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Taring Machine: In 1936 Dr. Turing wrote a paper on the design and the 

limitations of computing machines. For this reason they are sometimes known by 

his name. The umlaut is an unearned and undesirable addition, due, presumably, to 

an impression that anything so incomprehensible must be Teutonic. 

- Faster Than Thought: A Symposium on Digital Computing Machines (1953) 
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Introduction 

A
nyone who has explored the history, technology, or theory of computers has 
likely encountered the concept of the Turing Machine. The Turing Machine 

is an imaginary - not quite even hypothetical - computer invented in 1936 
by English mathematician Alan Turing ( 19 12- 1954) to help solve a question 
in mathematical logic. As a by-product, Tunng founded a new field of research 
known as computation theory or computability, which is the study of the abilities 
and limitations of digital computers. 

Although the Turing Machine is a rather implausible computer, it benefits from 
being extremely simple. The basic Turing Machine performs just a few simple oper­
ations. If the machine did anything less than what it does, it wouldn't do anything 
at all. Yet, through combinations of these simple operations, the Turing Machine 
can perform any computation that can be done on modem digital computers. 

By stripping the computer to the raw basics, we can understand better the 
abilities of digital computers - and JUSt as importantly, their inabilities. Years 
before anyone had demonstrated what a computer could do, Tunng proved what 
computers could never do. 

The Turing Machine remains a popular topic for exposition and discussion . 
(Try the term 'Turing Machine" in your favonte Internet search engine .) Yet, 
I suspect that Alan Turing's original paper describing his invention is rarely 
read. Perhaps this neglect has something to do with the title: "On Computable 
Numbers, with an Application to the Entscheidungsproblem." Even if you can say 
that word - try accenting the second syllable and pronouncing it like "shy" and 
you won't be far off - and you know what it means ("decision problem") , the 
suspicion remains that Tunng is expecting his reader to have basic knowledge of 
heavy German mathematical matters. A quick glance through the paper - and 
its use of a German gothic font to represent machine states - doesn't help allay 
these fears. Can a reader today take on a paper published 70 years ago in the 
Proceedings of the London Mathematical Society and stay afloat long enough to glean 
a few insights and even (perhaps) satisfaction? 

That's what this book is all about. It contains Turing's original 36-page paper1 

"On Computable Numbers, with an Application to the Entscheidungsproblem" 
and the follow-up 3-page correction2 with background chapters and extensive 

1 Alan Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem," Proceedings 

of the London Mathematical Society, 2nd series, Vol 42 ( 1 936), pp 230-265 
2Alan Tunng, "On Computable Numbers, with an Application to the Entscheidungsproblem A 
Correction," Proceedings of the London Mathematical Society, 2nd senes, Vol 43 (1937), pp 544-546 
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annotations. Reading Turing's original paper allows a unique journey inside his fer­
tile and fascinating mind as he constructs the machine that has had such profound 
implications for computing and , indeed , our understanding of the limitations of 
mathematics, the workings of the human mind , and perhaps even the nature of 
the universe. (The term "Turing Machine" doesn't appear in Turing's paper, of 
course . He called it a "computing machine ."  But the term 'Turing Machine" was 
used as early as 19373 and has remained the standard term ever since.) 

ln my annotations to Turing's paper, 1 have found it useful to interrupt his 
narrative frequently with explanations and elaborations. I have tried (without total 
success) not to interrupt him in the middle of a sentence. For the most part l 
retain Turing's own terminology and notation in my discussion, but at times I felt 
compelled to introduce terms that Turing doesn't use but which l found helpful 
in explaining his work. 

The text of Turing's paper is identified by a shaded background, like so: 

We shall avoid confusion by speaking more often of computable 
sequences than of computable numbers. 

We (meaning my publisher and I) have attempted to preserve the typography 
and layout of the original paper, except where oddities (such as spaces before 
colons) cause panicky reactions in modem editors. All original line breaks are 
retained. Turing's paper has a few typographical errors, mistakes, and omissions. 
Although l have left these uncorrected, l point them out in my commentary. 
Turing often refers to early parts of his paper by the page numbers in the original 
journal . I've left those references alone, but provided help in my commentary 
for finding the particular page in this book. Occasionally you'll see a number in 
Turing's text in brackets: 

When the letters are replaced by figures, as in§ 5, we shall have a numerical 

[243) 
description of the complete configuration, which may be called its descrip­
tion number. 

That's the original page break and the original page number. My footnotes are 
numbered; Turing's footnotes use symbols, and are also identified by shading. 

If you were to remove the pages from this book, cut out and discard everything 
that doesn't have a shaded background, and then tape the remnants back together, 
you'd be left with Turing's complete paper, and one sad author. Perhaps a more 
interesting strategy is to read this book first , and then go back and read Turing's 
paper by itself without my rude interruptions. 

3 Alonzo Church, review of "On Computable Numbers, wnh an Application to the Entscheidungsproblem," 
The]oumal of Symbolic Logic, Vol 2, No 1 (Mar 1937), 42-43 
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Turing's paper is spread out between pages 64 and 297 of this book, and 
the correction appears between pages 309 and 32 1 .  Tunng's paper is divided 
into 1 1  sections (and an appendix) that begin on the following book pages: 

1. Computing machines 
2. Definitions 
3. Examples of computing machines 
4. Abbrevtated tables 
5. Enumeration of computable sequences 
6. The universal computing machine 
7. Detailed descnption of the universal machine 
8. Application of the diagonal process 
9. The extent of the computable numbers 

10. Examples of large classes of number which are computable 
11. Application to the Entscheidungsproblem 
Appendix 

68 
72 
79 

113 
131 
143 
149 
173 
190 
235 
260 
290 

Turing's original motivation in writing this paper was to solve a problem formu­
lated by German mathematician David Hilbert ( 1862-1943). Hilbert asked for a 
general process to determine the provability of arbitrary statements in mathemati­
cal logic. Finding this "general process" was known as the Entscheidungsproblem. 
Although the Entscheidungsproblem was certainly the motivation for Turing's 
paper, the bulk of the paper itself is really about computable numbers. In Tur­
ing's definition, these are numbers that can be calculated by a machine. Turing's 
exploration of computable numbers accounts for the first 60 percent of the paper, 
which can be read and understood without any familiarity with Hilbert's work in 
mathematical logic or the Entscheidungsproblem. 

The distinction between computable numbers and "real numbers" is crucial co 
Turing's argument. For that reason, the preliminary chapters of this book provide 
a background into our classification of numbers, encompassing integers, rational 
numbers, irrational numbers, algebraic numbers, and transcendental numbers, all 
of which are also categonzed as real numbers. I have tried not to rely on any prior 
knowledge more sophisticated than high-school mathematics. I am aware that 
several decades may separate some readers from the joys of high school, so I have 
tried to refresh those memories. I apologize if my pedagogical zeal has resulted in 
explanations that are condescending or insulting. 

Although I suspect that this book will be read mostly by computer science 
majors, programmers, and other techies, I have tried to make the non-programmer 
feel welcome by defining chummy jargon and terms of art. Turing's paper is "one 
of the intellectual landmarks of the last century,"4 and I hope this book makes that 
paper accessible to a much broader audience. 

4John P Burgess, preface in George S Boolos, John P Burgess, and Richard C Jeffrey, Computability and 

Logic, fourth edition (Cambndge University Press, 2002), xi 
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To accommodate the needs of different readers, I have divided this book into 
four parts: 

Part I ("Foundations") covers the historical and mathematical background 
necessary to begin reading Turing's paper. 

Part II ("Computable Numbers") contains the bulk of Turing's paper and will be 
of primary interest to readers interested in the Turing Machine and issues related 
to computability. 

Part III ("Das Entscheidungsproblem") begins with an all-too-brief background 
in mathematical logic and continues with the remainder of Turing's paper. 

Part IV ("And Beyond") discusses how the Turing Machine has come to be 
an essential tool for understanding computers, human consciousness, and the 
universe itself. 

The mathematical content of Part Ill is necessarily more difficult than that 
of earlier chapters, and covered at a faster pace . Those readers not particularly 
interested in the implications of Turing's paper for mathematical logic might even 
want to skip the five chapters of Part Ill and jump right to Part IV. 

This book touches on several large areas in mathematics, including computabil­
ity and mathematical logic. I have picked and chosen only those topics and concepts 
most relevant to understanding Turing's paper. Many details are omitted, and this 
book is no substitute for the rigor and depth you'll find in dedicated books on the 
subjects of computability and logic. Those readers interested in delving further 
into these fascinating areas of study can consult the bibliography for guidance. 

Alan Turing published about 30 papers and articles during his lifetime5 but 
never wrote a book. Two of Turing's papers account for most of his continued 
fame: "On Computable Numbers" is the first, of course. The second is a far less 
technical article entitled "Computing Machinery and Intelligence" (published in 
1950) in which Turing invented what is now called the Turing Test for artificial 
intelligence. Basically, if a machine can fool us into believing that it's a person, we 
should probably grant that it's intelligent. 

The Turing Machine and the Turing Test are Alan Turing's two bids for lexical 
and cultural immortality. They may at first seem like two entirely different con­
cepts, but they're not. The Turing Machine is really an attempt to describe in a 
very mechanistic way what a human being does in carrying out a mathematical 
algorithm; the Turing Test is a human evaluation of the functioning of a computer. 
From his earliest mathematical researches through his last, Turing explored the 
relationship between the human mind and computing machines in a manner that 
continues to be fascinating and provocative. 

�These and other documents are available in the four volumes of The Collected Works of A M Tunng 

(Amsterdam ElseV1er, 1992, 200 I) Much of the imponam matenal has been collected by B Jack 
Copeland into The Essential Tunng (Oxford University Press, 2004) and Alan Tunng's Automatic Computing 

Engine (Oxford University Press, 2005) The former book contains anicles and papers related to the Tunng 
Machine The latter book is about the ACE computer project in the mid- to late 1940s 
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It is possible to discuss Turing's work wuhout mentioning anything about 
Turing the man, and many textbooks on computability don't bother with the 
biographical details. I have not found that to be possible here . Turing's secret 
work in cryptanalysis dunng World War II ,  his involvement in seminal computer 
projects, his speculations about artificial intelligence, his sexual orientation, his 
arrest and prosecution for the crime of "gross indecency," and his early death by 
apparent suicide at the age of 41 all demand attention. 

My JOb of recounting the highlights of Tunng's life has been greatly eased by 
the wonderful biography Alan Turing: The Enigma (Simon & Schuster, 1983) by 
English mathematician Andrew Hodges (b. 1949) . Hodges became interested in 
Turing partly through his own participation in the gay liberation movement of the 
1970s. Hodges's biography inspired a play by Hugh Whitemore called Breaking the 
Code ( 1986) . On stage and in a shortened version adapted for television in 1996, 
the role of Alan Turing was portrayed by Derek Jacobi. 

Like the earlier English mathematicians and computer pioneers Charles Babbage 
(1791-1871)  and Ada Lovelace ( 1815-1852), Turing has become an icon of the 
computer age. The Turing Award is an annual prize of $ 100,000 given by 
the Association for Computing Machinery (ACM) for maJor contributions to 
computing. There is a Tunng Programming Language (derived from Pascal) and 
Turing's World software for assembling Tunng Machines. 

Turing's name has become almost a generic term for computer programming -
so much so that A. K. Dewdney can title his "Excursions in Computer Science" 
as The Turing Omnibus (Computer Science Press, 1989) . A book about "Western 
Culture in the Computer Age" by]. David Bolter is called Turing's Man (Univer­
sity of North Caroline Press, 1984) , and Brian Rotman's critique of traditional 
mathematical concepts of infinity Ad Infinitum (Stanford University Press, 1993) is 
amusingly subtitled "The Ghost in Turing's Machine."  

Alan Turing has also attracted some academic interest outside the mathematics 
and computer science departments. The collection Novel Gazing: Queer Readings in 
Fiction (Duke University Press, 1997) features an essay by Tyler Curtain entitled 
'The 'Sinister Fruitiness' of Machines: Neuromancer, Internet Sexuality, and the 
Turing Test." Dr. Curtain's title refers to the famous William Gibson "cyberpunk" 
novel Neuromancer (Ace , 1 984) in which the Tunng Police help ensure that 
artificial intelligence entities don't try to augment their own intelligence . 

Turing has also shown up in the titles of several novels. Marvin Minsky (the 
famous M.I .T. researcher into artificial intelligence) collaborated with science­
fiction novelist Harry Harrison on The Turing Option (Warner Books, 1992), and 
Berkeley Computer Science professor Christos H. Papadimitriou has weighed in 
with Turing (A Novel About Computation) (MIT Press, 2003) . 

In Turing's Delirium (trans. Lisa Carter, Houghton Miffiin, 2006) by Bolivian 
novelist Edmundo Paz Soldan, a cryptanalyst nicknamed Tunng discovers the 
dangers of using his skills for a corrupt government. In Janna Levin's A Madman 
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Dreams of Turing Machines (Knopf, 2006), the fictionalized lives of Alan Turing 
and Kun Godel strangely interact through space and time . 

Alan Turing is a character in Neal Stephenson's Cryptonomicon (Avon, 1999) , 
Roben Harris's Enigma (Hutchinson, 1995), john L. Casti's The Cambridge Quintet: 
A Work of Scientific Speculation (Perseus Books, 1998) , and, of course, Douglas 
Hofstadter's Godel, Escher, Bach (Basic Books, 1979) . Alan Turing even narrates 
pan of The Turing Test (BBC, 2000) , a Dr. Who novel by Paul Leonard. 

While it's nice to see Alan Turing honored in these many ways, there's a danger 
that Turing's actual work becomes neglected in the process. Even people who 
have formally studied computation theory and think they know all about Turing 
Machines will, I hope, find some surprises in encountering the very first Turing 
Machine built by the master himself. 

* * * 

This book was conceived in 1999 . I wrote a little then and irregularly over the 
next five years. The first eleven chapters were mostly completed in 2004 and 2005.  
I wrote the last seven chapters in 2007 and 2008, interrupting work only to get 
married (finally !) to my longtime best friend and love of my life, Deirdre Sinnott. 

Many thanks to the London Mathematical Society for permission to reprint 
Alan Turing's paper "On Computable Numbers, with an Application to the 
Entscheidungsproblem" in its entirety. 

Walter Williams and Larry Smith read early drafts of this book, caught a number 
of errors, and offered several helpful suggestions for improvements. 

To the folks at Wiley, I am eternally grateful for their work in turning this 
pet project of mine into an actual published book. Chris Webb got the book 
going, Development Editor Christopher Rivera and Production Editor Angela 
Smith conquered the many structural and typographical challenges, and Technical 
Editor Peter Bonfanti helped me to be a little more diligent with the technical stuff. 
Many others at Wiley worked behind the scenes to help make this book as good 
as possible . Any flaws, imperfections, or hideous errors that remain can only be 
attributed to the author. 

Any author stands on the shoulders of those who have come before. The 
selected bibliography lists a few of the many books that helped me write this one. 
I'd also like to thank the staff of the New York Public Library, and especially the 
Science, Industry, and Business Library (SIBL) . I've made extensive use of JSTOR 
to obtain original papers, and I've found Wikipedia, Google Book Search, and 
Wolfram Math World to be useful as well . 

* * * 

Information and resources connected with this book can be found on the 
website www .TheAnnotatedTunng.com. 

Charles Petzold 
New York City and Roscoe, New York 

May, 2008 
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This Tomb Holds 
Diophantus 

M
any centuries ago, in ancient Alexandria, an old man had to bury his son. 
Heartbroken, the man distracted himself by assembling a large collection 

of algebra problems and their solutions in a book he called the Arithmetica. That 
is practically all that is known of Diophantus of Alexandria, and most of it comes 
from a riddle believed to have been written by a close friend soon after his death 1 :  

This tomb holds Diophantus. Ah, what a marvel! And the tomb 
tells scientifically the measure of his life. God vouchsafed that he 
should be a boy for the sixth part of his life; when a twelfth was 
added, his cheeks acquired a beard; He kindled for him the light 
of marriage after a seventh, and in the fifth year after his marriage 
He granted him a son. Alas! late-begotten and miserable child, 
when he had reached the measure of half his father's life, the 
chill grave took him. After consoling his grief by this science of 
numbers for four years, he reached the end of his life. 2 

The epitaph is a bit ambiguous regarding the death of Diophantus's son. He is 
said to have died at "half his father's life," but does that mean half the father's age at 
the time of the son's death, or half the age at which Diophantus himself eventually 
died? You can work it out either way, but the latter assumption - Diophantus's 
son lived half the number of years that Diophantus eventually did - is the one 
with the nice, clean solution in whole numbers without fractional years. 

Let's represent the total number of years that Diophantus lived as x. Each part 
of Diophantus's life is either a fraction of his total life (for example, x divided by 6 
for the years he spent as a boy) or a whole number of years (for example, 5 years 

1 Thomas L. Heath, Diophantus of Alexandna · A Study in the History of Greeh Algebra, second edition 
(Cambndge University Press, 1910; Dover Publications, 1964), 3 
2Greeh Mathematical Works II. Anstarchus to Pappus of Alexandria (Loeb Classical Library No 362), 
translated by Ivor Thomas (Harvard University Press, 1941) ,  5 1 2-3 
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from the time he was married to the birth of his son). The sum of all these eras of 
Diophantus's life is equal to x, so the riddle can be expressed in simple algebra as: 

x x x x 
-+-+-+5+-+4=x 
6 12 7 2 

The least common multiple of the denominators of these fractions is 84, so multiply 
all the terms on the left and right of the equal sign by 84: 

14x+ 7x + 12x + 420 + 42x + 336 = 84x 

Grouping multipliers of x on one side and constants on the other, you get: 

84x - l4x - 7x - 12x - 42x = 420 + 336 

Or: 
9x = 756 

And the solution is: 
x=84 

So, Diophantus was a boy for 14 years and could finally grow a beard after 7 more 
years. Twelve years later, at the age of 33, he married, and he had a son 5 years 
after that. The son died at the age of 42, when Diophantus was 80, and Diophantus 
died 4 years later. 

There's actually a faster method for solving this riddle: If you look deep into the 
soul of the riddle maker, you'll discover that he doesn't want to distress you with 
fractional ages. The "twelfth part" and "seventh part" of Diophantus's life must be 
whole numbers, so the age he died is equally divisible by both 12 and 7 (and, by 
extension, 6 and 2). just multiply 12 by 7 to get 84. That seems about right for a 
ripe old age, so it's probably correct. 

Diophantus may have been 84 years old when he died, but the crucial historical 
question is when. At one time, estimates of Diophantus's era ranged from 150 BCE 
to 280 CE. 3 That's a tantalizing range of dates: It certainly puts Diophantus after 
early Alexandrian mathematicians such as Euclid (flourished ca. 295 BCE4) and 
Eratosthenes (ca. 276-195 BCE) , but might make him contemporaneous with 
Heron of Alexandria (also known as Hero, flourished 62 CE) , who wrote books 
on mechanics, pneumatics, and automata, and seems to have invented a primitive 
steam engine. Diophantus might also have known the Alexandrian astronomer 
Ptolemy (ca. 100-170 CE) , remembered mostly for the Almagest, which contains 
the first trigonometry table and established the mathematics for the movement 
of the heavens that wasn't persuasively refuted until the Copernican revolution of 
the sixteenth and seventeenth centuries. 

3Those dates persist in Simon Hornblower and Antony Sprawfonh, eds , Oxford Classical Dictionary, 

revised third edition (Oxford University Press, 2003). 483 
4All funher dates of Alexandnan mathematicians are from Charles Coulston Gillispie, ed, Dictionary of 

Scientific Biography (Scnbners, 1970) 
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Unfortunately, Diophantus probably did not have contact with these other 
Alexandrian mathematicians and scientists. For the last hundred years or so, 
the consensus among classical scholars is that Diophantus flourished about 250 

CE, and his major extant work, the Arithmetica, probably dates from that time. 
That would put Diophantus's birth at around the time of Ptolemy's death. Paul 
Tannery, who edited the definitive Greek edition of the Arithmetica (published 
1893-1895), noted that the work was dedicated to an "esteemed Dionysius." 
Although a common name, Tannery conjectured that this was the same Dionysius 
who was head of the Catechist school at Alexandria in 232-247, and then Bishop 
of Alexandria in 248-265. Thus, Diophantus may have been a Christian.5 If so, 
it's a bit ironic that one of the early (but lost) commentaries on the Arithmetica 
was written by Hypatia (ca. 370-415), daughter of Theon and the last of the 
great Alexandrian mathematicians, who was killed by a Christian mob apparently 
opposed to her "pagan" philosophies. 

Ancient Greek mathematics had traditionally been strongest in the fields of 
geometry and astronomy. Diophantus was ethnically Greek, but he was unusual in 
that he assuaged his grief over the death of his son with the "science of numbers," 
or what we now call algebra. He seems to be the source of several innovations in 
algebra, including the use of symbols and abbreviations in his problems, signifying 
a transition between word-based problems and modem algebraic notation. 

The 6 books of the Arithmetica (13 are thought to have originally existed) 
present increasingly difficult problems, most of which are quite a bit harder than 
the riddle to determine Diophantus's age . Diophantus's problems frequently have 
multiple unknowns . Some of his problems are indeterminate, which means they 
have more than one solution. All but one of the problems in Arithmetica are abstract 
in the sense that they are strictly numerical and don't refer to real-world objects. 

Another element of abstraction in Diophantus involves powers. Up to that time, 
mathematicians had been familiar with powers of 2 and 3. Squares were required 
for calculating areas on the plane, and cubes were needed for the volumes of solids. 
But Diophantus admitted higher powers to his problems: powers of 4 (which he 
called a "square-square") , 5 ("square-cube") , and 6 ("cube-cube") . These powers 
have no physical analogy in the world that Diophantus knew and indicate that 
Diophantus had little concern for the practicality of his mathematics. This was 
purely recreational mathematics with no goal but to strengthen the mind. 

Here's the first problem from Book IV.6 Diophantus states it first in general 
terms: 

To divide a given number into two cubes such that the sum of 
their sides is a given number. 

5Heath, Diophantus of Alexandna, 2 , note 2 Heath himself seems to be skeptical 
6Heath, Diophantus of Alexandna, 168 



6 The Annotated Turing 

Then he provides the two numbers: 

Given number 370, given sum of sides 10. 

Visualized geometrically, he's dealing with two cubes of different sizes. As a 
modem algebraist, you or I might label the sides of the two cubes x and y: 

The two sides (x and y) add up to 10.  The volumes of the two cubes (x3 and y3) 
sum to 370. Now write down two equations: 

x+y = 10 

x3 +y3 = 370 

The first equation indicates that y equals ( 10  - x), so that could be substituted in 
the second equation: 

x3 + ( 10  - x)3 = 370 

Now multiply ( 10  - x) by ( 10  - x) by ( 1 0  - x) and pray that the cubes eventually 
disappear: 

:<-+ ( 1000 + 30x3 - 300x - x3) = 370 

Fortunately they do, and after a bit of rearranging you get: 

30Y!- - 300x + 630 = 0 

Those three numbers on the left have a common factor, so you'll want to divide 
everything by 30: 

x2 - lOx + 2 1=0 

Now you're almost done. You have two choices. If you remember the quadratic 
formula,7 you can use that. Or, if you've had recent practice solving equations 
of this sort, you can stare at it and ponder it long enough until it magically 
decomposes itself like so : 

(x - 7) (x - 3) = 0 

The lengths of the two sides are thus 7 and 3. Those two sides indeed add up to 
10 ,  and their cubes, which are 34 3 and 2 7, sum to 3 70. 

Diophantus doesn't solve the problem quite like you or I would. He really can't. 
Although Diophantus's problems often have multiple unknowns, his notation 

7For ax2 + bx+ c = 0 solve x = -I>±� • a 
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allows him to represent only a single unknown. He compensates for this limitation 
in ingenious ways. Rather than labeling the sides of the two cubes as x and y, he 
says that the two sides are (5 + x) and (5 - x). These two sides are both expressed 
in terms of the single unknown x, and they indeed add up to 10. He can then cube 
the two sides and set the sum equal to 370: 

(5 + x)3 + (5 - x)3 = 370 

Now this looks worse than anything we've yet encountered, but if you actually 
expand those cubes, terms start dropping out like crazy and you're left with: 

30x2 + 250 = 370 

With some rudimentary rearranging and another division by 30, it further simpl­
ifies to: 

x2 = 4  

Or x equals 2. Because the two sides are (5 + x) and (5 - x), the sides are really 7 

and 3. 

Diophantus's skill in solving this problem with less sweat than the modem 
student results from his uncanny ability to express the two sides in terms of a single 
vanable in precisely the right way. Will this technique work for the next problem? 
Maybe. Maybe not. Developing general methods for solvmg algebraic equations is 
really not what Diophantus is all about. As one mathematician observed, "Every 
question requires a quite special method, which often will not serve even for 
the most closely allied problems. It is on that account difficult for a modem 
mathematician even after studying 100 Diophantine solutions to solve the 10 l5t 

problem."8 

Of course, it's obvious that when Diophantus presents the problem of cubes 
adding to 370 and sides adding to 10, he's not pulling numbers out of thin air. He 
knows that these assumptions lead to a solution in whole numbers. Indeed, the 
term Diophantine equation has come to mean an algebraic equation in which only 
whole number solutions are allowed. Diophantine equations can have multiple 
unknowns, and these unknowns can be raised to powers of whole numbers, 
but the solutions (if any) are always whole numbers. Although Diophantus often 
uses subtraction in formulating his problems, his solutions never involve negative 
numbers. "Of a negative quantity per se, i. e . ,  without some positive quantity 
to subtract it from, Diophantus had apparently no conception ."9 Nor does any 
problem have zero for a solution. Zero was not considered a number by the ancient 
Greeks. 

8Hermann Hankel (1874) as quoted in Heath, Diophantus of Alexandna, 54-55 Other mathematicians find 
more explicit patterns in Diophantus's methods See Isabella Gngoryevna Bashmakova, Diophantus and 

Diophantine Equations (Mathematical Association of Amenca, 1997), ch 4 
9Heath, Diophantus of Alexandna, 52-53 
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Modem readers of Diophantus - particularly those who are already 
acquainted with the requirement that Diophantine equations have solutions 
in whole numbers - can be a bit startled when they encounter rational numbers 
in Diophantus. Rational numbers are so named not because they are logical or 
reasonable in some way, but because they can be expressed as the ratio of two 
whole numbers. For example, 

is a rational number. 

3 

5 

Rational numbers show up in the only problem in the Arithmetica that involves 
actual real-world objects, in particular those perennial favorites: drink and drach­
mas. It doesn't seem so in the formulation of the problem, but rational numbers 
are required in the solution: 

A man buys a certain number of measures of wine, some at 8 
drachmas, some at 5 drachmas each. He pays for them a square 
number of drachmas; and if we add 60 to this number, the result 
is a square , the side of which is equal to the whole number of 
measures. Find how many he bought at each price . 10 

By a "square number," Diophantus means a result of multiplying some number 
by itself. For example, 25 is a square number because it equals 5 times 5 .  

After a page of calculations, 1 1  it is revealed that the number of 5-drachma 
measures is the rational number: 

79 

12  
and the number of 8-drachma measures is the rational number: 

59 

1 2  
Let's check these results. (Verifying the solution is much easier than deriving 

it.) If you multiply 5 drachmas by 79/12 ,  and add to it 8 drachmas times 59/12,  
you'll discover that the man paid a total of 72 � drachmas. Diophantus says the 
man pays "a square number of drachmas." The amount paid has to be a square of 
something. Curiously enough, Diophantus considers 72� to be a square number 
because it can be expressed as the ratio 

289 

4 
and both the numerator and denominator of this ratio are squares: of 17 and 2,  
respectively. So,  72� is  the square of 1 7/2 or st. Diophantus further says that "if 

10Heath, Diophantus of Alexandna, 224 
11 Heath, Diophantus of Afexandna, 225 
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we add 60 to this number, the result is a square, the side of which is equal to 
the whole number of measures." That phrase "whole number of measures" is not 
referring to whole numbers. What Diophantus (or rather, his English translator, 
Sir Thomas Heath) means is the total number of measures. Adding 60 to 72 � is 
132� , which is the rational number: 

529 

4 

Again, Diophantus considers that to be a square because both the numerator and 
denominator are squares: of 23 and 2, respectively. Thus, the total number of 
measures purchased is 23/2 or 11 t, which can also be calculated by adding 79/12 

and 59/12. 

Perhaps the most famous problem in the Arithmetica is Problem 8 of Book II: 
"To divide a given square number into two squares," that is, to find x, y, and z 
such that: 

x2 +l=z2 

This problem has a geometrical interpretation in the relationship of the sides of a 
right triangle as described by the Pythagorean Theorem: 

y 
z 

x 

The problem has many solutions in whole numbers, such as x, y, and z equaling 
3, 4, and 5, respectively. (The squares 9 and 16 sum to 25.) Such a simple solution 
apparently doesn't appeal to Diophantus, who sets the "given square number" 
(that is, z2) to 16, which makes the other two sides the rational numbers 144/25 

and 256/25. To Diophantus, these are both squares, of course. The first is the 
square of 12/5 and the second the square of 16/5, and the sum is the square of 4: 

It doesn't really matter that Diophantus allows a solution in rational numbers 
because the solution is equivalent to one in whole numbers. Simply multiply both 
sides of the equation by 52 or 25: 

122 + 162 = 202 
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Or, 144 plus 256 equals 400. It's really the same solution because it's only a 
different way of measuring the sides. In Diophantus's statement of the problem, 
the hypotenuse is 4. That could be 4 inches, for example. Now use a different ruler 
that measures in units of a fifth of an inch. With that ruler, the hypotenuse is 20 

and the sides are 12 and 16. 

Whole numbers came about when people started counting things. Rational 
numbers probably came about when people started measuring things. If one carrot 
is as long as the width of three fingers, and another carrot is as long as the width 
of four fingers, then the first carrot is � the length of the second. 

Rational numbers are sometimes called commensurable numbers because two 
objects with lengths expressed as rational numbers can always be remeasured with 
whole numbers. You just need to make your unit of measurement small enough. 

Diophantus wrote the Arithmetica in Greek. At least parts of the work were 
translated into Arabic. It was first translated into Latin in 1575 and then into a better 
edition in 1621, when it began to have an influence on European mathematicians. 
Pierre de Fermat (1601-1665) owned a copy of the 1621 Latin translation and 
covered its margins with extensive notes. In 1670, Fermat's son published those 
notes together with the Latin Arithmetica. One such note accompanied the problem 
just described. Fermat wrote: 

On the other hand it is impossible to separate a cube into two 
cubes, or a biquadrate [power of 4] into two biquadrates, or gen­
erally any power except a square into two squares with the same 
exponent. I have discovered a truly marvelous proof of this, 
which however the margin is not large enough to contain. 12 

Fermat is asserting, for example, that 

x3 + Y3 = z3 

has no solutions in whole numbers, and neither does any similar equation with 
powers of 4, or 5, or 6, and so forth. This is not obvious at all . The equation: 

x3+y3+l=z3 

is very, very close to 

x3 + y3=z3 

and it has many solutions in whole numbers, such as x, y, and z equaling 6, 8, and 
9, respectively. The equation 

x3+y3-l=z3 

12 Heath, Diophantus of Alexandna, 144, note 3 
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is also quite similar, and it too has many solutions in whole numbers, for example, 
9, 10, and 12. Why do these two equations have solutions in whole numbers but 

x3 + Y3 = z3 

does not? 
All the problems that Diophantus presented in Arithmetica have solutions, but 

many Diophantine Equations, such as the ones Fermat described, seemingly have 
no solutions. It soon became more interesting for mathematicians not necessarily 
to solve Diophantine Equations, but to determine whether a particular Diophantine 
Equation has a solution in whole numbers at all. 

Fermat's nonexistent proof became known as Fermat's Last Theorem (some­
times known as Fermat's Great Theorem) , and over the years it was generally 
acknowledged that whatever proof Fermat thought he had , it was probably wrong. 
Only in 1995 was Fermat's Theorem proved by English mathematician Andrew 
Wiles (b. 1953), who had been interested in the problem since he was ten years 
old. (For many special cases, such as when the exponents are 3, it had been 
determined much earlier that no solutions exist .) 

Obviously, proving that some Diophantine Equation has no possible solution is 
more challenging than finding a solution if you know that one exists. lf you know 
that a solution exists to a particular Diophantine Equation , you could simply test 
all the possibilities. The only allowable solutions are whole numbers, so first you 
try 1, then 2, and 3, and so forth. If you'd rather not do the grunt work yourself, 
just wnte a computer program that tests all the possibilities for you . Sooner or 
later, your program will find the solution. 

But if you don't know that a solution exists, then the brute-force computer 
approach is not quite adequate. You could start it going, but how do you know 
when to give up? How can you be sure that the very next series of numbers you 
test won't be the very ones for which you're searching? 

That's the trouble with numbers: They're JUSt too damn infinite. 





The Irrational 
and the 
Transcendental 

We begin counting 1 ,  2, 3, and we can go on as long as we want. These 
are known as the counting numbers, the whole numbers, the cardinal 

numbers, the natural numbers, and they certainly seem natural and intuitive 
enough because the universe contains so many objects that we can count. Natural 
numbers were likely the first mathematical objects conceived by early humans. 
Some animals, too, it seems, have a concept of numbers, as long as the numbers 
don't get too large. 

For many centuries, zero was not included among the natural numbers, and 
even now there is no firm consensus. (Text books on number theory usually 
tell you on the first page whether the author includes zero among the natural 
numbers.) On the other side of zero are the negative whole numbers. To refer to 
all the positive and negative whole numbers as well as zero, the word integer does 
just fine. The integers go off into infinity in two different directions: 

... -3 -2 -1 0 1 2 3 ... 

To refer to only the positive whole numbers starting at 1 ,  the term positive integers 
works well. For positive numbers starting with zero (that is, 0, 1 ,  2, 3, . . . ) the 
term non-negative integers is unambiguous and not too wordy. 

Rational numbers are numbers that can be expressed as ratios of integers, except 
that a denominator of zero is not allowed. For example, 

3 

5 
is a rational number, also commonly written in the decimal form: 

.6 

Rational numbers also encompass all the integers, because any integer (47, say) 
can be written as a ratio with 1 on the bottom: 

47 

1 
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Any number with a finite number of decimal places is also a rational number. 
For example, 

-23.45678 

can be represented as the ratio: 

-2,345,678 

100,000 

Some rational numbers, such as 
1 

3 

require an infinite number of digits to be represented in a decimal form: 

0.3333333333 ... 

This is still a rational number because it's a ratio. Indeed, any number with a 
repeating pattern of digits somewhere after the decimal point is a rational number. 
This is a rational number, 

0.234562345623456 ... 

if the digits 23456 keep repeating forever. To demonstrate that it's rational , let x 
represent the number: 

x = 0.234562345623456 .. . 

Now multiply both sides by 100,000: 

lOOOOOx= 23456.23456234562346 ... 

It's well known that if you subtract the same value from both sides of an equality, 
you still have an equality. That means that you can subtract the two values in the 
first expression from the two values in the second expression: Subtract x from 
lOOOOOx and 0.23456 .. . from 23456.23456 .. . and the decimals disappear: 

99999x = 23456 

So: 
23,456 

x= ---
99,999 

That's a ratio, so it's a rational number. 
just offhand, rational numbers seem to be quite complete. If you add two 

rational numbers, you'll get another rational number. Subtract, multiply, or 
divide rational numbers, and the result is also rational. 

One might assume (as people did for many years) that all numbers are rational , 
but consider the hypotenuse of this simple right triangle: 
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According to the Pythagorean Theorem, 

x2=l2+12 

or 

or 

Does there exist a ratio of two integers that, when multiplied by itself, equals 
2? One can certainly search and find many rational numbers that come very close . 
Here's one: 

53,492 

37,825 

This one is just a little bit short. Multiplied by itself it's about 1.99995. Maybe if 
we keep searching we'll find one that's perfect. 

Or are we wasting our time? 
It's hard to prove that something doesn't exist, but mathematicians have 

developed a type of proof that often comes in handy in such circumstances. It's 
called an indirect proof or a proof by contradiction, or the Latin reductio ad absurdum 
("reduction to absurdity"). You begin by making an assumption. Then, you logically 
follow the implications of that assumption until you run into a contradiction. That 
contradiction means that your original assumption was incorrect. 

Reductio ad absurdum proofs seem roundabout, but they are probably more 
common in real life than we realize. An alibi is a form of reductio ad absurdum. If 
the defendant were at the scene of the crime and at his mother's house, it would 
mean he was at two different places at the same time. Absurd. 

Let's begin by assuming that the square root of 2 is rational. Because it's rational, 
there exist whole numbers a and b such that: 

Are a and b both even? If so, divide them both by 2 and use those numbers instead. 
If they're still both even, divide them both by 2 again, and keep doing this until 
either a or b (or both) is odd. 
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Square both sides of the equation: 

a2 
b2 

= 2 

Or: 
a2 = 2b2 

Notice that a squared is 2 times b squared . That means that a squared is even, 
and the only way that a squared can be even is if a is even. Earlier I indicated that 
a and b can't both be even, so we now know that b is odd. 

If a is even, it equals 2 times some number, which we'll call c: 

(2c)2 = 2b2 

Or: 
4c2 = 2b2 

Or: 
2c2 = b2 

That means that b squared is even, which means that b is even, which is contrary 
to the original requirement that a and b can't both be even. 

Hence, the original assumption that the square root of 2 is a rational number is 
flawed.  The square root of 2 is incontrovertibly irrational. Expressed as a decimal, 
the digits keep going with no discemable pattern: 

l.4142135623730950488016887242097 .. . 

The number can't be expressed exactly without an infinite supply of paper, pen, 
and time . Only an approximation is possible, and the ellipsis acknowledges our 
defeat. The closest you can come to expressing this number finitely is providing 
an algonthm for its calculation. (I'll do precisely that in Chapter 6.) 

There's a reason why the terms that we use - rational and irrational - oddly 
seem to pass judgment on the mental stability of the numbers. Irrational numbers 
are also sometimes called surds, to which the word absurd is related. The ancient 
Greeks were familiar with irrational numbers but they didn't like them very much. 
According to legend (but not reliable history) , it was Pythagoras's disciple Hippasus 
who in the sixth century BCE determined that the square root of 2 is irrational. 
The legend continues to report that this finding was so disturbing to these logical 
and rational Greeks that Pythagoras and his followers tried to suppress it by 
tossing Hippasus into the Mediterranean Sea. They would certainly have preferred 
that irrational numbers didn't exist. Diophantus, in rejecting irrational numbers 
as solutions to his problems, was carrymg on a long tradition in finding irrational 
numbers not quite to his taste. 

With the decimal notation that we have (but the ancient Greeks did not) , it's 
easy to create numbers that are clearly irrational. just wnte down something nutty 
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without a repeating pattern of digits. For example, here's a number with some kind 
of crazy pattern in the decimals, but it's certainly not repeating: 

.00101 101 1 101 1 1 10 1 1 1 1 10 1 1 1 1 1 1  . . .  
After the decimal point, there's a 0 and one 1 , then a 0 and two ls,  then a 0 and 
three ls, and so forth. This is not a rational number! It cannot be represented by a 
ratio of two integers. It is, therefore , irrational. 

The square root of 2 is a solution to the following equation: 

x2 - 2 = 0  

It's the same as an equation I showed earlier except that the 2 has been moved to 
the other side of the equal sign. The cube root of 1 7  (which is also an irrational 
number) is a solution to the following equation: 

x3 - 1 7 = 0  

Both of those equations are called algebraic equations. Here's another algebraic 
equation: 

- 1 2x5 + 27x4 - 2x2 + Sx - 4 = 0 

An algebraic equation has one variable , usually called x. (Algebraic equations 
are not the same as Diophantine equations because Diophantine equations can 
have multiple variables.) The algebraic equation has a series of terms - five of 
them in this last example - that sum to zero. Each term contains the variable 
raised to a power, which is a whole number or zero. (Because anything to the 
zero power equals 1 ,  the fifth term can be interpreted as -4 times x to the zero 
power.) Each variable raised to a power is multiplied by an integer coefficient, in 
this example, the numbers - 12 ,  27 , -2,  8, and -4. These coefficients can be 
zero, as is the case with the "missing" term of x to the third power. 

Algebraic equations tend to show up a lot in real-life problems, so they've come 
to be considered quite important. The general form of an algebraic equation is: 

aN� + aN- 1�- l + · · · + aix2 + a1x + ao = 0 

where N is a positive integer and ai are integers. It's possible to wnte this more 
concisely as a summation: 

N 
L: aixi=O 
i=o 

Here's the example I showed earlier: 

- 1 2x5 + 27x4 - 2x2 + Sx - 4 = 0 

In this equation, N (the highest exponent, called the degree of the polynomial) is 
5, and as equals - 1 2 ,  a4 equals 27,  a3 equals 0, and so on. 
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The solutions to an algebraic equation (also called the roots of the equation) are 
called algebraic numbers. An N-degree polynomial has at most N unique solutions. 
In Chapter 1 ,  the algebraic equation 

x2 - lOx + 2 1  = 0 

came up. That equation has solutions of 3 and 7. 
The square root of 2 is one solution of the algebraic equation: 

x2 - 2 = 0 

The negative square root of 2 is the second solution. 
The category of algebraic numbers also includes all integers and all rational 

numbers. For example, the integer 5 is the solution of the algebraic equation 

x - 5 = 0  

and 3/7 is the solution of: 

7x - 3 = 0 

Some algebraic equations can be solved only with square roots of negative 
numbers: 

This equation looks insolvable because any number multiplied by itself is a positive 
quantity, so adding 5 to it won't ever yield zero. Square roots of negative numbers 
are called imaginary numbers. (The square root of - 1  is assigned the letter i for 
convenience .) Despite the name , imaginary numbers are very useful and have 
actual real-world applications, but imaginary numbers play no role in Turing's 
paper or this book. 

Sometime in the eighteenth century, mathematicians began speaking of real 
numbers in contrast to imaginary numbers. By definition, the category of real 
numbers includes everything except numbers involving square roots of negatives. 

Real numbers are also referred to as the continuum because real numbers can be 
visualized as all the points on a continuous line : 

-3 -2 -1 0 2 3 

Some integers are labeled on this line , but by themselves the integers obviously 
could not form a continuous line . 

But neither can rational numbers. Rational numbers certainly seem very dense 
on the line . Between any two rational numbers, for example, a and b, you can 
insert another rational number which is the average of the two: 

a + b  
2 
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But there still exist gaps between the rational numbers where irrational numbers 
reside . For example , one such gap corresponds to the square root of 2. 

Now, we're coming at the subject of categorizing numbers from two directions. 
We've defined a category called algebraic numbers that are solutions to algebraic 
equations. This category of numbers includes integers, rational numbers, and 
many irrational numbers such as square roots and cube roots. We've also defined 
a category called real numbers, which are all numbers that do not involve square 
roots of negative numbers. The question that now poses itself is this: 

Are all real numbers also algebraic numbers? Or are there some real numbers that 
are not solutions of algebraic equations? 

In the 1740s, Leonhard Euler (1707-1783) - the indefatigable Swiss-born 
mathematician, whose name is pronounced "oiler" - speculated that non­
algebraic numbers do indeed exist, and these he called transcendental numbers 
because they transcend the algebraic. Proving that transcendental numbers existed 
was tough. How do you prove that a particular number is not the solution of some 
extremely long and unspeakably hairy algebraic equation? 

The existence of transcendental numbers was an open question until 1844, 

when French mathematicianjoseph Liouville (1809-1882) devised a number that 
he was able to prove was not algebraic. Displayed with the first 30 decimal places, 
the number Liouville chose was: 

.110001000000000000000001000000 . .. 

But that excerpt doesn't quite reveal the complete pattern. Liouville constructed 
this crazy number with factorials. The factorial of a number is the product of 
the number and all positive integers less than itself, and is represented by the 
exclamation point: 

l !  = 1 

2! = 1 x 2 = 2 

3! = 1 x 2 x 3 = 6  

4!  = 1 x 2 x 3 x 4 = 24 

5! = 1 x 2 x 3 x 4 x 5 = 120 

and so forth. Liouville's Number (as it is sometimes called) contains a 1 in the 1st, 

2nd, 61h, 24th, 1201h, and so forth, decimal places. Liou ville designed this number 
specifically for proving that it was not the solution of any algebraic equation. The 
increasing scarcity of nonzero digits is the key to the proof. 1 

1The proof is discussed in Edward B Burger and Robert Tubbs, Making Transcendence Transparent An 

Intuitive Approach to Classical Transcendental Number Theory (Spnnger, 2004), 9-26 
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In 1882 , German mathematician Ferdinand Lindemann (1852-1939) proved 
that one of the most famous irrational numbers of all time was also transcendental . 
This is 7t, the ratio of the circumference of a circle to its diameter: 

7t = 3.141 5926535897932384626433832795 . . .  

Lindemann showed that 7t was not the solution to an algebraic equation, and 
this fact provided an insight into a very old problem: For over two millennia, 
mathematicians and non-mathematicians alike had been trying to "square the 
circle ." The problem can be stated simply: Given a circle, use a straightedge and 
compass to construct a square with the same area as the circle. (A similar problem 
is called the rectification of the circle, and it requires constructing a straight line 
with a length equal to the circle's circumference.) So fanatically did people try 
to solve this problem that the ancient Greeks even had a word for the obsessive 
activity: n:rpaywvi�eiv, literally, to tetragonize.2 

Using a straightedge and compass to construct geometrical shapes is equivalent 
to solving certain forms of algebraic equations. Because 7t is not a solution to an 
algebraic equation, you cannot represent the number in a geometrical construction. 
Squaring the circle with a straightedge and compass is impossible . 

Another famous transcendental number is symbolized by the letter e (for Euler) . 
If you calculate this number 

for increasingly large values of N, you'll approach e: 

e = 2.71 8281828459045235360287471 3527 . . .  

You can also calculate e by this infinite series involving factorials: 

1 1 1 1 1 
1 + l !  + 2 !  + 3 !  + 4! + 5 !  + . . .  

You can calculate it, but it's not a solution to any algebraic equation. 
Over the past century many numbers have been shown to be transcendental, but 

there exists no general process for determining whether a number is transcendental. 
For example, the jury is still out on: 

Turing's paper (and this book) restricts itself to real numbers (not imaginary 
numbers) , and the following diagram summarizes the most important categories 
within the realm of the reals: 

2E W Hobson, Squanng the Circle· A History of the Problem (Cambndge University Press, 1913), 3 
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Real Numbers 

Irrationals 

Integers 1 1113, 7/2, etc.I I "2. � etc. I I 1t, e, etc. I 
------------ ' J 

Algebraic Numbers Transcendentals 

This diagram is not to scale. 
Wait: What do I mean by that? 
All those categories of numbers are infinite, right? There are an infinite number 

of integers, an infinite number of fractions, an infinite number of irrationals, right? 
Infinite is infinite, right? There aren't different sizes of infinity, are there? There 
can't be an infinity that's larger than another infinity, can there? 

Right? 
Infinity has never been an easy subject , regardless of whether it's approached 

from a philosophical , theological, or mathematical perspective . In mathematics, 
however, infinity can scarcely be avoided. We are compelled to examine this 
concept of infinity with all the bravery we can summon. 

The relentless persistence of the natural numbers to get bigger and bigger seems 
to lie at the very root of our concept of the infinitely large . Whatever number we 
count to, we can always count one more. Real numbers can get infinitely large as 
well, of course, but only because they tag along with the natural numbers. Real 
numbers also allow us to ponder the infinitely small as we divide and subdivide 
the continuum into smaller and smaller pieces. 

Are these two infinities - the infinity of the never-ending natural numbers, 
and the infinity of the density of the continuum - similar in some way? Or are 
they completely different? 

The following discussion will be a little easier if we're armed with some 
rudimentary set theory. A set is a collection of objects, which are called the 
elements of the set. A set is often symbolized with a pair of curly brackets. For 
example, 

{ 1 ,  2, 3, 4 }  

is the set of the first four positive integers. The elements in a set are unique. Two 
4s in the same set isn't allowed, for example. The order of the elements in a set 
doesn't matter. The set 

{ 4, 1 ,  3, 2 }  

is identical to the previous one. The number of elements in a set is called the 
cardinal number of the set, or the set's cardinality .  The cardinality of the finite set 
shown above is 4. Sets that have the same cardinality are said to be equivalent. 

Some sets have a finite cardinality; others have an infinite cardinality. Consider 
the set of positive integers: 

{ 1 ,  2, 3, . . .  } 
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The cardinality is certainly infinite. That's also true for the set of even positive 
integers: 

( 2, 4, 6, . . .  } 

What is the relationship between the cardinalities of these two sets? 
Perhaps our immediate instinct is to say that the first set has double the number 

of elements as the second set because the second set is missing all the odd numbers. 
That's certainly one way of looking at it, and that would be true if the two sets were 
finite. But how can we speak of one set having "double the number" of elements 
of another set when they're both infinite? 

Let's try to count the elements of the second set. What does it really mean to 
count something? It means to put the items into correspondence with the natural 
numbers: "Number 1 ,  number 2, number 3, . . . " we recite, as we touch the noses 
of our subjects. 

We can count the even positive integers in the infinite set by corresponding 
each of them to the natural numbers: 

1 2 3 4 
t t t t 
2 4 6 8 

5 6 
t t 
10 12 

7 8 
t t 
14 16  

For every positive integer, there's a corresponding even number. For every even 
number, there's a corresponding positive integer. Looking at it this way, now the 
two sets appear to be exactly the same size, which means that they're equivalent. Is 
this a paradox or what? (Actually, this peculiar characteristic of infinite collections 
was noted by Galileo in 16383 and is sometimes called Galileo's Paradox.) 

Nobody seems to have worried too much about this paradox until Georg Cantor 
(1845-1918) began wrestling with it. Cantor, the mathematician largely credited 
with founding set theory, was born in St. Petersburg. His father was a merchant 
who drove his son to excel in whatever he did. Cantor's mother was a member 
of the Bohm family of musicians. Cantor himself displayed talents in art as well 
as music, but at the age of 1 7  he decided to "devote his life to mathematics.'>+ 

He attended the Polytechnicum in Zurich, and the University of Berlin. In 1869, 
Cantor got a teaching job at the University of Halle, where he remained for the 
rest of his life. 

In 1873, in a letter to mathematician Richard Dedekind (1831-1916), Cantor 
pondered correspondences such as the one between natural numbers and even 
numbers, and wondered whether a similar correspondence could be established 

3Ga!ileo Galilei, Two New Sciences, second edition, trans Stillman Drake (Wall & Emerson, 2000), 40-41 .  

The translation i s  based o n  Opere di Galileo Galilei (Florence, 1898), VIII, 78-79 Apparently Galileo wasn't 
the first to notice the paradox For a list of others, see Stephen Cole Kleene, Mathematical Logic (Wiley, 
1967, Dover, 2002), pg 1 76, footnote 12 1  

4Joseph Warren Dauben, Georg Cantor· His Mathematics and Philosophy of the Infinite (Harvard University 
Press, 1 979, Pnnceton University Press, 1990), 277 
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between the natural numbers and real numbers. He suspected not, but he couldn't 
see why. "I cannot find the explanation which I seek; perhaps it is very easy," 
Cantor wrote. 5 Famous last words. 

A set whose elements can be paired off with the natural numbers is now said 
to be enumerable (or sometimes denumerable or countable) . A set is enumerable 
if we can order the elements or list them in some way, because any list can 
be numbered - that is, paired off with the natural numbers starting with 1 ,  2 ,  
3 ,  and so on. All finite sets are enumerable, of  course. The real problem involves 
infinite sets. 

For example, consider the integers including negative and positive integers as 
well as zero. Is this set enumerable? Yes, it is, because we can list all the integers 
starting at zero: 

0 

1 

- 1  

2 

-2 

3 

-3 

That's not the way the integers are usually listed, but this particular pattern clearly 
demonstrates that a single list contains all the integers. 

Interestingly enough, the rational numbers are also enumerable. Let's begin 
with positive rational numbers, and let's not worry if we have a few duplicates in 
the list: 

1 / 1  

1/2 

2/1 

1/3 

2/2 

3/ 1 

1 /4 
2/3 

3/2 

4/ 1 

5Georg Cantor, letter of November 29, 1873, in From Kant to Hilbert· A Source Book in the Foundations of 

Mathematics (Oxford University Press, 1996), Vol. II ,  844 
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Do you see the pattern? With the first item in the list, the numerator and 
denominator add up to 2 .  The next two items on the list have numerators 
and denominators that add up to 3. The next three items on the list have 
numerators and denominators that add up to 4. And so forth. A list that continues 
like this contains all the positive rational numbers. We can include negative 
rational numbers by just alternating between positive and negative . Therefore, the 
rational numbers are enumerable. 

In a paper published in 1874, "On a Property of the Set of Real Algebraic 
Numbers,''6 Cantor showed that even the algebraic numbers are enumerable. As 
you'll recall, algebraic numbers are solutions to algebraic equations, which have 
the general form 

where N is a positive integer and ai are integers. For any particular algebraic 
equation, let's add up all of the coefficients (the ai values) and N itself. Let's call 
that number the equation's height. For a particular height (for example, 5), there 
are a finite number of algebraic equations. Each equation has at most N solutions. 
Thus, all the algebraic numbers can be listed in order of their heights and their 
solutions. The algebraic numbers are therefore enumerable . 

What about the transcendentals? Can the transcendental numbers be listed in 
some manner? It hardly seems likely!' There's not even a general procedure for 
determining whether a particular number is transcendental! 

What about the real numbers, which encompass algebraic numbers and tran­
scendental numbers? Can the real numbers be enumerated? 

In that same 187 4 paper where Cantor demonstrated that the algebraic numbers 
are enumerable, he also demonstrated that the real numbers are not enumerable. 

Cantor began his proof by assuming that the real numbers are enumerable. 
He assumes that there exists some way to enumerate the real numbers, and that 
they've been enumerated in a list like so , symbolized by subscripted omegas: 

w1 w2 W3 W4 W5 W6 

Cantor is going to show that this list is incomplete - that no matter how this list 
was made, it simply cannot contain all the real numbers. 

Pick any number a (alpha) and a larger number f3 (beta). You can represent 
these two numbers on a number line like so: 

a f3 

Now start going through your enumerated list of real numbers until you find the 
first two real numbers that are between a and {3 .  These two numbers are greater 
than a and less than f3. Call the lesser of these two numbers a' and the greater /3': 

6Most conveniently available in From Kant to  Hilbert, Vol II ,  839-84 3 
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{J' f3 

Continue going through your list of real numbers from where you left off until 
you find two new numbers between a' and {3'. Call these two numbers a" and f3" 

a a' a" /3" {J' f3 

And again: 

a a' a" a"' {J"' {J'' {J' f3 

It should be obvious that this process must continue forever. You'll always be able 
to find two more numbers between the last two numbers. 

How do you know this? Easy: Suppose you get stuck at this point 

a a' a" a'" ••• aM tJ< v) ••• {J"' {J'' {J' f3 

where the superscript (v) indicates v prime marks, maybe a million billion trillion 
or so, but a finite number. Now, no matter how much you continue to search 
through the list of enumerated real numbers, you can't find another pair of 
numbers that falls between a(v) and p<v> . Then it's obvious that your list of real 
numbers is incomplete . The list is missing every number between a<v> and p<v) . 
For example, the number midway between a<v) and p<v> is the average of the 
two, or: 

a(v) + p<v) 

2 
And that's just for starters. Your list is missing lots of numbers. 

That's how you know the process must continue forever. The alphas keep 
getting larger and the betas keep getting smaller, but the largest alpha can't get 
larger than the smallest beta. (When you find two new numbers that fall between 
the last alpha and beta, the smaller one is always the alpha and the larger one the 
beta.) Both the alphas and the betas have a boundary - a limit - that Cantor 
symbolizes using a superscripted infinity sign: a00 and p00. 

ls i t  possible that a00 is less than {300? Take a look: 

a ol a" ol" ••• a00 fJ"' {J'' {J' f3 

No, that's not possible. If the alphas never get larger than a00 and the betas never 
get smaller than {300, then the list of real numbers is missing every number between 
a00 and {300, for staners: 
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It must be that a00 is equal to {300.  Cantor calls this limit YJ (the Greek 
letter eta) : 

a a' a" a"' {3'" 13" f3' 13 

Because this has to be an infinite process (we've already established that it can't 
stop at some point) , the alphas never reach YJ and neither do the betas. Now, you 
know what that means, don't you? That means that YJ is not in the original list of 
real numbers! 

lf YJ were in the list, then it would tum up sometime when you were searching 
for the next alpha and beta, but consider the alpha and beta that turned up in the 
list right before 77 :  

a a' a" a'" • • •  a(v) 1J 13M ••• ff" ff' 13' 13 

Now the list of real numbers is missing every number between a(v) and 13M 
except 77 .  

We've run out of  scenarios here. Nothing works, nothing makes sense, and it's 
all the fault of the original assumption - the assumption that we were able to 
enumerate the real numbers. It must be that we can't do that. 

Integers are enumerable. Rational numbers are enumerable . Even algebraic 
numbers are enumerable. Real numbers, however, are not. 

Cantor considered the non-enumerability of real numbers to be a new proof 
of the existence of transcendental numbers. (lf transcendental numbers did not 
exist, real numbers would be the same as algebraic numbers and hence would be 
enumerable .) What Cantor eventually realized is that there are at least two kinds 
of infinity: There's an enumerable infinity and a non-enumerable infinity - an 
infinity of the natural numbers and an infinity of the continuum. Infinite sets of 
natural numbers, rational numbers, and even algebraic numbers are enumerable. 
When we throw in the transcendentals, suddenly we're in a whole different 
universe. We're looking at two different infinite cardinalities: One cardinality 
applies to natural numbers, rational numbers, and algebraic numbers. The other 
cardinality is that of the real numbers and the continuum. 

Cantor's work was controversial in his day and has never entirely shed that 
controversy. Since Cantor, however, no mathematician has thought about infinity 
in quite the same way. Moreover, the distinction between enumerable and 
non-enumerable infinities has proved to be extremely useful, even if imagining 
just one simple type of infinity boggles the human mind. 

In the popular mythology, Cantor himself went mad from contemplating infinity 
too much. It's true that Cantor spent the last twenty or so years of his life in and out 
of psychiatric hospitals, but it probably was a form of manic depression that would 
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have manifested itself regardless of his occupation. 7 Still, the worst of Cantor's 
bouts with mental illness seem to have been triggered by fatigue and stress, and 
the stress may have been related to problems connected with the acceptance of his 
unconventional mathematical theories. In recuperation, Cantor pursued interests 
other than mathematics. He explored philosophy, theology, metaphysics, and the 
hypothesis that Francis Bacon wrote the plays attnbuted to William Shakespeare . 

Finite sets and infinite sets have quite different characteristics. One big difference 
involves proper subsets , which are subsets that are not the same as the sets 
themselves. A proper subset of a finite set always has a smaller cardinality than the 
set itself. That much is obvious. A proper subset of an infinite set can also have 
a smaller cardinality than the set. (For example, the set of natural numbers is a 
proper subset of the set of real numbers, and the two cardinalities are different.) 
In some cases, however, a proper subset of an infinite set has the same cardinality 
as the set itself. This can only be true of infinite sets. The set of natural numbers 
is a proper subset of the set of integers, which is a proper subset of the set of 
rational numbers, which is a proper subset of the set of algebraic numbers. All 
these infinite sets have the same cardinality. They are equivalent. 

It's also the case that various proper subsets of the real numbers are equivalent 
to each other. Consider the real numbers between 0 and 1 .  These can be placed 
in a one-to-one correspondence with the real numbers greater than 1 .  Just divide 
each number into 1 .  For example , 0 .5 corresponds with 2 ,  0 .25 corresponds with 
4, 0. 1 corresponds wnh 10, and 0.0001 corresponds with 10,000. This little fact 
proves to be very useful: It means that we can examine certain properties of real 
numbers restricted to the range between 0 and 1 ,  and what we find will apply to 
all the real numbers. (Turing uses this concept in his paper, and Cantor used it as 
well .) 

As Cantor explored infinite sets, he made other astonishing discoveries: 
He found that he could establish a one-to-one correspondence between the 
continuum - the real numbers on a line - and the two-dimensional points on a 
plane , and indeed the points in any N-dimensional space. 

For example, let's restrict ourselves to that segment of the plane with x and 
y coordinates between 0 and 1. Each point on the plane can be expressed as a 
number pair (x, y) , and each of the two numbers contains infinite digits following 
the decimal point. In the following expression, each digit of x following the decimal 
point is symbolized by a subscripted a: 

Similarly for y: 

7Dauben, Georg Cantor, 285 
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Now take these digits and interweave them into a single number: 

.a 1 b i a2 b2 a3 b3 '2.4 b3 . . .  

That's one real number encapsulating two real numbers. Each two-dimensional 
point corresponds to a real number on the continuum. Hence, the collection of 
points on the plane has the same cardinality as the real numbers on a line . Cantor 
was so astonished by this discovery that German failed him. "]e le vois, mais je ne le 
crois pas," he wrote to Dedekind.8 I see it, but I don't believe it. 

In 189 1 ,  Cantor published another proof of the non-enumerability of real 
numbers,9 and this proof has been blowing people's minds ever since. Cantor's 
proof involved sets rather than numbers and was more general than the example 
I'm going to show you, but the idea is the same. For reasons that will be very 
apparent, it's called the diagonal proof or the diagonal process or the diagonal 
argument or diagonalization . Whatever you call it, a diagonal is involved. 

Let's restrict our attention to real numbers between 0 and 1. Suppose we have 
devised some way to list all these real numbers. (As you may be anticipating, 
this is yet another reductio ad absurdum proof. ) Suppose the list begins something 
like this: 

. 1234567890 

.2500000000 

.3333333333 

.3141 592653 

.00 10 1 101 1 1  

.4857290283 

.0000000000 

. 9999999999 

.77887788 12 

.2718281828 . . .  

We seem to be off to a good start. The list includes 0, 1/4, 1/3 , Tt/10, e/10,  that 
weird irrational number I showed earlier with the varying number of ls, and 
some others that aren't quite recognizable .  Each number has an infinite number 
of decimal places (even if they're just Os) and the list has an infinite number of 
numbers. 

Even though this list is infinite , we can persuade ourselves that it's missing 
something. Let's look at the digits chat form a diagonal through the list from 

8Letter of June 29, 1 877 in From Kant to Hilbert, Vol 1 1 ,  860 
9Georg Cantor, "On an Elementary Question in the Theory of Manifolds," From Kant to Hilbert, Vol 1 1 ,  
920-922 
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upper-left to lower-right. These digits are shown here in bold face : 

.1234567890 . .  . 

. 2500000000 . .  . 

. 3333333333 . .  . 

. 3141 592653 . .  . 

. 0 1 0 1 1 0 1 1 10 . .  . 

.4857290283 . .  . 

. 0000000000 . .  . 

. 9999999999 . .  . 

. 7788778812 . .  . 

. 27 18281 828 . .  . 

Now, use those bold-face digits to form a number: 

. 1 531 1909 18  . . .  

Because the list of real numbers is infinite, and the number of digits in each 
number is infinite, this number has an infinite number of digits. Now increase 
each individual digit in this number by 1 .  If the digit is 9, make it 0: 

.2642201 0259 . . .  

Is this new number in the original list? Let's be methodical about it: Is this new 
number the first number in the list? No, it's not, because the first digit of the first 
number in the list is 1 ,  and the first digit of the new number is 2 .  

I s  i t  the second number in the list? No again, because the second digit of  the 
second number in the list is 5 ,  and the second digit of the new number is 6. 

Is it the third number in the list? No, because the third digit of the third number 
in the list is 3, and the third digit of the new number is 4. 

And so forth. The new number is not the N-th number in the list because the 
N-th digit of the N-th number in the list is not equal to the N-th digit of the new 
number. 

Thus, the list is incomplete and our original premise is flawed. It's impossible 
to list the real numbers between 0 and 1 .  Once again, we see that the real numbers 
are not enumerable. 

What happens when you perform this same experiment on a list of algebraic 
numbers? We already know how to list algebraic numbers, so that's not a problem. 
When you construct a diagonal and change all the digits, the resultant number is 
not in the list. That means the resultant number is not an algebraic number. The 
resultant number is transcendental. 



30 The Annotated Turing 

You could order your list of algebraic numbers in many different ways; you 
could create different rules for making the diagonal different from any number in 
the list; each time , you'll be creating another transcendental number. 

ln 1895,  Cantor chose to represent the cardinality of the enumerable set of 
natural numbers (and thus, any enumerable infinite set) using the first letter of the 
Hebrew alphabet with a subscripted zero: �o. pronounced "aleph null . "  Cantor 
called this the first transfinite number. He combined this with other transfinite 
numbers (� 1 . �2 . �3 . and so on) to create an entire mathematics of the transfinite. 

lf the cardinality of enumerable sets is �o . what is the cardinality of the 
non-enumerable set of real numbers? Can we even represent that cardinality? 

Perhaps. Let's begin with an example involvmg finite sets. Here is a set of just 
three elements: 

{ a, b, c } 

How many subsets of this set can you construct? (The set of all subsets of a set is 
called the power set . )  You can try it manually, but JUSt don't forget the empty set 
and the set with all three elements: 

{ } { a, b } 
{ a } { a, c } 
{ b } { b, c } 
{ c } { a, b, c } 

There are eight subsets of a set of three elements, and not coincidentally: 

23 = 8 

The exponent is the number of elements in the onginal set. The result is the 
number of subsets of that set. A set of 4 elements has 16 (2 to the 4th power) 
subsets. A set of 5 elements has 32 subsets. 

There's a more methodical way to enumerate these subsets that better reveals 
this relationship . Let's create a table with a column for each element in the original 
three-element set. Use Os and ls to indicate whether that element is in each 
particular subset: 

a b c Subset 
0 0 0 { } 
0 0 1 { c } 
0 1 0 { b } 
0 1 1 { b, c } 
1 0 0 { a } 
1 0 1 { a, c } 
1 1 0 { a, b } 
1 1 1 { a, b, c } 
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The successive combinations o f  Os and l s  in the three columns are the same as the 
binary numbers from 0 through 7. Three bits yield 8 binary numbers. The general 
rule is: 

Cardinality of a power set = 2cardinality of the onginal set 

A set of 10 elements has a power set of 1 ,024 elements. A set of 100 elements has 
a power set of 1 ,267,650,600,228,229,40 1 ,496,703 ,205,376 elements. 

Now let's look at the natural numbers (including 0 for this purpose): 

{ 0,  1,  2 , 3,  4 ,  5 ,  . . .  } 

The cardinality of this set is �o - How many subsets does it have? In other words, 
what is the cardinality of its power set? By analogy, it's 

2�0 

Perhaps further convincing is required. Let's construct a table similar to that for 
the finite set (except obviously not so complete). At the top of the columns we have 
all the elements of the set of natural numbers. Each column has a 0 or 1 indicating 
whether that number is included in each particular subset. The resultant subset is 
shown at the right: 

0 1 2 3 4 5 Subset 

0 0 0 0 0 0 { } 
1 0 0 0 0 0 { o I 
0 1 0 0 0 0 { 1 } 
1 1 0 0 0 0 { o , 1 I 
0 0 1 0 0 0 { 2 I 
1 0 1 0 0 0 { 0 , 2 } 
0 1 1 0 0 0 { 1 ,  2 } 
1 1 1 0 0 0 { 0, 1 , 2 } 

What we are actually attempting here is a list of all possible infinite combinations 
of 0 and 1 .  Let's put a little period before each of the sequences of numbers in 
the list: 

.000000 . .  . 

. 100000 . .  . 

. 010000 . .  . 

. 1 10000 . . . 

. 00 1000 . .  . 

. 1 0 1 000 . .  . 
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.01 1 000 

. 1 1 1000 

These are binary numbers between 0 and 1 ,  and (judging from the way we 
created these numbers) all the binary numbers between 0 and 1 ,  and hence all the 
real numbers between 0 and 1 . 10 I showed earlier how the real numbers between 
0 and 1 can be put into a correspondence with the totality of real numbers, which 
means that the real numbers can be put into a correspondence with the members 
of the power set of the natural numbers. This power set therefore has the same 
cardinality as the continuum. 

The cardinality of the continuum is thus 

2�0 

where �o is the cardinality of the natural numbers. 
Cantor proved that it is not possible for the members of any nonempty set to 

be put into a one-to-one correspondence with the members of its power set, a 
fact that's obvious for finite sets but not so obvious for infinite ones. This is now 
known as Cantor's Theorem, and it was the primary result of the 1891 paper that 
introduced the diagonalization technique. just as a set can have a power set, a 
power set can have its own power set, and so on. All these sets have different 
cardinalities. 

Cantor speculated that the cardinality of the continuum was the next higher 
transfinite number after �o , which is the transfinite number he called � I ·  This 
speculation is called Cantor's continuum hypothesis, and it can be expressed 
mathematically like this: 

�1 = 2�0 

Cantor struggled to prove his hypothesis, but was never able to do so. The problem 
is that there could be some other transfinite number between �o and the cardinality 
of the continuum. 

Regardless, the profound implication of all this is that the cardinality of 
enumerable sets is not only smaller than the cardinality of the continuum 

�o < 2�0 

but much, much, much, much, much smaller: 

�o < < < < < < < < < < < < < < < < < < < < < < < < <  2� 

10 It may also seem as if we've stumbled on a method to enumerate all the real numbers between 0 and 1 
The pattern is already eV1dent - the first digit after the penod alternates between 0 and 1 ,  the second digit 
alternates at half the speed, and so on - and we could easily continue this list as long as we want The 
fallacy, however, is that the list will never contain a transcendental number Every number in the list has a 
finite number of non-zero digits after the penod 
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The only difference between the continuum and enumerable sets is the inclusion 
of transcendental numbers. We are compelled to conclude that transcendental 
numbers - which were not even proved to exist before 1844 - really account 
for the vast majority of all possible numbers - indeed, virtually all possible 
numbers. 

For millennia, our ideas about numbers have been completely skewed and 
distorted. As humans we value neatness, order, and patterns, and we live in a 
world of compromise and approximation. We're interested only in numbers that 
have meaning to us. From counting farm animals, we have invented the natural 
numbers. From measurement, we have invented the rational numbers, and from 
higher mathematics, we have invented the algebraic numbers. We have plucked all 
these numbers from the continuum while ignoring the vast depths in which they 
swim like microscopic bacteria in the ocean. We live under the comforting illusion 
that rational numbers are more common than irrational numbers, and algebraic 
numbers are more numerous than transcendental numbers, and certainly they are 
in our manufactured lives. In the realm of the continuum, however, virtually every 
number is transcendental. 

What are all these transcendental numbers? Most of them are just sequences 
of random digits, without rhyme, reason, or meaning. Indeed, any sequence of 
random digits is almost assuredly transcendental. 

Toss a dart at a dart board. Now measure the distance between the dart and 
the exact center of the bull's eye using progressively higher magnification and 
finer rulers. First measure to the whole number of inches, and then to the whole 
number of tenths of an inch, and then to the whole number of hundredths of an 
inch, and you'll be going on forever. The probability that the distance is a rational 
number - 1 .437 inches exactly, for example - is negligible . 

Of course, at some point when measuring the dart we're going to have to deal 
with the real world. It's not like the dart is going to split an atom! No, the dart will 
wedge between discrete molecules of cork, and as our magnification gets into the 
realm of these molecules, we see that they're vibrating too much for an accurate 
measurement, and there are visual distortions due to the finite wavelength of light, 
and at some point the Heisenberg Uncertainty Principle kicks in, and then we 
can't really be sure of anything any more. 

At those magnifications, the whole idea of a "continuum" seems hopelessly 
quaint, and we may even be tempted to look outwards from the molecules to 
the universe at large, and speculate whether infinity exists at all in the real 
world - particularly considering that the Big Bang very likely unleashed only a 
finite amount of matter and energy at a point in time in a finite past to create a 
universe seemingly characterized by a discrete rather than continuous structure. 

We might wonder, too, if Cantor's exploration into enumerable and non­
enumerable sets is just some highly abstract (and still somewhat suspect) area of 
speculative mathematics, or if there's actually some utility in this exercise. 
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Although it's hard to find infinity in the real world, there is still much usefulness 
in the mathematical concepts of infinity. It turns out that certain mathematical 
proofs that have actual real-life implications - including the one in Turing's 
paper - hinge on the difference between enumerable sets and non-enumerable 
sets, as illustrated by this diagram: 

.,_--- The tools we have. 

N o < < < < < < < < < < < < < < < < < < < < < < < < <  2tto  
The jobs we need to do. / 

You see the problem? 
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A
s the seconds ticked down to midnight on Friday, December 3 1 ,  1999, 
the festivities that normally accompany any new year were tempered by 

anxiety and fear. At the stroke of midnight, it was possible - some even 
thought inevitable - that major technological crashes and shutdowns would 
ripple through the world's interconnected computer systems. This crisis wouldn't 
be an act of global terrorism, but instead the momentous result of a simple little 
shortcut used by computer programmers for nearly half a century. In programs 
written for a variety of different applications on multitudes of different systems, 
programmers had saved valuable computer storage space by representing years 
by only their last two digits, for example, 75 rather than 1975. At midnight, that 
two-digit year would roll over from 99 to 00, suddenly getting much smaller rather 
than larger. What had once been an innocent shortcut had become a treacherous 
bug referred to by the high-tech nickname Y2K. 

Programmers themselves, of course , had known of the impending problem for 
decades. Alarmist warnings to the general public began around 1998 with books 
such as Y2K: The Day the World Shut Down; Deadline Y2K; Y2K: It's Already Too Late; 
Y2K: An Action Plan to Protect Yourself. Your Family, Your Assets, and Your Community 
on January 1 ,  2000; 101 Ways to Survive the Y2K Crisis; Y2K for Women: How to 
Protect Your Home and Family in the Coming Crisis; Crisis Investingfor the Year 2000: 
How to Pro.fit from the Coming Y2K Computer Crash; Y2K: A Reasoned Response to Mass 
Hysteria; Spiritual Survival During the Y2K Crisis; Y2K: The Millennium Bug - A 
Balanced Christian Response; Awakening: The Upside of Y2K; and, for children, 
Y2K-9: The Dog Who Saved the World. Television news features and magazines soon 
joined in. The April 1999 issue of Wired magazine featured an ominously black 
cover with the big words "Lights Out" and the smaller text "Leaming to Love 
Y2K."1 

We were informed that computers were embedded in nearly all of our electronic 
technologies, and the disaster scenarios ranged from massive electrical blackouts 

1 Wired, Volume 7, Issue 4 (April, 1 999), archived at www wired com/wired/archive/7.04 
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and water cutoffs, to planes falling out of the sky and automobiles going haywire, 
to recalcitrant microwave ovens and videocassette recorders. 

The twentieth century had been an era of enormous scientific and technological 
progress, and now this technology was about to take a big bite out of our 
complacent posteriors. 

No such fears accompanied the previous turn of the century. The nineteenth 
century had been an era of enormous scientific and technological progress, but 
nothing was due to blow up at midnight and the new century was greeted with 
optimism. Scientists were on the verge of total knowledge. Prominent physicists 
such as Lord Kelvin (1824- 1907) predicted imminent solutions to the last few 
remaining riddles of the physical universe , including the nature of the ether that 
pervaded all space and provided a medium for the propagation of light and other 
electromagnetic radiation. 

