the second type, which is not
available in PA.

Apart from the language extensions discussed, PA is a subset of P, making the
formal definition of syntax and semantics straightforward. Figure 6.1 summa-
rizes the result.

In PA, we employ the same syntactic simplifications as in the formal system
P, allowing for the omission of specific pairs of parentheses and the use of the
symbols ‘F’, ‘A’, ‘=’ and ‘4»’ as syntactic abbreviations in the usual way.

For closed formulas, PA and P share a crucial property. A closed PA formula
is either true for every arithmetic interpretation or false for every arithmetic
interpretation. Hence, rather than I |= ¢ or I F~ ¢, we can revert to the simpler

notation = ¢ or B .

With the groundwork laid, we can translate the right-hand sides of (6.22) and
(6.23) into PA formulas in a one-to-one manner:

Par(xy) = —Iz(y =x+2) (6.24)
Pmod(X,y,n) (= Jz(x=y+zxnVy=x+zxn) (6.25)
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Syntax of PA
The set of arithmetic terms is defined inductively:
B 0,x,y,z,... are arithmetic terms.
B If 0 and 7 are arithmetic terms, so are f o, (0 + 7), and (o x 7).
The set of arithmetic formulas is defined inductively:
B If 0,7 are arithmetic terms, then (o = 7) is an arithmetic formula.

B If p and v are arithmetic formulas, so are

_'(90)7 (50) v (¢)7 and V¢ (4,0) with £ € {x,y,z, .- }

Semantics of PA

An arithmetic interpretation is a mapping I with:

I(¢) € N for each variable &
1(0) = 0
Ifo) = I(o)+1
Io+71) = I(0) + I(7)
IloxT1) = I(0) - I(7)

IT'E (o1 =03) & I(01) =1I(09)
TE-(p) = He
I'E(@)V@) = Fpor Ev
TEVE(p) & Epll«mn|forallneN

Figure 6.1: Syntax and Semantics of Peano Arithmetic

The formula (g, is true precisely when the free variables x and y are interpreted
as two numbers x and y with > y. Something similar applies to the formula
Ymod- It is true precisely when the free variables x, y, and n are interpreted
as three numbers z, y, and n, such that x and y differ by a multiple of n.
This is meant by saying the relations “greater” and “congruent modulo” are
arithmetically represented by the formulas ¢y, and @4, respectively.

As a more complex example, let us try to arithmetically represent the factorial
function, defined by the following primitive-recursive scheme:

factorial(0) = s(0)
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factorial(k + 1) = mult(s(k), factorial(k))

For the sake of simplicity, temporarily assume that PA provides unary func-
tion symbols and the necessary means to bind those function symbols with a
quantifier. If f is such a symbol, f(0), f(1), etc., denote the individual function
values, and the expression 3 f takes on the following substantive meaning:

3f ... = “There exists a function f : N — N with ...”

Now, it is easy to translate the primitive-recursive definition of the factorial
function directly into a formula:

AF (F(0) =FOAVK (f(k+1) = (f k) x f(k)) Axo = f(x1)) (6.26)
The formula holds true precisely when its two free variables xg and x; are

interpreted as two numbers zg and x; with zg = z!.

Let us focus on the universally quantified variable k in (6.26). On closer inspec-
tion, it becomes apparent that it suffices to quantify over all natural numbers
smaller than x; rather than all natural numbers. Consequently, the following
formula serves the same purpose:

3f (F0) =f0AVk (k<xy = f(k+1) = (f k) x f(k)) Axo = f(x1))
Writing f, instead of f(x), as Godel is about to do, this formula changes into:
If (fo=fO0AVk (k<x1 = fur1 = (F k) X fi) Axo = fxy) (6.27)

This formula can be generalized by substituting the base case f 0 and the
recursion case (f k) x fx with the two placeholders ¢ and p, respectively. We
then obtain:

Af (fo=vAVk (k<x1 = fugr = pk, fi)) Axo = fx;) (6.28)

If ¢ and p are themselves primitive recursive, we can translate them into two
formulas S(§) and T'(§,(,v) in a similar way. In particular, we can rewrite
formula (6.28) as such:

3f (S(fo) AVk (k <x3 — T(fk+1, k,fk)) AXg = fx1) (629)

By turning our considerations into a formal inductive proof, it can be shown
that all primitive-recursive relations are arithmetically representable in the way
described. In fact, this is what Gddel does:

Es gilt der
Satz VII: Jede rekursive Relation ist arithmetisch.
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Wir beweisen den Satz in der Gestalt: Jede Relation der Form
2o =@ (21...2,), wo @ rekursiv ist, ist arithmetisch, und wenden
vollstindige Induktion nach der Stufe von @ an. @ habe die s-te
Stufe (s > 1). Dann gilt entweder:

192 Kurt Godel,

1 (p(Il- .. zn) =P [Xl(xl- .. zTL)’XQ(Il' .. I’n) .. ~Xm(171~ .. In)] 51)

(wo p und samtliche x; kleinere Stufe haben als s) oder:

2. @0, 22...20) =V (22. . .2p)
@ (k+1, 2. . .zy) =plk o (kaa...z,), o . .2y

(wo VP, u niedrigere Stufe als s haben).

Im ersten Falle gilt:

70 =@ (11...20) 0 (Ey .. 4p) [R (20 41 - ym) &
& S1 (Y, @1 xp) & oo &Sy (Yp» T1 - - - Tn)],

wo R bzw. S; die nach induktiver Annahme existierenden mit
2 =p (Y- Yp) bzw. y=x;(21...2,) dquivalenten arithmetischen
Relationen sind. Daher ist 2o = @ (21 ...,) in diesem Fall arith-
metisch.

Im zweiten Fall wenden wir folgendes Verfahren an: Man kann
die Relation 29 = ¢ (21 ...x,) mit Hilfe des Begriffes ,Folge von
Zahlen* (f)°?) folgendermaBen ausdriicken:

2 =@ (21...2,) 0 (Ef ) {fy =V (22...2,,) & (k) [k < 21 —>
froor=uwlk from. . 2p)] &0 = £, }

Wenn S (y, 22 . . .x,) bzw. T (2, 21 . .. %, +1) die nach induktiver
Annahme existierenden mit y = (2. . .2,) bzw. 2= p (1. .. Ty (1)
dquivalenten arithmetische Relationen sind, gilt daher:

o=@ (@1...2) 0 (Ef){S(fo, 2. .. 2) &) [k <21 —> an
T(fryvh foom2. . 1) & 29 = f,,

51) Es brauchen natiirlich nicht alle z;...z, in den x; tatsichlich vor-
zukommen [vgl. das Beispiel in FuBinote 27)].

52) f bedeutet hier eine Variable, deren Wertbereich die Folgen natiirl.
Zahlen sind. Mit f,, wird das k+1-te Glied einer Folge f bezeichnet (mit f;, das erste).

The following proposition is true:
Theorem VII: Every recursive relation is arithmetical.

We prove the theorem in the form: Every relation of the
form 29 = ¢ (1 ...x,), where @ is recursive, is arithmetical and we
apply complete induction on the rank of ¢. Let @ have rank s (s> 1).
Then we have either:

192 Kurt Godel,
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Lo@(z...2:) = p[xa (21 2n).X2(21. . 2) - Xn (21 . )] °2)

(where p and all the x,; have lower rank than s) or:

2. @ (0,22...2,) =V (22...2,)
@ (k+1, 2. ..mp)=plk ok aa...2,), Ta. . .2
(where 1, pu have lower rank than ).
In the first case we have:

=@ @ ...2)oEy ..U, Ry . U, &

& Sy (Y, @1 @) & o &Sy (Yps @1 -+ - X)),
where R, and the S; are the arithmetical relations which, accord-
ing to inductive hypothesis, are equivalent to 2y =p (y; . . .¥,,), and
y=xX; (z1 .. .x,), respectively. Hence, in this case, 10 = @ (21 . . . T,
is arithmetical.

In the second case we apply the following procedure: one can ex-
press the relation zp = @ (z; . ..z,) with the help of the concept “se-
quence of numbers” (f)°2) in the following manner:

2= @ (21...2,) 0 (Ef ) {fo =V (22...2,) & (k) [k < 21 —>
Forr=nk fo 2. on)] &30 = fr, }
If S(y,22...2,), T (2 21...2,.1) are the arithmetical rela-
tions which, according to the inductive hypothesis, are equivalent to
y=1 (22...2,), and z= (1. ..z, 1) respectively, then we have:

=@ (@ ...2,) 0 (Ef){S(fo, 2. .. .2) &) [k <21 —>

1
k+1’k’fk’x2'--xn)]&x0: 71 (0

51) Naturally, not all the variables zi . . .z, need actually occur in the x; [cf.
the example in footnote 27)].

52) f denotes here a variable whose domain is the sequence of natural numbers.
The (k+1)-st term of a sequence f is designated f;, (and the first, f;).

The right-hand side of Gédel’s formula (17) is the generalization of the previ-
ously derived formula (6.29).

Yet Theorem VII is only partially proved, as the construction relies on function
symbols not native to PA. Completing the proof requires the function symbol
f to be eliminated from the constructed formulas, which Gédel is about to do
next.

Nun ersetzen wir den Begriff ,Folge von Zahlen* durch ,Paar von
Zahlen“, indem wir dem Zahlenpaar n, d die Zahlenfolge f (n, d)

( fk(n’ 4 = (714 (k+ 1) a) Zuordnen, wobei [7], den kleinsten nicht nega-
tiven Rest von n modulo p bedeutet.
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Now we replace the concept “sequence of numbers” by “pairs of num-
bers” by correlating with the number pair n, d the sequence of num-

bers f (4 (fk(n’ 4 — [n]14 (k+ 1)) where [n], denotes the smallest
non-negative remainder of n modulo p.

For two given numbers n and d, Gédel constructs the number sequence

n,d n,d n,d n,d
R I

with
D= pmod (1+ (i +1) - d) (6.30)

Today, this function is now known as Goédel’s S-function. The function is so
important that we formally introduce it in a separate definition:

B é\& Definition 6.12 Godel’s B-function

Godel’s S-function 8 : N x N x N — N is defined as the following function:

B(n,d,i) := nmod (1+ (i +1)-d)

Be cautious not to mistake Godel’s S-function with the g-function discussed
on page 220. Despite sharing the same name, these functions are entirely
unrelated. It is important to note that in Gédel’s work, only the function from
page 220 is denoted with 3, whereas in contemporary texts about Gédel’s work,
the term S-function consistently refers to the function defined in Definition 6.12.