In mathematics - perhaps the nineteenth-century discipline closest to com­
puter science - great progress had been made as well, and more was anticipated. 
A potential crisis had been weathered gracefully, and mathematics seemed stronger 
than ever. 

The potential mathematical crisis in the nineteenth century involved a field 
that dated from about 300 BCE: geometry as defined by Euclid. (Although Euler's 
name is pronounced "oiler," Euclid's is pronounced "yoo-clid.") 

Euclid's Elements begins with a series of definitions followed by five postulates 
and some common notions (also known as axioms) . From these few basic assump­
tions, Euclid derives hundreds of theorems. 

Euclid's first four postulates are so obvious it seems barely necessary to spell 
them out. In Sir Thomas Health's translation, the first three state that it is possible 
to draw lines and circles using a straightedge and compass and the fourth is equally 
simple: 

1 .  To draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a straight line. 
3. To describe a circle with any centre and distance . 
4. That all right angles are equal to one another. 

Compared to the brevity and self-evidence of the first four postulates, the fifth is 
notoriously lengthy and awkward: 

5 .  That, if a straight line falling on two straight lines make the interior angles 
on the same side less than two right angles, the two straight lines, if pro­
duced indefinitely, meet on that side on which are the angles less than the 
two right angles. 2 

This postulate defines the conditions under which lines are not parallel. 

2Thomas L Heath, The Thirleen Books of Euclid's Elements, second edition (Cambndge University Press, 
1 926, Dover Publications, 1956), Vol 1 , 1 54-155 
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Beginning with the very earliest commentaries on Euclid's Elements , that fifth 
postulate was controversial . Some mathematicians thought that the fifth postulate 
was superfluous or redundant, and that it could actually be derived from the 
first four, but all attempts to derive the fifth postulate failed. The only successes 
occurred when implicit assumptions were made that were equivalent to the fifth 
postulate . 

In the early nineteenth century, some mathematicians began exploring another 
approach: Suppose you assume something contrary to the fifth postulate. Perhaps 
two straight lines always meet regardless of the angle they form with the other 
line. Perhaps two straight lines never meet. If Euclid's fifth postulate were truly 
superfluous, then a contradiction would tum up somewhere down the road , and 
the fifth postulate would be proved by reductio ad absurdum. 

It didn't quite work out that way. In Germany, Hungary, and Russia, Carl 
Friedrich Gauss (1 777- 1855), Johann Bolyai ( 1802- 1860) , and Nicolai Ivanovitch 
Lobachevsky ( 1792- 1856), all working independently, discovered that alternatives 
to Euclid's fifth postulate didn't result in contradictions, but instead led to the 
creation of strange - but entirely consistent - geometric universes. 

In a less sophisticated era, mathematicians might have rejected these non­
Euclidean geometries as abominations, or despaired that basic geometry had 
been rendered invalid by these absurd constructions. Instead, mathematicians 
accepted these alternatives to Euclid and learned a major lesson about the nature 
of mathematics. 

Euclid had been right to include the windy fifth postulate among his basic 
assumptions. That postulate was necessary to distinguish Euclid's geometry as the 
geometry of the plane, but that postulate wasn't the only possibility. Replacing 
it with something else yielded geometries that were just as legitimate as Euclid's 
and just as interesting (if not more so) . Did these non-Euclidean geometries 
have anything to do with what we so blithely call "the real world"? Sometimes, 
certainly. One non-Euclidean geometry describes the surface of a sphere, and in 
some respects a sphere is more "real world" than the plane is. 

Nineteenth-century mathematicians also developed a new and deeper appreci­
ation of the axiomatic method that Euclid had employed in his Elements. (Although 
Euclid and Aristotle distinguished between postulates and axioms,3 that difference 
has largely disappeared in modem times.) A mathematical system begins with par­
ticular axioms and continues by proving implications of those axioms. Depending 
on our mood, those axioms may or may not coincide with our intuitive notions 
of the real world. For two millennia, the idea of mimicking the real world had 
actually imprisoned geometry. If the axioms could be liberated from the real word 

3See Thomas Heath. Mathematics in Anstotle (Oxford University Press, 1949, Thoemmes Press, 1998), 

50-57 or Howard Eves, Foundations and Fundamental Concepts of Mathematics, 3rd edition (PWS-Kent, 
1990, Dover, 1997), 29-32 
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and made sufficiently abstract, then mathematics itself could be freed, as well, to 
explore new vistas. The axioms and the mathematics that result must be treated 
abstractly without any implicit assumptions. 

Or as a young mathematics instructor once pondered, "One must be able to say 
at all times - instead of points, straight lines, and planes - tables, chairs, and 
beer mugs. "4 

That young mathematics instructor was David Hilbert (1862- 1943) , who was 
then on his way to becoming one of the preeminent mathematicians of his age. 
Hilbert was born near Konigsberg, a port city on the Baltic Sea and at the time the 
capital of East Prussia. In mathematical lore, Konigsberg was already a famous city 
by the time Hilbert was born. It was the city where the seven bridges that crossed 
the Pregel River found their way into a topological puzzle solved by Leonhard Euler. 

Konigsberg was also home to the University of Konigsberg, where philosopher 
Immanuel Kant (1 724- 1804) studied and taught. Hilbert also attended that 
university and briefly taught there as well, but in 1895 a position opened up at 
the University of Gottingen; Hilbert accepted it. Hilbert had first visited Gottingen 
nine years earlier, "and he found himself charmed by the little town and the pretty, 
hilly countryside, so different from the bustling city of Konigsberg and the flat 
meadows beyond it. "5 

The University of Gottingen was also famous before Hilbert arrived. There, 
in 1833, Gauss and physicist Wilhelm Weber ( 1804- 1891 )  had collaborated on 
an electromagnetic telegraph. With a mathematics department run by Hilbert 
and Felix Klein ( 1849- 1925), Gottingen was about to become a mecca for 
mathematicians around the world. 

In his early years, Hilbert had made a name for himself by tackling unsolved 
problems in the areas of algebraic invariants and number fields, but in the 
1898- 1899 school year, his interests took an unusual tum. Hilbert taught a class 
on geometry - a subject not usually taught on the university level - to students 
who had already received a full dose of Euclid in their elementary education. 

Hilbert's geometry was familiar in structure to Euclid's - it began with axioms 
(actually, several groups of axioms) and from these axioms many theorems were 
derived - but the level of rigor was unsurpassed. Hilbert had entirely rethought 
and re-axiomatized geometry. It was a Euclid for the modem age with all the 
knowledge of non-Euclidean geometries entering into its conception. In 1899, 
Hilbert published his geometry lectures in the book Grundlagen der Geometrie 
(Foundations of Geometry) , which became an instant classic of mathematics. (The 
second English edition based on the tenth German edition was published by Open 
Court Press in 197 1 and remains in print.) 

Hilbert's book wasn't called the elements of geometry like Euclid's; it was the 
Grundlagen - the groundwork or foundations - of geometry. Putting geometry 

4Constance Reid, Hilbert (Spnnger-Verlag, 1970, 1 996), 57 

5Reid, Hilbert, 25 
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on a firm axiomatic foundation was more important to Hilbert than solving the 
theorems. Part of establishing a foundation for geometry was demonstrating that 
the axioms were consistent - that they could never lead to contradictions. Hilbert 
did this by constructing an analogue of his geometry on the real-number plane. 
This was basically analytic geometry within the Cartesian coordinate system. The 
consistency of Hilbert's geometry then became a problem in the consistency of 
real-number arithmetic. 

Hilbert wasn't the only mathematician interested at the time in establishing 
foundations in mathematics. In 1889 Giuseppe Peano (1858- 1932) had applied 
the axiomatic method to an area where few non-mathematicians would think it was 
needed - the formulation of the arithmetic of natural numbers. Less well known 
at the time (but highly regarded now) was Gottlob Frege (1848- 1925), who had 
reconceived mathematical logic with a radical new notation that he described in an 
1879 pamphlet called Begriffschrift (roughly "concept script") .6 Frege had written a 
Grundlagen of his own, the Grundlagen der Arithmetik ( 1884) , in which he attempted 
to establish a foundation for real-number arithmetic through mathematical logic . 
Frege then elaborated on this system in a larger work, and in 1 893 published 
the first volume of his Grundgesetze (or Basic Laws) der Arithmetik, in which set 
theory and mathematical logic were combined to establish the legitimacy of the 
real numbers. 

With these foundations being nailed into place shortly before the tum of the 
century, mathematics seemed to be on a good track, and David Hilbert was invited 
to give a major address at the Second International Congress of Mathematicians to 
be held in Paris in August 1900. The address would kick off the new century of 
mathematics, and Hilbert was unsure what to say. 

Hilbert turned to his good friend from the University of Konigsberg, the 
Uthuanian-bom mathematician Hermann Minkowski (1864-1909) for advice. 
Minkowski suggested that Hilbert's address look forward rather than back: 

Most alluring would be the attempt at a look into the future and 
a listing of the problems on which mathematicians should try 
themselves during the coming century. With such a subject you 
could have people talking about your lecture decades later.7 

So, on August 8, 1900, Hilbert began his address fashioned just as Minkowski 
had suggested: 

Who of us would not be glad to lift the veil behind which the 
future lies hidden; to cast a glance at the next advances of our 

6 An English translation is available in jean van Heijenoon, ed , From Frege to Godel. A So1trce Book in 

Mathematical l..ogrc, 1879-1931 (Hatvard University Press, 1967), 1-82. 

7Reid, Hilbert, 69. 
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science and at the secrets of its development during future cen­
turies? What particular goals will there be toward which the 
leading mathematical spirits of coming generations will strive? 
What new methods and new facts in the wide and rich field of 
mathematical thought will the new centuries disclose ?8 

Hilbert then discussed rather generally some of the problems that would require 
solutions by the mathematicians of the new century. He assured his audience that 
these problems were just waiting to be solved: 

However unapproachable these problems may seem to us and 
however helpless we stand before them, we have, nevertheless, 
the firm conviction that their solution must follow by a finite 
number of purely logical processes . . . .  This conviction of the 
solvability of every mathematical problem is a powerful incentive 
to the worker. We hear within us the perpetual call: There is the 
problem. Seek its solution. You can find it by pure reason, for in 
mathematics there is no ignorabimus. 9 

Although a rather unusual Latin word , the mathematicians in Hilbert's audience 
could easily decode the verb and tense as "We shall not know." Some of Hilbert's 
listeners possibly also made a connection with a famous 1876 lecture in which 
physiologist Emil du Bois-Reymond ( 1818-1896) had pessimistically concluded 
that "concerning the riddle of matter and force . . .  the scientist must concur once 
and for all with the much harder verdict that is delivered: Ignorabimus."10 

To du Bois-Reymond, the nature of matter and energy would forever be 
unknown. Hilbert's optimism just couldn't tolerate such an attitude. In mathemat­
ics, he made clear, there is no "We shall not know." 

Hilbert then challenged his colleagues to solve 23 outstanding problems in 
several fields of mathematics. (Due to time constraints, only 10 were mentioned 
in the spoken address; all 23 problems appeared in the published version.) While 
some of the problems were quite esoteric, others were fundamental in their 
scope. 

Number 1 concerned "Cantor's Problem of the Cardinal Number of the 
Continuum" - whether the cardinality of the continuum represented the next 

8As quoted in Ben H Yandell. The Honors Class Hilbert's Problems and Their Solvers (A K Peters, 2002) , 
389 The English version of the address was originally printed in the Bulletin of the Amencan 

Mathematical Society, Vol 8 (July 1902) in a translation by Dr. Mary Winston Newson A slightly reVJsed 
version appears in Jeremy J Gray, The Hilbert Challenge (Oxford University Press, 2000), 240 
9As quoted in Yandell, The Honors Class, 395 
10 As quoted in Gray. The Hilbert Challenge, 58 
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transfinite number after the cardinality of the natural numbers, or whether there 
were other transfinite numbers between those to be considered. Georg Cantor's 
work had become less controversial by this time, and Hilbert was one of 
Cantor's biggest proponents. 

Problem 2 focused on "The Compatibility of the Arithmetical Axioms."  Hilbert 
had based the consistency of his geometry on the consistency of the real number 
system and arithmetic. Now the real numbers needed axiomatization and "To prove 
that they are not contradictory, that is, that a finite number of logical steps based upon 
them can never lead to contradictory results." 1 1  

Problem 10 in Hilbert's German read: 

Entscheidung der Losbarkeit einer diophantischen Gleichung. 

Take note of that word Entscheidung. It's a very important word in this book. 
It means decision, decidability, determination. Hilbert's 10th problem read in its 
entirety: 

10. Determination of the Solvability of a Diophantine Equation 

Given a diophantine equation with any number of unknown 
quantities and with rational integral numerical coefficients: To 
devise a process according to which it can be determined by a finite 
number of operations whether the equation is solvable in rational 
integers. 12 

Yes, it was 1 ,650 years after Diophantus's Arithmetica, and mathematicians were 
still wrestling with Diophantine equations. While some mathematicians worked 
with specific forms of Diophantine equations, Hilbert asked for a general decision 
process. Notice that he's not asking for a general method to solve all Diophantine 
equations. What he wants is a determination of the solvability. Consider an 
arbitrary Diophantine equation: ls it solvable? Does it have a solution? Hilbert 
wants a process, and there doesn't seem to be the slightest doubt in his mind that 
such a process exists. It only has to be found. 

The words that Hilbert uses in defining this problem will set the tone for 
this particular Entscheidung problem and other Entscheidung problems in the years 
ahead. Hilbert wants a process with a finite number of operations. In short, Hilbert 
wants an algorithm, but that word (either in English or the German Algorithmus) 

L I  Yandell , The Honors Qass, 397 
12Yandell, The Honors Gass, 406. It's translated as "Decidability of solvability of Diophantine equations" 
in Ivor Grattan-Guinness, "A Sideways Look at Hilben's Twenty-three Problems of 1900," Notices of the 

Amencan Mathematical Society , Vol. 47, No. 7 (August 2000), 752-757 The term "rational integers" 
means the regular integers with which we're familiar 
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was not used at the time, at least not in its modem sense. The modem usage of 
the word only became common in the 1960s in literature about computers. 13 

In that 1900 address, Hilbert invited his audience to "lift the veil" behind which 
the twentieth century lay hidden. Neither he nor anyone else could have imagined 
quite the spectacle they would have seen. If physicists believed they were on the 
verge of total knowledge, those hopes were dashed in 1905 , the year now known 
as the annus mirabilis of physicist Albert Einstein ( 1879- 1955). In a single year, 
Einstein published a doctoral thesis and four other papers that established the 
basic principles of relativity and quantum mechanics. 

No longer was there any sense that the universe was linear, Euclidean, and fully 
deterministic. Space and time lost their moorings in a relativistic universe. In a 
famous 1907 paper on relativity, Hilbert's friend Hermann Minkowski would coin 
the word Zaumreit or spacetime. (Minkowski had come to G6ttingen in 1902, but 
died suddenly of appendicitis in 1909 .) Eventually, the century's best known result 
of quantum mechanics would be something known as the Uncertainty Principle 
(1927). 

Perhaps in response to this new displacement and uncertainty, modem art 
and music went in startling and provocative directions. Visual forms and objects 
were broken apart and reassembled in cubist paintings and sculptures. As the 
real-world "objective" universe became less reliable, surrealists looked inward to 
their subconscious lives and irrational dreams. 

In music, the chromaticism of late romantics like Wagner and Debussy seemed 
almost tame as it gave way to the harsh dissonances and jagged new rhythms of 
Igor Stravinsky's Rite of Spring, which incited riots at its 1913  Paris premiere. In the 
early 1920s, Austrian composer Arnold Schonberg's development of twelve-tone 
music represented nothing less than a re-axiomatization of the principles of musical 
harmony to create a non-Euclidean music. 

Twentieth-century mathematics was not immune to these upsets. The first 
jarring notes sounded in 1 902. 

Gottlob Frege, born in Wismar, Germany, in 1848, had received his Ph.D. at 
Gottingen two decades before Hilbert arrived there, and then began teaching at 
the University of Jena, where he would remain for 44 years. The first volume of his 
life's work, the Grundgesetze der Arithmetik, was published in 1893, and attempted 
a systematic development of all of mathematics beginning with mathematical 
logic - a program now known as logicism. This first volume sold so poorly that 
the publisher didn't want to hear about the second volume, so in 1902 Frege was 
attempting to publish it at his own expense. 

1 3See Oxford English Dictionary, 2nd edition, I, 3 13 .  Also see the opening pages or Donald E. Knuth, The Art 

of Computer Programming, Volume 1, Fundamental Algonthms, 3rd edition (Addison-Wesley, 1997) The most 
famous algonthm of them all is Euclid's method to find the greatest common diVlSor of two numbers, but 
the first known usages of the term "Euclid's Algonthm" seem to date only from the early twentieth century 
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Meanwhile, the first volume of Grundgesetze der Arithmetih had acquired an 
important new reader. 

This was Bertrand Russell ( 1872- 1970), an extraordinary figure whose first 
mathematics papers were published in the reign of Victoria but who lived long 
enough to protest the Vietnam War. Russell was born into an aristocratic and 
intellectual family. His grandfather, john Russell ( 1792- 1878) , had been Prime 
Minister of England; his godfather was the utilitanan philosopher john Stuart Mill 
( 1806- 1873). Russell's interest in mathematics started early: 

At the age of eleven, I began Euclid, with my brother as my tutor. 
This was one of the great events of my life , as dazzling as first 
love. 1 had not imagined that there was anything so delicious in 
the world. After I learned the fifth proposition, my brother told 
me that it was generally considered difficult, but I had found no 
difficulty whatever. This was the first time it had dawned upon 
me that I might have some intelligence. 14 

ln 1902 , Russell was working on his book The Principles of Mathematics (to be 
published the next year) and had discovered a problem in the set theones of both 
Peano and Frege. 

Sets can have other sets as members, and sets can even contain themselves as 
members. Russell pondered: What about the set that contains all sets that do not 
contain themselves? Does that set contain itself? If it doesn't, then it's a set that 
does not contain itself, so it needs to contain itself, but if it does contain itself, 
then it's no longer a set that doesn't contain itself. 

This is now known as the Russell Paradox, and became the latest of several 
paradoxes that have plagued mathematicians for at least two millennia. Russell 
later made an analogy with a town barber who shaves all those who do not shave 
themselves. Who shaves the barber? 

Russell wrote a letter to Frege inquinng about the set that contains all sets 
that do not contain themselves, 1 5 and Frege was devastated. He quickly wrote an 
appendix to the second volume of Grundgesetze der Arithmetih, but the problem 
could not be fixed. The paradox was a basic flaw that rippled through Frege's 
major life's work. 

The paradox that Bertrand Russell had discovered resulted from the ability 
of sets to contain themselves as members. If this sort of self-referentiality were 
removed, set theory might be made free from the risks of paradox. Russell began 
to develop a theory of types that he discussed a bit in The Principles of Mathematics 

1 4Bertrand Russell, The Autobiography of Bertrand Russell, 1872-1914  (George Allen and Unwm Ltd, 
1967), 36 
15 From Frege to Godel, 124-125  
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and then in more detail in a 1908 paper. 1 6 Russell constructed a hierarchy of sets. 
At the bottom of the hierarchy, a Type 1 set could contain only indiVIduals (for 
example, numbers) . Type 1 sets can only belong to sets of Type 2. Type 2 sets can 
only belong to sets of Type 3, and so on. 

By the time Russell published that 1908 paper, something much larger was 
in the works. Russell had been ready to commence work on a second volume 
of the Principles of Mathematics, and Russell's former teacher and mentor, Alfred 
North Whitehead (1861-1947) , was also preparing to write a second volume to 
his earlier book, A Treatise on Universal Algebra ( 1898) . Russell and Whitehead 
realized that their goals overlapped and about 1906 had begun collaborating on 
what was to become the most important book on logic since Aristotle. 

The almost 2 ,000 pages of Principia Mathematica by A. N. Whitehead and 
Bertrand Russell were published in three volumes in 19 10, 1912 ,  and 1913 .  
Unlike an earlier Principia Mathematica - the title under which Isaac Newton's 
1 687 Philosophire Naturalis Principia Mathematica is sometimes known - only the 
title of Whitehead and Russell's work is Latin. Perhaps their choice of title was 
also influenced by the much shorter Principia Ethica ( 1903) by their Cambridge 
colleague George Edward Moore ( 1873- 1958) . 17  Whitehead, Russell, and Moore 
were all members of the Cambridge Apostles, the elite secret society devoted to the 
presentation of philosophical papers and the consumption of sardines on toast. 

Although Principia Mathematica wasn't written in Latin, it isn't exactly English 
either. Much of the book consists of dense lists of formulas that cover the pages 
"like hen-tracks on the barnyard snow of a winter morning," in the words of one 
early reader. 18 

Principia Mathematica incorporated a theory of types and a mathematical logic 
largely based on Peano and Frege but with Peano's notation rather than Frege's 
idiosyncratic graphics. The Principia Mathematica carnes on Frege's work in 
logicism, and one of the climaxes comes when Whitehead and Russell prove: 

1 + 1 = 2  

It's harder than it looks! 19 

Until this time, David Hilbert's interest in logicism was rather spotty. In 1904, 
Hilbert had addressed the Third International Congress of Mathematicians (held 

1 6Bemand Russell, "The Theory of Types" in From Frege to Godel, 1 50- 182 
17  I Grattan-Guinness, The Search for Mathematical Roots. 1870-1940 Logics, Set The ones and the Foundations 

of Mathematics from Cantor through Russell to Godel (Pnnceton University Press, 2000), 380 
18Grattan-Guinness, The Search for Mathematical Roots , 454 

19The preliminary result is in section *54·43 "From this proposition it will follow, when anthmetical 
addition has been defined, that 1 + 1 = 2," most conveniently found in the abndgemem Alfred Nonh 
Whitehead and Bertrand Russell, Pnncipia Mathematica to *56 (Cambndge University Press, 1997), 360 

Only in * 1 10 64 3 in Volume II is the proof actually completed with the modest observation, "The above 
proposition is occasionally useful " 
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in Heidelberg) "On the Foundations of Logic and Anthmetic" in which he hinted 
about some possible approaches, but the publication of Principia Mathematica 
threw the whole issue of logicism into center stage. 

It would certainly have been interesting for Hilbert and Russell to begin 
collaborating on logic and mathematics following the publication of Principia 
Mathematica, but world events interceded. On August 4, 1914, Great Britain 
declared war on Germany, which had days earlier declared war on Russia and 
France. The Great War was to last until 19 18. 

Neither Russell nor Hilbert was a militanst. In 1914  the German government 
asked prominent scientists and artists to sign a declaration refuting the "lies and 
slanders of the enemy." Hilbert could not determine whether these statements 
made about Germany were true (a rather political Entscheidung problem) , so he 
refused to sign.20 Russell, who was to be a lifelong activist against war, engaged 
in more public protests, and was dismissed from his position at Trinity College in 
1916  and later imprisoned for five months. 2 1 

Hilbert actually invited Russell to lecture at Gottingen in 1917 .  Even if Russell's 
passport had not been confiscated by the British government, it is hard to imagine 
such a visit occurring while the countries were still at war. 22 

On September 1 1 ,  1917 ,  Hilbert again publicly ventured into the field of 
mathematical foundations with an address to the Swiss Mathematical Society 
in Zurich on the subject of "Axiomatic Thought." (Although the war was still 
going on, Hilbert was able to meet wuh mathematicians from other countries 
in Zurich because Switzerland had maintained neutrality.) In this address we 
can hear the origins of what became known in the early 1920s as the Hilbert 
Program, which veered away from logicism but sought as its goal the rigorous 
axiomatization of all of mathematics. For analyzing axiomatic systems Hilbert 
conceived a "metamathematics" and "proof theory" that would use mathematical 
logic to draw conclusions about the structure of other mathematical systems. 

This is an approach in mathematics known as formalism. In Hilbert's conception, 
the construction of a formal mathematical system begins with definitions, axioms, 
and rules for constructing theorems from the axioms. Ideally, the resultant system 
should exhibit four interrelated qualities: 

• Independence 
• Consistency 
• Completeness 
• Decidability 

20Reid, Hilbert, 137 
2 1 Mathematician G H Hardy later wrote a pamphlet descnbing these events, which was published by 
Cambridge University Press in 1942 and pnvately circulated It was republished as G H Hardy, Bertrand 

Russell and Tnnity A College Controversy of the Last War (Cambndge University Press, 1970) 
22Grattan-Guinness, Search for Mathematical Roots, 471 , footnote 28 



46 The Annotated Turing 

Independence means that there aren't any superfluous axioms - there's no axiom 
that can be derived from the other axioms. Independence is what mathematicians 
suspected that Euclid's five postulates did not exhibit. That's why they attempted to 
derive the fifth postulate from the other four. It was later established that Euclid's 
postulates were indeed independent. 

Consistency is by far the most important characteristic of any axiomatic system. 
It must not be possible to derive two theorems that contradict each other! 

For example, suppose you devise some new mathematical system. This system 
contains symbols, axioms, and rules that you use to develop theorems from the 
axioms. That is mostly what you do: You use the axioms to derive theorems. These 
are your proofs, but the rules also imply the syntax of a well-formed formula 
(often called a wff, pronounced "woof') that is possible within the system. You can 
assemble a well-formed formula without first deriving it from your system, and 
then you can attempt to show that it's a consequence of the axioms by applying 
the axioms and rules in a proof. 

I'm going to show you two well-formed formulas in a hypothetical mathematical 
system. Here's the first formula, which we'll call A: 

gobbledygook = yadda-yadda-yadda 

The equal sign means that the two expressions on either side are considered to be 
equivalent in some way. Here's formula B: 

gobbledygook =fa yadda-yadda-yadda 

It's the same as formula A except a not-equal sign has replaced the equal sign. 
Formula B is the negation, or contradiction, of A. 

Formulas A and B are opposites. Only one or the other can be true. Now the 
concept of "truth" is often as slippery in mathematical logic as it is in real life. 
I have no desire to get into a metaphysical discussion here, so I'll merely define 
truth as roughly meaning "harmonious with the axiomatic assumptions." 

If you can derive both formulas A and B from the axioms, then the axiomatic 
system is inconsistent, and not only is it inconsistent - it's worthless. It's worth­
less because the inconsistency ripples throughout the entire system and makes 
everything equally false and true at the same time, a logical disaster traditionally 
known as exfalso quodlibet (from the false everything follows) . 

That's consistency. 
Completeness is the ability to derive all true formulas from the axioms. You 

derive true formulas using proofs. If you can't derive either formula A or B from 
the axioms (that is, neither A nor B is provable), then the axiomatic system is said 
to be incomplete. Which is true? Maybe you don't know at all , or maybe you have 
a good idea which is true, but you simply can't provide a proof. 

The distinction between truth and provability can be tricky: If something is 
not provable we usually can't know for certain that it's true, but that doesn't stop 



Centuries of Progress 47 

us from asserting truth without the corresponding proof. For example , almost 
everyone believes that Goldbach's Conjecture is true: Every even integer greater 
than 2 is the sum of two pnme numbers. Nevertheless, it is called a "conjecture" 
because it remains one of the great unproven mathematical problems of all 
time. 

(I'm rather simplifymg the distinction between "prooP' and "truth" for this 
discussion. Provability is a syntactic concept; it's based on the axioms of the system 
and the rules used to denve theorems. Truth, however, is a semantic concept that 
depends on the actual meaning we give to the symbols in the system. I'll have 
more to say about these issues in Part III of this book.)  

Also important to Hilbert was decidability or Entscheidung. He wanted a deci­
sion procedure - a general method to determine the provability of any given 
well-formed formula. 

If a mathematical system is revealed to be incomplete , does that also imply that 
a decision procedure does not exist? Not necessarily. Suppose neither formula A 
nor B can be proved. The system is incomplete , but there might be a decision 
procedure that would analyze both formulas A and B and come to precisely the 
same conclusion - that neither can be proved. The decision procedure would 
exist even though the system was not complete . 

Of course, a better, stronger decision procedure would be one that determined 
not provability, but truth. Such a decision procedure would identify either A or 
B as true even if neither could be proved in the sense of being derivable from the 
axioms. 

Hilbert had first suggested the idea of a decision procedure in his 1900 
Paris address in connection with Diophantine problems. Hilbert's 1 9 1 7  Zurich 
address on "Axiomatic Thought" also touched on "the problem of the decid­
ability of a mathematical question in a finite number of operations ."  Of all 
the aspects of axiomatic systems, he said , decidability "is the best-known and 
the most discussed; for it goes to the essence of mathematical thought."23 (Of 
course , it's likely that when Hilbert says something is "best-known and the 
most discussed," he is referring to the core of his mathematical world - namely, 
himself, his colleagues, and his students in Gottingen. In Principia Mathematica, 
Whitehead and Russell weren't concerned at all with either completeness or 
decidability.) 

Perhaps Hilbert was the first person to concatenate the words Entscheidung and 
Problem, but the first recorded use of the five-syllable composite is by one of 
Hilbert's assistants, Heinrich Behmann ( 189 1-1970) , in a talk to the Gottingen 
Mathematical Society on May 10,  192 1 ,  entitled "Entscheidungsproblem und 
Algebra der Logik." In retrospect, Behmann's description of the hypothetical 

23William Ewald, ed . From Kant to Hilbert A Source Book in the Foundations of Mathematics (Oxford 
University Press, 1996), Vol I I ,  1 1 1 3 
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decision procedure is jaw-droppingly astonishing. (The italics are in the original 
German from an unpublished document in the Behmann Archives) : 

It is of fundamental importance for the character of this problem 
that only mechanical calculations according to given instructions, 
without any thought activity in the stricter sense, are admitted 
as tools for the proof. One could,  if one wanted to, speak of 
mechanical or machinelike thought (Perhaps one could later let 
the procedure be carried out by a machine). 24 

If Behmann had pursued this concept to its logical conclusions, we might today 
be talking about Behmann Machines rather than Turing Machines! 

In the 1922-23 school year, Hilbert taught a course on Logical Foundations 
of Mathematics, and also began using the word Entscheidungsproblem,25 but the 
Entscheidungsproblem really emerged from G6ttingen into the larger mathematical 
world in 1928. That was the year that Hilbert's assistant Wilhelm Ackermann 
( 1896- 1962) helped assemble class lectures by Hilbert (some going back to the 
1 9 1 7- 1 9 1 8  school year) into a slim book published under the title GrundzUge der 
Theoretischen Logik26 (translated as Principles of Mathematical Logic) , a book that is 
now known as "Hilbert &: Ackermann." 

Hilbert &: Ackermann came nowhere close to the scope and ambition of Principia 
Mathematica. The book covered only the basics of mathematical logic apart from 
any set theory or logicism. In its own way, however, Hilbert &: Ackermann proved 
to be quite influential beyond the modesty of its 120 pages. At the core of the book 
was an explication of engere Funktionenkalkul or "restricted functional calculus," 
better known today under the term "first-order predicate logic," that included 
questions concerning completeness and decidability. 

One early reader of Hilbert &: Ackermann was an Austrian mathematics 
student in Vienna named Kun Godel ( 1906- 1978) . About first-order predicate 
logic Godel read: 

Whether the axiom system is complete , at least in the sense that 
all logical formulas that are correct for every domain of individ­
uals can be derived from it, is still an unresolved question. 27 

24As quoted in Paolo Mancosu, "Between Russell and Hilbert Behmann on the Foundations of 
Mathematics," The Bulletin of Symbolic Logic, Vol 5, No 3 (Sept 1999), 32 1  
25Wilfned Sieg, "Hilbert's Programs 1 9 1 7-1922," The Bulletin of Symbolic Logic, Vol 5 ,  N o  l (March 
1999), 22 
260 Hilbert and W Ackermann, Grundzuge der Theoretischen Logik (Verlag von Julius Spnnger, 1 928) A 
second edition was published in 1938 reflecting additional research over the past decade, and an English 
translation of the second German edition was published in 1 950 by Chelsea Publishing Company There is 
no English translation of the first German edition 
27Hilbert &: Ackermann, Grundzuge der Theoretischen Logik, 68 
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The passage is referring to formulas in first-order logic that are true regardless of 
the interpretation of the propositional functions (today known as predicates) and 
the domain of these functions. Can all these "universally valid" formulas - as 
they were called - be derived from the axioms? Godel took up the challenge, 
and his 1929 doctoral thesis showed that first-order predicate logic was complete 
in this sense. This is known as the Godel Completeness Theorem, and if proving 
completeness was the extent of Godel's contribution to mathematical logic, he 
probably wouldn't be remembered much today. But Godel was only getting 
started. 

The completeness of first-order predicate logic was an important although 
expected result. lt showed that the axioms and proof mechanisms were adequate 
for deriving all universally valid statements. Mathematical logic does not exist in a 
vacuum, however. One of the primary purposes of predicate logic was providing 
a firm framework and foundation for numbers and arithmetic. Doing so requires 
adding axioms to the logical system for establishing number theory. That was the 
primary purpose of Principia Arithmetica. After adding these axioms, is first-order 
predicate logic complete in a much stronger sense, in that every statement or its 
negation is provable? This is sometimes known as "negation completeness," and 
it's a much more difficult goal. This was the problem Godel tackled next. 

In the spring of 1930, David Hilbert retired from teaching. He was 68 years 
old. Later that year, he was awarded an honorary citizenship of Konigsberg, his 
birthplace. Hilbert was as optimistic as ever as he delivered an address on "Logic 
and the Knowledge of Nature ."28 It had been 30 years since he told his Paris 
audience that there was no "We shall not know" for the mathematician and now 
he repeated that claim: "For the mathematician there is no ignorabimus, nor, in 
my opinion, for any pan of natural science." Hilbert tells how the philosopher 
Auguste Comte once said that we would never know the compositions of distant 
stars, and how that problem was solved just a few years later: 

The real reason why Comte was unable to find an unsolvable 
problem is, in my opinion, that there are absolutely no unsolv­
able problems. Instead of the foolish ignorabimus, our answer is 
on the contrary: 

We must know. 
We shall know. 

Wir mussen wissen. Wir werden wissen. 
On the day before Hilbert was made an honorary citizen of Konigsberg, 

Godel was also visiting Konigsberg, attending a conference on mathematics. 

28From Kant to Hilbert, Vol II, 1 1 57-1 1 65 
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On September 7, 1930, Godel announced that he had shown that axioms added 
to first-order predicate logic that allowed the derivation of arithmetic (including 
addition and multiplication) rendered the system incomplete. He had derived from 
within this system a formula and its negation. If arithmetic is consistent, then one 
of these statements must be true. Neither, however, could be proved. 

Through a technique later called Godel Numbering, Godel had used the 
arithmetic developed within the system to associate every formula and every 
proof with a number. He was then able to develop a formula that asserted its 
own unprovability. This sounds like a mathematical form of the Liar's Paradox 
("Everything I say is a lie , including this statement") , but it's really not. The formula 
asserts nothing about its truth or falsehood, but instead that it's unprovable. If 
arithmetic is consistent, then this formula can't be false, because that would lead to 
a contradiction. The formula must be true - but true only in a metamathematical 
sense because truth is not a concept of the logical system itself - which means 
that it really is unprovable. 

Godel's paper was published the following year under the title "On Formally 
Undecidable Propositions of Principia Mathematica and Related Systems l ."29 The 
Roman numeral I indicated that Godel intended to follow up his paper with 
additional demonstrations, but the paper had such an immediate impact that a 
second part wasn't required. 

One crucial premise for the Incompleteness Theorem is that arithmetic is 
consistent. As a corollary, Godel also showed that a consistency proof for arithmetic 
within the system was impossible. Because certain formulas could not be proved or 
disproved, it was possible that these formulas were inconsistent. (Does this mean 
that anthmetic and elementary number theory is inconsistent? It's hardly likely, 
and nobody believes that to be so. The problem is that the consistency cannot be 
proved within the system itself.) 

Upon hearing of Godel's Incompleteness Theorem, David Hilbert had a rather 
strange reaction for a mathematician. He was "somewhat angry,"30 but eventually 
he began to incorporate Godel's findings in his program. 

29 Actually, the title was "Uber formal unentscheidbare Satze der Pnncipia mathematica und verwandter 
Systeme I" and it was published in the Monatshefteflir Mathematik und Physik, Vol. 38 ( 193 1 ), 1 73-198 
The first published English translation was by Bernard Meltzer of the University of Edinburg and appeared 
in the book Kun Godel, On Fonnally Undecidable Propositions of Pnncipia Mathematica and Related Systems 

(Basic Books, 1962, Dover Publications, 1992) A second translation by Professor Elliott Mendelson of 
Queens College, New York City, appeared in Martin Davis, ed The Undecidable Basic Papers on Undecidable 

Propositions, Unsolvable Problems and Computable functions (Raven Press, 1965), 5-38 A third translation by 
Jean van Heijenoon (with input from Godel) appears in his book From Frege to Godel, 596-6 16  This is also 
the translation used in Kurt Godel, Collected Works, Volume I, 1 929-1 936 (Oxford University Press, 1986), 
144-195 The paper is often referred to as "Godel 1931 " 
30Reid, Hilbert, 198 
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Other mathematicians simply lost interest in mathematical logic. Bertrand 
Russell seemed to suffer permanent burnout from the experience of writing 
Principia Mathematica: 

[I )n the end the work was finished, but my intellect never quite 
recovered from the strain. I have been ever since definitely less 
capable of dealing with difficult abstractions than I was before. 
This is part, though by no means the whole, of the reason for the 
change in the nature of my work.31  

Russell began pursuing other interests, such as writing about philosophy, politics, 
and social issues. He won the Nobel Prize for Literature in 1950 "in recognition 
of his varied and significant writings in which he champions humanitarian ideals 
and freedom of thought. "32 By that time many people had forgotten that he was 
originally a mathematician. 

Hungarian mathematician john von Neumann (1903- 1957), who had been 
at Gottingen in the mid- 1920s, also abandoned logic after Godel (or so he said) 
but was later instrumental in applying principles of mathematical logic to the 
development of digital computers. 

G6del's Incompleteness Theorem was certainly not the worst problem at 
G6ttingen. In 1933, the Nazi party ordered the removal of all Jews from teaching 
positions in German universities. For G6ttingen, where for decades the sole 
criterion was intellectual excellence, the edict was devastating. Richard Courant 
(1888- 1972) left for the United States, where he found a position at New York 
University. (Today, the Courant Institute of Mathematical Sciences occupies a 
building on West 4th Street in Manhattan.) Hermann Weyl (1885- 1955) wasn't 
Jewish, but his wife was. Like Albert Einstein, Weyl went to the Institute for 
Advanced Study in Princeton, New Jersey. Paul Bernays (1888- 1977) lost his 
teaching job but kept his position as Hilbert's most loyal assistant until leaving for 
Zurich. Bernays is largely credited with writing the two volumes of Grundlagen der 
Mathematik (1934, 1939) although the books were published under both Hilbert's 
and Bernay's names. 

At a banquet, Hilbert found himself sitting next to the Minister of Education. 
"And how is mathematics at Gottingen now that it has been freed of the Jewish 
influences?" Hilbert was asked. He replied, "Mathematics at G6ttingen? There is 
really none anymore. "33 

For those mathematicians who continued to explore mathematical logic - now 
increasingly not at Gottingen - problems still remained to be solved. As the 

31 The Autobiography of Bertrand Russell, 1872-1914, 1 53 . 
32http://nobelpnze.org/nobel_pnzeslliterature11aureatesll 950 
33Reid, Hilbert, 205. 
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1928 edition of Hilbert & Ackermann asserted with well-deserved italics, the 
"Entscheidungsproblem mufl als das Hauptproblem der mathematischen Logik bezeichnet 
werden." "The decision problem must be called the main problem of mathematical 
logic ."34 Godel's Incompleteness Theorem didn't imply that a decision process 
couldn't exist, but it did mean that such a decision process could not determine 
the truth of any arbitrary formula. It could at best determine the provability of a 
formula. 

Nine pages of Hilbert & Ackermann were devoted to the Entscheidungsproblem 
in first-order predicate logic, and nearly half of those pages discussed "Solutions of 
the Decision Problem for Special Cases." For several standard (and common) types 
of formulas in mathematical logic, decision processes had already been developed. 
It didn't seem so unlikely that a general decision process was also possible. 

It was not to be. In 1936, American mathematician Alonzo Church (1903-1995) 
concluded (again with well-deserved italics) that "The general case of the 
Entscheidungsproblem of the engere Funktionenkalkill [first-order predicate logic] 
is unsolvable."35 

Working independently of Church and using a completely different method­
ology, Alan Turing came to the same conclusion, that "the Hilbertian Entschei­
dungsproblem can have no solution,"36 as he states at the beginning of his paper, 
and towards the end in conclusion, "Hence the Entscheidungsproblem cannot be 
solved."37 

By the time Church and Turing had published their works, Hilbert was 74. 
Even Hilbert himself had come under suspicion by the Nazis, who wondered 
about his first name of David. 38 Hilbert's final years were spent in loneliness and 
senility. He died in 1943 . On Hilbert's tombstone in Gottingen are the words 

Wir mussen wissen. 
Wir werden wissen. 

We must know. We shall know. Except that now when people read Hilbert's words, 
all they can think about is Godel and Church and Turing, incompleteness and 
undecidability. 

Hilbert's home town of Konigsberg was largely destroyed by Bntish bombing 
during the war. It fell to the Russians in 1945 and became part of Russia following 
the war. Konigsberg was renamed Kaliningrad in 1946 after a Soviet president. 

34Hilben & Ackermann, Grundziige der Theoretischen Logih, 77 
35 Alonzo Church, "A Note on the Emscheidungsproblem," The Journal of Symbolic Logic, Vol 1 No 1 
(March 1936), 4 1 . 
36 Alan Tunng, "On Computable Numbers, with an Application to the Entscheidungsproblem," Proceedings 

of the London Mathematical Society, 2nd Senes, Vol. 42 (1936), 23 1 . (Page 67 of this book ) 
37 Jbid, 262 (Page 277 of this book ) 
JsReid, Hilbert, 209 
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The Russians who moved there were intent on destroying all remnants of German 
culture, and the Germans who stayed were victims of Stalinist atrocities. The 
location of the city on the Baltic Sea made it ideal for a military naval base. For 
decades it was closed to visitors. 

Following the breakup of the Soviet Union, Kaliningrad remained part of Russia 
but on an enclave separated from the rest of the country, tucked between Lithuania 
and Poland, and known largely for its high crime rate. 

The Y2K problem - which some had predicted would add a final crowning 
catastrophe to the horrors of the twentieth century - didn't turn out so badly. 
As the front page of the New York Times exhaled on the first morning of the 
year 2000: 

1/1/00: 
Technology and 2000 

Momentous Relief; 
Computers Prevail 

in First Hours of '00 

Computer programmers hadn't really embedded time bombs in lots of crucial 
systems. Programmers are generally much smarter than that! Moreover, they 
had put in some hard work and long hours to locate many of the potential 
problems. Changing computer programs is often fairly easy. That's why it's called 
software. 

Computer programs begin life and are maintained as text files called source 
code. These text files can themselves be read and analyzed by other programs. 
Programmers were able to write special programs to examine existing source code 
to locate possible problem areas. Such programs, for example, could search for 
variable names that include the letters "year" or "yr" and then a human programmer 
might examine how the program treated calendar years. 

As these potential Y2K bugs were being hunted down and extinguished , it 
must have occurred to someone to ponder an even more ambitious scheme: 
Could one write a program that analyzed other programs and located other bugs? 
Such a program would be enormously difficult, of course, but after the program 
was finished, it could be used to debug any other program, and that would be 
extremely valuable. 

Yes, it would be hard, but is it theoretically possible? 
And the answer is No. A generalized bug-finding algorithm is not possible. That, 

too, is one of the unsettling implications of Alan Turing's paper on computable 
numbers and the Entscheidungsproblem. 
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The Education  
of Ala n  Tur i ng  

W
hen Alan Turing was 10 years old, someone gave him a book by Edwin 
Tenney Brewster entitled Natural Wonders Every Child Should Know. This 

book opened the young man's eyes to science, Turing later said , 1 and perhaps had 
an even more profound influence on his conception of the relationship between 
human beings and machines. "For, of course , the body is a machine ," the book 
asserted: 

It is a vastly complex machine ,  many, many times more compli­
cated than any machine ever made with hands; but still after all 
a machine. It has been likened to a steam engine. But that was 
before we knew as much about the way it works as we know 
now. It really is a gas engine; like the engine of an automobile , a 
motor boat, or a flymg machine .2 

By the early twentieth century, the idea that human beings are machines had 
become so innocent a concept that it could now be discussed in a children's 
book. This was not always so. Two centuries separated the life of Alan Turing 
from that of Julien Offray de La Mettrie (1 709- 1 75 1 ) ,  the French doctor and 
philosopher whose scandalous 1 747 work L'Homme Machine (Machine Man)3 had 
uncompromisingly portrayed man's body and even mind as the workings of a 
machine. Alan Turing grew up with the recognition that his body was a machine; 
he would be remembered most for exploring the connections between machines 
and the human mind. 

1 Andrew Hodges, Alan Tunng The Enigma (Simon & Schuster, 1983), 1 1  All biographical information 
about Tunng comes from this book 
2Quoted in Hodges, Alan Tunng, 1 3  
3Julien Offray de La Menne, Machine Man and Other Wntings, translated and edited by Ann Thomson 
(Cambndge University Press, 1996} 
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Alan Mathison Turing was born on June 23, 1912 ,  in a nursing home in 
Paddington, a borough of London. His father served the British Empire in the 
Indian Civil Service; his mother had been born in Madras, the daughter of an 
engineer who had made a fortune in India building bridges and railways. Turing's 
parents met on a ship from India to England in 1907 and married later that year in 
Dublin. They returned to India in early 1908. Alan, the second of two boys, was 
conceived in India in 191 1 but born in England. 

During much of their early childhood, Alan and his older brother John were left 
in England in the care of a retired couple while their parents lived in India - a not 
uncommon practice at the time. In 1922 , Alan began attending Hazelhurst, a prep 
school in Kent. His primary interests were maps, chess, and chemistry.4 In 1926 
he was accepted by Sherborne, one of the oldest of the English public schools. On 
the first day of Turing's first term at Sherborne, a general strike prevented him 
from taking the rail to the school . Alan decided instead to bicycle the 60 miles to 
the school, a feat that was reported in the local newspaper. 5 

Alan didn't mix well with the other boys at Sherborne. He was always shy 
and solitary, and seemed to be perpetually disheveled and ink-stained. "All 
his characteristics lent themselves to easy mockery, especially his shy, hesitant, 
high-pitched voice - not exactly stuttering, but hesitating, as if waiting for some 
laborious process to translate his thoughts into the form of human speech."6 He 
might have redeemed himself by excelling in his studies, but that was not the 
case. Only in mathematics did he show some inkling of authentic intellectual 
talent. 

By 1929, Alan became entranced by The Nature of the Physical World (1928) , 
a popular and influential book by Cambridge astronomer Sir Arthur Eddington 
that explored the implications of the new sciences of relativity and quantum 
theory. Alan also became entranced by a schoolmate named Christopher Morcom 
who shared Alan's interests in science and mathematics, and who came from a 
much more interesting, scientific family than Turing's own. Christopher's maternal 
grandfather was Sir Joseph Swan, who had invented the incandescent light bulb, 
in 1879, independently of Edison. 

In retrospect, it seems likely that Alan Turing was discovering his homosexuality 
at this time , and that Christopher was his first love. There is no indication 
that anything physical occurred between the two teenagers, however. Together 
they performed chemistry experiments, exchanged mathematical equations, and 
explored the new astronomy and physics in books by Eddington and Sir James 
Jeans, another Cambridge professor of astronomy. 

4Hodges, Alan Tunng, 1 7  
'Hodges, Alan Tunng, 2 1  
6Hodges. Alan Tunng, 24 
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Cambridge was the place to go for aspiring English scientists, and the Cambridge 
college with the best reputation for science and mathematics was Trinity. In 
December 1929, Alan and Christopher JOUmeyed to Cambridge for a week to take 
scholarship examinations and to bask in the alma mater of Francis Bacon, Isaac 
Newton, and James Clerk Maxwell. The exam results were published in The Times 
a week after they returned to Sherbome. Alan didn't make it, but Christopher 
did. Christopher would be going to Trinity, and the best that Alan could hope 
for was to try again for Trinity next year, or perhaps one of the other Cambridge 
colleges. 

Two months later, Christopher became suddenly ill and died within the week, 
a consequence of the bovine tuberculosis he had contracted as a child . One of 
their classmates at Sherbome wrote in a letter, "Poor old Turing is nearly knocked 
out by the shock. They must have been awfully good friends."7 While Alan Turing 
was to have other, more sexual relationships with men, apparently nothing ever 
came close to the love and adulation he had for Christopher Morcom. 

In December 1930, Turing tried again for a Trinity scholarship and again didn't 
make it. His second choice was King's. By this time he had decided to concentrate 
on mathematics, and prepared himself by plowing into G.H. Hardy's classic, A 
Course in Pure Mathematics, at the time in its fifth edition. Alan Turing began his 
education at King's College, Cambridge, in the fall of 193 1 .  

By the next year Turing was tackling a recent book on the mathematical foun­
dations of quantum mechanics, Mathematische Grundlagen der Quantenmechanik 
by the young Hungarian mathematician John von Neumann, whose last name 
is pronounced "noy-man." Von Neumann had spent the mid- 1920s working 
with David Hilben in Gottingen, the site of much of the early research on 
the mathematics of quantum mechanics. He had immigrated to the United 
States in 1930 to teach at Princeton, and had been among the first mathemati­
cians recruited by the Institute for Advanced Studies in 1933. Now the lives 
of John von Neumann and Alan Turing would begin to intersect in several 
interesting ways. 

Turing probably first met von Neumann in the summer of 1935 when von 
Neumann took a break from his current post at Princeton University to lecture at 
Cambridge on the subject of almost-periodic functions . Turing already knew the 
subject and von Neumann's work in it: Just that spring Turing had published his 
first paper, a two-pager on the "Equivalence of Left and Right Almost Periodicity" 
(Journal of the London Mathematical Society, 1935) that expanded on a paper by von 
Neumann published the previous year. 

Neither man could possibly have guessed that they would meet again the 
following year in Princeton, New Jersey. 

7Hodges, Alan Tunng, 46 
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Turing's interest in the rarefied world of mathematical logic might have begun 
in 1933 when he read Bertrand Russell's 1919 work Introduction to Mathematical 
Philosophy, which ends: 

If any student is led into a serious study of mathematical logic by 
this little book, it will have served the chief purpose for which it 
has been written. 8 

In the spring term of 1 935, Turing took a Foundations of Mathematics 
course given by Maxwell Herman Alexander Newman (1897- 1984), generally 
known by the initials M.H.A. Newman and familiarly as Max. Max Newman's 
reputation was for his work in combinatorial topology, but he was also prob­
ably the person at Cambridge most knowledgeable about mathematical logic. 
The climax of Newman's course was the proof of Godel's Incompleteness 
Theorem. (Graduate-level introductions to mathematical logic are still structured 
similarly.) 

Also covered in Newman's course was the unresolved Entscheidungsproblem. 
"Was there a definite method, or as Newman put it, a mechanical process which 
could be applied to a mathematical statement, and which would come up with 
the answer as to whether it was provable?"9 By "mechanical process" Newman 
didn't mean a machine, of course. Machines may be able to perform simple 
arithmetic, but they can hardly do actual mathematics. No, Newman was alluding 
to a type of process that would eventually be called an algorithm - a set of 
precise (but basically "mindless") instructions for solving a problem. It's likely 
that Turing began working on the decision problem in the early summer of 
1935. 10 By this time he had been awarded a Cambridge fellowship, which 
paid £.300 a year. Turing later said that the main idea for approaching the 
Entscheidungsproblem came to him while lying in Grantchester meadows, a 
popular recreational spot for Cambridge students about two miles from King's 
College. 

By April 1936, Turing was able to give Max Newman a draft of his paper "On 
Computable Numbers, with an Application to the Entscheidungsproblem." 1 1  

Turing's paper takes an unusual approach for a mathematical proof: He 
begins by describing a fictional computing machine capable of a few sim­
ple operations. Despite the simplicity of this machine, Turing asserts that it 

8Bertrand Russell, In1roduc1ion to Mathematical Philosophy, second edition (George Allen & Unwm Ltd, 
1920, Dover Publications, 1 993), 206 
9Hodges, Alan Tunng, 93 
10Hodges, Alan Tunng, 96 
l l Hodges, Alan Tunng, 109 
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is functionally equivalent to a human being performing mathematical oper­
ations. He sets these machines to work computing numbers. Turing's first 
example machine computes the number 1/3 in binary form (.0 1 0 1 0 1 .  . . ) .  
The second computes an irrational number that is  probably also transcenden­
tal (.00101 101 1 101 1 1 1 .  . . ). He persuades us that machines can also be defined to 
calculate 7t, e, and other well-known mathematical constants. Turing even creates 
a Universal Machine that can simulate the operation of any other computing 
machine. 

Yet, Turing Machines - as these imaginary devices came to be called - cannot 
calculate every real number. The machines he designed have a finite number of 
operations, and by representing these operations with numbers, he is able to 
show that each machine can be uniquely described by a single integer called 
a Description Number. Turing Machines are thus enumerable. The computable 
numbers - the numbers that Turing Machines are capable of computing - must 
also be enumerable , but real numbers (we know from Cantor's proofs) are not 
enumerable. The computable numbers certainly include the algebraic numbers, 
and they also include such transcendental numbers as 7t and e, but because 
the computable numbers are enumerable, they simply cannot encompass all real 
numbers. 

Turing Machines are not infallible. It is possible to define a Turing Machine that 
simply doesn't work right or that doesn't do anything worthwhile. Turing divides 
his machines into "satisfactory" machines and "unsatisfactory" machines. 

Because Turing Machines are entirely defined by a Description Number, it 
might be possible to create a Turing Machine that analyzes these Description 
Numbers to determine whether a particular machine is satisfactory or unsatis­
factory. Turing proves that this is not the case: There is no general process to 
determine whether a Turing Machine is satisfactory. The only way one Turing 
Machine can analyze another is to trace through the operation of the machine step 
by step. In short, you must actually run a machine to determine what it's going 
to do. 

What goes for Turing Machines also applies to computer programs: In general, 
it's not possible for one computer program to analyze another except by simulating 
that program step by step. 

Turing also proves that no Turing Machine can be defined to do something 
that seems very straightforward - for example, to determine whether another 
machine ever prints the digit 0. In the final section of his paper (which is 
discussed in Part Ill of this book) , Turing constructs a statement in mathe­
matical logic equivalent to determining whether a particular Turing Machine 
ever prints the digit 0. Since he's already established that this determination is 
not possible, this statement in logic is not provable, and hence, "the Entschei­
dungsproblern cannot be solved" (page 262 of Turing's paper and page 277 of 
this book). 
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Around the same time that Max Newman was reading a draft of Turing's 
paper, he received an offprint of a short paper by American mathematician Alonzo 
Church entitled "A Note on the Entscheidungsproblem."12 Building upon a paper 
published earlier, 13 Church's paper also concluded that the Entscheidungsproblem 
"is unsolvable ." 

Turing had been scooped. That would normally imply that his paper was 
unpublishable and doomed to oblivion, but Max Newman realized that Turing's 
approach was innovative and considerably different from Church's. He recom­
mended that Turing submit his paper to the London Mathematical Society for 
publication anyway. (The published paper indicates that the Society received 
it on May 28, 1936.) Turing explained the situation in a letter to his mother 
on May 29: 

Meanwhile a paper has appeared in America, written by Alonzo 
Church, doing the same things in a different way. Mr Newman 
and I decided however that the method is sufficiently different to 
warrant the publication of my paper too. Alonzo Church lives at 
Princeton so I have decided quite definitely about going there. 14 

On May 3 1 ,  Max Newman wrote letters to both Alonzo Church and the secretary 
of the London Mathematical Society. To Church he wrote : 

An offprint which you kindly sent me recently of your paper 
in which you define 'calculable numbers', and shew that the 
Entscheidungsproblem for Hilbert logic is insoluble, had a rather 
painful interest for a young man, A.M. Turing, here, who was 
just about to send in for publication a paper in which he had 
used a definition of 'Computable numbers' for the same purpose . 
His treatment - which consists in describing a machine which 
will grind out any computable sequence - is rather different 
from yours, but seems to be of great merit, and I think it of great 
importance that he should come and work with you next year if 
that is at all possible . 1 5 

1 2Alonzo Church, "A Note on the Entschiedungsproblem," Thejoumal of Symbolic Logic, Vol 1, No 1 (Mar 
1936), 40-41 
I 3  Alonzo Church, "An Unsolvable Problem of Elementary Number Theory," Amencan )oumal of 

Mathematics, Vol 58, No 2 (Apr 1 936), 345-363 Both of Church's papers appear in Martin DaVJs, ed , 
The Undecidable (Raven Press, 1965) 
14Hodges, Alan Tunng, 1 1 3  
15Hodges, Alan Tunng, 1 1 2 
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To F. P .  White, the secretary of the London Mathematical Society, Max Newman 
wrote, 

I think you know the history of Turing's paper on Computable 
numbers. Just as it was reaching its final state an offprint arrived, 
from Alonzo Church of Princeton, of a paper anticipating Tur­
ing's results to a large extent. 

I hope it will nevertheless be possible to publish the paper. 
The methods are to a large extent different , and the result is 
so important that different treatments of it should be of interest. 
The main result of both Turing and Church is that the Entschei­
dungsproblem on which Hilbert's disciples have been working 
for a good many years - i .e . ,  the problem of finding a mechan­
ical way of deciding whether a given row of symbols is the 
enunciation of a theorem provable from the Hilbert axioms - is 
insoluble in its general form. 16 

Turing now needed to add an appendix to his paper showmg that his concept 
of computability and Church's notion of "effective calculability" were equiv­
alent. This appendix was received by the London Mathematical Society on 
August 28, 1936. 

Turing's paper was published in the Proceedings of the London Mathematical Society 
in November and December, 1936. 1 7 A three-page Correction was published in 
December 1937. 18 A four-paragraph review of the paper by Alonzo Church in the 
March 1937 journal of Symbolic Logic includes the statement, "a human calculator, 
provided with pencil and paper and explicit instructions, can be regarded as a type 
of Turing machine ,"19 which is the first known occurrence of the term "Turing 
machine" in print. 

Turing's paper is divided into eleven sections and the appendix. It begins with 
an introduction that launches right into a description of this new category of 
numbers that Turing has conceived. 

16Hodges, Alan Tunng, 1 1 3 
17The paper was split between two monthly installments (called "parts") of the Proceedings The first 1 1  
pages appeared in Volume 42, Part 3 (dated November 30, 1936) and the remainder in Volume 42, Pan 4 
(dated December 23, 1936) In 1937, parts published from October 1936 through Apnl 1937 were 
collectively published as 2nd Senes, Volume 42 This is why the publication date of Tunng's paper is 
vanously given as 1936 (the year the indiVJdual pans were published), 1937 (which is when the completed 
Volume 42 was published) or 1936-1937 (which are the dates of all the parts included in Volume 42) 
18Specifically, Volume 43, Part 7 (issued December 30, 1937), which then appeared in 2nd Senes, Volume 
43, which includes parts issued from May through December 1937 
19 Alonzo Church, ReVJew of "On Computable Numbers, wuh an Application to the 
Entscheidungsproblem," The journal of Symbolic Logic, Vol 2, No I (Mar 1937), 42-43 
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[230] 

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO 
THE ENTSCHEIDUNGSPROBLEM 

By A. M. TURIN( ; .  

[Received 28 May, 1936. - Read 12 November, 1936. !  

The "computable" numbers may be described briefly as the real 
numbers whose expressions as a decimal are calculable by finite means . 

Turing limits consideration here to real numbers, and he implies that the 
computable numbers are a subset of the reals, which means there are some real 
numbers that are not computable. This is certainly not immediately obvious. 

By "expressions as a decimal" Turing means that 1/3 is to be expressed as 
0.33333 . . . , and n is to be calculated as 3 . 14159 . .  . ,  which immediately seems 
to conflict with his notion of "finite means."  Obviously we can never really finish 
calculating the decimals of 113 or 1r. In Turing's paper, however, "means" refers 
not to the actual process of determining the digits but to the method. A method 
that says, "The next digit is 4. The next digit is 7. The next digit is 0 . . .  " can 
obviously be used to compute any real number, but it's not a finite method. Both 
1/3 and n are calculable by algorithms (one less complex than the other) , and the 
means by which we calculate them (a long division or something messier) involve 
a finite number of rules. 

Although the subject of this paper is ostensibly the computable numbers, 
it is almost equally easy to define and investigate computable functions 
of an integral variable or a real or computable variable, computable 
predicates, and so forth. The fundamental problems involved are, 
however, the same in each case, and I have chosen the computable numbers 
for explicit treatment as involving the least cumbrous technique. I hope 
shortly to give an account of the relations of the computable numbers, 
functions, and so forth to one another. This will include a development 
of the theory of functions of a real variable expressed in terms of com­
putable numbers. 

Turing never followed up on his paper in this way. Godel also intended to 
write a follow-up to his famous paper on incompleteness, and even included the 
Roman numeral 1 in its title in anticipation. Godel never wrote the sequel because 
the results of his paper were accepted more quickly than he anticipated. Tunng, 
on the other hand, got interested in other matters. 



The Education of Alan Turing 65 

Tunng concludes the first paragraph of his paper with the statement: 

According to my definition, a number is computable 

if its decimal can be written down by a machine. 

This was rather a strange thing to say in 1936 because at the time no machine 
had ever been built that could do what Turing required in a general way. 

Turing probably knew about the work of Charles Babbage ( 1791- 1871) ,  the 
English mathematician who had designed a Difference Engine to calculate pages of 
logarithmic tables, and then abandoned that project sometime around 1 833 to work 
on an Analytical Engine that was more like a general-purpose computer. Babbage 
had also attended Cambridge and parts of Babbage's uncompleted machines were 
on display at the Science Museum in Kensington. Nevertheless, Turing doesn't 
seem influenced at all by Babbage's conceptions or terminology. 

Turing may or may not have known about the Differential Analyzer constructed 
by Vannevar Bush (1890- 1974) and his students at MIT starting in 1927, 
but this was an analog computer that solved differential equations with mostly 
engineering applications. Turing might have been interested in such a machine 
from a mathematical or engineering perspective, but it wouldn't have been much 
help with this particular problem. 

It is hard to imagine how Turing could possibly have been aware of other early 
computer projects in the mid- l 930s. Turing certainly didn't know that engineering 
student Konrad Zuse (1910-1995) had in 1935 begun building a computer in 
the living room of his parents' apartment in Berlin. It wasn't until 1937, after 
Turing's paper was published, that George Stibitz ( 1904-1995) took home some 
telephone relays from his workplace at Bell Telephone laboratories and started 
wiring up binary adders. It was in 1937, as well, that Harvard graduate student 
Howard Aiken (1900- 1973) began exploring automated computing, leading to a 
collaboration between Harvard and IBM in the creation of the Harvard Mark I .  20 

In attacking problems of calculability and Hilbert's Entscheidungsproblem at 
this particular time, Turing was part of a trend that included Alonzo Church, 
Emil Post (1897- 1954) , and Stephen Kleene (1909- 1994),2 1 but Turing can also 
be counted among those in the mid- 1930s who were thinking about automated 
computing. 

20 An excellent introduction to these early computers is Paul E Ceruzzi, Rechoners The Prehistory of the 

Digital Computer, from Relays to the Stored Program Concept, 1 935-1 945 (Greenwood Press, 1983) 
21 Robin Gandy, "The Confluence of Ideas in 1936," in Rolf Herken, ed , The Universal Tunng Machine A 

Half-Century Survey (Oxford University Press, 1988), 55-1 1 1 ,  second edition (Spnnger-Verlag, 1995), 
49-102 
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Turing summarizes some of his conclusions that will appear in the later sections 
of this paper: 

In §§ 9, 10 I give some arguments with the intention of showing that the 
computable numbers include all numbers which could naturally be 

regarded as computable. In particular, I show that certain large classes 
of numbers are computable. They include, for instance, the real parts of 
all algebraic numbers, the real parts of the zeros of the Bessel functions, 
the numbers rr ,  e, etc. 

Those "numbers which could naturally be regarded as computable" are numbers 
that people have actually computed, and for which algorithms exist. Turing doesn't 
even bother to mention that all rational numbers are computable. That's obvious. 
He quickly adds algebraic numbers to the computable list as well. (He qualifies 
algebraic numbers to the real parts because solutions to algebraic equations 
can have real and imaginary parts, and he's already restricted himself to real 
numbers.) 

With his assertion that algebraic numbers are computable, Turing has now 
thrown this discussion into the realm of the transcendentals. Yet, he says, some 
transcendental numbers are computable. Bessel functions are solutions to particular 
forms of differential equations. The zeros are values where the functions equal zero. 
These were once published in tables so they would be considered computable. 
(They are now generally calculated by computer programs when needed.) Turing 
doesn't mention them, but trigonometric and logarithmic functions generally have 
transcendental values, and these are computable as well . So are the constants 7t 
and e .  

What Turing does not claim is  that all transcendental numbers are computable.  
Othel"Wlse the computable numbers would be the same as the real numbers. 

The computable numbers do not, however, include 
all definable numbers, and an example is given of a definable number 
which is not computable. 

So let that be a lure . Turing will define a number that neither he (nor this machine 
of his) can compute . 

Now Turing comes to the crux of the difference between real numbers and 
computable numbers: 

Although the class of computable numbers is so great, and in many 
ways similar to the class of real numbers, it is nevertheless enumerable. 
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Computable numbers are enumerable . The enumerability of computable num­
bers implies that they are not the same as real numbers, because the real numbers 
are not enumerable. 

In § 8 I examine certain arguments which would seem to prove the contrary. 
By the correct application of one of these arguments, conclusions are 
reached which are superficially similar to those of Godelt. 

t Godel, "Uber formal unentscheidbare Satze der Principia Mathematica und ver­
wandter Systeme, I", Monatshefte Math. Phys. , 38 ( 193 1), 1 73- 198. 

That's the famous Godel Incompleteness Theorem. Notice that Turing's footnote 
refers to the German title of Godel's paper. An English translation wouldn't be 
published until 1962. 

These results 

[23 1] 

have valuable applications. In particular, it is shown (§  11)  that the 
Hilbertian Entscheidungsproblem can have no solution. 

This is the last mention of Hilbert for the next 18  pages of the paper. 
Turing needed to add an appendix to the paper after he had learned about Alonzo 

Church's proof and had determined that the two approaches were equivalent. The 
last paragraph of the introduction was added at the same time . 

In a recent paper Alonzo Churcht has introduced an idea of "effective 
calculability", which is equivalent to my "computability", but is very 
differently defined. Church also reaches similar conclusions about the 
Entscheidungsproblem:j:. The proof of equivalence between "computa­
bility" and "effective calculability" is outlined in an appendix to the 
present paper. 

t Alonzo Church, "An unsolvable problem of elementary number theory", American 

J. of Math. , 58 ( 1936), 345-363. 
* Alonzo Church, "A note on the Entscheidungsproblem", J. of Symbolic Logic, 1 

( 1936), 40-4 1. 
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That's the last mention of the Entscheidungsproblem for almost the next 28 pages 
of Turing's paper. According to the Oxford English Dictionary (second edition) , that 
paragraph contains the first known use of the word "computability" other than an 
1889 dictionary. There have since been well over 30 books published with the 
word "computability" in the title; the first was Martin Davis's Computability and 
Unsolvability, published by McGraw-Hill in 1958. 

The first of eleven sections in Turing's paper now begins. 

1. Computing machines. 

We have said that the computable numbers are those whose decimals 
are calculable by finite means. This requires rather more explicit 
definition. No real attempt will be made to justify the definitions given 
until we reach § 9. For the present I shall only say that the justification 
lies in the fact that the human memory is necessarily limited. 

Turing has said that computable numbers are those that can be written down 
by a machine, but now he justifies the "finite means" part of the definition by the 
limitation of human memory. This casual association of machine and human is 
characteristic of Turing's work. 

When Turing originally said that a computable number was calculable by finite 
means, it sounded reasonable, but now that he justifies it by the limitations of the 
human mind, he's raising certain issues about the nature of mathematical reality. 
We call the real numbers "real" despite the fact that the vast majority of them 
have never been seen by anyone. Moreover, Turing will show in this paper that 
the vast majority of real numbers can't even be calculated by finite algorithms. 
In what sense do real numbers exist? That is a philosophical question that 
Turing touches upon only obliquely in the correction to his paper (Chapter 16  of 
this book) . 

Turing next links a human being with a machine in terms of discrete states of 
mind: 

We may compare a man in the process of computing a real number to a 
machine which is only capable of a finite number of conditions q 1 ,  q2 , . . .  , q R 
which will be called "m-configurations". 

The m stands for machine. A machine has a finite number of configurations 
and does something different depending on its current configuration. A more 
modem term is state, and later Turing makes reference to "states of mind" that 
are analogous to these machine states. A simple washing machine , for example, 
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has states called fill, wash, rinse, and spin. Performing a long division likewise 
involves a number of different mental configurations or states of mind: "Now I 
need to multiply." "Now I need to subtract ." "Now I need to borrow." A machine 
operates by switching between different configurations, often in a repetitive 
manner. 

The machine is supplied with a 
"tape" (the analogue of paper) running through it, and divided into 
sections (called "squares") each capable of bearing a "symbol". 

Turing calls this tape "the analogue of paper" because paper is what a person 
would use to compute a number. The tape in the Turing machine is often 
visualized as a paper tape , but if a Turing machine were actually built , the tape 
would probably be magnetic or simply a block of computer memory. 

Humans generally use a two-dimensional sheet of paper, but Turing is limiting 
his machine to a one-dimensional tape divided into squares. The symbols in these 
squares could be the decimal digits 0 through 9, or they could include all the 
letters of the alphabet, or the 95 symbols available from your computer keyboard. 
(As you'll see, Turing even allows a "symbol" to consist of multiple characters.) 

To represent these symbols in this section of the paper, Turing uses a capital S 
(standing for "symbol") in a gothic German font, so it looks like this: e. This is 
not the last you'll see of that font. 

At 
any moment there is just one square, say the r-th, bearing the symbol e'i(r) 
which is "in the machine". 

Here Turing is assuming that the squares of the tape can be numbered for 
identification. For example, e{345 1) would refer to the symbol on square number 
345 1 .  If that square contained the character 'A' then e(345 l) would be 'A'. Strictly 
speaking, however, the squares on the tape are not numbered, and the machine 
does not refer to a particular square using its number. (In other words, a square 
has no explicit address.) 

At any time, Turing says, just one square of the tape is "in the machine" and 
can be examined by the machine . 

We may call this square the "scanned 
square". The symbol on the scanned square may be called the "scanned 
symbol". The "scanned symbol" is the only one of which the machine 
is, so to speak, "directly aware". 
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The machine can't "see" the whole tape at once. It can only "look at" one square 
at a time. 

However, by altering its m-configu­
ration the machine can effectively remember some of the symbols which 
it has "seen" (scanned) previously. 

A machine switches from one m-configuration to another depending on the 
scanned symbol. For example, in the particular m-configuration qJ4, if the scanned 
symbol is 'A', it could switch to m-configuration q11 .  I f  the scanned symbol were 
'B', it could switch to m-configuration q 123 . Thus m-configuration q11 "knows" 
that the last scanned symbol was an 'A' and m-configuration q123 knows that the 
last scanned symbol was a 'B'. (This is not entirely true; other configurations could 
have switched to q11 and q123 as well, but presumably the design of the machine 
implies that q17  and q123 know enough of what happened prior to carry out a job.) 

The possible behaviour of the 
machine at any moment is determined by the m-configuration Qn and the 
scanned symbol e(r). This pair Qn ,  ("\(r) will be called the "configuration": 
thus the configuration determines the possible behaviour of the machine. 

The m-configurations are q1 , qi , and so on . When an m-configuration is paired 
with a scanned symbol, Turing calls it simply the configuration. 

Turing has already implied that the machine switches from one m-configuration 
to another depending on the scanned symbol. What else can the machine actually 
do? Not much: 

In some of the configurations in which the scanned square is blank (i.e. 
bears no symbol ) the machine writes down a new symbol on the scanned 
square : in other configurations it erases the scanned symbol. The 
machine may also change the square which is being scanned, but only by 
shifting it one place to right or left. 

I don't think I'm betraying Turing's conception if I refer to the mechanism that 
reads and writes symbols as the machine's head. Just like in a tape recorder or a 
camcorder, the head is in contact with the tape at only one point. The head in 
Turing's machine can read a symbol from the tape, or erase a symbol from the 
tape, or write a new symbol to the tape. It can also move one square left or right. 
(Although the head is probably stationary and the tape is moving through the 
machine, it's best to think of the head as moving relative to the tape.) 
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In addition to any of these operations 
the m-configuration may be changed. Some of the symbols written down 

[232] 

will form the sequence of figures which is the decimal of the real number 
which is being computed. The others are just rough notes to "assist the 
memory". It will only be these rough notes which will be liable to erasure. 

Because Turing wants his machine to compute a number, the machine will need 
to print figures (or digits) , and in general, an infinite sequence of digits. To assist 
itself in this process, the machine may need to use part of the tape as a type of 
scratch pad. 

What does a Turing machine look like? You can certainly imagine some crazy 
looking machine,22 but a better approach is to look in a mirror. To paraphrase the 
climax of a famous science fiction movie ,23 "Turing Machines are people" - but 
living people carrying out an algorithm in a very limited but precise manner. 

It is my contention that these operations include all those which are used 
in the computation of a number. 

That is, a computation by a human being. If you think that this machine is 
missing some basic arithmetical operations such as addition and subtraction, 
you're absolutely right. Addition and subtraction are not built into the Turing 
Machine. Instead, a Turing Machine can perform arithmetical operations if it has 
the right configurations. 

The defence of this contention will be 
easier when the theory of the machines is familiar to the reader. In the 
next section I therefore proceed with the development of the theory and 
assume that it is understood what is meant by "machine", "tape", 
"scanned", etc. 

We are probably ready to begin looking at some actual machines, but Turing 
won't gratify us yet. He wants to throw out some definitions first. 

220ne of the best - complete with bells and whistles - accompanies the anicle Gregory ).  Chaitin, 
"Computers, Paradoxes and the Foundations of Mathematics," American Scientist, Vol 90 (March-Apnl 
2002), 168 See http./lwww cs.auckland ac nz/CDMTCS/chaitin/amsci.pdf for an online version. 
23Soylent Green ( 1973) 
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2. Definitions. 

Automatic machines. 

If at each stage the motion ofa machine (in the sense of § l ) is completely 
determined by the configuration, we shall call the machine an "auto­
matic machine" (or a-machine). 

For some purposes we might use machines (choice machines or 
c-machines) whose motion is only partially determined by the configuration 
(hence the use of the word "possible" in § 1) .  

When describing how a machine's behavior is determined by the configuration 
(page 70) Turing used the expression "possible behaviour of the machine." The 
behavior had to be qualified because in some machines it can be altered somewhat 
by some human interaction - an external "operator" of the machine: 

When such a machine 
reaches one of these ambiguous configurations, it cannot go on until some 
arbitrary choice has been made by an external operator. This would be the 
case if we were using machines to deal with axiomatic systems. In this 
paper I deal only with automatic machines, and will therefore often omit 
the prefix a-. 

Turing's distinction between automatic machines and choice machines is 
somewhat reminiscent of the traditional separation of programming into batch 
processing and interactive computing. So much of our computing experience is 
interactive today that we may forget there are still many computer programs that 
run without heeding a user's every keystroke and mouse click. 

While choice machines may be interesting, they play almost a negligible role in 
Turing's paper. The behavior of the automatic machines in Turing's paper will be 
completely determined by the machines' configurations. 

Computing machines. 

If an a-machine prints two kinds of symbols, of which the first kind 
(called figures) consists entirely of 0 and 1 (the others being called symbols of 
the second kind), then the machine will be called a computing machine. 

Before he even begins showing us sample machines, Turing has decided to 
restrict the machines to printing figures of 0 and 1 ,  the two digits needed for 
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representing binary numbers. 24 Using binary numbers is a smart move, but it 
probably wouldn't have been as obvious to most 1937 readers as it is to us. Claude 
E. Shannon (1916-2001) ,  whose 1937 MIT Master's thesis A Symbolic Analysis 
of Relay and Switching Circuits demonstrated the equivalence between circuits and 
Boolean algebra, certainly would have appreciated the choice, but the use of binary 
numbers in early computers was certainly not universal : Although Zuse used 
binary numbers, Eiken's and Stibitz's machines were decimal based. The ENIAC 
(1943- 1945) was also a decimal computer. The word "bit" (which is short for 
"binary digit") did not appear in print until 1948 in a later Shannon paper. 25 

Turing doesn't attempt to justify the use of binary numbers for his machines. 
The advantage really only becomes apparent on page 245 of his paper (page 159 
of this book) , but just to put all doubts to rest I'll show a comparison of simple 
binary and decimal machines in the next chapter. 

If the machine is supplied with a blank tape and set in motion, starting 
from the correct initial m-configuration, the subsequence of the symbols 
printed by it which are of the first kind will be called the sequence computed 
by the machine. 

A machine is set in motion with a blank tape. The machine prints Os and ls  
(symbols of  the first kind) and other symbols (of the second kind). The Os  and ls 
constitute the computed sequence. Turing differentiates between this computed 
sequence and the computed number. 

The real number whose expression as a binary decimal is 
obtained by prefacing this sequence by a decimal point is called the 
number computed by the machine. 

That sentence is somewhat painful to read because the terminology is not quite 
right. We must, however, forgive Turing's confusion because people at that time 
were simply not accustomed to discussing binary numbers. Even today, people 
who are fluent in binary are often not entirely comfortable with binary fractions. 

24 An overview of binary numbers can be found in Charles Petzold, Code The Hidden Language of Computer 

Hardware and Software (Microsoft Press, 1999) 
2'Claude E Shannon, "A Mathematical Theory of Communication," The Bell System Technical]oumal, Vol 
27 Ouly, October 1948). Shannon credits the coining of the word to Amencan mathematician J. W. Tu key 
The word got a bad reVJew from Lancelot Hogben in The Vocabulary of Science (Stein and Day, 1970), 146: 
"The introduction by Tukey of bits for binary digits has nothing but irresponsible vulganty to commend it " 
I disagree Bits are so common in our modem life that a tiny word is ideal, rather like the things themselves 
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Even the Windows Calculator in Scientific mode is no help: It simply truncates 
fractions when converting to binary. 

The word "decimal" derives from the Latin for "ten" and the use of this word 
should be restricted to numbers based on ten. These are decimal fractions: 

.25 

. 5  

.75 

The decimal point separates the integer part (if any) from the fractional part. 
Those same three values are represented in binary as: 

.01  

. 1  

. 1 1  

But that dot is not a decimal point. It really must be called a binary point. 
Just as the individual digits of binary integers represent powers of 2, fractional 

binary numbers represent negative powers of 2: 

. 1  is the binary equivalent of 2- 1 or the decimal ratio 1/2 

.01  is the equivalent of i-2 or 1/4 

.001 is 2-3 or 1/8 

.0001 is i -4 or 1/16 

.00001 is 2-5 or 1/32 

and so forth. The binary number . 10 1 0 1  is 

1 · r 1 + o . 2-2 + 1 . r3 + o . r4 + 1 . r5 

or perhaps visually clearer, 

1 0 1 0 1 

2 + 4 + 8 + 16  
+ 

32 
The decimal equivalent is 2 1/32 or .65625. Just as in decimal, many binary 
fractional numbers have repeating patterns of digits. Here's 1/3 in binary: 

.0 1010101  . . .  

And this is 2/3 : 

. 10 101010  . . .  

Similarly: 

1/5 is .001 1001 100 1 1  . .  . 
2/5 is . 0 1 100 1 100 1 10 . .  . 



3/5 is . 100 1 1001 1001 . . . 
4/5 is . 1 1001 1001 100 . .  . 
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Turing's statement is more correctly worded: "The real number whose expres­
sion as a binary fraction is obtained by prefacing this sequence with a binary point 
is called the number computed by the machine ."  

While we're at  it, let's rework the sentence even further: "The number computed 
by the machine is the binary fraction obtained by prefacing this sequence with a 
binary point ." 

For example, if one of Turing's computing machine prints a 0 and a 1 and 
nothing more, then the "sequence computed by the machine" is: 

0 1  

The "number computed by the machine" is obtained by prefacing this sequence 
with a binary point: 

.01 

That's the binary equivalent of 1/4. 
Because a binary point is always assumed to precede the computed sequence, 

Turing's machines will compute only binary numbers between 0 and 1 ,  but this 
short range should be fine for any insights into enumerability that might be 
needed. 

At any stage of the motion of the machine, the number of the scanned 
square, the complete sequence of all symbols on the tape, and the 
m-configuration will be said to describe the complete configuration at that 
stage. 

This is Turing's third use of the word configuration in discussing aspects of these 
machines, and it will be important to keep them straight: 

• The m-configuration is one of the states of the machine. 
• The configuration is a combination of an m-configuration and a scanned 

symbol. 
• The complete configuration is basically a "snapshot" of the entire tape at some 

point in time , plus the current m-configuration and the position of the head. 

The changes of the machine and tape between successive complete 
configurations will be called the moves of the machine. 
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The next two definitions are not used until somewhat later in the paper: 

[233] 

Circular and circle-free machines. 

If a computing machine never writes down more than a finite number 
of symbols of the first kind, it will be called circular. Otherwise it is said to 
be circle-free. 

A machine will be circular if it reaches a configuration from which there 
is no possible move, or if it goes on moving, and possibly printing symbols 
of the second kind, but cannot print any more symbols of the first kind. 
The significance of the term "circular" will be explained in § 8. 

Earlier I mentioned a machine that pnnts 0 and 1 and then nothing more. 
That's a finite number of figures, so it falls under Turing's definition of a circular 
machine. The machine is stuck somewhere and can't print any more numbers. 
This is no good. Turing wants his machines to keep printing digits forever. 

The circle-free machines are the good machines. A machine that prints just 0 
and 1 and nothing else is not a circle-free machine. If the machine really wants to 
compute the binary equivalent of 1/4, it should print 0 and 1 and then continue 
printing Os forever. 

Although Turing hasn't addressed the issue , he seems to be implymg that his 
computing machines print digits from left to right, just as we would read the digits 
following the binary point. 

Computable sequences and numbers .  

A sequence is  said to be computable if  i t  can be computed by a circle-free 
machine. A number is computable if it differs by an integer from the 
number computed by a circle-free machine. 

Turing is making a distinction between sequences and numbers. A computable 
sequence is: 

0 10000 . . .  

The corresponding compucable number is : 

.010000 . . .  



The number 

1 .0 10000 . . . 
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is also considered to be computable because it differs by an integer from the 
number computed by the machine . So is 

10 .01000 . . .  

and negatives as well. 

We shall avoid confusion by speaking more often of computable 
sequences than of computable numbers. 





Machines 

at Work 

T
uring undoubtedly realized that the introduction of an imaginary computing 
machine into a mathematical paper was both novel and daring. Like a good 

mathematician, he has provided definitions and a formal description of these 
machines. It's not necessary for him to show any examples, but I imagine he 
knew that his readers wouldn't be satisfied with the merely abstract. They needed 
something concrete . He will now satisfy that craving. 

3. Examples of computing machines. 

I. A machine can be constructed to compute the sequence 0 10101  . . . . 

The machine prints a tape that looks like this: 

Well, not exactly. As Turing will later explain, he prefers his machines to use only 
alternate squares for printing numeric sequences. The first example machine will 
actually print a tape like this: 

... 1 I I I I l o l  1 1 1 l o l  1 1 1 l o l  1 1 1  l o l  1 1'  l o l  1 ... 
To denote the m-configurations of his machines, Turing uses lower-case letters 

of a German gothic font. These may take some getting used to, so I'll take care to 
point out potentially troublesome characters. The letters that Turing uses for this 
first machine are b, c, k, and e. (Watch out: The German k looks like an f.) 

The machine is to have the four m-configurations "Li", '\'', "r'', 'V' 
and is capable of printing "O" and " l". The behaviour of the machine is 
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described in the following table in which "R" means ''the machine moves 
so that it scans the square immediately on the right of the one it was 
scanning previously". Similarly for "L ". "E" means "the scanned 
symbol is erased" and "P" stands for "prints". 

A P in these tables is always followed by the particular symbol to be printed. 
For example, PO means print a 0, Pl means print a 1 ,  and Px means print an x. 

This table (and all 
succeeding tables of the same kind) is to be understood to mean that for 
a configuration described in the first two columns the operations in the 
third column are carried out successively, and the machine then goes over 
into the m-configuration described in the last column. 

The table has four columns, separated into two pairs: 

Configuration Behaviour 

m-config. symbol operations final m-config. 

What the machine does depends on the configuration, which is the combination 
of the m-configuration and the symbol in the scanned square. The third column 
contains operations (which can only be P, E, L, and R) and the fourth column is 
the next m-configuration. 

Often the second column explicitly indicates a particular scanned symbol, such 
as 0 or 1 ,  but Turing also uses the word "Any", which means any symbol, or 
"None" to mean no symbol, that is, a blank square. (This may be just a little 
confusing to modem programmers who are accustomed to treating a blank space 
as a symbol much like any other. When Turing uses the word "Any" he usually 
means "any non-blank" symbol.) The case for any symbol including blank squares 
is handled this way: 

When the second 
column is left blank, it is understood that the behaviour of the third and 
fourth columns applies for any symbol and for no symbol. 

Fortunately, the potential ambiguity is minimal. 

The machine 
starts in the m-configuration b with a blank tape. 
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Turing's machines always start in m-configuration b (for begin, or rather, begin) . 
Here's the long-awaited machine : 

Configuration 
m-config. symbol 

ti None 

None 

None 

None 

Behaviour 
operations final m-config. 

PO, R 
R t 

Pl, R 
R b 

These lines can be read like so: "For m-configuration b, when the scanned 
square is blank (the symbol "None") , print 0, move the head right, and change to 
m-configuration c. " 

Let's crank up this machine and watch it work. We begin in m-configuration 
b with a blank tape. Although the tape is theoretically infinite in both directions, 
the machines that Turing describes in this paper require only that the tape extend 
infinitely towards the right because that's where the digits of the computable 
sequences are printed: 

1 1  I I I I I I I I I I I I I I I I I I I I I I 1 ... 

The read/write head can be symbolized in many ways. I've chosen a thick 
border around the current scanned square . The head can initially be positioned 
anywhere on the tape : 

1 1 1 1 1 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ... 

There is no symbol in that square. The table tells us that for m-configuration b and 
no symbol, print 0 and move to the right: 

I I I I I I l o 0 I I I I I I I I I I I I I I I 1 ... 

The new m-configuration is c .  If the square is blank, move to the right and go into 
m-configuration e :  

I I I I I I l o l  0 I I I I I I I I I I I I I I 

For m-configuration e, if there's no symbol, print 1 and move right: 

I I I I I I l o l  1 1 0  I I I I I I I I I I I I I 
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Now we're in m-configuration t. Move right: 

I I I I I I l o l  1 1 1  0 I I I 

The machine is now in m-configuration b - back to the first state , and the cycle 
begins again. In this way, the machine prints an infinite sequence of Os and ls. 

It is tempting to refer to each of the four lines of the table as an instruction, 
and indeed, Turing later adopts that terminology. Recognize, however, that these 
lines are not instructions to the machine; they instead represent a description 
of the machine. That's why a better term is state. If we think of these lines 
as instructions, then we're implying that we can replace them with something 
else and the same machine would perform differently, but that would mean 
that the machine is interpreting these instructions, and that's just not so. (Not 
yet,  anyway.) This machine is performing a specific task. It doesn't matter 
how the machine actually works; what's important is that we can denote the 
working of the machine in a standard way based on configurations, symbols, and 
operations. 

Can this machine be built? This particular machine could be built in a variety 
of ways. It could have a revolving wheel with self-inking rubber stamps on 
its circumference that print alternating Os and ls .  Building a Turing Machine 
that works in the same way it's described - a machine that actually scans 
characters and interprets them - probably requires more sophisticated computer 
logic internally than the machine exhibits externally. Turing Machines are most 
commonly "built" as computer simulations. 

Turing Machines jump around from m-configuration to m-configuration 
depending on the scanned character. This "conditional branching" (as it's known 
in computer science) is something that early computers of this era didn't do 
well. Konrad Zuse coded his machine instructions by punching holes in old 
35-millimeter film stock. In his first machine, the Zl ,  the instructions had 
to be executed sequentially. The Z3 machine could branch but conditional 
branches were awkward. It wasn't until computers began storing programs 
in memory (the "stored program computer") that branching became easy and 
routine. 

The symbol column of this particular table always indicates "None", which 
means that the configuration applies only when the square is blank. If this 
particular machine happened to scan a square in which a symbol were actually 
present, the machine would not know what to do. It might grind to a halt. It might 
crash. It might burst into flames. It might reformat your hard drive . We don't 
know. Whatever happens, such a machine would not be considered a "circle-free" 
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machine. As long as this particular machine begins wi.th a blank tape, however, 
that's not a problem. 

Because Turing has defined a machine to print the sequence 

01010101  . . .  

he has shown that this is a computable sequence. This sequence can be converted 
into a computable number by prefacing it wi.th a period: 

.01010101  . . .  
Now it's clear that the machine is calculating the binary equivalent of the rational 
number 1/3.  If you switched the order (1 first then 0), the machine would compute 
the binary number 

. 10101010 . . .  

which is 2/3. 
Let me show you a machine that computes 1/4, which in binary is: 

.01000000 . . .  

This machine complies wi.th Turing's conventions and uses German letters b ,  c,  d,  
e, and f for the m-configurations: 

Configuration Behaviour 

m-config. symbol operations final m-con.fig. 

b None PO, R 

( None R b 
b None Pl ,  R e 

e None R f 
f None PO, R e 

In particular, notice the last two m-configurations, e and f. These just alter­
nate so the machine ends up printing an infinite series of Os. Continuing to 
print Os is necessary for the machine to comply with Turing's definition of 
"circle-free." 

It should be very, very obvious that similar computing machines can be defined 
to compute any rational number. The rational numbers are not the issue here. 

Earlier (in the second paragraph of Section 1) Turing said, "The machine may 
also change the square which is being scanned, but only by shifting it one place to 
right or left." Now he wants to be a little more flexible. 
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(234] 

If (contrary to the description in § 1 )  we allow the letters L, R to appear 
more than once in the operations column we can simplify the table 
considerably. 

m-config. symbol operations final m-config. { N�ne PO 11 

b R, R, Pl 11 

R, R, PO (1 

(Turing will also soon allow a configuration to have multiple P operations.) 
Now, the table has only one m-configuration, and everything depends on the 
scanned symbol. If the scanned square is blank (which only happens when 
the machine first starts up) , then the machine simply prints a 0 :  

I I I I I I ml I I I I I I I I I I I I I I I I 1 . . . 

The head does not move. The machine remains in the same m-configuration, 
but now the scanned symbol is 0. The machine moves two squares right and 
prints 1 :  

I I I I I I l o l  [i] I I I I I I I I I I I I I I I ... 

Now the scanned symbol is a 1, so the machine moves two places right and 
prints 0 :  

I I I I I I l o l  1 1 1 ml I I I I I I I I I I 

Once again, this machine prints 0 and 1 on alternate squares. 
The important lesson is that any particular sequence can be computed by a 

variety of different machines. However, a particular automatic machine staning 
with a blank tape always computes the same sequence . (I'm referring to automatic 
machines here, of course, because choice machines allow a human operator to 
intervene, and thus can create different sequences, but Turing barely considers 
choice machines in this paper.) There is no way to insert any indeterminacy or 
randomness into one of Turing's automatic machines, or to obtain information 
(such as the date and time , or longitude and latitude, or a Web page) from the 
"outside world ." 
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Using multiple L, R, and P operations in a single configuration can simplify 
machines considerably, but keep in mind that these simplified tables can always be 
convened back into the more rigid style that allows only one L, R, or P operation 
per state. This may seem like a trivial distinction now, but it becomes important 
later on. 

II .  As a slightly more difficult example we can construct a machine to 
compute the sequence 00101101 1 10 1 1 1 10 1 1 1 1 1 .  . . .  

Slightly more difficult? Notice what Turing is proposing here. The sequence 
contains increasingly longer runs of ls separated by Os. First one 1 ,  then two 
ls then three ls, and so on. Turing is obviously already bored with computing 
rational numbers. What he wants to tackle now is an irrational number, and one 
that very likely is also transcendental. 

When this new machine is printing a run of ls, it must somehow "remember" 
how many ls it printed in the previous run, and then print one more. By scanning 
back and forth, the machine always has access to the previous run so it can use that 
information to build the next run. It will be interesting to study Turing's strategy 
for accomplishing this feat. 

Again, Turing uses lower-case letters of a German font for his m-configurations, 
in this case the letters o, q, p, f, and b. 

The machine is to 
be capable of five m-configurations, viz. "�". "'!"· "p", "f", "b" and of 
printing "a", "x", "O", " l". The first three symbols on the tape will 
be "aaO"; the other figures follow on alternate squares. 

This is where Turing first mentions printing the figures (Os and ls,  or symbols 
of the first kind) on alternate squares. Assuming that the leftmost symbols appear 
on the left edge of the tape, he's proposing that the tape end up like this: 

l e l e l o l  l o l  1 1 1 l o l  1 1 1 1 1 1 l o l  1 1 1 1 1 1 1 1 1 l o l  1 ... 

Of course, the tape will never "end up" as anything because the machine goes on 
forever. It has to print forever to qualify as "circle-free." 

The a character is known in phonetics and linguistics circles as a schwa. Turing 
uses the schwa for what programmers call a sentinel. It's a special character that, in 
this case, indicates the boundary of the number. The machine can move its head 
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to the very beginning of the tape by moving left whenever the scanned square is 
not the schwa. (Why are there two schwas? Only one is required in this example, 
but Turing later creates a machine that requires two schwas for a sentinel. Perhaps 
he added a second schwa in this example just for consistency. )  

In the first example machine , the blank squares between the 0 and 1 digits 
served no purpose . Here they will play an important role . 

On the inter­
mediate squares we never print anything but "x". These letters serve to 
"keep the place" for us and are erased when we have finished with them. 

Turing is dividing the squares of his tape into two categories. The machine 
prints the Os and ls  on every other square. With the exception of the sen­
tinel, no other symbols appear on these squares. Turing uses the intermediate 
squares as a temporary scratchpad of sorts. We can thus refer to "numeric 
squares" that contain Os and ls and "non-numeric squares" that can contain 
other symbols. (Turing later calls these F-squares and E-squares for figures and 
erasable .) 

We also arrange that in the sequence of figures on alternate squares there 
shall be no blanks. 

As the machine progressively computes the Os and ls, it prints them sequentially 
from left to right. Every new figure that the machine computes is printed on the 
next available blank numeric square. No numeric squares are skipped. These 
restrictions are a collection of rules (some explicit and some implied) that Emil 
Post later called a 'Turing convention-machine," 1 which is a little more restrictive 
than the generalized 'Turing Machine ." A Turing convention-machine never erases 
a numeric square , or writes over an existing figure on a numeric square with a 
different figure. These implicit rules become important later on. 

Here's Turing's table for the machine to compute the irrational number he's 
defined: 

1 In an appendix to the paper Emil Post. "Recursive Unsolvability of a Problem of Thue," The journal of 

Symbolic l..ogic, Vol 12 ,  No l (Mar 1 947). 1- 1 1 The entire paper is repnnted in Martin Davis, ed , The 

Undecidable (Raven Press, 1965). 293-303 The appendix is reprinted in B jack Copeland, ed , The 

Essential Tunng (Oxford University Press. 2004), 97- 101  
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Configuration Behaviour 
m-config. symbol operations final 

m-config. 

b Pa, R, Pa, R, PO, R, R, PO, L, L 0 { 1 R, Px, L, L, L 0 
0 

0 q { Any (0 or 1 )  R, R q 

None P1, L p 

I �one 

E, R q 

R 

L, L p { Any R, R 

None PO, L, L 0 

As usual, the machine begins in m-configuration b. lt prints two schwas and two 
zeros. The tape looks like this: 

l e l e [[I l o l  I I I I I I I I I I I I I I I I I I I ... 

The m-configuration b performs duties that a programmer might call initializa­
tion. The machine never goes into m-configuration b again. 

Before we get all greasy exploring the innards of this machine, let's get a general 
feel for what the other m-configurations do. In several configurations (q , p, and f, 
specifically) , the operations column shows movement of two squares at a time: R, 
R or L, L. In these cases, the machine is effectively moving along numeric squares 
(in the cases of q and f) or non-numeric squares (p) . 

All the m-configurations except b also circle back on themselves depending 
on the scanned symbol. Programmers often call such an operation a loop. Loops 
perform repetitive tasks, even those as simple as searching for a particular symbol . 

The m-configuration o moves from right to left through a run of ls  on the 
numeric squares. For every 1 it finds, it prints an x to the right of the 1 and 
then goes left to check the next numeric square. When it's finished, it switches to 
m-configuration q.  

The m-configuration q moves from left to right along numeric squares until it 
encounters a blank. That's the end of the current sequence. lt then prints a 1 ,  
moves left (to a non-numeric square) and switches to p. 
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Similarly, the m-configuration f also moves rightward along numeric squares 
until it encounters a blank. It then prints a 0, moves 2 squares left and switches 
to o. 

The m-configuration p is a dispatcher of sorts. It spends most of its time moving 
leftward on non-numeric squares searching for x symbols. When it finds an x, it 
erases it, moves right, and switches to q .  If it reaches the sentinel, it moves right 
and switches to f. 

Turing uses the x symbols in a very clever manner. When constructing a new 
run of ls, the machine begins by printing an x after each 1 in the previous run. The 
machine prints a 1 at the end of the existing sequence, and then prints another 1 
for each x, thus increasing the run by one. 

Although it's possible to illustrate what the tape looks like after each and every 
operation, for this example it might be best to view the tape after each configuration 
has completed. 

From the m-configuration 6, the machine goes to o; however, for a scanned sym­
bol of 0, o does nothing and zips right into m-configuration q. For m-configuration 
q ,  if the scanned symbol is 0 or 1 ,  the head moves two squares right and remains in 
the same m-configuration. When a blank square is encountered, however, it prints 
1 and moves left. Overall, m-configuration q moves right along numeric squares 
until it encounters a blank. It then prints a 1 and moves left. 

l a l a l o l  1 0 0 1 1 I I I I I I I I I I I I I I I I 1 ... 

The next m-configuration is p, which generally moves along non-numeric 
squares. It moves two squares left until it encounters a non-numeric square with 
either an x or a schwa. In this case, it'll be a schwa. It moves right: 

l a l a [[] l o l  1 1 1 I I I I I I I I I I I I I I I I 1 ... 

The m-configuration f moves the head along numeric squares. It keeps moving 
two squares right until a blank is scanned. Then it prints a 0 and moves two 
squares left: 

l a l a l o l  l o l  [D l o l  I I I I I I I 

That's how a 0 is printed between each run of ls.  
We're now in m-configuration o. This m-configuration always begins at the 

rightmost 1 in a run of ls .  Its job is to print an x after every 1 .  It ends up at the 0 
to the left of the run of ls: 

l a l a l o l [[I l 1 l x l o l  I I I I I I I I I I I I I I 1 ... 

Back to m-configuration q .  This one moves right on numeric squares until a 
blank is encountered. Then it prints a 1 and moves left. 
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l e l e l o l  l o l  l 1 l x l o 0 1 l I I I I I I I I I I I I l 0• 

The m-configuration p moves left on non-numeric squares until it encounters 
an x or a schwa. When it hits an x, it will erase it and move right: 

l e l e l o l  l o l  1 1 1  [[] 1 1 1 I I I I I I I I I I I I 1 ... 

Back to m-configuration q again. Move right on numeric squares until a blank, 
then print 1 and move left: 

l e l e l o l  l o l l 1 l  l o l l 1 0 1 l I I I I I I I I I I I ... 

Now we're in m-configuration p.  Move left on non-numeric squares until the 
schwa is scanned. Then move right: 

I e I e [[)  I 0 I I 1 I I 0 I I 1 I I 1 I I I I I I I I I I I I ... 

The m-configuration f then moves right on numeric squares until it  finds a 
blank. lt then prints a 0 and moves two squares left: 

l e l e l o l  l o l  l 1 l l o l  l 1 I  13] l o l  1 1 1 1 1 1 1 1 1  ... 

This seems to be working. We now have a run of one 1 and a run of two ls. Let's 
see if it continues to do what we want it to do. 

The m-configuration o has the job of printing an x after every 1 in the last run 
of ls. 

l e l e l o l  l o l  1 11 [[] l 1  l x l 1  l x l o l  I I I I I I I I I · ·· 

The m-configuration q moves right along numeric squares until it scans a blank. 
It then prints 1 and moves left: 

l e l e l o l  l o l  1 1 1  l o l  l 1 l x l 1 l x l o 0 1 I I I I I I I I ··· 

Now notice there are two x's and two remaining ls for this run. For every x 
that will be erased, another 1 will be printed. The m-configuration p moves left on 
non-numeric squares until it finds an x. lt erases it and moves right: 

The m-configuration q moves right on numeric squares until it finds a blank. 
Then it prints a 1 and moves left: 

l e l e l o l  l o l  1 1 1 l o l  l 1 l x l 1 I l o l  1 1 0 1 1 I I I I I 0• 

Back to m-configuration p, which moves left until it hits the x. It erases it and 
moves right. 
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The m-configuration q prints another 1 at the end: 

l a l a l o l  l o l  1 1 1 l o l  1 1 1 1 1 1 l o l  1 1 1 1 1 0 1 1 I I I 
Now the m-configuration p moves the head left until it encounters the schwa: 

l a l a [[) l o l  1 1 1 l o l  1 1 1 1 1 1 l o l  1 1 1  1 1 1  1 1 1 I I 1 ... 

The m-configuration f moves right on numeric squares until it gets to the end 
and prints a 0 :  

l a l a l o l  l o l  1 1 1 l o l  1 1 1 1 1 1 l o l  1 1 1 1 1 1 1 1 1  [[) 1 ... 
Now the machine has successfully printed a run of three ls and another 0. 

How did Turing develop the technique used by this machine? I suspect he 
tried computing the sequence by hand while resisting the temptation to count. He 
might have found himself keeping track of the runs of ls using little check marks 
above the digits. These check marks became the x characters that the machine 
prints in the non-numeric squares. 

The diagrams of the tape do not appear in Turing's paper. He is not interested 
in providing such a blatantly "realistic" VIsual representation of the machine or 
its operations. Instead, he has a different idea for notating the workings of the 
machine . 

In Section 2 of his paper (page 75 of this book) Turing said , "At any stage of the 
motion of the machine , the number of the scanned square , the complete sequence 
of all symbols on the tape, and the m-configuration will be said to describe the 
complete configuration at that stage ."  Although Turing's reference to "the number of 
the scanned square" seems a little peculiar because the squares are not explicitly 
numbered, a tape that is infinite in only one direction has an implicit numbering. 

Turing is about to show a method for notating the workings of the machine 
using these complete configurations - essentially snapshots of the tape together 
with the current m-configuration and scanned square. 

To illustrate the working of this machine a table is given below of the 
first few complete configurations. These complete configurations are 
described by writing down the sequence of symbols which are on the tape, 

[235) 

with the m-configuration written below the scanned symbol. The 
successive complete configurations are separated by colons. 
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What follows in the paper are four entnes of  a "table" with two lines each that at 
first glance looks rather like complete gibberish. Here's the first of the four entries: 

: a a O  O : a a O  O : v v O  
L' 

0 :  a a O  0 : a a O  0 1 :  
p 

Heed the colons! Between each pair of colons are successive snapshots of the 
tape. Some of the spacing between the Os and {later) between the Os and ls is 
a little wider than the regular space . This wider space represents a blank square. 
Taken together with the m-configuration shown under the tape, these constitute 

_
the first six complete configurations of this machine , showing all the symbols 
printed on the tape so far. 

The first b indicates the starting configuration. The tape is initially blank. That 
configuration prints the sequence between the first two colons, shown earlier as: 

l e l a (!I l o l  I I I I I I I I I I I I I I I I I I I ... 

Instead of using a heavy box to show the position of the head at the next scanned 
symbol, Turing indicates the next m-configuration under the next scanned symbol: 

: a a O  0 :  
0 

Because m-configuration o doesn't do anything when the scanned symbol is 0, 
the next snapshot of the tape is the same , but now the m-configuration is q :  

: a a O  0 :  
q 

When m-configuration q scans a 0, the head moves two squares nght, and the 
next configuration is also q :  

: a a O  0 :  
q 

The scanned square is 0 again. The head moves two squares right, and the 
m-configuration is still q :  

: a a O  0 
q 

Notice how the tape seems to become wider as the head moves beyond the 
last printed number. Now, the scanned square is blank, so the machine prints 1 ,  
moves one square to the left, and switches to configuration p :  

: a a O  0 1 :  
p 
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While less visually satisfying than the physical tape, Turing's notation provides 
more information, in particular by indicating the next m-configuration at the 
current position of the head. These successive complete configurations show 
a complete history of the machine's operations. It's easy to look at any one of these 
complete configurations, match the m-configuration and scanned symbol to the 
machine's states, and come up with the next complete configuration. 

The next sequence that Turing provides shows m-configuration p searching 
backward until it finds the schwa, then switching to configuration f, which 
searches forward looking for a blank: 

.J .J O  0 l : .J a O  0 1 : .J .J O  0 1 : 0 .J O  0 1 :  

Next entry: Still in m-configuration f, the machine finds a blank numeric square 
(notice how the space between the colons is widened again) , prints a 0, moves two 
squares left, and switches to configuration o .  

.J .J O  0 1 : .J a O  0 1 : a a O  0 1 0 :  
t L' 

The m-configuration o responds to a scanned 1 by moving right, printing an x, 
then moving three squares left: 

.J <> O  0 l x O : . . . . 
L' 

That's all that Tunng shows, but if this representation of the tape's history isn't 
concise enough for you, Turing proposes an alternative: 

This table could also be written in the form 

. . .  , (C)  

in which a space has been made on the left of the scanned symbol and the 
m-configuration written in this space. 

Turing has flagged this format with the letter C (for "configuration") . He will 
ref er to it in Section 6. The complete configuration shown previously as: 

: a a O  0 :  
0 
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now becomes: 

: a a o O  0 :  

Now, we see at least one reason why Tunng used German letters for the 
m-configurations: In this format the m-configurations might not be so easily 
distinguished from the symbols printed by the machine. The sequence of characters 
between each pair of colons is no longer exactly like the tape because an extra 
space is required for the next m-configuration. Even Turing admits it's a bit 
awkward. 

This form is less easy to follow, but 
we shall make use of it later for theoretical purposes. 

Actually, in a still more modified form, it will become essential. Turing is 
already gearing up for a major presentation: He will unveil a Universal Com­
puting Machine - today commonly termed the Universal Turing Machine or 
UTM - that is a functional (if not exactly commercial) equivalent of a modem 
computer. 

Try to notice what's good about this final format: The entire history of the 
operation of a machine has been arranged into a single stream of characters, a 
format much beloved by programmers. When reading or writing files or engaging 
in digital communications, the ideal approach is reading or writing a stream of 
characters, one after another from beginning to end without skipping forward or 
backward. 

Also, notice that Turing has slipped the next m-configuration in front of the 
next scanned character. These two items in combination were defined by Turing 
as a con.figuration, and this pair of items occurs in the complete configuration in 
the same order as they occur in the first two columns of a machine table . You 
can take that m-configuration and symbol pair and scan through the m-con.fig and 
symbol columns of a machine table looking for a match. (Obviously, this works 
better when the machine contains actual symbols in the symbol column rather than 
"Any" or "None" or blanks.) Turing will actually automate this searching process 
when constructing his Universal Machine . 

Turing next discusses his choice to print the numeric sequence on alternate 
squares: 

The convention of writing the figures only on alternate squares is very 
useful : I shall always make use of it. I shall call the one sequence of alter-
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nate squares F-squares and the other sequence E-squares. The symbols on 
E-squares will be liable to erasure. The symbols on F-squares form a 
continuous sequence. There are no blanks until the end is reached. 

Earlier l referred to these as numeric squares and non-numeric squares. You 
can remember which is which by the words figures (meaning Os and ls) and 
erasable. The comment about "no blanks until the end is reached" refers only to 
the F-squares. The digits of a computable sequence are always printed sequentially 
from left to right, never skipping an F-square and never rewriting a figure on an 
F-square . These rules are required for Turing's Universal Machine. 

The E-squares are a type of scratchpad, perhaps equivalent somehow to human 
memory. 

There 
is no need to have more than one E-square between each pair of F-squares : 
an apparent need of more E-squares can be satisfied by having a sufficiently 
rich variety of symbols capable of being printed on E-squares. 

Turing's second machine used a technique of identifying characters by printing 
x symbols in the E-squares. This is a general technique he'll exploit often so he'll 
give it a name. 

If a 
symbol f3 is on an F-square S and a symbol a is on the E-square next on the 
right of S, then S and f3 will be said to be marked with a. The 
process of printing this a will be called marking f3 (or S) with a .  

This 0 (on an F-square) is said to  be marked with x: 

0• I I l o l x l  I I ... 

These markers tum out to be very handy, and are one of Turing's best inventions. 
However, markers are not strictly needed. It is possible to define machines that 

use only two symbols, or which differentiate solely between a blank square and 
a marked square. Such an approach was explored by mathematician Emil Post 
in an interesting paper2 that independently described a configuration similar to 

2 Emil L Post, "Finite Combinatory Processes Formulation I ... The journal of Symbolic Logic, Vol I, No 3 
(Sep. 1936), 103- 105 Repnnted in Manin DavtS, ed , The Undecidable, 289-29 1 Although Post's paper 
was published pnor to Tunng's, Post's paper was received by Ihejoumal of Symbolic Logic on October 7, 
1936, the Proceedings of the London Mathematical Society received Tunng's paper on May 28, 1936 
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Turing's. Post has a "worker" with a collection of "boxes" arranged in a sequence . 
The worker is capable of: 

(a) Marking the box he is in (assumed empty) , 
(b) Erasing the mark in the box he is in (assumed marked) , 
(c) Moving to the box on his right, 
(d) Moving to the box on his left , 
(e) Determining whether the box he is in, is or is not marked. 

Post doesn't actually show his worker performing real applications. Working 
with squares or boxes that can be only marked or unmarked is obviously much 
more laborious than Turing's shortcut. 





Addition and 
Multipl ication 

A
s early as May 1935 Alan Turing had considered attending Princeton Uni­
versity, and had applied for a visiting Fellowship. 1 A year later, when he 

discovered that Princeton mathematics professor Alonzo Church had also pub­
lished a paper on the Entscheidungsproblem, Turing "decided quite definitely"2 

that he wanted to go there. 
Max Newman helped. In the same letter in which Newman informed Church of 

Turing's work (page 62), he also pleaded for help in getting Turing a scholarship: 

I should mention that Turing's work is entirely independent: he 
has been working without any supervision or criticism from any­
one. This makes it all the more important that he should come 
into contact as soon as possible with the leading workers on this 
line, so that he should not develop into a confirmed solitary.3 

The tendency to work alone without outside influences was actually one of 
Turing's big problems. Earlier in his life, Turing had reinvented the binomial 
theory and developed his own notation for calculus. In attacking the Entschei­
dungsproblem, perhaps it was best that he wasn't familiar with the earlier work of 
Church and his colleagues, or he might not have developed such an interesting 
solution. In general, however, knowing what's going on in the rest of the world 
is essential, and for the field of mathematical logic, Princeton was the place to be. 
Turing failed to get the Procter Fellowship he applied for, but he was able to get 
by on his King's College fellowship. 

The intellectual aura around the town of Princeton, New jersey, had recently 
grown even brighter with the establishment of the Institute for Advanced Study. 
The IAS was founded with a $5 ,000,000 endowment from Louis Bamberger, who 

1 Andrew Hodges, Alan Tunng· The Enigma (Simon & Schuster, 1983), 95 
2Hodges, Alan Tunng, 1 13 
3 Ibid 
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had previously created the Bamberger's department store chain and then sold it to 
Macy's right before the 1929 stock market crash. 

From the very beginning, the Institute for Advanced Study was intended as 
a place to foster scientific and historical research . In the early years, the IAS 
School of Mathematics shared a building with the Mathematics Department at 
Princeton University, so there was considerable cross-fertilization between the 
two institutions. The IAS quickly became a mecca for talented scientists and 
mathematicians, some of them fleeing the increasingly dangerous atmosphere of 
Europe. The most famous of these was Albert Einstein, who came to the IAS in 
1933 and stayed there for the rest of his life. 

When Turing arrived in Princeton in September 1936, he was very much 
interested in meeting Kurt Godel. Godel had also been at the IAS the year before, 
and he would later return, but he and Turing never met. 

John von Neumann, whom Turing had met in Cambridge , was at the IAS, and 
so was G.H. Hardy from Cambridge. Both Richard Courant and Hermann Weyl 
were at the IAS as well , having fled Gottingen a few years earlier. 

Tunng stayed two years at Princeton University, and got the Procter Fellowship 
(a sum of $2,000) for his second year. Church became Turing's thesis advisor, and 
under Church's supervision Turing wrote a thesis4 and received his Ph.D. on June 
2 1 ,  1938. He was back in England a month later, having turned down an offer 
from John von Neumann to be his assistant at the IAS with a salary of $ 1 ,500 a 
year. 

In the spring of 1939, Alan Turing returned to Cambridge to teach a Foundations 
of Mathematics course. Four years earlier, Turing had taken Foundations of 
Mathematics with Max Newman and had learned about the Entscheidungsproblem. 
Now Turing was able to ask a question on the final exam about the unprovability 
of the Entscheidungsproblem based on his own work on computable numbers. 5 

In his paper, Turing is asking for a little faith from his readers that these 
machines of his can actually calculate nontrivial numeric sequences. So far, we 
haven't really seen anything we would call calculation. The machine in Turing's 
first example ostensibly pnnted the binary equivalent of 1/3,  but it did it by 
just stupidly alternating Os and ls. Surely it's not dividing 3 into 1 .  Nor does 
the machine implement a general process for computing any rational number by 
dividing the numerator by the denominator. 

Even programmers who work at the low levels of processor machine code are 
accustomed to computer hardware that performs the basic mathematical operations 

4 Alan Tunng, "Systems of Logic Based on Ordinals," Proceedings of the London Mathematical Society, 2nd 
Senes, Volume 45 ( 1939), 161-228 Republished in Alan Tunng, Collected Works of A M Tunng 

Mathematical Logic (Elsevier, 2001) ,  16 1-228, and B jack Copeland, ed , The Essential Tunng (Oxford 
University Press, 2004) 1 46-204 
5Hodges, Alan Tunng, 1 52 
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of addition and subtraction. For that reason we may be skeptical - and even a 
bit frightened - of a machine in which even addition has to be accomplished 
through the definition of configurations and operations. 

Let's confront our fears head on by building machines that transcend the trivial . 
Let's convince ourselves that Turing Machines can indeed add and multiply (and 
hence, also subtract, divide, calculate powers, and perhaps even write poetry) . 

The first example is a small Turing Machine that calculates all the positive 
integers in sequence . This machine does not comply with Turing's conventions 
because it writes each new number over the previous one. lt doesn't skip any 
squares when printing the results, and it replaces each result with the next highest 
number. Also, given that these are integers, I have designed the machine to print 
the digits as we would normally write integers - with the more significant digits 
extending to the left of the tape rather than the right. Despite noncompliance with 
Turing's conventions, this machine does show how a number can be incremented 
by adding 1 to it, which is at least one basic feat we require of a modem computer. 

Rather than using German letters in my examples, I've chosen descriptive words 
in boldface, and (in later examples) sometimes more than one word joined by 
dashes. As Turing did, I use the word "none" to refer to a blank square. As Turing 
did not, I use the word "else" to indicate that a configuration is to apply to all other 
characters not explicitly listed . This particular machine begins with configuration 
begin and has just three m-configurations: 

m-config. symbol operations final m-config. 

begin none PO increment 

Ll. P l  rewind 

increment PO,L increment 
Pl  rewind 

r· L increment 
rewind 

else R rewind 

The m-configuration begin simply prints a single 0 and then switches to 
increment. The m-configuration increment reads a digit. If it's a 0, then increment 
changes that to a 1 .  It has then finished incrementing the entire integer. If it reads 
a 1 ,  then increment changes it to a 0 and moves left for the carry. It must 
now increment the next highest digit. The m-configuration rewind moves the 
head right to the least significant digit of the number in preparation for the next 
increment . 

Once you start writing machines that do arithmetic, it becomes obvious why 
binary numbers are so convenient. Here's the equivalent machine that generates 
all the positive integers in decimal rather than in binary: 
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m-config. 

begin 

increment 

rewind 

symbol 

none 

0 

1 

2 

3 

4 
5 

6 

7 

8 

9 

none 

re 

else 

operations final m-config. 

PO increment 

Pl rewind 

P2 rewind 

P3 rewind 
P4 rewind 

PS rewind 
P6 rewind 

P7 rewind 

P8 rewind 

P9 rewind 

PO, L increment 

Pl rewind 

L increment 

R rewind 

You see the problem. The machine needs to handle every decimal digit explic­
itly. The binary number system is simpler because it has fewer options. The binary 
addition and multiplication tables are tiny: 

+ 
0 
1 

0 1 
0 1 
1 10 

and 
x 
0 
1 

0 1 
0 0 
0 1 

I'll make use of these addition and multiplication rules in the second example in 
this chapter. This is a machine that adheres to Turing's conventions and calculates 
the square root of 2 in binary. Actually, if the binary point is assumed to precede 
all the digits, the machine calculates 

./i 
2 

which in decimal is 0.707 10678 . . . .  In describing the machine, I'll assume it's 
calculating ./i for the sake of clarity and familiarity. 

The algorithm implemented by the machine calculates one binary digit at a 
time. Suppose the machine has been running awhile and has already determined 
the first four digits. The first four digits of ./i in binary are 1 .0 1 1 ,  equivalent to 
1 � in decimal or 1 . 375.  What is the next digit? The machine's strategy is always 
to assume that the next digit is 1 .  To test whether this is correct, multiply 1 .01 1 1  
by itself: 



1 .01 1 1  
x 1 .01 1 1  

101 1 1  
10 1 1 1  

101 1 1  
00000 

101 1 1  
10.000 10001 
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The product exceeds 2, so that assumption was incorrect. The fifth digit is 
instead 0, so the first five digits are 1 .0 1 10 .  Let's determine the sixth digit 
similarly. Assume that the sixth digit is 1 and multiply 1 .01 101  by itself: 

1 .0 1 101 
x 1 .0 1 101  

10 1 101  
000000 

101 101  
101 101  

000000 
101 101  

1 . 1 1 1 1 10 100 1  

That result is less than 2 ,  so the assumption was good. We now have six digits: 
1 . 0 1 101 ,  which in decimal is 1 ]2 or 1 .40625 .  

Obviously, the square-root-of-2 machine needs to multiply. In  general, a 
multiplication of two multidigit numbers requires that each digit of one number 
be multiplied by each digit of the other number. If one number has n digits, and 
the other number m digits, the total number of digit-times-digit multiplications is 
(n x m). 

When doing multiplication by hand, we generally multiply a single digit of 
one number by the whole other number, yielding n or m panial products, which 
are then added together. The machine I'll show does the multiplication a little 
differently - by maintaining a running total during the multiplication. The result 
of each bit-by-bit multiplication is added to this running total. What makes this 
particular addition tricky is that each bit-by-bit product is generally not added to 
the least significant bit of the running total, but somewhere in the middle of it. 

For example, consider the multiplication of 1 .01 101  by itself. Each of the 
six bits must be multiplied by itself and by the other five bits, so 36 bit-by-bit 
multiplications are required. The multiplications themselves are trivial: When 
multiplying 1 times 1 ,  the result is l ;  otherwise, the result is 0. Where this result 
is deposited in the running total depends on the placement of the bits within the 
number. If the third bit from the right is multiplied by the founh bit from the 
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right, the result is added to the sixth place from the right in the running total. 
(This makes more sense when you number the bits beginning with zero: The third 
bit from the right is bit 2;  the fourth bit from the right is bit 3 ;  the sum is 5,  and 
that's the bit position where the product goes.) 

In determining the binary square root of 2, we're always multiplying an n-bit 
number by itself. If the result has (2n - 1) bits, that means the product is less than 
2 and the assumption that the new last digit is indeed 1 was correct. If the result 
has 2n bits , the product exceeds 2 , so the new last digit must be 0. The machine 
will make use of this fact to determine whether each new digit is a 0 or 1 .  

The machine I'll be showing adheres t o  Turing's conventions, which means that 
the only things it prints in the F-squares are the successive digits of the square 
root of 2 as they are being calculated. Everything else - including maintaining 
the running total of the multiplication - is done on E-squares. 

The machine begins in m-configuration begin. The machine uses an at sign (@) 
rather than a schwa for the sentinel. (Let's JUSt say it's an easier symbol on today's 
computers.) The machine begins by printing the sentinel and the digit 1 :  

m-con.fig. 

begin 

symbol operations final m-con.fig. 

none P@, R, Pl  new 

Thus, the only initial assumption the machine makes is that the square root of 2 
is at least 1 but less than 2 .  

The machine always comes back to the m-configuration new when it's ready to 
calculate a new digit. The configuration moves the head to the leftmost digit: 

new 
R mark-digits 

L new 

The rest of the machine will be easier to understand if we look at what it does 
after it's already calculated a few digits. Here's the tape with the first three digits 
already computed, which is the binary equivalent of 1 .25 .  The machine will print 
the fourth digit (which I'll refer to as the "unknown" digit) in the square marked 
with the question mark: 

1 @ 1 1 I l o l  1 1  I 1 1 1  I I I I I I I I I I I I I I I I ... 

That question mark is for our benefit only; it does not actually appear on the tape 
and is not used by the machine! 

In preparation for the multiplication, the machine marks the digits of the 
number. (Recall that Turing defined "marking" as printing a symbol to the right 
of a figure .)  The machine uses multiple x markers in a manner similar to Turing's 
Example II (page 85) machine . The m-configuration mark-digits marks all the 
known digits with x, the unknown digit with a z (which I'll explain shortly) and 
prints one r in the least significant place of the running total: 



mark-digits 

The tape is now: 
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R, Px, R 
R, Px, R 

R, Pz, R, R, Pr 

mark-digits 
mark-digits 
find-x 

l @ l 1 l x l o l x l 1 l x l ? l z l  l r l  I I I I I I I I I I I I I 

That r is the least significant digit of the running total and should be interpreted 
as a 0. The next section prints two more r's for every x, erasing the x markers in 
the process. 

find-x t� E first-r 
N find-digits 

L, L find-x 

first-r {.1� R, R last-r 

R, R first-r 

last-r \n:ne 

R, R last-r 

Pr, R, R, Pr find-x 

The tape now has a 7-digit running total symbolizing an initial value of 0000000: 

1 @ 1 1 1 l o l  1 1 1 l ? l zl  l r l  l r l l r l  l r l  l r l  l r l  l r l  I ... 

The bit order of the running total is reversed from that of the calculated number. 
The least significant bit of the running total is on the left. The seven initialized 
digits of the running total are sufficient if the assumption is correct that the 
unknown digit is a 1 .  If an eighth digit is required, then the unknown digit is 0 .  

The number the machine must multiply by itself consists of the number 
computed already (101  in this example) and a new digit assumed to be 1 ,  so the 
number is actually 101 1 .  To keep track of what digits are being multiplied by each 
other, the machine marks the digits with x ,y ,  and z characters. At any time during 
the multiplication, only one digit is marked with x and one digit with y, and the 
digit marked x is multiplied by the digit marked y. If the x and y markers happen 
to coincide, the character z is used, so any digit marked z is multiplied by itself. 

That's why the unknown digit (assumed to be 1) is initially marked with a z. 
The first multiplication involves that unknown digit times itself; however, it will 
help in the analysis of the following configurations to keep in mind that during 
the multiplication, any digit could be marked with x and any digit with y, or just 
one digit with z. 
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We're now ready for the first bit-by-bit multiplication. The machine multiplies 
either the two digits marked x and y by each other, or the single digit marked z by 
itself. The m-configuration find-digits first goes back to the sentinel and then goes 
to find-1st-digit to find the left-most digit marked x, y, or z. 

{ ,: R, R find-1st-digit 

L, L find-digits 
find-Oigits 

{L 
L found-I st-digit 
L found-lst-Oigit 
L found-2nd-Oigit 

R, R find-lst-Oigit 

find-1st-digit 

If find-1st-digit detects an x, y, or z, it positions the head over the digit. 
Depending on the letter, the machine goes to found-lst-Oigit or found-2nd-digit. 

If the first marked digit is 0, the second digit isn't required because the product 
will be 0 anyway. So we can add 0 to the running total by going to add-zero: 

found-1st-digit 
R 

R, R, R  

add-zero 

find-2nd-Oigit 

If the first digit is a 1 ,  the second digit must be found. The machine searches 
for the second digit marked x or y: 

find-2nd-Oigit 
L 
L 

R, R 

found-2nd-Oigit 
found-2nd-Oigit 
find-2nd-digit 

The second digit determines what must be added to the running total: 

found-2nd-Oigit 
R 
R 
R 

add-zero 
add-one 
add-one 

Notice that a blank F-square is the unknown digit, which is assumed to be 1 .  
In our example, the digit marked z is the unknown digit, so add-one will be used 
to add a 1 to the running total. 

Adding a 0 onto the running total normally wouldn't affect it; however, this 
machine must perform some maintenance of the running total regardless of what's 
added to it. 

When I described how the running total is initialized on the E-squares to 
the right, I indicated that the letter r symbolizes 0. The letters s and t also 
symbolize 0, and the letters u, v, and w all represent 1 .  This multitude of letters is 
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required to keep track of the bit position where the bit-times-bit product is added 
to the running total. 

The m-configuration add-zero changes the first r it finds to an s, or the first u 
to a v: 

add-zero 
Ps 
Pv 

R, R 

add-finished 
add-finished 
add-zero 

The change of the r (meaning 0) to an s (meaning 0) and the u (meaning 1) to a 
v (also meaning 1) ensures that the next time a digit is added to the running total, 
it gets added one place over. 

Adding a 1 to the running total is more involved.  The first r (meaning O) is 
changed to a v  (meaning 1) ,  or the first u (meaning 1) is changed to an s (meaning 
0). For the latter case , a carry is also required: 

add-one 
Pv 

Ps, R, R 
R, R 

add-finished 
carry 
add-one 

If the carry results in a digit being written into a blank square , then the running 
total has exceeded 2 ,  so the configuration becomes new-digit-is-zero: 

carry 
Pu 
Pu 

Pr, R, R 

add-finished 
new-digit-is-zero 
carry 

After the first bit-by-bit multiplication and addition to the running total , the 
tape is: 

Notice the first r has been changed to a v  (meaning 1 ) .  
Now the x, y, and z markers must be  shifted around to indicate the next pair 

of bits to be multiplied. In general, the x marker is moved left one character. 
(A z marker, you'll recall, simply indicates that the x and y markers coincide , so a 
z marker becomes a y marker and an x marker is printed one digit to the left .) But 
when the x marker gets to the end (past the most significant bit) , the y marker is 
moved left one character and the x marker is moved back to the rightmost digit. 
When the y marker gets to the end, the multiplication is complete . 

First the head is moved to the sentinel :  

add-finished 1 .: R, R 

L, L 

erase-old-x 

add-finished 
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If erase-old-x finds an x, it erases it; if it finds a z, it is replaced with a y. In 
either case, the head moves to the next E-square to the left: 

erase-old-x 
E, L, L  
Py, L, L 

R, R 

The next x marker can now be printed: 

print-new-x 
R, R 
Pz 
Px 

print-new-x 
print-new-x 
erase-old-x 

erase-old-y 
find-digits 
find-digits 

Our example tape is now ready to go back to find-digits for the next bit-by-bit 
multiplication: 

1 @ 1 1 1  l o l  l 1 l x l ? I Y I l v l  l r l  l r l  l r l  l r l  l r l  l r l  I . . . 
That multiplication will result in another 1 being added to the running total, but 

this time, it will be added one place over because it's always added to the leftmost 
r or u: 

The machine then shifts the x marker one place over to the left: 

! @ 1 1 1 l o l x l 1 I l ? I Y I  l v l  l v l  l r l  l r l  l r l l r l  l r l  

This multiplication results in a 0 being added to the running total . The value of 
the total doesn't change , but the leftmost r is changed to an s: 

! @ 1 1 1  l o l x [ 1 I l ? I Y I l v l  l v l  I s l  l r l  l r l  l r l  l r l  I 

Again, the x marker is shifted left: 

! @ l 1 ! x l o l  1 1 1 i ? I Y I l v l  l v l  I s l  l r l  l r l  l r l  l r l  I •  .. 

Another bit-by-bit multiplication results in the leftmost r being changed to v: 

l @ l 1 l x l o l  1 1 1  l ? I Y I  l v l  l v l  I s l  l v l  l r l l r l l r l  I •  .. 

Now the x is about to be shifted into the sentinel. That case is handled by 
erase--old-y and print-new-y: 

erase-old-y {.: E, L, L  print-new-y 

R, R erase-old-y 

print-new-y {.:, R new-digit-is-one 

Py, R reset-new-x 
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Notice that if the y marker is about to be shifted into the sentinel, then the 
entire multiplication has concluded without the running total spilling over beyond 
the area allotted for it. We now know that the unknown digit is a 1 .  

Otherwise, the x marker must be reset to the least significant bit of the number, 
which is the unknown digit: 

reset-new-x 
! none 

else 

R, Px 

R, R 

flag-result-digits 

reset-new-x 

The example tape now has the x and y markers set like this: 

More still needs to be done. The next bit-by-bit product should be added to 
the second digit of the running total . To accomplish this feat, the first s or v in the 
running total is changed to a t  or w (respectively) : 

flag-result-digits 
Pt, R, R 

Pw, R, R 
R, R 

unflag-result-digits 
unflag-result-digits 
flag-result-digits 

The remaining s and v markers are changed to r and u (respectively) : 

unflag-result-digits 
Pr, R, R 
Pu , R, R 

N 

unflag-result-digits 
unflag-result-digits 
find-digits 

This process ensures that the next bit-by-bit multiplication is added to the running 
total in the correct spot . 

The tape is truly ready for the next bit-by-bit multiplication, the result of which 
will be added to the running total at the first r or u .  

1 @ 1 1 1 l o l  l 1 l y l ? l x l  l w l  l u l  l r l  l u l  l r l l r l  l r l  j .. . 

The multiplication completes in one of two ways, both of which you've already 
seen. If the machine attempts a carry from the running total into a blank square, 
then the result is known to exceed 2, the unknown digit is known to be 0, and the 
configuration becomes new-digit-is-zero. Otherwise, if the next destination for 
the y marker is the sentinel, then the entire multiplication has completed without 
the running total exceeding 2, and new-digit-is-one takes over. 

These two sections are essentially the same . First, the machine goes back to the 
sentinel: 

new-digit-is-zero 
R 

L 

print-zero-digit 

new-digit-is-zero 
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Now the machine can locate the blank square, and print the 0 there. In moving 
through all the digits, it can erase any markers still left: 

print-zero-digit 
R, E, R 
R, E, R 

PO, R ,R, R 

print-zero-digit 
print-zero-digit 
cleanup 

Similarly, the m-configuration new-digit-is-one prints a 1 as the new digit and 
also goes into cleanup mode: 

new-digit-is-one l @ 
else 

print-one-digit 

R 

L 

R, E, R 
R, E, R 

P l , R ,R, R 

print-one-digit 

new-digit-is-one 

print-one-digit 
print-one-digit 
cleanup 

After the new digit has been printed, the m-configuration cleanup removes the 
running total and then goes to new for the next digit. 

cleanup 
{none 

else 

N 

E , R, R  

new 

cleanup 

The example tape has a new fourth digit and is ready for the fifth: 

1 @ 1 1 I l o l  1 1  I 1 1  I 1 1 1  I I I I I I I I I I I I 

Obviously, the Turing Machine is not a programmer-friendly medium. Most 
programming languages have functions called sqrt (or something similar) that 
calculate square roots not only of 2 but of any other number. 

Yet , these square-root functions are often limited in precision. Most computer 
languages these days store floating-point numbers in a format that complies 
with standards set by the Institute of Electrical and Electronics Engineers (IEEE) . 
A double-precision floating-point number stores numbers accurate to 52 bits 
or approximately 1 5  to 16 decimal digits. Until fairly recently (when special 
collections of math functions with greater precision became available) , if you 
wanted something more precise than that, you'd be pretty much on your own. 
In duplicating the power of the Turing Machine to perform calculations to an 
arbitrary number of digits, you might find yourself doing it much like the process 
I've just described. 
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On a real computer, you'd at least have the convenience of addition and 
multiplication. If you were faced with the job of implementing several different 
types of functions on a Turing Machine, you might consider assembling a 
collection of common machine tables that you could then use as building blocks 
in implementing more complex tables. 

This is precisely what Turing does next, although his real goal is a Universal 
Machine that can simulate any other machine. 
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E
very programmer knows that cenain types of tasks are frequently encountered 
in almost all programmingjobs. Sometimes the tasks are identical; more often 

they tum up with some variations. Even within the square-root-of-2 machine, 
several m-configurations were rather similar. For example, look at these three: 

new { .:, 
new-digit-is-zero { @ 

else 

new-digit-is-one { @ 
else 

R 

L 

R 

L 

R 

L 

mark-digits 

new 

print-zero-digit 

new-digit-is-zero 

print-one-digit 

new-digit-is-one 

These m-configurations all move the head left in a loop until the sentinel is 
encountered. Then the head is moved one place right (over the leftmost digit) , and 
the machine switches to another m-configuration. 

It might be advantageous to determine beforehand that certain similar m-config­
urations will be required in a machine, and to predefine special m-configurations 
just for those chores. Doing so might help clarify certain strategies used in 
programming a Turing Machine , and to make the final job easier. 

Let's call the m-configuration that moves the head back to the sentinel 
goto-sentinel. Then, when we're writing the states for a particular machine, 
and we want the head to be positioned over the figure to the right of the sentinel, 
we just specify goto-sentinel and we don't have to figure out how to do it all 
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over again. Not only would it make the machine description a bit smaller, but (in 
theory) it would help anyone who had to look at the machine understand it. 

We might define goto-sentinel on its own like so: 

goto-sentinel { .: 
R ????? 

L goto-sentinel 

and immediately we see a problem indicated by that insistent squad of ques­
tion marks. After the machine finds the sentinel, it must go into some other 
m-configuration, but that isn't known until we actually need to use goto-sentinel 
in a machine . We need some way to specify the final m-configuration in a general 
way so that goto-sentinel remains flexible. 

The solution is to define goto-sentinel much like a mathematical function, 
where the final destination is an argument to the function: 

goto-sentinel(A) { 
@ 

else 

R 

L 

A 

goto-sentinel( A) 

The new, new-digit-is-zero and new-digit-is-one m-configurations can now be 
eliminated. At the beginning of the square-root machine, instead of haVIng begin 
go to new, and new go to mark-digits , we can specify: 

begin none P@, R, Pl goto-sentinel(mark-digits) 

Instead of defining carry to go to new-digit-is-zero, like this 

I r Pu add-finished 
carry no

u
ne Pu new-digit-is-zero 

Pr, R, R carry 

it can instead refer to goto-sentinel to go back to the sentinel and then switch to 
print-zero-digit: 

carry 
Pu 
Pu 

Pr, R, R 

add-finished 
goto-sentinel( print-zero-digit) 
carry 

Speaking of print-zero-digit, did you notice that it's functionally identical to 
print-one-digit except for the digit it prints? We can profitably define a generalized 
print-digit function. The argument for this function is the character to print: 

I 0 R, E, R print-digit(a) 
print-digit(a) 1 R, E, R print-digit(a) 

none Pa, R, R, R cleanup 
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Notice the "Pa" operation in the last line indicating that the character to be 
printed is the argument to print-digit. Now the m-configuration carry becomes: { r Pu add-finished 

carry no
u
ne Pu goto-sentinel(print-digit(O)) 

Pr, R, R carry 

The m-configuration print-new-y (which was responsible for detecting when 
it's time for new-digit-is-one) now becomes: 

print-new-y I @ 
else 

R 

Py, R 

goto-sentinel(print-digit(l)) 

reset-new-x 

Today's programmers will recognize this concept immediately. Although diff­
erent programming languages provide this facility in the form of procedures or 
functions or methods, the most general term is subroutine. For decades, subroutines 
have been the most universal structural element of computer programs. 

Programmers reading this book might want to exercise a little caution in 
applying too much of what they know about subroutines to these configurations 
with arguments. These configurations exist primarily to clarify the structure of 
Turing Machines and to make them easier to write. There's no concept of "calling" 
one of these configurations or of "returning" from a configuration. 

Turing calls these configurations with arguments "skeleton tables" before settling 
on the better term "m-function." A machine table that makes use of skeleton tables 
he calls an "abbreviated table." 

4. Abbreviated tables. 

There are certain types of process used by nearly all machines, and 
these, in some machines, are used in many connections. These processes 
include copying down sequences of symbols, comparing sequences, erasing 
all symbols of a given form, etc . Where such processes are concerned we 
can abbreviate the tables for the m-configurations considerably by the use 
of "skeleton tables". In skeleton tables there appear capital German 
letters and small Greek letters. 

Astonishingly, the capital German letters are even more difficult to read than 
the lower-case letters are. Fortunately, Turing doesn't go beyond the letter E, but 
it might be helpful to get familiar wuh them in large-type versions: 

A 
ill 

B 
Q.) 

c 
� 

D 
'D 
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Notice , in particular, that the A looks more like a U, and take heed of the subtle 
difference between the C and the E. The Greek letters that Turing uses in this 
section are italicized versions of alpha, beta, and gamma: a ,  /3,  and y .  

These are of the nature of "variables". 
By replacing each capital German letter throughout by an m-configuration 

[236] 

and each small Greek letter by a symbol, we obtain the table for an 
m-configuration. 

Where I used a capital Latin letter in my example to represent an m-config­
uration, Turing uses a capital German letter. Where I used a small Latin letter to 
represent a symbol, Turing uses a small Greek letter. Turing's examples often have 
multiple arguments. 

These days subroutines (such as sqrt) are stored in files called libraries that allow 
programmers to use them by just specifying their names. It could even be said 
that entire operating systems - such as Unix, Microsoft Windows, or the Apple 
Mac OS - consist primarily of subroutines made available to applications that 
run under them. 

For Turing, however, the skeleton tables exist solely to make his larger machines 
easier to construct (from his perspective) and easier to read and understand (from 
our perspective). 

The skeleton tables are to be regarded as nothing but abbreviations : 
they are not essential. So long as the reader understands how to obtain 
the complete tables from the skeleton tables, there is no need to give any 
exact definitions in this connection. 

The skeleton tables are not essential, he says, and that's true. If the skeleton 
tables were presented solely as a matter of interest and restricted only to this 
section of the paper, they could easily be skipped . However, Turing is setting the 
stage for his Universal Machine, which makes extensive use of the skeleton tables 
presented in this section. Without these tables, the Universal Machine would be 
much longer and more complex than it is. 

For that reason, knowing a little about Turing's ultimate intentions can help 
make these tables just a bit more comprehensible. As he will discuss in Section 
7, the Universal Machine interprets a tape that contains a computing machine 
encoded as a series of letters. At the far left is a schwa sentinel. The tape alternates 
between F-squares and £-squares. The £-squares are , as usual, erasable. In the 
Universal Machine , the F-squares contain mostly letters rather than digits. Even 
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so, the machine always prints the F-squares sequentially from left to right, and 
without erasing a previous symbol. For that reason, two blank squares in a row 
indicate that no F-squares exist to the right of that point. 

Let us consider an example : 

m-config. Symbol Behaviour Final 
m-config. 

f(�-. Q\ a )  { a 
not a 

f i (�, Q), a ) 1 :ot a 

None 

fa(� , '!!), a) 1 :ot a 
None 

L 
L 

R 

R 

R 

R 

f i (� , �\ a )  From the m-configuration 

i(�, Q \ a )  f(�, Q\ a )  the machine finds the 
symbol of form a which is far-

� thest to the left (the "first a") 
and the m-configuration then 

f i (� , �\ a) 
becomes �- . If there is no a 

fa(� . �\ a )  then the m-configuration be-

� 

f i (� , �\ a )  

comes Q \  

Well, he might also have started with a simpler example, but this one has the 
advantage of showing off all the features. Turing's explanation appears to the right 
of the table. (Turing will also put explanations to the right of his tables when 
defining the Universal Machine . )  

Although Turing is really defining a function named f, the function requires 
two other functions named f 1 and fa.  They all have the same three arguments: 
two m-configurations and one symbol. The m-configuration f moves the head left 
until it encounters a schwa. The m-configuration becomes f1 . That m-configuration 
moves right whenever the square is not an a .  (Notice that a is the third argument 
to f.) If it encounters an a, it goes to m-configuration <e:, the first argument to f. 
The m-configurations f1 and fa are very similar. Together, they effectively search 
for two blanks in a row. Whenever f1 encounters a blank, it switches to fa.  If the 
next character is not a blank, it switches back to f 1 . Only when fa encounters a 
blank - which must be the second blank in a row - does it give up and go to 
m-configuration Q), the second argument to f. The a character was not found in 
this case. 

So, f stands for find. If it finds an a ,  it goes to m-configuration <e:, and the 
head will be sitting on the first (leftmost) a. If it can't find an a, then it goes to 
m-configuration sa. 

There's actually a little confusion in this table. In the two m-configurations 
fi and fa,  the terms "not a" seem to mean "any non-blank square that's not a" 
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because another configuration takes care of the "None" or blank square; however, 
the first m-configuration does not have a "None" case and, to be consistent, it 
should. The None case should be the same as "not a.'' 1 

In a table for a complete machine, this skeleton table would be referred to by 
an entry in the final m-config column that looks something like this: 

m-config. symbol operations final m-config. 

f(q , r, x) 

The m-configurations q and r would be defined elsewhere in the machine, and 
x would be a symbol used by the machine. 

If we were to replace � throughout by q (say), X.1 by r, and a by x, we 
should have a complete table for the m-configuration f(q, r, x). 

In the context of the complete machine , this skeleton table effectively expands 
into this table: 

m-config. symbol operations final m-config. 

f { n:. a 

L f1 
L f 

{ n:t x 
q 

fi R f1 
None R fa 

{ n:t x  
q 

fa R fi 
None R r 

Because the f function may be used several times in the same machine, the 
expanded versions of the m-configurations f, f1 , and fa would all need different 
names each time they're used. 

f is called 
an "m-configuration function" or "m-function". 

1 This is one of several corrections identified in a footnote to the appendix of the paper Emil Post, 
"Recursive Unsolvability of a Problem of Thue," The]oumal of Symbolic Logic, Vol 12 ,  No 1 (Mar 1947), 
1- 1 1 .  The entire paper is repnnted in Manin DaVJS, ed , The Undecidable (Raven Press, 1965), 293-303 
The appendix (with the footnote incorporated into the text) is repnnted in B jack Copeland, ed , The 

Essential Tunng (Oxford University Press, 2004), 97- 101 
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That's a much better name than "skeleton table ." I hope there's no confusion if 
I generally refer to them simply as functions . 

The only expressions which are admissible for substitution in an 
m-function are the m-configurations and symbols of the machine. These 
have to be enumerated more or less explicitly : they may include expressions 
such as p(r, x) ; indeed they must if there are any m-functions used at all. 

If an m-function named p has been defined, and if a machine refers to this 
m-function in its final m-config column, then p must be considered to be an 
m-configuration of the machine. 

Turing is a little nervous here because arguments to m-functions can be other 
m-functions. In other words, m-functions can be nested. (Don't worry: You'll 
see plenty of examples.) The problem results from implicitly allowing infinite 
recursion - that is, a function referring to itself, or referring to a second function 
which in turn refers to the first. If infinite recursion is allowed, then a machine 
could end up with an infinite number of m-configurations, and that's in violation 
of Turing's original definition of a computing machine. 

If we did not insist on this explicit enumeration, but simply stated that 
the machine had certain m-configurations (enumerated) and all m-configu­
rations obtainable by substitution of m-configurations in certain m-func­
tions, we should usually get an infinity of m-configurations; e.g. , we might 
say that the machine was to have the m-configuration q and all m-configu­
rations obtainable by substituting an m-configuration for � in p(@: ). Then 
it would have q, p(,1), p (p(q)) , p (P(p(q)) ) ,  . . .  as m-configurations. 

We must ensure that after substituting all the m-functions into the machine , we 
still have a finite number of m-configurations. 

Our interpretation rule then is this. We are given the names of the 
m-configurations of the machine, mostly expressed in terms of m-functions. 

Again, Turing is looking ahead to his Universal Machine, which will indeed be 
expressed mostly in terms of m-functions defined in this section. 

We are also given skeleton tables . All we want is the complete table for 
the m-configurations of the machine. This is obtained by repeated 
substitution in the skeleton tables. 
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Perhaps at this point, he's being a little too paranoid. We don't usually need to 
enumerate all of the m-configurations of a machine explicitly. We really just need 
to know that there's a finite number of them. 

[237] 

Further examples. 
(In the explanations the symbol "-" is used to signify "the machine 

goes into the m-configuration . . . .  ") 

By "explanations," Turing means the often cryptic descriptions that appear 
to the right of the skeleton tables. The columns of these tables are rather 
smushed together, and there are no column headings. Some tables contain only 
m-configurations and final m-configurations. Others contain columns for scanned 
characters and operations that must be differentiated based on their contents. 

Turing's next example shows an m-function that appears as an argument to 
another m-function: 

c(�, '£!3, a)  
r1 (�, Q\ a) E 

f(e 1 (�. 'iO, a), Q.\ a) From r(� .  �\ a) the first a is 
erased and � �. If there is no 

� a�Q.\ 

The e stands for "erase." This function starts by using f to search for the first 
(leftmost) occurrence of a ,  which will leave the head positioned over the character. 
Notice how the first argument of f is the function e 1 . What that means is that when 
f finds the character a, it will then go to e1 ,  which simply erases the character and 
goes to m-configuration �. If f doesn't find the character a ,  then it goes to Q). 

lf  you're really examining these things and not just accepting Turing's word 
that they work, you may question why e1 needs so many arguments. It does not. 
It could be defined more simply as e1 (�. 

Programmers, be warned: You may know too much to interpret nested 
m-functions correctly. Resist the almost irresistible inclination to believe that e 1 
must be "evaluated" in some way before it is passed to f. Instead, think of the first 
argument to f as a reference to f s eventual destination after it finds the character a .  

Turing defines a second version of the e function with two arguments rather 
than three: 

cN . .\ a)  r( r('iO, a) ,  Q \  a ) From rN.\ a)  all letters a are 
erased and � Q.\ 
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The definition of two different functions with the same name but distinguished 
by a different number of arguments is a rather advanced programming technique 
(called function overloading) that is not allowed in many older programming 
languages. 

This two-argument version of e makes use of the three-argument version to 
erase the first a, but notice that it specifies the two-argument e as the first argument 
to the three-argument version! When the three-argument e has successfully located 
and erased the first a, it then goes to the two-argument version, which proceeds 
to use the three-argument version again to erase the next a .  This continues until 
all the a characters have been erased. 

Very clever. Turing has now effectively used nesting and recursion to symbolize 
the implementation of repetitive tasks. 

Nevertheless, the use of the two-argument e as an argument to the three­
argument e to implement the two-argument e seems to invoke the dreaded specter 
of infinite nesting of m-configurations. 

The last example seems somewhat more difficult to interpret than 
most. Let us suppose that in the list of m-configurations of some machine 
there appears r(b, x) (= '1· say). 

The m-function e can only play a role in a machine only if it appears somewhere 
in the machine's final m-config column, for example, as e(b,  x), where b is an 
m-configuration used in the machine. We can now say that e(b, x) is another 
m-configuration of the machine and - as long as we haven't used q to represent 
any other m-configuration in the machine - we can also refer to this new 
m-configuration as q . 

By using e(b, x) in the final m-config column of the machine, we've essentially 
added another state to the machine, which Turing gives in two different forms: 

The table is 

r(b, x) r(r(b, x), b, x) 

or r('I, b, x). 

(The period at the end of the last line is there because it's considered part of a 
sentence that begins "The table is.") This table implies that the m-configuration 
e(q , b, x) is also another m-configuration of the machine, as well as e1 (q , b, x), as 
shown by the following expansion: 
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Or, in greater detail: 

c(q, b, x) 

c(q, b, x )  

E <] . 

(Again, a period follows the q on the last line because this table is considered 
part of a sentence .) Notice that after erasing the character, e1 goes back to q, which 
is already an m-configuration of the machine, so there's no infinite generation of 
m-configurations. 

In this we could replace q (;i ,  l', x) by q' and then give the table for f (with 
the right substitutions) and eventually reach a table in which no 
m-functions appeared. 

Just as Turing used q to represent the configuration e(b, x) , he can use q to 
represent the configuration e1 (q , b, x) , and additional configurations to represent 
e1 and f. 

Now that we've got the hang of these functions (yeah, right) , Turing relentlessly 
piles them on. l know that it's hard right now to see how these will all fit together. 
To construct his Universal Machine, Turing requires several common types of 
functions useful in manipulating individual characters and strings of characters. 
You've already seen find and erase functions. He essentially needs cut, copy, and 
paste as well, and some standard printing routines. 

The pe function stands for "print at the end." It prints the symbol represented 
by fJ in the first blank F-square . 

pc(�.  /3)  !Any R, R pr1 <�. tn 
None P/3 

f(pr 1 (0', /3 ), <§ , a) 

pc1 (� , /3 ) 
� 

From pc (�, /3)  the machine 
prints fJ at the end of the 
sequence of symbols and � <t. 

Some implicit assumptions hide inside this function. The f function normally 
finds the leftmost occurrence of its third argument, but here that argument is a 
schwa, which is the same symbol f looks for to get to the far left of the sequence. 
The pe function is therefore assuming there are two schwas in a row, just as in 
Turing's second machine example on page 85. The m-function f first finds the 
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rightmost of the two schwas (the one on an E-square) and then moves the head 
left to be positioned on the left schwa, which is on an F-square. The pe1 function 
then moves right along F-squares until it finds a blank. It prints a f3, which for 
most computing machines will be either a 0 or 1 .  