The next theorem reveals why Godel’s S-function is so important: It allows
the generation of any initial segment of any given number sequence:

Let k be a natural number. For every sequence of numbers fo, f1,..., fr_1
of length k there exist two natural numbers n and d with

f’i = [)’(n,d,z)

To justify this far-reaching assertion, two auxiliary theorems are needed and
will be proven first:

Theorem 6.14

For any natural number [, the numbers

TH1-0, 1420, 14300, ..., 14+1-1!
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are pairwise coprime. |

Proof: If a prime number p divided both

(141" and (1471, 1<i<j<l)
p would also be a divisor of the difference

I+7-MH—-0Q4-1) = (G—1)-1.
Then, p would divide at least one of the numbers (j —4) or I!. We now show
that both assumptions lead to a contradiction:
B Suppose p|!!. Then p is also a divisor of i - !, contradicting the assumption
that p divides 1+ - 1!

B Suppose p | (j — i). Because j — ¢ is smaller than [, j — ¢ is a divisor of I!.

This implies that p is also a divisor of !, contradicting the first case. O

The next theorem makes a statement about the solvability of a particular class
of simultaneous congruences:

Theorem 6.15 Chinese Remainder Theorem

Let my,...,m, be pairwise coprime natural numbers and ag,...,a, be
natural numbers with a; < m;. Then, the system of simultaneous congru-
ences

T = ag mod my r=amodm; ... x=a,modm,

has a solution, and the solution is unique modulo mg - ... - m,,.

Proof: We consider the mapping
m:{0,...,(mg-...-my)—1} = {0,...,mog— 1} x ... x {0,...,m, — 1}

with:
m(xz) = (x mod myg,...,z mod my,)

The theorem is proved once it is shown that 7 is bijective.

B Injectivity
Let z,y € {0,...,(mg ... -my) — 1} with y > z and 7(z) = 7(y). Then,

(z mod my, ...,z mod m,) = (ymod my,...,y mod m,)
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which implies mg | (y — ), ..., my | (y — ). Since the moduli mg,...,my,
are pairwise coprime, we can conclude

mo- ... my | (y—2x). (6.31)

y and z are both smaller than the product (mg - ...-my), and so is the
difference y — x. Thus, equation (6.31) only has a solution for y — z = 0,
contradicting the assumption that z and y are different numbers. Conse-
quently, 7 must be injective.

B Surjectivity

The domain of 7 is finite and contains as many elements as the range. Any
injective function with this property is necessarily surjective. O

Now, the assertion of Theorem 6.13 almost follows by itself. For the sequence

f07.f17"'af/€—1

let us define the number [ as

[ = max{kaf()afla"'afk—l} (632)

and consider the following system of simultaneous congruences:

n = fo mod (1+1-1!)
n=fi mod (1+2-1)

n=fr_1 mod (1+k-1)

We know from Theorem 6.14 that the moduli are pairwise coprime. Then,
according to the Chinese remainder theorem, the simultaneous congruence is
solvable with a number n. Setting d to I! implies

fi = nmod (14 (i+1)-d) = B(n,d,i),

which was to be proven. O

In Godel’s words, the proof sounds a bit more succinct:

Es gilt dann der

Hilfssatz 1: Ist f eine beliebige Folge natiirlicher Zahlen und
k eine beliebige natiirliche Zahl, so gibt es ein Paar von natiirlichen
Zahlen n, d, so daB f (" d) ynd f in den ersten k£ Gliedern iiberein-
stimmen.

Beweis: Sei [ die grofite der Zahlen k, fy, fi...fi_;. Man
bestimme 7 so, daB3:

n=f [mod (1+ (i+1) 1) fir i=0,1...k—1
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Uber formal unentscheidbare Sitze der Principia Mathematica etc. 193

was moglich ist, da je zwei der Zahlen 1 + (¢ +1) I! (i=0,1...k—1)
relativ prim sind. Denn eine in zwei von diesen Zahlen enthaltene
Primzahl miifte auch in der Differenz (iy — 42) I! und daher wegen
|is —i2| < in ! enthalten sein, was unmoglich ist. Das Zahlen-
paar m, [! leistet dann das Verlangte.

Then:

Lemma 1: If f is an arbitrary sequence of natural numbers and
k is an arbitrary natural number, then there exists a pair of natural
numbers 7, d such that f (7 4) and f coincide in their first k& terms.

Proof: Let [ be the greatest of the numbers k, fy, fi ... fi_1-
Determine 7 so that

n= f, [mod (1 + (¢+1) 1) fir i=0,1...%k—1,

On formally undecidable propositions of Principia Mathematica etc. 193

which is possible, since any two of the numbers 1+ (¢ 1) 1!
(i=0,1...k—1) are relatively prime. For, a prime dividing two of
these numbers must also divide the difference (i — 43) /! and there-
fore, since |i; — i2| < I, must also divide !, which is impossible. The
number pair n, [! fulfills our requirement.

At this juncture, let us revisit assignment (6.32), which sets ! to the value
from Godel’s article. While being on the safe side with the chosen magnitude,
significantly smaller numbers do suffice in most cases. What has been said
above remains valid as long as [ meets the following two conditions:

Il >k

In particular, this is the case when [ satisfies the following:

l
)

k
maX{fovfl, .. '7fk'—1}

>
2

Let’s attempt to apply Theorem 6.13 to generate some initial segments of the
factorial sequence:

0, 11,2, 3,4, ... = 1,1,2,6,24, ...

Figure 6.2 summarizes the system of simultaneous congruences that needs to be
solved. Each congruence yields a natural number n, allowing us to reconstruct
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the initial segments by evaluating Godel’s S-function with n and the previously
determined value of d. The calculations in Figure 6.3 demonstrate that the
original sequences are indeed reconstructable with this approach.

To employ Go6del’s S-function for our purposes, we need to find a way to define
it within PA. The following formula demonstrates that this is indeed possible
with little effort:

@p(y,n,d,i) == moaly,n, f ((f i) xd)) Ape(f ((fi) xd),y) (6.33)

y =n mod 1+(i+1)d y < 1+(i+1)d

Ygr and Ymod are the two formulas (6.24) and (6.25), defined on page 317.

If the variables n, d, and i are interpreted as the three natural numbers n, d,
and 4, respectively, then pg(y,n,d,i) is substantively true precisely when the
fourth variable y is interpreted as the number 8(n,d, 7). In short: The function
g defines Godel’s B-function inside PA.

At this point, we have successfully attained our objective, as we are now able
to turn formula (6.27) into a genuine formula of PA:

In 3d (pp(f 0,n,d,0) A
Vk ((pgf(xh k) — VW (@ﬁ(wa n7d7 k) — @B((f k) X w, n7daf k))) A
ng(Xo, n, d7 Xl))
This formula holds true if and only if its free variables xg and x; are interpreted

as two numbers x¢ and x, satisfying xg = z1!. In other words, the formula
defines the factorial function within Peano arithmetic.

Being able to generate any initial segment of a given number sequence with
Godel’s S-function puts us in the position to define every primitive-recursive
function arithmetically and, consequently, every primitive-recursive relation.

Godel expresses this final step of reasoning as follows:

Da die Relation z= [n], durch:
z=n(mod p) & z< p
definiert und daher arithmetisch ist, so ist auch die folgendermaBen
definierte Relation P (zg, 1 . . . 2):
P(zy...z) = (En,d) {S(nar1,22...2,) & (k) [k < 11 —>
T ([nlird (k+2)> k> [M14d b+ 1)> T2+ - - Tn)] & 20 = [M14d (@ +1) )
arithmetisch, welche nach (17) und Hilfssatz 1 mit: 2o = ¢ (21 . . . 2p)

dquivalent ist (es kommt bei der Folge f in (17) nur auf ihren Ver-
lauf bis zum z; + 1-ten Glied an). Damit ist Satz VII bewiesen.
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Initial segment 1, 1

= d=2!

n=1 mod (1-21+1)
n=1 mod (2-21+1)

1z Result: n=1

Initial segment 1,1, 2

& d = 3!

mod (1-3!+1)
mod (2-3!+1)
mod (3-3!+1)

S 33
1Tl
o N =

:n=1275

g
j=9)
@
3

Initial segment 1,1, 2,6

1= d = 4!

n=1 mod (
n=1 mod (2-4'+1
n=2 mod (
n=6 mod (

1z Result: n = 4610901

Initial segment 1,1, 2, 6,24

1 d = 5!
n=1 mod (1-5!+1)
n= mod (2-5!+1)
n= mod (3-5!+1)
n= mod (4-5!'+1)
n=24 mod (5-5!+1)

15" Result: n = 2234239447342

Figure 6.2: Encoding of initial segments of the factorial number series

Initial segment 1, 1

I
—_ =

Initial segment 1,1, 2

(1275,31,0)
(1275,31,1)
(1275,31,2) =
(1275, 31, 3)
(1275,31,4)
( )

B
B
B
B
B
B(1275,31,5

4610901, 4!, 0)
4610901, 4!, 1)
4610901, 4!, 2)
4610901, 4!, 3)
4)
5)

I
DN ==

4610901, 4!,
4610901, 4!,

Initial segment 1,1, 2,6, 24

(2234239447342, 5!, 0) 1
(2234239447342, 5!, 1) 1
(2234239447342,5,2) = 2
(2234239447342, 5!, 3) 6
(2234239447342,5!,4) = 24
( )

B
B
B
B
B
(2234239447342, 5, 5

Figure 6.3: Reconstruction of the initial segments via Gédel’s S-function
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Since the relation z = [n], is defined by
z=mn(modp) & r<p

and is therefore arithmetical, then so also is the relation
P (z9, 21 . . . x,) defined as follows:

P(xg...2) = (En, d) {S(n]as1.22...2,) & (k) [k < 21 —>
T([n]1+d (k+2)» k, [ﬂ]1+d (k+1)> 22 - - xn)] & 79 = [n]1+d(:c1+1)
which, according to (17) and Lemma 1, is equivalent to 2y =

@ (71 ...2,) (in the sequence f in (17) only its values up to the
(21 + 1)th term matter). Thus, Theorem VII is proved.

Viewing Theorem VII in the light of the main result leads to a stunning con-
clusion. It implies that undecidable formulas aren’t secluded entities confined
to a remote corner of specialized mathematics; instead, they permeate the very
essence of mathematics, residing at the heart of elementary number theory.

GemdB Satz VII gibt es zu jedem Problem der Form (z) F ()
(F' rekursiv) ein &quivalentes arithmetisches Problem und da der
ganze Beweis von Satz VII sich (fiir jedes spezielle F) innerhalb
des Systems P formalisieren 1Bt ist diese Aquivalenz in P beweis-
bar. Daher gilt:

According to Theorem VII, for every problem of the form (z) F' (x)
(F' recursive), there is an equivalent arithmetical problem, and since
the whole proof of Theorem VII can be formulated (for each par-
ticular F) within the system P, this equivalence is provable in P.
Therefore, we have:

Let us carefully review what Godel is saying here. With Theorem VII, he
has proven that all primitive-recursive relations are arithmetic. For example,
suppose F'(x) is a unary primitive-recursive relation. In that case, Theorem VII
implies the existence of an arithmetic formula ¥z (x;), which is true precisely
when x; is interpreted as a number x with x € F"

zeF & Eyr(T)

From this, it follows:
zeFforalzeN & E=Vx ¢¥p(x) (6.34)

Since the formal system P can formalize Peano arithmetic, the arithmetic for-
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mula ¥ can be translated into a substantially equivalent formula ¢z of P:

EVxyr(a) & FVxer(a)

Note that the symbol ‘=’ refers to the model relation of the formal system PA
on the left-hand side of the equivalence and to the model relation of the formal
system P on the right side.