These next examples are cute. Turing first defines functions named l (for left) 
and r (for right) and then uses them in conjunction with f to create two more 
functions f and f' that move the head left or right after finding the desired 
character. 

!(�) 
r(�} 

f' (�. Q\ a ) 
f'(�, Q\ a)  

L 

R 

f{l(�) , '81 a ) 
f(r(�) , '8, a ) 

From f'(�. '81 a )  it does the 
same as for f(@:, Q\ a ) but 
moves to the left before � �. 

I would have called them � and ft rather than f and f' , but that's me. 
The Universal Machine will require moving characters from one location to 

another on the tape. The c function performs a "copy." The character a is likely to 
be a marker. The function obtains the character in the F-square to the left of that 
marker and uses pe to copy it to the first empty F-square at the end. 

c(€, '8, a )  
q(�) f3 

f' (q(�), Q.\ a ) 
pr(�·. fJ)  

� (  €, Q.\ a ). The machine 
writes at the end the first sym­
bol marked a and � �. 

Notice the function uses f to find the a character, so that the head ends up to the 
left of the marker, which is the figure that the marker marks. 

The q function has an unusual syntax: The scanned character becomes the 
second argument to pe. Turing says: 

(238] 
The last line stands for the totality of lines obtainable from it by 

replacing fJ by any symbol which may occur on the tape of the machine 
concerned. 

If, for example, the c function were to be used only for copying Os and ls, then q 
would actually be defined like: 

{ : c 1 (@:) 
pe(@:, O) 

pe(@:, 1 )  
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The ce function stands for "copy and erase ." It exists in two-argument and 
three-argument versions. 

<(r(�,  �\ a ), �\ a )  er( �\ a) .  The machine 
copies down in order at the 

<r(<'r(\B, a) , �\ a )  end all symbols marked a 
and erases the letters a; 7 �\ 

The three-argument ce first uses c to copy the leftmost figure marked with a ,  
and then uses e to  erase that marker. The two-argument version of  ce uses the 
three-argument version to copy the first figure and erase the marker, but then goes 
back to the two-character version. In effect, all symbols marked with a are copied 
to the end of the tape in the first available F-squares. (Turing's second example on 
page 87 could have used this function to copy a run of ls to the end of the tape .) 

Now might be a good time to raise the ugly issue of efficiency. Turing is 
defining functions that look nice and compact, but that actually hide an enormous 
amount of activity. To perform each copy-and-erase, the c function uses f to 
find the marker (and remember that f backtracks all the way to the sentinel) 
and then goes to the e function, which uses f again to find the same marker 
so it can be erased. A more efficient scheme has ce erasing the marker when 
it's first located and before it copies the character. (In honor of the notonous 
inefficiency of Turing Machines, the term Turing tar-pit descnbes excessively 
generalized computer routines that spend much more time flapping their wings 
than flying.) 

But Turing is not interested in mundane issues of efficiency. The machine is, 
after all, imaginary. If he wants, he can run it at a million zettahertz and nobody 
will realize how much needless activity is going on. 

The re function is "replace ." The a and f3 arguments are assumed to be markers. 
The function finds the leftmost a and replaces it with {3 .  (We know that a and 
f3 are markers because Turing doesn't allow replacing figures already marked on 
F-squares.) 

re(�-, ':°2\ a, /3)  

rq (� ,  �\ a, {3 )  E ,  P/3 

i(rr1 (� , 'i3, a,  /3 ), �\ a )  rr(0', <;J.\ a, /J ). The machine 
replaces the first a by fi and 
7�- 7 �) if there is no a .  

The three argument version replaces all a markers with {3 :  

re('�\ a ,  f3 )  rr( rr(�\ a,  /3 ), �\ a, /3 1  rr('�\ a ,  /3 ). The machine re­
places all letters a by f3 ; 7�\ 
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For consistency, that explanation at the right should have its first line indented. 
If you've got the hang of Turing's methodology and naming scheme, you'll 

know that the er function is "copy and replace": 

er(�, �\ a )  

er('i!), a )  

.Crr(0' ,  �\ a,  a) , �\ a )  .-r('!(.\ a )  differs from 
.-rN.\ a) only in that the 
letters a are not erased. The 
m-configuration er('!(.\ a) is 
taken up when no letters 
"a" are on the tape. 

cr( cr(�\ a) ,  rr(�\ a, a) ,  a )  

These functions are not used elsewhere in Turing's paper. 
The Universal Machine requires a facility to "search and replace ," and Turing 

next presents half a page of functions that begin with the letters cp ("compare") 
and cpe ("compare and erase") . The final m-configurations in these functions are 
so long that Turing's explanations appear under each table instead of at the right. 
(There's a typo in the first line . In the final m-config column the subscripted 1 on 
the @:. should be a comma. Also , some periods appear in the.final m-config column 
where they serve no purpose.) 

ep2(�, �)I ,  y) { y 

not y 

f'<«p 1 ( � 1  ':?I ,  /3), t(':?I ,  � .  /3 ), a )  

f'( .l•2(� , ':!I, y ), ':!! , /3) 
� 

':?I 

The first symbol marked a and the first marked f3 are compared. If 
there is neither a nor /3,  ' � . If there are both and the symbols are alike, 
' �. Otherwise °' �)I .  

«pr(�· , ':?I , � ,  a ,  f3 )  .-p(r( r(�· .  � .  /3 ) ,  0·, a ) ,  ':!I , Cf ,  a ,  /3 )  

cpr(0', ':?!, Cf ,  a ,  fj )  differs from ep(�,  ':?I , @, a,  /3 )  i n  that i n  the case when 
there is similarity the first a and fJ are erased . 

.-�·r(':?I, �\ a,  /3)  ;pr(«pr(':?I, Cf ,  a, /3) ,  ':?I , @ ,  a, f3 ). 

cpc(':!I , �. a, fj) .  The sequence of symbols marked a is compared with 
the sequence marked f3. ' 0· if they are similar. Otherwise ' ':?I . Some 
of the symbols a and fJ are erased. 
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By "similar" Turing means "identical ." 
Turing has now exhausted his supply of mnemonic function names, for he 

names the next one simply q ,  which unfortunately is the same letter he will shortly 
use to represent m-configurations in general. What's worse is that he later refers to 
this function as g .  

I believe that Turing meant for this function to be named g rather than q .  just 
as the f function finds the first (that is, leftmost) occurrence of a particular symbol , 
this function finds the last (rightmost) occurrence of a symbol. It makes a bit 
of sense that the related f and g functions should be represented by consecutive 
letters. For that reason, although the following table describes the function q, I'll 
refer to it as g. 

The single-argument version of g moves to the right until it finds two blanks 
in a row. That is assumed to be the rightmost end of the tape . The two-argument 
version of g first uses the one-argument g and then moves left looking for the 
character a .  

q(0' ) I Any 

None 

q(�' ,  ex )  

q 1 (�- . a ) I a 

not a 

R 

R 

R 

L 

[239] 
,1(0' ,  a ). The machine 

finds the last symbol of 
form a . � 0' . 

Tunng finishes this section with a few miscellaneous functions with familiar 
names. 

You'll recall the pe function that printed a character in the last F-square. The pe2 
function pnnts two characters in the last two F-squares: 

pr( pr(�,  /3 ), a ) pr2 (0' ,  a, /:J ). The machine 
prints a fl at the end. 

Similarly, the ce function copied characters marked with a to the end. The ce2 
function copies symbols marked with a and {J ,  while ce3 copies characters marked 
a ,  {J ,  and y .  



<r2('�.\ et, fl ) 

<r3 (�\ et, /3, y )  
<r(<r(':?..\ /3 ), et )  

•r«r2(�\ fl , y ), et )  
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<r3 (':?._\ a , /3, y ) . The mach­
ine copies down at the end 
first the symbols marked a , 
then those marked {3, and 
finally those marked y; it 
erases the symbols a , {3, y .  

These copies are performed sequentially: First, all the symbols marked with a 
are copied, then the symbols marked with {J ,  and so on. Later on, Turing uses a 
function called ce5 with six arguments that he's never described, but the operation 
of it should be obvious. 

Finally, a single-argument e function erases all markers. 

I :ot a 

R q ( @' )  From r(@') the marks are 
r( � ) erased from all marked sym-

L r(0' )  bols. � � .  

r, R, E, R ri (� ) 
r i (�}  

None � 

Programmers of a certain age may remember a book by Niklaus Wirth (b. 
1934) , inventor of the Pascal programming language , with the wonderful title 
Algorithms + Data Structures = Programs (Prentice-Hall, 1975). As the title indicates, 
a computer program requires both code (algorithms) and some data for the code 
to crunch. Turing has now presented many of the algorithms that his Universal 
Computing Machine will require, but he hasn't yet described how he will transform 
an arbitrary computing machine into crunchable data. That's next. 





Everything 

Is a Num ber  

I
n this digital age of ours we have grown accustomed to representing all 
forms of information as numbers. Text, drawings, photographs, sound, music, 

movies - everything goes into the digitization mill and gets stored on our 
computers and other devices in ever more complex arrangements of Os and ls. 

In the 1930s, however, only numbers were numbers, and if somebody was 
turning text into numbers, it was for purposes of deception and intrigue . 

In the fall of 1937, Alan Turing began his second year at Princeton amidst 
heightened fears that England and Germany would soon be at war. He was 
working on his doctoral thesis, of course, but he had also developed an interest 
in cryptology - the science and mathematics of creating secret codes or ciphers 
(cryptography) and breaking codes invented by others (cryptanalysis) . 1 Turing 
believed that messages during wartime could be best encrypted by converting 
words to binary digits and then multiplying them by large numbers. Decrypting 
the messages without knowledge of that large number would then involve a 
difficult factoring problem. This idea of Turing's was rather prescient, for it is the 
way that most computer encryption works now. 

Unlike most mathematicians, Turing liked to get his hands dirty building 
things. To implement an automatic code machine he began building a binary 
multiplier using electromagnetic relays, which were the primary building blocks 
of computers before vacuum tubes were demonstrated to be sufficiently reliable. 
Turing even built his own relays in a machine shop and wound the electromagnets 
himself. 

The German Army and Navy were already using quite a different encrypting 
device . The Enigma was invented by a German electrical engineer named Arthur 
Scherbius (1878-1929). After Scherbius had unsuccessfully attempted to persuade 
the German Navy to use the machine in 1918, it had gone on sale for commercial 

1Andrew Hodges, Alan Turing The Enigma (Simon & Schuster, 1983), 1 38 
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purposes in 1923.  The Navy became interested soon after that, eventually followed 
by the rest of the German military.2 

The Enigma had a rudimentary 26-key keyboard arranged like a typewriter 
but without numbers, punctuation, or shift keys. Above the keyboard were 26 
light bulbs arranged in the same pattern. Messages were encrypted by typing 
them on the keyboard. As each letter was pressed, a different letter would 
light up. These lighted letters were manually transcribed and then sent to the 
recipient. (The encrypted message could be hand delivered or sent by mail; 
later, encrypted messages were sent by radio using Morse code.) The per­
son receiving the message had his own Enigma machine , and would type the 
encrypted message on the keyboard. The flashing lights would then spell out 
the original text. 

The keys of the keyboard were electrically connected to the lights through 
a series of rotors. Each rotor was a small disk with 26 contacts on each side 
representing the letters of the alphabet. lnside the rotor, these contacts were 
connected symmetrically: If contact A on one side connected to contact T on the 
other, then T on the first side would connect to A on the other. This symmetry is 
what allowed the machine to be used for both encrypting and decrypting. 

The standard Enigma had three connected rotors, each of which was wired 
differently, and each of which could be set to one of 26 positions. The three 
rotors on the encrypting and decrypting machines had to be set identically. The 
three-letter keys to set the rotors could, for example, be changed on a daily basis 
in accordance with a list known only to the Enigma operators. 

So far, nothing l've described about the Enigma makes it capable of anything 
more than a simple letter-substitution code , easily breakable by even the most 
amateur cryptanalysts. lt's even simpler than most letter-substitution codes because 
it's symmetrical: lf D is encoded as S then S is also encoded as D .  

Here's the kicker: As the user of  the Enigma pressed the keys on the keyboard, 
the rotors moved. With each keystroke, the first rotor moved ahead one position. 
lf a string of 26 A's were typed, for example, each successive A would be encoded 
differently as the rotor went through its 26 positions. When the first rotor had 
completed a full tum, it would move the second rotor ahead one position. Now 
another series of 26 A's would encode to a different sequence of letters. When 
the second rotor finished a revolution, it would bump the third rotor up a notch. 
A fourth stationary rotor routed the electrical signal back through the rotors in 
reverse order. Only after 17,576 keystrokes (that's 26 to the third power) would 
the encryption pattern repeat. 

But wait, it gets worse : The rotors were replaceable. The basic machine was 
supplied with five different rotors, which could be used in any of the three rotor 

2 David Kahn, Seizing the Enigma. The Race to Break the Gennan U-Boat Codes, 1 939- 1 943 (Houghton-Miffiin, 
1991), ch 3 
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slots. Another enhancement involved a plug-board that added another layer of 
letter scrambling. 

In 1932, three Polish mathematicians began developing methods to decode 
Enigma messages. 3 They determined that they needed to build devices that 
simulated the Enigma in an automated manner. The first "bombs" (as they were 
called) became operational in 1938 and searched through possible rotor settings. 
One of these mathematicians was Marian Rejewski ( 1905- 1980) , who had spent 
a year at Gottingen after graduation. He wrote that the machines were called 
bombs "for lack of a better name"4 but it's possible the name was suggested by 
the ticking sound they made, or by a particular ice cream sundae enjoyed by the 
mathematicians. 5 

Traditionally, the British government had employed classics scholars for break­
ing codes under the reasonable assumption that these were the people best trained 
to decode difficult languages. As the war approached, it became evident that for 
analyzing sophisticated encoding devices like the Enigma, the Government Code 
and Cypher School (GC &: CS) would require mathematicians as well. 

When Alan Turing returned from Princeton to England in the summer of 1938, 
he was invited to take a course at the GC &: CS headquarters. It's possible the 
government was in touch with him as early as 1936.6 In 1939, the GC &: CS 
purchased a large estate with a Victorian mansion called Bletchley Park 50 miles 
northeast of London. In a sense, Bletchley Park was the intellectual focal point of 
England - where the rail line between Oxford and Cambridge connected with 
the rail south to London. 

On September 1 ,  1939, Germany invaded Poland. Two days later, Great Britain 
declared war on Germany, and on September 4, Alan Turing reported for duty 
at Bletchley Park. Eventually about ten thousand people would be working there 
intercepting and decoding coven communications. To accommodate everyone , 
huts were built around the grounds. Turing was in charge of Hut 8, dedicated to 
the decryption of codes used by the German Navy. The Germans used these codes 
to communicate with submarines, which were a particular threat to convoys in the 
Atlantic between the United States and Great Britain. 

Earlier in 1939, the British had met with the Polish mathematicians to learn 
about the Enigma and the bombs. Soon after Turing started at Bletchley Park, he 
began redesigning and improving the devices, now known by the French spelling 
bombe. The first Turing Bombe (as they are sometimes called) became operational 

3Manan Rejewski, "How Polish Mathematicians Deciphered the Enigma," Annals of the History of 

Computing, Vol 3, No 3 Ouly 1981) , 2 1 3-234 See also Elisabeth Rakus-Andersson, "The Polish Brains 
Behind the Breaking of the Enigma Code Before and Dunng the Second World War," in Chnstof Teuscher, 
ed , Alan Tunng Life and Legacy of a Great Thinker (Spnnger, 2004), 419-439 
4Rejewski, "How Polish Mathematicians Deciphered the Enigma," 226 
5Kahn, Seizing the Enigma, 73 
6Hodges, Alan Tunng, 148 
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in 1940. It weighed a ton and could simulate 30 Enigma machines working in 
parallel.7 

Prior to attacking the message with the Turing Bombe, it was necessary to 
narrow down the possibilities. The cryptanalysts searched for "cribs," which were 
common words or phrases that often appeared in the encoded messages. These 
would establish the initial position of the first rotor. Much valued were cases 
where the same message was transmitted using two encodings: These were known 
as "kisses." Another technique used heavy white paper in various widths and 
printed with multiple rows of the alphabet, much like punched cards later used 
in computers. The analysts would punch holes in the paper corresponding to the 
letters of the encoded messages. Different messages from the same day (which 
would all be based on the same settings of the Enigma) could then be compared 
by overlapping the sheets. Because the paper used for this came from a nearby 
town named Banbury, the procedure was called "banburismus." 

These varieties of techniques were refined to a point where, by mid- 194 1 ,  the 
successes achieved in decoding Enigma communications had greatly decreased 
naval losses. 8 Many people working at Bletchley Park deserve some credit for this 
success, although Alan Turing's work played a significant role. 

Even in the unusual assemblage of mathematicians and classics scholars at 
Bletchley Park, Turing established a certain reputation for eccentncity: 

In the first week of June each year (Turing) would get a bad 
attack of hay fever, and he would cycle to the office wearing a 
service gas mask to screen the pollen. His bicycle had a fault: the 
chain would come off at regular intervals. Instead of having it 
mended he would count the number of times the pedals went 
round and would get off the bicycle in time to adjust the chain 
by hand.9 

In the spring of 194 1 ,  Alan Turing made a proposal of marriage to Joan Clarke, 
one of the rare women at Bletchley Park who wasn't relegated to a mindless clerical 
job .  Joan Clarke had been studying mathematics at Cambridge when she was 
recruited for code-breaking. A few days after the proposal Turing confessed to her 
that he had "homosexual tendencies" 10 but the engagement continued for several 
more months before he felt he had to call it off. 

7 Stephen Budiansky, Baule of Wits. The Complete Story of Codebreaking in World War II (Free Press, 2000), 
155  See also Jack Gray and Keith Thrower, How the Tunng Bombe Smashed the Enigma Code (Speedwell, 
200 1) 
8Hodges, Alan Tunng, 2 18-9 
9! J Good, "Early Work on Computers at Bletchley,'' Annals of the History of Computing, Vol 1, No 1 
Ouly 1979), 41 
10Hodges, Alan Tunng, 206 



Everything Is a Number 1 31 

In November 1942 , Turing was sent on a m1ss1on to Washington, D.C. , 
to help coordinate code-breaking activities between England and the United 
States. Following that assignment, he spent the first two months of 194 3 at Bell 
laboratories, at the time located on West Street in New York City. There he met 
Harry Nyquist (1889- 1976) , who pioneered the theory of digital sampling, and 
Claude Elwood Shannon ( 1916-2001) ,  whose paper "A Mathematical Theory 
of Communication" ( 1948) would found the field of information theory and 
introduce the word "bit" to the world. 

For Turing the primary object of interest at Bell labs was a speech-scrambling 
device that was intended to secure telephone communications over the Atlantic. 
Sound waves were separated into various frequency ranges, digitized ,  and then 
encrypted by modular addition, which is addition that wraps around a panicular 
value (such as the value 60 when adding seconds and minutes). On the receiving 
end, the numbers were decrypted and then reconstituted as speech. 

In Nyquist's research and Shannon's work, and in the speech-encryption device, 
we can see the origin of ideas that would later result in the technologies used 
for digitizing images in JPEG files and sound in MP3 files, but these panicular 
innovations required decades to come to fruition. The earliest digital computers, 
on the other hand, did little but emit numbers. Even Babbage's original Difference 
Engine was conceived solely to print error-free tables oflogarithms. In this context, 
it's not surprising that Turing Machines also generate numbers rather than, for 
instance, implement generalized functions. 

Turing is about to take the paper in a more unusual direction by using 
numbers to encode other forms of information. The next section of Turing's paper 
demonstrates how numbers can represent not photographs or songs, but the 
machines themselves. 

Yes, everything is a number. Even Turing Machines are numbers. 

5. Enumeration of computable sequences . 

A computable sequence y is determined by a description of a machine 
which computes y. Thus the sequence 001011011101111 .  . . is determined 
by the table on p. 234, and, in fact, any computable sequence is capable of 
being described in terms of such a table. 

That's the Example II machine on page 87 of this book. 

It will be useful to put these tables into a kind of standard form. 

Turing actually started out with a standard form that he described in Section 1 
(page 70 of this book). He indicated that a particular operation can cause the 
machine to print or erase a symbol , and to move one square to the left or right. 
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After showing one machine in this format (Example I on page 8 1 ,  the example 
that Turing will also soon mention) , Turing quickly abandoned his own rules. 
He allowed printing multiple symbols and moving multiple squares in single 
operations. This was done solely so the machine tables didn't go on for pages and 
pages. Now he'd like to return to his original restrictions. 

In the 
first place let us suppose that the table is given in the same form as the first 
table, for example, I on p. 233. That is to say, that the entry in the operations 
column is always of one of the forms E: E, R: E, L: Pa: Pa, R: Pa, L: R: L: 
or no entry at all . 

Turing uses colons to separate the nine different possibilities. These possibilities 
result from the three types of printing (erase, print a character, or neither) in 
combination with the three kinds of movement (left, right, or none). 

The table can always be put into this form by intro­
ducing more m-configurations. 

For example, the table for Example II (page 87) began with configuration b: 

Configuration 

m-config. symbol 

Behaviour 

operations 

Pa, R, Pa , R, PO, R, R, PO, L, L 

final 
m-config. 

0 

To adhere to Turing's original (and reinstated) restrictions, this single configu­
ration must be split into six simple configurations. For the additional configuration 
I'll use the German lower-case letters for c, d, e, g, and h (f was already used in the 
original table) .  

Configuration Behaviour 

m-config. symbol operations final m-config. 

b Pa, R c 

Pa, R & 
& PO, R e 

e R g 
g PO, L � 
� L 0 
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Now each operation consists solely of a printing operation (or not) followed by 
possible left or right movement by one square. 

Now let us give numbers to the m-configu­
rations, calling them Q 1 ,  . . .  , QR , as in § 1. The initial m-configuration is 
always to be called Q 1 .  

If there happen to be 237 different m-configurations in a machine , they are now 
to be labeled q1  through qn7 . 

For the revised beginning of Example II, the first six m-configurations can be 
renamed q1 through q6 . The initial m-configuration that Turing always named 6 
becomes q1 . The table is now: 

Configuration 

m-config. symbol 

Behaviour 

operations 

Pa, R 

final m-config. 

Pa, R 

PO, R 

R 

PO, L 

L 

We also give numbers to the symbols Si , . . .  , Sm 

(240] 

and, in particular, blank = So, 0 = Si , 1 = S2 . 

It's a little confusing that a subscripted 1 means the symbol 0 and a subscripted 
2 means the symbol I ,  but we'll have to live with it. The Example II machine also 
needs to print a and x, so the following equivalencies would be defined for this 
machine: 

So means a blank, 
51 means O, 
52 means 1 ,  
53 means a, and 
54 means x. 

The machine that computes the square root of 2 requires symbols up to 514 .  
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The first six configurations of the Example II machine are now: 

Con.figuration Behaviour 

m-con.fig. symbol operations final m-con.fig. 

q 1 PS3 , R  qi 

qi PS3 , R  qJ 

q3 PS1 , R q4 

q4 R qs 

qs PS1 , L q6 

q6 L q1 

The imposition of a uniform naming system has resulted in these lines taking on 
very similar patterns. In the general case, Turing identifies three different standard 
forms: 

The lines of the table are 

now of form 

Final 
m-config. Symbol Operations m-config. 

q; sJ PSk , L  qm (N1 ) 

q; SJ PSk , R  qm <N2) 

q; SJ PSk qm (N3 ) 

At the far right, Turing has labeled these three standard forms N1 , Ni , and NJ . 
All three print something; the only difference is whether the head moves Left, 
Right, or not at all. 

What about erasures? Because Turing defined So as a blank symbol , erasures 
can be performed by printing simply So : 

Lines such as 

q; S1 E, R qm 
are to be written as 

q; S; PSo , R  qm 
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Operations that consist of a Right or Left shift without printing anything can be 
written to reprint the scanned symbol : 

and lines such as 

Qi SJ R Qm 

to be written as 

Qi SJ PSJ, R Qm 

In this way we reduce each line of the table to a line of one of the forms 
(N1 ), (N2 ), (Na) .  

To illustrate the process of standardizing the table, I've been using the first 
configuration of the Example II table, but that first configuration doesn't even 
have anything in its symbol column because the configuration does the same thing 
regardless of the symbol. A machine starts with a blank tape so we know that the 
symbol it reads is a blank. The first configuration of the Example II table converted 
to standard form becomes: 

Configuration Behaviour 

m-conjig. symbol operations final m-conjig. 

qr So PS3 ,  R qi 

qi So PS3 , R q3 

q3 So PS1 , R q4 

q4 So PSo , R  qs 

qs So PS1 , L  q6 

q6 So PSo, L  q1 

That's easy enough, but let's take a look at the second m-configuration of the 
Example II machine: 

. I 1 

0 

R, Px, L, L, L 0 

q 

The m-configuration o will become the numbered configuration q7 . When the 
scanned character is 1 ,  the head must move right once, and then left three times. 
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These three left-shifts will require three more m-configurations, qs , q9 ,  and q10 . 
The m-configuration q then becomes q1 1 .  Here's m-configuration q1 : 

Configuration 

m-config. symbol 

Behaviour 

operations 

PS2 , R 

PS1 

final m-config. 

qs 

In both cases, the machine prints the scanned character. Here are m-configurations 
qs , q9 ,  and qio : 

The problem is the symbol column. To fill it in correctly you really have to know 
what the machine will be encountering. For q8 , the machine is scanning a blank 
square and printing an x. Once it moves left, what's the next scanned character? 
It's the 1 that was scanned in q7 ,  but in other cases it might not be so obvious. The 
words "Any" or "Not" or "Else" don't work with this scheme, and in some cases 
you may have to add specific configurations for every single character the machine 
is using. 

It's a mess, but there are always a finite number of characters involved, so it can 
definitely be done. Let's assume that we have converted all the configurations of a 
particular machine into the standard forms that Turing denotes as (N1) , (N2), and 
(N3). When we're finished, and we dispose of the original table, have we lost any 
information? Yes, we have lost a little bit. We know that So is a blank, 51 is a 0, 
and 52 is a 1 ,  but we no longer know the exact characters meant by 53 , 54 , and so 
on. This shouldn't matter. The machines use these characters internally. All that 
matters is that they're unique. We're really only interested in the Os and ls that 
the machine prints, and not what it uses as a scratchpad. 

Instead of a table, we can express each configuration with a combination of the 
m-configurations, symbols, L, and R. 

From each line of form (N1 ) let us form an expression qi Sj Sk L qm ; 

This form is sometimes known as a quintuple because it's composed of five 
elements. Despite its cryptic nature , it's still readable : "ln m-configuration qi , when 
character Sj is scanned, print character Sk ,  move Left, and switch to m-configuration 
qm ." Similarly for Ni and N3 : 
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from each line of form (N2 ) we form an expression Qi Sj Sk R Qm ; 
and from each line of form (N3 ) we form an expression Qi Si Sk N Qm · 

Notice that when the head is not to be moved, the letter is N (meaning No 
move). 

Let us write down all expressions so formed from the table for the 
machine and separate them by semi-colons. In this way we obtain a 
complete description of the machine. 

Turing will show an example shortly. Each configuration is a quintuple, and an 
entire machine is now expressed as a stream of quintuples. (Interestingly enough, 
the quintuples don't have to be in any specific order. It's like a programming 
language where each statement begins with a label and ends with a goto.) 

The next substitution is a radical one . It gets rid of all those subscripts and 
turns the machine into a stream of capital letters: 

In this description we shall replace 
Qi by the letter "D" followed by the letter "A" repeated i times, and Sj by 
"D" followed by "C " repeatedj times. 

For example, q1 is replaced by DA and qs is replaced by DAAAAA. (Remember 
that the first configuration is q1 . There is no qo .) As for the symbols, So (the blank) 
is now denoted by D, 5 1 (the symbol 0) is DC, and 52 (the symbol 1 )  is DCC. 
Other symbols are assigned to 53 and greater and become DCCC and so on. 

This new description of the 
machine may be called the standard description (S.D). It is made up 
entirely from the letters ''A", "C", "D", "L", "R'', "N", and from 
"· " ' . 

The L, R, and N indicate the moves. Semicolons separate each configuration. 

If finally we replace "A" by "l", "C'' by "2", "D" by "3", "L" 
by "4", "R" by "5", "N" by "6", and ";" by "7" we shall have a 
description of the machine in the form of an arabic numeral. 

This is an important step. Turing has standardized his machines to such an 
extent that he can now uniquely identify a machine by an integer, and this 
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integer encodes all the states of the machine. Turing was undoubtedly inspired 
by the approach Godel took in his Incompleteness Theorem in converting every 
mathematical expression into a unique number. 

The integer 
represented by this numeral may be called a description number (D.N) of 
the machine. The D.N determine the S.D and the structure of the 

[24 1] 

machine uniquely. The machine whose D.N is n may be described as 
.Al (n) . 

Turing has now introduced another font. He will use this script font for repre­
senting entire machines. 

To each computable sequence there corresponds at least one description 
number, while to no description number does there correspond more than 
one computable sequence. 

Since the order of the quintuples doesn't matter, the quintuples can be scrambled 
without any effect on the sequence the machine computes. It is very clear, then, that 
multiple description numbers are associated with each computable sequence, but 
each description number defines a machine that generates only one computable 
sequence (at least when beginning with a blank tape). 

Without much fanfare Turing concludes with a result he mentioned in the very 
beginning of the article: 

The computable sequences and numbers are 
therefore enumerable. 

You can enumerate the computable sequences by listing all possible description 
numbers, since these are just integers. The unstated implication is that the 
computable numbers are only an enumerable subset of the real numbers. Because 
the computable numbers are enumerable and the real numbers are not, there are 
many real numbers that are not computable . This, however, is a subject that will 
be explored more in later sections. 

Let us find a description number for the machine I of § 3 .  
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Configuration Behaviour 

m-config. symbol 

b None 

None 

e None 

None 

operations 

PO, R 

R 

P l ,  R 

R 

rename the m-configurations its table becomes: 

So 

So 

So 

So 

This is a very straightforward translation . 

PS1 , R  

PSo, R  

PS2 , R  

PSo , R  

final m-config. 

e 

b 

When we 

Other tables could be obtained by adding irrelevant lines such as 

PS1 , R  

That is, other tables that produce the same computable sequence could be obtained 
by adding lines that never come into play. If the tape is blank when the machine 
begins, and it always shifts nght when a square is printed, the machine will never 
scan the digit 0. 

Our first standard form would be 

That's just taking the four-line table and separating the configurations with 
semicolons. Converting this to the Standard Description form requires replacing 
qi with D followed by a quantity of i A's (one or more) and replacing Si with D 
followed by i Cs (zero or more) . 
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The standard description is 

DADDCRDAA ;DAADDRDAAA ; 

DAAADDCCRDAAAA ; DAAAADDRDA ; 

The Standard Description can be hard to read, but it's used a lot so you should 
try to get accustomed to it. To decode it into its components, begin by taking note 
of each D. Each D represents either a configuration or a symbol. 

• If the D is followed by one or more A's, it's a configuration. The configura­
tion number is the number of A's. 

• If the D is not followed by any A's, it's a symbol. The D in this case is fol­
lowed by 0 or more Cs. D by itself is a blank, DC is a 0, DCC is a 1 ,  and 
more Cs indicate other symbols. 

Turing does not use the Description Number as much as the Standard Descrip­
tion. The Description Number exists more in abstract; Turing doesn't perform any 
calculations with the number. For the example Turing is showing, you can replace 
A with 1 ,  C with 2 ,  D with 3, R with 5 and the semicolon with 7 to create a 
description number: 

A description number is 

3 1 33253 1 173 1 1 3353 1 1 173 1 1 1332253 1 1 1 1 73 1 1 1 13353 17 

and so is 

3 133253 1 173 1 13353 1 1 173 1 1 1332253 1 1 1 173 1 1 1 13353 173 1323253 1 1 7  

The second of  those numbers is the same as the first except it has extra 
digits at the end (3 1323253 1 1 7) corresponding to the "irrelevant" configuration 

q15151 Rq2 that Turing defined. The point is this: These two numbers define 
two different machines, but the two machines both compute exactly the same 
number, which (as you'll recall) is the binary version of 1/3. A machine with its 
configurations rearranged still calculates the same number, but its Description 
Number is different. 

These numbers are huge ! Turing obviously doesn't care how large the numbers 
are . To represent qJ5 , for example, he might have figured out some way to embed 
the number 35 in the Description Number, but no. To represent qJs , the Standard 
Description uses: 



and the Description Number includes the digits 
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31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

not only once, but at least twice ! 
The accomplishment here is quite interesting. Consider a Turing Machine that 

calculates re. Normally, we indicate the digits of re with an infinite sequence: 

TC =  3 . 141 5926535897932384626433832795 . . .  

Now we can represent re with a finite integer - the Description Number of the 
Turing Machine that calculates the digits. Which is the better representation of 
re? The first 32 digits followed by an ellipsis? Or the Description Number of the 
Turing Machine that can generate as many digits as our patience will allow? In a 
sense, the Description Number is a more fundamental numencal representation of 
re because it describes the algorithm of calculating the number. 

By reducing each machine to a number, Turing has also made it possible, in 
effect, to generate machines just by enumerating the positive integers. Not every 
positive integer is a valid Description Number of a Turing Machine , and many valid 
Description Numbers do not describe circle-free machines, but this enumeration 
certainly includes all circle-free Turing Machines, each of which corresponds to a 
computable number. Therefore, computable numbers are enumerable .  

That's an important finding, although possibly a disturbing one , for it  implies 
that most - nay, from what we know about the extent of the real numbers, 
virtually all - real numbers are not computable. 

This revelation, combined with some mathematical paradoxes and investigations 
into quantum gravity, have prompted mathematician Gregory Chaitin to ask "How 
Real are Real Numbers?"1 1  The evidence of the existence of real numbers is slim 
indeed. 

To modem programmers it is natural to think of computer programs being 
represented by numbers, because a program's executable file is simply a collection 
of consecutive bytes. We don't normally think of these bytes as forming a 
single number, but they certainly could . For example, the Microsoft Word 2003 
executable is the file WinWord.exe, and that file is 12 ,047,560 bytes in size. That's 
about 96 million bits, or 29 million decimal digits, so the number representing 
WinWord.exe is somewhere in the region of 1029•000•000. That's certainly a big 
number. In a book of about 50 lines per page and 50 digits per line , that number 
would stretch out over more than 1 1 ,000 pages. That's a much larger number than 
the famed googol (10 100) , but it's still a finite integer. WinWord.exe is one of many 
possible executables that - like all the possible Turing Machines - tum up in 

1 1 Gregory J Chaitin, "How Real are Real Numbers?", Intemational]oumal of Bifurcation and Chaos, Vol 16 
(2006), 1841-1848 Repnnted in  Gregory J Chaitin, Thinking About Godel and Tunng Essays on Complexity, 

1970-2007 (World Scientific, 2007), 267-280 
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an enumeration of the integers, along with every other word processing program, 
even those that haven't yet been written. 

For future use, Turing finishes this section with a definition. 

A number which is a description number of a circle-free machine will be 
called a satisfactory number. In § 8 it is shown that there can be no general 
process for determining whether a given number is satisfactory or not. 

It's easy to determine whether a particular integer is a well-formed Description 
Number, but Turing is now asserting that there's no general process to determine 
whether a particular Description Number represents a circle-free machine and 
prints a continuing series of Os and ls like it's supposed to. There's no general 
process for determining whether the machine might scan a character it's not 
expecting, or gets into an infinite loop printing blanks, whether it crashes, bums, 
goes belly up, or ascends to the great bit bucket in the sky. 



Th e U n ive rsa l 
Mach i ne 

T
he machine that Turing describes in the next section of his paper is known 
today as the Universal Turing Machine, so called because it's the only 

machine we need. The individual computing machines presented earlier were not 
guaranteed to be implemented similarly or even to have interchangeable parts. 
This Universal Machine , however, can simulate other machines when supplied 
wnh their Standard Descriptions. The Universal Machine is, we would say today, 
programmable. 

6. The universal computing machine . 

It is possible to invent a single machine which can be used to com­
pute any computable sequence. If this machine · II is supplied with a tape 
on the beginning of which is written the S.D of some computing machine �1, 

[242] 

then ' I I  will compute the same sequence as .AL In this section I explain 
in outline the behaviour of the machine. The next section is devoted to 
giving the complete table for · I r .  

There's that script font again. Turing uses u\1 for an arbitrary machine and q( 
for the Universal Machine. 

When speaking of computer programs, it's common to refer to input and output. 
A program reads input and writes output. The machines described so far basically 
have no input because they begin wtth a blank tape. The machines generate output 
in the form of a sequence of Os and ls, temporarily interspersed, perhaps, with 
some other characters used as markers or a scratchpad. 

In contrast, the Universal Machine q( requires actual input, specifically a tape 
that contains the Standard Description of u\1 - the sequences of letters A, C, D, 
L, N, and R that describe all the configurations of u\1. The CU machine reads and 
interprets that Standard Description and prints the same output that u\1 would 
print. 
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But that's not entirely true: The output of qi will not be identical to the output 
of u\1. In the general case, there is no way that q( can perfectly mimic c.M. Machine 
c.M probably begins with a blank tape , but machine q( doesn't get a blank tape - it 
gets a tape with the Standard Description of c.M already on it. What happens if 
c.M doesn't quite follow Turing's conventions but instead writes output in both 
directions? Any attempt to emulate c.M precisely could easily result in writing over 
that Standard Description. 

Turing says that qi is supplied with a tape "on the beginning of which" is a 
Standard Description of machine c.M. A tape that is infinite in both directions does 
not have a "beginning. " Turing is implicitly restricting the output of q( to that pan 
of the tape after the Standard Description. 

If we limit our consideration to machines that print in only one direction (which 
is Turing's convention anyway) , can we write a Universal Machine that reads the 
Standard Description of the machine located at the beginning of a tape, and then 
exactly duplicates the output of the machine in the infinite blank area of the tape 
beyond that Standard Description? 

That doesn't seem likely either. Certainly this Universal Machine would require 
its own scratchpad area, so its output will be different from the machine that it's 
trying to emulate. Even if we require only that the Universal Machine duplicate the 
c.M machine's F-squares, that Universal Machine would probably be significantly 
more complex than the one that Turing describes. 

Turing doesn't guarantee that his Universal Machine will faithfully duplicate 
the output of the machine that it is emulating. He says only that "qi will com­
pute the same sequence as c.M." In reality , qi prints a lot of extra output in addition 
to this sequence. 

Turing approaches the design of the Universal Machine from a rather odd 
direction. 

Let us first suppose that we have a machine .)(' which will write down on 
the F-squares the successive complete configurations of .AL 

As you'll recall, a complete configuration is a "snapshot" of the tape after an 
operation has completed, together with the position of the head and the next 
m-configuration. The successive complete configurations provide an entire history 
of the operations of the machine. 

These might 
be expressed in the same form as on p. 235, using the second description, 
(C) ,  with all symbols on one line. 
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That's page 92 of this book, in the form that shows the information in a single 
stream: 

h : a a o O  O : a a q O 0 :  . . .  

In this notation the successive complete configurations are separated by colons. 
Within each complete configuration, the German letter representing the next 
m-configuration precedes the next scanned symbol. 

Or, better, we could transform this 
description (as in §5) by replacing each m-configuration by "D" followed 
by ''A" repeated the appropriate number of times, and by replacing each 
symbol by "D" followed by "C" repeated the appropriate number of 
times. The numbers of letters "A" and "C" are to agree with the numbers 
chosen in §5, so that, in particular, "O" is replaced by "DC", "1" by 
"DCC", and the blanks by "D''. 

Turing devised this Standard Description (as he called it) to encode the states 
of a machine. Now he is proposing to use it to represent the complete config­
urations. 

These substitutions are to be made 
after the complete configurations have been put together, as in (C). Diffi­
culties arise if we do the substitution first. 

1 think what Turing means here is that m-configurations and symbols will now 
be represented with multiple symbols (for example a 1 becomes DCC), so care 
must be taken to slip in the next m-configuration so that it doesn't break up the 
code for a symbol. 

In each complete configura­
tion the blanks would all have to be replaced by "D", so that the complete 
configuration would not be expressed as a finite sequence of symbols. 

The letter D represents a blank square. Turing doesn't want any breaks to appear 
in the complete configurations. He wants each complete configuration to be an 
unbroken series of letters. Turing's phrase, "so that the complete configuration 
would not be expressed as a finite sequence of letters," is not quite clear. I suggest 
the word "not" should be "now." Certainly he doesn't want an infinite series of D 
symbols to represent a blank tape. Each complete configuration is finite. 
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If in the description of the machine II of §3 we replace '\," by "DAA'', 
"a" by "DCCC", '\i" by "DAAA", then the sequence (C) becomes: 

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : . . .  (C 1 )  
(This i s  the sequence of symbols on F-squares. ) 

Turing's not mentioning all the substitutions he's making. He's also replacing b 
with DA, blanks with D, and Os with DC. 

The parenthetical comment refers to the output of the c.M.' machine that Turing 
is proposing. The normal c.M. machine prints Os and ls on F-squares and uses the 
E-squares for other symbols to help it in computing the Os and ls. The c.M.' machine 
prints the successive complete configurations of c.M. on F-squares and uses the 
E-squares to aid itself in constructing these successive complete configurations. 

The complete configurations represented in this way can be hard to read. As I've 
said before, it helps to take note of each D, which represents either a configuration 
or a symbol. 

• If the D is followed by one or more A's, it's a configuration. The configura­
tion number is the number of A's . 

• If the D is not followed by any A's, it's a symbol. The D in this case is fol­
lowed by zero or more Cs. D by itself is a blank, DC is a 0, DCC is a 1 ,  and 
more Cs indicate other symbols. 

It is not difficult to see that if ..,.\( can be constructed, then so can .,\(' .  
The manner of operation of_,.\(' could b e  made to depend on having the rules 
of operation (i.e. , the S.D) of )( written somewhere within itself (i.e. within 
,.\(' ); each step could be carried out by referring to these rules. 

This idea of c.M.' having the Standard Description of c.M. "written somewhere 
within itself' is an entirely new concept. Where is it written? How is it accessed? 
Turing is pursuing this c.M.' machine in a way that's distracting from his goal, 
although it does seem reasonable that c.M.' could be constructed. 

We have 
only to regard the rules as being capable of being taken out and ex­
changed for others and we have something very akin to the universal 
machine. 
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Ahh, now it becomes a little clearer. Turing said at the outset of this section that 
q( is supplied with a tape containing the Standard Description of c.At That's what 
"capable of being taken out and exchanged for others" means. We can give q( a tape 
containing the Standard Description of whatever machine we want q( to emulate. 

Conceptually, CU now seems almost, well, not exactly straightforward, but much 
less difficult. q( starts with a tape on which the Standard Description of c.M is 
printed. It is responsible for printing the successive complete configurations of c.M. 
The Standard Description and the complete configurations use the same encoding: 
Each complete configuration contains a sequence of letters, mostly indicating 
the symbols printed on the tape. Each complete configuration also includes a D 
followed by one or more A's indicating the next m-configuration preceding the 
scanned symbol, for example: 

DAAADCC 

This sequence of letters appearing in a complete configuration indicates that the 
next m-configuration is q3 and the next scanned symbol is a 1 .  Somewhere in the 
Standard Description of c.M is a sequence of letters matching these letters exactly. 
(If not, then something has gone wrong, and c.M is not circle-free.) All that q( 
needs to do to determine the next configuration is to find a match. When q( 
finds the matching configuration, it has immediate access to the configuration's 
operation - the symbol to be printed, a code indicating how to move the head, 
and the next m-configuration. q( must then create a new complete configuration 
based on the last complete configuration and incorporating the printed character 
and the next m-configuration. 

The Universal Machine might be easier to conceive if you consider that the 
first complete configuration of a machine's operation is trivial, and each step from 
one complete configuration to the next involves only a small change. It's really just 
a matter of comparing and copying symbols, and Turing has already defined an 
arsenal of m-functions that perform these very chores. 

For now he's still talking about c.M' rather than CU, and c.M' only prints the 
complete configurations of c.M. 

One thing is lacking : at present the machine vi-(' prints no figures. 

That's true. In all this excitement we've forgot that c.M' (or q() is only printing 
successive complete configurations of c.M on F-squares using letters A, C, and D 
and the colon separators, and it's probably using E-squares as a scratch pad. The 
real object of this game is to print Os and ls. 
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We 
may correct this by printing between each successive pair of complete 
configurations the figures which appear in the new configuration but not 
in the old. Then <C 1 )  becomes 

DDA : 0 : 0 : DCCCDCCCDAADCDDC : DCCC. . . .  (C2) 

It is not altogether obvious that the E-squares leave enough room for 
the necessary "rough work", but this is, in fact, the case. 

The extra D at the beginning of line (C2) is a typographical error. The only 
difference between (C2) and the beginning of (C1 )  should be the two Os and the 
colons. These are the result of the first operation, so they are printed after the first 
complete configuration. 

Turing wants u\1' (and qf) to print the same Os and ls that u\1 prints, because 
then it's possible to say that u\1' computes the same sequence as u\1. The only 
difference is that these digits will now be buried in the output between successive 
complete configurations of the machine. 

This is why Turing requires his machines to print the computed numbers 
consecutively, and to not change a number once it's been printed. Without this 
requirement, the numbers printed by u\1' (and q,f) would be a total jumble. 

Turing says that u\1' should print all figures (Os or ls) "which appear in the new 
configuration but not in the old." When you reduce a machine to the standard 
form (that is, only one printed symbol and one head movement per operation) , 
there are frequently occasions when the machine scans a 0 or 1 symbol on its 
way somewhere else. The machine must reprint the 0 or 1 in these cases. u\1' 
should ignore the times that u\1 prints a 0 or 1 over itself. u\1' (and, by implication, 
the Universal Machine) should print a 0 or 1 only when the scanned symbol is a 
blank. 

Turing concludes this section by suggesting that the complete configurations 
could be expressed in numerical form, but this is something he never uses: 

The sequences of letters between the colons in expressions such as 
(C 1 )  may be used as standard descriptions of the complete configurations. 
When the letters are replaced by figures, as in §5, we shall have a numerical 

(243) 

description of the complete configuration, which may be called its descrip­
tion number. 
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Now let's forget all about c.M' and start looking at CU . 
It is well known that Turing's description of the Universal Machine contains a 

few bugs. (It's quite surprising how few bugs it contains considering that Turing 
wasn't able to simulate it on a real computer.) In analyzing the Universal Machine, 
I am indebted to Emil Post's corrections1 and an analysis by Donald Davies.2 

Because the Universal Machine is so essential to Turing's arguments in the rest 
of his paper, he proves the existence of such a machine by actually constructing it 
in full, excruciating detail. Once you understand the basic mechanism, however, 
you might find these details to be rather tedious. No one will punish you if you 
don't assimilate every symbol and function in Turing's description. 

7. Detailed description of the universal machine . 

A table is given below of the behaviour of this universal machine. The 
m-configurations of which the machine is capable are all those occurring in 
the first and last columns of the table, together with all those which occur 
when we write out the unabbreviated tables of those which appear in the 
table in the form of m-functions. E.g. , r lann appears in the table and is an 
m-function. 

The m-configuration anf is part of Turing's Universal Machine. Towards the end 
of the machine, a particular configuration has e(anf) in its final m-config column. 
The skeleton table for e appears on page 239 of Turing's paper (and page 125 of 
this book) : 

e(�) { ;ot a 

R e1 (�) 

L e(�) 

{Any R, E, R e 1 (�) 

None � 

1 ln an appendix to the paper Emil Post, "Recursive Unsolvability of a Problem of Thue," The journal of 

Symbolic Logic, Vol. 12 , No I (Mar 1947) , 1-1 1 The entire paper is repnnted in Manin DaVJS, ed. ,  
The Undecidable (Raven Press, 1965), 293-303. The appendix is  repnnted in B jack Copeland, ed , The 

Essential Tunng (Oxford University Press, 2004). 97-101  
2Donald W Davies, "Corrections to  Tunng's Universal Computing Machine" in  C .  Jack Copeland, ed. ,  The 

Essential Tunng, 103- 124 Anyone interested in programming a simulation of the Universal Machine Wlll 
want to study Davies' paper 



1 50 The Annotated Turing 

Turing now shows the unabbreviated table when anf is substituted for <e:: 

Its unabbreviated table is (see p. 239) 

! : .• . 

R q (,mf) 
r(�nf ) 

L r( .mf ) 

!Any R, E, R  q ( ,mf) 
r 1 Cmf) 

None .mt 

Consequently q (,inf) is an m-configuration of i i .  

Turing begins by describing a tape encoded with the Standard Description of 
some machine. This is the tape the Universal Machine will read and interpret. 

When l !  is ready to start work the tape running through it bears on it 
the symbol a on an F-square and again a on the next E-square; after this, 
on F-squares only, comes the S.D of the machine followed by a double 
colon ": :" (a single symbol, on an F-square).  The S.D consists of a 
number of instructions, separated by semi-colons. 

That, by the way, is Turing's first use of the word instructions in this paper. The 
word is appropriate here because the configurations of the machines are now 
playing a different role; they have become instructions to the Universal Machine. 

Earlier (in Section 5 on page 140 of this book) Turing showed each configuration 
followed by a semicolon, however, the Universal Machine requires that each 
instruction begin with a semicolon. This is JUSt one of several little "bugs" in the 
description of the Universal Machine . 

To illustrate the workings of CU ,  let's supply it with a simple cfif. This machine 
is a simplified form of the machine that prints alternating Os and ls: 

symbol 

So 
So 

operations 

PS1 ,  R 

PS2 ,  R 

final m-config. 

qi 

q1 

This simplified machine has just two configurations rather than four and doesn't 
skip any squares. Here's a tape prepared in accordance with Tunng's directions, 
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but with the semicolons preceding each instruction . Because the tape is so long, 
I've shown it on two lines: 

l e l a l ; I l o l  I A I  l o l l o l l e i I R I l o l IA I I A I  

I ; I I D I I A I I A I I D I I D I I c I I c I I R I I D I I A I I :: I I 

The double colon separates the instructions of cM from the successive complete 
configurations of cM that CU will print. Turing reminds us how these instructions 
are coded: 

Each instruction consists of five consecutive parts 

( i l  "D" followed by a sequence of letters "A''. This describes the 
relevant m-configuration. 

At least one A must follow a D to signify an m-configuration; that is, the 
configurations begin at q1 and there is no qo . 

( i i ) "D" followed by a sequence of letters "C" .  This describes the 
scanned symbol . 

For symbols, a D by itself means a blank; a D with one C means 0, and with two 
Cs means 1 .  

( i i i )  "D" followed by another sequence of letters "C" .  This 
describes the symbol into which the scanned symbol is to be changed. 

(iv) "L", "R", or "N", describing whether the machine is to move 
to left, right, or not at all. 

(v) "D" followed by a sequence of letters "A". This describes the 
final m-configuration. 

The Universal Machine needs to print complete configurations, which re­
quire the letters A, C, and D, and it also needs to print the computable sequence, 
which is composed of Os and ls. The Universal Machine uses lower-case letters as 
markers in the E-squares. In summary: 

The machine 11 is to be capable of printing "A", "C", "D", "O", 
''1", ''u", "v", "'w"., "x", "y", "z" . 
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Turing forgot to include the colon (which separates the successive complete 
configurations) in this list . 

The S.D is formed from ";", 
"A", "C", "D", "L"', "R'', "N". 

Tunng next presents one last function that the Universal Machine requires. 

Subsidiary skeleton table . 

\t'll ( �· . ct ) 
{No: A R, R 

L, Pa, R 

Cl'll ! ( �- . Ci )  { A R,  Pct, R 

D R, Pct, R 

c0112 (�,  a )  {No� C 

R, Pa , R 

R, R 

CL'll(�, Ci )  
'''11 1 (�' , a )  

• 0 n 1  (0', a )  

(1'112( 0' , Ci )  

'"112(�, a )  

� 

(244) 

'"" ( �, a ). Starting from 
an .F-square, S say, the se­
quence C of symbols describ­
ing a configuration closest on 
the right of S is marked out 
with letters a. ---'> �- . 

•N? (�,  ) . In the final con­
figuration the machine is 
scanning the square which is 
four squares to the right of the 
last square of C. C is left 
unmarked. 

The m-function con stands for "configuration," and it's missing a line3 : 

con 1 (@:, a) None PD, R, Pa , R, R, R @: 

We'll see how this missing line comes into play shortly. 
The job of the con function is to mark a configuration with the symbol given 

as the second argument. Suppose the head is on the semicolon preceding an 
instruction: 

1 e I e I ; I I 0 1  I A I  I 0 1  I 0 1  I c I I R I  l o I I A I  I A I  

CJ 1 0 1  I A I  I A I  I 0 1  I o l I c I I c I I R  I l o I I A I  I : : I I 

The con function moves right two squares at a time until it encounters an A. It 
prints an a to the left of the A. The con1 function continues printing markers to 
the right of each A until it encounters a D. It prints a marker to the right of that 

3 As suggested by Post, "Recursive Unsolvabihty of a Problem of Thue," 7 
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D as well and then goes to con2 . The con2 function prints markers to the right of 
each C (if any) . For this example , there are no C's in the configuration because the 
scanned square is a blank, so the result is: 

l a l a l ;  I l o l  I A I  l o l  l o l  l c l  I R I l o l  I A I  I A I  

I ; I I 0 I a I A I a I A I a I 0 I a I 0 I [[I I C I I R I I 0 I I A I I :: I I 
The explanatory paragraphs in the skeleton table for con are a bit confusing 

because Turing uses the letter C to stand for a whole sequence of symbols defining 
a configuration, and the same letter is part of the Standard Description. The 
first sentence of the second paragraph (beginning "ln the final configuration") 
indicates that the head is left four squares to the right of the last square of the 
configuration (that is, the last square of the scanned character) . The sentence "C is 
left unmarked" meaning 'The configuration is left unmarked" applies only when 
the second argument to con is blank. 

The description of the Universal Machine occupies just two pages in Turing's 
paper. Turing has previously defined his m-functions with such skill that in many 
cases, the m-configurations of CU simply refer to a particular function. As usual, 
the machine begins with m-configuration h: 

The table for I f .  

b1  R,  R,  P:, R ,  R,  PD, R, R, PA ,rnf 
l• . The machine prints 

: DA on the F-squares after 
: :  � ,mf. 

The m-function f finds the double colon that separates the instructions from the 
complete configurations. As you'll recall, each complete configuration shows all 
the symbols on the tape, with the m-configuration preceding the scanned square. 
When a machine begins, the first m-configuration is q1 , which has a Standard 
Description of DA. That's what b1 prints, starting with a colon that will delimit 
each complete configuration: 

1 e I a I : I I 0 I I A l  i o i i o i i c i i R i I 0 I I A I  i A I  

I : I i 0 i I A i  j A j  i 0 i I o  i I c i i c I I R  I I o  I I A I  I : : I 

I :  I I D  I I A i  i . . .  

The next m-configuration of CU is anf, which Donald DaVIes suggests stands 
for anf ang, the German word for beginning. The g function in the first line was 
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mistakenly indicated as q in the tables of functions. It searches for the last 
occurrence of its second argument: 

mtf 9(anh , : ) 
rnn( fom, y) 

anf. The machine marks 
the configuration in the last 
complete configuration with 
y. � fom. 

After g finds the colon (which precedes the current complete configuration) , con 
marks the m-configuration with the letter y. The additional line I've added to con1 
also comes into play: It prints a D (representing a blank square) and marks that 
square as well : 

I e I e I : I 1 0 1  I A I  I 0 I I D  I I c I I R I 1 0 1  I A I  I A I  

I : I I 0 I I A I  I A I  I 0 I I 0 I I c I I c I I R I I 0 I I A I I :: I 

I : I l o l y l A l y l O I Y I  . . .  

Whenever con is marking an m-configuration in a complete configuration and 
comes to a blank square when it is expecting to find a D that represents the 
scanned symbol, con1 prints a D. This is how the tape gets progressively longer as 
more squares are required. 

Now the machine must locate the instruction whose configuration matches 
the symbols in the complete configuration marked with y.  There are multiple 
instructions, of course, but they are easy to locate because each one is preceded 
by a semicolon. These instructions are tested starting with the last instruction 
and working towards the beginning. The m-configuration eom looks like f om but 
is actually kom, possibly one of several abbreviations meant to suggest the word 
compare. 

R, Pz, L 

L, L 

L 

•e>n( frnp, x) 
fe>rn 
fom 

forn. The machine finds 
the last semi-colon not 
marked with z. It marks 
this semi-colon with z and 
the configuration following 
it with x .  
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The first time through, tom finds the last (rightmost) instruction, prints a z 
followmg the semicolon, and then marks the configuration that follows using con . 

I e J e i ; I I D I I A I  1 0 1 I D I I c I I R  I I D I I A I  I A I 

I ; J z l o l x l A l x l A l x l o l x l o l  I c I I c I I R I I D I I A I  I == I 
I =  I I D I Y I A I Y I D I Y I  . . . 

The z marker indicates that this instruction has been checked. On subsequent 
attempts to find a match, tom skips past all semicolons previously marked 
with z. 

The m-configuration tmp (another abbreviation for compare?) uses cpe to com­
pare the configuration marked x (which is the m-configuration and scanned symbol 
of an instruction) and the configuration markedy (which is current m-configuration 
and scanned symbol indicated in the complete configuration): 

fmp •pr(r(fom, x, y), l'im, x, y) fmp. The machine com­
pares the sequences marked 
x and y. It erases all letters 
x and y. � >iim if they are 
alike. Otherwise � fl'ni. 

The cpe function erases the markers as it compares the letters marked with those 
markers. If there's a match, then all the x and y markers have been erased, and we 
head to mm (meaning similar) . 

If the configurations marked x and y do not match (as they won't in our 
example), then the first argument of cpe takes over, which is an e (erase) function 
that erases all the remaining x and y markers and eventually retreats to tom to try 
the next instruction. 

A little problem with the tmp function is that Turing never defined a version of e 
that has one m-configuration argument and two symbol arguments. Moreover, he 
can't go back to tom because some or all of the y markers have been erased by cpe. 
He really needs to go back to anf to mark the configuration again. Donald Davies 
suggests that the instruction should really read: 

tmp cpe( e(e(anf, x), y) ,  mm, x,y) 
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In our example, anf1 will re-mark the m-configuration and scanned sym­
bol in the complete configuration, and tom will mark the next instruction (working 
backwards through the instructions): 

l a l e l ; l z l o l x l A l x l o l x l o l  I c I I R I I D  I I A I  I A I  

I ; I z I D  I I A l  I A  I I D  I I D  I I c I I c I I R  I I D  I I A I  I :: I 

I : I 10 I Y I A l y l D I Y I  . . .  

This time, the cpe function invoked by tmp will detect a match and head to eim. 
All the x and y markers will be gone, but the z markers remain. The leftmost z 
marker precedes the instruction that CU must carry out. Turing summarizes the 
progress so far: 

anf. Taking the long view, the last instruction relevant to the last 
configuration is found. It can be recognised afterwards as the instruction 
following the last semi-colon marked z. � <'im. 

Actually, it's the first (leftmost) semicolon marked z, but the last instruction 
tested. The m-configuration eim begins by using f to find that marker and position 
itself at the semicolon preceding the instruction. As you'll recall ,  the instruction 
has five parts: The m-configuration, the scanned symbol, the symbol to print, an 
L, N, or R, and the final m-configuration. 

£-im 
0im 1 

,jim2 { no:A 

£-'im3 { no�A 

f' (.-'in11 , •'tm1 , z) 
con(.-·im2, ) 

,,im3 
R, Pu, R, R, R .:-·im2 

L, Py r(rnP, z) 

L, Py, R, R, R .-ima 

[245] 

0im. The machine marks out 
the instructions. That part of 
the instructions which refers to 
operations to be carried out is 
marked with u, and the final m­
configuration with y. The let­
ters z are erased. 

The m-configuration 9'im1 refers to the con function with a blank second 
argument. This essentially skips past the m-configuration and the scanned symbol, 
putting the head at the second character of the print operation. 
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I a I a I ; I z I D  I I A I  1 0 1 I D  I I]] I R  I I D  I I A I  I A i  

I ;  I l o l  I A I  I A I  I D  I I D  I I c I I c I I R I  I D  I I A I  I : : I 

I :  I 1 0 1  I A I  I D  I I . . .  

The second line for m-configuration eim2 is incorrect: Emil Post suggests it 
should move the head left before printing a u. The two m-configurations 0'im2 and 
eim3 mark the operation (the symbol to be printed and the head-movement letter) 
and the next m-configuration. The e function erases the z marker before heading 
to mt. 

I a I a I ; I I D  I I A I  I o l  l o l u l c l u l R l u l o l y l A l y l A I Y I 

I ;  I I D  I I A I  I A I  1 0 1  I D I  I c I I c I I R  I 1 0 1 I A I  I :: I 

I :  I I o l  I A I  I D  I I . . .  

The m-configuration mf (which looks like mf but is actually mk and perhaps 
stands for mark) now marks the last complete configuration. The first argument 
to the g function (which is mistakenly q in the tables of functions) should be mf1 
rather than mf. 

rnf {no

A

t A  
mf1 

mf2 I CD {not

:

: 
rnf3 

mf.i 

rnf5 
{Any 

None 

R, R 

L, L, L, L  

R, Px, L, L, L 

R, Px, L, L, L 

9(rnf, : )  

R, Pv, L, L, L 

R, Pw, R 

P :  

rnn( l (l(rnf5 )) , ) 

mf5 

tih 

mf. The last complete con­
figuration is marked out into 
four sections. The configura­
tion is left unmarked. The 
symbol directly preceding it is 
marked with x. The remainder 
of the complete configuration 
is divided into two parts, of 
which the first is marked with 
v and the last with w. A colon is 
printed after the whole. � ... 11. 

The m-configuration mf uses g to find the rightmost colon. That colon pre­
cedes the last complete configuration. The complete configuration is on F-squares 
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and, in general, consists mostly of D's followed by zero or more Cs, each of which 
represents a symbol on the tape. Buried somewhere within these symbols is an 
m-configuration, which is a D followed by one or more A's. 

The m-configuration mf1 looks for the m-configuration buried within the 
complete configuration. When it finds an A, it moves the head left to the last 
symbol of the square that precedes the m-configuration. That square is marked 
with x. Then, mb has the job of marking all the preceding characters with v. 

When mf3 gets to the colon, mt4 takes over. It uses con to skip over the 
m-configuration and the scanned character. It stops when it finds something other 
than a C. Except for the scanned character, the other symbols are marked with w. 
Finally, mt5 prints a colon. 

Here's a complete configuration that's a bit more complex than the simple 
example we've been looking at: 

I :  I l o l l e i  l o l l o l  I A I  l o l  l e i  l o l  l o l  l e i  I I I ... 

This complete configuration represents a tape starting with a 0 (DC) and a blank 
(D) . The next square is the scanned square, indicated by the configuration q1 (DA) . 
The scanned square is a 0 (DC) , which is followed by a blank (D) and a 0 (DC) . 
When mf is through with this, it looks like this: 

I :  I l o l v l c l v l o l x l o l I A I  l o l  l e i  J o l w l o l w l c l w l : I I ... 

The only thing unmarked is the configuration (which consists of the 
m-configuration DA and the scanned symbol DC) . 

In our much simpler example, there are no symbols to the left of the 
m-configuration and no symbols to the right of the scanned square, so the v, 
x, and w markers don't play a role: 

I a I a I ; I I D  I I A l  l o l  l o l u i c i u i R i u l o l y l A I Y I A I Y I  

I : I I D  I I A I  I A I  I D  I I D  I I c I I c I I R  I I D  I I A I  I : :  I 

I :  I I D  I I A I  l o l  I : I I ... 

Everything is now marked. The operation and final m-configuration of the 
instruction is marked with u and y, and portions of the complete configuration are 
marked with v, x, and w. 

The Universal Machine needs to print a 0 or 1 if the instruction is printing a 
0 or 1 except in those cases when a machine reprints a 0 and 1 because it's just 
scanned a 0 or 1 .  The Universal Machine should print a 0 or 1 only if the scanned 
square is blank. That's the job of e'f, (which may stand for show) . 



"h 

"h l 

"h2 { n:D 

''h3 { no�C 

''h4 { no�C 

"h5 {no�C 

L, L, L 

R, R, R, R 

R, R 

R, R 

f("h 1 ,  m"r, u )  

"h2 

"h2 
llll't 

"h4 

lf1"t 

"h5 
pr2 ( in"t, 0, : )  

l tl"t 

pr2( m"t ,  1, : )  
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,,h_ The instructions (marked 
u)  are examined. If  i t  is found 
that they involve "Print O" or 
"Print l" ' then 0 :  or 1 :  is 
printed at the end. 

First, 0ii locates the leftmost u marker, and 9'h1 moves the head left three places 
to be positioned over the last symbol representing the scanned square. That symbol 
will be a D if the scanned square is a blank. If it's not D, then the rest of these 
m-configurations are skipped by heading to inel:. 

If the scanned character is a blank, then eii2 goes to 0lJ3 (not 9'fi2 as the table indi­
cates) and then 01,3 ,  ei,4 ,  and ef,5 check if the printed instruction is DC (to print 0) 
or DCC (print 1) .  If so, then pe2 prints that figure and a colon at the end of the 
tape. The example tape now looks like this: 

I a I a I ; I I D I I A l I D  I l o l u l c l u l R l u l o l y l A I Y I A I Y I 

I :  I I D I  I A I  I A I  I D  I I D  I I c I I c I I R  I 1 0 1 I A I  I : : I 
I : I I D  I I A I  I D  I I : I I o  I I : I I . . .  

The ei) section of  the table is obviously simplified by the use of  binary numbers 
rather than decimal. Decimal numbers would require eight more m-configurations 
(e'IJ6 through ei,13) to print digits 2 through 9. 

Whether a 0 or 1 ,  or neither, is printed, the Universal Machine goes to inel: 
(which may stand for instruction but perhaps instigate is more descriptive). The last 
remainingjob is to render the next complete configuration of cM. The next complete 
configuration includes all the symbols in the current configuration marked x, v, 
and w because those symbols will remain unchanged. The m-configuration and 
the scanned square , however, will be replaced. They will be replaced with the 
m-configuration marked y and the symbol marked with u .  
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The inel table has another reference to the g function that was defined originally 
as q. Also, the ec5 function on the fifth line should be ces like the third and fourth 
lines. 

l ll\'t 
llh'tl a 

i 1 1.:-t 1 (L)  

111.:-t1 (R) 

tn.:-t 1 (N) 

l'\.' 

11 ( l( tn.:-t1 ), u ) 
R, E 1 11.-t1 (a)  

•r5 < c't', v, y, x, u,  w) 

•rs ( ,'l'. v , x ,  u , y, w)  

r•5 ( N.',  v , x, y, u ,  w)  

r�.rnf) 

1246] 

1 11.:-r. The next complete 
configuration is written down, 
carrying out the marked instruc­
tions. The letters u, v, w, x, y 
are erased. � .inf. 

The function ce5 wasn't actually defined, nor was ce4 . Basing them on ce3 we can 
easily create them: 

ce4 ('iS, a, {J ,  y ,  c5) 
ces ('iS, a, fJ , y ,  c5 ,  e) 

ce(ce3 ('iS, fJ, y ,  c5) ,  a) 

ce(ce4 ('iS, {J, y ,  c5, e), a) 
The ce5 function sequentially copies symbols marked a to the end of the tape, 

then symbols marked fJ, and so forth, erasing the markers in the process. 
The m-configuration inel refers to g, which goes to the rightmost symbol marked 

u; that symbol is L, R, or N .  The m-configuration inel1 scans that symbol , erases 
it, and then goes to in0l 1 (L) , inet1 (R) , or inel1 (N) depending on the symbol. It's 
clear what Turing wants to do here , but I really must protest the introduction of a 
new syntax at this point in the machine , particularly when it's not necessary. Let's 
replace the entire in0l1 configuration with the following: 

1 :  
R, E ces (ou, v,y, x, u, w) 

in0't1 R, E ces (ou, v, x, u ,y,  w) 

R, E ces (ou, v, x,y,  u, w) 

In all three cases, the squares marked v are copied to the end of the tape 
first, and those marked w are copied last . The symbols marked v are all those on 
the left part of the complete configuration up to (and not including) the square 
to the left of the scanned square. That square is marked x. The symbols marked w 
are all those to the right of the scanned square. 
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The three copies in the middle of ce5 depend on whether the head is movmg 
left, right, or not at all. The order is: 

Left: Next m-configuration I Symbol left of head I Printed symbol. 
Right: Symbol left of head I Printed symbol I Next m-configuration. 
None: Symbol left of head I Next m-configuration I Printed symbol. 

For example, if the head is moving left, then the next m-configuration is inserted 
before the square to the left of the previous head position. If the head is moving 
right, the next m-configuration is to the nght of the pnnted symbol. 

Each of the ce5 functions goes to ob (which probably stands for over). The e 
function erases all E-squares, and goes to anf for the next move. Our tape now 
looks like this: 

I e I a I ; I l o l  I A I  I 0 1  I o l  I c I I R I  I o l  I A I  I A I  

I :  I 1 0 1  I A I  I A I  I o l  I 0 1  I c I I c l  I R  I I o l  I A I  I : : I 

I :  I 1 0 1  I A I  I o l  I : I I o  I I : I I o l  I c I I 0 I I A I  I A I  

The second complete configuration contains the symbols DC (meaning O) 
followed by DAA, which indicates the new m-configuration q2 . 

The Universal Machine as Turing has defined it has a few limitations. It cannot 
emulate just any general Turing Machine. It won't work right with any machine 
that moves its head anywhere left of its initial position because it has no way 
of inserting blanks to the left of the complete configurations. (Indeed, the 
process of inserting blanks to the right is something that Turing omitted in 
the con function.) The Universal Machine also works correctly only with machines 
that replace blanks with Os or ls and do so in a uniform left-to-nght manner. The 
Universal Machine can handle machines that perform otherwise, but it won't print 
the correct sequence of Os and ls. 

Despite these limitations, and the little misprints and bugs, Turing has done 
something quite extraordinary. He has demonstrated the generality of computation 
by showing that a single universal machine can be suitably programmed to carry 
out the operation of any computing machine . Says one acclaimed book on 
computability: "Tunng's theorem on the existence of a universal Turing machine 
[is] one of the intellectual landmarks of the last century."4 

All of which prompts the question: 
Did Alan Turing invent the computer? 

4John P Burgess, preface, in George S Boolos, John P Burgess, and Richard C Jeffrey, Computability and 

Logic, fourth edition (Cambndge University Press, 2002), xi 
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B
y imagining a computing machine that does almost nothing, Turing was 
actually conceiving a very versatile "general purpose" computer. This was a 

revolutionary concept. The common assumption at the time was that computers 
would be designed specifically for particular types of jobs. The early analog com­
puter known as the Differential Analyzer (designed and built by M. l.T. professor 
Vannevar Bush and his students in the 1920s) exemplified this approach. The 
Differential Analyzer did something very important - solve ordinary differential 
equations - but that was all it did. 

Even people deeply involved in building digital computers often didn't grasp the 
generality of digital logic. Howard Aiken, for example, was one of the computer's 
true pioneers and had been working with digital computers since 1937. Yet, in 
1956 Aiken said: 

[ I ] f  it should turn out that the basic logics of a machine designed 
for the numerical solution of differential equations coincide with 
the logics of a machine intended to make bills for a department 
store, I would regard this as the most amazing coincidence I 
have ever encountered. 1 

Turing, who visualized the computer as a logic machine, knew better. While 
most early computer builders thought in terms of hardware , Turing had been 
writing software since 1936. To Turing, even basic arithmetical operations like 
addition could be achieved in software . Compare Aiken's 1956 statement with 
what Turing wrote in 1950: 

This special property of digital computers, that they can mimic 
any discrete state machine, is described by saying that they are 

1 Paul Ceruzzi, Reckoners· The Prehistory of the Digital Computer, from Relays to the Stored Program Concept, 

1 935-1 945 (Greenwood Press, 1983), 43 Ceruzzi's source is Howard Aiken, "The Future of Automatic 
Computing Machinery;· Elektronische Rechenanlage und Informationsverarbeitung (Darmstadt, 1956), 33 
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universal machines. The existence of machines with this property 
has the important consequence that, considerations of speed 
apart, it is unnecessary to design various new machines to do 
various computing processes. They can all be done with one 
digital computer, suitably programmed for each case. It will be 
seen that as a consequence of this all digital computers are in a 
sense equivalent. 2 

Turing includes the important qualification "considerations of speed apart." 
Some would argue that where computers are involved, speed isn't everything; 
it's the only thing. Whenever people want specialized computers - for example, 
to do computer-generated imagery (CGI) for a multimillion dollar Hollywood 
blockbuster - speed is usually a primary consideration, and beefed-up memory 
capacity doesn't hurt either. In actual number-crunching capabilities, however, all 
digital computers are universal. 

Alan Turing's status in the general history of computing has never been 
quite clear. In one standard history3 he barely merits mention, but when an 
eminent mathematician writes a history that treats the computer as a physical 
embodiment of mathematical concepts,4 Turing becomes a principal player. How 
Turing fares in the computing history books really depends on whether the 
computer is approached from an engineering and commercial perspective, or from 
a mathematical and academic one. 

One intriguing role that Turing played involves his relationship with john 
von Neumann. The two men first met in April 1935 when von Neumann came 
from Princeton to Cambridge to deliver a lecture course on almost-periodic func­
tions. Soon after that, Turing decided he wanted to go to Princeton University 
himself. 5 They had contact again when Turing got to Princeton in the fall of 
1936.6 Von Neumann once claimed to have stopped reading papers in mathemat­
ical logic following the Godel Incompleteness Theorem,7 so it's not clear when 
von Neumann actually read "On Computable Numbers." The two mathemati­
cians had other common mathematical interests (almost-periodic functions and 
group theory) , and those are the subjects mentioned in von Neumann's letter of 
June 1 ,  1937, recommending Turing for a Procter Fellowship for his second year 
at Princeton. 

2 Alan Tunng, "Computing Machinery and Intelligence," Mind, Vol LIX, No 236 (October 1950), 
441-2. 
3Martin Campbell-Kelly and William Aspray, Computer· A History of the Information Machine (Basic Books, 
1996) 
4Martin DaVJs, The Universal Computer· The Road from Leibniz to Turing (Norton, 2000) 
5 Andrew Hodges, Alan Tunng The Enigma (Simon & Schuster, 1983), p 95 
6Hodges, Alan T unng, 1 18 
7Hodges, Alan Tunng, 124 
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Before Turing left Princeton in July 1938, von Neumann offered him a job at the 
Institute for Advanced Study as his assistant for $ 1 ,500 a year, but Turing turned 
down the offer. By that time, von Neumann had almost certainly read Turing's 
paper. For his biography of Turing, Andrew Hodges queried physicist Stanislaw 
Ulam (who was also at the IAS) on von Neumann's estimation of Turing. (Von 
Neumann himself died in 1957 at the age of 53.)  Ulam recalled traveling with 
von Neumann in the summer of 1938, when von Neumann suggested a game of 

writing down on a piece of paper as big a number as we could, 
defining it by a method which indeed has something to do with 
some schemata of Turing's . . . .  von Neumann had great admi­
ration for him and mentioned his name and "brilliant ideas" to 
me already, I believe , in early 1939 . . . . At any rate von Neu­
mann mentioned to me Turing's name several times in 1939 in 
conversations, concerning mechanical ways to develop formal 
mathematical systems. 8 

These early points of contact between Turing and von Neumann become 
suddenly important in September 1944 when von Neumann arrived at the Moore 
School of Electrical Engineering of the University of Pennsylvania. Already under 
construction was a computer called the ENIAC (Electronic Numerical Integrator 
and Computer) , a 30-ton behemoth designed under the supervision of John 
Presper Eckert (1919- 1995) and John William Mauchly ( 1907- 1980) . Even as it 
was being constructed, the limitations of the ENIAC had become apparent and 
a successor was planned, to be called the EDVAC (Electronic Discrete Variable 
Automatic Computer) . 