Now, according to (6.34), the following relationship holds:
zeFforalzeN & EVx op(x1)

For example, F' may be chosen to be the primitive-recursive relation described
on page 301 by the formula with the Gédel number r. To replicate the proof of
Theorem VII for this relation within P means to deduce the following theorem
from the axioms of P:

FVx1 or(x1) ¢ VX1 or(x1)

The formula Vx; ¢,-(x1) on the left-hand side is the formula we previously iden-
tified as undecidable; neither itself nor its negation is provable within the formal
system P. Then, the formulas Vx; ¢r(x1) and =Vx; @r(x1) can’t be theorems
either, implying the existence of an arithmetic statement that is neither prov-
able nor disprovable within P. Overall, we have:

Satz VIII: In jedem der in Satz VI genannten for-
malen Systeme?®) gibt es unentscheidbare arithmetische
Sitze.

Dasselbe gilt (nach den Bemerkungen auf Seite 190) fiir das
Axiomensystem der Mengenlehre und dessen Erweiterungen durch
w-widerspruchsfreie rekursive Klassen von Axiomen.

53) Das sind diejenigen w-widerspruchsfreien Systeme, welche aus P durch
Hinzufiigung einer rekursiv definierbaren Klasse von Axiomen entstehen.

Theorem VIII: There exist undecidable arithmetical propositions
in each of the formal systems ®?) mentioned in Theorem VI. The same
holds also (according to the remark on page 190) for the axiom sys-
tem of set theory and its extensions by w-consistent recursive classes
of axioms.

53) They are those w-consistent systems which result from P by addition of
a recursively definable class of axioms.

In a slightly different formulation, the theorem appears like this:
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Theorem 6.16 First Incompleteness Theorem, G6del 1931

Every w-consistent formal system expressive enough to formalize Peano
arithmetic is negation-incomplete.

At the time of writing, Gdodel did not succeed in replacing the requirement
of w-consistency with the weaker requirement of consistency. The fact that
Theorem VIII remains valid under the weaker assumption was only established
in 1936 by John Barkley Rosser, about five years after the publication of the
incompleteness theorems. The American mathematician modified Gédel’s for-
mula @, (x1) in a way that allowed him to weaken the premise without departing
from Godel’s general line of reasoning [89, 96]. In contemporary literature, this
technique of substituting Go6del’s formula with another, more suitable one is
called Rosser’s trick.

Theorem 6.17 First Incompleteness Theorem, Rosser 1936

Every consistent formal system expressive enough to formalize Peano
arithmetic is negation-incomplete.

This is a typical formulation of Godel’s first incompleteness theorem, as found
in many textbooks. To appreciate Rosser’s contribution, some authors refer to
Theorem 6.17 as the Gédel-Rosser-Theorem.

6.2.2 Implications for the Restricted Function Calculus

Next, Godel will prove a theorem about a system known as engerer Funk-
tionenkalkiil in the German original. This term was coined by the Hilbert
school and utilized for over 30 years in the renowned textbook Grundziige der
theoretischen Logik authored by Hilbert and Ackermann [52]. In the 1959 edi-
tion, Ackermann replaced the term with Pradikatenkalkiil (predicate calculus).
Essentially, this calculus aligns with what is today recognized as first-order
predicate logic, commonly abbreviated as PLL1. We have mentioned this term
several times in passing, but a formal definition is yet to be given. At this
point, we want to make up for what we have missed so far.

6.2.2.1 Syntax of First-Order Predicate Logic

We define the syntax of first-order predicated logic in three steps. In Step 1,
we introduce the notion of a logic signature. Based on this concept, we define
first-order terms in Step 2. Finally, in Step 3, we demonstrate how terms can
be combined to form first-order formulas.
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Definition 6.18 Signature (First-order predicate logic)

A signature ¥ is a triple (Vs, Fy, Ps) with

B a set V5 of variables, e.g. {x,y,z,...},
B a set Fx of function symbols, e.g. {f, g, h,...},

B a set Py of predicates, e.g. {P,Q,R,...}.

Each function and each predicate has a fixed arity > 0.

Simply put, a signature provides a stock of symbols for constructing terms. In
first-order predicate logic, terms must obey the following rules:

Definition 6.19 Term (First-order predicate logic)

Let ¥ = (Vx, Fy, Ps) be a signature of first-order predicate logic. The set
of terms is inductively defined:

B Every variable £ € Vy is a term.

B Every O-ary function symbol f € FY; is a term.

B If 1,...,0, are terms and [ € Fy is an n-ary function symbol, then
flo1,...,0p) is a term.

For example, with two variables, x and y, and a binary function symbol f,we
can build the following terms:

%Y,

f(x,x), f(x,y),

F(f(x,y),%),

(X f (X y)),

f(f(x,x),f(x,y)),.

Terms are primitive building blocks that can be combined into formulas ac-

cording to the following rules:

Definition 6.20 Syntax of first-order predicate logic

Let € be a variable and o1, ...,0, be terms. The set of atomic formulas
is defined as follows:

B If P is an n-ary predicate, then P(oq,...,0,) is an atomic formula.
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The formulas of first-order predicate logic are defined inductively:

B 0, 1, and every atomic formula are formulas.

B If ¢ and ¢ are formulas, so are =(p), (¢) V (¥), V& ().

In first-order predicate logic, the operators ‘3’, ‘A’, ‘=’ and ‘++’ play the same
role as in P or PA. They act as syntactic sugar, letting us write down formulas
in a more concise and easier-to-understand form.

As in all the other formal systems we’ve seen, there is no need to scope variables
by a quantifier. For instance, in the formula P(x), variable x is free or unbound,
whereas in the formula Vx P(x), variable x is bound. Formulas with no free
variables are called closed; all others are called open.

6.2.2.2 Semantics of First-Order Predicate Logic

As usual, we define the semantics of first-order predicate logic through the
model relation ‘=’. However, to coin this term accurately, we need to adjust
the notion of interpretation to suit the requirements of predicate logic.

Definition 6.21 Interpretation (first-order logic)

Let ¥ = (Vy, Iy, Ps) be a signature. An interpretation over ¥ is a tuple
(U, I) with the following properties:

B U is a non-empty set.

W ] is a mapping that assigns

® to each variable symbol ¢ € V5 an element (&) € U,
® to each function symbol f € Fy a function I(f): U™ — U, and
® to each predicate symbol P € Py, a relation I(P) C U™.

Herein, n is the arity of f or P as given by X.

In the literature, the set U is referred to by various synonyms. Some authors
term it the set of individuals, while others call it the domain or universe.

Note that the actual mapping of variables to elements of U is irrelevant for
closed formulas. For open formulas, however, it ensures that all free variables
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are assigned individual elements. Further, note that the definition encompasses
function and predicate symbols of arity 0. The function symbols of arity 0
formally represent functions of the form U® — U, thus acting as constants.
The predicate symbols of arity 0 represent relations over the set U". They are
atomic statements that are interpreted either as true or false, thus playing the
role of propositional variables.

The mapping I, which assigns a function I(f) to each function symbol f,
extends naturally to complex terms according to the following inductive scheme:

I(f(o1,...,04)) == I(f)(o1),...,1(0n))

Now, after having the groundwork laid, the semantics of first-order predicate
logic flows right from the pen:

Definition 6.22 Semantics of first-order predicate logic

Let ¢ and 9 be formulas of first-order predicate logic and (U, I) be an
interpretation. The semantics of first-order predicate logic is given by the
model relation ‘=, which is inductively defined over the formula structure:

(U,1) =1
(U,I) £ 0
(U,I) | Poy,...,00) = (I(01),....I(0,)) € I(P)

(U 1) = ~(p)
UI) () V (¥)
(U 1) EVE(p)
(

An interpretation (U, I) with (U,I) = ¢ is called a model for ¢.

= (UI) Fe
= (UI) Eeor (UI) =Y
& (U, Iig/u)) F o for allu € U

We have already used the notation Ij¢/,) on page 151 in Definition 4.6. If
(U, 1) is an interpretation of first-order predicate logic, then (U, Ij¢/y)) is the
interpretation that assigns the individual element u to the variable ¢ and is
identical to (U, I) otherwise.

A significant characteristic of predicate logic is that the domain of an interpre-
tation is not confined to the natural numbers as it is in P or PA. The range of
possible interpretations is significantly broader, with far-reaching consequences.
Unlike in the formal systems P or PA, it can no longer be claimed that every
closed formula is either substantively true or substantively false.

As an example, let us consider the closed formula

Vx 3y P(f(x,y))
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Vx 3y P(f(x,y))
(VE = {X7y}aFZ = {f}’PZ = {P})

’ First Interpretation (U, I) ‘ ’ Second Interpretation (U’,I") ‘
U:=7%7 U =N

I(f) = (v,y) >z +y I'(f) = (v,y) > oty
I(P) := {0} I'(P) == {0}
7 N

y 0 X YEN 0 X
“For all x, there exists a y such that || “For all x, there exists a y such that
x+y=0" z+y=0"
is a true statement in Z. is a false statement in N.
(U,1) = Vx 3y P(f(x,y)) (U, I') = Vx 3y P(f(x,y))

Figure 6.4: Two interpretations for the formula Vx 3y P(f(x,y))

and the two interpretations depicted in Figure 6.4. Both interpret the function
symbol f as ordinary addition and the predicate symbol P as the set {0}, that
is, P(x) is true exactly when x is interpreted as the number 0. Thus, the formula
has the following substantive meaning:

“For all x there exists a y such that x +y = 0.”

Because both interpretations map into different domains, the formula is true
under the first and false under the second.

The following definition takes this circumstance into account:

Definition 6.23 Satisfiable, unsatisfiable, universally valid

A formula ¢ is called

B satisfiable, if at least one interpretation is a model of ¢,
(1= some (U, I) satisfies (U, I) = @)
B unsatisfiable, if it is not satisfiable,
()&= no (U, 1) satisfies (U, I) = ¢)
B universally valid, if every interpretation is a model of ¢.
(s all (U, 1) satisty (U, I) = )
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Mirror axis
|

. Satisfiable | ,
I T 1
|
l
|
(4 ! - P
l
f i} i} i
Universally valid Satisfiable, but not universally valid Unsatisfiable

Figure 6.5: Satisfiable, unsatisfiable and universally valid formulas.

Figure 6.5 illustrates the interplay between satisfiable, unsatisfiable, and uni-
versally valid formulas.

First-order predicate logic exhibits the intriguing property that it allows for
the definition of correct and, at the same time, complete formal systems when
these terms are understood to refer to universally valid formulas. In fact, we
have already encountered such a formal system on page 84 in Figure 2.1. The
observation that all universally valid formulas are derivable in this system is
the content of Gédel’s completeness theorem, which Godel proved in his 1929
dissertation. A revised version was later published in the Monatshefte fiir
Mathematik [32] (Figure 6.6).

Theorem 6.24 Godel’s completeness theorem, 1929

First-order predicate logic is complete, i.e., the following holds:

@ is universally valid = ¢ is provable

With this knowledge in our pocket, we are well prepared to follow Godel’s
footprints again:

Wir leiten schlieflich noch folgendes Resultat her:

Satz IX: In allen in Satz VI genannten formalen
Systemen®®) gibt es unentscheidbare Probleme des engeren
Funktionenkalkiils®*) (d. h. Formeln des engeren Funktionen-
kalkiils, fiir die weder Allgemeingiiltigkeit noch Existenz eines
Gegenbeispiels beweisbar ist) 5?).

53) Das sind diejenigen w-widerspruchsfreien Systeme, welche aus P durch
Hinzufiigung einer rekursiv definierbaren Klasse von Axiomen entstehen.

54) Vgl. Hilbert-Ackermann, Grundziige der theoretischen Logik.

Im System P sind unter Formeln des engeren Funktionenkalkiils diejenigen
zu verstehen, welche aus den Formeln des engeren Funktionenkalkiils der PM
durch die auf S. 176 angedeutete Ersetzung der Relationen durch Klassen hoheren
Typs entstehen.

55) In meiner Arbeit: Die Vollstindigkeit der Axiome des logischen
Funktionenkalkiils, Monatsh. f. Math. u. Phys. XXXVII, 2, habe ich gezeigt, da
jede Formel des engeren Funktionenkalkiils entweder als allgemeingiiltig nach-
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Die Vollstindigkeit der Axiome des logischen
Funktionenkalkiils .
Von Kurt Godel in Wien.

Whitehead und Russell haben bekanntlich die Logik und
Mathematik so aufgebaut, daB sie gewisse evidente Sitze als Axiome
an die Spitze stellten und aus diesen nach einigen genau formulierten
SchinBprinzipien auf rein formalem Wege (d. h. ohne weiter von der
Bedeutung der Symbole Gebrauch zu machen) die Sitze der Logik
und Mathematik deduzierten. Bei einem solchen Vorgehen erhebt sich
natiirlich sofort die Frage, ob das an die Spitze gestellte System
von Axiomen und Schlubprinzipien vollstindig ist, d. h. wirklich
dazu ausreicht, jeden logisch-mathematischen Satz zu deduzieren,
oder ob vielleicht wahre (und nach anderen Prinzipien ev. aunch
beweisbare) Sitze denkbar sind, welche in dem betreffenden System
nicht abgeleitet werden konnen. Fiir den Bereich der logischen
Aussageformeln ist diese Frage in positivem Sinn entschieden, d. h.
man hat gezeigt?), dal tatséichlich jede richtice Aussageformel aus
den in den Principia Mathematica angegebenen Axiomen folgt. Hier
soll dasselbe fiir einen weiteren Bereich von Formeln, nimlich fiir

die des _enceren Funktionenkalkiils¢-3). eeschehen. d. h. es soll cezeiot

Satz 1. Jede allgemeingiiltiget) Formel des. engeren
Funktionenkalkiils ist beweisbar.

Dabei legen wir folgendes Axiomensystem?) zugrunde:

Undefinierte Grundbegriffe: v, ~. (z). [Daraus lassen sich in

Figure 6.6: Godel’s completeness theorem states that the axiom system in Table 2.1
on page 84 is complete. All universally valid formulas are derivable from the axioms.

weisbar ist oder ein Gegenbeispiel existiert; die Existenz dieses Gegenbeispiels
ist aber nach Satz IX nicht immer nachweisbar (in den angefiihrten formalen
Systemen).

Finally, we derive the following result:

Theorem IX: In all of the formal systems?®®) mentioned in
Theorem VI there exist undecidable problems of the restricted func-
tional calculus®*) (i.e. formulas of the restricted functional calculus
for which neither the universal validity nor the existence of a counter-
example is provable). 59)

53) They are those w-consistent systems which result from P by addition of
a recursively definable class of axioms.

54) Cf. Hilbert-Ackermann, Grundziige der theoretischen Logik. In the sys-
tem P by formulas of the restricted function calculus we are to understand those
which arise from formulas of the restricted function calculus of PM by the substitu-
tion indicated on p. 176 of classes of higher type for relations.

55) In my paper: “Die Vollstindigkeit der Axiome des logischen Funktio-
nenkalkiils”, Monatsh. f. Math. u. Phys. XXXVII, 2, I have shown that every
formula of the restricted functional calculus either can be proved to be universally
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valid or has a counter-example; the existence of this counter-example is, however,
according to Theorem IX, not always provable (in the given formal systems).

Let us analyze step by step what Gddel is saying here. He commences with a
statement about the formal systems to which Theorem VI applies. For sim-
plicity’s sake, we assume Godel refers to P. He continues to say that deciding
the universality of PL1 formulas is impossible within P.

Deciding universal validity within P requires the capability to talk about this
concept within P. Thus, let us assume that for each PL-1-formula ¢, there
exists a P-formula Val,, which is universally valid precisely when ¢ is. In
this context, deciding the universal validity within P means that for any given
PL1- formula ¢, either Val, or =Val, is derivable, contingent upon whether ¢
is universally valid or not. Briefly put:

¢ is a universally valid PL1-formula = F Val, (6.35)
¢ is not a universally valid PL1-formula = F —Val, (6.36)

Within P, we could thus prove every PL1-formula to be universally valid or not
universally valid. Gédel’s Theorem IX, however, states that this is impossible:
There is at least one formula ¢ for which neither (6.35) nor (6.36) applies.

Hold on! Isn’t this contradictory to Gédel’s completeness theorem? This the-
orem affirms that every universally valid PL1-formula ¢ is derivable from the
axioms of PL1. Replicating this proof within P would yield the formula Val,.
Indeed, (6.35) does follow from the completeness theorem, and there is a sim-
ple reason why this is not a contradiction: The completeness theorem does not
guarantee that formulas that are not universally valid are provable as such.
Consequently, (6.36) remains untouched by this theorem.

Before moving on, let us slightly rephrase (6.35) and (6.36). According to
Definition 6.23, a PL1 formula ¢ is universally valid precisely when —¢ is
unsatisfiable. Using Sat,, as a shorthand for ~Val-, (6.35) and (6.36) can be
rewritten as follows:

¢ is a universally valid PL1 formula = F —=Sat-,

¢ is not a universally valid PL1 formula = + Sat-,
Or, which is equivalent:

- is a universally valid PL1 formula = F —Sat, (6.37)
- is not a universally valid PL1 formula = F Sat,, (6.38)
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To prove Theorem IX, Godel commences by reducing whether a primitive-
recursive relation F(x) applies to all natural numbers z to a first-order satisfi-
ability problem. This is the content of Theorem X:

194 Kurt Godel,

Dies beruht auf:

Satz X: Jedes Problem der Form (z) F (x) (F rekursiv)
1aBt sich zuriickfiithren auf die Frage nach der Erfiillbarkeit
einer Formel des engeren Funktionenkalkiils (d. h. zu jedem
rekursiven F' kann man eine Formel des engeren Funktionenkalkiils
angeben, deren Erfiillbarkeit mit der Richtigkeit von (z) F (x) iqui-
valent ist).

194 Kurt Godel,

This is based upon:

Theorem X: Every problem of the form (z) F' (z) (F recursive)
can be reduced to the question of the satisfiability of a formula of
the restricted functional calculus (i.e. for each recursive F' one can
produce a formula of the restricted functional calculus whose satisfia-
bility is equivalent to the truth of (z) F' (x)).

() F (z) serves as the shorthand for the mathematical statement
x € FforalxzeN

with F' C N representing any unary primitive-recursive relation over the natural
numbers. Thus, we can formulate Theorem X as follows:

Theorem 6.25 Gbdel’s Theorem X

For every primitive-recursive relation F' C N, there exists a PL1-formula
o with the following property:

x € Fforall z € N & ¢ is satisfiable

Godel precedes the proof of Theorem X with a passage in which he briefly
defines the formal system under consideration:

Zum engeren Funktionenkalkiil (e. F.) rechnen wir diejenigen
Formeln, welche sich aus den Grundzeichen: —, V, (z), =; z, y . . .
(Individuenvariable) F (z), G (zy), H(z,y,2) ... (Eigenschafts- und



6.2 The First Incompleteness Theorem 339

Relationsvariable) aufbauen®®), wobei (z) und = sich nur auf Indi-
viduen beziehen diirfen.

56) D.Hilbert und W.Ackermann rechnen in dem eben zitierten Buch das
Zeichen = nicht zum engeren Funktionenkalkiil. Es gibt aber zu jeder Formel,
in der das Zeichen = vorkommt, eine solche ohne dieses Zeichen, die mit der
urspriinglichen gleichzeitig erfiillbar ist (vgl. die in FuBnote 55) zitierte Arbeit).

We consider as formulas of the restricted functional calculus
(r. f.) those formulas which are build up from the primitive sym-
bols: —, V, (z), =; 2, y ...(individual variables); F(z), G (zy),
H (x,y,z) ... (variables for properties and relations), where (z) and
= refer only to individuals. >°)

56) D. Hilbert und W. Ackermann, in the book cited above, do not consider the
symbol = as belonging to the restricted functional calculus. However, for every for-
mula in which the symbol = occurs, there exists a formula without this symbol which
is satisfiable if and only if the original one is (cf. the paper cited in footnote 5%)).

The true nature of Godel’s restricted functional calculus becomes evident. It
is a variant of first-order predicate logic with equality that prohibits the usage
of function symbols.

In Footnote 56, Godel points out that whether the equal sign is permitted
or prohibited is irrelevant, as his concern lies solely in the satisfiability of the
constructed formulas. In this case, we can rely on a well-known result from first-
order predicate logic, which asserts that for every PL1 formula ¢ containing
the equality sign, an equisatisfiable formula v without the equality sign exists.
Here, equisatisfiability refers to the following property:

@ is satisfiable < 1) is satisfiable (6.39)

It is important to note that ¢ and ¥ need not necessarily be equivalent to
fulfill (6.39). Equisatisfiability merely states that the existence of a model of
 implies the existence of a model of ¢/ and vice versa. The models of the two
formulas may well be different, though.

First-order predicate logic with equality, as defined by us, is called the restricted
functional calculus in the extended sense in Go6del’s work:

Wir fiigen zu diesen Zeichen noch eine
dritte Art von Variablen ¢ (z), ¥ (2 y), X (z y 2) etc. hinzu, die Gegen-
standsfunktionen vertreten (d. h. @ (z), ¥ (z y) etc. bezeichnen ein-
deutige Funktionen, deren Argumente und Werte Individuen sind 7).
Eine Formel, die aufler den zuerst angefiihrten Zeichen des e. F.
noch Variable dritter Art (@ (2), ¥ (zy)... etc.) enthilt, soll eine
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Formel im weiteren Sinne (i. w. S.) heifen®). Die Begriffe ,.erfiill-

bar, ,allgemeingiiltig*“ iibertragen sich ohneweiters auf Formeln
i. w. S.