From the beginning, von Neumann's perspective was not simply 
that of a potential user, but of a scientific and technical contnb­
utor as well. In the remaining months of 1944 and throughout 
1945, when he was not at Los Alamos, he took time to attend 
technical conferences on the EDVAC and to make technical con­
tributions and suggestions on logic design.9 

Yet, when a document appeared dated June 30, 1945, entitled "First Draft of a 
Report on the EDVAC"10 with John von Neumann as the sole author, a controversy 
was ignited, and the smoke has yet to clear. The report emphasizes important 

8Hodges, Alan Tunng, 145 

9Nancy Stem, "john von Neumann's Influence on Electronic Digna! Computing, 1944-1946," Annals of 

the History of Computing, Vol 2 No 4 (October 1980), 353 

10Repnnted in Bnan Randell, ed . The Ongins of Digital Computers (Spnnger, 1973) 
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concepts - that the computer should be electronic, that it should work with 
binary numbers, and that programs should be stored in memory - but it's never 
been fully determined whether von Neumann originated these concepts or if he 
simply articulated ideas that that had been floating around the Moore School since 
the ENIAC days. For decades, people have referred to "von Neumann architecture" 
when describing digital computers, but this term is slipping out of use, partially 
out of respect for those many others who contributed to concepts of computer 
architecture. 

The "First Draft of a Report on the EDV AC' makes reference to just one other 
publication: a paper entitled "A Logical Calculus of the Ideas Immanent in Nervous 
Activity" published in the Bulletin of Mathematical Biophysics. 1 1 This reference 
reveals von Neumann's interest in the relationship between the computer and the 
human brain, but it's also interesting that the authors of this paper had based 
their concepts of the physiology of the brain on the functions of Turing Machines. 
The McCulloch and Pitts paper is also cited by Norbert Wiener (1894- 1964) in 
his classic book Cybernetics, or Control and Communication in the Animal and the 
Machine ( 1948) . I'll have more to say about McCulloch, Pitts, Wiener, and von 
Neumann in Chapter 17 .  

The physicist Stanley Frankel, who worked with von Neumann at Los 
Alamos, remembers von Neumann's enthusiasm about Turing's paper in 1943 
or 1944: 

Von Neumann introduced me to that paper and at his urging I 
studied it with care. Many people have acclaimed von Neumann 
as the 'father of the computer' (in a modern sense of the term) 
but I am sure that he would never have made that mistake him­
self. He might well be called the midwife, perhaps, but he firmly 
emphasized to me, and to others I am sure, that the fundamen­
tal conception is owing to Turing - insofar as not anticipated 
by Babbage, Lovelace, and others. In my view von Neumann's 
essential role was in making the world aware of these fundamen­
tal concepts introduced by Turing and of the development work 
carried out in the Moore school and elsewhere. 12 

Throughout the latter 1940s, von Neumann seems to have mentioned the 
importance of Turing to several people. For example, in 1946, he wrote to Norbert 

1 1  W S MacCulloch and W Pitts, "A Logical Calculus of the Ideas Immanent in Nervous ActiVlty ." Bulletin 

of Mathematical Biophysics, Vol 5 ( 1943), 1 1 5- 133 

1 2Letter quoted in B. jack Copeland, ed , The Essential Turing· The Ideas that Gave Birth to the Computer 

Age (Oxford University Press, 2004). 22 This letter is pan of a 6-page section on "Tunng, von 
Neumann, and the Computer" in Copeland's guide to the "Computable Numbers" paper 
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Wiener of "the great positive contribution of Turing . . .  one , definite mechanism 
can be 'universal."' 1 3  

Although Alan Turing is remembered mostly for his writings, his name is also 
linked to three major computer projects. 

The first was the Colossus, a code-breaking computer developed and built at 
Bletchley Park in 1943. It was designed by Max Newman, the mathematician who 
had taught the Foundation of Mathematics class that inspired Turing to write "On 
Computable Numbers" and had guided the paper to publication, and who had 
been at Bletchley Park since the summer of 1942. Although some writers have 
assumed that Turing was involved in the Colossus project, 14 it appears he was 
not. He knew about it, of course, but he "declined the invitation to take a direct 
part."15 Nevertheless, the influence of Turing's paper on the logical design of the 
Colossus was clearly acknowledged. 16 

Turing was much more involved in a computer project at the National Physical 
Laboratory (NPL) at Teddington in southwest London. In 1944 the director of 
NPL was Sir Charles Darwin (1887- 1962), whose grandfather had published some 
influential books on biology. Darwin created a Mathematics Division which was 
given the job of developing automated computing machines. 

]. R. Womersley, the head of the Mathematics Division, summoned Turing to 
NPL for an interview in June 1945. 17 Womersley had read "On Computable Num­
bers" and wanted Turing to design a computer called the Automatic Computing 
Engine , or ACE, and if the word "engine" evoked memories of Charles Babbage, 
that was deliberate. 

Turing, having read von Neumann's EDVAC Report and having a few ideas 
about computers of his own, finished the "Proposal for Development in the 
Mathematics Division of an Automatic Computing Engine (or ACE)" before the 
end of 1945. Turing's report says that it "gives a fairly complete account of 
the proposed calculator" but recommends that it "be read in conjunction with J .  
von Neumann's 'Report on the EDVAC." 18 

Turing's proposed machine was electronic, used binary numbers, and had a 
1 megahertz clock rate, although bits were transferred serially. It used mercury 
delay line storage, which stored bits as acoustic pulses in tubes of mercury. 

1 3B. Jack Copeland and Diane Proudfoot, "Tunng and the Computer" in B. Jack Copeland, ed , Alan 

Tunng's Automatic Computing Engme The Master Codebreaker's StnLggle to Build the Modem Computer (Oxford 
University Press, 2005), 1 16 

1 4Myself included in Charles Petzold, Code- The Hidden Language of Computer Hardware and Software 

(Microsoft Press, 1999), 244 
1 'Hodges, Alan Tunng, 268 

16Hodges, Alan Tunng, 554 (note 5 7) 
1 7 Introduction to B.E Carpenter and R W Doran, A.M Tunng's ACE Report of 1 946 and Other Papers (MIT 
Press, 1986), 5-6 
18ACE Report, 2 1 .  
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A five-foot tube of mercury could store 1 ,024 bits. Each bit required about a 
millisecond to travel from one end of the tube to the other, whereupon it could be 
accessed and recycled to the beginning of the tube. Turing expected an addition of 
two 32-bit numbers to require 32 microseconds (that's one bit per clock cycle) and 
a 32-bit multiplication to require "rather over two milliseconds."19 

Turing's design has a fairly small number of primitive instructions, mostly 
transfers between memory and registers. In this sense it resembles modem Reduced 
Instruction Set Computers (RISC), which incorporate fast hardware and do more 
complex jobs in software. Turing seems to have invented the stack - eventually a 
common form of computer storage analogous to the stack of plates in a cafeteria 
held aloft in a well by a spring. The last plate "pushed" on the stack becomes the 
next plate "popped" from the stack. Turing's routines for these two operations are 
called BURY and UNBURY.20 

Turing presented a more personal vision of computing in a lecture to the 
London Mathematical Society on February 20, 1947. " [C]omputing machines 
such as the ACE . . .  are in fact practical versions of the universal machine." The 
complexity of the job the machine must do "is concentrated on the tape" - that 
is, in software - "and does not appear in the universal machine proper in any 
way."2 1  Turing recognized the importance of speed in the computer, of course, 
but he tended to emphasize the advantages of large storage: 

I believe that the provision of proper storage is the key to the 
problem of the digital computer, and certainly if they are to be 
persuaded to show any sort of genuine intelligence much larger 
capacities than are yet available must be provided. In my opinion 
this problem of making a large memory available at reasonably 
short notice is much more important than that of doing opera­
tions such as multiplication at high speed. 22 

As might be expected, Turing clearly recognized the advantages of binary numbers 
over decimal: 

Binary working is the most natural thing to do with any large 
scale computer. It is much easier to work in the scale of two than 
any other, because it is so easy to produce mechanisms which 
have two positions of stability.23 

19ACE Report, 1 1 6  
20 ACE Report. 76 
2 1ACE Report, 1 1 2- 1 1 3 
22ACE Report, 1 1 2 
23 ACE Report, 1 1 3- 1 1 4  
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Towards the end of the talk, Turing speculated about machines that can modify 
their own instruction tables: 

It would be like a pupil who had learnt much from his master, 
but had added much more by his own work. When this hap­
pens I feel that one is obliged to regard the machine as showing 
intelligence . 24 

By September 194 7, Turing was feeling frustrated about the lack of progress 
being made on the ACE. He requested a year's sabbatical at half pay and departed 
to Cambridge. The expectation at NPL was that he would return for at least another 
two years, but that never happened. (The Pilot ACE wasn't ready until 1950, and 
it deviated quite a bit from Turing's original proposal.) 

Instead, Turing went to join Max Newman, who had been at the University 
of Manchester since 1945. Newman had obtained a grant for a new Computing 
Machine Laboratory and was building a computer called the Mark I. In June 1 948, 
the Mark I became "the first EDVAC-type electronic stored-program computer to 
be completed."25 

Turing joined the Manchester mathematics faculty and Newman's project in 
September. Two months later, an arrangement was reached with Ferranti Limited,  
a Manchester manufacturer of electronics, to develop a machine that Ferranti 
would market commercially. 

Turing was mostly responsible for the programming aspects of the 
Mark I. Around 195 1 ,  Turing was given the job of writing the first "Programmers' 
Handbook" for the production machine, in which Turing defined programming as 
"an activity by which a digital computer is made to do a man's will, by expressing 
this will suitably on punched tapes. "26 

Rather than mercury delay lines, the Mark I used cathode ray tubes for storage. 
This type of storage - often called the Williams Tube - was pioneered by 
F. C. Williams, who had come to Manchester in December 1946. The data to be 
stored is sent to the CRT as electrical pulses, where it is displayed on the screen 
as an array of dots, each representing one bit. A different intensity or size of 
the dots distinguishes between 0 and 1 .  A metal plate in front of the tube picks 
up the charges from these dots and allows the tube to be refreshed or read. A 
second CRT would allow people to view the dots and examine the data. By 194 7, 
each CRT was capable of storing 2 ,048 bits. 

24ACE Report, 123 

25Manin Campbell-Kelly, "Programming the Mark I Early Programming Activity at  the University of 
Manchester," Annals of the History of Computing, Vol 2 ,  No 2 (Apnl 1980), 134 

26Campbell-Kelly, "Programming the Mark !", 147 The handbook is available at 
www alantunng net/tunng_archive/archive/index/manchestenndex html 
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The Mark I stored data in 40-bit words, which could also store two 20-bit 
instructions. These words were displayed on the CRTs in 5-bit groups, and 
so a base-32 notation developed where each 5-bit code was represented by 
the teleprinter character corresponding to that code . To read a number, it was 
necessary to know the code corresponding to each character. These character codes 
were not in alphabetical order, so following Turing's gallant lead, everybody who 
programmed for the Mark I was forced to memorize the 32-character sequence: 

/E@A:SIU i DRJNFCKTZLWHYPQOBG"MXV£ 

Turing's involvement in these actual computer projects may cause us to 
lose sight of the simple fact that Turing's intent in his "Computable Numbers" 
paper was not to design a universal computing machine. The whole purpose of 
the paper was to use this hypothetical computer to help resolve the Entschei­
dungsproblem. There are still a few more steps. A crucial one is to demonstrate 
that Turing's machines are intnnsically limited in what they can do. 

Turing stated in the introduction to his paper, "Although the class of computable 
numbers is so great, and in many ways similar to the class of real numbers, it 
is nevertheless enumerable" (his page 230; my page 66). In Section 5, he 
demonstrated how 'To each computable sequence there corresponds at least one 
description number, while to no description number does there correspond more 
than one computable sequence. The computable sequences and numbers are 
therefore enumerable" (his page 241 ;  my page 138) . 

Some doubts may still linger. It's obv10us that the class of computable numbers 
contains at least some transcendentals. Turing Machines that calculate 7t or e or 
Liouville's constant are certainly possible . Surely transcendentals whose digits have 
some kind of order are computable by a Turing Machine . That's the game Ulam 
and von Neumann played while traveling together. 

Nevertheless, the vast majority - no, no, no, let's be realistic about this and 
say virtually all - virtually all transcendentals are ostensibly streams of random 
digits. In the realm of real numbers, orderly or calculable sequences of digits are 
rare. Complete and total randomness is the rule. 

How exactly do you make a machine that computes a number with no pattern? 
Do you just generate digits randomly? 

Randomness is not something computers do very well , and yet computers are 
often called upon to behave randomly. Some statistics applications require random 
numbers, and computer games routinely need random numbers to vary the action. 
Without random numbers each hand of Solitaire would be exactly the same. 

Programming languages often provide some standard way for programs to 
generate random numbers. For example, a computer program written in the C 
programming language can use a function named rand to obtain a random number 
between 0 and 32,767. The rand function begins with a number known as a seed, 
which by default is initially set to 1 .  Different rand functions may implement the 
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actual algorithm in different ways; as an example, here's the implementation of 
rand found in Microsoft's version of C27 : 

int seed = l ;  

int rand { )  

return ( ( s eed seed * 2 1 4 0 1 3  + 2 5 3 1 0 1 1 ) >> 1 6 )  & 3 2 7 6 7 ; 

The rand function multiplies seed by 2 1 4,0 1 3  and adds 2 , 53 1 ,0 1 1 , and then stores 
that result back in seed for the next time rand is called; however, since seed is 
defined as a 32-bit signed integer, overflow or underflow may result. The result 
of the calculation is truncated to 32 bits, and if the highest bit is 1 ,  the value 
is actually negative .28 The calculation continues by shifting the result 1 6 bits, 
effectively dividing it by 65 , 536 and truncating any fractions. Finally, a Boolean 
AND operation is performed between the bits of that result and the bits of 32 ,  7 6 7 .  

That eliminates all bits except the bottom 1 5  and ensures that the result i s  between 
0 and 32,767. 

Even if you didn't follow this convoluted calculation, it should be obvious 
that in no way is this rand function generating random numbers! The function is 
entirely deterministic. Starting with a seed value of 1 ,  repeated calls to the function 
always result in the calculation of the same series of numbers: 

41 

18,467 
6,334 

26,500 

19 ,1 69 

The first time a program calls rand, the function returns 4 1 , and the 30,546th time 
a program calls rand, the function also returns 4 1 , and then the cycle repeats. 

Because this sequence is entirely determined by the seed and the algorithm, it is 
not truly random. It is instead called a pseudo-random sequence. If you performed 
certain statistical tests on the numbers generated by rand, they would appear 
to exhibit characteristics of randomness. In some applications a pseudo-random 
sequence is preferred to truly random numbers because it's possible to reproduce 
results and test that the program is working correctly. 

17 rand c © 1985-1997. Microsoft Corporation Some details in the rand function have been altered for 
purposes of clanty 
28A discussion of overflow and underflow may be found in my book Code, 1 53- 1 54 
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In games, however, generating the same sequence of random numbers is not 
desirable. For that reason, every time you deal a new hand of Solitaire , the program 
probably begins by obtaining the current time of the day down to seconds and 
milliseconds, and then uses that to set a new seed. Assuming you don't deal at 
the exact - down to the millisecond - same time of the day, you're getting what 
appears to be a random hand. 

john von Neumann once said that "Any one who considers arithmetical methods 
of producing random digits is, of course, in a state of sin. "29 (This was right before 
he described arithmetical methods for producing random numbers.) Because 
computers generate random numbers incompetently, applications that really need 
random numbers go outside the computer and use dedicated hardware for this 
task. A hardware random number generator (RNG) might use ambient noise or 
quantum processes to generate random numbers. 

Curiously enough, Alan Turing seems to have onginated the idea of generating 
random numbers in hardware . Turing requested that the production model of the 
Mark I at the University of Manchester have a special instruction that generated 
a random number from a noise source. It turned out to be not quite as random 
as it should have been, but random enough to prevent it from being properly 
debugged.30 

Let's assume we have a hardware RNG that works. We put it to use to generate 
a sequence of Os and ls just like a Tunng Machine. Put a binary point in front and 
you can watch a real number - doubtlessly a transcendental number - being 
created right before your eyes. (If you tried this with a software pseudo-random 
sequence, eventually the seed would be recalculated and the sequence would begin 
again. The resultant number would have a repeating sequence of digits and that 
means it would be rational.) 

Now define a Turing Machine that generates the very same real number as the 
hardware RNG. You can't do it. The only approach that duplicates the RNG is a 
Turing Machine that explicitly prints exactly the digits you need, but that's not a 
Turing Machine with a finite number of configurations. 

Maybe the randomness of most real numbers is merely an illusion . After all ,  
the digits of n appear to be random, but n is definitely computable . Maybe 
real numbers that appear to be random actually have some kind of underlying 
structure that we just don't know about. Maybe if we approach this question from 
a different direction, we might instead prove that the computable numbers are not 
enumerable. We might then be able to get a good night's sleep because we'd be 
comforted with the knowledge that every real number is computable. 

29john von Neumann, Collected Worhs, Volume V, Design of Computer, Theory of Automata, and Numencal 

Analysis (Macmillan, 1963), 768 The statement was onginally made at a symposium on Monte Carlo 
methods in 1949 
30Martin Campbell-Kelly, "Programming the Mark I", 1 36 
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Tunng needs to confront these possibilities head on. 

8. Application of the diagonal process . 

It may be thought that arguments which prove that the real numbers 
are not enumerable would also prove that the computable numbers and 
sequences cannot be enumerable° . It might, for instance, be thought 
that the limit of a sequence of computable numbers must be computable. 

• Cf Hobson, Theory offunctio11s ofa real variable (2nd ed., 1921) ,  87, 88. 

Turing is alluding to Georg Cantor's first ( 1874) proof of the nonenumerability 
of the real numbers that I described beginning on page 24. It's likely that Turing 
didn't have access to Cantor's original publication so he refers instead to a text 
book by E. W. Hobson and published by Cambridge University Press. 31 Hobson 
follows Cantor very closely, even using much of the same notation. 

Turing suggests that Cantor's exercise be repeated using an enumeration of 
computable numbers rather than real numbers. In both cases, the numbers 
approach a limit. In Cantor's proof, that limit has to be a real number (What 
else could it be?) , but Cantor was able to demonstrate that the limit wasn't in 
the enumeration of real numbers, thus proving that the real numbers are not 
enumerable. 

When the same process is attempted with computable numbers, the computable 
numbers also approach a limit. Could that limit also be a computable number? 
Turing's answer: 

This is clearly only true if the sequence of computable numbers is defined 
by some rule. 

By "sequence" Turing means the sequence of alphas and betas that approach the 
limit. That limit is a computable number only if we can compute it - that is, we 

31 The full title of this influential book by Cambndge mathematics professor Ernest William Hobson 
(1856-1933) is The Theory of Functions of a Real Vanable and the Theory of Founer's Senes, and the first 
edition was published by Cambndge University Press in 1907 The second edition that Tunng refers to 
dates from l 921 ,  but so much new matenal had been added that a second volume had to be published in 
1926 This Volume ll was also referred to as a second edition Volume I was revised as a third edition in 
1927 The third edition of Volume I and the second edition of Volume II were republished by Harren Press 
in 1950 and Dover Books in 1957, and these might be the easies! editions to track down The discussion 
that Tunng refers to is on pages 84 and 85 of this third edition of Volume I It is followed on pages 85 and 
86 by Cantor's diagonal proof 
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can devise some algorithm that tells us the numeric limit approached by these 
alphas and betas. That does not seem likely. If we don't have a way to compute this 
limit, it is not a computable number. It is yet another uncomputable real number, 
and hence we haven't disproved that computable numbers are enumerable. 

Or we might apply the diagonal process. 

Turing puts the rest of the paragraph in quotation marks as if an intruder has 
burst into his paper trying to convince us that the computable numbers are not 
enumerable. Turing's adversary pursues a more notation-laden arithmetic variation 
of the diagonal process than the one I offered on page 28. 

"If the computable sequences 
are enumerable, let an be the n-th computable sequence, and let ¢,, (m) be 
the m-th figure in an . 

It's just notation. Each computable sequence is a series of Os and ls, and each 
of these binary digits is represented by ¢, the Greek letter phi. The computable 
sequences can be listed with a superfluity of subscnpts and indices like so: 

a1 = ¢1 (1 )  ¢1 (2) ¢1 (3) t/>1 (4) 

a2 = t/>2 (1 ) t/>2 (2) 4>2 0) t/>2 (4) 

0'3 = tf>3(l )  ¢3(2) tf>3(3) tf>3( 4) 

Let f3 be the sequence with 1 - ¢11 (n )  as its n-th 
figure. 

In other words, fJ is the diagonal with the Os and ls flipped: 

fJ = ( 1 - 4>1 0)) ( 1 - t/>2 (2)) ( 1  - ¢3(3)) (1 - t/>4(4)) . . .  

Since f3 is computable, there exists a number K such that 
1 - ¢n (n ) = ¢K(n)  all n .  
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That is, for some K, there's an ctK in the enumerated list of computable numbers: 

In general , for digit n, 

1 - </>n(n) = </>K(n) 

or 

Turing's adversary now uses this arithmetic argument to demonstrate that f3 can't 
exist: 

Putting n = K, 

that is, 

we have 1 = 21/JK(K), i.e. 1 is 
even. This is impossible. The computable sequences are therefore not 
enumerable". 

Well, that's interesting. This mysterious intruder has just described how to 
compute a number called f3 based on the computable sequences in the enumerated 
list, but this computed number is not in the list. Therefore, the intruder says, the 
computable sequences are not enumerable . 

But Turing remains calm, and says: 

The fallacy in this argument lies in the assumption that f3 is computable.  

Fallacy? What fallacy? How can f3 not be computable? f3 is computed from the 
enumeration of computable sequences, so it has to be computable , right? 

Well, not exactly. 
Let's step back a moment. Turing originally defined computable numbers as 

those that are calculable by finite means. He constructed imaginary machines 
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to compute these numbers, and he showed that each machine can be uniquely 
identified by a positive integer called a Description Number. Because integers 
are enumerable, Turing Machines are also enumerable, and therefore computable 
sequences are enumerable. 

In one sense, enumerating the Turing Machines is as easy as enumerating the 
positive integers: 

1 
2 
3 
4 
5 

All the Turing Machines will appear in this list in the form of Description Numbers, 
and from the Description Number we can get the Standard Description, and then 
we can feed that to the Universal Machine to get the computable sequence . 

Of course, we're missing something: We're missing a way to determine 
exactly which positive integers in that list are Description Numbers of circle-free 
machines. 

As you may recall from the definitions in Section 2 ,  a circle-free machine is one 
that goes on printing Os and ls forever. Although a machine that never stops may 
appear to be "out of control" or "gone crazy," circle-free machines are necessary 
to compute irrational numbers and those rational numbers with repeating digits. 
Even when printing rational numbers like . 1  (the binary equivalent of f ) ,  it is 
preferable for the machine to be circle-free by printing 1 and then a continuous 
sequence of Os: 

. 10000000 . . .  

A circular machine, on the other hand, is one that gets stuck in an undesirable 
loop. A circular machine could keep printing Os without advancing the head, for 
example, or it could forever print symbols other than 0 and 1 .  

The terms circle-free and circular are not optimally descriptive: A circle-free 
machine might spend the rest of eternity in a little loop that prints Os or ls, and 
that might be fine. A circular machine could get jammed because it's directed to 
an m-configuration that doesn't exist, and that's just one of many problems that 
could befall it. 

We need to identify the Description Numbers of circle-free machines because 
those are the only ones qualified to be interpreted by the Universal Machine. We 
may have successfully enumerated all the Turing Machines (somewhere within 
that list of positive integers) , but we haven't identified those that are circle-free, so 
we can't use them to generate computable sequences. 
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It's very clear that many integers are not Description Numbers of any machine 
whatsoever. We can easily determine (by human inspection or a Turing Machine) 
whether a particular integer is a welljormed Descnption Number, which means 
that it's divided into well-formed instructions, each of which begins with an 
m-configuration, and so forth. We might even determine whether the machine 
refers to m-configurations that aren't present. We could check whether cer­
tain m-configurations aren't used. We could also easily check to see whether 
any m-configurations include instructions that actually print Os or ls. Such a 
process would determine that the lowest well-formed Description Number is 
3 1 ,334,3 17,  and this is a circular machine. (It only prints blanks.) It's not until 
3 1 3,324,3 1 7  that the first circle-free machine is encountered, and not until 
3 13,325 ,317 that we find the first circle-free machine that prints from left to right. 

Here's the very beginning of an enumeration of the positive integers where the 
first two circle-free print-to-the-right Turing Machines are identified: 

1 
2 
3 
4 
5 

3 13,325,3 17  +- This one prints O's to the right 

3 , 133,225 ,3 17  +- This one prints ls to the right 

These , of course, are the simplest of simple machines, and the method to 
identify them is simple as well . Much more difficult - actually, as Turing will 
show, impossible - is a machine that implements a general process to determine 
whether a particular integer is the Description Number of a circle-free machine. 

That general process is precisely what we need to perform the diagonalization. 
Each digit of f3 is based on a different computable number, so computing f3 
requires that all the circle-free Turing Machines be identified. Turing will show 
that these circle-free machines cannot be identified by finite means, which means 
that we can't explicitly enumerate the computable sequences. It is therefore simply 
not true that /3 is a computable sequence. 

It would be true if we could enumerate the computable sequences by finite 
means, but the problem of enumerating computable sequences is equivalent 
to the problem of finding out whether a given number is the D.N of a 
circle-free machine, and we have no general process for doing this in a finite 
number of steps. 
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Turing now makes a subtle shift in focus. He started by attempting to apply 
Cantor's diagonalization proof to computable sequences, but now he wants simply 
to explore what happens when we try to identify all the Description Numbers of 
circle-free machines. 

In fact, by applying the diagonal process argument 
correctly, we can show that there cannot be any such general process. 

If, as Turing asserts, there's no general process for determining whether a particular 
integer is a Description Number of a circle-free machine , then f3 is not computable. 
That would invalidate the interloper's "proof' that the computable sequences 
are not enumerable . Nothing would then detract from our confidence that 
computable sequences are indeed enumerable and hence can't include all the real 
numbers. 

Unfortunately, Turing begins the next paragraph rather vaguely: 

The simplest and most direct proof of this is by showing that, if this 
general process exists, then there is a machine which computes {J.  

I think he's saying that there cannot be  a general process to determine whether a 
particular machine is circle-free because, if there were, we'd be able to compute {3 ,  
and we know we can't compute {3 ,  because then the diagonal argument would be 
valid, and computable sequences would not be enumerable. 

This 
proof, although perfectly sound, has the disadvantage that it may leave 
the reader with a feeling that "there must be something wrong". 

The paradox still nags at our consciences. For that reason, Turing will now prove 
more directly that there is no machine that will determine whether a particular 
integer is a Description Number of a circle-free machine. 

The 
proof which I shall give has not this disadvantage, and gives a certain 
insight into the significance of the idea "circle-free". 

He might also have added that the implications go far beyond this little exercise in 
number theory. 
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All Turing wants now is a machine that extracts one digit from each computable 
sequence . He doesn't have to bother with subtracting the digits from one . He's 
actually going to try to compute something a little bit simpler than fJ :  

I t  depends not on 
constructing /3, but on constructing /f,  whose n-th figure is <Pn (n). 

On the very first page of Turing's paper (page 66 of this book) he said , 'The 
computable numbers do not, however, include all definable numbers, and an 
example is given of a definable number which is not computable." Both fJ and fJ' 
are such definable numbers. fJ' is definable because instructions can be given for 
how to compute it: Enumerate the whole numbers starting at 1 .  For each number, 
determine whether it's a well-formed Description Number of a Turing Machine. 
If so , determine whether that machine is circle-free. If so, compute that number 
up to the n-th digit (where n is one more than the number of circle-free machines 
encountered so far). That digit is the n-th digit of fJ' .  

You can see that {J' is completely defined, but can it be computed? 
Although Turing defined no instruction that would ever halt the machine, 

the problem that Turing is now attacking is studied more in the variation 
known as the Halting Problem. (The term originated in Martin Davis's 1 958 
book Computability and Unsolvability .32 ) Can we define a Turing Machine that 
will determine whether another Turing Machine will either halt or go on for­
ever? If we substitute the idea of circularity for halting, it's a similar problem. 
Can one Turing Machine analyze another Turing Machine and determine its 
ultimate fate? 

Turing begins by assuming there exists a machine that determines whether 
any arbitrary machine is circle-free. In the following discussion, he refers to the 
machine's Standard Description rather than the Description Number, but it doesn't 
really matter because it's trivial to convert between them. 

[247] 

Let us suppose that there is such a process; that is to say, that we can 
invent a machine 'Jl which, when supplied with the S.D of any computing 
machine vii will test this S.D and if vi( is circular will mark the S.D with the 
symbol "u" and if it is circle-free will mark it with "s". 

32Manin DaV1s, Computability and Vnsolvability (McGraw-Hill, 1958), 70. DaV1s believes he first used the 
term in lectures in 1952 (See Copeland, The Essential Turing, 40, footnote 61 ) The concept also shows up 
in Chapter 13 of Stephen Cole Kleene, Introduction to Metamathematics (Van Nostrand, 1952) 
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The machine g) is the Decision machine . The "u" stands for unsatisfactory 
(meaning a circular machine) and the "s" for satisfactory (circle-free) . Turing 
defined these terms at the end of Section 5 (his page 241 ,  my page 142). 

By combining 
the machines g) and CU we could construct a machine t< to compute the 
sequence /J' .  

Actually the 'J< machine also needs to generate positive integers and then convert 
them to Standard Descriptions, but that's fairly trivial. For every positive integer 
that m generates , m uses g) to determine whether the number defines a satisfactory 
machine. lf so, then 'J< passes that Standard Description to the Universal Machine 
CU to compute the sequence . For the n-th computable sequence, CU needs only to 
run the machine up to the nth digit. That digit then becomes the nth digit of {J'. 
Because CU is  under the control of 'J<., 'J< can stop CU when it  has the particular digit 
it needs. 

It's necessary for 'J< to check the Standard Description with :JJ first because 
we don't want CU to get stuck running an unsatisfactory machine. lf 'J< gives CU 
the Standard Description of an unsatisfactory machine, and that unsatisfactory 
machine never prints a digit, then the process gets stuck and can't move forward. 

Turing does not actually show us what this magic Decision machine 3J looks 
like, so that should be a big hint that such a machine is impossible. just off hand, it 
seems like it would at least be very difficult. How can g) determine that a particular 
machine is circle-free except by mimicking the machine and tracing through its 
every step? 

At any rate, g) is similar to CU in that it works with a Standard Description (or, 
equivalently, a Description Number) encoded on a tape . 

The machine g) may require a tape. We may suppose that 
it uses the E-squares beyond all symbols on F-squares, and that when it 
has reached its verdict all the rough work done by 8J is erased. 

It leaves behind only an s or u for its final verdict. 

The machine 7!. has its motion divided into sections. In the first N - 1 
sections, among other things, the integers 1, 2, . . .  , N - 1 have been written 
down and tested by the machine g), 

The term "divided into sections" does not mean that there exist different parts 
of 'J< that handle the different numbers. Separate sets of configurations for each 
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number would require that 71< be infinite . Turing is really referring to sequential 
operations over a period of time. The actual process must be a general one that 
applies to all integers: The 71< machine generates positive integers one after another, 
passes each in tum to fl) to determine whether it's satisfactory, and, if so, uses qf 
to calculate a certain number of digits in the computable sequence . 

A certain number, say R(N - 1), of 
them have been found to be the D.N's of circle-free machines. 

R just accumulates a count of circle-free machines that have already been 
encountered. The machine needs R to determine how many digits to calculate for 
each circle-free machine that turns up. 

In the N-th 
section the machine 'JJ tests the number N. If N is satisfactory, i.e. , if it 
is the D.N of a circle-free machine, then R(N) = 1 + R(N - 1) and the first 
R(N) figures of the sequence of which a D.N is N are calculated. 

If N is 3, 133,225,3 17 ,  for example, then R(N - 1) is 1 .  (See the list above 
of positive integers with the first two satisfactory machines identified.) Only one 
satisfactory machine has been discovered so far. The machine fl) will determine 
that N is indeed the Description Number of a circle-free machine. So, R(N) is set to 
2, and qf calculates the first two digits of the machine defined by 3, 133,225,3 1 7 .  
Those two digits will both be 1 .  71< uses the second o f  those digits as the second 
digit of {J' .  It's on its way! 

The 
R(N)-th figure of this sequence is written down as one of the figures of the 
sequence f3' computed by -;ff. 

The usual case, of course , is that the Description Number is either no machine 
at all or a circular machine . 

If N is not satisfactory, then R(N) = R(N - 1) 
and the machine goes on to the (N + 1 )-th section of its motion. 

The point is that 71< must look at the potential Description Numbers one after 
another, and for each satisfactory Description Number, 71< must run the machine 
until the R(N)-th digit. 
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Turing now takes great pains to demonstrate that ZR is circle-free. ZR simply 
runs 9J for each potential Description Number and !]) is circle-free by the original 
assumptions. 

From the construction of f< we can see that '1< is circle-free. Each 
section of the motion of '1f comes to an end after a finite number of steps. 
For, by our assumption about 'n, the decision as to whether N is satisfactory 
is reached in a finite number of steps. If N is not satisfactory, then the 
N-th section is finished. If N is satisfactory, this means that the machine 
Jrl(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be 
calculated in a finite number of steps. When this figure has been calculated 
and written down as the R(N)-th figure of fl' , the N-th section is finished. 
Hence If is circle-free. 

ZR is a Turing Machine , so ZR has a Description Number (which Turing calls K) . 
At some point, ZR will have to deal with its own Description Number. ZR will have 
to determine whether ZR is circle-free. 

Now let K be the D.N of +<. What does f( do in the K-th section of 
its motion? It must test whether K is satisfactory, giving a verdict "s" 
or "u". Since K is the D.N of f< and since f( is circle-free, the verdict 
cannot be "u". 

Then Turing also adds: 

On the other hand the verdict cannot be "s". 

The fundamental problem is that ZR gets into an infinite recursion. Before ZR 
encounters the number K (the Description Number of itselO ZR has analyzed all 
positive integers 1 through K - 1 .  The number of circle-free machines so far is 
R(K - 1) and the first R(K - 1) digits of /J' have been found. 

What is the R(K)-th digit of /J'? To get that digit, ZR has to trace through its 
own operation, which means it has to duplicate everything up to the point where 
it encountered K, and then the process begins again. That is why ZR cannot be 
circle-free. 

For if it 
were, then in the K-th section of its motion 1{ would be bound to compute 
the first R(K - 1) + 1 = R(K) figures of the sequence computed by the 
machine with K as its D.N and to write down the R<K>-th as a figure of the 
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sequence computed by 'J<. The computation of the first R(K) - 1 figures 
would be carried out all right, but the instructions for calculating the 
R(K)-th would amount to "calculate the first R(K) figures computed by 
H and write down the R(K)-th". This R(K)-th figure would never be 
found. 

(In the penultimate line, H should be ZR.) 
ZR is generating a sequence of digits based on the sequences generated by other 

machines. That's pretty straightforward when we think of machines as generating 
sequences like the binary equivalent of 1/3 ,  n, and the square root of 2 ,  but where 
does ZR get digit K of this sequence that it's generating? It has to get that digit from 
itself, but that makes no sense because ZR gets digits only from other machines. 

OK, so ZR has a little problem when encountering its own Description Number. 
Can't it just skip that one? Well, yes, it can, but as we've seen, every computable 
sequence can be calculated by a variety of different machines. Machines could 
calculate the same sequence in different ways, or they could have superfluous 
instructions. ZR would need to skip those similar machines as well. What about 
the machines that don't calculate fJ', but calculate something close to {J',  such as 
{J' with its 27th and 54th digits swapped? There are an infinite number of such 
machines and avoiding them all puts quite a burden on ZR - an impossible burden. 

I.e. , ';:ff is circular, contrary both to what we have found in the last 
paragraph and to the verdict "s". Thus both verdicts are impossible 
and we conclude that there can be no machine 51). 

There can be no general process to determine whether a machine is circle-free. 
By implication, there can be no computer program that will determine the ultimate 
fate of other computer programs. 

Turing has also resolved the paradox of the diagonal process: He first established 
that computable numbers are enumerable , yet the diagonal process seemed to 
indicate that you could create a computable number not in the list. Turing has 
shown that the diagonal could not be calculated by finite means, and hence is not 
computable . Computable numbers may be enumerable , but they cannot actually 
be enumerated in a finite number of steps. 

Turing is not quite finished with this section. He now hypothesizes a machine 
8, which might stand for "ever print." 

(248] 

We can show further that there can be no machine t: which, when 
supplied with the S.D of an arbitrary machine vH, will determine whether vH 
euer prints a giuen symbol (0 say). 
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Turing needs this 8 machine in the final section of the paper when he uses it 
to prove that the Entscheidungsproblem has no solution. Here he will prove that 
8 cannot exist by first showing that the existence of 8 implies the existence of 
a process for determining whether a machine prints 0 infinitely often, but that 
implies the existence of a similar process to determine whether a machine prints 
1 infinitely often. If you had the ability to determine whether a machine prints 0 
infinitely often or 1 infinitely often (or both), you'd have the ability to determine 
whether a machine is circle-free. It's already been proven that such a process is 
impossible , so machine 8 must also be impossible . 

We will first show that, if there is a machine r::, then there is a general 
process for determining whether a given machine vlf prints 0 infinitely 
often. 

Turing will demonstrate this through a rather odd method of defining variations 
of the arbitrary machine c.M. 

Let .Af1 be a machine which prints the same sequence as vH, except 
that in the position where the first 0 printed by vlf stands, vH1 prints 0. 
,)(2 is to have the first two symbols 0 replaced by 0, and so on. Thus, if _A( 
were to print 

A B A O l A A B O O l OA B  . . .  , 
then vH1 would print 

A BA O l AA B O O l OA B  . . .  
and vH2 would print 

A BA O lAAB O O l OAB . . . . 

If you had a machine c.M, could you define a machine that reads the Standard 
Description of c.M and manufactures the Standard Descriptions of c.M1 ,  cA12 , and so 
forth? Turing says yes, and he calls this machine <if. 

Now let '.7 be a machine which, when supplied with the S.D oL +r, will 
write down successively the S.D of v+f, of ,)(1 ,  of v+f2 , . . .  (there is such a 
machine). 
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To convince ourselves that 9"is plausible, let's consider that very simple machine 
that alternatively prints 0 and 1 ,  that is, the binary form of 1/3 without skipping 
any spaces: 

q1 None PO, R qi 

qi None P l ,  R q1 

That's machine c..M. Here's machine c..M1 : 

q1 None PO, R q4 
q2 None Pl , R q1 

q3 None PO, R q4 
q4 None Pl , R q3 

All the original configurations (all two of them) have simply been duplicated and 
given different m-configurations. In the first set of configurations, every line that 
printed 0 now prints 0 and then jumps to the appropriate configuration in the 
second set. c..Mi has three sets: 

q1 None PO, R q4 
q2 None Pl , R  q1 

q3 None PO, R q6 
q4 None Pl , R q3 

qs None PO, R q6 
q6 None Pl , R qs 

You might notice that these modified machines never enter configurations q2 ,  but 
that's just a fluke of this particular machine. 

It is therefore entirely plausible that 9" exists. Notice the relationship between 
these c..M machines: If c..M never prints 0, then neither does c..M1 , c..M2 , and so forth. If 
c..M prints 0 just once, then c..M1 never prints 0, and neither does c..M2 , and so forth. 
If c..M prints 0 twice, then chf1 prints 0 once, chf2 never prints 0, and so forth. If ch( 
prints 0 infinitely often, then so does chf 1 , cMi , and so forth. 

You'll recall that e is assumed to determine whether a machine ever prints 0. 
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We combine g with 8 and obtain a new machine, fJ. In the 
motion of <J first g is used to write down the S.D of chf, and then 8 tests 
it, : 0 :  is written if it is found that ch( never prints 0; then <J" writes the S.D 
of cM1 , and this is tested, : 0 : being printed if and only if cM1 never prints 0, 
and so on. 

tJ uses S" to generate the Descnption Numbers of c.M, c.M1 , c.M2 , and so forth, 
and 8 to determine whether the resultant machine ever prints 0. If the resultant 
machine never prints 0, (j prints 0.  

The result is this: If c.M never prints 0,  or prints 0 only a finite number of 
times, then tJ prints 0 infinitely often.  If c.M prints 0 infinitely often, then (j never 
prints 0 .  

Now let us  test q with 8. If  it is  found that fJ never prints 0, 
then c;I{ prints 0 infinitely often; if <J prints 0 sometimes, then cM does not 
print 0 infinitely often. 

That means (j can tell us that c.M prints 0 infinitely often. It tells us this by never 
printing 0 .  

Similarly there is  a general process for determining whether cM prints 1 
infinitely often. By a combination of these processes we have a process 
for determining whether cM prints an infinity offigures, i.e. we have a process 
for determining whether cM is circle-free. There can therefore be no 
machine 8. 

By another proof by contradiction, Turing has shown that 8 cannot exist because 
it would ultimately imply the existence of 9) - the machine that determines 
whether any machine is circle-free - and that machine cannot exist. 

Turing finishes this section with a reminder that we really need to examine this 
assumed equivalence between human computers and Turing Machines because 
we've been relying on it quite a lot. 

The expression "there is a general process for determining . . .  " has 
been used throughout this section as equivalent to "there is a machine 
which will determine . .  ". This usage can be justified if and only if we 
can justify our definition of "computable". 

That examination will come in the next section . 
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Turing then hints at another aspect of this demonstration that won't be 
explored until Part III of this book. Turing began by interpreting the output of 
Tunng Machines as "computable numbers," but machines can be more flexible 
than that. For example, consider a machine that prints a sequence like this: 

00 1 10101000101000101000 10000010 . . .  

That might look like a number, but it's actually the output of a "pnme number" 
machine that we might denote by lsPrime(n) . For the nth figure in this sequence 
(beginning with n equal to zero) , lsPrime(n) is 1 if n is prime, and 0 if n is not 
prime. The sequence printed by the machine indicates that 2 ,  3, 5, 7, 1 1 ,  13 ,  
17,  19, 23, and 29 are all primes. Such a machine is  entirely plausible , but it's 
not really computing a number. Instead it's telling us something about the natural 
numbers. 

For each of these "general 
process" problems can be expressed as a problem concerning a general 
process for determining whether a given integer n has a property G(n ) [e.g. 
Gtn ) might mean "n is satisfactory" or "n is the GOdel representation of 
a provable formula"] , and this is equivalent to computing a number 
whose n-th figure is 1 if G ( n )  is true and 0 if it is false. 

Tunng has now, in a very small way that will become more apparent in Part III 
of this book, established a link between his computing machines and mathematical 
logic. The symbols 1 and 0 not only serve as binary digits, but - as George Boole 
realized many years ago - they can also symbolize true and false. 

Consider a bunch of functions that have arguments of natural numbers and 
which return values of true and false (or 1 and 0): 

IsPrime(n) 
IsEven(n) 
IsOdd(n) 
lsl.ess Than Ten (n) 
IsMultipleOJT wenty T wo(n) 

and so forth. These are sometimes known as Boolean functions, and they can be 
implemented by Turing Machines that print sequences of Os and ls for n equal to 
0, 1 ,  2 ,  3 ,  and so forth. The IsOdd function prints the same alternating sequence 
as Turing's first example machine . 

Tunng has established that these computable sequences are enumerable. So, 
too, are the actual function names! They can be alphabetized, for example. In 
Cantor's notation of transfinite numbers, the cardinality of the set of all computable 
and alphabetizable Boolean functions of natural numbers is l-l:o, the cardinality of 
enumerable sets. 
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Each Boolean function returns true or 1 for a subset of the natural numbers. 
For example, IsPrime returns 1 for the following set of natural numbers: 

{2 , 3 ,  5 ,  7, 1 1 ,  13 ,  . . .  } 
Each of these Boolean functions is associated with a different subset of the natural 
numbers. As you might recall from Chapter 2 ,  the set of all subsets is called a 
power set, and if the original set has a cardinality of �o. then the power set has 
a cardinality of 2�0 .  

The set of all conceivable Boolean functions has a cardinality of 2�0 ,  while the set 
of all computable Boolean functions (and indeed, the set of all Boolean functions 
that can be descnbed with a name in the English language) has a cardinality of x o .  
That's another big gap between the conceivable and the computable. 



Of Mach i n es 
a n d  M e n  

A
lan Turing wrote at the beginning of the first section of his paper (page 68 of 
this book) of his definition of computable numbers that "No real attempt will 

be made to justify the definitions given until we reach §9." We have now reached 
Section 9, and the pages that follow have been called by Turing's biographer 
Andrew Hodges "among the most unusual ever offered in a mathematical paper." 1 

Turing will attempt to demonstrate that the capabilities of a Turing Machine are 
equivalent to a human computer carrying out a well-defined mathematical process. 
Therefore, if an algorithmic process is insolvable by a Turing Machine, it is also 
unsolvable by a human. This idea - generally expressed more formally - has 
come to be known as the Turing thesis or (in a related form) the Church-Turing 
thesis. It's called a "thesis" because it's much too amorphous a concept to be 
subjected to a rigorous mathematical proof. The thesis nonetheless extends to 
other digital computers: Their computational capabilities are no greater than the 
Turing Machine . 

Only the first part of Section 9 appears in this chapter; the remainder requires 
some background in mathematical logic and will conclude in Part Ill of this book. 
For the most part, I will not interrupt Turing's analysis. Here's a summary by 
Manin Davis: 

Turing's "analysis" is a remarkable piece of applied philosophy 
in which, beginning with a human being carrying out a com­
putation, he proceeds by a process of elimination of irrelevant 
details, through a sequence of simplifications, to an end result 
which is the familiar model consisting of a finite state device 
operating on a one-way infinite linear tape.2 

1 Andrew Hodges, Alan Tunng The Enigma (Simon & Schuster, 1 983), 104 
2Martin DaVJS, "Why Godel Didn't Have Church's Thesis," lnfonnation and Control, Vol 54, Nos 1/2, 
(July/Aug 1982), 14  
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9. The extent of the computable numbers. 

(249) 

No attempt has yet been made to show that the "computable" numbers 
include all numbers which would naturally be regarded as computable. All 
arguments which can be given are bound to be, fundamentally, appeals 
to intuition, and for this reason rather unsatisfactory mathematically. 
The real question at issue is "What are the possible processes which can be 
carried out in computing a number?" 

The arguments which I shall use are of three kinds. 

(a ) A direct appeal to intuition. 

(b) A proof of the equivalence of two definitions (in case the new 
definition has a greater intuitive appeal). 

(c) Giving examples of large classes of numbers which are 
computable. 

The (b) argument is in Part Ill of this book; the (c) argument continues in 
Section 10 of Turing's paper. 

Once it is granted that computable numbers are all "computable", 
several other propositions of the same character follow. In particular, it 
follows that, ifthere is a general process for determining whether a formula 
of the Hilbert function calculus is provable, then the determination can be 
carried out by a machine. 

The "Hilbert function calculus" is the system of mathematical logic today 
commonly called "first-order predicate logic ." It is within this logic that Hilbert 
defined the Entscheidungsproblem. It is unlikely that Turing knew that a process 
"carried out by a machine" is precisely what Heinrich Behmann called for in the 
earliest references to the Entscheidungsproblem (page 48) . Behmann's address 
remained unpublished until recently. 

I. [Type (a )) . This argument is only an elaboration of the ideas of § 1 .  

Computing i s  normally done by writing certain symbols o n  paper. We 
may suppose this paper is divided into squares like a child's arithmetic book. 
In elementary arithmetic the two-dimensional character of the paper is 
sometimes used. But such a use is always avoidable, and I think that it 
will be agreed that the two-dimensional character of paper is no essential 
of computation . I assume then that the computation is carried out on 
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one-dimensional paper, i.e. on a tape divided into squares. I shall also 
suppose that the number of symbols which may be printed is finite. If we 
were to allow an infinity of symbols, then there would be symbols differing 
to an arbitrarily small extentt. The effect of this restriction of the number 
of symbols is not very serious. It is always possible to use sequences of 
symbols in the place of single symbols. Thus an Arabic numeral such as 

[250) 

17 or 999999999999999 is normally treated as a single symbol. Similarly 
in any European language words are treated as single symbols (Chinese, 
however, attempts to have an enumerable infinity of symbols ) . The 
differences from our point of view between the single and compound symbols 
is that the compound symbols, if they are too lengthy, cannot be observed 
at one glance. This is in accordance with experience. We cannot tell at 
a glance whether 9999999999999999 and 999999999999999 are the same. 

+ Ifwe regard a symbol as l iterally printed on a square we may suppose that the square 

is 0 ( x ( 1 ,  0 ( y ( 1 The symbol is defined as a set of points in this square, viz. the 

set occupied by printer's ink. If these sets are restricted to be measurable, we can define 

the "distance" between two symbols as the cost of transforming one symbol into the 

other if the cost of moving unit area of printer's ink unit distance is unity, and there is an 

infinite supply of ink at x = 2, y = 0. With this topology the symbols form a condition­

ally compact space 

In the next sentence, Turing refers to a "computer." He is, of course , talking 
about a human computer. 

The behaviour of the computer at any moment is determined by the 
symbols which he is observing, and his "state of mind" at that moment. 
We may suppose that there is a bound B to the number of symbols or 
squares which the computer can observe at one moment. If he wishes to 
observe more, he must use successive observations. We will also suppose 
that the number of states of mind which need be taken into account is finite. 
The reasons for this are of the same character as those which restrict the 
number of symbols. If we admitted an infinity of states of mind, some of 
them will be "arbitrarily close" and will be confused. Again, the restriction 
is not one which seriously affects computation, since the use of more compli­
cated states of mind can be avoided by writing more symbols on the tape. 
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In 1972, Kurt Godel wrote a brief note regarding Turing's analysis in this section 
that he labeled "A philosophical error in Turing's work."3 Godel argued that "mind, 
in its use, is not static, but constantly developing" and that mental states of mind might 
even converge on the infinite. These disagreements represent a fundamental clash 
between those who believe the mind to be ultimately a mechanical process of the 
brain, and those who do not. 

Let us imagine the operations performed by the computer to be split up 
into "simple operations" which are so elementary that it is not easy to 
imagine them further divided. Every such operation consists of some change 
of the physical system consisting of the computer and his tape. We know 
the state of the system if we know the sequence of symbols on the tape, 
which of these are observed by the computer (possibly with a special 
order), and the state of mind of the computer. We may suppose that in a 
simple operation not more than one symbol is altered. Any other changes 
can be split up into simple changes of this kind. The situation in regard to 
the squares whose symbols may be altered in this way is the same as in 
regard to the observed squares. We may, therefore, without loss of 
generality, assume that the squares whose symbols are changed are always 
"observed" squares. 

Besides these changes of symbols, the simple operations must include 
changes of distribution of observed squares. The new observed squares 
must be immediately recognisable by the computer. I think it is reasonable 
to suppose that they can only be squares whose distance from the closest 
of the immediately previously observed squares does not exceed a certain 
fixed amount. Let us say that each of the new observed squares is within 
L squares of an immediately previously observed square. 

In connection with "immediate recognisability", it may be thought 
that there are other kinds of square which are immediately recognisable. 
In particular, squares marked by special symbols might be taken as imme-

[25 1] 

diately recognisable. Now if these squares are marked only by single 
symbols there can be only a finite number of them, and we should not upset 
our theory by adjoining these marked squares to the observed squares. If, 
on the other hand, they are marked by a sequence of symbols, we 

3Kun GOdel, Collected Works, Volume II Publications 1 938-1974 (Oxford University Press, 1990), 306 
Judson C Webb's introduction beginning on page 292 - and panicularly the identification on page 297 
of GOdel's belief that the human mind has an existence separate from the physical matter of the brain - is 
helpful in understanding GOdel's remarks Another analysis is Oron Shagnr, "Godel on Tunng on Compu­
tability," http //edelstein huji ac il/staf!/shagnr/papers/Goedel_on_Tunng_on_Computability pdf 
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cannot regard the process of recognition as a simple process. This is a 
fundamental point and should be illustrated. In most mathematical 
papers the equations and theorems are numbered. Normally the numbers 
do not go beyond (say) 1000. It is, therefore, possible to recognise a 
theorem at a glance by its number. But if the paper was very long, we 
might reach Theorem 157767733443477; then, further on in the paper, we 
might find " . . .  hence (applying Theorem 157767733443477) we have . . .  ". 
In order to make sure which was the relevant theorem we should have to 
compare the two numbers figure by figure, possibly ticking the figures off 
in pencil to make sure of their not being counted twice. If in spite of this 
it is still thought that there are other "immediately recognisable" squares, 
it does not upset my contention so long as these squares can be found by 
some process of which my type of machine is capable. This idea is 
developed in III below. 

When Turing describes "ticking the figures off in pencil," he is probably alluding 
to the similar machine operation of "marking" squares with non-numeric figures. 

The simple operations must therefore include: 

(a) Changes of the symbol on one of the observed squares. 

(b) Changes of one of the squares observed to another square 
within L squares of one of the previously observed squares. 

It may be that some of these changes necessarily involve a change of 
state of mind. The most general single operation must therefore be taken 
to be one of the following: 

(A) A possible change (a) of symbol together with a possible 
change of state of mind. 

(B) A possible change (b) of observed squares, together with a 
possible change of state of mind. 

The operation actually performed is determined, as has been suggested 
on p. 250, by the state of mind of the computer and the observed symbols. 
In particular, they determine the state of mind of the computer after the 
operation is carried out. 

That's just the previous page of his paper to which he's referring. 
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We may now construct a machine to do the work of this computer. To 
each state of mind of the computer corresponds an "m-configuration" of 
the machine. The machine scans B squares corresponding to the B squares 
observed by the computer. In any move the machine can change a symbol 
on a scanned square or can change any one of the scanned squares to another 
square distant not more than L squares from one of the other scanned 

[252] 

squares. The move which is done, and the succeeding configuration, are 
determined by the scanned symbol and the m-configuration. The 
machines just described do not differ very essentially from computing 
machines as defined in § 2, and corresponding to any machine of this type 
a computing machine can be constructed to compute the same sequence, 
that is to say the sequence computed by the computer. 

That is, the human computer. 
At this point , we stop for now. Turing's second argument in this section begins 

with a reference to the "restricted Hilbert functional calculus," followed by a 
statement in that calculus, and for that some background is required that begins 
Part III of this book. 

Turing's fascination with the connection between human brains and machines 
continued long beyond his 1936 paper on computable numbers. Turing's other 
famous paper, "Computing Machinery and Intelligence ," was published in the 
October 1950 issue of the philosophy journal Mind. 

"Can machines think?" Turing asks. He then devises a test with a human being 
sitting at a teletypewriter. (The modem equivalent might be instant messaging, or 
anything else that doesn't allow people to see or hear who they're communicating 
with.) Let the person ask questions and receive answers. If there's actually a 
computer on the other end,  and the person can't tell that it's a computer, then we 
should say that the computer is intelligent. 

This has come to be known as the Turing Test, and it remains as controversial 
as ever. Anybody who has a pat objection to the Turing Test should read Turing's 
paper, which already has answers to many reasonable objections. 

Turing prefers to deal with this question in terms of "intelligence" rather 
than "thinking" because "thinking" implies a certain activity going on inside the 
computer. 

The original question, 'Can machines think?' I believe to be too 
meaningless to deserve discussion. Nevertheless I believe that 
at the end of the century the use of words and general educated 
opinion will have altered so much that one will be able to speak 
of machines thinking without expecting to be contradicted.4 

4Alan Tunng, "Computing Machinery and Intelligence," Mind, Vol UX, No 236 (October 1950), 442. 
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The end of the century has passed and, if anything, more people than ever know 
that whatever computers do, it is not "thinking." We have not come to expect 
our computers to be intelligent, and generally we work best wi.th our computer 
applications when we believe they wi.ll act in a completely deterministic way. 
A computer program that attempts to do something "intelligent" of ten seems to 
resemble a two-year old staring up from a newly crayoned wall and pleading, "But 
I thought you'd like it." 

In the alternative universe of science fiction, Turing's prediction was right on 
target, as demonstrated by the most famous fictional computer of all time: 

Whether Hal could actually think was a question which had 
been settled by the British mathematician Alan Turing back in 
the 1940s. Turing had pointed out that, if one could carry out 
a prolonged conversation wi.th a machine - whether by type­
writer or microphone was immaterial - without being able to 
distinguish between its replies and those that a man might give, 
then the machine was thinking, by any sensible definition of the 
word. Hal could pass the Turing test with ease.5 

Alan Turing would have turned 56 years old in 1968, the year that both the 
book and movie of 2001 came out. He might have been amused by the concept of 
a computer so intelligent that it would experience a nervous breakdown. 

In the summer of 1950, Turing moved to a house in Wilmslow, about ten miles 
south of Manchester. He had become interested in morphogenesis, which is the 
study of how cells in an organism develop and differentiate themselves to exhibit 
various patterns and forms. The research involved running simulations on the 
Manchester computer. 

On March 15 ,  195 1 ,  Alan Turing was elected a Fellow of the Royal Society 
in recognition of his work on Computable Numbers. His sponsors were Max 
Newman and Bertrand Russell. That evening, the BBC broadcast a talk Turing had 
recorded entitled "Can Digital Computers Think?" (No recording of this broadcast 
or any recording of Turing speaking is known to exist.) 

In December 195 1 ,  a chain of events was set in motion that would have serious 
consequences. Turing met a young man on the streets of Manchester. Arnold 
Murray had a working-class background, he was on probation for theft, and he 
was unemployed. Turing and Murray had lunch, met again, and went back to 
Turing's home together. They met several times over the next month. 

Late in January 1952, Turing discovered that his house had been burgled. He 
reponed it to the police, who came and dusted for fingerprints. When Turing 
confronted Arnold Murray, Murray pleaded innocent but said he knew who 
did it - an acquaintance named Harry. The police also identified Harry from 

�Anhur C Clark, 2001 · A Space Odyssey (New Amencan Library, 1968) , ch. 16 



1 96 The Annotated Turing 

the fingerprints taken from Turing's house. Harry was already in custody for 
something else. When questioned about the Turing robbery, Harry gave the police 
an earful about what was going on between Turing and his friend. 

On February 7, 1952, the day after George VI died and his eldest daughter 
Elizabeth ascended to the throne, the police called on Alan Turing. After some 
questioning, Turing admitted to them the nature of his relationship with Murray. 
This confession made Turing subject to arrest under Section 1 1  of the Criminal 
Law Amendment Act of 1 885: 

Any male person who, in public or private, commits, or is a party 
to the commission of, or procures or attempts to procure the 
commission by any male person of, any act of gross indecency 
with another male person, shall be guilty of a misdemeanor, and 
being convicted thereof shall be liable at the discretion of the 
court to be imprisoned for any term not exceeding two years, 
with or without hard labour.6 

The term "gross indecency" was not defined in the law, but was generally taken 
to mean acts such as mutual masturbation and oral sex. Other statutes covered the 
more serious offense of anal sex (or "buggery" as it was known within the British 
legal system) . 

Section 1 1  was a notorious law that was controversial from its very beginning. 
The Criminal Law Amendment Act of 1885 describes itself as "An Act to make 
further provision for the protection of women and girls, the suppression of 
brothels, and other purposes." The law raised the age of consent from 13 to 16, 
and contained several provisions intended to prevent women from exploitation, 
such as being drugged in brothels or abducted into prostitution. 

The law had originally floundered in the House of Commons for a couple 
years but then became more urgent following a series of articles by liberal 
journalist William Thomas Stead (1849- 1912) concerning child prostitution. 
Stead's courageous expose culminated with his actual purchase of a 13-year old 
girl from her parents. 

Following the public uproar over Stead's articles, the Bill was revived. Section 
1 1  was introduced by Member of Parliament Henry Labouchere on August 6, 
1885, and was added to the Act the next day, just a week before the Act eventually 
passed. There was some question at the time whether it was proper to add this 
section to a bill whose focus was the protection of young girls and women.7 

6Wording obtained from http //www swarb.co uk/acts/1885Cnminal_l.aw_AmendmentAct.shtml 
(accessed Apnl 2008) 
7H Montgomery Hyde, The Love That Dared Not Speak Its Name· A Candid History of Homosexuality in Bntain 

(Little, Brown and Company, 1970), 134 This book was onginally published in England under the title 
The Other Love 
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Section 1 1  specifically targeted men, and the acts covered under the term 
of "gross indecency" had never been illegal in Britain before, at least not when 
performed by consenting adults in private. Even at the time the "in private" clause 
seemed to allow the law to be used for blackmail.8 

The most famous victim of Section 1 1  was Oscar Wilde ( 1854- 1900), who was 
prosecuted under the law in 1 895. Wilde served his time doing hard labor, which 
probably hastened his death. 

By the 1950s, however, different methods of punishment were available. Turing 
pleaded guilty with the understanding that he was to be placed on a year's 
probation, during which he was to have hormone treatments. 

Experiments with treating homosexuality using sex hormones had begun in 
the 1940s. At first it was believed that homosexuality resulted from insufficient 
male hormones, but the administration of testosterone actually had the opposite 
of the anticipated result. Female hormones were then tried on homosexual men, 
and those seemed to have more of a desired effect.9 By the time of Turing's 
conviction, this treatment was known as organotherepy, but was also called 
"chemical castration" and seemed intended more to humiliate than anything else. 
The estrogen rendered Turing impotent and made his breasts grow. 

The early 1950s were not a good time to be identified as a homosexual. In the 
United States, the "red scare" of the early 1950s soon metamorphosed into another 
type of witch hunt. There actually weren't very many communists working in 
the State Department, but there were plenty of closeted gay people working in 
government jobs in Washington D.C. "Over the course of the 1950s and 1960s, 
approximately 1 ,000 people were dismissed from the Department of State for 
alleged homosexuality."10 

In theory, the term "security risk" could be applied to anyone who might have 
a tendency to divulge government secrets. In practice the term was basically a 
euphemism for "homosexual ." 1 1  The assumption was that homosexuals could be 
blackmailed into revealing state secrets. However, the best example anyone could 
come up with of this actually happening involved the head of Austrian intelligence 
before World War I, and it was never quite clear what the real story was. 12 

What was happening to gays in the United States government also had 
implications for Great Britain. In 195 1 ,  the U.S. State Department began advising 
the British Foreign Office about "the homosexual problem" in the government, 
and later pressured the British government to be more diligent about supposed 
security problems regarding homosexuals. 13 

8Ibid, 136 
9Hodges, Alan Tunng, 467-471 
10David K Johnson, The Lavender Scare The Cold War Persecution of Gays and Lesbians in the Federal 

Government (University of Chicago Press, 2004), 76 
1 1Johnson, Lavender Scare, 7-8 
12Johnson, Lavender Scare, 108-109 
13Johnson, Lavender Scare, 133. 
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Alan Turing's employment options were certainly becoming more restricted. 
A top-secret government job such as Turing had during the war would now be 
inconceivable, nor would Turing be able to travel to Amenca again. A 1952 law 
prohibited admission to "aliens afflicted with psychopathic personality," which 
was interpreted to mean homosexuality. 14 

Was this enough to make Turing suicidal? We don't know. 
On the streets of England as well as in the government, life was getting more 

difficult for gay men. When Sir john Nott-Bower was appointed Commissioner of 
the London Metropolitan Police in 1953, he swore he would "rip the cover off all 
London's filth spots." The same year the Home Office issued directives for a new 
drive against "male vice ." At least one London magistrate was tired of coddling and 
wanted convicted men to be "sent to prison as they were in the old days." From the 
end of 1953 through early 1954,  newspaper headlines heralded the prosecutions 
of several men. 15 

Had Turing a new relationship with a man who was now threatening to 
blackmail him? 

Or was Turing's suicide merely a careless accident, as his mother believed? 
It is indicative of our ignorance that one of the most persuasive explorations of 

Turing's state of mind during this penod comes not from a history or biography 
but from a novel. Novelist Janna Levm (who is also a professor of astronomy 
and physics at Barnard College) portrays a man humiliated beyond his ability to 
express it: 

He doesn't know how to voice his humiliation or even how to 
experience it. It rattles around in him like a broken pan, dis­
lodged and loose in his metal frame. The humiliation won't settle 
on one place , sink in where it would no doubt fester but at least 
could be quarantined and possibly even treated. If not steadily 
eroded by the imperceptible buffing waves of time, then maybe 
more aggressively targeted, excised by his Jungian analyst. But 
the shame just won't burrow and bind. 16 

We just don't know what was different about the evening of June 7, 1954. We 
don't know what prompted Turing to dip his regular evening apple in cyanide 
before he went to bed . 

He was found dead the next morning. Alan Tunng was 41 years old . 

HHoclges, Alan Tunng, 474 
15Hyde, The Love That Dared Not Speah Its Name, 2 14-6 
16janna Levtn, A Madman Dreams of Tunng Machines (Alfred A Knopf, 2006), 2 1 4  
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I
n the summer of 1958, Chinese-born logician Hao Wang took a break from 
his teaching duties at Oxford to log some time with a state-of-the-art IBM 

704 computer at the IBM Research Laboratory in Poughkeepsie, New York. On 
IBM punched cards Wang encoded theorems straight out of the pages of Alfred 
North Whitehead and Bertrand Russell's Principia Mathematica, published almost 
50 years earlier. For example, theorem * 1 1 .26 is stated in the notation of Principia 
Mathematica as: 

* 1 1  · 26. 1-: .(3.x) : (:y) .</J(x,y) : ::) :  (:y) : (3.x) .</J(x, y) 

In Wang's punched card notation this became: 

1 1 * 2 6 / EXAYGXY-AYEXGXY 

Wang wrote three programs to read these cards and prove the encoded theorems 
by applying various identities and inference rules that transformed the statements 
back into axioms. The bulk of time spent by these programs consisted of the 
mechanical processes of reading the cards and printing the steps of the proof. 
Wang estimated that the actual processing time in proving 220 theorems from 
chapters * 1 through * 5  of Principia Mathematica was less than three minutes, and 
an improved version of his third program was later able to prove 158 theorems 
from chapters *9 through * 13 in about four minutes. 1 

Wang's program was not the first attempt to solve theorems by computer.2 

In 1954, Martin Davis used a computer built by the Institute for Advanced 

1 Hao Wang, "Toward Mechanical Mathematics", IBM journal of Research and Development, Vol 4, No 1 
Qan 1960), 2-22 Available at http //www research ibm com/joumaVrd/04l/ibmrd040 1 B pdf 
2Donald MacKenzie, "The Automation of Proof A Histoncal and Sociological Exploration," Annals of the 

History of Computing, Vol 17, No 3 (Fall 1995), 7-29 
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Study in Princeton to program Presburger's procedure for a simple, addition-only 
arithmetic. In the first known mathematical proof by computer, Davis's program 
demonstrated that a sum of two even numbers is also an even number. 3 

In 1957,  Allen Newell, JC. "Cliff' Shaw, and Herbert Simon published their 
results of a "Logic Theory Machine" programmed for the RAND Corporation's 
JOHNNIAC, a computer named for john von Neumann.4 Newell, Shaw, and 
Simon also used Principia Mathematica as the source of the theorems. Being more 
interested in artificial intelligence than in mathematical logic, they wrote their 
program to imitate the way a human would prove the theorems (a "heuristic" 
approach, they called it) . Hao Wang later pursued a more algorithmic method for 
better efficiency and a higher success rate. 

Upon being informed by letter about the results of the Logic Theory Machine, 
Bertrand Russell reputedly wrote back, "I am delighted to know that 'Principia 
Mathematica' can now be done by machinery. I wish Whitehead and I had known 
of this possibility before we wasted 10  years doing it by hand. "5 

Principia Mathematica, in its three volumes and nearly 2 ,000 pages, was a 
monumental achievement in mathematics and logic. When Modem Library listed 
the 100 best nonfiction works of the twentieth century, Principia Mathematica came 
in at number 23.6 There are, however, very few people qualified to make such a 
determination. Stephen Kleene, a student of Alonzo Church who later wrote the 
influential Introduction to Metamathematics (1952) and Mathematical Logic (1967) , 
freely admitted that he never read the Principia Mathematica7 and among the 
people who have made their marks in mathematical logic in the years since 1913 ,  
he is probably in the large majority. 

The Introduction of Principia Mathematica states a goal of nothing less than 
"the complete enumeration of all the ideas and steps in reasoning employed 
in mathematics." This is the program (and philosophy of mathematics) known 

3Manin DaVIs, "A Computer Program for Presburger's Algonthm," in jorg Seikmann and Graham 
Wnghtson, eds , Automation of Reasoning 1 .  Classical Papers on Computational Logic, 1 957-1 966 
(Spnnger-Verlag, 1983), 41-48 
4Allen Newell , ]  C Shaw, and H A  Simon, "Empincal Explorations with the Logic Theory Machine· A Case 
Study in Heunstics", Proceedings of the Western joint Computer Conference, Vol 1 5  (1957), 2 1 8-239 
Repnnted in Edward A Feigenbaum and Julian Feldman, eds , Computers and Thought (MIT Press, 1995), 
109- 1 33 
�Quoted in Michael j Beeson, "The Mechamzation of Mathematics," in Chnstof Teuscher, ed , Alan Tunng: 

Life and Legacy of a Great Thinker (Spnnger, 2004), 93. 
6http://www randomhouse com/modemlibrary/lOObestnonfiction html 
7William Aspray, The Princeton Mathematics Community in the 1930s An Oral-History Project An 
intemew with j Barkley Rosser and Stephen C. Kleene in Madison, Wisconsin, on 26 Apnl 1984, 
http //www pnnceton edu/-mudd/finding_aids/mathoraVpmc23.htm 
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as logicism - the use of logic as a foundation for the rest of mathematics. 
To accomplish this feat, Whitehead and Russell employed a full arsenal of 
set-theoretic and logical tools. The idea of deliberately restricting their mathemat­
ical techniques would have seemed absurd. 

Not so for David Hilbert, the man most closely associated with the philosophy 
of mathematics called formalism. Formalism focuses on axiomatic theories, and 
particularly in Hilbert's program, emphasized concepts such as consistency, 
soundness, completeness, and decidability. 

Partially for pedagogical purposes and partially for analytical purposes, David 
Hilbert broke down the logic of Principia Mathematica into expanding subsets, 
each of which could be studied on its own. This approach was the basis of a 
course he taught at Gottingen in the winter of 1917-1918. In 1928 it became the 
120-page book Grundzuge der Theoretischen Logik (Principles of Mathematical Logic) 
by David Hilbert and Wilhelm Ackermann, the book commonly known as Hilbert 
& Ackermann. This book is the source of the Entscheidungsproblem that is the 
primary focus of Turing's paper. 

Turing refers explicitly to Grundzuge der Theoretischen Logik in his paper, as 
well as a later book by David Hilbert and Paul Bernays, Grundlagen der Mathematik 
(Foundations of Mathematics), the first volume of which was published in Berlin in 
1934, and which is known as Hilbert & Bemavs. (The second volume appeared in 
1939 after the publication of Turing's paper.) 

The next part of Turing's paper requires some familiarity wnh mathemati­
cal logic as developed in Hilbert & Ackermann.  In the following overview of 
that logic I will use Turing's notation, which is very similar to the notation used in 
Hilbert & Ackermann .  I will also mimic the approach of describing this logic as an 
expanding subset of features; this has become standard and is found in textbooks 
on mathematical logic by Alonzo Church, Stephen Kleene , Elliott Mendelson, 
Herbert B. Enderton, and many others. 

I will begin with what Hilbert & Ackermann called Aussagenkalkul, later 
translated as the sentential calculus, but known better today as the propositional 
calculus or propositional logic. 

I will then expand the logic to what Hilbert & Ackermann originally called 
the engere Funktionenkalkul or the restricted functional calculus. In the second 
edition of the book ( 1938) this was renamed as the engere Priidikatenkalkul, 
or restricted predicate calculus, but is better known today as first-order logic, 
or first-order predicate logic, or the first-order predicate calculus. Once a few 
concepts are introduced, I'll be able to distinguish between first-order logic 
and second-order logic, termed by Hilbert & Ackermann as the erweiterte 
Funktionenkalkul and later the erweiterte Priidikatenkalkul , or extended predicate 
calculus. 
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Propositional (or sentential) logic deals with entire declarative propositions (or 
sentences) that have a truth value - that is, they can be judged to be either true 
or false. Examples might be : 

Today is Wednesday. 
Seven is a prime number. 
It's raining. 
My mother's name is Barbara. 
Ten is a perfect square . 

Some of these sentences are true, some are false , and some may be true for me but 
false for you. (No fighting!) In propositional logic, sentences have single consistent 
truth values with no ambiguity, and the less we pretend that we're successfully 
analyzing anything except mathematical propositions, the less confused we'll be . 

In propositional logic, sentences are often represented by capital italic letters. 
Letters from the early part of the alphabet (A, B, and C) often stand for particular 
sentences with fixed truth values, while the latter part of the alphabet (X, Y, 
and Z) are used as variable propositions. 

We can combine individual propositions with certain connectives to make more 
complex sentences. 

The first of these connectives is a lower-case v, from the Latin word vel meaning 
or, and specifically, an inclusive or, as opposed to aut, the Latin exclusive or. The 
sentence 

X v Y  

is true if either X or Y is true, or if both are true. A little truth table is helpful for 
displaying the possible combinations of X and Y: 

x y X v Y  
false false false 
false true true 
true false true 
true true true 

It is permissible to omit the v symbol when there's no confusion. The formula 

XY 
is equivalent to: 

X v Y  

Notice that I did not represent this equivalence by writing the two formulas on the 
same line separated by an equal sign. The equal sign is not part of the language 
of the propositional calculus - or at least the propositional calculus as Hilbert &: 
Ackermann formulated it. 
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When we say that one sentence is equivalent to another, we mean they have the 
same truth value if all the constituent sentences have the same corresponding truth 
values. We are expressing this equivalence in a human language, also known as a 
metalanguage. Carefully distinguishing the language of logic from the metalanguage 
tends to avoid confusion. 

Hilbert &: Ackermann allowed a metalanguage abbreviation of aq. (for 
"aquivalent" in German) or eq. (for "equivalent" in the English translation) : 

X v Y  eq. XY 

Remember that this abbreviation is not part of the language of propositional logic 
and is strictly for convenience . 

The concept of "and" is represented by the ampersand, &:. The formula 

X &: Y  

is true only if both X and Y are true, as shown in this truth table: 

x y X & Y  
false false false 
false true false 
true false false 
true true true 

The "and" operation is often called conjunction from the use of the word in 
grammar; consequently, the "or" operation is often called disjunction, a much less 
familiar word. 

It is obvious from the truth tables that: 

X v X  eq. X 

X &: X  eq. X 

You can use both connectives in a compound sentence, in which case v is 
evaluated before &:, and if that's not what you want, you can override it with 
parentheses, or you can use parentheses strictly for clarification. 

X &: Y v Z eq. X &: (Y v Z) 

Those sentences are not equivalent to: 

(X &: Y) v Z 

For example , if X is false, Y is true, and Z is true, then the first pair of sentences is 
false but the last sentence is true . 

I won't belabor the various rules that exist to ensure that parentheses are always 
properly paired, and that connectives appear in sensible positions. These rules 
contribute to the concept of well-formed formulas or wffs (pronounced "woofs") . 
The words "true" and "false" are not part of the vocabulary of propositional logic, 



206 The Annotated Turing 

and neither are the letters "T" and "F", but for convenience you can use them to 
substitute for propositional letters. You can think of T as a sentence that is always 
true, and F as a sentence that is always false. From now on l'll use T and F in truth 
tables as well. 

The following equivalences are obvious from the truth tables: 

X v T  

X v F  

X &: T  

X &: F  

eq. 

eq. 

eq. 

eq. 

T 

x 
x 
F 

It is also obvious from the truth tables that both operations are commutative: 

X v  Y eq. Y v  X 

X &: Y eq. Y &: X 

Both operations are also associative : 

X v (Y v Z) eq. (X v Y) v Z 
X &: (Y &: Z) eq. (X &: Y) &: Z 

Both operations are distributive over each other: 

X v (Y &: Z) eq. (X v Y) &: (X v Z) 
X &: (Y v Z) eq. (X &: Y) v (X &: Z) 

If you replace F in the truth tables with 0, and T with 1, you'll see that 
conjunction is exactly equivalent to the multiplication of two one-digit binary 
numbers, and disjunction is somewhat similar to addition. For this reason, 
conjunction is sometimes called the "logical product" and disjunction is the 
"logical sum." However, there is some inconsistency in the use of these terms, so 
they're not encouraged. 

Conjunction and disjunction are binary operations; the only unary operation 
is called the "not" or "negation" and is symbolized by a dash much like a 
minus sign: 

Turing's notation differs from that of Hilbert &: Ackermann, who use a bar over 
the letter or larger expression. Negation is always evaluated first: The negation 
sign applies only to the symbol immediately following it. A double negative 
cancels out: 

- -X eq. X 
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These two relationships are very basic: 

X v -X eq. T 

X & -X eq. F 

Two of the most fundamental - but also the most interesting - logical rela­
tionships combine disjunction, conjunction, and negation. These are called 
De Morgan's laws after the nineteenth century mathematician Augustus De 
Morgan (1806- 1871) ,  although the basic concept was known to Aristotle : 

-(X v Y) eq. -X & -Y 

-(X & Y) eq. -X v -Y 

These equivalences are evident in common speech. For example, "It's not rain­
ing or snowing" or - (X v Y) is the same as "It's not raining, and it's not snowing" 
or-X &-Y. When I'm informed, "You're certainly not rich and handsome, alas" 
or-(X & Y) , I can only conclude, "I suppose I'm either poor or I'm ugly . . .  or 
both," or-X v-Y. 

Notice that De Morgan's Laws can be written with all the negation signs clumped 
together: 

X v  Y eq. -(-X & -Y) 

X & Y  eq. -(-X v -Y) 

In the truth tables for the v and & operations, you can change all the falses 
to trues and all the trues to falses, and you end up with the truth table for the 
opposite operation. This is known as the "pnnciple of duality" and it applies to 
complex sentences as well . Here's one: 

X & -Y v Z  

Negate everything and swap v and & (but remember to keep any implied 
parentheses intact) and the new sentence is the negation of the original sentence : 

-X v (Y & -Z) 

If you wanted to venfy that these two sentences are ,  in fact, negations of each 
other, you might construct a little truth table to test all the values: 

x y z X & -Y v  Z -X v (Y &  -Z) 
F F F F T 
F F T F T 
F T F F T 
F T T F T 
T F F T F 
T F T T F 
T T F F T 
T T T T F 
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The final two columns have opposite truth values, so: 

X & -Y v Z  eq. -(-X v (Y & -Z)) 

There is no operator for the exclusive or, but the following formula does it: 

(X v Y) & -(X & Y) 

Here's a truth table that shows how the sentence works: 

x y X v Y  X & Y  (X v Y)& -(X & Y) 
F F F F F 
F T T F T 
T F T F T 
T T T T F 

The exclusive-or is just like the regular disjunction except when both X and Y are 
true. 

If you apply De Morgan's laws to the second half of the sentence for exclusive-or, 
you get: 

(X v Y) & (-X v -Y) 

You might like the symmetry of this version more . 
Computer circuitry uses an exclusive-or to calculate the sum of two binary 

digits, and a conjunction for the carry bit.8 
The third binary operation is the tricky one. It's called "implication." You can 

read X - Y as "X implies ¥" or "if X, then ¥." Be forewarned that many people 
have a "something wrong here" reaction when first confronting the truth table for 
implication: 

x y x - Y  
F F T 
F T T 
T F F 
T T T 

The top two entries might seem strange. If X is false, why should X - Y be true 
regardless of the value of Y? One way to look at it is to begin by assuming X -* Y 
is true . If X - Y is true and X is true, then Y must be true. However, if X isn't true 
then what does that say about Y? Nothing. Y can be anything. That's why X -* Y 
can be true if X is false regardless of Y. 

8Charles Petzold, Code The Hidden Language of Computer Hardware and Software (Microsoft Press, 1999), 
ch 1 2  
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Consider the sentence , "If it's raining then it's precipitating." That sentence is 
true if it's raining but it's also true if it's not raining. The only time that sentence 
is false is when it's raining but not precipitating. 

Implication is used a lot in mathematical logic. Very often to the left of the 
implication sign is a formula that we know to be true. If we can then show that 
the sentence itself is true , we can conclude that the formula on the nght is true. 

Implication is not commutative and not associative However, 

X � Y eq. -Y � -X 

The second sentence is called the contrapositive. If it's raining then I'm taking an 
umbrella. I don't have my umbrella so it must not be raining. Implication has a 
very simple relationship with disjunction : 

X � Y eq. -X v Y  

In other words, X � Y is true if either X is false or Y is true . It's also possible to 
express implication in terms of conjunction : 

X � Y eq. -(X & -Y) 

If a conJunction of any number of terms is on the left of the implication sign, 
then any one of those terms can be on the right: 

X & Y  � X 
X & Y  � Y 

Hilbert & Ackermann describe a biconditional (or "if and only if') operation 
symbolized with a tilde : 

x y x "' y 
F F T 
F T F 
T F F 
T T T 

X "' Y is true only if X and Y have the same truth values. Turing does not 
use the biconditional at all m his paper Still, it's instructive to observe that it is 
equivalent to the conJunction of implications going both ways: 

X "' Y eq. (X � Y) & (Y � X) 

If you accept that this equivalence makes sense, then the only way it works is if 
T � T is true (which we all accept) and F � F is also true (which is one of the iffy 
ones) . Also, T � F and F� T must have opposite truth values. Everybody agrees 
that T � F must be false , which means that F � T must be true. This confirms 
the correctness of the truth table for implication. 
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Suppose I give you the following sentence: 

X v Y v (-X & -Y) 

What can you tell me about it? ls it true or false? You might object and say that 
you can't tell whether it's true or false unless you know the values of X and Y. I'll 
then suggest that you set up a truth table to test all the combinations of X and Y. 
Here it is: 

x y X v Y v (-X & -Y) 
F F T 
F T T 
T F T 
T T T 

Regardless of the individual values of X and Y, this sentence is always true. We say 
that such a sentence is a tautology, or that it is universally valid. Universally valid 
sentences are much loved in mathematical logic because they are true regardless 
of the truth values of the individual propositions. 

Let's try another: 

x y X & Y & -X 
F F F 
F T F 
T F F 
T T F 

That sentence is never true. It is a contradiction. The negation of a tautology is a 
contradiction, and the negation of a contradiction is a tautology. 

Here's a third: 

x y X v (Y & -Y) 
F F F 
F T F 
T F T 
T T T 

This sentence is sometimes true and sometimes false depending on the values of 
X and Y. This sentence is said to be satisfiable - the sentence has the ability to be 
true wi.th a certain combination of propositional values. 

A sentence that is universally valid (a tautology) is also considered to be 
satisfiable . A sentence is universally valid if and only if the negation of that 
sentence is not satisfiable.  

For any sentence, we can use a truth table to determine whether that sentence is 
universally valid, a contradiction, or merely satisfiable. The process of evaluating 
a truth table is mechanical. It doesn't require any special inspiration, insights, 
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or intuition. If you're a computer programmer, you can easily imagine writing a 
program that reads a sentence in propositional logic, evaluates it, and prints the 
words "valid" or "contradiction" or "satisfiable."  

For this reason, we say that sentences in the propositional calculus are decidable. 
A decision procedure exists to determine the validity, or satisfiability, of any arbitrary 
sentence in propositional logic. 

In other words, the Entscheidungsproblem for the propositional calculus has 
been solved. We can all go home early today. 

This is not to say that a truth table is always practical. Suppose a sentence 
has 100 propositional variables. The number of lines in the truth table is 2 100 
or 1 ,267,650,600,228,229,40 1 ,496,703 ,205,376, or about 1030 , which is a very 
large number. Even with a futuristic computer that processes each line in 1 
nanosecond - a billionth of a second, or the length of time required for light to 
travel approximately one foot - the processing time would be 38 trillion years, 
about 3,000 times the current age of the universe. 

The good news is this: If you restrict yourself to 55 propositional variables, and 
you're still able to process each line in 1 nanosecond, you'd only have to wait 
about a year. Each new variable doubles the processing time. In computability 
and complexity theory, the computing time for processing truth tables is known 
as exponential time because it relates exponentially to the size of the problem. 

For those reasons, solutions other than truth tables are valuable for evaluat­
ing sentences in propositional logic. These techniques often involve putting the 
sentence in a normal form, which is either a conjunction of multiple terms, each 
of which is a disjunction of vanables, or a disjunction of multiple terms, each of 
which is a conjunction of variables. 

This concludes my all-too-hasty overview of propositional logic. We must move 
on because propositional logic is insufficient for many purposes. The big problem 
with propositional logic is that we're dealing with entire declarative sentences, 
and we can't relate the internals of different sentences to each other. Propositional 
logic fails when attempting to analyze Aristotelian syllogisms ("All men are mortal; 
Socrates is a man; hence . . .  ") or the straightforward sorites devised by Lewis 
Carroll ("No kitten, that loves fish, is unteachable; No kitten without a tail can 
play with a gorilla; Kittens with whiskers always love fish; No teachable kitten has 
green eyes; No kittens have tails unless they have whiskers; hence . . .  9). 

We can make logic more powerful by introducing propositional functions or 
predicates. (The first term is the one that Turing prefers; the second is somewhat 
more modem. I'll use the two terms interchangeably.) The term predicate comes 
from grammar, in which sentences are divided into subjects and predicates. For 

9!.eWJS Carroll, Symbolic Logic Part I Elementary (Macmillan, 1896), 1 18 The solution is "No kitten with 
green eyes will play with a gonlla " But you knew that I 
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example, in the sentence "The politician speaks great truths," the subject is "The 
politician" and the predicate is "speaks great truths." 

The introduction of predicates is the first step to turning propositional logic into 
first-order predicate logic. Whenever we use predicates, we're restricting ourselves 
to a specific domain or population. In real life, this domain is very often the natural 
numbers. Individuals from this population are arguments to the predicates. 

In Hilbert & Ackermann (and in Turing), predicates look like functions, but 
they only have values of true and false. I like to use whole words or multiple words 
for my predicates, such as IsPrime. The domain of the lsPrime predicate consists 
of natural numbers, so that IsPrime(7) is true but IsPrime(9) is false. Individuals 
from the domain can be symbolized by lower-case letters that serve as variables, 
for example IsPrime(x) . 

Whenever a predicate has an explicit argument, then the predicate with its 
argument becomes a proposition. For example, IsPrime( lO) is the same as the 
proposition 'Ten is a prime." This is one way in which predicate logic relates to 
propositional logic. 

Predicates can have multiple arguments. Suppose you're dealing with a domain 
consisting of your friends, all of whom have unique names. The predicate Loves 
(x, y) is true if person x loves persony. For example, I..oves(Pat, Terry) is the same as 
the proposition "Pat loves Terry." Some predicates have commutative arguments, 
but not this one, so I..oves(Pat, Terry) is not the same as I..oves(Terry, Pat) . 

We can combine predicates with the same connectives used with propositional 
logic. The sentence 

I..oves(Pat, Terry) & I..oves(Terry, Pat) 

is true if they both love each other, and 

I..oves(Pat, Terry) "' I..oves(Terry, Pat) 

is true if their feelings (whatever they may be) are reciprocated. 
What does this mean? 

I..oves(x, Pat) 

It's not quite entirely clear. If it has any meaning at all, we might guess that it 
means that everybody loves Pat. Or maybe at least somebody loves Pat. 

To avoid ambiguities like these , we must also introduce two quantifiers , which 
Turing calls quantors. The first is the universal quantifier, which consists of the 
variable enclosed in parentheses before the predicate: 

(x)I..oves(x, Pat) 

The x in parentheses means "for all x." That formula is true if "for all x, x loves 
Pat." It's true if everybody loves Pat. This formula 

(x)I..oves(Pat, x) 
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is true if Pat loves everybody. The symbol V is often used for the universal 
quantifier, but not by Hilbert &: Ackermann or Turing. 

The second type of quantifier is the existential quantifier, which translates as 
"there exists." Hilbert &: Ackermann use a regular E for the existential quantifier 
but Turing prefers the more common 3. For example, 

(3x)Loves(x, Terry) 

means that "there exists an x such that x loves Terry" or somebody loves Terry - at 
least one person, even if that person is Terry. 

In first-order logic (what Hilbert &: Ackermann called the restricted calculus) , 
quantifiers are applied only to variables denoting individuals from the domain. In 
second-order logic (or the extended calculus), quantifiers can be applied to variables 
representing propositional functions. Turing's paper involves only first-order logic. 

If we're dealing with a finite population, then the universal quantifier can be 
expressed as a conjunction, and the existential quantifier as a disjunction. For 
example, suppose our entire population consists of just Pat, Terry, and Kim. The 
formula: 

(x)Loves(Kim, x) 

is equivalent to the conjunction: 

Loves(Kim, Pat) &: Loves(Kim, Terry) &:  Loves(Kim, Kim) 

All those individual predicates must be true for the sentence to be true . The 
formula 

(3x)Loves(Kim, x) 

is equivalent to: 

Loves(Kim, Pat) v Loves(Kim, Terry) v Loves(Kim, Kim) 

Only one of the predicates need be true for the sentence to be true. 
If you recall the duality of De Morgan's Theorem and you apply that to these 

two formulas, you probably won't be inordinately surprised to discover that the 
universal and existential quantifiers can be represented in terms of each other when 
negation is introduced. These two equivalent formulas are true if not everyone 
loves Terry: 

-(x)Loves(x, Terry) eq. (3x)-Loves(x, Terry) 

The following two formulas are both true if nobody loves Terry: 

(x)-Loves(x, Terry) eq. -(3x)Loves(x, Terry) 

Similarly, 
(x)Loves(x, Terry) eq. -(3x)-Loves(x, Terry) 
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The formula on the right can be translated as, "it is not the case that there exists 
someone who does not love Terry."  Similarly, 

(3x)Loves(x, Terry) eq. -(x)-Loves(x, Terry) 

It is not the case that nobody loves Terry. 
When American mathematician Charles Sanders Peirce (1839- 1914) devel­

oped his logical quantifiers, he used the symbol :L:. commonly associated with 
summation, for the existential quantifier and n, the symbol for a compound 
product, for the universal quantifier, further emphasizing the relationship between 
logic and binary arithmetic. 

The x that I've been using in these formulas is known as a bound variable 
because it is attached to the quantifier. It serves the same role as a variable function 
argument. Any variable that is not part of a universal or existential quantifier is 
known as a free variable. In the following formula, x is bound but y is free: 

(3x)Loves(x, y) 

Free or bound variables can be changed, but only if they don't clash with other 
variables. For example, we can change the x in the preceding formula to z: 

(3.z)Loves(z, y) 

The formula has exactly the same meaning, but we can't change the bound variable 
to a y because it would then clash with the free variable and become something 
completely different. 

A single formula cannot contain a bound variable and a free variable that are 
the same. A formula in first-order logic containing no free variables can be referred 
to as a sentence or a proposition. It is not proper to use these words to describe 
formulas that contain free variables. 

Bound variables have a scope often indicated by parentheses. In the following 
sentence , x is bound throughout the parenthetical expression: 

(x) [Loves(x, Kim) &: Loves(x, Pat)) 

Notice the use of brackets instead of parentheses just to make the statement more 
readable. The sentence means that everybody loves Kim and loves Pat; it has the 
same meaning as: 

(x)Loves(x, Kim) &: (x)Loves(x, Pat) 

Now those two bound variables are independent of each other, and one or the 
other can be changed: 

(y)Loves(y, Kim) &: (x)Loves(x, Pat) 

The following statement is true if someone loves both Kim and Pat: 

(3x) [Loves(x, Kim) &: Loves(x, Pat)] 
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However, the meaning changes when you separate the two predicates: 

(3x)Loves(x, Kim) & (3x)Loves(x, Pat) 

Now there's someone who loves Kim and someone who loves Pat, but it's not 
necessarily the same person. 

Now replace the conjunction I've been using in the last several formulas with a 
disjunction: 

(x) [Loves(x, Kim) v Loves(x, Pat)] 

That's true if every person either loves Kim or loves Pat (or both) . It's true if Terry 
loves Kim but not Pat, and if Terry loves Pat but not Kim. The sentence meaning 
changes when you separate the two predicates: 

(x)Loves(x, Kim) v (x)Loves(x, Pat) 

This is true only if everybody loves Kim or everybody loves Pat or everybody loves 
both. 

Here's an existential quantifier applied over a disjunction: 

(3x) [Loves(x, Kim) v Loves(x, Pat)] 

There exists a person who loves either Kim or Pat or both. Separating the two 
predicates retains the meaning: 

(3x)Loves(x, Kim) v (3x)Loves(x, Pat) 

Two basic relationships apply to all propositional functions. In both examples, 
A is a predicate and a is a member of the domain. The first relationship is: 

(x)A(x) --+ A(a) 

If the predicate is true for everyone, then it's true for any individual . The second 
is this: 

A(a) --+ (3x)A(x) 

Quantifiers can be stacked. For example, 

(3x)(y)Loves(x, y) 

This is interpreted as if the quantifiers were grouped like this: 

(3x) [(y)Loves(x, y)] 

It's true if there exists a person who loves everybody. The meaning is not quite the 
same when you switch the order of the quantifiers: 

(y)(3x)Loves(x, y) 
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This is true if everyone is loved by somebody, but not necessarily by the same 
person. For example, if Kim loves Kim, and Terry loves Terry, but they don't love 
each other, then: 

(y)(3x)Loves(x, y) 

is true but, 
(3x)(y)Loves(x, y) 

is not. If the sentence beginning with the existential quantifier is true, however, 
then so is the other one. This relationship is encapsulated in Theorem * 1 1 .26 from 
Principia Mathematica that you saw at the beginning of this chapter: 

* 1 1  · 26. f-: .(3x) : (y).</J(x, y) : ::J :  (y) : (3x) .</J(x , y) 

where </J(x, y) is a predicate. In the notation that Turing uses, that's: 

(3x)(y)</J(x, y) --+ (y)(3x)</J(x, y) 

When a string of consecutive universal quantifiers appears in a formula, they can 
be rearranged without changing anything. The same is true for a string of existential 
quantifiers. (Convert the sentence to a compound conjunction or disjunction to 
convince yourself this is so.) In general , however, a series of interspersed universal 
quantifiers and existential quantifiers cannot be rearranged without changing the 
meaning of the formula. 

just as with propositional logic, formulas can be evaluated without regard to 
the meanings of the domain and the predicates. The formula 

(x) [F(x) v -F(x)) 

is considered to be universally valid because it's true regardless of the domain and 
the definition of the propositional function F. The following formula, however, is 
never true : 

(3x)(F(x) &: -F(x)) 

Such a formula is said to be refutable. Then there are the formulas that fall 
somewhere in between. This one is very simple: 

(x)F(x) 

It's easy to come up with a domain for x and a function F where this is true. 
Suppose the domain consists of natural numbers and F means "greater than or 
equal to zero." It's equally easy to identify a domain and function where it's 
false . Suppose F returns true if the argument is prime . This formula is said to be 
"satisfiable" because it's true under some interpretations. 

Validity and satisfiability are flip sides of the same problem because the concepts 
are related: A sentence is either satisfiable or refutable. If sentence 2l is valid, then 
it is also satisfiable (but not necessarily the other way around).  If ill is satisfiable 
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but not valid, then -2! is also satisfiable but not refutable. ?2l is valid if and only 
if -21 is not satisfiable. 

The words validity and satisfiability are sometimes associated with a semantic 
approach to mathematical logic, so called because it's referring to the truth meaning 
of the sentences involved. 

Another approach to mathematical logic is syntactic in nature. You begin with 
axioms and derive theorems. Such theorems are said to be provable, meaning that 
they are a consequence of the axioms. With the syntactic approach to logic, it's 
not necessary to get involved with messy - possibly metaphysical - concepts 
of truth. 

For propositional logic, Hilbert & Ackermann stated four rather obvious axioms 
derived from Principia Mathematica: 

(a) X v X  � X 
(b) X � X v Y 
(c) X v Y  � Y v  X 
(d) (X � Y) � (Z v X � Z v Y) 

Although the axioms refer only to disjunction and implication, we can apply 
them to conjunction as well if we define X & Y as an abbreviation for -(-X 
v-Y). 

For first-order logic, Hilbert & Ackermann added two more axioms. For any 
predicate F, the following statements are axioms: 

(e) (x)F(x) � F(y) 
(0 F(y) � (3x)F(x) 

In addition to the axioms are rules for obtaining complex statements from 
primitive statements: 

1 .  Substitution: A propositional variable can be consistently replaced with a 
formula while avoiding clashes among bound and free variables; free and 
bound variables can be changed if clashes are avoided; predicates can be 
replaced with formulas. 

2. Implication: If formula ?2l is true, and if formula ?2l � Q3 is true, then Q3 
is true. 

This second rule is known as modus ponens (mode of affirmation) .  It seems to 
be obvious, but it really must be an axiom. You can't derive it, and if you think 
you can, you might want to take a look at Lewis Carroll's essay "What the Tortoise 
Said to Achilles."10 

101..eWJs Carroll, "What the Tonoise Said to Achilles,» Mind, New Senes, Vol 4, No 14  (Apr 1895), 
278-280, and frequently republished 
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Anything that can be derived from these six axioms and two rules is known as 
a theorem . The derivation itself is known as a proof. Any formula that is the result 
of a proof is said to be provable. A theorem is a provable formula. 

For example , if 21 and Q) are both theorems, then by axiom (c) and rule (1) we 
can say that 

is provable and hence also a theorem. 
The rules go both ways: You can begin with axioms and use the rules to derive 

theorems, or you can begin with a formula and use the rules to convert it into an 
axiom, in which case you can classify the formula as a theorem. The automated 
proof programs I discussed at the beginning of this chapter began with theorems 
from Principia Mathematica and applied the axioms and substitution rules to reduce 
them to axioms. 

As you can see, Hilbert's formalization of mathematics seemed to reduce it to a 
mechanical process of symbol manipulation. This was evident to Henri Poincare 
(1854-1912) ,  who wrote that "we might imagine a machine where we put in 
axioms at one end and take out theorems at the other, like that legendary machine 
in Chicago where pigs go in alive and come out transformed into hams and 
sausages ."1 1 

You can even mechanically enumerate all the theorems in a systematic manner. 
You begin with the axioms, which you extend to any number of propositional 
variables and any number of predicates, and then you apply the substitution and 
implication rules in every possible combination. 

By definition, a theorem is a formula that is derivable from the axioms, so this 
enumeration of theorems yields every possible theorem. A question then raises 
itself: Are these theorems the same as the universally valid formulas? Or might 
there be some universally valid formulas that cannot be generated based on the 
axioms? 

Using Hilbert and Ackermann's book as a springboard, Kurt Godel established 
the equivalence between the semantic and syntactic approaches to first-order logic 
first in his 1929 doctoral thesis, "Uber die Vollstandigkeit des Logikkalkuls" ("On 
the Completeness of the Calculus of Logic") , and then in the 1930 paper "Die 
Vollstandigkeit der Axiome des logischen Funktionenkalkuls" ('The Completeness 
of the Axioms of the Functional Calculus of Logic"). 

Prior to Godel, it had already been known that every provable formula was 
also universally valid. This is known as soundness, and it's essential to a logical 

1 1 Henn Poincare, Science and Method, translated by Francis Maitland (Thomas Nelson & Sons, 1914,  
Dover, 2003), 1 47 
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system. What Godel proved was that every universally valid formula was also 
provable. This is one possible definition of "completeness" of a logical system, and 
indeed, the titles of Godel's papers refer to Vollstandigheit - completeness. Godel's 
Completeness Theorem demonstrated that the axioms are complete - that the 
axiomatic system proposed by Hilbert & Ackermann for the pure predicate logic 
is sufficient for enumerating every universally valid statement in that logic. 

It might be supposed that the enumeration of theorems and Godel's Complete­
ness Theorem provide the basis for a decision procedure for first-order logic. For 
example , suppose you want to determine the provability of formula 2l. You begin 
enumerating all the theorems and comparing them with 2l. If 2l is not provable, 
however, you won't get a match, and you won't know when to stop. 

Yes, I know that you're cleverer than that: Your approach is to enumerate all 
the theorems and compare each theorem and its negation to 2l (or you compare each 
theorem to 2l and its negation). You're still not guaranteed to get a match because 
2l might be merely satisfiable and not universally valid or refutable. For this 
reason, an enumeration-based decision procedure is said to be only semi-decidable. 
Only if you know beforehand that either 2l or -2! is universally valid will the 
procedure successfully come to a conclusion. Even after Godel's 1930 papers, the 
Entscheidungsproblem for first-order logic was still an open question. 

Godel's more famous paper was published in 193 1 ,  and involved an application 
of first-order logic to basic arithmetic - addition and multiplication. Using this 
arithmetic, Godel was able to associate a number with every formula and every 
proof. Godel created a predicate named Bew for beweisbar, meaning provable, and 
was able to apply this predicate to the Godel number of its negation, creating a 
formula that asserts its own unprovability. 

Thus, within a logical system supporting basic arithmetic, it is possible to 
develop propositions that can be neither proved nor disproved. Although this 
concept has come to be known as the Godel Incompleteness Theorem, the title of 
the paper is actually "Uber formal unentscheidbare Satze der Principia mathematica 
under verwandter Systeme I" ("On Formally Undecidable Propositions of Principia 
Mathematica and Related Systems I") . 12 The title refers not to completeness or 
incompleteness but to unentscheidbare Satze - undecidable propositions. 

Does Godel's Incompleteness Theorem spell doom for a general decision 
procedure? Not necessarily, although a general decision procedure certainly 
seemed more unlikely in 1931 than in 1930. Godel's Incompleteness Theorem 
is about undecidable propositions, while the Entscheidungsproblem concerns the 

12All three Godel papers I've cited are most conveniently available in Kun Godel, Collected Works Volume I, 

Publications 1 929-1 936 (Oxford University Press, 1986) 
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existence of a general process to determine the provability of any given formula. 
A decision procedure, if it existed, would classify an undecidable proposition as 
unprovable. 

The early computer programs that proved theorems from the pages of Principia 
Mathematica definitely did not do so by starting with the axioms and systematically 
deriving all provable formulas. The Newell-Simon-Shaw paper refers to this 
as the "British Museum algorithm," so called because it's akin to searching through 
the British Museum and examining each object in hopes of discovering the precise 
one you want. This brute-force approach was rejected by these early researchers 
as soon as it was considered. As Manin Davis put it, 

[ l it  was all too obvious that an attempt to generate a proof of 
something non-trivial by beginning with the axioms of some log­
ical system and systematically applying the rules of inference in 
all possible directions was sure to lead to a gigantic combinato­
nal explosion. 13 

Only one programmer operated without fear of combinatorial explosions, and 
that was Alan Turing. Turing's imaginary computers have unlimited storage and 
all the time in the world , so Turing can journey where more machine-bound 
programmers fear to tread. 

In the previous chapter I left off in the middle of Section 9, 'The extent of the 
computable numbers." Turing had begun Section 9 with a need to convince us 
that the numbers computable by his machine include "all numbers which would 
naturally be regarded as computable" (pg. 249 of Turing's paper; page 190 in this 
book) . 

Turing then began with a section headed by Roman numeral I (meaning the 
first of several arguments) and "Type (a)" meaning "A direct appeal to intuition." 
The next section coming up begins with a heading of Roman numeral II because 
it's the second of Tunng's arguments, and 'Type (b)" which he indicated was "A 
proof of the equivalence of two definitions (in case the new definition has greater 
intuitive appeal) ." 

The single sentence that follows this heading has three footnotes. The first 
footnote only clarifies that he's talking about the restricted functional calculus, 
which is what we know as first-order predicate logic. I want you to ignore the 
second footnote for the moment. I'll discuss it soon enough. 

1 3Manin Davis, "The Early History of Automated Deduction," in Alan Robinson and Andrei Voronkov, 
eds , Handboolt of Automated Reasoning (MIT Press, 2001) ,  Vol I, 3-1 5 
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II. [Type ( b ) I .  

I f  the notation o f  the Hilbert functional calculus7 i s  modified so as to 
be systematic, and so as to involve only a finite number of symbols, it 
becomes poss ible to construct an automaticj: machine, cK, which will find 
all the provable formulae of the calculus� . 

' The express ion "the fu nctional calculus" is used throughout to mean the restricted 
Hi lbert functiona l calculu,,; 

It is most natural to construct fi rst a choice machine l * 2 >  to do this. But it  is 
then easy to construct the required automatic mach ine . We can suppose that the choices 

are alway:; choices bctw1•en two possi bi l ities 0 and 1 Each proof wi l l  then be determined 

by a sequl'nce of ch01ces q , 1 � • . . .  , 1 ,, l / 1  = 0 or 1 ,  1 2  = 0 or 1 ,  . . . , i,, = 0 or l l ,  and hence 

the nu mber 2" + 1 1 2" 1 H�2" 2 + . . .  + 1 ., com pletely determines the proof. The automatic 
machine carries out succp;isively proof 1 ,  proof 2,  proof 3,  . . . . 

* The author has found a descript10n of such a machine 

I believe Turing calls the machine ff< to stand for the Gennan word Kalkii.l. 
Although not entirely obvious in this sentence, you'll see eventually that Turing is 
describing a British Museum algorithm. The machine ff< begins Wlth axioms either 
already encoded on the tape or, alternatively, the machine begins by wnting the 
axioms on the tape. These are the basic axioms of first-order logic plus whatever 
other axioms are required for additional predicates. The machine implements 
the inference rules progressively to generate all the provable statements of the 
calculus. 

Tunng requires that the notation of first-order logic "be modified so as to be 
systematic."  Surely we don't want to worry about the equivalence of statements 
that differ solely in the use of variable names or unnecessary parentheses. For 
example, these three statements must be regarded as identical: 

(x)(3y)4>(x, y) 

(y)(3x)tj>(y, x) 

(x)(3y)(tj>(x, y)) 

The notation can be made systematic by requiring that variables always be 
of the form Xi . and that they must appear in a particular formula in numeric 
order of the subscript. Moreover, parentheses must be used only where they're 
needed to govern the order of operations. Alternatively (and most likely in a 
practical machine),  the formulas could be encoded in a prefix notation that makes 
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parentheses unnecessary, such as the so-called Polish notation that Jan l:.ukasiewicz 
(1878- 1956) invented specifically for propositional logic. Rather than 

(A v B) &: (C v D) 

the statement would be encoded as: 

&:vABvCD 

What's important here is that this machine generates all provable formulas. We 
know from the Godel Completeness Theorem that this collection is the same as all 
universally valid formulas. 

l believe that Turing is attempting here to appeal to those early readers of 
his paper who might be skeptical about the ability of his machines to compute 
real numbers of any arbitrary degree of complexity. In 1936 there was much 
more trust in the efficacy of first-order logic than computing machines. From an 
implementation viewpoint, this fJ<. machine seems quite feasible . It is certainly 
much simpler than machines that compute real numbers such as the seventh root 
of 10.  Machine fJ<. works solely with strings of symbols and pastes them together 
in various ways through rules of substitution. Much of the string comparison and 
substitution logic has already been presented in the functions Turing used in the 
Universal Machine. 

The second footnote of this sentence - the footnote that begins, "It is most nat­
ural to construct . . .  " - actually seems to describe a somewhat different approach 
that would be more suitable for propositional logic than first-order logic. Given a 
fixed number n of propositional variables, you can develop a system to generate all 
well-formed formulas by interspersing these variables with the logical connectives. 
For each of these formulas, you then test whether the formula is a tautology using 
a truth-table approach. 

lf this well-formed formula has n propositional variables, then 2" tests are 
required to determine whether the formula is valid. If you think of true and false as 
the binary digits 1 and 0, then each test corresponds to an n-digit binary number 
where each digit represents the truth value of one variable. In Turing's footnote, 
this n-digit binary number is slightly incorrect, and the 2" term at the beginning 
must be deleted. The trials can be numbered beginning with 0 and ending with 
(n- 1) to correspond with the value of the n-digit binary number. 

Although Turing needs to use this fJ<. machine to generate statements in 
first-order logic rather than propositional logic, you'll see that whenever he 
requires integers, he only requires a finite domain of non-negative integers. At no 
time does he require an infinite domain, so conceivably his first-order formulas 
could be converted to propositional formulas, and he could then use a truth-table 
solution. 

The introduction of natural numbers into a system of first-order logic is always 
somewhat messy but pretty much essential if we're going to apply the logic to 
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numeric concepts. Merging numbers into logic usually begins with a variation of 
the Peano Axioms. These are five axioms extracted from an original nine axioms 
presented by Giuseppe Peano in his small 1889 book The Principles of Arithmetic, 
Presented by a New Method,14 but based on Richard Dedekind's 1888 pamphlet 
Was sind und was sollen die Zahlen? (What are and What should be the Numbers?) . 1 5  

The Peano Axioms are built around the concept of  a "successor," which is 
intuitively the number that comes right after a number. For example,  the successor 
to 12  is 13 .  The Peano Axioms ensure that every number has a successor, and that 
this successor is unique. Only one number is not the successor to any number. 
In Peano's formulation, that number is 1 ,  but these days the natural numbers are 
generally defined to begin with zero. 

Here's one version of the Peano Axioms in plain English: 

1 .  Zero is a number. 
2. Every number has a successor that is also a number. 
3. Zero is not the successor to any number. 
4. Two numbers that are the successors to the same number are equal. 
5. If something is true for zero, and if the fact that it's true for some number 

implies that it's true for the successor of that number, then it's true for all 
numbers. 

The fifth axiom is commonly known as the principle of mathematical induction, 
and it forms the basis of many mathematical proofs about the natural numbers. 
(Turing will use it twice in proofs in the next two chapters.) Nevenheless, 
expressing induction in the language of first-order logic is problematic. Induction 
is inherently a concept of second-order logic because it must apply to all predicates 
that have arguments of natural numbers. The concept of equality is a second-order 
concept as well, and that's why you'll see a reluctance among logicians - and 
Turing in this paper - to introduce a predicate that is true if two arguments are 
equal. 

Even the task of encapsulating the first four Peano Axioms in the language 
of first-order logic is not trivial and (as you'll see) Turing's representation is 
inadequate. This problem has no real effect on his proof or conclusions, but it's 
certainly disturbing. 

Another problem involves representing the natural numbers themselves. The 
quaint tradition of using 0, 1 ,  2 ,  3 ,  and so forth simply will not do. Nothing except 
centuries of convention and the brutal indoctrination of grammar school tells us 

14Excerpted in jean van Heijenoort , ed , From Frege to Godel A Source Book in Mathematical Logic, 

1879-1931 (Hatvard University Press, 1967), 83-97 Complete version available in Selected Works of 

Giuseppe Peano, translated and edited by Hubert C Kennedy (George Allen & Unwm, 1973), 10 1-134 
1'Repnnted in William Ewald, ed . ,  From Kant to Hilbert A Source Book in the Foundations of Mathematics 

(Oxford University Press, 1996), Vol I I ,  787-833 
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that the successor of 12 is 13 .  Particularly if we're conceiving mechanical forms of 
symbol manipulation, a much better approach is to have symbols that themselves 
convey the concept of successorship. 

In the first volume of Grundlagen der Mathematik (1934) - a book that Turing 
later refers to in his paper - Paul Bernays uses prime marks to indicate that one 
number is the successor to another. For example, if a is a number, then a' is 
the successor to that number, and a" is the next successor. Bernays also uses the 
symbol 0 to represent zero, in which case O' is the successor to zero, and O" is 
the next successor. 16 What number is it really? Just count the prime marks on the 
0. The earliest example I've seen of this notation in the works of Hilbert and his 
followers is in David Hilbert's 1927 "Foundations of Mathematics." 17 

Turing doesn't take quite this approach. He is apparently reluctant to use even 
the 0 symbol. Instead he uses the symbol u as the first natural number. (He's 
somewhat vague whether u is 0 or 1 or even if it matters. In my examples I've 
assumed that u is 0.) The successors of u are then u' , u", u'" and so forth. This 
notation could get unwieldy for large numbers, and it doesn't let us represent an 
arbitrary number such as n or x. Taking a cue from Hilbert &: Bernays, Turing 
uses the notation uCr) to indicate r prime marks on u. For example, u""' can be 
represented as uC5> , which we know as the number of fingers on one human hand. 

Turing defines a propositional function N(x) which is true if x is a non-negative 
integer. If we're restricting ourselves to a universe of non-negative integers anyway, 
this function doesn't really tell us anything, but Turing finds it useful to express 
the Peano Axioms. 

Turing also defines a propositional function F(x, y) which is true if y is the 
successor to x, or in common arithmetic, y = x + 1 .  Keep in mind that F does 
not provide the successor or calculate the successor. It is what programmers call a 
Boolean function. It is intended to be true only if y is actually the successor to x. 

Once you have a good successor predicate (named Succ, for example, just to 
distinguish it from Turing's) , and you've established an axiom for mathematical 
induction, it's possible to define a predicate named Sum(x, y, z) that is true if z 
equals x + y. The Sum predicate is based on the following three axioms: 

(x)Sum(x, u, x) 

(x)Sum(u, x, x) 

(x)(y)(z)(r)(s)(Sum(x, y, z) &: Succ(y , r) &: Succ(z, s) � Sum(x, r, s)) 

The first two axioms define the addition of zero to any number. The third says 
that if x + y = z and r = y + 1 and s = z + 1 then x + r = s .  

16Davtd Hilben and Paul Bernays. Grundlagen der Mathemarik, Volume I (Spnnger, 1934) , 218  
1 7 Davtd Hilben, "Foundations of  Mathematics,» From Frege to Godt:l, 467 
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It's possible to define a Product(x, y,  z) predicate similarly: 

(x)Product(x, u, u) 
(x)Product(u, x, u) 
(x)(y)(z)(r)(s)(Product(x, y, z) & Succ(y, r) & Sum(z, x, s) 

-+ Product(x, r, s)) 

The first two axioms define multiplication by zero, and the third says that if x 
x y = z and r = y + 1 and z + x = s then x x r = s .  

Let's go a little further. The predicate IsEven(x) can be defined as: 

(3y )Product(y, u", x) 

IsEven(x) is true if there exists a y such that x = y x 2. The predicate IsOdd(x) is 
the same as -IsEven(x) , and here I'll stop because I have enough for my examples. 

Now let a be a sequence, and let us denote by G0(x) the proposition 
''The x-th figure of a is 1", so thatl l  - Ga(x) means "The x-th figure of a 
is O". 

II The negation sign is written before an expression and not over it. 

That footnote is where Turing indicates he's using a negation symbol that differs 
from Hilbert's. This a is a sequence that we'd normally compute by designing a 
dedicated machine. Turing suggests here that we instead derive predicates that 
are true and false corresponding to digits 1 and 0. For example, the sequence 
corresponding to the square root of two, developed in Chapter 6, begins: 

101 101 1010 . . .  

If we number the digits beginning with 0, then Ga(O) is true, Ga(l )  is false, 
Ga(2) is true, Ga(3) is true, Ga(4) is false, and so on. That's likely quite a complex 
predicate. A much easier sequence is Turing's Example I machine: 

0101010101  . . .  

This sequence, you'll recall, is the binary equivalent of 1/3. A propositional function 
that describes this sequence is easy if we define Ga(x) as lsOdd(x) . 

Suppose further that we can find a set of properties which define 
the sequence a and which can be expressed in terms of Ga (x) and of the 
propositional functions N(x) meaning "x is a non-negative integer" and 
F(x, y) meaning "y = x + 1". 
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Here is Turing's introduction of two predicates he will use through much of 
the remainder of the paper. F is the successor function so crucial to defining the 
natural numbers. I am much less convinced of the need for the N function if 
the domain is explicitly restricted to the natural numbers. 

I'm not sure what Turing means by a "set of properties." What we really want 
here are axioms that support the propositional functions from which Ga(x) is 
composed. In my simple example, these axioms would include the axioms for the 
Sum and Product predicates. 

When we join all these formulae together 
conjunctively, we shall have a formula, £11 say, which defines a .  

The conjunction of the axioms doesn't really define a so much as provide a 
foundation for defining a .  

The terms 
of 21 must include the necessary parts of the Peano axioms, viz., 

(3u) N(u) & (x) (N(x) - (3y) F(x,y)) & (F(x,y) - N(y)) , 

which we will abbreviate to P. 

The P is for Peano, of course. This is a conjunction of three terms. The first 
indicates that u exists; the second says that for every x there is a y that is its 
successor, that the third indicates that a successor to a number is also a natural 
number. This formula does not establish the uniqueness of zero, or the uniqueness 
of successors, and that's a problem. Hilbert & Bernays has the following three 
axioms for the successor function (which they call S) .

18 

(x)(3y)S(x,y) 
(3x)(y)-S(y, x) 
(x)(y)(r)(s)(S(x, r)) & S(y, r) & S(s ,x) � S(s ,y) 

The first asserts that every number has a successor; the second says that there exists 
a number that does not have a successor; the third says that if r is the successor 
to x and y, and x is the successor to s ,  then y is also the successor to s, essentially 
establishing the uniqueness of successors. 

When we say "21 defines a ", we mean that - ':?! is not a provable 
formula, and also that, for each n, one of the following formulae CAn ) or 

18Hilben and Bernays, Gmndlagen der Mathematik, Volume I, 209 I've modified the notation a bit to agree 
with Tunng's 



(Bn ) is provable. 

':!I & pn> � Ga (u<n'), 

':!I & pn) � (-Ga(u<n'}) ,  
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where pn> stands for F(u, u') & F(u', u") & . . .  F(u<n-1) ,  u<n> ). 

, A sequence of r primes is denoted by <rJ . 

The footnote on the identifier for the (An) formula refers to the convention 
of using a superscript in parentheses to indicate a series of prime marks. Turing 
also uses a superscript on his successor function F to indicate a conjunction of 
successor functions, essentially saying that 1 is the successor to 0, 2 is the successor 
to 1 ,  and so forth. 

Turing's conjunction of successor functions is inadequate because it does not 
establish that these successors are unique. For example, what is the truth value of 
F(u' , u111)? Nothing is telling us that this is false. One simple possible correction 
expands pn) greatly (although still finitely) by including negations of all successor 
predicates that are not true, such as-F(u, u") and-F(u' ,  u), stopping at u<nl .  

The n here is the digit number, staning with digit 0 and progressively getting 
higher. The sequence is generated from digit 0, digit 1 ,  digit 2, and so forth. The 
computation of each digit requires only a finite number of non-negative integers, 
so the pnl formula is a finite conjunction of terms. In some cases, however, the 
formula might require a few more integers. For example, for digit 0, the formulas 
indicate that only u is required, but in my example u" is also required for the 
definition of the IsOdd function, so the superscript on F should really be the greater 
of n and 2.  

With that little fix, the following formulas will be provable: 

Bo : 21 & P2l ---+- -IsOdd(u) 

A1 : 2l & P2) ---+- IsOdd(u') 

B2 : 21 & p2l ---+- -IsOdd(u") 

AJ : 2l & p3l ---+- IsOdd(u111) 

B4 : 21 & p(4) ---+- -IsOdd(u1111) 

As : 21 & p5l ---+- IsOdd(u""') 

and so forth. 21, you'll recall, includes all the axioms required to support the IsOdd 
function. These results correspond to the first six digits of the sequence: 0, 1 ,  0, 1 ,  
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0, 1. Notice that 1 digits correspond to An being provable , and 0 digits correspond 
to the provability of Bn . 

[253) 

I say that a. is then a computable sequence: a machine rK,, to compute 
a. can be obtained by a fairly simple modification of'"K. 

The fJ<. machine, you'll recall , generated all provable formulas from the axioms. 

We divide the motion of 'K,, into sections. The n-th section is devoted 
to finding the n-th figure of a.. After the (n � 1 )-th section is finished a double 
colon :: is printed after all the symbols, and the succeeding work is done 
wholly on the squares to the right of this double colon. The first step is to 
write the letter "A" followed by the formula (A,, ) and then "B" followed 
by <Bn ). 

For this example and n equal to 5,  the machine first writes "A" and "B" followed 
by the two possibilities: 

A $21 &: p.5> � IsOdd(u""') B $21 &: p.5> � -IsOdd(u""') 

Not exactly, however: The "A" and "B" won't be boldfaced, the $21 term will be the 
explicit conjunction of all the axioms, p(S) will be an explicit conjunction of more 
axioms, IsOdd will probably be a negation of the Product function shown earlier, 
and all the functions will probably be given more cryptic names. 

The point, however, is that one or the other of these two statements will be 
provable. The machine has the entire tape to the right of these two printed formulas 
to do its work. Perhaps it first writes the axioms on the tape and then begins the 
work to derive the provable formulas. 

The machine 'K,, then starts to do the work of °K, but whenever 
a provable formula is found, this formula is compared with (An ) and with 
<Bn >· If it is the same formula as (An ), then the figure "1" is printed, and 
the n-th section is finished. If it is <Bn ), then "O" is printed and the section 
is finished . If it is different from both, then the work of rK is continued 
from the point at which it had been abandoned. Sooner or later one of 
the formulae <An ) or <Bn ) is reached; this follows from our hypotheses 
about a. and ill , and the known nature of rK. Hence the n-th section will 
eventually be finished. rl<a is circle-free; a. is computable. 
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It is conceivable that the � machine could be generalized much like Turing's 
universal machine. It could begin with a tape on which the axioms have already 
been encoded. Simply encode different axioms and a different function on the 
tape, and the machine could calculate any sequence that is definable through 
first-order logic. 

It can also be shown that the numbers a definable in this way by the use 
of axioms include all the computable numbers. This is done by describing 
computing machines in terms of the function calculus. 

Turing will actually describe a computing machine in terms of first-order logic 
in the last section of his paper and the next chapter of this book. For now, he 
wants to remind the reader that not every number can be computed by a machine, 
particularly a sequence that tells us with Os and ls which Description Numbers 
are those of satisfactory machines. 

It must be remembered that we have attached rather a special meaning 
to the phrase "'tll defines a". The computable numbers do not include all 
(in the ordinary sense) definable numbers. Let 8 be a sequence whose 
n-th figure is 1 or 0 according as n is or is not satisfactory. It is an imme­
diate consequence of the theorem of § 8 that 8 is not computable. It is (so 
far as we know at present) possible that any assigned number of figures of 8 
can be calculated, but not by a uniform process. When sufficiently many 
figures of 8 have been calculated, an essentially new method is necessary in 
order to obtain more figures. 

Turing has now finished with his second argument to justify that his machines 
can compute numbers commonly regarded as computable. The third argument 
follows. You might recall Turing's reliance on a human computer's "state of mind." 
Some readers might regard that human state of mind as too amorphous a concept 
to be encapsulated in a machine. 

I'll let this chapter conclude without interrupting Turing's short description of 
how a state of mind can actually be built into the structure of a machine. 

III. This may be regarded as a modification of I or as a corollary of II .  

We suppose, as in I ,  that the computation is carried out on a tape; but we 
avoid introducing the "state of mind" by considering a more physical 
and definite counterpart of it. It is always possible for the computer to 
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break off from his work, to go away and forget all about it, and later to come 
back and go on with it. If he does this he must leave a note of instructions 
(written in some standard form) explaining how the work is to be con­
tinued. This note is the counterpart of the "state of mind". We will 
suppose that the computer works in such a desultory manner that he never 
does more than one step at a sitting. The note of instructions must enable 
him to carry out one step and write the next note. Thus the state of progress 
of the computation at any stage is completely determined by the note of 

[254] 
instructions and the symbols on the tape. That is, the state of the system 
may be described by a single expression (sequence of symbols), consisting 
of the symbols on the tape followed by !:l. (which we suppose not to appear 
elsewhere) and then by the note of instructions. This expression may be 
called the "state formula". We know that the state formula at any 
given stage is determined by the state formula before the last step was 
made, and we assume that the relation of these two formulae is expressible 
in the functional calculus. In other words, we assume that there is an 
axiom '!11 which expresses the rules governing the behaviour of the 
computer, in terms of the relation of the state formula at any stage to the 
state formula at the preceding stage. If this is so, we can construct a 
machine to write down the successive state formulae, and hence to 
compute the required number. 



Computab le  
Fu nct ions 

When was the last time you put your personal computer to work calculating 
the infinite digits of an irrational number? Unless you're one of those 

people who recreationally run programs that calculate millions of digits of n, 
it's unlikely that any program you use calculates more digits than your favorite 
calculator utility. 

While it is obvious that Alan Turing established many principles and concepts of 
computer programming in his paper, computing the infinite digits of real numbers 
is cenainly not typical of the activities of computers past, present, or future. 

Instead, computers perform complex tasks that programmers have divided into 
small chunks called functions or procedures or subroutines or methods (depending 
on the particular programming language). These functions generally perform some 
specific job in a finite period of time. They begin with some input, crunch that 
input to create output, and then end, releasing control to some other function. 

The concept of functions originated in mathematics. In general terms, a function 
is a mathematical entity that transforms input into output. The input is known as 
the argument to the function, or the independent variable ; the output is known 
as the function's value, or the dependent variable. Often functions are restricted to 
panicular types of numbers or other objects. The allowable input is known as the 
function's domain. The possible resultant output values is known as the range. 

Turing mentioned the concept of "computable functions" in the first paragraph 
of his paper as a topic for future exploration: 

Although the subject of this paper is ostensibly the computable 
numbers, it is almost equally easy to define and investigate com­
putable functions of an integral variable or a real or computable 
variable, computable predicates, and so forth . . . .  I hope shonly 
to give an account of the relations of the computable numbers, 
functions, and so forth to one another. This will include a devel­
opment of the theory of functions of a real variable expressed in 
terms of computable numbers. 
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Turing didn't pursue these topics in precisely this way. As you'll discover in 
Chapter 17 ,  the concept of a computable function later became quite important 
when Stephen Kleene (in his 1952 book Introduction to Metamathematics) and 
Martin Davis (in his 19  58 book Computability and Unsolvability) reformulated the 
Turing Machine to calculate integer functions rather than to compute real numbers. 

In a sense, we've already seen machines that implement functions. The Universal 
Machine is such an animal because it takes as input a Standard Description of 
a machine and creates output containing the complete configurations of that 
machine , as well as the sequence the machine would have computed. 

What about more traditional functions? What would they look like? Consider 
the trigonometric sine function. The input is a number representing an angle , 
generally in units of degrees or radians. That angle is assumed to be part of a right 
triangle. The sine function calculates the ratio of the opposite side of that triangle 
to the hypotenuse. More generally (and to define the sine function for angles 
greater than 90 degrees) a line is drawn from the origin on a Cartesian coordinate 
system to any point. For the angle that line makes with the X axis (measured in 
a counter-clockwise direction) , the sine function returns the ratio of the distance 
from the end of the line to the X axis to the length of the line. 

The domain of the sine function comprises all real numbers, although the 
function cycles in value every 360 degrees or 27t radians. The range - the values 
of the function - consists of real numbers from - 1  to 1 ,  inclusive. 

The actual calculation of the sine function involves an infinite series, where x is 
in radians: 

x3 x5 x7 
sin(x) = x - - + - - - + · · · 

3 !  5 !  7 !  
This is the formula that today's computers use to calculate the sine function, 
although generally the calculation occurs in the computer's processor chip rather 
than in software. 

Computers cannot store arbitrary real numbers because real numbers have an 
infinite number of decimal places. Instead, computers approximate real numbers 
with rational numbers. In 1985, the Institute of Electrical and Electronics Engi­
neers (IEEE) published the IEEE Standard for Binary Floating-Point Arithmetic 
that's used by many computer systems to store numbers in a form suitable for rep­
resentation with scientific notation. The popular double-precision format, for 
example, stores a number using 64 bits: 1 bit for the sign (positive or negative), 
1 1  for the exponent, and 52 for the mantissa, providing precision approximately 
equivalent to 16  decimal digits .1  The real number 123.456 is essentially stored 
as two integers: 8,687 ,443 ,681 , 197,687 (the mantissa) and 46 (the exponent) , 
because 8,687,443 ,681 , 197,687 + 246 approximately equals 123.456. That ratio 
is a rational number, not a real number. 

1 Charles Petzold, Code The Hidden Language of Computer Hardware and Software (Microsoft Press, 1999), 
ch 23 
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When a computer calculates a sine, this approximation is essential because it 
allows the function to finish in a finite period of time. Although the sine function is 
calculated as an infinite series of terms, the absolute value of the terms gets smaller 
and smaller. The function can stop when the terms no longer make a difference in 
the desired precision of the result. 

A Turing Machine, however, revels in infinite precision. When computing real 
numbers, it just keeps going and going and going. When calculating the sine 
function, that could be a real problem because each of the infinite number of 
terms has an infinite number of digits. For example, suppose the angle is a simple 
1 radian. The second term is 1/6,  which requires an infinite number of digits 
regardless of whether the number base is decimal or binary. lf the machine needs 
to calculate infinite digits of the second term, how can it move on to the third term? 

One workable strategy is to calculate the first digit from each term in succession 
until the term is so small that the first digit of the term is zero, and then calculate 
the second digit from each term until the term is so small that the first two digits 
of the term are zero, and so forth. This is obviously a complex process, particularly 
if you don't want the machine to erase any digits of the result after it has calcu­
lated them. 

Implementing the sine function is only one problem. Where does the input 
come from? 

Perhaps our immediate instinct is to let a human user of the machine somehow 
"type in" the angle when the machine needs it. This is a concept obviously inspired 
by today's world of interactive computers and onscreen calculators, but the Turing 
Machine would need to be redesigned somewhat to accept input of this sort. That's 
a bit more work than we're ready for at this moment. 

A second option is to "hard code" the input to the function within the machine 
itself. For example, we could design a machine that specifically calculates the sine 
of 37 .85 degrees. Although the machine would be limited to calculating the sine of 
this particular angle, we might hope that we've designed the machine so it's fairly 
easy to modify it for other angles. 

A third approach is to encode the angle on the tape. The machine reads the 
input, calculates the sine, and prints the result back on the tape. (1 can tell you 
like this approach! So do 1 .)  

A fourth approach is to let the machine generate its own input. For example, the 
machine could first calculate the sine of zero degrees, then one degree, then two 
degrees, and so forth, printing each result on the tape to create a whole "table" of 
values. This approach would require the machine to limit itself to a finite number 
of digits per result. 

A fifth approach involves two different machines. The first machine computes 
a real number, and the second machine computes the sine of that number. When 
1 speak of two machines, I'm really speaking of one machine that implements the 
logic of the two machines. We've already seen machines combined in this way. 



234 The Annotated Turing 

In Section 8 (page 181- 182 of this book) Turing combined a decision machine 
;J) with the Universal Machine CU to create a machine 'ff< that analyzes standard 
descriptions. The advantage to this approach is that we can "plug in" a different 
first machine when we need to calculate the sine of a different angle . 

None of these approaches is entirely free from problems. The big problem is 
that the input to the sine function is a real number (at least in theory) and so is the 
output, and real numbers have an infinite number of digits. It is not possible to 
type in an infinite number of digits, or encode those digits on the tape. 

In fact, even if you restnct yourself to nice , simple angles with a finite number 
of decimal places, the sine function requires radians. There are n radians in 180 
degrees, so a seemingly simple angle of 10 degrees is actually 7t/18 radians - a 
transcendental number with an infinite number of decimal places. 

Now, we've got ourselves into a situation where one machine needs to calculate 
7t/18 while a second machine calculates the sine of that value , and both machines 
are actually implemented in the same "meta-machine." The second machine can't 
wait for the first machine to finish before beginning its own calculation! The two 
machines need to work in tandem, a programming technique sometimes known 
as dovetailing: As the machine calculating the angle completes a new digit, then the 
machine calculating the sine of that angle must take over and calculate a new digit 
of the result. This back-and-forth interplay between the two machines continues 
forever. 

At this point, you probably won't be surprised to learn that the Turing Machines 
reformulated by Stephen Kleene and Martin Davis compute only number-theoretic 
functions, that is, functions whose domains and ranges are both restricted to 
non-negative integers. Both authors encode function input as strokes or tick 
marks. For example , the number 7 is represented by simple vertical lines in 8 
consecutive squares. (The number 0 requires 1 stroke .) 

Generally, when you're calculating a function, you don't want the calculation to 
go on forever. You want the function to finish so you can examine the result. For 
this reason, the reformulated Turing Machines described by Kleene and Davis halt 
when they're finished with a calculation. Obviously, a machine dedicated to adding 
or multiplying non-negative integers does not need to run forever. In the Kleene 
and Davis formulation, machines that don't halt are considered bad machines. 
Determining whether a Turing Machine will properly complete its calculation and 
halt was termed - by Davis - as the halting problem. The halting problem has 
subsequently become closely identified with Turing Machines, but the concept is 
foreign to Turing's original paper. 

Now that we've done a little bit of thinking about the inherent problems in 
creating Turing Machines that work with functions of real numbers, we're ready 
to study the approaches that Turing suggests in Section 10 of his paper. 
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Section 10 is actually a continuation of Section 9.  At the beginning of that 
earlier section, Turing had promised three kinds of arguments concerning the 
computing ability of his machines. The third was "Giving examples of large classes 
of numbers which are computable" and that is the subject of Section 10.  At the 
same time, Turing veers somewhat from his primary focus of computable numbers 
and instead voyages into the realm of computable functions. 

Section 10 is probably the least analyzed part of Turing's paper, and often the 
toughest to parse . He is terse and sometimes obscure , and I am not confident that 
I have always nailed his arguments with complete accuracy. 

It's perhaps not surprising that Turing begins by discussing a "computable 
function of an integral variable," and that the "simplest" way of defining such 
a function requires that both the domain and range be non-negative integers. 

10.  Examples of large classes of numbers which are computable. 

It will be useful to begin with definitions of a computable function of 
an integral variable and of a computable variable, etc. There are many 
equivalent ways of defining a computable function of an integral 
variable. The simplest is, possibly, as follows. If y is a computable 
sequence in which 0 appears infiniteli often, and n is an integer, then let 
us define �( y ,  n )  to be the number of figures 1 between the n-th and the 
(n + 1 )-th figure 0 in y .  Then ¢(n) is computable if, for all n and some y ,  
<J>(n) = � (y , n l . 

7 If vi( computes y ,  then the problem whether vi( prints 0 infinitely oft.en is of the 
same character as the problem whether vi( is ci rcle-free 

I need an example. Let our function <P (the Greek letter phi) be something 
simple like this 

for non-negative integer n. So, 

</J(O) = 1 

</J(l) = 3 

</J(2) = 5 

</J{3) = 7 

</J(n) = 2n + 1 
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The sequence y (the Greek letter gamma) that corresponds to this function 
is this: 

0 1 0 1 1 10 1 1 1 1 10 1 1 1 1 1 1 10 . . .  

Notice between each successive pair of zeros are one 1 ,  then three ls, then five ls, 
seven ls, and so forth, corresponding to the values of the function ¢(n) for each 
successive non-negative integer n.  

Is y a computable sequence? lt  certainly looks computable to me. That means 
that </J(n) is a computable function, and the machine that computes y runs forever, 
computing all the values of the function. 

Turing approaches this computable function from a direction opposite to my 
example: He presupposes a sequence y that contains 0 infinitely often, mentions 
a function �(y , n) (the Greek letter xi) that indicates the number of ls between 
each consecutive pair of zeros, and equates ¢(n) to �(y ,  n). 

In this sense, any machine that computes a sequence in which 0 appears 
infinitely often is also computing a function of positive integers, although in 
general we can't determine which machines actually fit this criterion. 

Now Turing hypothesizes a predicate corresponding to the </> function, so that 
the calculation of the function becomes analogous to the logic-based calculation of 
numbers Turing demonstrated in Section 9 of his paper and the previous chapter 
of this book. 

An equivalent definition is this. Let H(x, y) mean 
</>(x) = y. 

Let's use the same example. The function with a change in the independent 
variable is: 

<f>(x) = 2x + 1 

We can define H(x, y) using the predicates I descnbed in the previous chapter: 

(3z) (Product(u" , x, z) & Sum(z, u' ,y)) 

This formula is true if there exists a z such that it's true that 2 times x equals z, 
and also true that z plus 1 equals y. 

Then, if we can find a contradiction-free axiom �)1,p ,  such that 

2141 must be a conjunction of the axioms for the predicates required to define H 
(in this case Product and Sum) and P, so the implication holds trivially. 
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and if for each integer n there exists an integer N, such that 

914> & F"Nl -+ H(u'" \  u<<l>(li >) ), 

You'll recall that pN) is an abbreviation for the conjunction of successor 
functions. N must be at least as large as the greater of n and 4J(n) , and possibly 
larger. In our example, for n equal to 10,  </J(n) equals 2 1 .  Internal to the H function, 
the numbers 1 and 2 are required, and z is 20. Therefore, N must be at least 2 1  in 
order to define sufficient numbers, but it could be greater than both n and <P(n) 
in some cases. 

and such that, if m -::f; </J(n), then, for some N' , 

914> & rN' l -+ (-H(uc" \ u !m l) , 

A right parenthesis is missing towards the end. In summary, the predicate H is 
true when the first argument is n and the second is 4J(n) , but false otherwise. For 
this second formula, N' must also be at least as great as m, but you'll see shortly 
that values of m greater than n don't really get involved in the show. 

then <P may be said to be a computable function. 

There Turing ends his discussion without really describing how it's supposed 
to work. It's another modification of the <J<. machine that enumerates all provable 
formulas. The machine that Turing described in Section 9 enumerates these 
provable formulas for successive values of n, printing a 1 or a 0 for each value of n 
according to the truth value of the predicate G. 

This new problem requires a <:Ky machine that will calculate the y sequence 
described earlier 

0101 1 101 1 1 1 101 1 1 1 1 1 10 . . .  

where each run of ls is the value of the </>(n) function for successive values of n. 
The big difference is that this machine enumerates all provable formulas not just 
for successive values of n but varying values of n and m. 

For each new value of n and m, the machine begins by printing formulas A and 
B (using the terminology established with the earlier machine) 

A 21,p &: pN) --+ H(u(n) , u(m)) B 21,p &: pN') --+ (-H(u(n) , u(m))) 
and then tries to match one or the other of these formulas by generating all 
provable formulas. 
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The machine begins with n equal to zero. This is the argument to the function 
<f>(n) and the first argument to the predicate H(n, m). For each new value of n, the 
machine prints a zero and sets m to zero. This m is  possibly a result of the function 
<f>(n) and the second argument to the predicate H(n, m). 

For each new value of m, the machine begins generating all provable formulas. 
If formula B is matched, then the machine prints a 1 because that value of m is not 
the result of the </>(n) function. The machine increments m, prints new versions of 
A and B, and begins generating provable formulas again. If formula A is matched, 
then that value of m is the result of <f>(n) , and the machine moves on to the next 
value of n. For the next value of n the machine begins by printing a zero and 
setting m back to zero. 

In this way, the machine prints the y sequence where each run of ls indicates 
the value of the function for increasing integer arguments. 

We cannot define general computable functions of a real variable, since 
there is no general method of describing a real number, 

This is the problem I discussed earlier with encoding a real number on a tape 
for a function to access. 

but we can define 
a computable function of a computable variable. 

This requires the calculation of the computable number and the computable 
function to work in tandem. In perhaps the simplest case, after each new digit of 
the variable is calculated, the computable function takes over and prints a new 
digit of the result. Both the computable variable and the computable function 
maintain the same level of precision in terms of significant digits. 

Turing's example of such a function is the trigonometric tangent. Turing 
wants to calculate the tangent for a variety of computable numbers - in fact, all 
computable numbers - but he doesn't indicate any criterion for a calculation to 
stop and the next one to begin. 

If n is satisfactory, 
let Yn be the number computed by ..ft((n) ,  and let 

an =  tan (1T (Yn - �» , 

unless Yn = 0 or Yn = 1, in either of which cases an =  0. 

[255) 
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A footnote coming up indicates this is not the only possible function, but it 
is a simple one for Turing's purposes. Because Turing Machines compute real 
numbers between 0 and 1 ,  the number y n will be between 0 and 1 regardless of 
the machine. The argument to the tangent function is between - l/2n and l/27t, 
which are angles in units of radians, equivalent to angles from -90° to 90° . 

Then, as n 
runs through the satisfactory numbers, a,, runs through the computable 
numberst . 

t A function a,, may be defined in many other ways so as to run through the 
computable numbers 

The tangent of values between -90° and 90° range from -oo to oo, thus 
sweeping through the entire continuum of real numbers. (Strictly speaking, the 
tangents of -90° and 90° are undefined,  which is why Turing treats those cases 
separately.) With just a few exceptions, the results of the tangent function will be 
transcendental numbers. 

It is only later that Turing suggests that we can actually define a Turing Machine 
that calculates the tangent of an angle . Like the sine function, the tangent is 
calculated by an infinite series 

x3 xs x7 
tan(x) = x + - + - + + · · · 

where x ranges from -n/2 to n/2. 
3 3 . 5  3 . 5 . 7 

Now let ¢(n l be a computable function which can be 
shown to be such that for any satisfactory argument its value is satis­
factory* . Then the function f, defined by [(a,, ) = CX<J>tn h is a computable 
function and all computable functions of a computable variable are 
expressible in this form. 

t Although it is not possible to find a general process for determining whether a given 

number is satisfactory, it is often possible to show that certain classes of numbers are 
satisfactory 

The t/J(n) function has a domain and range of descnption numbers of satisfactory 
machines. Perhaps we're limiting ourselves to machines in a particular format 
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simple enough to be established as satisfactory. The </>(n) function modifies the 
description number, essentially reprogramming the machine , so that it calculates 
something else . For example, <f>(n) might reprogram a machine so that instead 
of calculating x, it doubles the value and adds 1 ,  essentially implementing the 
function 2x + 1 .  

Similar definitions may be given of computable functions of several 
variables, computable-valued functions of an integral variable, etc. 

I shall enunciate a number of theorems about computability, but I 
shall prove only (ii ) and a theorem similar to (iii) . 

The ten theorems that follow are identified with lowercase Roman numerals. 
The proofs of (ii) and (iii) occupy the last two pages of Section 10 of the paper. 

( i )  A computable function of a computable function of an integral or 
computable variable is computable. 

In other words, we can stack these things. We can start with a machine that 
computes a number, and then apply another machine that implements a function of 
that number, and then apply another machine that implements another function 
of the result of the first function. Like the earlier machine based on the trigonomet­
ric tangent, these machines can't wait until the previous stage has completed. The 
machines must work in tandem, passing information from one stage to another, 
perhaps as each digit is calculated. 

(ii)  Any function of an integral variable defined recursively in terms 
of computable functions is computable. I.e. if ¢(m, n) is computable, and 
r is some integer, then 17(n) is computable, where 

17(0) = r, 

17(n) = ¢ (n , 17(n - 1 )) .  

Watch out: The Greek eta (17) looks a bit like the italic n .  The "function of an 
integral variable" is 17. The "computable function" is <f>(m, n) .  As an example, let's 
suppose that r equals 1 and the function </J(m, n) is defined simply as 

<f>(m, n) = m • n 
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which I'm sure is computable. Let's calculate a few values of 17. 

17(0) = r = 1 
17(1)  = <J>(l , 17(0)) = <J>(l , 1) = l · l  = 1 
17(2) = <J>(2, 17(1)) = <J>(2, 1) = 2· l = 2 

17(3) = <J>(3, 17(2)) = <J>(3, 2) = 3·2 = 6 
17(4) = 4>(4, 17(3)) = <J>(4, 6) = 4·6 = 24 
17(5) = <J>(5, 11( 4)) = <J>(5, 24) = 5 ·24 = 120 

This 17(n) function is a recursive definition of the factorial function. Towards the 
end of this section, Turing will prove that an integral function such as 17(n) defined 
in terms of the computable function <J>(m, n) is itself computable. 

(iii ) If ¢ (m, n )  is a computable function of two integral variables, then 
lj>(n, n) is a computable function of n. 

This sounds trivial, but Turing takes the opportunity to do something interest­
ing. The proof concludes this chapter. 

( iv) If lj>(n ) is a computable function whose value is always 0 or 1, then 
the sequence whose n-th figure is ¢(n) is computable. 

For example, suppose the function IsPrime(n) returns 1 if n is a prime number 
and 0 otherwise. Turing is asserting that the following sequence is computable: 

001 1010100010100010100010000010 . . .  

I've only shown the first 3 1  digits for n starting at zero. The digits set to 1 
correspond to the prime numbers 2 ,  3, S ,  7, 1 1 , 13 ,  17 ,  19 ,  23, and 29. 

Turing next refers to Dedekind's theorem. Here's the statement of that theorem 
from the first chapter of G.H. Hardy's A Course of Pure Mathematics, which is 
possibly where Turing first encountered the theorem when he began reading the 
book in 1931 in preparation for attending Cambridge that fall. 

Dedekind's theorem. If the real numbers are divided into two 
classes L and R in such a way that 

(i) every number belongs to one or other of the two classes, 
(ii) each class contains at least one number, 

(iii) any member of L is less than any member of R, 
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then there is a number a, which has the property that all the 
numbers less than it belong to L and all the number greater than 
it to R. The number a itself may belong to either class. 2 

This is apt to be a little mystifying on first encounter, but it describes a fundamen­
tal difference between the rational numbers and the real numbers, and specifically, 
how the real numbers form a continuum but the rational numbers do not. 

Visualize a number line that runs from negative infinity on the left to positive 
infinity on the right. lf you want, you can consider just a section of this number 
line. Cut it into two parts. (This is known as the Dedekind Cut.) Some of the 
numbers are on the left (L in the theorem) and some are on the right (R) . 

You can cut the line at 1 . 5 ,  for example, so that everything in L is less than 
1 . 5  and everything in R is greater than 1 .5 .  What about 1 . 5  itself? It's your choice 
whether it's in L or R. You might put it in L, in which case it's the greatest number 
in L. In that case, R has no lowest number. In other words, there's no number in R 
that is lower than all the others. Or, 1 . 5  might be in R, in which case it's the least 
number in R, and L has no greatest number. 

Now cut the line at the square root of 2. lf the number line consists of just 
rational numbers, then everything in L is less than the square root of 2, and 
everything in R is greater than the square root of 2 .  Because the square root of 2 
is not rational, it belongs to neither L nor R. Moreover, L has no greatest number 
and R has no least number. The line has a discontinuity at the square root of 2 .  

l f  the number line consists of  real numbers, however, then the square root of  2 
must belong to either L or R. You can't define a cut of the real numbers so that 
the cut point doesn't belong to either L or R. This is why the real numbers form a 
continuum but the rational numbers do not. 

Dedekind's theorem does not hold in the ordinary form if we replace 
"real" throughout by "computable". 

2G H Hardy, A Course of Pure Mathematics, 10•h edition (Cambndge University Press, 1952), 30 The 
Dedekind Theorem is not covered in the first edition ( 1908) of Hardy's book but does appear in the 
sixth edition ( 1 933) I have not been able to examine editions between those. Tunng read Hardy's book 
before going to Cambndge in 1931 and might have obtained the fifth edition ( 1928) at that time 
Hardy's book is not the only place Tunng might have encountered Dedekind's Theorem A discussion 
appears in Chapter 34 of Benrand Russell, The Pnnciples of Mathematics (Cambndge University Press, 
1 903), Chapter 7 of Bertrand Russell, Introduction to Mathematical Philosophy (George Allen & Unwm, 
19 19, 1920), and in the first chapter of E W Hobson's The Theory of Functions of a Real Vanable and 

the Theory of Founer's Senes, a book that Tunng referred to in §8 of his paper Dedekind's pamphlet 
"Stetigkeit und lrrationale Zahlen" descnbing this concept was published in 1872, the first English 
translation appeared in Richard Dedekind, Essays on the Theory of Numbers, trans Wooster W Beman 
(Open Court Press, 1901 , Dover, 1963) as "Continuity and Irrational Numbers " The translation was 
completely reVJsed for William Ewald, ed , From Kant lo Hilbert A Source Book in the Foundations of 

Mathematics (Oxford University Press, 1996), Vol 1 1 ,  765-779 
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The computable numbers do not form a continuum because you can make a 
Dedekind Cut at a non-computable number. Perhaps the number is too complex 
(that is, too random) to be defined algorithmically, or perhaps you can define 
the number - for example, the number contains one digit from every com­
putable number - but you can't compute that number. This cut divides the 
computable numbers into two parts so that L has no greatest number and R has 
no least number. 

But it holds in the following form : 

Note the Roman numeral that follows: This is Turing's theorem (v) coming 
up. The propositional function G(a) that Turing introduces here is true if the 
argument - a computable number - is less than (or perhaps less than or equal 
to) some fixed number � (the Greek letter xi) . 

The G(a) function divides the computable numbers into two classes L - the 
computable numbers for which G(a) returns true - and R - the numbers 
for which G(a) returns false. In Hardy's statement of Dedekind's Theorem, 
requirement (i) is satisfied because G(a) is either true or false for every computable 
number. 

( v) If G(a) is a propositional function of the computable numbers and 

(a) (3a ) (3,B ) {G(a) & (-G(,B)) } ,  

Turing's (a) formula is equivalent to Hardy's requirement (ii) , that each class 
contain at least one member. 

(b) G(a) & (-G(,8)) --+ (a < ,8), 

Turing's (b) formula is equivalent to Hardy's requirement (iii). If G(a) is true, then 
a is in L, and if G(/3) is false, then f3 is in R, and a is less than /3 .  

and there is  a general process for determining the truth value of  G(a ) ,  then 

there is a computable number � such that 

G(a) --+ a � � . 