57) Und zwar soll der Definitionsbereich immer der ganze Individuen-
bereich sein.

58) Variable dritter Art diirfen dabei an allen Leerstellen fiir Individuen-
variable stehen, z. B.: y=¢ (z), F (z, ¢ (). G [V (z. ¢ (y)),z] usw.

We add to these symbols a
third kind of variable ¢ (z), ¥ (z y), x (z y 2), etc., which represent
objective functions (i.e. @ (z), ¥ (zy), etc. denote single valued
functions whose arguments and values are individuals®”). A formula
which, in addition to the symbols of the r.f. initially mentioned above
also contains variables of the third kind (@ (z), ¥ (zy)... etc.),
shall be called a formula in the wider sense (i. w. s.).°%) The con-
cepts “satisfiable”, “universally valid” carry over without any further
ado to formulas i.w.s.,

57) And, in addition, the domain of definition shall always be the entire
domain of individuals.

58) Variables of the third kind are permitted to replace individual variables
at all argument places, e.g: y= ¢ (), F (z, ¢ (y)). G [0 (z. ¢ (y)).z] ete.

Godel will now demonstrate how any PL1-formula containing function symbols
or the equality sign translates into an equisatisfiable formula lacking these
symbols.

und es gilt der Satz, daB man zu jeder Formel i. w. S. A eine
gewohnliche Formel des e. F. B angeben kann, so daB die Erfiillbarkeit
von A mit der von B dquivalent ist.

and we have the theorem that, for every formula i.w.s. A,
one can give an ordinary formula B of the r.f. such that the satisfia-
bility of A is equivalent with that of B.

To eliminate function symbols, it suffices to interpret every n-ary function f
as a relation I of arity n + 1, with the left-most argument representing the
function value. However, for the relation F' to be considered a function, it must
meet two requirements:

B For every z1,...,&,, there exists a y satisfying F(y,z1,...,z,).
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B For every x1,...,%,, the element y is unique.

It is easy to formalize these properties within first-order predicate logic with
equality. For instance, the following formula serves our needs for unary func-

tions:
Vx 3y (F(y,x) AVz (F(z,x) >y =z))

We are now well prepared to translate a formula such as

Ix (P(f(x)) V P(g(g(x)))) (6.40)

into a formula without function symbols. This formula reads as follows:

@ w = g(g(v))
<1 Formula (6.40)

Vx 3y (F(y,x) AVz (F(z,x) >y =12)) =e1F is a function
AVx 3y (G(y,x) AVz (G(z,x) = y=12)) = is a function
AF(u,x) B1u=f(x)
A G(v,x) =81v=g(x)
)
)

This formula is equisatisfiable to (6.40), as every model of one formula directly
leads to a model of the other. However, both formulas are not logically equiva-
lent. Since they are composed of different symbols, their models differ for this
reason alone.

Godel describes the transformation in less detail. He mainly refers to §14
of the first volume of the Principia Mathematica, which discusses a similar
transformation. The symbol ‘2’ also originates from there; Russel employed it
for defining “descriptive functions”. From today’s perspective, neither the term
nor the symbol holds relevance.

B erhilt man aus A, indem man
die in A vorkommenden Variablen dritter Art @ (), P (z y) . . durch
Ausdriicke der Form: (712) F(z2xz), (12) G(2, xy) ... ersetzt, die
,,beschreibenden® Funktionen im Sinne der PM. I * 14 auflost und
die so erhaltene Formel mit einem Ausdruck logisch multipliziert ),
der besagt, daB sdmtliche an Stelle der @, .. gesetzte F, G. . hin-
sichtlich der ersten Leerstelle genau eindeutig sind.

59) D. h. die Konjunktion bildet.

One obtains B from A by replacing the variables of the third
kind @ (z), ¥ (zy) .. occurring in A by expressions of the form
(12) F(zz), (12) G(2,zy) ..., then by eliminating the “descrip-
tive” functions in the sense of PM. I * 14, and by logically
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multiplying °°) the formula thus obtained by an expression which says
that the F, G.. replacing ¢,V .. are single valued with respect to
the first argument.

59) I e. forming the conjunction.

Overall, our considerations have led to the following result: If we are only
interested in the satisfiability of formulas, it is irrelevant whether we allow the
usage of the equal sign or function symbols. For each formula of first-order
predicate logic, we can construct an equisatisfiable formula in which neither
the equality sign nor any function symbol appears.

At this point, it gets exciting: We are approaching the proof of Theorem X:

Wir zeigen nun, daB es zu jedem Problem der Form (z) F' (x)
(F' rekursiv) ein dquivalentes betreffend die Erfiillbarkeit einer
Formel i. W. S. gibt, woraus nach der eben gemachten Bemerkung
Satz X folgt.

We shall now show that, for every problem of the form
() F (z) (F recursive), there is an equivalent problem concerning the
satisfiability of a formula i. w. s., from which, according to the remark
just made, Theorem X follows.

Godel announces to demonstrate that for every primitive-recursive relation F,
there exists a corresponding PL1 formula ¢, characterized by the following

property:
x € Fforall z e N & op is satisfiable (6.41)

To prove this statement, we briefly turn back to page 217. Definition 5.3
stipulated that the relation F' is primitive-recursive precisely when a primitive-
recursive function ¢ with the following property exists:

reF & ¢(x)=0 (6.42)
Thus, (6.41) can be reformulated as follows:
¢(x) =0forall z € N & ¢p is satisfiable (6.43)

The function ¢ is primitive recursive if and only if a series of formulas
¢1,¢27"'a (bn

~—~

¢n:¢
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exists, which is constructed according to the schemata (PR1) to (PR5) from
Definition 5.2, with the last formula being identical to ¢. Godel starts to argue
the same way:

Da F rekursiv ist, gibt es eine rekursive Funktion ¢ (z), so
daB F (z) oo [¢p (z) = 0], und fiir ¢ gibt es eine Reihe von Funk-
tionen &1, Go. . . dy, so daB: b, =, ¢y (2) =2+ 1

Since F is recursive, there is a recursive function ¢ (z) such
that F' () oo [¢ (z) = 0], and for ¢ there is a sequence of functions
$1, G2 .. Py such that g, = b, dy () =2+ 1

Godel assumes that every series begins with the successor function
dr1(x)=a+1 (6.44)

This requirement poses no problems for us, as (6.44) can be added at the
beginning of any formula series without altering the final function. In our
example on page 215, the successor function was already the first function, so
this series meets Godel’s requirement right from the start. Let us recall the
beginning of this series:

fi(z) = s(x) (PR2)
(g
faw1, 20, 23) = w5 (21, 22, 73) (PR3)
(=g
f3(x1, w2, 23) = fi(fe(z1,22,73)) (PR4)
(=g
fa(x) = mi(x) (PR3)
(g

f5(0,2) = fa(z) (PR5)
f5(k+17x) = fj(k7f5(k7x),$) @fS(kw’I;):w‘f'k

Next, Godel revisits the various schemata available for generating primitive-
recursive functions.

und fiir jedes
¢ (1 < k < n) entweder:

1o (.. ) [0k (0,22 .. 2) = by (22 . . 2py)] (18)
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(2,22 .. T) {Pi[d1(2). 22. . . 1] = Pyla,br(m, 22 .. T0). T2 . .. Ty }
P, q<k

and, for every
dr (1 < k< n), either:

1o (22 2m) [k (0,22 .. 2p) = &p (22 . . 2p)] (18)

(2,22 .. T) {Pi[d1(2). 22. . . 1] = Pyla, br(m, 22 .. T1). T2 . .. Ty }
P, q<k

Schema 1 can be rewritten as follows:

~

Or(0,22,...,Zm) = ¢p(z2,...,Tm) (p<k
¢k(¢1(I),I2,...,Im) = ¢q($,¢k(x,xg,...,Im),l’g,...,mm) q<k)

—

After replacing ¢ (x) with x + 1, the definition takes on a familiar face:

~

060,22, ..., Tm) = dp(x2,...,Tm) (p<k
O+ 1,2a,...,Tm) = ¢g(x, Pp(T, 22, ..., Tm), T2y .., Tun) q < k)

—

This is (PR5), the schema of primitive recursion from Definition 5.2.

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 195

2. (.. zm) [Pr (21 20) = &r (D (81) - s, (£5))]°°) A9)
r<k, i, <k (firv=1,2...5)

60) £, (i=1..s) vertreten irgend welche Komplexe der Variablen z1, 2 . . Zm,
z. B. x1 w3 x2.

On formally undecidable propositions of Principia Mathematica etc. 195

or:

2. (@ am) Gk (21 2m) = &r (D (81) - By, (£5))]°°) (A9)
r<k, i,<k (forv=1,2...5)

60) r,(i=1..s) represent any complexes made up of the variables i,
T2 . . Tms €8 TL T3 T2.

Here, Godel refers to (PR4), the substitution schema from Definition 5.2.
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oder:
3. (3:1. o o .’l?"m) [d)k: (331 CEEEE -’I:’m) - d)l (d)l @ oo Cbl (0) )] (20)
or:
3. (21 mp) [Gk (21 .. 2m) = b1 (1. .. d1(0))] (20)
This schema generates the constant functions f(x1,...,z,,) = n for any natural

number n. It is absent in Definition 5.2 as it is dispensable; the constant
functions can be obtained from the zero function through repeated application
of the substitution scheme.

Rather, Definition 5.2 included the projection functions 7 for properly handling
parameter lists of different lengths.

Ferner bilden wir die Sétze:

(@) 1 (2) =0 & (zy) [$1 (z)
(z) [n (2) =

=¢1 (y) >r=y] @
0] (22)

Furthermore, we form the sentences:

(@ &1 (2) =0 & (zy) [b1 (1) =1 () > 2=y] @D
(@) [$n (z) = 0] (22)

Let’s have a closer look at both propositions:

B Proposition (21)

p1(z) # 0
$1(x) =d1(y) = =y

Given that ¢; is the successor function, both statements represent trivial
truth. The reason why Godel mentioned them explicitly will only become
apparent later. He will integrate them into a formula of first-order predi-
cate logic to ensure that the function symbol for ¢; represents an injective
function that never takes on the value 0.

B Proposition (22)
(z)n(x) = O fOI‘ all T € N
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This proposition demands that ¢,, is the zero function. Because of (6.42),
this is equivalent to the statement

ze€ Fforallz e N

Next, Godel translates the series ¢1, ¢s,..., ¢, into a formula of first-order
predicate logic:

Wir ersetzen nun in allen Formeln (18), (19), (20) (fir k= 2,
3...n) und in (21) (22) die Funktionen ¢; durch Funktions-
variable @;, die Zahl 0 durch eine sonst nicht vorkommende Indi-
viduenvariable 7y und bilden die Konjunktion C' simtlicher so er-
haltener Formeln.