-G(a) --+ a ::::: � .  

[256) 
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The "general process for determining the truth value of G(a)" is crucial. Because 
� is a computable number, in the general case it cannot be explicitly stored 
somewhere within the definition of G(a) .  Nevertheless, it would be possible for 
a machine to compute that number by narrowing in on the value. In fact, the 
machine to compute � would do so by testing ever more accurate values in G(a). 

In other words, the theorem holds for any section of the computables 
such that there is a general process for determining to which class a given 
number belongs. 

In the next sentence, the term "sequence of computable numbers" might be a 
little confusing because almost from the beginning of his paper, Turing has used 
the term "computable sequence" to refer to the digits that a machine generates. The 
"sequence" he's speaking of here is an ordered collection of computable numbers. 

Owing to this restriction of Dedekind's theorem, we cannot say that a 
computable bounded increasing sequence of computable numbers has a 
computable limit. This may possibly be understood by considering a 
sequence such as 

This little passage was the subject of a discussion on the sci . logic 
newsgroup a few years ago. The thread is archived beginning at  http://sci.tech­
archive.net/Archive/sci. logid2004-08/2244.html. One supposition was that the 
1/2 at the end was wrong, and it really should have been - 1/32.  That fix makes 
the sequence look prettier but it can't be what Turing had in mind because now the 
sequence is apparently approaching zero, which is certainly a computable limit. 

The more plausible conjecture is that Turing is presenting a sequence that 
seems to be heading toward a computable limit, but really is not. The sequence 
might even be bounded by - 1  and 1 ,  perhaps, but that doesn't tell us whether the 
limit is truly computable. 

On the other hand, (v) enables us to prove 

(vi) If a and f3 are computable and a < f3 and </J(a ) < 0 < </J(/3), where 
</J(a ) is a computable increasing continuous function, then there is a unique 
computable number y ,  satisfying a < y < f3 and </J(y )  = 0. 
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Turing is alluding to a computable function that is perhaps a polynomial: 

t/J(x) = 5x3 - 3x2 - 7 

It is well known that any real polynomial with an odd degree (the largest exponent) 
has at least one real root - that is, a value x for which the polynomial equals zero. 

For polynomial t/J(x) you can narrow in on that root by observing that t/J(l) 
equals - 5  and t/J(2) equals 2 1 .  The root must be between 1 and 2.  

The numbers 1 and 2 are a and f3 in Turing's statement; you can see that a < f3 
and t/J(a) < 0 < t/J({J). Because the function is continuous (that is, it has no gaps) , 
there is a value y between a and f3 for which t/J(y) equals zero. The objective is to 
calculate it. We can choose a number midway between a and {3, which would be 
1 . 5  in this example, and find t/J(l .5) ,  which is 3 . 1 25 .  Because this value is greater 
than zero, let 1 . 5  be the new {3 .  Now we know that the root is somewhere between 
1 and 1 . 5 .  Now try 1 .25; t/J( l .25) equals - 1 .92 1875, which is less than zero so 
1 .25 is the new a .  Now we know that the root is between 1 .25 and 1 .5. Each step 
restricts the root to a smaller interval and, in effect, computes it. 

Roughly speaking, a sequence of numbers is said to converge if the absolute 
values of the differences between successive numbers in the sequence get smaller 
and smaller. (I say "roughly" because these differences might not get smaller at the 
beginning of the sequence.) Any real number can be represented as a convergent 
sequence of rational numbers. This is most simply demonstrated using a sequence 
of rational numbers like these: 

ao = 3 
ai = 3. 1  
ai = 3.14 
aJ = 3 . 141  
CLf = 3 . 1415  
as = 3 . 14159 

These are all rational numbers, yet they are getting closer and closer to the irrational 
number we know as 7t. The sequence is convergent because the difference between 
successive numbers is getting smaller. The difference between aJ and a4 is 0 .0005 
but the difference between CLf and as is 0.00009. 

Mathematically, this difference is often represented by a lower-case epsilon, € .  
You can choose any arbitrary value of € as small as you want, for example 0.0001 .  
A particular sequence converges if there's some number N that corresponds to this 
E so that for all n > N and m > N, the absolute value of the difference between 
the numbers is less than the arbitrary number we've chosen: Ian - am l < € . In the 
above example, for € equal to 0.000 1 ,  N is 3 because la.. - as l < 0.0001 and so 
are the differences between all an and am where n and m are greater than 3 .  
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Turing defines computable convergence similarly. 

Computable convergence. 

We shall say that a sequence fin of computable numbers converges 
computably if there is a computable integral valued function N(E ) of the 
computable variable E ,  such that we can show that, if < > 0 and n > N(E ) 

and m > N(E ), then l /1n - /3m l  < < .  

The numbers in the sequence must be computable , and Turing also requires 
that E be computable and N(E) be a computable function. 

We can then show that 

(vii) A power series whose coefficients form a computable sequence of 
computable numbers is computably convergent at all computable points 
in the interior of its interval of convergence. 

A power series is an infinite summation of the form: 

Cl() + a1x + a2X
2 + aJX

J + a4x4 + . . . 

As I showed earlier, you can represent a trigonometnc sine function as a power 
series: 

x3 x5 x7 
sin(x) = x - - + - - - + · · · 

3!  5 !  7! 
The coefficients (that is ,  the ai values) are 1 ,  0, - 1/3 ! , 0, 1/5 ! ,  0, 117 ! ,  and so 

forth. These coefficients are certainly a computable sequence . Some power series 
converge only when x equals zero . Other power senes converge for a range of x 
values, called the interval of convergence. It is well known that the sine function 
converges for all x. Because the coefficients are computable , it's possible for a 
machine to determine whether they're convergent. 

(viii) The limit of a computably convergent sequence is computable. 

It's also possible to have a sequence of functions that converge to a particular 
function. If this convergence occurs for a particular value to the function, then it 
is said to be pointwise convergence . A much stronger convergence of functions is 
uniform convergence , which is independent of the value to the function. 
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And with the obvious definition of "uniformly computably convergent": 

( ix) The limit of a uniformly computably convergent computable 
sequence of computable functions is a computable function. Hence 

(x)  The sum of a power series whose coefficients form a computable 
sequence is a computable function in the interior of its interval of 
convergence. 

From these theorems, Turing concludes that all algebraic numbers are com­
putable as well as some popular transcendental numbers: 

From (viii) and TC = 4( 1  - 1  + k � . . . )  we deduce that TC is computable. 

From e = 1 + 1 + � + 311 + . . . we deduce that e is computable. 
2 .  . 

[257] 

From (vi)  we deduce that all real algebraic numbers are computable. 

Algebraic numbers, recall , are the roots of polynomial equations. 

From (vi )  and (x )  we deduce that the real zeros of the Bessel functions 
are computable. 

The Bessel functions are solutions to a common form of differential equations, 
and the zeros are where the functions have a value of zero. The last conclusion also 
encompasses the tngonometnc functions, logarithms, exponentials, and a host of 
lesser-known functions. 

Turing promised a proof of theorem (ii), which asserted that any function 
of an integral variable defined recursively in terms of computable functions is 
computable. 

Proof of ( ii ) .  

Toward the beginning of Section 10,  Turing defined a predicate H(x, y) that is 
true if </J(x) = y, and then showed how a machine can prove formulas involving 
H(u<n> , u<lf><nll) and -H(u<nl , u<ml) where m # </>(n) . That proof established the 
computability of the function </>(x) . 



248 The Annotated Turing 

This current proof is based on the earlier one, but instead of the function </J(x) 
he has the function 17(x) , where 

17(0) = r 

17(n) = </>(n, 17(n - 1)) 

Let H(x, y) mean "11(x l = y", and let K(x, y, z )  mean "¢(x,y l = z". 

For the factorial example , 
</>(x,y) = x · y 

so K(x, y,  z) is simply Product(x, y,  z) . 

I �I"' is the axiom for ¢(x,y }. 

This illt/> axiom requires support for the K(x, y, z) predicate. For the factorial 
example, the axiom would include the axioms for the successor, Sum, and Product 
predicates. The axiom for 17(x) is more elaborate : 

We take °01 ,1 to be 
�\,, & P & (F(x,y} ___,. G(x, y)) & (G(x ,y )  & G( y, z) --> G(x, zJ )  

& (Pr' -.... H( u , 1/ T l }) & (F<v , w )  & H( v ,x )  & K(w , x , z )  -- H<w , z l) 

& [H<w, z }  & G(z, t )  v G(t ,z ) --> (-H(w, t l ) ] .  

This is Turing's third use of a predicate named G, all of  which are defined 
differently. This one, however, is fundamental: It's the "greater-than" function, and 
amazingly, Turing didn't actually get around to clarifying what this function 
does until the Proceedings of the London Mathematical Society published Tunng's 
corrections to his paper. 3 (Those corrections appear in Chapter 16 of this book.) 
In that correction paper, Turing says that G(x, y) is to have the interpretation 
"x precedes y," or y > x. As usual the F predicate is the successor function. 

2111 consists of a conjunction of seven terms, beginning with 2!1/> and P. The 
third term indicates that if y is the successor of x, then y is greater than x, and 
the last term on the first line states the transitivity of the G function (if y is greater 
than x and z is greater than y, then z is greater than x). 

3 Alan Tunng, "On Computable Numbers, with an Application to the Entscheidungsproblem A 
Correction," Proceedings of the London Mathematical Society, 2nd Senes. Vol 43 ( 1937). 544-546 
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The first term on the second line asserts that H(u, u<r>) is true , which means that 
17(0) = r. The second term is this: 

(F(v, w) & H(v, x) & K(w, x, z) --+ H(w, z)) 

Translating to the functions that aren't predicates, if w = v + 1 ,  and 17(v) = x, and 
</J(w, x) = z, then 17(w) = z, or: 

17(v + 1) = </J(v + l ,  17(v)) 

which is another way to state the general formula for 17(n) for n greater than 0. 
The final term of 2117 is this: 

[H(w, z) & G(z, t) v G(t, z) --+ (-H(w, t))] 

Notice the pair of G predicates with their arguments switched. This is the sole 
reason for incorporating the G function into this axiom; either one or the other of 
these G terms is true if z does not equal t. The whole term asserts that if H(w, z) is 
true, then for all values t that do not equal z, H(w, t) is not true, in other words, 
17(w) :/: t .  

I would be more comfortable if the formula for 2117 included a bunch of universal 
quantifiers, but in their absence they are implied. 

I shall not give the proof of consistency of 21 � .  Such a proof may be 
constructed by the methods used in Hilbert and Bernays, Grundlagen der 
Mathematik <Berlin, 1934), p. 209 et seq . The consistency is also clear 
from the meaning. 

This is the first volume of a book largely written by Swiss mathematician 
Paul Bernays and begun when he was at Gottingen. Being Jewish, Bernays lost 
his professorship at the university in 1933 and moved to Zurich in 1934. 
The second volume of Grundlagen der Mathematik (Foundations of Mathematics) 
was published in 1939. The book was highly regarded at the time, but was 
never translated into English. Bernays played another role in Turing's paper. In 
the published correction to his paper, Turing indicates that he "is indebted to 
P. Bernays for pointing out these errors ." Alonzo Church's short paper showing 
that the Entscheidungsproblem has no solution4 received similar scrutiny, and 
it too was followed with a correction5 containing the footnote , 'The author is 
indebted to Paul Bernays for pointing out this error . . .  " 

4 Alonzo Church, "A Note on the Entscheidungsproblem," The journal of Symbolic Logic, Vol 1 ,  No 1 (Mar 
1936). 40-41 
5 Alonzo Church, "Correction to A Note on the Entscheidungsproblem." The journal of Symbolic Logic, Vol 1 ,  
No 3 (Sept 1936), 101-102 
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Although Bernays was at the Institute for Advanced Study from 1935 to 1936, 
he had gone back to Zurich before Turing arrived in Princeton, and apparently he 
and Turing never met. 

The page to which Turing refers is the beginning of a section on number theory. 
It is on that very page that Bernays introduces an R predicate that is the same as 
Turing's G predicate . The axioms that Bernays lists for his greater-than predicate 
(which I've convened slightly to Turing's notation) demonstrate to what extent 
Turing is gliding over the details: 

(x)-R(x, x) 

(x)(y)(z)(R(x,y) &: R(y, z) -+ R(x, z)) 

(x)(3y)R(x,y) 

The third axiom reminds us that there exists a number that is not greater than 
any other number. That number is usually 0 or 1 ,  depending on one's definition 
of natural numbers. That same page in Grundlagen der Mathematik lists the axioms 
for Bemay's successor function called S: 

(x)(3y)S(x,y) 

(3x)(y)-S(x,y) 

(x)(y)(r)(s)(S(x, r) &: S(y, r) & S(s , x) -+ S(s,y)) 

It's quite surprising that Turing refers to a page of a book that defines predicates 
that he uses in his paper, but with axioms that he ignores. 

Turing's approach here is an induction proof, a type of proof particularly suited 
for number theory and other applications where only natural numbers are involved. 
In an induction proof, a formula (or something) is proved first for zero. This is 
usually easy. Then, an assumption is made that the formula is true for n, and the 
formula is proved for n + 1 based on that assumption. It's not necessary to prove 
the formula for all n, only that truth for n implies truth for n + l .  Since the formula 
was first proved for 0, it's true for 0 + 1 or 1 ,  and because it's true for 1 ,  it's true 
for 1 + 1 or 2, and so forth. 

Turing's induction proof is a little different. He leaves the proof of the zero 
case for later and begins with the induction part, showing that if the formula is 
assumed to be true for n - 1 ,  it's also true for n. The assumption comes first. 

Suppose that, for some n, N, we have shown 

91 ,, & p(NJ -+ H(u(n - l l , u ( �<n- 1 >) ), 

The following formula is a direct consequence of the 5214> axiom that supports the 
K propositional function. 
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then, for some M, 
'i"lip & FtMl  � K(u 1 '" , u ( •it n - l l )

, u ( 111 n 1 ) ), 

Also, since 521'7 � 521<1> trivially, 

521'7 & pM) � K(u (n) ' u('l(n-1)) ' u(Pj(n))) 

This also remains true if we form a conjunction with a couple terms on the right 
side that we know to be true . One is a trivial successor function that is implied by 
pM) and the other is the original H predicate assumption: 

9111 & FIM l � F( u!n - 1 1 , u l" » & H(u t n - l l
, 

u ( •i! n - l l) ) 

& K(ullt l
, U ( 11(n - l l )

, U ( 11 ln 1) ) , 

This is beginning to take the form of something in the 521'7 axiom, and Turing pulls 
it out: 

and 

°0I,, & F1M1  __, [F(u1 11 - 1 i , u 1 " i ) & H( u1 11 - 1 1
, u ( •it11 - 1 1) ) 

& K(ul " ' ,  u ( 11l11 - l l )
, u

( •1ln l ) ) � H (u<n >
, u ( 11l n l) ) J . 

To the nght of the first implication sign is the penultimate term of the 521'7 axiom, 
with values of uCn> , u(n- 1 ) , u<'l<nll , and u<'7Cn- l )) substituted for w, v, z, and x, 
respectively. Combining those two formulas, 

I Hence 

This completes the induction part of the proof. Turing has not yet shown that the 
formula is true for zero . This he does now. 

This is just a term of the axiom with 17(0) substituted for r .  Now we know that the 
formula is true for all n. 

Hence for each n some formula of the form 

'i"t,, & fi"'Ml � H(u<n l , u ( 11i n l ) ) 

is provable. 
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It's now necessary to show that for m # 17(n) - not 17(u) as Turing has it in the 
next sentence - the axioms imply the negation of H. 

Also, if M' ::: M and M' ::: m and m =j:. 17(u), then 

That is, if m # 17(n) then m is either greater than or less than 17(n) . 

[258] 

and 

9! ,, & p.M' l _ [!G(u ( •1(n l) , u<m l ) v G(u(m l , u ( •1C,. >) ) 

& H(u'n ' , u ( •1111 1) I - (-H(u("l , ulm l )) ] . 

To the right of the first implication sign is a restatement of the last term of the ill.,, 
axiom, rearranged somewhat and with values of uCn) , uCm) , and uC,,Cn)) substituted 
for w, t, and z, respectively. Combining these two formulas, 

Hence 

The conditions of our second definition of a computable function are 
therefore satisfied. 

By "second definition" Turing means the demonstration beginning with the 
sentence "An equivalent definition is this," beginning on page 236 of this book. 
He has established that he can create two statements of the following form: 

ill.,, &: pM) - H(u(n) , u<'l(n))) 

2l,, &: pM') - (-H(u<n> ,  u(m) )) 

For every value of n and m, one or the other is provable. 

Consequently ,, is a computable function . 

The next proof contains the final appearance of tables of a Turing Machine in 
this paper (and this book) . This machine is intended to prove Turing's theorem 
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(iii), which states that if </J(m, n) is a computable function of two integral variables, 
then </J(n, n) is a computable function of n. 

This proof illustrates a technique of computing a function whose domain is the 
natural numbers but whose range is real numbers. The function is computed for 
multiple successive arguments (n equals 0, 1 ,  2, and so forth) , but the computation 
of the function is stopped when n digits have been calculated. 

Proof of a modified form of (iii) .  

Suppose that we are given a machine Jf, which, starting with a tape 
bearing on it aa followed by a sequence of any number of letters "F' on 
F-squares and in the m-configuration b, will compute a sequence Yn 
depending on the number n of letters "F". 

The tape looks something like this: 

What's interesting about this machine is that it's the closest that Turing comes in 
this paper to describing something that works much like the reformulated Turing 
Machines described by Kleene and Davis. This machine reads a non-negative 
integer encoded on the tape as a series of letters "F" and then computes a function 
of that integer. The Kleene and Davis machines implement number-theoretic 
functions, but in the spirit of Turing's eternally running machines, he's implicitly 
assumed that the sequence Yn is something more complex - perhaps the cube 
root of n. If the machine begins by reading five "F" characters (like the tape shown 
above), it will calculate the cube root of 5 .  

I f  <Pn Cm) i s  the m-th figure of 
Yn , then the sequence f3 whose n-th figure is <Pn (n) is computable. 

For example, the function </Js(l2) returns the twelfth binary digit of the cube 
root of 5. Turing presents a new computable sequence f3 that contains one digit 
from the </Jn function for each n. In my example, the first digit of the sequence f3 is 
the first digit of the cube root of 1 ,  the second digit is the second digit of the cube 
root of 2 ,  and so forth. 

Turing has begun by assuming that this machine (be it a cube-root machine or 
something different) already exists. He is going to modify this machine, in part 
by changing some of the existing instructions and in part by adding some new 
instructions to create a somewhat different machine . 
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The new machine must work with a variable number of "F" characters: First no 
characters, then one "F", then two "F" characters and so fonh. After calculating n 
digits (where n is the number of "F" characters plus 1 )  it must essentially stop that 
calculation and then start over with an additional "F" character governing what it 
does. This new machine will not print its 0 and 1 digits in consecutive F-squares. 
They will be printed in order from left to right, but they will be buried in other 
output from the machine. 

Turing wants his original machine in a standard form so he can modify it easily. 

We suppose that the table for )f has been written out in such a way 
that in each line only one operation appears in the operations column. 

For these modifications, Turing needs to introduce some new characters, 
including the Greek upper-case letters xi and theta. He also needs to replace three 
characters anywhere they occur in the table for this machine . 

We 
also suppose that ::: , (-), 0, and I do not occur in the table, and we replace 
a throughout by (-:), 0 by 0, and 1 by I. 

When Turing says "replace a throughout by 0," he doesn't mean on the tape. 
The tape still needs to begin with two schwa sentinels. He means that any line in 
the table that reads a schwa should be modified to read a theta. 

Turing doesn't say it here, but the machine modifications also require that the 
symbols h and h are not used by this machine, and that configurations c, u, u 1 ,  u2 , 
u3 , l:l, l:l 1 ,  l:l2 , l:l3 are available for new definitions. 

made. Any line of form 

':?! 
we replace by 

':?I 

a 

Further substitutions are then 

PO 

PO rr (�\ u ,  h, k )  

The line being replaced originally printed a 0 rather than a 0.  The 21 and Q) 
configurations, and the scanned character a ,  are just placeholders here. You may 
recall re as a "replace" function; here re replaces the first h on the tape with a h, 
and then goes to configuration Q:>. If it doesn't find an h,  it goes to configuration u. 



Computable Functions 255 

As defined in Section 4, the re  function uses the f function, which relies upon 
a schwa sentinel. That function should not be altered to search for a theta sentinel 
instead. 

This is how the new machine essentially intercepts the operation of the original 
machine whenever it prints a digit. When the machine begins working with a new 
number of "F" characters, the number of h characters on the tape will be one more 
than the number of "F" characters. Thus, the machine pnnts 0 rather than 0 h 
times before going to configuration u. 

and any line of the form 

91 
by ilr 

PI 
PI rd�\ t', h, k ) 

The u and l:l configurations need to print actual 0 and 1 characters without 
overlines, and then prepare the tape for the next number of "F" characters and 
essentially restart the machine . Turing will show only the u configuration but u is 
very similar. 

and we add to the table the following lines: 

u 

U J  R, Pk, R, P<.o-> , R ,  PH 

113 

u2 

rr (u3,  113 ,  k, h) 
pr (u2 , F) 

After the u configuration prints an actual 0, u1 prints a k and two thetas, which 
to the machine represents a new sentinel .  The u2 and u3 configurations replace 
each k with an h. (Recall that the h characters were changed to k in the previous 
alternation.) For each k changed to an h, an F is also printed at the end. In Turing's 
table , an infinite loop exists because u2 always hops to u3 and u3 always hops to 
u2 . The replace function needs to be : 

re (u3 , b, k, h) 

If no more k characters are available to change to h, the machine needs to start 
over at configuration b, which is the starting configuration of the original machine . 
The l:l configurations are similar except that l:l prints 1 rather than 0. 

and similar lines with �· for u and 1 for 0 together with the following line 

R, P'2., R, Ph 
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Another bug, unfortunately. It actually shouldn't print an h here, but should 
print the new-style sentinel: 

c R, PS,  R, P0, R, P0 

We then have the table for the machine N ' which computes f3 . The 
initial m-configuration is '•  and the initial scanned symbol is the second .J. 

Let's see if this really works. We have a machine JV' that is a modified version of 
J( that calculates the cube root of however many "F" characters it reads from the 
tape. Machine JV' begins with a tape with just two schwas in configuration c: 

I e I e I I I I I I I I I I I I I I I I I I I I I I I 
Configuration c prints a xi and two thetas: 

I a I a l ::: l e l e l  I I I I I I I I I 

The xi isn't actually used anywhere. Now the machine branches to configuration 
b and the machine proceeds normally but using the two thetas for a sentinel instead 
of the schwas. There are no "F" characters to be read, so it's calculating the cube 
root of zero. When it comes time to print the first 0 it also tries to replace the first 
h with a k. There are no h characters so the machine branches to configuration u. 
This configuration prints a real 0 on the tape , followed by a k and two thetas: 

l a l a l ::: l e l e l  . . .  I I l o l k l e l e l  I I I I I I I I I I I 1 .. . 
The u2 and u3 configurations comprise a little loop to replace each k with an h 

and print an F: 

l e l a l ::: l e l e l  . . .  I I l o l h i e l e l F I I I I I I I I I I I I ... 

There are no more k's to change to h, so now the machine goes to m-configuration 
b, and the machine essentially starts over to calculate the cube root of 1 .  The first 
digit is 1 ,  so the machine prints a I and changes the h to a k. It continues. The next 
digit is a zero, so it prints a 0. There are no more h's, so the machine branches to 
u again to print the real zero, followed by a k and two thetas: 

l a l a l ::: J e l e l  . . . I I l o l k l e l e l F l . . .  I I l o l k le le l  I I I I 0• 
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Now for every k, the k is changed to an h and an F is printed: 

! a i a l :::: l e l e l  . . .  I I l o l h l e l e l fi. . .  I I l o l h l e l e l F I F I 
There's another bug here ,  but this one I didn't fix. The "F" characters need to 

be on F-squares so they need a space between them. Regardless, there are no more 
k characters to change to h so the machine branches to m-configuration & to begin 
calculating the cube root of 2 

With the conclusion of Section 1 0 ,  Turing is satisfied that he has defined a 
model for computation that formally encompasses anything that an algorithm 
might require . He is now ready to demonstrate that the Entscheidungsproblem 
can have no solution. 





The Major  Proof 

S ome mathematical proofs are straightforward; others need to come through 
the back door. This second category surely includes reductio ad absurdum 

proofs, which begin by assuming the opposite of what needs to be proven, and 
then demonstrate that the initial assumption leads to a contradiction. 

Then there are the proofs that don't bother coming through the front door or 
the back door. These proofs instead seem to avoid the subject entirely by building 
an elaborate structure that at times appears both mysterious and indulgent. just 
when the whole point of the exercise has become entirely obscured and you've 
long since abandoned hopes of ever seeing a solution, the clever mathematician 
drops through the chimney and exclaims with a hearty "Ta-dahl"  that the proof 
has been completed. (Just don't get any soot on the carpet.) 

In a sense, the final section of Turing's paper is the most important part because 
it is here that he shows that "the Entscheidungsproblem cannot be solved." This was 
an important conclusion at the time, but the structure Turing built to support this 
result - the imaginary device now known as the Turing Machine - ultimately 
would become more interesting and fruitful than the actual proof that must now 
command our attention. 

Turing laid the foundation for this proof in Section 8. It didn't seem to be very 
important at the time , but he was careful to establish that you cannot design a 
Turing Machine that implements a general finite process to determine whether 
another Turing Machine ever prints the digit 0. The two intermediary sections (9 
and 10) served to establish that Turing's concept of machine computability was 
equivalent to our conventional notions of human computability. 

In Section 1 1 , Turing shows how the functionality of a computing machine can 
be expressed in the language of first-order predicate logic. He then constructs a 
formula in this logic that is provable if and only if the machine ever prints the 
digit 0. If that formula is decidable - that is, if we can determine whether it's 
provable - then we'd have a general process for determining whether a machine 
ever prints 0, and we already know we can't have one. 
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(259] 

1 1 .  Application to the Entscheidungsproblem. 

The results of §8 have some important applications. In particular, they 
can be used to show that the Hilbert Entscheidungsproblem can have no 
solution. For the present I shall confine myself to proving this particular 
theorem. For the formulation of this problem I must refer the reader to 
Hilbert and Ackennann's Grundziige der Theoretischen Logik (Berlin, 
193 1), chapter 3. 

The book was actually published in 1928. Chapter 3 is about a third of the 
120-page four-chapter book, and is entitled "Der engere Funktionenkalkul" or 
"The Restricted Functional Calculus," what we know today as first-order predicate 
logic. The authors state: 

Das Entscheidungsproblem ist gelost, wenn man ein Verfahren kennt, 
das bei einem vorgelegten logischen Ausdruck durch endlich viele 
Operationen die Entscheidung aber die Allgemeingaltigkeit bzw. 
Eifullbarkeit erlaubt. . • .  [Das] Entscheidungsproblem mufl als das 
Hauptproblem der mathematischen I..ogik bezeichnet werden. 1 

The decision problem is solved when we know a procedure with 
a finite number of operations that determines the validity or 
satisfiability of any given expression . . . .  The decision problem 
must be considered the main problem of mathematical logic. 

The use of the words validity and satisfiability by Hilbert and Ackermann 
indicate a so-called semantic formulation of the decision problem. Twenty-five 
years later, Wilhelm Ackermann continued examining the Entscheidungsproblem 
from a semantic perspective in his short book Solvable Cases of the Decision Problem 
(North-Holland Publishing Company, 1954) .  

Referring to  Hilbert's restricted functional calculus with the letter K (perhaps for 
Kalka!) , Turing employs a somewhat different vocabulary to describe the decision 
problem. 

I propose, therefore, to show that there can be no general process for 
determining whether a given formula 91 of the functional calculus K is 
provable, i.e. that there can be no machine which, supplied with any one 
21 of these formulae, will eventually say whether �l is provable. 

1 DaVJd Hilben and Wilhelm Ackermann, GrundzUge der Theoretischen l.Dgih (Spnnger, 1928), 73, 77 
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By using the word provable rather than validity or satisfiability, Turing reveals 
that he is approaching the decision problem from a syntactic perspective . The 
syntactic approach to logic is relative to a system of axioms and inference rules. 
A formula is considered to be provable (that is, the formula is a theorem) if the 
formula is an axiom, or if it is derivable from the axioms using the inference rules. 
The semantic and syntactic approaches to first-order logic were established to be 
equivalent by Godel's Completeness Theorem of 1930. 

Following the discussions in Sections 9 and 10, Turing has earned the right 
to assert that if a machine can't be designed to implement a general decision 
procedure, then there is no general decision procedure that a human could carry 
out either. 

Back in 1936, readers of Turing's paper not steeped in the nuances of com­
pleteness, incompleteness, and decidability might have been confused about the 
relationship between Godel's incompleteness proof - described in a paper whose 
title actually mentioned "unentscheidbare Satze" or "undecidable propositions" -
and Turing's proof. Indeed, on the first page of his paper, Turing said that "con­
clusions are reached which are superficially similar to those of Godel" (page 67 of 
this book) . He needs to elaborate on that subject a bit more. 

It should perhaps be remarked that what I shall prove is quite different 
from the well-known results ofGodelt . Gooel has shown that (in the forma­
lism of Principia Mathematica) there are propositions 21 such that neither 
21 nor - 21 is provable. As a consequence of this, it is shown that no proof 
of consistency of Principia Mathematica (or of K) can be given within that 
formalism. On the other hand, I shall show that there is no general method 
which tells whether a given formula 21 is provable in K, or, what comes to 
the same, whether the system consisting of K with - 21 adjoined as an 
extra axiom is consistent. 

t Loe. cit. 

Godel's theorem and Turing's theorem approach decidability from opposite 
directions. Godel's theorem shows the existence of propositions that can be 
neither proved nor disproved; these propositions are said to be undecidable. 

The "general method" that Turing refers to is a decision procedure - an 
algorithm that analyzes any arbitrary formula and determines whether it is 
provable or not provable. Turing will prove that no general decision procedure 
can exist . 

Even with the existence of undecidable propositions, a decision procedure 
could still conceivably exist. When analyzing Godel's undecidable proposition, it 
would identify both the proposition and its negation as unprovable. 
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If the negation of what Godel has shown had been proved, i.e. if, for each 
21, either 21 or - 21 is provable, then we should have an immediate solution 
of the Entscheidungsproblem. For we can invent a machine rK which will 
prove consecutively all provable formulae. Sooner or later :K will reach 
either 21 or - 91. If it reaches 91, then we know that 21 is provable. If it 
reaches - 21, then, since K is consistent (Hilbert and Ackermann, p. 65), we 
know that 21 is not provable. 

Well, okay, but obviously Turing's handy-dandy 9<. machine (now making its 
final appearance in this paper) is cenainly not what Hilbert had in mind when 
he formulated the Entscheidungsproblem. Regardless of how "mechanical" or 
"machine-like" any hypothetical decision procedure was supposed to be, it was 
still envisioned as something that a human being could manage rather than a 
computer requiring millennia of processing time and all the world's memory 
resources. 

Godel's result has not provided the basis of a general decision procedure. 
Turing's proof is still required. 

Owing to the absence of integers in K the proofs appear somewhat 
lengthy. The underlying ideas are quite straightforward. 

Corresponding to each computing machine JI( we construct a formula 
Un (ul'( ) and we show that, if there is a general method for determining 
whether Un (.At ) is provable, then there is a general method for deter­
mining whether JI( ever prints 0. 

ls Turing giving away the punch line by naming the formula Un for Undecidable? 
This Un(u+() formula functions as a counter-example - a formula that no general 
decision procedure can successfully analyze. 

As you'll recall, a machine consists of a series of configurations associated with 
operations. Beginning with the pages of his paper where Turing presented the 
Universal Machine, he's been using the word instructions to refer to these elements 
of the machine. 

Turing needs to represent this computing machine in the language of first-order 
logic. Each instruction will be convened to a formula that indicates how the 
instruction affects the complete configurations of the machine. The complete 
configurations, you'll recall, are snapshots of the tape after each move of the 
machine. The complete configuration also includes the next m-configuration of 
the machine and the next scanned character. 

Turing first presents several propositional functions (known as predicates in 
more modem terminology) . Like all propositional functions, they have values 
of true or false . In all cases, the arguments to these functions are non-negative 
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integers signifying the squares of the tape and the complete configurations. The 
squares of the tape are assumed to be numbered beginning at zero, which implies 
that the tape has a beginning and is infinite in only one direction. 

Complete configurations are also assumed to be consecutively numbered. 
A number pair (x, y) identifies a particular square y in complete configuration x. 
Although I'll be using actual numbers in my examples, no numbers or examples 
appear in Turing's discussion. 

Let's recall Turing's Example I machine that printed alternating Os and l s  on 
every other square. Here are the first 10 complete configurations. I've identified 
these complete configurations with numbers in the leftmost column. (The heading 
means "Complete Configuration x.") I've identified the squares of the tape with 
numbers across the top. I've also replaced Turing's original configuration letters 
with subscripted q's. 

CC x 0 1 2 3 4 5 6 7 . . .  
0 q1 
1 0 qi 
2 0 q3 
3 0 1 q4 
4 0 1 q1 
5 0 1 0 qi 
6 0 1 0 q3 
7 0 1 0 1 q4 
8 0 1 0 1 

9 0 1 0 1 

. . .  0 1 0 1 

This panicular machine prints only in every other square , so only the even­
numbered squares contain numbers. An m-configuration appearing in a square 
indicates that's the square being scanned in this complete configuration. 

Many of Turing's propositional functions include subscripts that are part of the 
name of the function. These propositional functions are defined in isolation, but 
you'll soon see how Turing uses them to describe an entire machine. 

The interpretations of the propositional functions involved are as 
follows : 

Rs, <x,y) is to be interpreted as "in the complete configuration x (of 
vi( ) the symbol on the square y is S". 
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The final S before the end quotation mark is missing a subscripted l .  As you'll 
recall, the character So is a blank, S1 is 0 ,  and S2 is l .  For the Machine 1 example, 
Rs2 (5, 2) is true because digit 1 appears in complete configuration 5 on square 2, 
but Rs2 (5, 6) is false because digit 1 does not appear in complete configuration 5 
in square 6. 

(260] 

/(x, y) is to be interpreted as "in the complete configuration x the 
square y is scanned". 

For the Example 1 machine, the function 1(6, 6) is true because in complete 
configuration 6 the next scanned square is 6, but 1(6, y) is false for any other 
square y .  

Kqm (x) i s  to be interpreted as "in the complete configuration x the 
m-configuration is Qm · 

An end quotation mark is missing in that sentence. For the Example 1 machine, 
the function Kq2 (5) is true but Kq3 (5) and Kq2 (7) are false. 

F(x, y) is to be interpreted as ''y is the immediate successor of x". 

Or, in the quaint notation of anthmetic, y = x + 1 .  Using the notation for 
natural numbers that Turing introduced earlier, the predicate F(u."' , u."") is true, 
but with proper axiomatization, F(u."', u."'") should be false . 

So far, Turing has just developed propositional functions that describe the 
complete configurations of a machine in operation. He hasn't equated these to 
the table that describes the actual machine . The standard form of a machine 
contains only one print instruction and one move instruction per line. Each line of 
the table consists of an m-configuration qi , a scanned symbol Sj , a printed symbol 
Sh (which could be the same as Sj) ,  head movement left, right, or not at all, and a 
new m-configuration qi . 

Tunng next gives a definition for something he calls Inst (for "instruction") . 
This is not a propositional function, but an abbreviation for an expression 
built from the propositional functions just presented. Each Inst expression is 
associated with a line of the machine table . The expression describes how these 
particular combinations of m-configurations, symbols, and head movement affect 
the complete configuration: 



Inst [q; SJ Sk L Qt I is to be an abbreviation for 

(x,y ,x' ,y') ! (Rs, (x,y) & /(x,y) & K,, (x) & Fix, x') & F(y',y)) 

___. (l(x',y' ) &Rs. (x' ,y) &Kq1 (x' ) 
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& (zl[ F(y' , z  ) v  (Rs1ix,z) � Rs, lx', z )) l) l · 

This is one of three possible Inst expressions and applies to the case where the 
head moves left. That's what the L among the arguments of Inst means. 

The initial (x, y, x, y') is an abbreviation for four universal quantifiers 
(x)(y)(x)(y') . The bound variables x and x are two consecutive complete config­
urations; toward the end of the first line you'll see an F predicate (the first of two) 
indicating that x is the successor of x. The bound variables y and y' are two adja­
cent squares. For an instruction in which the head moves left, y' equals y minus 1 ,  
or y is the successor of y' , as the second F predicate in the first line indicates. 

The other three predicates in the first line indicate the conditions for this 
particular instruction. The complete configuration is x, the scanned square is y, 
the scanned symbol is Sj . and the configuration is qi . 

The second line begins with an implication sign and applies to the entire 
remainder of the expression. These are predicates that describe the complete 
configuration that results from this instruction. In the next complete configuration 
x, the square y' is scanned; square y now has the symbol S1t and the new 
m-configuration is qi . 

Inst concludes with an expression on the third line that should indicate that all 
other squares except square y remain the same. These other squares are indicated 
with the bound variable z. Either z is the successor of y' (in which case it's equal 
to y and was the target of a print operation) or . . .  but here the rest of Turing's 
formula is wrong. What it says is that in all other squares, Si becomes S1t ,  which 
makes no sense. 

A better version of the Inst expression is among the corrections that Turing 
listed in a follow-up paper published in the Proceedings of the London Mathematical 
Society about a year after the original. That correction (page 310  of this book) is 
not quite right either, but here's what the last line should be: 

&(z{F(y' , z) v ([Rs0�x, z) � Rs0Cx' , z)] & [Rs1 (x, z) � Rs1 Cx' , z)] 

& . . .  & [Rs.<x. zl -->  Rs.<x' . zlJ)]) }  
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The So , S 1 , . . .  SM subscripts in the R function are all the symbols that u\1 can print. 
In other words, for all squares z, either z is the successor of y' (which means z is 
y - the square that was altered) or the symbol on that square remains the same 
from complete configuration x to complete configuration x. 

The Inst expression that Turing just presented is for the head moving left. 

Inst {q; SJ Sk R qt ) and Inst {q; 81 Sk N qt ) 

are to be abbreviations for other similarly constructed expressions. 

just for a little variety (and as a convenient reference in the pages ahead) , the 
following box shows the complete correct expression for an instruction where 
the head moves nght: 

Inst {qiSjS1iRq1 }  is an abbreviation for: 

(x,y, x' , y') { (Rs/x,y) &: I(x,y) &: Kq, (x) &: F(x, x') &: F(y,y')) 

--+ (I (x' , y') &: Rsh (x' , y) &: Kq1 (x') 

&: (z) [F(z.y') v ( [Rs0(x. z) --+ Rs0 (x' , z) J &: 

[Rs1 (x, z) --+ Rs1 (x'. z) J &: 

. . .  &: 

[Rsm (x, z) --+ Rsm (x' , z)) ) ) ) }  

This expression is mostly the same as  the instruction for the head moving left 
except that the F(y', y) term becomes F(y, y') to indicate that the new scanned 
square is to the right of the last scanned square , and F(y' , z) becomes F(z, y') in 
the latter part of the expression to indicate that z equals y. 

For the Example I machine, the m subscript in the Rsm function has a maximum 
value of 2 because the machine only prints symbols So (blank) , S1 (zero) , and 
S2 (one). 

Let us put the description of _;,( into the first standard form of § 6. This 
description consists of a number of expressions such as "q; SJ Sk L qi" (or 
with R or N substituted for L). 

Actually it's Section 5 where Turing develops this standard form. The Example 
I machine appears on page 24 1 of his paper (page 139 of this book) like this: 

q1 SoS1 Rq2 ; q2SoS1 Rq3 ; q3SoS2Rq4 ; q4SoS0Rq1 ; 
Each of these four quintuples becomes an Inst expression. 
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Let us form all the corresponding expres­
sions such as Inst (q;S1SkLqt l and take their logical sum. This we call 
Des (vH ). 

That is, the Description of machine c.M. The term "logical sum" can be a bit 
ambiguous so in the corrections paper (page 3 1 1 of this book) Turing substitutes 
the word "conjunction." In other words, all the Inst terms can be joined with 
ampersands to represent a complete machine in the language of first-order logic. 

Des(ch() for the Example I machine is an abbreviation for: 

Inst{q1SoS1 Rq2 } & lnst{q2SoS1 Rq3} & 
lnst{q3SoS2Rq4 } & lnst{q4SoS0Rqd 

Now Turing will incorporate that Des(ch() formula into a larger formula he calls 
Un(ch() for Undecidable. This Un formula is an implication of the form: 

Some machine -+ Prints zero 

The formula uses the successor function F as well as the propositional function N 
that is true if the argument is a natural number. 

The formula Un ( .M ) is to be 

(3u)[ N<u)  & (x)(N(x) --+ (3x')F(x, x' ) )  

& (y, z ) (F(y, z) --+ N(y) &N(z)) & (y )Rs0 (u,y)  

& l(u ,  u ) & Kq 1 ( u )  & Des( Jlt )] 
--+ ( 3s )( 3t l [N(s ) &N(t )  & Rs1 (s ,  t ) ] .  

The implication sign at the beginning of the fourth line divides the formula into 
the two parts. Each part has an expression in brackets preceded by one or two 
existential quantifiers. 

The last line is the easiest part: It simply says that there exist two numbers s 
and t such that the character 51 (a zero) appears in complete configuration s on 
square t of the tape . In Section 8, Turing proved that there is no algorithm that will 
tell us whether an arbitrary machine ever prints zero , so 1 trust you're beginning 
to see Turing on his way down the mathematical chimney. 

The Un(ch() formula begins by asserting the existence of a number u (the number 
zero) that serves as both the number of the first complete configuration and the 
first scanned square. The remainder of the first line just indicates that for each 
number x there's another number x that is the successor of x. 
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The second line is a little wordy but simply asserts that for complete configu­
ration u (zero) and every square y on the tape , the symbol on square y is So , or 
blank. This is the initial condition of the tape . The third line contains an I function 
to establish that in complete configuration zero, the scanned square is zero, and a 
K function to set the initial m-configuration to q r .  This is followed by the Des(cM) 
expression that describes the machine itself. 

From the previous formula Turing extracts just the part in square brackets and 
provides another abbreviation: 

[N(u ) & . . .  & Des ( )f )] may be abbreviated to A( .M ) .  

The proposition A(chf) encompasses the starting conditions of the machine and the 
machine's description, but has a free variable of u. 

In the published correction to the paper, Turing took note of a problem that 
ripples through this proof and which I discussed in Chapter 12 .  He has not 
established that successors are unique. For this reason he defines a propositional 
function G(x, y) that is true if y is greater than x, and an expression Q that is 
intended to replace the P representation of the Peano Axioms: 

Q is an abbreviation for: 

(x)(3w)(y, z) { F(x, w) & (F(x,y) --+ G(x,y)) 

&'. (F(x, z) & G(z,y) --+ G(x,y)) 
&'. [ G(z, x)v(G(x,y) &'. F(y, z)) v 

(F(x,y) &F(z,y)) -+ ( - F(x, z))J } 
With this definition taking care of the natural numbers, the A(chf) abbreviation 

becomes much simpler. It's a conjunction of Q, the starting conditions for the 
machine , and the machine description: 

A(cM) is an abbreviation for: 

Q &'. (y)Rs0 (u,y) & l(u, u) &'. Kq1 (u) & Des(cM) 

ln A(cM), u is a free vanable. That variable becomes bound in the Un(chf) formula: 

Un(cM) is the formula: 

(3u)A(M) --+ (3s)(3t)Rs1 (s , t) 
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I've removed the N(x) predicates because the domain of all these propositional 
functions is implicitly assumed to be the natural numbers Referring to the 
definitions of the R, I, K, and F predicates, and the Inst and Des formulas, Turing 
says: 

When we substitute the meanings suggested on p. 259-60 we find that 
Un ( .11 l has the i nterpretation "in some complete configuration of Jr, 81 
( z . e. O J  appears on the tape". 

Because the expression on the left of the implication sign in Un(cftO includes the 
description of the machine and its starting conditions, it is our assumption that it 
is true. These are the axioms. To the right of the implication sign is an expression 
that is true if the machine prints a zero sometime during its run time. Therefore,  
the formula Un(cft() is  itself true if the right side is  true - that is, if the machine 
ever prints zero - and false 1f the machine never prints zero . Does there exist an 
algorithm that will determine whether Un(cfi() is provable? If so, then there also 
exists an algorithm that will tell us if an arbitrary machine ever prints zero. 

Notice that Turing refers to the "suggested" meaning of the propositional 
functions. Much of the remainder of the proof will be based on a purely syntactic 
interpretation of the formulas without requiring that we take into account the 
precise meaning of these functions 

Turing now wants to show that Un(cft() is provable if and only if 51 appears on 
the tape . He tackles each half of this proof in two lemmas (subsidiary proofs) that he 
soon refers to as Lemma 1 and Lemma 2, but which he first refers to as (a) and (b): 

Corresponding to this I prove that 

( a )  If  S 1 appears o n  the tape in some complete configuration of Al, then 
Un( Y )  is provable. 

(bl If Un( 1 1 ) is provable , then S1 appears on the tape in some complete 
configuration of , I • .  

When this has been done, the remainder of the theorem is trivial .  

The harder pan is Lemma 1, which Turing now repeats verbatim. 

[261) 

Li-:�JMA l .  If' S 1 appear.o.; on the tape in  some complete configuration of 
,Ii, then Un( .1 1 ) rs provable. 

We have to show how to prove Un( . 1 1  ) .  
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As before, u is what we commonly know as zero, u' is 1, u" is 2, and u(n) means 
a u  with n prime marks and represents the number n. 

In addition, Turing slips in some new notation in the next sentence of his paper 
that involves three new functions named r(n, m) , i(n) , and k(n) . These are not 
propositional functions because they return integers. The n argument is a complete 
configuration and m is a square of the tape . 

The r(n, m) function returns an index of the character that appears in complete 
configuration n on square m .  This index is 0 for a blank, 1 for zero, 2 for a 1 ,  and 
so forth, so that Sr(n,m) is the character that appears in complete configuration n 
on square m. Turing will combine this r function as a subscript for S with the R 
propositional function: 

Rsr(n.ml (n, m) 

That predicate is always true, although Turing will instead use superscripted u 
terms for the arguments to R: 

Rs (u(n) u(m)) r(n,m) ' 
Turing allows himself to use n and m in the r function but requires u(n) and u(m) in 
the R predicate. 

The second new function that Turing introduces is i (n) , which returns the 
number of the scanned square in complete configuration n,  so that the predicate 

l(u(n) , u(i(n)) ) 
is always true because it refers to the complete configuration n and the scanned 
square i (n) . The third new function k(n) returns the index of the m-configuration 
in complete configuration n, so that qh(n) is the m-configuration in complete 
configuration n. The predicate 

Kqh(n) ( U (n)) 
is always true because it indicates that in complete configuration n, the 
m-configuration is qk(n) . 

Let us suppose that in the 
n-th complete configuration the sequence of symbols on the tape is 
Sr(n, o). Srln, 1 ) ,  • • •  , Srcn ,  n »  followed by nothing but blanks, and that the 
scanned symbol is the i(n)-th, and that the m-configuration is Qkl n »  

In complete configuration 0, the tape is entirely blank. In complete configuration 
1 ,  possibly one non-blank symbol appears on the tape. In general , in complete 
configuration n, a maximum of n symbols appear on the tape (and quite likely 
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fewer) . Turing represents this sequence of symbols beginning at square 0 as Srcn .o) . 
Sr(n, I ) • • • •  , Sr(n,n) · If he's actually listed n + 1 symbols here rather than n, that's no 
problem because some of these r functions undoubtedly return 0 and hence refer 
to blank squares. 

we may form the proposition 

R ( ( 11 )  ) & R ( ln l ' ) & & R ( ln l (11 ) ) Sr<11, OJ U ' U  Sr<n, 1 1  U ' U  . . . Sr<n, n l  U ' U  

Then 

& (y>F (<y, u' ) v F( u ,y) v F(u ' ,y ) v . . .  v F(uln- ll ,y) v Rs0 (ul"\y)) , 

which we may abbreviate to CC,. . 

That is, "complete configuration n." The first line includes a conjunction of 
functions corresponding to the symbols on the first n + 1 squares. The second line 
includes functions referring to the scanned square i(n) and the m-configuration 
qh(n) · 

Toward the beginning of the third line , the F that appears right after the 
universal quantifier should be inside the large parentheses. Just as the first line 
indicates the symbols that appear on squares numbered 0 through n, this last 
line indicates that squares numbered greater than n contain blanks. That's the R 
predicate that appears at the very end. The universal quantifier of y ranges over 
all squares. Either u' is the successor to square y (i .e . ,  y is O) or square y is the 
successor to u (i.e . ,  y is 1) , or square y is the successor to u' (i .e. , y is 2) and so 
forth up through the case where the square y is the successor to n - 1 (i .e. , y is n). 
If y is none of those cases, then square y contains a blank symbol. 

Here's the corrected version: 

CCn is an abbreviation for: 

R ( (n) ) 1:- R ( (n) ') 1:- 1:- R ( (n) (n)) Sr(n,O) U , U � Sr(n, l ) U , U � • • •  � Sr(n,n) U , U 

&: I(u(n) '  u(i(n)) ) &: Kqh(n) (u(n)) 
&: (y) (F(y, u') v F(u ,y) v F(u' , y) v . . .  v F(u<n- 1 ) ,y) v Rs0 (u<n> , y)) , 

When n equals zero, the first line drops out, and much of the third line as well. 
CCo is an abbreviation for: 

I(u ,y) &: Kq 1 (u) &: (y)Rs0(u,y) 
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As before, F(u, u') & F(u', u") & . . .  & F(uCr- 1 ) , u<r> ) is abbreviated 
to rr) . 

I shall show that all formulae of the form A(vH ) & p.n) --+ CCn (abbre­
viated to CFn) are provable. 

The A(cht) formula, you'll recall, combined the starting condition of the machine 
(a blank tape , an m-configuration of q1 ,  scanned square number zero) with 
the Des(cht) expression, which was a description of the machine. The Des(cht) 
expression combined multiple Inst expressions. Each Inst expression indicated 
how the instruction changed a symbol on the scanned square, changed the 
m-configuration, and changed the square to be scanned. 

Turing is essentially defining a CFn formula for each complete configuration n. 

I CF. is an abbreviation fof' 

. 
A(cht) &: p<n) -+ CCn 

Here are the first few of these CFn formulas: 

CFo : A(cht) -+ CCo 
CF1 :  A(cht) &: F(u, u') -+ CC1 
CF2 : A(cht) &: F(u, u') &: F(u' , u") -+ CC2 
CF3 : A(cht) &: F(u, u') &: F(u' , u") &: F(u". u111) -+ CC3 

The meaning of CFn is "The n-th complete 
configuration of ...A1 is so and so", where "so and so" stands for the actual 
n-th complete configuration of vi'/. That CFn should be provable is 
therefore to be expected. 

Turing shows that the CFn formulae are provable with an induction proof. He 
proves first that CF0 is provable, and then shows that if CFn is provable, so is 
CFn+l · 

CFo is certainly provable, for in the complete configuration the symbols 
are all blanks, the m-configuration is q 1 ,  and the scanned square is u, i.e. 
CCo is 

(y ) Rs0 (u,y) & l(u, u) & Kq1 (u). 

This is simply a rearranged version of the CC0 formula I showed earlier. The 
expression for A(cht) is this: 

Q &: (y)Rs0 (u, y) &: I(u, u) &: Kq1 (u) &: Des(cht) 
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A(cM) contains precisely the same R, I ,  and K predicates as CCo . 

A ( fi[ ) ---"' CCo is then trivial. 
We next show that CFn ---"' CFn+ l is provable for each n. 

If you look at the expression for CFn , you'll see that 

CFn � CFn+l 
is just an abbreviation for the formula: 

[A(cM) &P") � CCn] � [A(c.M) &P"+l) � CCn+i] 
This is the much harder part of the induction proof, but proving this implication 

will let us say that CFo � CF1 is provable, CF1 � CF2 is provable , and so forth, 
so that all CFn expressions are provable. 

There are 
three cases to consider, according as in the move from the n-th to the 
(n + 1)-th configuration the machine moves to left or to right or remains 
stationary. We suppose that the first case applies, i.e. the machine 
moves to the left. A similar argument applies in the other cases. 

In the first part of the next sentence Turing defines integers a, b, c, and d based 
on the r, i, and h functions introduced earlier, but these definitions are a little 
mixed up: 

If 
r(n , i (n)} = a, r(n + 1, i(n + 1)) = c, k(i(n)) = b, and k(i(n + 1)) = d, 

In Turing's published correction to this paper, he untangles the definitions. 
They all refer to complete configuration n and should be: 

a = h(n) , the index of the m-configuration 
b = r(n, i(n)) , the index of the symbol in scanned square i(n) 
c = h(n + 1 ) ,  the index of the next m-configuration 
d = r(n + 1 ,  i(n)), the index of the new symbol in square i(n) 

The a and c abbreviations are subscripts on q; the b and d abbreviations are 
subscripts on S. These abbreviations exist solely to simplify the remainder of the 
sentence and a few items that follow: 

then Des ( fif ) must include Inst (q0 Sb Sd L qc I as one of its terms, i.e. 

DesUO ---"' lnst{qa Sb Sd L qc } .  
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Because Des consists of the conjunction of all of the Inst terms, if Des is true 
then any individual Inst term is also true , and the implication is true. A(u!O is a 
conjunction of Des and other expressions, hence: 

A(u!O --+ Des(u!O 

Combining these two implications, we have: 

A(u!O --+ Inst {qaSbSdLq, } 
The expression p:n+l) is an abbreviation for a conjunction of F predicates that 

are also assumed to be axioms. Because p:n+l) is true, we can add it to both sides 
of that formula as a conjunction: 

Hence 

But 

ACM) & Ji'n+o - Inst fqa Sb Sd L Qc l  & Ji'n+u. 
lnst(q0 Sb Sd L Qc } & p.n+ I > - (CC,. - CCn+ 1 )  

is provable, 

Another fix is required: The conjunction on the left must also include Q to 
affirm the uniqueness of the successors: 

Inst {qaSbSdLq,} & Q & _pn+O --+ (CCn --+ CCn+1 ) 
If you replace the a, b, c, and d subscripts in the Inst expression, you'll see that 

it refers to the particular Inst instruction that causes complete configuration n to 
advance to complete configuration (n + 1) : 

Inst {qh(n)Sr(n,i(n))Sr(n+l ,i(n))Lqh(n+l) } & Q & p:n+l) --+ (CCn --+ CCn+1) 
This formula is  equivalent to 

( CCn & Inst { qh(n)Sr(n,i(n})Sr(n+ l ,i(n))Lqh(n+ 1) } & Q & _F{n+l)) --+ CCn+l 
and intuitively it seems very obvious: CCn+ I  is implied by CCn in conjunction 
with the particular Inst instruction that causes CCn to advance to CCn+ I ·  However, 
showing that this is provable by manipulating the propositional functions involved 
is rather messy due to the complexity of the Inst and CCn abbreviations. 

The two statements that Turing has just presented are provable , 

and so therefore is 

A(vl'[) & p.n+l > - (CCn - CCn+l ) 

That's a statement of the form X --+ (Y --+ Z) and it's fairly easy to show that it's 
equivalent to (X --+ Y) --+ (X --+ Z) , so: 
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(A(c.Af) & p<n+l) � CCn) � (A(c.Af) & p<n+l) � CCn+l ) 

Recall that F with a superscript is an abbreviation for a conjunction of F 
predicates, so that pn+l) � p<n) and (A(c.Af) & pn+l)) � (A(c.Af) & F(n)) 

(262) 

and (AUO & ]i'<n) - CCn) - (A(v\f) & ]i'<n+ll - CCn+1 ) ,  

Both those parenthetical expressions are of  the form of  the abbreviation CFn , 

i.e. 
CFn is provable for each n. 

The induction proof showing that CFn is provable is concluded, but we're not 
finished with the lemma yet because we really need to prove Un(c.Af). 

Now it is the assumption of this lemma 
that S 1 appears somewhere, in some complete configuration, in the sequence 
of symbols printed by .Al; that is, for some integers N ,  K, 

where N is the number of a complete configuration and K is a square, 

CCN has 
Rs1 (uCN>, uCK> ) as one of its terms, and therefore CCN - Rs1 (u(N) , u(K>) is 
provable. 

This is so because any term in a conjunction implies that term. 

We have then 

and 

CCN - Rs1 (u<N>, u<K» 

A(vW) & F<N> - ccN. 

That superscript on CC should actually be a subscript, but it's the definition CFN 
which Turing has just shown is provable for all N (although previously he used a 
lower-case n rather than upper-case N) . 

So far, Turing has been dealing with formulas that have contained a free variable 
named u. 
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We also have 

(3u)A(_,,I( ) � (3u)(3u') . . .  (3u(N' ' > (A( ..A() & pNl ) ,  

where N' = max (N, K). 

Actually, K (which is the square on which the zero appears) can never be greater 
than N (the complete configuration) , so N' is always equal to N. The expression 
A(cftt) & f'.Nl on the right was just shown to imply CCN, which was just shown to 
imply Rs1 (uCN) , uCK)) 

And so 

(3u)A( ..A ( ) � (3u)(3u') . . .  (3u'N'J )Rs1 (u(NJ, u'K> ), 

The R function doesn't require the existence of all integers from u through 
u(N') . It just requires u<N) and u<K) , so most of those existential quantifiers can be 
removed, and we're left with: 

If we replace uCN) with s and uCK) with t, we get: 

( 3u)A(,,\() � (3s)( 3t )Rs1 (s, t), 

This is precisely the definition of Un(cftO that you'll see in a little box on page 268. 
It is peculiarly not, however, the definition of Un(cftO implied by Turing in his 
original text. He had N(s) and N(t) in the expression on the right of the implication 
sign, but those predicates simply indicate that s and t are natural numbers, and 
that fact has been implied. 

Beginning with the premise "If 51 appears on the tape in some complete 
configuration of ulf," we've just proved a formula that was defined as Un(cftt), 

i.e. Un( ,,\ ( )  is provable. 

This completes the proof of Lemma 1 .  

The second lemma is much shorter, and requires only interpreting the formula 
using the propositional functions defined earlier. 

LEMMA 2. If UnU( ) is provable, then S1 appears on the tape in some 
complete configuration of ;\ (. 
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If we substitute any propositional functions for function variables in 
a provable formula, we obtain a true proposition. In particular, if we 
substitute the meanings tabulated on pp. 259-260 in Un(J( ), we obtain a 
true proposition with the meaning "S1 appears somewhere on the tape in 
some complete configuration of J(". 

Now Turing has established that Un(ch() is provable if and only if 51 appears on 
the tape in some complete configuration of c:M. 

We are now in a position to show that the Entscheidungsproblem cannot 
be solved. Let us suppose the contrary. Then there is a general 
(mechanical) process for determining whether Un(J( ) is provable. By 
Lemmas 1 and 2, this implies that there is a process for determining whether 
vH ever prints 0, and this is impossible, by § 8. Hence the Entscheidungs­
problem cannot be solved. 

In retrospect, it was a piece of cake, wouldn't you agree? 
It shouldn't be surprising at all that Un(ch() is a rather complex formula. If it 

were much simpler, it might be of a form that could be analyzed by a decision 
procedure. Instead, Un(ch() includes A(ch() as one of its terms, and A(ch() includes Q 
and Des(ch() among its terms, and Des(ch() is a conjunction of all the Inst terms that 
make up the machine. Each Inst term has five universal quantifiers, Q has three 
universal quantifiers and one existential quantifier, A(ch() has another universal 
quantifier, and Un(ch() has three existential quantifiers. 

This complex nesting of quantifiers wouldn't make a difference in the solv­
ability of the proposition if it happened to contain only monadic predicates, 
that is, predicates with only one argument. In 1915 ,  Leopold LOwenheim 
(1878-1957) proved that propositions containing only monadic predicates were 
decidable. 2 

By the time Turing wrote his paper, much additional progress had been made 
in finding decision procedures for special cases of formulas. Generally, when 
applying decision procedures, a formula is first converted to prenex normal form, 
which means that the formula is manipulated so that all quantifiers (in non-negated 
form) are moved to the beginning of the formula and precede an expression called 
the "matrix" that contains no quantifiers. 

Over the years, various mathematicians discovered decision procedures for 
classes of formulas in prenex normal form that begin with a particular pattern of 

21..eopold L6wenheim, "Uber Moglichkeiten im Relativekalkul," Mathematische Annalen, Vol 76 ( 19 15), 
447-470. Translated as "On Possibilities in the Calculus of Relatives," in Jean van Heijenoon, ed. ,  From 

Frege to Godel: A Source Booh in Mathematical Logic, 1 879- 1 931 (Harvard University Press, 1967), 228-251  
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quantifiers. In the literature on decision problems,3 this pattern of quantifiers is 
shown using the V and 3 symbols for the universal and existential quantifiers. A 
numeric superscript indicates a particular number of quantifiers; an asterisk means 
any number. 

In 1928, Paul Bernays and Moses Schonfinkel (1889- 1942) published a decision 
procedure for sentences beginning with 3*V* (any number of existential quantifiers 
followed by any number of universal quantifiers) . In 1928, Wilhelm Ackermann 
gave a decision procedure for 3*V3* (any number of existential quantifiers followed 
by one universal quantifier, followed by any number of existential quantifiers). In 
1932 Godel showed a decision procedure for two universal quantifiers between 
any number of existential quantifiers: 3*V23* .  

Also explored in connection with the decision problem were reduction classes . 
A reduction class consists of all sentences that begin with a particular pattern of 
quantifiers. Sentences in various reduction classes were proven to have a decision 
procedure only if all sentences have a decision procedure. In 1920, Skolem proved 
that V*3* defines a reduction class and in 1933 Godel narrowed that to V33* .  

Before the proofs of Church and Turing, i t  was not known whether these 
reduction classes had decision procedures - only that if there existed a decision 
procedure for the reduction class, there would also exist a general decision pro­
cedure. A consequence of the Church and Turing papers was that these reduction 
classes were undecidable. In 1932 , Godel had shown a decision procedure for 
sentences with the prefix 3*V23 *  and by extension V23 * .  After Turing's proof, 
it was known that sentences with the prefix V33* were undecidable. With the 
addition of one little universal quantifier, a decidable sentence of form V23* tips 
to an undecidable sentence of form V33* . 

In the following paragraph, Turing uses the word quantor to refer to quantifiers. 

In view of the large number of particular cases of solutions of the 
Entscheidungsproblem for formulae with restricted systems of quantors, it 

[263) 

is interesting to express Un(v\1 ) in a form in which all quantors are at the 
beginning. Un(v+( ) is, in fact, expressible in the form 

where Q) contains no quantors, and n = 6. 

Turing has proved that sentences with the prefix V3V36 (using the customary 
notation) form a reduction class. There can be no decision process for sentences 
with this prefix. 

3Most notably, Egon Borger, Ench Gradel, and Yun GureVJch, The Classical Decision Problem (Spnnger, 
1997) This book and its bibliography should be consulted for papers concerning the 
Entscheidungsproblem and its panial solutions 
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By unimportant modifications 
we can obtain a formula, with all essential properties ofUn(vl1 ), which is of 
form (I) with n = 5. 

In the correction to this paper, Turing notes that this last number should be 4, 
so the reduction class is further narrowed to V3V34. 

In 1962, Swiss logician julius Richard Biichi ( 1924- 1984) took another swing 
at the Entscheidungsproblem using Turing Machines, and managed to simplify the 
proof somewhat.4 He showed that sentences of the form 3&'V3V form a reduction 
class. (Such a sentence is a conjunction of two terms, each preceded by its own 
quantifier or quantifiers.) Biichi's paper also laid the groundwork for proving 
that V3V sentences form a reduction class, which means there can be no general 
decision procedure even for sentences with the seemingly simple prefix of V3V. 

Mathematicians do the world big favors when they develop methods for solving 
problems, but they perform an equal service when they prove that something has 
no solution. There is no way to trisect an angle with ruler and compass, no way to 
square the circle, and no way to prove Euclid's fifth postulate from the first four. 
There are no integer solutions to x" + y" = z" for n greater than 2, there is no way 
to establish consistency of arithmetic within the system, and there is no general 
decision procedure for first-order logic. 

We can stop wasting our time trying to find one. Knowing what's impossible is 
just as important as knowing what's possible. 

�J. Richard Buchi, ''Turing-Machines and the Entscheidungsproblem," Mathematische Annalen, Vol 148, 
No. 3 (June 1962). 201-213. 





The Lam bda 
Calcu lus 

In 1983 or 1984, when Alonzo Church was about 80 years old, he was invited to 
speak at the Center for the Study of Language and Information at Stanford Univer­
sity, and was taken on a little tour featuring CSLI's Xerox Dandelion computers. 
These computers were running LISP, a programming language developed by John 
McCarthy (b. 1927). Church was told how LISP was based on the lambda calculus 
that Church had invented some 50 years earlier. 

Church confessed that he didn't know anything about computers, but that he 
once had a student who did. 1 By that time, of course, everyone knew who Alan 
Turing was. 

The lambda calculus developed by Alonzo Church in the early 1930s provided 
a means for Church to prove that that there is no general decision procedure for 
first-order predicate logic. Alan Turing learned of this proof prior to the publication 
of his own paper on computable numbers and the Entscheidungsproblem. He was 
then obliged to add an appendix to his paper that described how his approach 
and Church's approach were basically equivalent. That appendix is the subject of 
this chapter. 

If the concepts behind the lambda calculus seem familiar, it is because they have 
been quite influential in the development of programming languages. Fairly early 
it was noticed that a structural relationship existed between the lambda calculus 
and programming languages classified as procedural or imperative, such as the 
early programming language ALGOL, 2 from which languages such as Pascal and C 
derived, as well as the many derivatives of C such as C++, Java, and C#. Programs 
written in procedural languages are structured around the concept of passing data 
around to procedures (also called subroutines or methods) that process this data 
in various ways. 

1 Maria Manzano, "Alonzo Church His Life, His Work and Some of His Miracles," History and Philosophy of 

l.ogu:, Vol 18 (1997), 2 1 2  
2P. J Landin, "A Correspondence Between ALGOL 6 0  and Church's Lambda-Notation," Communications of 

the ACM, Vol. 8, No. 2 (Feb 1965), 89-101 ,  Vol 8, No 3 (Mar 1965), 1 58-165 
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The lambda calculus has had a more direct influence on functional programming 
languages, such as LISP, APL, Haskell, Scheme, and F#. In a functional language 
the functions are arranged more like a chain where each function gets the output 
from the previous one. Functional languages often allow the manipulation of 
functions in much the same way that procedural languages manipulate data. While 
functional languages have not achieved the mainstream popularity of procedural 
languages, they have recently been enjoying something of a renaissance. 

Alonzo Church was born in 1903 in Washington, D .C . ,  and spent most of his 
professional life at Princeton University. He attended Princeton as an undergraduate 
and then earned his Ph.D. in mathematics at the age of 24. He spent two years 
as a National Research Fellow, and then came back to Princeton, where he taught 
from 1929 until his retirement in 1967. Church then had a supplemental career at 
UCLA until 1990. 

Church was a hard-working and meticulous man. He spoke in carefully 
constructed complete sentences and worked late into the night. Church's classes 
often began with an elaborate ritual of cleaning the blackboard, sometimes 
involving a pail of water. When working on a mathematical problem, he would 
use different colored inks, and when he needed more colors, he would mix his 
own using various proportions of the standard colors. When he finished with a 
page he wished to preserve, he would cover it with Duco, a lacquer that Church 
found particularly suited for the purpose because it did not warp the paper.3 

Church supervised 3 1  doctoral dissertations, including those of Stephen Kleene 
(1931) ,  john Barkley Rosser (1934) , Leon Henkin ( 1947), Martin Davis (1950), 
Hartley Rogers (1952), and Raymond Smullyan ( 1959), as well as Alan Turing 
(1938) .4 

It is often assumed that Alonzo Church founded the Association for Symbolic 
Logic because he was the first editor of The journal of Symbolic Logic. He did not 
actually found the organization, but he did guide the journal on a very illustrious 
course, highlighted by his valuable bibliographies on the literature of logic. 

The story of the lambda calculus begins with work that Church did while he 
was a National Research Fellow from 1927 to 1929. At the time, mathematicians 
wanted to get a handle on the amorphous concept of effective calculability. To 
understand the limits and capability of numeric calculations, it was necessary to 
define functions in a formal and systematic manner, that is, as symbols and strings 
with definite rules. What was the best way to do this? Could it then be shown that 
these functions fully encapsulated effective calculability? 

3Herbert B Enderton, "Alonzo Church Life and Work,'' introduction to Collected Works of Alonzo Church 

(MIT Press, forthcoming) Prepnnt available at http //www math ucla edul�hbe/church pdf 
"Herbert B. Endenon, "In Memonam. Alonzo Church, 1903- 1995," The Bulletin of Symbolic Logic, Vol 1 ,  
No 4 ( 1995), 486-488. 
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Church's first paper on the subject was received by The Annals of Mathematics 
on October S, 193 1 ,  and published the following April. 5 lt is here that Church 
introduced a lower-case lambda (.l.) to represent functions. 

Part of the impetus for a new notation was a certain ambiguity in the traditional 
representation of functions. Consider the following expression: 

x!- + Sx + 7 

By itself, that expression is syntactically correct, yet we're not sure what we're 
supposed to do with it. This is much clearer: 

f(x) = x2 + Sx + 7 

That's a traditional function notation where x is a bound (or independent) variable. 
We can change that bound variable to whatever we want, as long as there won't 
be a collision with anything else in the function: 

f(y) = l + Sy + 7 

We can now represent a value of the function with an expression such as f(4) . 
We know to substitute the 4 for the independent variable and calculate a value of 
the function: 

f(4) = (4)2 + s .  (4) + 7 = 43 

You may be amazed when you realize this, but there's no standard way to 
represent the function expression (that is, the expression y2 + Sy + 7) together 
with a specific value for y. Once we stick the 4 in for y, we lose the independent 
variable. lf you were put in charge of fixing this deficiency and developing a 
notation for representing a function with a value, perhaps you might come up 
with something like this: 

I/ + Sy + 7) (4) 

That's not too bad, but what if the expression had multiple independent 
variables? This is rather ambiguous: 

[y2 + Sy + l8x - 2xy + 7) (4) 

Even if you allowed this 

[y2 + Sy +  l8x - 2xy + 7) (4, S) 
you're assuming that the values for x and y are specified in a particular order. 

In Principia Mathematica, Alfred North Whitehead and Bertrand Russell adopted 
the notation of a circumflex for classes that satisfied certain functions: j. Church 

5 Alonzo Church, "A Set of Postulates for the Foundation of Logic," The Annals of Mathematics, 2nd Senes, 
Vol 33, No 2 (Apr 1932), 346-366 
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wanted to move the circumflex in front of the variable , like " y, but for typographical 
reasons the symbol was soon changed to a lambda6 : A.y. 

Church's notation evolved somewhat over the years. In the following discussion, 
I will attempt to be consistent with the notation eventually used by Turing in the 
appendix to his paper. A function of one variable is represented with this general 
syntax 

A.x[M) 

where M is an expression containing the bound variable x. For the earlier example, 
you can denote the function as: 

A.x[x2 + 5x + 7] 

A function with a value for the bound variable is written with the general syntax: 

{F}(A) 

F is a function, and if F has an independent variable , then the formula represents 
the function where A can replace that independent variable . If the function has an 
independent variable x, for example , the general notation is: 

{A.x[M) }(A) 

For the example function, this becomes: 

{A.x[x2 + 5x + 7) } (A) 

If the value of x is to be 4, then you can write it like so: 

{A.x[x2 + 5x + 7} } (4) 

There we have it: We've successfully notated a function together with a value for 
the independent variable. 

A function with two independent variables has the general form 

{ {F}(A)} (B) 

but for convenience and readability it can be shortened to. 

{F} (A,  B) 

If you put an actual function in for F, it looks like this: 

{A.xA.y [y2 + Sy + 1 8x - 2xy + 7} } (A, B) 

We now know that A is to be substituted for x and B is to be substituted for y 
because that's the order of the lambdas at the beginning. 

6] Barkley Rosser, "Highlights of the History of L!mbda-Calculus," Annals of the History of Computing. Vol 
6, No 4 (Oct 1984), 337-349 
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Additional notational shoncuts are allowed. The curly braces can be eliminated 
if there's no confusion, so that 

{F}(A , B) 

becomes 
F(A, B) 

which looks like regular function notation, except that the F expression actually 
contains some lambdas: 

J...xJ...y [M](A, B) 

Church also allowed the brackets to be replaced by a single dot following the 
string of lambdas: 

J...xJ...y.M(A, B) 

This is the form in which you'll see most of the lambda expressions in the pages 
that follow. 

After Church established the basic lambda notation, he introduced expressions 
for the common logical operators and rules of substitution to convert formulas 
into equivalent formulas. Church defined these rules of conversion very formally, 
but they can be boiled down to the following: 

I. You can change a particular bound variable (for example, x to y) if the new 
variable doesn't collide with anything else in the formula. 

I I .  In a formula {J...x.M}(N) , if N doesn't contain anything named x, you can 
substitute N for all occurrences of x in M, at which point the formula 
becomes just M with N substituted for the original x. 

I l l .  The reverse of II is allowed. 

A year and a half after that first paper on lambda functions, Church published a 
second. 7 Church revised his list of postulates and emphasized "the entirely formal 
character of the system which makes it possible to abstract from the meaning of 
the symbols and to regard the proving of theorems (of formal logic) as a game 
played with marks on paper according to a certain arbitrary set of rules."8 That 
concept is very much in the formalist tradition. 

Church also introduced the abbreviation conv meaning "by conversion" to 
indicate one formula convened into an equivalent formula by rule I, II, or Ill. For 
example, 

J...x[x2 + Sx + 7](A) conv A2 + SA +  7 

Church concluded this second paper with a short section on positive integers. 
He used lambda notation to define the symbol 1 ,  the successor, addition, and 

7 Alonzo Church, "A Set of Postulates for the Foundation of Logic (Second Paper)." The Annals of 

Mathematics. 2nd Senes, Vol 34, No. 4 (Oct. 1933), 839-864. 
8Ibid, 842 
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multiplication operations, and the five Peano Axioms, and declared, "Our program 
is to develop the theory of positive integers on the basis which we have just been 
describing, and then, by known methods or appropriate modifications of them, to 
proceed to a theory of rational numbers and a theory of real numbers."9 

The next steps in this process consisted of papers by Church's student Stephen 
Cole Kleene - whose last name is pronounced "klay-nee" - with the assistance 
of John Barkley Rosser ( 1907-1989) . In 1934 Kleene laid some foundational work 
in "Proof by Cases in Formal Logic,"10 and simplified the notation for multiple 
lambdas. Instead of 

J..xJ..yM 

you can use 
J..xyM 

Kleene's doctoral thesis was adapted and published in 1935 as the two-part "A 
Theory of Positive Integers in Formal Logic." 1 1 The prerequisites for this paper are 
Church's two papers and Kleene's earlier paper, but the second pan also alludes 
to a forthcoming paper by Church and Rosser. 12 

Although the lambda calculus as developed by Church, Kleene, and Rosser is 
quite extensive and involves logic as well as arithmetic, I want to focus on some 
elementary arithmetic just so you get a taste of how addition and multiplication 
can be implemented through pure symbol manipulation. 