Now, in all the formulas (18), (19), (20) (for k=2,
3...n) and in (21), (22), we replace the functions ¢; by function
variables @;, the number 0 by an individual variable 2y which does
not occur elsewhere, and we form the conjunction C' of all the for-
mulas so obtained.

Godel advises us to replace the functions ¢; with function variables ¢; and
the number 0 with an otherwise not occurring individual variable xo. For our
example, the outcome reads as follows:

Cy = Vx1 Vx2 Vx3 (pa(x1,X2,X3) = X2)
C3 = Vx1 Vxo Vx3 (p3(x1,%2,%X3) = p1(02(x1,%2,x3)))
Cy = Vx (pa(x) =x)
Cs = Vxa (p5(x0,%2) = pa(x2)) A
Vx V2 (p5(p1(x),x2) = @3(x, 05(x, x2), %2))

Clany = Yx(p1(x) =x0) ANVxVy (p1(x) = p1(y) = x=y)
Vx (ip5(x) = o)

Claz)
Now, we form the conjunction C' of all formulas thus obtained:
C = CaNC3NCy ANC5 A Ciapy A Clag)
Next, we will show that the formula
pp = dxg C
satisfies property (6.43), namely:

¢(x) =0forall z € N & ¢ is satisfiable
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The direction from left to right is straightforward. If ¢(z) = 0 for all z € N, we
obtain a model for C' by interpreting the function symbols ¢; as the functions
¢; and the individual variable x; as the number 0. In Godel’s words:

Die Formel (Ezp) C hat dann die verlangte Eigenschaft, d. h.

1. Wenn (z) [¢ (z) = 0] gilt, ist (Eay) C erfiillbar, denn die
Funktionen ¢1, ¢ . ..¢, ergeben dann offenbar in (Euap) C fiir
©1,92...@, eingesetzt einen richtigen Satz.

Then the formula (Ea) C' has the required property, i.e.

1. If (z) [ () =0] holds, then (Fap) C is satisfiable, for,
when the functions ¢, ¢s. ..o, are substituted for @1,92...¢,
in (Exy) C, then a true sentence obviously results.

The direction from right to left is more elaborate. The satisfiability of ¢p
implies the existence of a model for the formula Ixg C. Consequently, the
following remains to be shown:

dxo C has a model = ¢(x) =0 for all z € N

Godel commences the proof by saying:

2. Wenn (Exzp) C erfiillbar ist, gilt (z) [¢ (z) = 0].

Beweis: Seien 1,15 . .., die nach Voraussetzung existie-
renden Funktionen, welche in (Exp)C' fiir ©1,@2 . . ¢, eingesetzt einen
richtigen Satz liefern. Thr Individuenbereich sei J.

2. If (Exy) Cis satisfiable, then (z) [¢ () = 0] holds.

Proof: Let {,12. .., be the functions which, according to
our hypothesis, yield a true sentence when substituted for @1,@2. . @,
in (Exy)C. Let their domain of individuals be J.

Godel assumes the existence of a model (J, I') for the formula 3xo C. The set J
is the domain of the model, and I is the mapping that assigns each individual
variable an element from J, and each function symbol ¢; a function ¢; : 3™ — 7,
where n is the arity of ¢;. The property of an interpretation being a model
means that the formula becomes substantively true for this interpretation. In

symbolic form, this can be succinctly expressed as follows:

(3,1) = 3% C
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Figure 6.7: The construction in detail. Starting with a model of Ixo C, Gddel con-
structs a model with the natural numbers as domain, interpreting the function sym-
bols 1, @2, ... as the functions ¢1, ¢, . ...

Consequently, an individual element a with the following property must exist:
(37I[><0/a]) ): CoNC3NA... A C(gl) AN 0(22)

Recall that (J, Iy, /4)) denotes the interpretation that maps the variable xo to
the individual element ¢ € J and is otherwise identical to (J,1). Godel argues
the very same way:

Wegen der Richtigkeit
von (Exzy) C fiir die Funktionen \; gibt es ein Individuum a (aus J),
so daB siamtliche Formeln (18) bis (22) bei Ersetzung der ¢; durch
P; und von 0 durch @ in richtige Sitze (18") bis (22') iibergehen.

Because (E1p) C holds
for the functions 1;, there exists an individual a (in J) such that all
the formulas (18) — (22) become true sentences (18") — (22) when the
¢, are replaced by the P, and 0 by a.

Let us try to visualize the model (J,I). Our starting point is the left part of
Figure 6.7, where each sphere symbolizes an individual element of the set J.
The element a resides somewhere in this set. Progressing from a to ¥1(a), then
to ¥1(¢1(a)), and so forth, unveils a uniquely determined sequence of elements.
The subformulas C 30y and C/21) ensure the traversed elements form a sequence
that starts with a and extends to infinity. Godel argues that (J,7) remains a
model if the set of individuals J is replaced with J' and the domain of the
functions 1; is restricted accordingly. This way, each function ; transforms
into a function v, as depicted in the middle of Figure 6.7.

Wir bilden nun die kleinste Teilklasse von J, welche a enthilt und
gegen die Operation 1; (z) abgeschlossen ist. Diese Teilklasse (J)
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hat die Eigenschaft, daB jede der Funktionen 1; auf Elemente aus
7’ angewendet wieder Elemente aus J' ergibt. Denn fiir ¥ gilt
dies nach Definition von J’ und wegen (18’), (19"), (20') iibertrigt
sich diese Eigenschaft von 1, mit niedrigerem Index auf solche
mit hoherem. Die Funktionen, welche aus 1; durch Beschrinkung
auf den Individuenbereich J’ entstehen, nennen wir ;. Auch fiir
diese Funktion gelten sdmtliche Formeln (18) bis (22) (bei der Er-
setzung von 0 durch @ und ¢; durch ;).

Now we form the smallest subclass of J which contains @ and is
closed with respect to the operation ; (). This subclass (J’) has
the property that each of the functions 1{;, when applied to elements
of 7', yields an element of J’. For, this holds for 1»; by definition of
7', and, by virtue of (18"), (19), (20), this property is transmitted
from those 1; with lower subscript to those with higher subscript.
The functions which arise from the 1; by restriction to the domain
of individuals 3’ are called ;. These functions also satisfy all the
formulas (18) — (22) (after substitution of @ for 0 and ;" for ¢;).

Next, Godel utilizes the model (3’, 1) to construct an isomorphic image within
the natural numbers (Figure 6.7 right). The construction is straightforward,
as it suffices to identify a with 0, ¥} (a) with 1, ¢} (¢](a)) with 2, and so forth.
Proceeding this way lets the function 1] become the successor function ¢;. The
same applies to the more complex functions in the new model (N, I”), that is,
the functions v} become the primitive recursive functions ¢;. It then holds:

I"(x0) = 0 (6.45)
I"(pi) = ¢ (6.46)

Like in any model, all subformulas of C are true statements in (N, I""). Conse-
quently, the subformula C(29) is true a fortiori:

(N, I") = ¥x (pn(x) = xo)
Due to (6.45) and (6.46), this is equivalent to
¢n(x) =0 for all z € N,
and because of ¢, = ¢, this is the same as
¢(x) =0 for all z € N,

which had to be proven. O

Godel articulates the final proof step in the following manner:
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Wegen der Richtigkeit von (21) fiir ;" und @ kann man die
Individuen aus J’ eineindeutig auf die natiirlichen Zahlen abbilden u. zw.
so, daB a in 0 und die Funktion {;’ in die Nachfolgerfunktion ¢
tibergeht. Durch diese Abbildung gehen aber simtliche Funktionen
P’ in die Funktionen ¢, iiber und wegen der Richtigkeit von (22)

196 Kurt Godel,

fir ¥, und a gilt (z) [¢,, (z) = 0] oder (z) [¢ (z) = 0], was zu be-
weisen war 6').

61) Aus Satz X folgt z. B., daB das Fermatsche und das Goldbachsche
Problem I6sbar wiren, wenn man das Entscheidungsproblem des e. F. gelost hitte.

Because of the truth of (21) for 1, and a, one can map the in-
dividuals of J’ in a one-to-one manner onto the natural numbers, and,
moreover, in such a way that a goes over into 0 and the function \;’
into the successor function ¢;. Under this mapping, however, all the
functions \; go over into the functions ¢;, and by the truth of (22)

196 Kurt Godel,

for P’ and a, we have (z)[dp, (z) =0] or (z) [¢ (z) = 0], which
was to be proved®').

61) From Theorem X it follows, for example, that the Fermat and Goldbach
problems would have been solvable, if one had solved the decision problem of the
r. f.

In footnote 61, Goédel hints at why we must acknowledge the contents of Theo-
rem X with regret. The ability to determine the satisfiability of every formula
of first-order predicate logic could potentially resolve a vast amount of number-
theoretical problems. Godel mentions Fermat’s Last Theorem and Goldbach’s
conjecture as prominent examples.

B Goldbach’s conjecture asserts that every even number n > 2 can be written
as the sum of two prime numbers. It holds true if and only if the following
primitive-recursive relation encompasses all natural numbers:
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Goldbach's Conjecture

(Primitive-recursive relation)

x€Gb & z<2Vodd(z)VI(y,z < z) (Prim(y) A Prim(z) Az =y + 2)

B Fermat’s Last Theorem states that the equation a™+b" = ¢" has no solutions
in positive integers for n > 2. To express this theorem in relational form,
we draw upon a well-established principle from recursion theory. It states
the existence of primitive-recursive functions 7y,...,m4 such that

r = (m1(z), m2(2), T3(7), Ta())

bijectively maps the set N into the set NTx NTx NTx NT. With these func-
tions at hand, we can easily craft a suitable primitive-recursive relation:

Fermat(zx)

(Primitive-recursive relation)
z € Fermat & m(z) <2V ma(z)™@ 4 mg(x)™ @) £ 7y(z)™ @)

Keep in mind that the absence of a decision procedure for first-order predicate
logic does not necessarily imply the falsity or unprovability of the mentioned
problems. For instance, Fermat’s theorem was proven in 1995 by other means.
A proof for Goldbach’s conjecture, however, still stands out to this day.

At this juncture, we are ready to finalize the proof of Theorem IX. G&del’s line
of reasoning resembles the passage quoted on page 329, where he elucidates
that the proof can also be carried out within the system P:

Da man die Uberlegungen, welche zu Satz X fithren, (fiir je-
des spezielle F) auch innerhalb des Systems P durchfithren kann,
so ist die Aquivalenz zwischen einem Satz der Form (z) F'(z) (F re-
kursiv) und der Erfiillbarkeit der entsprechenden Formel des e. F
in P beweisbar und daher folgt aus der Unentscheidbarkeit des einen
die des anderen, womit Satz IX bewiesen ist.?)

62) Satz IX gilt natiirlich auch fiir das Axiomensystem der Mengenlehre
und dessen Erweiterungen durch rekursiv definierbare w-widerspruchsfreie Klas-
sen von Axiomen, da es ja auch in diesen Systemen unentscheidbare Sitze der
Form (z) F(z) (F rekursiv) gibt.

Since one can carry out within the system P the argument
which led to Theorem X (for every special F), then the equivalence
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between a sentence of the form (x) F'(z) (F recursive) and the satisfi-
ability of the corresponding formula of the r.f. is provable in P, and
therefore the undecidability of the former implies that of the latter,
which proves Theorem IX. %2)

62) Theorem IX holds naturally also for the axiom system of set theory and
its extensions by recursively definable w-consistent classes of axioms, since there
also exist undecidable sentences of the form (z) F'(z) (F recursive) in these sys-
tems.

For F', we can once more select the primitive-recursive relation described on
page 301 by the formula with the Godel number r. To replicate the proof for
the selected relation in P means to derive a theorem of the following form:

F V1 @r(x1) <> Saty,

On the left-hand side is the formula Vx; ¢, (x1), whose undecidability has been
established earlier; neither the formula itself nor its negation is provable within
P. Accordingly, Sat, and —Sat, cannot be theorems either:

¥ Sat,
¥ —Sat,

The undecidability of Sat, implies that proving or disproving the universal
validity of =Vx; ¢, (x1) within P would contradict (6.37) or (6.38). Thus, we
have established Theorem IX: PL1 formulas exist whose universal validity can
neither be proved nor disproved within P.

6.3 The Second Incompleteness Theorem

We are on the verge of reaching the next and final climax of Gédel’s work.
The subject of our interest is Theorem XI, today referred to as Gddel’s second
incompleteness theorem.

4.

Aus den Ergebnissen von Abschnitt 2 folgt ein merkwiirdiges
Resultat, beziiglich eines Widerspruchslosigkeitsbeweises des Systems P
(und seiner Erweiterungen), das durch folgenden Satz ausgesprochen
wird:

Satz XI: Sei x eine beliebige rekursive widerspruchs-
freie®) Klasse von Formeln, dann gilt: Die Satzformel, welche
besagt, daB x widerspruchsfrei ist, ist nicht x-beweisbar; ins-
besondere ist die Widerspruchsfreiheit von P in P unbeweisbar 64),
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vorausgesetzt, dal P widerspruchsfrei ist (im entgegengesetzten Fall
ist natiirlich jede Aussage beweisbar).

63) x ist widerspruchsfrei (abgekiirzt als Wid (x)) wird folgendermafBen
definiert: Wid (x) = (Ez) [Form (z) & Bewx (z)].
64) Dies folgt, wenn man fiir x die leere Klasse von Formeln einsetzt.

4.

From the results of Section 2 there follows a remarkable result
concerning a consistency proof for the system P (and its extensions),
which is expressed by the following theorem:

Theorem XI: Let x be an arbitrary recursive consistent class 6?)
of formulas. Then the sentence which asserts that x is consistent is
not x-provable; in particular, the consistency of P is unprovable in
P,%%) assuming that P is consistent (in the contrary case, of course,
every statement is provable).

63) x is consistent (abbreviated Wid (x)) is defined as follows: Wid (x) =
(E z) [Form (z) & Bewx (z)].
64) This follows when one substitutes for x the empty class of formulas.

Slightly more informal yet easier to grasp, Theorem XI can be phrased as
follows:

6 Theorem 6.26 Second Incompleteness Theorem

No formal system with at least the expressive power of P can prove its
own consistency.

First, let us elucidate the true significance of Theorem XI. Our starting point
is footnote 63, where Godel explains how the consistency of a set of formulas y
can be expressed within the formal system P. In modern notation, his definition
reads as follows:

Wid(x) < Fz (Form(xz) A - Bew,(z)) (6.47)

Godel capitalizes on the fact that every inconsistent formal system, as long as
it includes the ordinary propositional logic apparatus, can prove all formulas
without exception. Conversely, P U y is consistent if

B a formula exists 1 32 Form(x)

B which is unprovable in P U x. 15" — Bew, (2)
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Der Beweis ist (in Umrissen skizziert) der folgende: Sei x eine
beliebige fiir die folgenden Betrachtungen ein fiir allemal gewéhlte
rekursive Klasse von Formeln (im einfachsten Falle die leere
Klasse). Zum Beweise der Tatsache, daB 17 Gen 7 nicht x-beweisbar
ist 65), wurde, wie aus 1. Seite 189 hervorgeht, nur die Widerspruchs-
freiheit von x benutzt, d. h. es gilt:

Wid (x) —> Bewx (17 Gen 7) (23)
d. h. nach (6°1):
Wid (x) —> (z) z Bx (17 Gen 1)

65) r hiingt natiirlich (ebenso wie p) von x ab.

The proof is (in outline) the following: Let x be an arbitrary
recursive class of formulas (in the simplest case, the empty class)
which, for the following considerations, is chosen once and for all.
In the proof of the fact that 17 Gen 7 is not x-provable, %) only the
consistency of x is used, as can be seen from 1. on page 189; that
is, we have:

Wid (x) —> Bewx (17 Gen 7) (23)
i.e., by virtue of (6-1):
Wid (x) — (z)  Bx (17 Gen 7)

65) Of course, 7 (as well as p) depends upon x.

Let us recall: On page 303, we have shown that neither the formula Vx; ¢, (x1)
nor its negation —Vx; ¢.(x1) is provable. In the first case, we only relied on
the consistency of P, allowing us to draw the following conclusion:

Wid(x) = "Vx1 ¢p(x1)" & Bew, (6.48)
————

17 Gen r
This conclusion is the statement (23) in Godel’s work.
The relation Bew, was defined on page 297 as follows:
z € Bewy & dyyByz
Thus, (6.48) can be rewritten as such:

Wid(x) = -3y yBy"Vx1 or(x1)”
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A minor reformulation yields the statement in Godel’s article:

Wid(x) = Va =(z By "Vx1 or(x1)") (6.49)

Nach (13) ist 17 Gen r= Sb (p Zl?p)> und daher:

Uber formal unentscheidbare Sitze der Principia Mathematica etc. 197

Wid (x) —> (z) 2 Bx Sb (p Zl%@))

d. h. nach (81):
Wid (x) = (z) @ (2. p) (24)

By (13), 17 Gen r= Sb (p Zl?p)> and therefore:

On formally undecidable propositions of Principia Mathematica etc. 197

Wid (x) —> (z)  Bx Sb (p Zl?p)>

i.e., by (81):
Wid (x) = () Q (=, p) 24)

In Godel’s work, (13) references the equation
Vx1 @r(x1) = ¢p(D),
which enables us to transform (6.49) into
Wid(x) = Va —=(z By "¢,(D)").
Because of (6.5), this is the same as:
Wid(x) = (z,p) € Q for all » (6.50)
Wir stellen nun folgendes fest: Samtliche in Abschnitt 25¢) und

Abschnitt 4 bisher definierte Begriffe (bzw. bewiesene Behauptungen)
sind auch in P ausdriickbar (bzw. beweisbar). Denn es wurden iiberall
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nur die gewohnlichen Definitions- und Beweismethoden der klassischen
Mathematik verwendet, wie sie im System P formalisiert sind. Ins-
besondere ist x (wie jede rekursive Klasse) in P definierbar.

66) Von der Definition fiir ,rekursiv auf Seite 179 bis zum Beweis von
Satz VI inkl.

Now we establish the following: All the defined concepts
(proved assertions) of Section 2°) and Section 4 are expressible
(provable) in P. For, we have used throughout only the ordinary
methods of definition and proof of classical mathematics, as they are
formalized in the system P. In particular, x (like every recursive
class) is definable in P.

66) From the definition of “recursive” on p. 179 until the proof of Theorem
VI, inclusive.

This passage contains the key idea: Godel again takes advantage of the fact
that all previously defined notions (resp. proven assertions) are also expressible
(resp. provable) in P. In particular, this implies the existence of a closed formula
Wid(x), which formalizes the relation Wid(x) within P. Gdédel denotes the
Godel number of this formula with w:

Sei
w die Satzformel, durch welche in P Wid (x) ausgedriickt wird. Die
Relation @ (z,y) wird gemdR (8:1), (9), (10) durch das Relations-

zeichen q ausgedriickt, folglich @) (z, p) durch r {da nach (12) r=

= Jb (q Zl?p)ﬂ und der Satz (z) @Q(x,p) durch 17 Gen r.

Let
w be the sentence by which Wid (x) is expressed in P. The
relation @) (z,y) is, according to (81), (9), (10), expressed by the

predicate g, and, consequently, () (:r, p) by r {since, by (12), r=

= §b (q Zl(gp)ﬂ and the sentence (z) @ (z,p) by 17 Gen r.

Godel explains that all other statements, previously formulated at the meta-
level, can also be formally expressed within P. The ones listed in Table 6.1 are
particularly significant for us.
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Mathematical statement Formalization in P
Wid(x) Wid(x)
(xay) €Q "/}q(fv @)
(z,p) €Q or(Z) <1 because of (6.9)
(z,p) € Q for all x Vx1 o (x1)

Table 6.1: Mathematical statements and their formal representation in P

By formalizing the conclusion leading to (6.50), the following theorem is deriv-
able within P:
F Wid(x) = VX1 ©r(x1) (6.51)

At this juncture, we have crossed the finish line. If we could establish the
consistency of P within P, specifically, if we had

F Wid(x),
this would, in conjunction with (6.51), lead to a proof for Vx; ¢, (x1):
FVx1 ¢r(x1) (6.52)

The first incompleteness theorem states that (6.52) cannot be proved within
P, provided that P is consistent. As a result, Wid() also remains unprovable
within P. Gédel articulates this conclusion as follows:

Wegen (24) ist also w Imp (17 Gen ) in P beweisbar 67) (um
so mehr x-beweisbar). Wire nun w x-beweisbar, so wire auch 17 Gen r
x-beweisbar und daraus wiirde nach (23) folgen, daB x nicht wider-
spruchsfrei ist.

67) DaB aus (23) auf die Richtigkeit von wImp (17 Gen r) geschlossen
werden kann, beruht einfach darauf, daB der unentscheidbare Satz 17 Gen 7,
wie gleich zu Anfang bemerkt, seine eigene Unbeweisbarkeit behauptet.

Hence w Imp (17 Gen 7) is, by virtue of (24), provable in P°7)
(a fortiori, x-provable). Now, were w to be x-provable, then 17 Gen r
would also be x-provable, whence, by (23), it would follow that x is
not consistent.

67) That the truth of w Imp (17 Gen r) can be deduced from (23) rests sim-
ply on the fact that the undecidable proposition 17 Gen 7, as was remarked at the
very beginning, asserts its own unprovability.

This concludes the proof of Theorem XI.
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Be sure to draw the proper conclusions from the second incompleteness theo-
rem. This theorem is often interpreted to suggest that the provability of Wid(x)
implies the consistency of the underlying formal system. However, this is by
no means true. In any contradictory formal system that includes the standard
propositional logic apparatus, every formula can be derived from the axioms,
including Wid(x). Consequently, the opposite conclusion is correct: If it is pos-
sible to prove consistency within a formal system that meets the requirements
of the second incompleteness theorem, it must necessarily be contradictory.
Therefore, the second incompleteness theorem can only serve to demonstrate
the inconsistency of a formal system but never its consistency.

Godel starts the next section by highlighting that the provided proof is con-
structive. After that, he points out its applicability to all formal systems pos-
sessing at least the expressive power of Gédel’s system P and explicitly mentions
axiomatic set theory and classical mathematics as examples. The distinction
made by Gddel between these two terms is rooted in history. It wasn’t until the
latter half of the twentieth century that axiomatic set theory gained widespread
acceptance, which eventually led to both concepts being identified.

Es sei bemerkt, dal auch dieser Beweis konstruktiv ist, d. h.
er gestattet, falls ein Beweis aus x fiir w vorgelegt ist, einen Wider-
spruch aus x effektiv herzuleiten. Der ganze Beweis fiir Satz XI
14Bt sich wortlich auch auf das Axiomensystem der Mengenlehre M
und der klassischen Mathematik ) A iibertragen und liefert auch hier
das Resultat: Es gibt keinen Widerspruchslosigkeitsbeweis fiir M
bzw. A, der innerhalb von M bzw. A formalisiert werden konnte,
vorausgesetzt daB M bzw. A widerspruchsfrei ist.

68) Vgl. J.v.Neumann, Zur Hilbertschen Beweistheorie, Math. Zeitschr.
26, 1927.

Notice that this proof is also constructive, i.e. it permits us to
effectively derive a contradiction from x, if we are presented with a
proof of w from x. The whole proof of Theorem XI can be carried
over, word for word, to the axiom systems of set theory M and of
classical mathematics®®) A, and yields here also the result: There
exists no consistency proof for M which can be formalized within M
assuming that M is consistent, and similarly for A.

68) Cf. J. v. Neumann, “Zur Hilbertschen Beweistheorie”, Math. Zeitschr.
26, 1927.

Today, we know that even even more limited systems are subject to the second
incompleteness theorem. Back in 1939, David Hilbert and Paul Bernays proved
the theorem for two variants of Peano arithmetic [56], thereby establishing
precise criteria that were later simplified by the German mathematician Martin
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Léb [66]. When a formal system meets these criteria, it can formalize and
prove the first incompleteness theorem. This, in turn, is sufficient to derive
the disastrous formula (6.51), rendering the formal system susceptible to the
second incompleteness theorem. The systems meeting these criteria include
Peano arithmetic, as introduced in Section 6.2.1, implying that the second
incompleteness theorem affects all formal systems expressive enough to talk
about the additive and multiplicative properties of the natural numbers.

Does this result suggest that we should distrust Peano arithmetic? The short
answer is No. Even though the second incompleteness theorem dashes the
hope of safeguarding PA with inference methods that are more basic and thus
potentially more trustworthy than Peano arithmetic itself, there is no com-
pelling reason for distrust. Overall, the axioms are too simple, and the natural
numbers are overly familiar to us.

But what about set theory? Are the precautions taken here really sufficient
to exclude all antinomies? Once again, the prevailing view is that mathe-
matics can be built on ZF or ZFC without contradictions, yet formal proof is
lacking. The second incompleteness theorem underscores that such a proof is
only attainable in formal systems more intricate than ZF or ZFC, ultimately
transferring the question to another system. Indeed, the second incompleteness
theorem destroys any hope of ever answering the question of consistency in a
trustworthy way.

The second incompleteness theorem dramatically affected Hilbert’s program by
unequivocally demonstrating that a formal system as expressive as P cannot
prove its own consistency. As a result, the consistency of mathematics is not
provable with standard mathematical methods. But that was precisely the plan
Hilbert had been pursuing so vehemently for years: to prove the consistency of
classical mathematics with finite means. But did Gédel’s second incompleteness
theorem really extinguish all possibilities of fulfilling Hilbert’s objectives?

Godel comments on this matter with a surprising statement:

Es sei ausdriick-
lich bemerkt, daf Satz XI (und die entsprechenden Resultate iiber
M, A) in keinem Widerspruch zum Hilbertschen formalistischen
Standpunkt stehen. Denn dieser setzt nur die Existenz eines mit
finiten Mitteln gefiihrten Widerspruchsfreiheitsbeweises voraus und
es wire denkbar, daB es finite Beweise gibt, die sich in P (bzw.
M, A) nicht darstellen lassen.

It should be expressly
noted that Theorem XI (and the corresponding results about M and
A) in no way contradicts Hilbert’s formalistic standpoint. For the lat-
ter presupposes only the existence of a consistency proof carried out
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by finitary methods, and it is conceivable that there might be finitary
proofs which cannot be represented in P (or in M or A).

Apparently, unlike other renowned mathematicians such as John von Neumann,
Godel did not see Hilbert’s program as a failure. From a formal standpoint,
we cannot object to Gddel’s presented argument. Even if the consistency of
ordinary mathematics is unprovable with methods of ordinary mathematics
itself, this does not entirely rule out the existence of a less complex system in
which a consistency proof could be carried out.

But what form would such a system take? Primarily, it would need to incorpo-
rate novel proof methods not present in ordinary mathematics. Furthermore,
these new proof methods would have to be simple enough to qualify as finite
means; that is, they would have to be valid from obvious considerations. Even
though Go6del’s incompleteness theorems do not rule out its existence, no one
has yet discovered such a system, let alone formulated an idea of its potential
structure. In essence, only a few experts still believe in the existence of such a
system.

The subsequent paragraph in Godel’s work holds marginal significance. Godel
utilizes the second incompleteness theorem to weaken the prerequisite of his
main result slightly.

Da fiir jede widerspruchsfreie Klasse x w nicht x-beweisbar ist,
so gibt es schon immer dann (aus x) unentscheidbare Sitze (ndmlich
w), wenn Neg (w) nicht x-beweisbar ist; m. a. W. man kann in Satz VI

198 Kurt Godel, Uber formal unentscheidbare Sitze etc.

die Voraussetzung der w-Widerspruchsfreiheit ersetzen durch die
folgende: Die Aussage ,,x ist widerspruchsvoll® ist nicht x-beweisbar.
(Man beachte, dal es widerspruchsfreie x gibt, fiir die diese Aussage
x-beweisbar ist.)

Since w is not x-provable for any consistent class x, then
there already will exist sentences (namely, w) undecidable from x, if
Neg (w) is not x-provable; in other words, in Theorem VI one can
replace

198 Kurt Godel, Uber formal unentscheidbare Sitze etc.

the assumption of w-consistency by the following: The proposition
“x is inconsistent” is not x-provable. (One should observe that there
exist consistent x for which this proposition is x-provable.)
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Godels adopts the following line of argument: We have just demonstrated the
unprovability of Wid(x) in P U x, given that y is consistent. If =Wid(y) is also
unprovable, then Wid(x) and =Wid(x) would constitute an undecidable pair of
formulas, rendering P incomplete. Hence, it is safe to replace the prerequisite
of w-consistency in sentence VI with the following requirement:

“=Wid(x) is unprovable in P U x.”

In his last sentence, set in parentheses, Gddel points out an interesting fact.
Consistency merely states that a formula ¢ can never be proved alongside its
negation —, while correctness ensures that no substantively false formulas are
provable. Thus, a formal system may claim that for some formula ¢, both
o and —p can be derived from the axioms, even though this is not the case.
The system could still be consistent in the sense of Definition 1.5 but would
obviously no longer be correct.

Wir haben uns in dieser Arbeit im wesentlichen auf das Sy-
stem P beschrinkt und die Anwendung auf andere Systeme nur
angedeutet. In voller Allgemeinheit werden die Resultate in einer
demnichst erscheinenden Fortsetzung ausgesprochen und bewiesen
werden. In dieser Arbeit wird auch der nur skizzenhaft gefiihrte
Beweis von Satz XI ausfiihrlich dargestellt werden.

We have limited ourselves in this paper essentially to the system
P and have only indicated the applications to other systems. The
results will be expressed and proved in full generality in a sequal to
appear shortly. Also in that paper, the proof of Theorem XI, which
has only been sketched here, will be presented in detail.

The second part Gédel mentioned was never published. Most mathematicians
found the proof sketch so convincing that hardly anyone doubted its correctness.

At this juncture, we have reached the end of Godel’s article. Indeed, the preced-
ing pages demanded substantial mental effort, and understanding any aspect
of the proof on the spot is quite challenging. However, Go6del has rewarded
us generously: The two incompleteness theorems undoubtedly belong to the
most exciting theorems ever proved in mathematics. They show us limits we
cannot overcome, thus standing on par with Einstein’s theory of relativity or
Heisenberg’s uncertainty principle in physics.

It is inherent in most mathematicians to strive for completeness, making the
incompleteness theorems a persistent thorn in their side without the chance
of removal. Nevertheless, we shouldn’t perceive Godel’s theorems in a too
negative light. Gédel undeniably demonstrated that mathematics couldn’t do
everything, which, in the grand scheme, may ultimately be a good thing.



6 The Limits of Mathematics




®

Check for
updates

/ Epilogue

In the 1930s, the reactions to Godel’s work varied greatly. It is reported that
Hilbert initially reacted with anger [103]. However, he did not deny reality for
long. In the years to come, he diligently worked out many proof steps that
Godel had merely sketched.

Zermelo could not come to terms with the incompleteness theorems and con-
tinued to reject their contents until his death. Several times he believed to
have identified a flaw in Godel’s proof [108], but none of his objections stood
the test of time.

For John von Neumann, logic would never be the same again. After delivering
several lectures on the incompleteness theorems in the 1930s, he soon shifted his
focus to a different field of research. He became involved in the construction
of electronic calculating machines and made significant achievements in this
area. In 1946, he introduced a fundamental concept for the internal workings
of microcomputers, and the von Neumann architecture remains the basis for
the construction of most modern computer systems to this day [75].

Bertrand Russell also largely withdrew from logic and shifted his attention
towards socio-political and philosophical topics.

Godel remained committed to mathematics and began working intensely on set
theoretical problems. During that period, crucial questions revolved around the
veracity of the continuum hypothesis (CH) and the axiom of choice (AC). As
it gradually emerged that neither CH nor AC could be proved or disproved
within Zermelo-Fraenkel set theory, Gédel became utterly absorbed. In the
ensuing years, he made groundbreaking discoveries in this field, advancing our
comprehension of sets and classes in unprecedented ways [33, 34]. Alas, we can
no longer open this fascinating chapter here, so this is where our journey comes
to an end.
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