When defining the natural numbers, it's always necessary to begin with either 
0 or l ;  Church and Kleene begin with 1 ,  and here's the symbol for it: 13  

1 � J..fx.j(x) 

The arrow means "stands for" or "is an abbreviation for." The formula itself may 
seem a little strange. Actually, it probably seems extremely strange, but it's merely 
a definition, so it needn't make sense right away. With the more verbose notation, 
it is: 

1 � { >..fx(f(x)) } 

Thus, 1 is actually a function with the two bound variables f and x. Just ofThand, 
those two variables seem like two more variables than are needed to define a 
simple number. 

9Ibid, 864. 
105. C Kleene, "Proof by Cases in Formal Logic ," The Annals of Mathematics, 2nd Senes, Vol. 35, No. 3 Ouly 
1 934), 529-544 
1 1  S C Kleene, "A Theory of Positive Integers in Formal Logic, Pan I ," Amencan]oumal of Mathematics, Vol. 
57, No 1 Oan 1935), 1 53-173 , Vol 57, No 2 (Apr 1 935), 2 19-244 
12 Alonzo Church and J B. Rosser, "Some Propenies of Conversion," Transactions of the Amencan 

Mathematical Society, Vol 39, No 3 (May 1936), 472-482 
lll 'll be showing the definitions as they appear in the first 10 pages of Kleene's "A Theory of Positive 
Integers in Formal Logic, Pan I " 
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This is the successor function: 

S -+  J..pfxj(p(j, x)) 

Again, I agree, very strange . Although we expect the successor function to have a 
bound variable, we hardly expect it to have three bound variables. 

The symbol 2 is fortunately defined as you might expect: 

2 -+  S( l )  

I f  we actually want to  apply the successor function to  1 ,  we must make sure that 
the bound variables are all unique, so let's use the following equivalent expression 
for 1 :  

1 -+ J..ab.a(b) 

When working with lambda expressions, functions and variables often shift 
roles. In the progressive derivation of converted formulas below, I use curly 
braces selectively to identify the function with a bound variable being replaced in 
that step. 

The function S( l )  can also be written as {S} ( l )  or like this: 

( J..pfxj(p(j, x)) } (J..ab.a(b)) 

The first bound variable in the successor function is p, so the expression for 1 
replaces p in that function, and the p after the J.. disappears: 

J..fxj(J..ab.a(b)(j, x)) 

This formula now contains another function with two arguments: 

J..fxj({ J..ab.a(b) }(f, x)) 

Substitute the f for a and x for b: 

J..fxj(f(x)) 

and we're done. 
Whereas the number 1 was originally defined as 

1 -+  J..fxj(x) 

the number 2 is: 
2 -+ S(l )  conv J..fxj(j(x)) 

Compare the convened expression for 2 with the expression for 1 and you'll see 
an additional f and pair of parentheses to the right of the dot. Now express 2 with 
different variables as J..ab.a(a(b)) and try determining the next successor {5}(2): 

{ J..pfxj(p(j, x)) }(J..ab.a(a(b))) 

Again, substitute 2 for p :  

J..fxj({ J..ab.a(a(b)) }(f, x)) 
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Substitute f for a and x for b: 
).fx.f(f(f(x))) 

That's the lambda expression for 3 .  I suspect you're beginning to see the pattern. 
What we want most from an abstract representation of the positive integers is 
the sense of some kind of succession. This notation shows that succession: Each 
successive integer has an additional nested appearance of the first bound variable . 

Kleene defined the addition operator like this: 

+ -+ ).pufx.p(f, u(f,x)) 

Skeptical? Let's add 2 and 3. First we need to make all the bound variables 
different. I'll use ).ab.a(a(b)) for 2 and ).cd.c(c(c(d))) for 3 so that {+}(2, 3) is: 

{ ).pufx.p(f, u(f, x)) }().ab.a(a(b)), ).cd.c(c(c(d)))) 

In the + function, substitute the formula for 2 for p and substitute the formula for 
3 for u :  

).fx.).ab.a(a(b))(f, { ).cd.c(c(c(d))) }(f, x)) 

The substituted 3 is now a function where f is substituted for c and x for d: 

).jx. { ).ab.a(a(b )) }(f ,j(f (f (x)))) 

Now that substituted 2 is a function where f is substituted for a and f(j(f(x))) 
for b: 

).jx.f(j(f(f(f(x))))) 

And we're done. The answer is the same as 5(5(5(5( 1 )))) or what we commonly 
ref er to as 5. 

Interestingly, the multiplication function is simpler than the addition function: 

x -+ ).pux.p(u(x)) 

Let's try it with 2 and 3. We can write { x }(2, 3) as: 

{ ).pux.p(u (x)) }().ab.a(a(b)) , ).cd.c(c(c(d)))) 

Substitute the formula for 2 for p and the formula for 3 for u :  

).x.).ab.a(a(b)) ( {  ).cd.c(c(c(d))) }(x)) 

Now 3 has become a function where x is substituted for c :  

).x. { ).ab.a(a(b)) }().d.x(x(x(d)))) 

Now 2 has become a function. Substitute the expression on the right for a: 

).x.).b,).d.x(x(x(d))) ({  ).d.x(x(x(d))) }(b)) 

In the function on the right, substitute b for d 

).x.).b. {  ).d.x(x(x(d))) } (x(x(x(b)))) 
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and finish with the final substitution for d: 

.l..xb.x(x(x(x(x(x(b)))))) 

That's 6, which is certainly the product of 2 and 3 .  
The functional definition of  numbers allows you to  do  some odd things, for 

example 
{2 }(3) 

or: 
{ .l..ab.a(a(b)) } (.l..cd.c(c(c(c(d))) )) 

If you carry out the laborious substitutions, you'll eventually end up with 

.l..bd.b(b(b(b(b(b(b(b(b(d))))))))) 

or 9, which not coincidentally is 3 to the second power. That's why exponentiation 
of m to the n power is defined simply as: 

.l..mn.nm 

Here is a system where multiplication is seemingly simpler than addition 
and exponentiation is the simplest of them all. As Church, Kleene, and Rosser 
experimented with the lambda calculus, they found that they could express 
anything they could think of in lambda notation - a characteristic later called 
.l..-definability. "Church had been speculating, and finally definitely proposed, that 
the .l..-definable functions are all the effectively calculable functions."14 

Kun Godel had come to the Institute for Advanced Study in 1933, and in the 
spring of 1934 he delivered some lectures at Princeton on his Incompleteness 
Theorem, and also on recursive functions, which are functions built up from basic 
primitive functions. 15  The impetus for Godel's interest in recursive functions was 
a letter he received in 193 1  from Jacques Herbrand ( 1908-193 1) , the brilliant 
young French mathematician who died while mountain climbing in the Alps. 

At the time, however, Godel believed that neither lambda functions nor 
recursive functions were sufficient to encompass all of what we think of informally 
as effective calculability. 

In 1936, Church published "An Unsolvable Problem of Elementary Number 
Theory"16 that actually contains the first appearance of the term ".l..-definable ." 

14Stephen C K\eene, "Ongins of Recursive Function Theory," Annals of the History of Computing, Vol. 3, 
No 1 (Jan 1981) .  59 
lSBased on notes taken by Kleene and Rosser, G6del's lectures were circulated but not formally published 
until 1965 when they were included in Manin DaVIs, ed., The Undecidable (Raven Press, 1965), 41-71 
They were subsequently published in Kun G6del, Selected Works: Volume I, Publications 1 929-1 936 (Oxford 
University Press, 1986) , 346-371 .  
16 Alonzo Church, "An Unsolvable Problem of Elementary Number Theory," Amencan journal of 

Mathematics, Vol 58, No. 2 (Apr. 1936), 345-363. 



290 The Annotated Turing 

(Previously Kleene had just used the terms "definable" or "formally definable" for 
expressing logical and arithmetic operations in terms of the lambda notation.) 
Church refers to his earlier papers and Kleene's two papers, as well as to two 
forthcoming papers by Kleene that explore the relationship between recursive 
functions and A-definable functions. 1 7 Using Godel numbering, Church was able 
to construct an unsolvable problem just as Godel constructed an undecidable 
proposition. 

With this foundation, Church published the two-page "A Note on the Entschei­
dungsproblem" in the very first issue of The journal of Symbolic Logic (which he also 
edited) , with the conclusion, "The general case of the Entscheidungsproblem of the 
engere Functionenkalkul is unsolvable."18 The paper was received by the journal on 
April 15 ,  1936, six weeks before Turing's submission to the London Mathematical 
Society on May 28, 1936. 

Turing probably spent a good part of the summer of 1936 reading the various 
papers by Alonzo Church and Stephen Kleene that I've cited here, learning the 
lambda calculus and examining how it related to his computing machines. Turing's 
three-page appendix is indicated as being received by the London Mathematical 
Society on August 28; at the end Turing added "The Graduate College, Princeton 
University, New Jersey, USA" in anticipation of his future home. He did not leave 
England for the United States until September 23, arriving in New York on the 
29th _ 19 

Added 28 August, 1936. 

APPENDIX. 

Computability and effective calculability 

The theorem that all effectively calculable (}..-definable) sequences are 
computable and its converse are proved below in outline. 

The "in outline" qualification means that there will be some gaps in the proof. 

It is assumed 
that the terms "well-formed formula" (W.F.F. ) and "conversion" as used 

17 S. C. Kleene, "General Recursive Functions of Natural Numbers," Mathematische Annalen, Vol. 1 1 2 ,  No. 1 
(Dec 1936), 727-742 , repnnted in Martin DaVIS, ed , The Undecidable (Raven Press, 1965), 237-252. S. C. 
Kleene, "J..-Definability and Recursiveness," Duhe Mathematical journal, Volume 2, Number 2 (1 936), 
340-353 
18 Alonzo Church, "A Note on the Entscheidungsproblem,'' The journal of Symbolic Logic, Vol 1 ,  No 1 (Mar 
1936), 40-41 See also Alonzo Church, "Correction to a Note on the Entscheidungsproblem,'' The journal 

of Symbolic Logic, Vol 1 ,  No 3 (Sep 1936), 101- 102 
19 Andrew Hodges, Alan Tunng The Enigma (Simon & Schuster, 1983), 1 1 6  
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by Church and Kleene are understood. In the second of these proofs the 
existence of several formulae is assumed without proof; these formulae 
may be constructed straightforwardly with the help of, e.g. , the 
results of Kleene in "A theory of positive integers in formal logic", 
American Journal of Math. , 57 (1935), 153-173, 219-244. 

By "second of these proofs," Turing means the converse: that every computable 
sequence is also A.-definable. 

The W.F.F. representing an integer n will be denoted by Nn . 

Using Kleene's definitions of 1 and subsequent numbers - but with bound vari­
ables consistent with what Turing soon shows - N1 is A.xy.x(y), Ni is A.xy.x(x(y)), 
and Nn is A.xy.x(x(x(x • . •  (y) . . .  ))). 

We shall 
say that a sequence y whose n-th figure is f/Jy (n) is A-definable or effectively 
calculable if 1 + f/Jy(u) is a A-definable function of n, 

The argument of the second occurrence of t/Jy should (like the first occurrence) 
be n rather than u, so the expression is l +t/Jy (n) . The nth digit of a computable 
sequence y is either 0 or 1 ,  but the lambda calculus as defined by Church and 
Kleene involves only positive integers, not including zero. The function t/Jy (n) can't 
be A.-definable because zero is not A.-definable. For this reason, 1 is added so the 
numbers are 1 and 2. 

i.e. if there is a W.F.F. 
My such that, for all integers n, 

{My } (Nn ) conv N�<n>+l • 
i.e. {My }(Nn)  is convertible into .lxy.x(x(y)) or into .lxy.x(y) according as 
the n-th figure of A is 1 or 0. 

The A. in the last line is wrong; it should be the "nth figure of y ." The function 
My for the value Nn (indicating the digit of the sequence) is convertible into either 
A.xy.x(x(y)), which is 2, or A.xy.x(y), which is 1 ,  corresponding to the digits 1 
and O. 

For example, if the fifth digit of y is 1 ,  then t/Jyc5> is 1 , and 

{My }(Ns) conv Nlf>y(S)+l 

which means 
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To show that every A-definable sequence y is computable, we have to 
show how to construct a machine to compute y. For use with machines it 
is convenient to make a trivial modification in the calculus of conversion. 
This alteration consists in using x, x', x",  . . . as variables instead of 
a ,  b, c, . . . . 

Turing hasn't used any variables named a, b, or c here, but he has used x and y. 
He wants all variables in a standard form because some comparing and matching 
will be going on. This is similar to the requirement in Section 8 (page 22 1 of this 
book) that first-order predicate logic be "modified so as to be systematic" before it 
can be processed by a machine. 

We now construct a machine 'ii. which, when supplied with the 
formula My , writes down the sequence y. The construction of � is some­
what similar to that of the machine 'J( which proves all provable formulae 
of the functional calculus. We first construct a choice machine fi1, which, 
if supplied with a W.F.F., M say, and suitably manipulated, obtains any 
formula into which M is convertible. 'ii.1 can then be modified so as to 
yield an automatic machine � which obtains successively all the formulae 

(264] 
into which M is convertible (cf. foot-note p. 252). 

Of the five footnotes on page 252 of his paper, Turing is referring to the second 
(page 22 1 of this book) where he discusses the machine that proves all provable 
formulae of first-order logic. This machine is similar and probably quite a bit 
simpler considering the very systematic way in which lambda expressions are 
converted. 

The machine 'if.. 
includes � as a part. The motion of the machine ',i when supplied 
with the formula My is divided into sections of which the n-th is 
devoted to finding the n-th figure of y .  The first stage in this n-th section 
is the formation of {My }(Nn). This formula is then supplied to the 
machine �. which converts it successively into various other formulae. 
Each formula into which it is convertible eventually appears, and each, as 
it is found, is compared with 

and with 

1.x[ >.x'[!x} ({x}(x')) ]J . i .e . N2, 

>.x[>.x' [ lx) (x')] ] , i .e . Ni . 

These are just verbose expressions for the numbers 2 and 1 .  ln implementing a 
machine to convert ).. expressions, you want absolute consistency in the notation, 
and that's easiest with no syntactical shortcuts. 
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If it is identical with the first of these, then the machine prints the figure 1 
and the n-th section is finished. If it is identical with the second, then 0 
is printed and the section is finished. If it is different from both, then the 
work of �2 is resumed. By hypothesis, {My )(Nn ) is convertible into one of 
the formulae N2 or N1 ; consequently the n-th section will eventually be 
finished, i.e. the n-th figure of y will eventually be written down. 

Turing skips a line before commencing the more difficult converse of the proof: 
How to develop a lambda expression that encapsulates the workings of a particular 
machine. 

To prove that every computable sequence y is ).-definable, we must 
show how to find a formula My such that, for all integers n, 

{My ) (Nn ) conv N1Hr<n> -

That's just the same formula as before but with a rearranged subscript on the 
final N. Now the job involves not describing a machine to manipulate lambda 
functions, but defining a lambda function that imitates a machine. 

Let uH be a machine which computes y and let us take some description 
of the complete configurations of vH by means of numbers, e.g. we may take 
the D.N of the complete configuration as described in § 6. 

In the discussion that follows, I'm going to be referring to "configuration 
numbers," which are simply consecutive integers 0, 1 ,  2, 3 ,  and so forth that 
increase as the machine operates. For any particular machine and for each 
configuration number there is an associated Description Number of the complete 
configuration. These are generally very large numbers that include codes to describe 
the symbols already printed on the tape, as well as the next m-configuration. 

Let �(n) be 
the D.N of the n-th complete configuration of ..flt 

Turing's n is what I'm calling the configuration number, while �(n) is a 
Description Number. 

The table for the 
machine v+r gives us a relation between �(n + 1) and �(n) of the form 

�(n + 1) = Pr Wn)) , 

where Pr is a function of very restricted, although not usually very simple, 
form : it is determined by the table for v\1. 
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This Py function converts from one Description Number to the next. The 
input is generally a long number, and the output is another long number. This 
function must basically find within this long sequence a pattern of numbers 
corresponding to an m-configuration and scanned symbol, and construct the next 
complete configuration based on the machine table , possibly including a new 
printed symbol and changing the m-configuration and next scanned symbol. 

Turing's description of this function as "not usually very simple" is right on 
target. The function essentially needs to break apart the Description Number into 
individual digits to examine them. Because the Description Number is a decimal 
number, the function can extract a piece of any length by first dividing the big 
number by a power of 10  and ignoring the fractional part, and then dividing by 
another power of 10 and keeping the remainder. Although the Py function is 
unquestionably complex, it's certainly conceivable . 

Pr is }...-definable (I omit the proof 
of this), i.e. there is a W.F.F. Ay such that, for all integers n, 

{Ay } (N�cn i >  conv N�!n+l > -

Ay is  essentially the same function as Py except expressed in the language of 
the lambda calculus. It converts Description Numbers to Description Numbers. 

Let U stand for 

where r = �(0); 

The uppercase U at the beginning of the sentence should have a subscripted 
y because it is based on a particular computable sequence. Nr is the Description 
Number of the complete configuration when the machine begins - the number 
3 13 .  The number corresponds to the Standard Description DAD, which means 
m-configuration q1 (DA) and scanning a blank square (D) . The variable u is the 
configuration number, that is, 0, 1 ,  2, and so forth as the machine progresses. 
The enclosure of u in curly brackets to indicate a function may not seem to make 
sense, but you'll see shortly that it works just fine . 

then, for all integers n, 

{ Uy }(Nn )  conv N�(nl · 

The argument to the Uy function is the configuration number (0, 1 ,  2, and so 
forth) . Turing asserts that this function is convertible into the Description Number 
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of that configuration. Let's try it out for configuration 4, which involves converting 
the expression {Uy }(N4) or: 

{ Au[ { {u}(Ay)}(N�col)I }(A.xy.x(x(x(x(y))))) 

I've used N�(O) rather than Nr in the Uy function just so we don't forget that 
the subscript refers to a Description Number. Replace u in the function with the 
expression for 4: 

{ { A.xy.x(x(x(x(y))))} (Ay )} (N�(o)) 

Now replace x with Ay : 

Finally, replace y with N� (o) :  

Ay(Ay(Ay (Ay(N�(O))))) 

The first application of Ay on N�co) results in Nw) and the next application results 
in N�m and so forth, so the final result is N�(4) , as Turing claimed. Now you 
see why it made sense for u to be a function in the Uy definition: lt essentially 
compounds u nested occurrences of the Ay function. 

(265] 
It may be proved that there is a formula V such that 

conv N1 if, in going from the n-th to the (n + 1 )-th 
complete configuration, the figure 0 is 
printed. 

conv N2 if the figure 1 is printed. 

conv N 3 otherwise. 

The function V basically analyzes the Description Numbers of two consecutive 
complete configurations and determines whether a 0 or 1 was printed, or neither. 
It's another complex but conceivable function. 

Let W y stand for 

1-u[ l {VJ (!Ar l ( {Uy }(u))) } ( IUy j(u)) ] ,  
so that, fo r  each integer n ,  

{ {V) (N�(n+ u > I  (N� (n l ) conv {Wy }  <Nn), 



296 The Annotated Turing 

The formula on the left side of this statement is the one that is convertible to 
either N1 , Ni , or N3 . It's easiest to demonstrate this conversion by starting with 
the converted result or: 

Replace Wy with the expression that Turing just showed us: 

Replace u with Nn : 

{ {V} ( {Ay } ( { Uy }  (Nn) )) }  ( {Uy } (Nn) ) 

The expression { Uy }(Nn) is convertible to N�(n) , so: 

The expression {Ay }(N� (nJ ) is convertible to N�(n+ l ) . and this is what we were 
after: 

{ { V}(N�(n+ o) }(N�cnJ) 

With this little proof, we now know that {Wy }(Nn) is convertible to N1 , Ni , or 
N3,  depending on whether the progress from the n-th to the (n+ l)-th complete 
configuration results in a 0 or 1 being printed, or otherwise. 

and let Q be a formula such that 

j {Q } < Wy l j  !Ns l conv N, 1 z i .  

where r(s)  is the s-th intPger q for w h ich I Wy }<N,1 l i s  convertible into either 

N1 or N2 . 

In the formula, the subscript on the final N is obviously r(s) and not r(z) .  Only 
some of the complete configurations involve a 0 or 1 being printed. The r(s) 
function reveals which these are. For example , if a 0 or 1 was printed in complete 
configurations 1 ,  4, 6, 7, and so forth, then r( l) returns 1 ,  r(2) returns 4, r(3) 
returns 6, r(4) returns 7, and so forth. 

Then,  if My :;tands for 

)..w [ I Wv l  ( j  {Q } < Wy l j (w l ) ] , 

it w i l l  have the requi red propertyi" . 

' In a com pk•tc proof of the i. -delinabihty of com putable sequcnct'l' it would be best to 

mod ify this  rm·thod by n•plm· i ng the 1 1 1 1 11n•1  ind d!':<l"l"iption of the compll'tP configurations 



The Lambda Calculus 297 

by a description which can be handled more easily with our apparatus. Let us choose 
certain integers to represent the symbols and the m-configurations of the machine. 
Suppose that in a certain complete configuration the numbers representing the successive 
symbols on the tape ares1s2 . . Sn , that them-th symbol is scanned, and that them-configur­
ation has the number t; then we may represent this complete configuration by the formula 

[ IN, 1 ,N,2 , . . .  ,N•m - l  ]' [N1 , Nsm J ,  {N•m+ I ' . . .  ,N,n l] , 
where 

[a, b] stands for J.u [ { f u l(a)} !bl] , 

[a, b, c] stands for J.u [ { { tu )(a ) } (b )  } <c>] . 

etc. 

In the second half of Turing's demonstration he set out for himself the job of 
finding a formula My such that for all n, 

{My } (Nn) conv NI+�y(n) 

The formula tells us whether the n-th digit of the sequence is a 0 or 1 .  Let's begin 
with: 

Substitute the formula that Turing just derived for My : 

{).w[ {Wy }({  {Q} (Wy))} (w)) ] } (Nn) 

Replace w with Nn : 
{Wy }({ {Q}(Wy))}(Nn)) 

The expression within the parentheses was shown to be convertible into Nr(n) , so: 

{Wy }(Nr(n)) 

That formula was shown to be convenible into N1 , Ni , or N3 depending on 
whether 0 or 1 is printed in complete configuration r(n) or something else. 
Nevertheless, r(n) is defined as returning only those complete configurations that 
result in a 0 or 1 being printed. 

The footnote shows a complete configuration separated into the parts of the 
tape before the next scanned symbol and after the next scanned symbol. The 
lambda expressions that Turing suggests represent these parts of the tape can be 
quite long, and grow in size with each complete configuration. 

Here the paper ends. 

The Graduate College, 
Princeton University, 

New Jersey, U.S.A. 
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Turing's more rigorous proof did not pursue the approach he outlined here 
for the converse. The paper "Computability and >..-Definability" was received by 
The journal of Symbolic Logic on September 1 1 ,  1937, less than a year after he had 
arrived in Princeton.20 The paper begins: 

Several definitions have been given to express an exact meaning 
corresponding to the intuitive idea of 'effective calculability' as 
applied for instance to functions of positive integers. The pur­
pose of the present paper is to show that the computable func­
tions introduced by the author are identical with the >..-definable 
functions of Church and the general recursive functions due to 
Herbrand and Godel and developed by Kleene . It is shown [in 
this paper) that every >..-definable function is computable and 
that every computable function is general recursive. 

Turing first shows that >..-definable functions are computable by showing a Tur­
ing Machine - probably more complex than Turing's universal machine - that 
can parse and convert >.. functions. 

The second half of the proof shows that computable functions are recursive. 
Turing didn't need to show that computable functions were >..-definable because 
Stephen Kleene had already shown (in "A.-Definability and Recursiveness") that 
recursive functions are >..-definable. All three definitions of effective calculability 
were then linked in equivalence. 

In later years, Turing would often allude to those amazing imaginary machines 
he conceived while lying in Grantchester meadows in the summer of 1935, but he 
would never again show actual tables of a machine in any published article. When 
he wrote his doctoral thesis2 1 under Church, it was all recursive functions and >.. 
functions. 

20Atan Tunng, "Computability and A-Definability," The journal of Symbolic l.ogic, Vol 2, No. 4 (Dec. 1937), 
pp. 1 53-163 
2 1  Alan Tunng, "Systems of Logic Based on Ordinals," Proceedings of the London Mathematical Society, 2nd 
Series, Vol. 45, No. 1 (1939), 161-228. 



C on ce iv i n g  
the C ontinuum 

D eal life is often much messier and more complex than the histories that 
Aattempt to capture it in a series of consecutive sentences and paragraphs. 
Historians must smooth out the rough edges, omit peripheral personages, and 
avoid distracting digressions. This simplification sometimes distorts as much as 
it attempts to illuminate . The resultant series of events might seem unnaturally 
inevitable, as if nothing could have happened to make it go differently, and even 
imply that these events led to the best of all possible outcomes. Sometimes the 
result is what British historian Herbert Butterfield ( 1900- 1979) called "a Whig 
interpretation of history" after those nineteenth-century writers who portrayed 
the history of the British Empire as leading progressively and inexorably toward 
modem parliamentary democracy. 

Histories of science, mathematics, and technology are particularly susceptible 
to Whig interpretations. We are the beneficiaries of the "correct" scientific theories 
and the "proper" technologies, so we can identify a chain back through history, 
associating effects to causes that have led to this inevitable outcome. Floundering 
missteps are de-emphasized, and if historical disagreements or feuds are discussed, 
they always result in the proper vanquishing of anyone trying to impede the 
progress that led to the glorious moment we're all here to celebrate. 

In relating the history of the Turing Machine, for example, it is tempting to mold 
the past into a coherent series of progressive intellectual achievements - from 
Cantor and Frege . through Russell and Hilbert, to Godel and Church and 
Turing - culminating in a single mathematical paper published in 1936. To keep 
this book reasonably short and focused, this is precisely what I've done. 

In the process, I've ignored some dissenting views. As in any field of intellectual 
endeavor, controversies and disagreements have often peppered the history of 
mathematics. 1 In the late nineteenth century and throughout the twentieth century, 
these controversies frequently involved the philosophy of mathematics, and very 
often, the nature of infinity. 

1 See Hal Hellman, Great Feuds in Mathematics Ten of the Uveliest Disputes Ever (Wiley, 2006), for 
emenaining blow-by-blow recaps 
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The philosophy of mathetnatics is a broad and complex field , but perhaps the 
most fundamental question is both simple and unnerving: 

To what extent do mathematical entities exist independently of the human beings who 
study them? 

Do mathematicians simply discover mathematical patterns that already exist 
within the intrinsic fabric of the universe in much the same way that astronomers 
discover stars and other celestial bodies? Or do mathematicians invent mathematics 
like an engineer designs a new vacuum cleaner or a composer writes an opera? 
As that great popularizer of mathematics history Morris Kline ( 1908- 1992) much 
more poetically put it, 

ls then mathematics a collection of diamonds hidden in the 
depths of the universe and gradually unearthed, or is it a col­
lection of synthetic stones manufactured by man, yet so brilliant 
nevertheless that they bedazzle those mathematicians who are 
already partially blinded by pride in their own creations?2 

On one side of this debate are the realists or Platonists , who believe, in Roger 
Penrose's words, in "the objectivity of mathematical truth. Platonic existence, as I 
see it, refers to the existence of an objective external standard that is not dependent 
upon our individual opinions nor upon our particular culture."3 

At the other extreme are the constructivists, who see mathematics as a strictly 
human invention. To the constructivists , the seeming permanence and transcen­
dence of mathematics is merely an illusion enhanced by the human skill of 
pattern recognition - a skill engineered in our brains through millions of years 
of evolution. 

Between these two extremes lie plenty of gradations, each with its own 
descriptive name and advocates, some of whom probably already resent my crude 
categorization of a gradated range between two extremes. 

Most working mathematicians would probably categorize themselves as residing 
in the Platonic region of this landscape. The Platonic concept of mathematics 
dominates our culture and appeals to our instincts. When we shout, "Eureka!" we 
are saying "I have found it" and not "I have made it." Over 100 years after David 
Hilbert addressed the Second International Congress of Mathematicians, we still 
thrill at his words: 

However unapproachable these problems may seem to us and 
however helpless we stand before them, we have, nevertheless, 
the firm conviction that their solution must follow by a finite 

2Morns Kline , Mathematics· The Loss of Certainty (Oxford University Press, 1980), 323 
3Roger Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe (Alfred A Knopf, 2005), 1 3  
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number of purely logical processes . . .  This conviction of the 
solvability of every mathematical problem is a powerful incentive 
to the worker. We hear within us the perpetual call: There is the 
problem. Seek its solution. You can find it by pure reason, for in 
mathematics there is no ignorabimus.4 

Now that's a Platonist speaking: The solutions are out there. We need only to 
find them. Even after Hilbert's hopes of proofs of completeness, consistency, and 
decision procedures were dashed, the Platonist instinct still survived. Prominent 
among the Platonists, in fact, was Kurt Godel. 

Differences in mathematical philosophy are not just a matter of ideology, but 
also focus on propriety. Certain basic assumptions underlie all mathematical 
proofs. Yet, some of these assumptions were developed in the world of finite 
objects and become problematic when applied to infinite collections. 

'Thinking about infinity is not straightforward," Aristotle (384-322 BCE) 
observed, and we can imagine his students nodding in solemn agreement. "There 
are a lot of intractable consequences whether you assume that there is or is not 
such a thing as infinity."5 

To navigate this treacherous terrain in Book Ill of his Physics, Aristotle helpfully 
differentiated between an actual or completed infinity, and a potential infinity. A 
potential infinity is the infinity of the natural numbers: After each one comes 
another. Subdividing something into smaller and smaller pieces is also a potential 
infinity. These are processes that occur over time and which never end. "Generally 
speaking, the infinite exists by one thing being taken after another. What is taken 
is always finite on its own, but always succeeded by another pan which is different 
from it."6 

Actual infinity, however, does not exist in Aristotle's cosmology, and he makes 
several arguments why it can't exist. He very wisely notes, "Infinity turns out to 
be the opposite of what people say it is. 1t is not 'that which has nothing beyond 
itself that is infinite, but 'that which always has something beyond itself' . "7 

Aristotle does not even allow infinity to exist as a mental concept: 

[l ) t  is absurd to rely on what can be thought by the human mind, 
since then it is only in the mind, not in the real world, that any 
excess and defect exist. It is possible to think of any one of us as 

4As quoted in Ben H Yandell. The Honors Class· Hilbert"s Problems and Their Solvers (A. K. Peters. 
2002). 395 
5Aristotle. Physics, translated by Robin Waterfield (Oxford World"s Classics. 1996), Book Ill, Chapter 4. 
page 65 
6Ibid, Book Ill, Chapter 6, page 72 
7 lbid, Book Ill, Chapter 6, page 73. 



302 The Annotated Turing 

being many times bigger than he is and to make him infinitely 
large, but a person does not become superhumanly large just 
because someone thinks he is; he has to be so in fact, and then it 
is merely coincidental that someone is thinking it. 8 

Aristotle was no Platonist. 
Not everyone accepted Aristotle's rejection of infinity. Philosopher Stephan 

Komer ( 19 13-2000) observed that Aristotle's conceptions 

were never unanimously accepted. Philosophers of the Platonic 
tradition, including Augustinian theologians, always regarded 
the notion of infinite given totalities, whether they are continua 
or not, as legitimate. They were not troubled by the inapplica­
bility of such a notion to sense experience, since for them math­
ematics was not an abstraction from - much less a description 
of - sense experience, but a description of reality; and reality 
was not apprehended by the senses, but by reason.9 

Mathematicians have often been troubled by completed infinities and try to 
work with infinite processes in a safe way. It is precisely the recognition of the 
difference between completed infinity and potential infinity that persuades us to 
write the mathematical formula 

rather than: 

lim (1 + �)" 
n-HXl n 

The first formula expresses a limit. Where does that expression go when n gets 
very, very, very large? It heads toward the number we know as the Euler constant 
or e, approximately equal to 2 .71828 . . .  

The second formula uses the symbol oo as a completed infinity, and as a result, 
is pure gibberish. 

The rigorous definition of a mathematical limit was developed by German 
mathematician Karl Weierstrass ( 1815-1897), although earlier mathematicians 
had come close. The concept was essential for putting the differential and integral 
calculus on a sound mathematical basis. Prior to the concept of the limit, calculus 
was based on the "infinitesimal," a number not quite zero (because it could still 

8Ibid, Book III ,  Chapter 8, page 76-7. 
9Stephan Komer, "Continuity," in Paul Edwards, ed , The Encyclopedia of Philosophy (Macmillan, 1967), 
Vol 2, 205 
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be manipulated like a finite quantity) but close enough to zero that it could 
eventually be ignored. Calculus still has remnants of these infinitesimals in the 
notation dx. 

Another nineteenth-century German mathematician, Leopold Kronecker 
(1823-1891) ,  had very strong views about the use of completed infinities in 
mathematics. Kronecker is best known for the aphorism "God created the integers; 
everything else is the work of man. "10 The mention of a supreme being - or more 
precisely, the identification of mathematical entities that exist independently of 
human beings - might seem to make Kronecker a Platonist, but it's the "every­
thing else" that reveals him to be a strict constructivist. Kronecker wanted to base 
all of mathematics on finite constructions involving finite integers. He had issues 
even with the concept of limits and definitions of irrational numbers. 

One of Kronecker's former students began pursuing mathematical research that 
was completely outrageous - not only defining collections of infinite objects, but 
promiscuously counting these infinite objects, and then performing arithmetical 
operations on these values. Kronecker objected to these techniques and at times 
even inhibited their publication, with the result that today Kronecker is best 
known for the evil and maniacal persecution of this former student, Georg Cantor. 

A Kronecker-centric view of these events reveals this persecution to reside 
more in Cantor's paranoid worldview than in Kronecker's actual intentions. I I Still, 
history is written by the victors. Cantor's set theory and his distinction between 
enumerable and non-enumerable collections proved to be extremely useful, so 
Kronecker has largely ended up with the discarded theorems of mathematics 
history. 

Cantor's concept of transfinite numbers is extremely Platonic - even a bit, 
well, trippy. Here's Cantor writing in 1883: 

We can speak of the actuality or existence of the integers, finite 
as well as infinite, in two senses . . .  First, we may regard the inte­
gers as actual in so far as, on the basis of definitions, they occupy 
an entirely determinate place in our understanding . . .  But then, 
reality can also be ascribed to numbers to the extent that they 
must be taken as an expression or copy of the events and rela­
tionships in the external world which confronts the intellect 
. . .  Because of the thoroughly realistic but, at the same time, no 

10This quotation is not found in Kronecker's works It first appeared in pnnt in 1893 as "Die ganzen 
Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk " See William Ewald, ed . ,  From Kant to 

Hilbert. A Source Booh in the Foundations of Mathematics (Oxford University Press, 1996), Vol 11, 942 . In his 
1922 address "The New Grounding of Mathematics First Repon," Hilben quoted it with integer in the 
singular: "Die ganze Zahl schuf der liebe Gott, a!Ies andere ist Menschenwerk " See From Kant to Hilbert, 

Vol II, 1 1 20 
1 1Harold Edwards, "Kronecker's Place in History," in William Aspray and Philip Kitcher. eds , History and 

Philosophy of Modem Mathematics (University of Minnesota Press, 1988), 139- 144 
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less idealistic foundation of my point of view, I have no doubt 
that these two sorts of reality always occur together in the sense 
that a concept designated in the first respect as existent always 
also possesses in certain, even infinitely many, ways a transient 
reality . . . .  This linking of both realities has its true foundation in 
the unity of the all to which we ourselves belong. 1 2 

In previous chapters, I've discussed the logicism of Bertrand Russell (derived 
from Frege and Peano) and the formalism of David Hilbert. In the early twentieth 
century, another movement and philosophy stood in opposition to these endeavors. 
This was called intuitionism, and it came from the mind of Dutch mathematician 
Luitzen Egbertus jan Brouwer (1881-1966) . 

Gloomy and pessimistic with a mystical bent, Brouwer looms over the early 
twentieth century like a stem schoolmaster appalled by the chaos he sees around 
him. Brouwer scholar Walter P. van Stigt describes Brouwer's outlook on life as "a 
blend of romantic pessimism and radical individualism." In an early treatise entitled 
life, Art and Mysticism (1905) , Brouwer "rails against industrial pollution and man's 
domination of nature through his intellect and established social structures, and 
promotes a return to 'Nature' and to mystic and solitary contemplation."13 

Brouwer attended and then taught at the University of Amsterdam. Although his 
dissertation was on the foundations of mathematics (presaging his later interests) , 
much of his early work was in the field of topology. 

Brouwer coined the term "intuitionism" to describe his idea of how mathematical 
entities are formulated by the mind. They are objects of thought, and their symbolic 
representation on paper is a necessary evil to convey these thoughts from one 
person to another. In contrast, formalism focuses more on a manipulation of 
symbols that takes place entirely on paper - little more than a game with 
meaningless rules. 

As the programs of Russell and Hilbert began taking shape, it became clear that 
Cantor's work had become widely accepted. In Brouwer's view (as well as that of 
Henri Poincare), the extensive use of Cantor's set theory and transfinite numbers 
could only lead to mathematical catastrophes. 

Brouwer wasn't entirely opposed to conceptions of infinity. He accepted the idea 
of infinite sets, but only if these sets were constructable and enumerable - that is, 
could be placed in a one-to-one correspondence with the integers. As early as 1913 ,  
Brouwer was emphasizing that "the intuitionist recognizes only the existence of 
denumerable sets . . .  aleph-null is the only infinite power of which the intuitionists 

12Georg Cantor, "Foundations of a General Theory of Manifolds. A Mathematico-Philosophical 
Investigation into the Theory of the Infinite," in From Kant to Hilbert, Vol I I ,  pgs. 895-6 
13Walter P. van Stigt, "Brower's Intuitionist Program," in Paolo Mancosu, ed . From Brouwer to Hilbert The 

Debate on the Foundations of Mathematics in the 1 920s (Oxford University Press, 1998) . 5 
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recognize the existence ."14 A set of real numbers must be prohibited precisely 
because the members are not enumerable. The only way you can define a set of 
the real numbers is to assert that the set contains all real numbers. You can't show 
the first few with an ellipsis, or define some kind of rule for inclusion. There is no 
rule; there is no sequence; you can't construct the set; hence there can be no such 
set. Much of Cantor's theory of transfinite numbers is therefore simply "without 
meaning to the intuitionist. " 1 5 

Between 19 18  and 1928, Brouwer published papers on intuitionist critiques of 
the formalist program, as well as papers attempting to provide a new foundation for 
mathematics free of problems and paradoxes. In particular, Brouwer found fault 
with the law of the excluded middle, which is the principle that either something 
has a certain property or it does not. While such a law certainly applies to finite 
collections, Brouwer felt it had been foolishly applied to infinite collections. 

In one famous example, 16 Brouwer took on the common belief that the limit of 
a convergent sequence is always less than zero, equal to zero, or greater than zero. 
(This is related to the law of the excluded middle in the sense that either the limit 
is less than zero or it's not less than zero.)  

Here's a definition of a sequence: 

Cn = (-t)" 
Cn = (-t) h 

for n < k 

for n � k 

Th fi !' 1 · h I 1 I l 1 h' 
. 

e rst 1ew va ues m t e sequence are - 2 . 4 ,  - 8 ,  16 , - 32 , so t lS sequence is 
clearly converging to zero when n is less than k. Moreover, when n is greater than 
k, then all the remaining Cn values are just (- t )h , SO that's the value to which the 
sequence converges. 

Here's the catch: The value k is the position within the digits of 7t where the 
consecutive digits 0123456789 first appear. 

Does Cn converge to a value less than zero, or to a value greater than zero, or to 
zero itself? It depends on whether k is odd, even, or nothing at all. The Platonist 
would claim that the limit of the en sequence is an actual number, even if we don't 
know what it is. The constructivist would counter by asserting that because this 
limit can't be constructed, it does not exist. It is undefined. It falls through the 
cracks of the law of the excluded middle. 

1 4L E J Brouwer, "lntuitionism and Formalism," Bulletin of the Amencan Mathematical Society, Vol 20 
( 19 13) ,  8 1 -96 
1 5 1bid 
16L E J Brouwer, "On the Significance of the Principle of Excluded Middle in Mathematics, Especially in 
Funcuon Theory" ( 1923), in Jean van Heijenoort, ed , From Frege 10 G6del· A Source Booh in Mathematical 

Logic, 1879- 1 93 1  (Harvard University Press, 1967), 337 
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Brouwer was once lecturing about this indeterminate sequence and someone 
pointed out that although we may not know how Cn converges, God certainly 
knows. "I do not have a pipeline to God," Brouwer responded. 17  

We know now that Brouwer's sequence actually does converge, although this 
fact became known only some three decades after Brouwer's death. 18 Consecutive 
digits of 0 123456789 begin at the l 7,387,594,8801h digit of n, so Cn converges 
to 2-11.351.594.880• Now that Brouwer's original sequence is ruined, it's easy to 
come up with another criterion for h.  Let's redefine h as the position within the 
digits of 7t where a million consecutive 7s appear. Because the digits of 7t appear 
to be equally distributed in a random manner, these million consecutive 7s are 
likely to be out there somewhere. (Or maybe not. Although many mathematicians 
might believe that any possible sequence of digits occurs in n, this has never been 
proved. Some possible sequences in 7t simply can not be found without resources 
greater than the universe .) 

As a consequence of rejecting the law of the excluded middle for infinite sets, 
Brouwer also denied the legitimacy of certain reductio ad absurdum proofs, and 
even Hilbert's contention that every mathematical problem is solvable ! 

Logic is affected as well. The law of the excluded middle is expressed in 
propositional logic as: 

-X v X  

In the classical logic of Whitehead and Russell and Hilbert, that formula is 
equivalent to 

x - x  
and they're both equivalent to: 

-(X &: -X) 
The implication X - X is a symbolic representation of the ancient philosophical 
principle of identity ("something is what it is"), while the last of the three formulas 
symbolizes the principle of contradiction: Something can't both have a particular 
property and not have that property. In Aristotelian logic, these are all separate 
and distinct concepts, but with the "blunt instrument" of propositional logic they 
collapse into synonymous formulas. 19 

To David Hilbert, the restrictions that Brouwer wished to impose on mathe­
matical thought were just too constricting. Hilbert was extremely reluctant to give 
up his tools, even if he acknowledged that some care need be taken. "We shall 
carefully investigate those ways of forming notions and those modes of inference 
that are fruitful; we shall nurse them, support them, and make them usable, 

17Constance Reid, Hilbert (Spnnger. 1970 ,  1996). 184. 
18jonathan Boiwein, The Brouwer-Heyting Sequence, http //www cecm sfu.ca/-jboiwein/brouwer.html. 
19Floy E Andrews, "The Pnnciple of Excluded Middle Then and Now. Anstotle and Pnncipia 

Mathematica," Animus. Vol 1 (1996). http //www2 swgc mun.ca/animus/l 996voll/andrews.pdf. 



Conceiving the Continuum 307 

whenever there is the slightest promise of success. No one shall be able to drive us 
from the paradise that Cantor created for us."20 Still, Hilbert tried to adopt some 
stricter criteria for proofs that would not require the use of infinity. 

The sniping back and forth between Hilbert and Brouwer escalated to the 
breaking point. In 1928 Hilbert dismissed Brouwer from the editorial board of the 
journal Mathematische Annalen. Albert Einstein, who was one of the three principal 
editors, resigned in protest. The event left Brouwer bitter and disillusioned, and 
he barely published anything for a decade. He died at the age of 85 after being 
struck by a car outside his home. 

It is not known whether Turing had any contact with intuitionist concepts prior 
to writing his paper on computable numbers. Max Newman - the Cambridge 
professor whose lectures on the foundations of mathematics inspired Turing and 
who guided Turing's paper to publication - almost certainly knew of Brouwer 
from their mutual work in topology. Max Newman co-authored the official obituary 
of Brouwer for the Royal Society.2 1 (This is no ordinary obituary: It's 30 pages long 
and includes a 5-page bibliography of Brouwer's works.) Nevertheless, Newman 
wrote only that section of the obituary about Brouwer's work in topology, and 
even this was some three decades after Turing's paper. 

Turing's paper occupies a strange secluded islet between formalism and con­
structivism. His machines certainly reduce algorithms to a series of predefined 
manipulations of printed symbols, yet Turing's distinction between real numbers 
and computable numbers - and his identification of the computable numbers as 
that subset of the real numbers that can actually be calculated - has a decidedly 
constructivist flavor. Turing's definition of the computable numbers later led to 
a mathematical theory of "computable analysis" that parallels the classical "real 
analysis. "22 

Very much in tune with Brouwer's thinking is the idea that a computation of a 
number is a process that occurs over time. The digits don't exist until the machine 
computes them, and Turing Machines cannot be successfully analyzed by a finite 
general process to determine what they might do sometime in the future. There is 
no algorithm that lets you determine from the Description Number of a machine 
whether the machine will ever print a 0 or a 1 ,  or whether it will print only a 
finite number of Os and ls, or whether it will ever print the consecutive digits 
0 123456789. If there were such an algorithm, we could apply it to the machine 
that computes the infinite digits of TC. We could determine whether the machine 
will ever print the consecutive digits 0123456789 (or a million 7s in a row), and 
we would know at least whether Brouwer's sequence converges to zero. 

20David Hilben, "On the Infinite» (1925) in From Frege to Godel, 375-6 
2 1G. Kreisel and M. H. A Newman, "Luitzen Egbenus Jan Brouwer 1881-1966," Biographical Memoirs of 

Fellows of the Royal Society, Vol. 1 5  (Nov 1969), 39-68. 
22See, for example, Oliver Abenh, Computable Analysis (McGraw-Hill, 1980) 
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The existence of such an algorithm would actually suggest the autonomous 
Platonic existence of the infinite digits of n and every other irrational number. 
These infinite digits would exist without actually being calculated. Such an 
algorithm does not exist, however; we are forced to grind out the digits to know 
what they are. 

As you've seen, sometimes Turing likes to define a number whose digits require 
analyzing other machines; these numbers turn out not to be computable. Brouwer 
does something analogous in his 192 1 paper "Does Every Real Number Have a 
Decimal Expansion?"23 in which he defines a real number whose digits are based 
(once again) on the occurrences of certain patterns in the infinite digits of TI. 

Despite these interesting connections, l see no evidence of any familiarity 
with Brouwer's intuitionism in the paper that Turing submitted to the London 
Mathematical Society in 1936. Turing's work and his conclusions are so unusual 
that I suspect he wasn't working within anyone's prescribed philosophical view of 
mathematics. 

In the fall of 1936, however, Turing went to Princeton to study with Alonzo 
Church, and was subsequently likely exposed to a somewhat wider vista of 
mathematical possibility and thought, possibly including Brouwerian intuitionism. 

Church certainly had contact with intuitionism. When he received his Ph.D. 
from Princeton in 1927, he had two years on a National Research Fellowship. 

I spent a year at Harvard and a year in Europe, half the year 
at Gottingen, because Hilbert was there at the time, and half 
the year in Amsterdam, because l was interested in Brouwer's 
work, as were some of those advising me . . . .  I think he wasn't 
teaching. He was quite old. l used to take the train out to his 
residence, way out in the country.24 

The "quite old" characterization is a bit off: At the time Church gave this interview, 
he was 80 years old, but in 1929, Brouwer was only 48. Perhaps Brouwer's battles 
of the previous years had truly taken a toll. 

Subsequently, Church seemed to have a certain sensitivity (though not an 
allegiance) to intuitionist concerns. Church's first paper on the lambda calculus 
begins with the sentence "In this paper we present a set of postulates for the 
foundation of formal logic, in which we avoid use of the free, or real, variable, 
and in which we introduce a certain restriction on the law of the excluded middle 

23Repnnted in From Brouwer to Hilbert, 28-35 
24William Aspray, The Princeton Mathematics Community in the 1930s. An Oral-History Project An 
interview with Alonzo Church at the University of California on 1 7 May 1984, http //www.pnnceton 
.edul-mudd/finding_aids/mathoral/pmcOS htm. 
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as a means of avoiding the paradoxes connected with the mathematics of the 
transfinite. "25 

An interest in intuitionism also shows up in the work of Church's student 
Stephen Kleene. Kleene included a section on intuitionism in his book Introduction 
to Metamathematics ( 1952) and later co-authored the book The Foundations of 
Intuitionistic Mathematics (1965). A 1953 photograph of Brouwer - taken in 
Madison, Wisconsin, where Kleene taught at the time - appears in Kleene's 
article on the history of recursive function theory. 26 

Turing might also have been influenced by Hermann Weyl, who was at the 
Institute for Advanced Study during this time. Weyl received his doctorate at 
Gottingen under Hilbert, taught at the University of Zurich, and returned to 
Gottingen in 1930 to succeed Hilbert, only to be forced to leave Germany in 
1933 because his wife was Jewish. Between about 1919  and 1928, Weyl pursued 
mathematics from an intuitionist perspective, and never lost interest in it. 

Turing's brief foray into intuitionist thinking occurs in a short follow-up 
paper he wrote while at Princeton containing some corrections to his paper on 
computable numbers. As I described on page 63, the original paper appeared 
in the Proceedings of the I.nndon Mathematical Society ,  Volume 42 , Parts 3 (issued 
November 20, 1936) and 4 (issued December 23, 1936). The pans published from 
October 1936 through April 1937 were collectively published as Second Series, 
Volume 42 . 

The follow-up paper appeared in the Proceedings of the I.nndon Mathematical 
Society, Volume 43, Part 7 (issued December 30, 1937). It was later included in 
the Second Series, Volume 43, which included parts issued from May through 
December, 1937. 

(544] 
ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO 

THE ENTSCHEIDUNGSPROBLEM. A CORRECTION 

By A. M. TURING. 

In a paper entitled "On computable numbers, with an application to 
the Entscheidungsproblem"• the author gave a proof of the insolubility 
of the Entscheidungsproblem of the "engere Funktionenkalktil". This 
proof contained some formal errorst which will be corrected here: there 

15 Alonzo Church, "A Set of Postulates for the Foundation of Logic," The Annals of Mathematics, second 
Senes, Vol. 33, No 2 (Apr 1932), 346. 
16Stephen C. Kleene, "Ongins of Recursive Function Theory,'' Annals of the Hi5tory of Computing, Vol. 3 .  
No. I Oan. 1981) ,  62 
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are also some other statements in the same paper which should be modified, 
although they are not actually false as they stand. 

*Proc. London Math. Soc. (2), 42 ( 1936-7), 230-265. 
tThe author is indebted to P. Bernays for pointing out these errors. 

This three-page paper is sharply divided into two parts. The first part involves 
corrections to formulas and statements that appear in the proof of the insolubility of 
the Entscheidungsproblem in Section 1 1  of the paper. 1 have already incorporated 
those corrections into my commentary in Chapter 14 .  For the sake of completeness, 
here is that part of the paper. 1 will interrupt it only twice. 

The expression for Inst (q; SJ Sk L qr ) on p. 260 of the paper quoted 
should read 

(x,y ,x' ,y') { ( Rs;<x,y) & J(x,y) & K,,, (x) & F(x,x') & F(y' ,y)) 

--+ ( l(x' ,y') & Rs4 (x',y) & Kq1 (x' )  & F(y' ,z) v [ (Rs0(x, z) --+ Rs0(x',z)) 

& (Rs,(x,z) � Rs, (x', z)) & . . .  & (RsM Cx,z) � RsM(x', z)) l) I ·  
So, 81 ,  . . . , SM being the symbols which c..M can print. 

This correction is not quite right either. It's missing a universal quantifier for 
z that should appear right before the F(y' , z) term in the second line and apply 
to the remainder of the formula. The version shown on page 265 of this book is 
correct. 

The statement on 
p. 261, line 33, viz. 

"Inst(qa Sb Sd L qc }  & pn+ll --+ (CCn --+ CCn+1 ) 

is provable" is false (even with the new expression for Inst {qa Sb Sd Lqc l ) : 
we are unable for example to deduce p.n+l) --+ ( -F(u, u")) and therefore 
can never use the term 

F(y',z) v [ (Rs0 (x,z ) --+ Rs0(x1, z)) & . . .  & (RsM(x, z) --+ RsM(x' ,z)) J 
(545] 
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This is where Turing acknowledges that his formulation of the natural numbers 
was flawed. 

To correct this we introduce a new functional 
variable G [G (x, y) to have the interpretation "x precedes y" ) . Then, 
if Q is an abbreviation for 

CxX3w )(y, •) I F(x, w) & ( F(x,y) � GCx,y)) & ( F(%, z) & G(z,y) � G(%,y)) 

& [ G(z,x) v ( G(x.y) & F(y,zl) v (fu,y) & F(z,y)) � ( - F(x,zl) J )  
the corrected formula Un(ul1) is to be 

(3u)A(uH) --+ (3s)(3t) Rs1 (s, t), 

where A(v+O is an abbreviation for 

Q & (y)Rs0(u,y) & l(u, u) & Kq1 (u) & Des(.A(). 

The statement on page 261 (line 33) must then read 

lnst{qa Sb Sd Lqc l  & Q & pn+t> --+ (CCn --+ CCn+ i >. 

and line 29 should read 

r (n, i(n)) = b, r (n + 1, i(n)) = d, k(n) = a , k(n + 1) = c. 

For the words "logical sum" on p. 260, line 15, read "conjunction". 
With these modifications the proof is correct. Un(ul1) may be put in the 
form (I) (p. 263) with n = 4. 

A blank line follows that paragraph to conclude the first of the two parts of the 
correction. The second part concerns a different matter altogether, and refers to a 
paragraph occurring much earlier in the paper. 

Some difficulty arises from the particular manner in which "computable 
number" was defined (p. 233). 

The relevant paragraph is on page 76 of this book and reads: "A sequence is 
said to be computable if it can be computed by a circle-free machine. A number is 
computable if it differs by an integer from the number computed by a circle-free 
machine." 

Turing's use of the word "intuitive" in the next sentence must be interpreted 
in its common sense; if Turing had been referring to anything related to Brouwer 
he would have used the word "intuitionist." Moreover, it is clear from a statement 
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that follows that this hypothesis does not satisfy intuitionist requirements, even if 
it satisfies intuitive ones. 

If the computable numbers are to satisfy 
intuitive requirements we should have: 

If we can give a rule which associates with each positive integer n two 
rationals an , bn satisfying an�an+l < bn+l �bn , bn - an < 2-n , then there is 
a computable number a. for which an � a. � bn each n. (A) 

In intuitionist circles, a "rule" is a construction. For n starting at zero, 2-n 

equals the binary numbers 1 ,  0. 1 ,  0 .0 1 ,  0.00 1 ,  and so forth, so this rule associates 
successive pairs of rational numbers that get closer and closer to each other - one 
binary digit closer in value for each new value of n. Normally we would claim this 
process to be a convergent series. 

A proof of this may be given, valid by ordinary mathematical standards, 
but involving an application of the principle of excluded middle. 

The problem is that the rule might involve something that cannot be established 
one way or the other, such as the appearance of a particular unknown series of 
consecutive digits in the infinite expansion of 7t. Turing will come up with a more 
Turingesque example shortly. 

On the 
other hand the following is false: 

There is a rule whereby, given the rule of formation of the sequences an , bn 
in (A) we can obtain a D.N. for a machine to compute ex .  (B) 

Take careful note that he's identifying this statement as false. 

That (B) is false, at least if we adopt the convention that the decimals 
of numbers of the form m/2n shall always terminate with zeros, can be 
seen in this way. 

Numbers of the form m12n are a subset of rational numbers. They are of particular 
interest in connection with Turing Machines because the binary representation of 
such a number has only a finite number of ls. For example, the rational number 
12345/65536 in binary is: 

0.00 1 1  0000 00 1 1  1001 0000 . . .  
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Because 65,536 is 2 16 , only the first 16  binary digits after the decimal point are 
potentially non-zero (depending on the numerator) , and the rest are zero. Any 
number of the form m/2" where m is less than 2" begins with a maximum of n 
non-zero binary digits and then continues forever with zeros. 

Turing is going to give a rule for the formation of an and bn , but this rule is 
based on the sequence printed by another machine named Jf. 

Let ,\' be some machine, and define c11 as follows: 
c11 = i if .\· has not printed a figure 0 by the time the n-th complete configu­
ration is reached c,. = ! - 2-rn -3 if 0 had first been printed at the m-th 

[546] 

complete configuration (m :S n). Put an = Cn - 2-n -2 , bn = Cn + 2-n -z. 

Let's look at an example. Suppose Jf is a machine that prints the sequence 
1 1 1 1 10 1 .  . . .  Here's a calculation of c11 , an , and bn : 

n SEQUENCE Cn 

0 1 I 2 
1 1 1 2 
2 1 l 2 
3 1 1 2 
4 1 1 2 
5 0 127 

256 

6 1 127 
. . .  256 

an 
l _ l - M 
2 4 - 256 
1 1 - 96 2 - 8 - 256 
l l - 1 12 2 - 16 - 256 

l - J_ - 120 
2 32 - 256 
1 l - 124 2 - 64 - 256 
127 - _l_ - 125 
256 128 - 256 
127 - _l_ - 126 
256 256 - 256 

bn 
1 l 192 2 + 

4 = 256 

l + l - 160 
2 8 - 256 
I 1 _ 144 2 + 

16 - 256 
1 1 1 36 2 + 

32 = 256 
1 1 132 2 + 64 = 256 
127 1 129 
256 + 128 = 256 
127 1 - 128 
256 + 256 - 256 

The value Cn is always ! until the first zero in the sequence. If the first zero in 
the sequence is at position m (5 in the example) , then Cn becomes (2<m+2> - 1) I 
iCm+3> for n greater than or equal to m. 

Then the inequalities of (A) are satisfied, 

The an values always increase; the bn values always decrease . The absolute 
values of the differences between an and bn are always less than 2-n

. (Actually, the 
differences are always 2-n- 1

. ) 

and the first figure of u is 0 if ,\ 
ever prints 0 and is 1 otherwise. 
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In the example, the limit is clearly 127/256, so the a sequence calculated by 
this machine is 0 1 1 1 1 1 1 10000 . . . representing that rational number. If the first 0 
in the sequence appears at n equal to 4, the limit is 63/128, so the a sequence is 
01 1 1 1 1 100000 . . . . Only if 0 never appears in the sequence will the limit be t . 
equivalent to the sequence 100000000000 . . . . 

We clearly have a rule for the formulation of an and bn , but this rule is based on 
a sequence printed by some other machine J(, such a rule requires a procedure to 
determine whether a machine such as J{ ever prints the digit zero. 

The first figure of a is 1 if J{ never prints zero, and 0 otherwise, so, 

If (B) were true we should have a means 
of finding the first figure of ex given the D.N. of .JI : i.e. we should be able to 
determine whether JI ever prints 0, contrary to the results of§ 8 of the paper 
quoted . 

The "paper quoted" is Turing's original paper. The next statement is some­
thing of a shocker, and it may initially seem wrong to you (as it did to me 
at first) : 

Thus although (A) shows that there must be machines which 
compute the Euler constant (for example) we cannot at present describe 
any such machine, for we do not yet know whether the Euler constant is 
of the form m/2n . 

The Euler constant that Turing mentions here is not the famous e that serves 
as the base of natural logarithms, but the somewhat less famous Euler constant y 
(gamma) that is calculated like so, 

y = lim 1 + - + - + · · · - - ln(n) 
( 1 1 1 ) 

n->oo 2 3 n 

or, perhaps more revelatory, as the difference between the summation and the 
integral of the function l/x, 

r = um I: -:- - -dx ( n 1 ln 1 ) 
n->oo i=l l l X 

and which approximately equals 0 .5772 1 566490153286 . . . . 
This Euler constant is also known as the Euler-Mascheroni constant. Euler came 

up with the formula for the constant in 1734, and he calculated it to 16 digits in 
178 1 .  Lorenzo Mascheroni (1 750- 1800) got his name attached to the constant by 
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calculating 32 digits in 1790 (although only the first 19  digits were correct) and 
by first using the letter y to represent the number.27 

Turing did not pick this constant randomly. One famous aspect of this constant 
is that no one knows whether it's rational or irrational, and if it is irrational , 
whether it's algebraic or transcendental. It was not known in 1937 and it is still 
not known in 2008. 

The quotation from David Hilbert earlier in this chapter referring to "unap­
proachable" problems is actually preceded by the sentence: 'Take any def­
inite unsolved problem, such as the question as to the irrationality of the 
Euler-Mascheroni constant C, or the existence of an infinite number of prime num­
bers of the form 2" + 1 .  However unapproachable these problems may seem to us 
. . .  " The status of the Euler-Mascheroni constant was considered so unapproachable 
that Hilbert did not include it in his list of 23 challenges for the new century. 

If the Euler constant is rational, it might be the case that its denominator is a 
power of two. If that is so, the binary representation concludes with an infinite 
string of zeros. 

If you had a Turing Machine to calculate y ,  certainly there is no general process 
to determine whether y is of the form m12n because that would be equivalent to 
determining whether the machine prints only a finite number of ls, and that is 
not possible . That much is very clear. 

Turing is asserting something much more severe: that knowledge of the 
rationality or irrationality of the Euler constant is necessary to define a Turing 
Machine that computes the number - that the machine itself needs to "know" 
whether y concludes with an infinite string of Os or not. This might come as 
a surprise to anyone who has actually coded computer algorithms to calculate 
thousands and millions of digits of y .  

Yet, Turing has a valid point, and it relates to the inability of his machines to 
erase digits once they're printed: When a number is of the form m12n where m 
is less than 2",  we expect the machine to print all Os after the first n digits. A 
machine that calculates the Euler constant will not behave in this manner because 
the algorithm approximates the Euler constant with ever smaller (but finite) terms. 
If the Euler constant is truly of the form m/2", the machine would indeed need to 
"know" this fact to calculate the exact value . Otherwise, the machine would always 
be approximating a number that it properly should nail precisely. Any non-zero 
digit after the first n digits is simply wrong - and very problematic because it 
can't be erased under Turing's conventions - but these non-zero digits are also 
unavoidable. 

However much you may appreciate Turing's interesting analysis of the problems 
with the Euler constant, you're likely to find his solution to be worse than the 
problem. 

27julian Havil, Gamma Exploring Euler's Constant (Pnnceton University Press, 2003) , 89 



3 1 6  The Annotated Turing 

This disagreeable situation can be avoided by modifying the manner in 
which computable numbers are associated with computable sequences, 
the totality of computable numbers being left unaltered. It may be done 
in many ways• of which this is an example. 

• This use of overlapping intervals for the definition of real numbers is due originally 
to Brouwer. 

If the intuitionist aura that hangs over this section of the paper wasn't quite 
evident before, the proof is in the footnote, which alludes to Brouwer's definition 
of real numbers. 

The real-number continuum has always been a problematic concept because of 
the way it combines discrete and continuous properties. Each real number appears 
to be a precise point on the continuum, yet we don't feel entirely comfortable saying 
that the continuum is the composite of all these discrete points - particularly 
after Cantor has informed us that these discrete points can't even be enumerated. 

Brouwer attempted to define real numbers in a manner that preserved both 
the continuous and discrete qualities of the continuum while avoiding completed 
infinities. 

The tool that Brouwer invented for this process is known as a "choice sequence ." 
Choice sequences come in several varieties, but for use in constructing a real 
number, they are potentially infinite sequences of pairs of rational numbers. 
Each successive pair defines an interval nested within the preceding interval. For 
example, here's a possible choice sequence of pairs of nested rational numbers: 

[3, 4) 
[3. 1 ,  3.2) 

[3. 14, 3.15) 
[3.141, 3. 142) 

In the classical sense, this choice sequence is converging, and we enthusiastically 
note that it seems to be converging to the number 7t. However, when speaking of 
Brouwerian choice sequences, it is essential to avoid the concept of "convergence" 
because that implies a completed infinity. Each of the items in the sequence 
defines a continuous range between the two endpoints. This is how the choice 
sequence preserves the idea of continuity. The sequence does not have a limit of 
n. Instead, it maintains a type of halo28 around the number 7t. This halo indeed 

28The term comes from Edmund Husserl ( 1859-1938). See Mark van Atten, Dirk van Dalen, and Richard 
Tieszen, "Brouwer and Weyl The Phenomenology and Mathematics of the Intuitive Continuum," 
Philosophia Mathematica, Vol. 10, No. 2 (2002),  207. 
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gets smaller and smaller in time as the sequence grows longer and the intervals 
get tighter, but the halo never shrinks to the precise dimensionless irrational 
number. 

One Brouwer scholar clarifies the difference between Brouwer's choice sequences 
and traditional limits this way: 

It is worth stressing that intuitionistically, the choice sequence , 
growing in time, itself is the real number . . . .  On Brouwer's 
construal, one knows very well what the real number is, for 
it is the proceeding sequence itself. It is not the case that a 
choice sequence is a method to approximate a real number 
that lies in transcendent reality waiting to be reached by the 
subject. 29 

In the intuitionist continuum, real numbers are always incomplete - unfinished 
and never to be finished - and exhibiting a non-zero dimension. 

The choice sequence I showed above is probably generated from some kind 
of algorithm. Consequently, it is called a "lawlike" choice sequence. There are 
also "non-lawlike" or "lawless" choice sequences, in which each term is chosen by 
some kind of agent (such as the mathematician) determining how the sequence 
develops. The mathematician can even flip a coin to determine the items in the 
choice sequence. 

We can think of a non-lawlike choice sequence as a kind of intu­
ition even though it is quite different in some respects from a 
lawlike intuition. It is still a sequence carried out in time by 
a subject (or transcendent ego), only part of which is actually 
completed. We would actually complete only a finite initial seg­
ment of it, it will be associated with filling out the horizon of an 
intention directed toward a real number, and we should think of 
it as a 'medium of free becoming.' It should be noted that we are 
speaking here of a choice sequence as a process, as a sequence of 
acts developing in time .30 

Choice sequences can also be combinations of lawlike and lawless sequences, 
for example, by performing predetermined arithmetical operations on multiple 
lawless sequences. 

29Mark van Anen, On Bruuwer (Wadswonh, 2004), 3 1  
30van Atten, van Dalen, and Tieszen, .. Brouwer and Wey! The Phenomenology and Mathematics o f  the 
Intuitive Continuum," 2 12  
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Two choice sequences might be considered equal if they start out the same and 
continue to be the same for awhile, such as these two sequences: 

(3,  4] 
(3 . 1 ,  3 .2 ]  

(3 . 14, 3 . 1 5] 
(3 . 14 1 ,  3 . 142] 

(3,  4] 
[3 . 1 ,  3 .2 ]  

[3 . 14 ,  3 . 15 ]  
(3 . 1 4 1 ,  3 . 142] 

Then an interval might come up that causes the sequences to be not equal but 
overlapping: 

(3. 14 1 ,  3 . 14175]  [3 . 14125,  3 . 142 ]  

Perhaps the sequences become equal again: 

[3 . 14125,  3 . 14175]  [3. 14125,  3 . 14175] 

What happens in the future is anyone's guess. 
It may seem as if a lawlike sequence is completely defined by the algorithm that 

produces it, and hence represents an actual discrete point on the continuum. 

Even so, it is clear that for a correct understanding of a choice 
sequence as representing a point on the intuitive continuum, 
the sequence should be considered as a sequence in progress, 
whether it is lawlike or not. In the case of non-lawlike sequences 
this may be easiest to grasp, but the same holds for lawlike 
sequences. For if, on the contrary, a lawlike sequence is con­
ceived of as a finished object, we may be seduced into thinking 
of the point in the classical atomistic way again. But then the 
continuum would be disrupted. In other words, the condition 
that the point never 'is' but always 'becomes' preserves the con­
tinuum. 3 1  

These concepts should actually be  somewhat familiar to  readers of  Turing's 
paper because we have experience with Turing Machines. We think of a Turing 
Machine (or its Description Number) as representing a real number, but the 
machine always generates digits over a period of time. It is never finished, and we 
can never determine from the Description Number of the machine exactly what 
that number is actually going to become. 

In binary, the digits of 7t/4 are: 

. 1 100 100 10000 1 1 1 1 1 101 101010 1000 1000 . . .  

31 Jbid, 2 12-2 13 .  
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(I'm using 'Tt/4 rather than 7t so the number is between 0 and 1 .) A Turing Machine 
that calculates the digits of 'Tt/4 can actually be interpreted as calculating choice 
sequences. When the machine calculates the first digit of 1 ,  that digit doesn't 
indicate the number 0 . 1 ;  the digit actually represents a range from 0. l 0000000 . • .  
to 0. 1 1 1 1 1 1 1 1  . . .  because that's the range of possible real numbers that begin with 
0. 1 . Keeping in mind that the sequence 0. 1 1 1 1 1 1 1 1 . . .  is equal to 1 ,  the nested 
choice sequences generated by such a machine are: 

(0. 1 ,  1 .0] 
[0. 1 1 ,  1 .00] 

[0. 1 10,  0. 1 1 1 ] 
[0 . 1 100, 0. 1 10 1 ]  

(0. 1 1001 ,  0 . 1 1010] 
[0. 1 100 10, 0. 1 1001 1 ]  

[0. 1 100100, 0 . 1 100 1 10] 

In this sense, a normal Turing Machine that follows Turing's conventions 
(that is, never erasing a printed digit) generates a Brouwerian choice sequence 
representing a computable real number. The process occurs over time and never 
completes. 

If Turing sees this elegant connection in the same way I do, he doesn't 
acknowledge it. Obviously he didn't have the same opportunity I did to read 
twenty-first century scholars decode Brouwer's difficult papers. If Turing read 
any Brouwer - or received some Brouwerian concepts second-hand - it might 
have been something like Brouwer's article "Die Struktur des Kontinuums"32 from 
1928, which describes using choice sequences as a type of tree structure that 
fans out and covers a section of the continuum with overlapping intervals. 
This could have given Turing an idea how to translate computable sequences 
into computable numbers. Besides the need to fix the problem associated with 
the Euler constant, Turing might also have been concerned that his machines 
always compute numbers between 0 and 1 ,  and he felt he needed to go beyond 
that range. 

In Turing's original conception, a computable sequence becomes a real num­
ber simply by prefixing a binary point. The revised concept is much more 
complex: 

Suppose that the first figure 
of a computable sequence y is i and that this is followed by 1 repeated n 

32Translated as L E. J. Brouwer, "The Structure of the Continuum" in From Kant to Hilbert, Vol. I I ,  
1 186-1 197. 
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times, then by 0 and finally by the sequence whose r-th figure is er; then 
the sequence y is to correspond to the real number 

00 
(2i - l)n + L(2cr - l) (i( 

r= l 

The i figure represents the sign of the number: 0 for negative and 1 for positive. 
The series of 1 figures repeated n times is the integer pan of the number. A zero 
is required to terminate the run; it functions something like a binary point. The 
figures that follow make up the fractional part of the number, which is always of 
the form 

2 4 8 16 32 ±- ± - ± - ± - ± - ± . . .  
3 9 27 81  243 

where the Cr figures determine whether each of the terms gets a plus sign (for 1) 
or a minus sign (for 0) . 

For example , suppose a machine prints the following sequence: 

1 1 1 1 1 10 1 10 1 1  . . .  

I've inserted some spaces just to make it easier to translate into a number. The first 
digit is 1 meaning a positive number. The next five digits are ls terminated with a 
zero so the integer part is 5. The fractional part is: 

2 4 8 16 32 

3 + 9 - 27 + 81 + 243 

At this stage of the process the complete number is 5 ��� or 6 f �3 . Notice that 
the computed number actually has an integer part of 6 rather than 5. If the 
figures representing the fractional part of the number are all ls, the fractional 
part is 

2 4 8 16 32 

3 + 9 + 27 + 81 + 243 + .. .  

which converges to 2 .  Similarly, if the figures representing the fractional part 
are all Os, the fractional part converges to -2 .  A sequence that has an encoded 
integer part of N can actually resolve to N-2 through N + 2, creating overlapping 
intervals. 

If the machine which computes y is regarded as computing also this real 
number then (B) holds. 

That is , if there is a rule for formulating the sequences an and bn that close in 
on a number, we can obtain a Description Number of the machine. Internally, the 
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machine calculates an and bn and then chooses to print a 0 or 1 based on the need 
to subtract or add (213)" to bring the computed number within this new range. 

In the process, we're now stuck with this single method of computing numbers 
based on converging bounds. It is no longer possible to write simple machines 
that compute rational numbers such as ! , or � .  These numbers must now be 
approximated like all others. For example, the sequence for ! is now: 

0 0 1010 1 10 1  0 100 1 101 .  . .  

The first two digits represent the sign (positive) and the binary point. The digits 
that follow indicate terms of 2/3 , -4/9, 8/2 7, - 16/81 ,  and so forth. The portion 
of the sequence shown here computes ! to an accuracy somewhat greater than 3 
decimal digits or 10  binary digits. 

The advantage is that the machine doesn't have to "know" that it's really 
computing a rational number of the form m/2n . It doesn't need to "know" when 
to abandon the calculation and settle into an infinite string of Os. Even a sequence 
that terminates in an infinite run of Os or ls is associated with a number built from 
an infinite string of decreasing but finite terms. 

There are other ways to compute ! . Here's one alternative: 

0 10 0101  00 10 101 1 00 10 . . .  

The first digit is the sign (positive) but the next two digits represent the number 
1 .  The digits that follow indicate terms of -2/3, 4/9, -8/27, 16/8 1 ,  and so forth, 
the opposite of the digits in the first sequence. 

The uniqueness of representation of real numbers 
by sequences offigures is now lost, but this is oflittle theoretical importance, 
since the D.N .'s are not unique in any case. 

The Graduate College, 
Princeton, N.J., U.S.A. 

Here Turing's short paper of corrections ends, seemingly without pity that 
this sudden paradigm shift has left us just a bit disoriented. We might feel some 
satisfaction that we now have a definition of computable numbers that is less 
mathematically troublesome, but it hardly compensates for the queasiness of being 
set adrift on the philosophically uncertain waves of the continuum. 
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I s  Everyth i ng a 
Tu r i ng  Mach i ne ?  

N
o matter how well you understand the concept and workings of the Turing 
Machine, it won't help you actually build a computer. Digital computers are 

built from transistors or other switching mechanisms, such as relays or vacuum 
tubes. These transistors are assembled into logic gates that implement simple 
logical functions, which then form higher-level components such as registers and 
adders. 1 

The Turing Machine is built from - well, Turing never tells us. Turing 
didn't intend for his machines to function as blueprints for actual computers. 
The machines serve instead as a simplified abstract model of computation, 
whether performed by human or machine. Turing's initial purpose for creating 
the Turing Machine was the very specific goal of proving that there is no general 
decision procedure for first-order logic. Only later did the imaginary devices begin 
contributing to our understanding of the theory of computing. This transition took 
about 20 years, after which the Turing Machine became a subject of study within 
the discipline we now know as computer science. 

Adapting the Turing Machine for purposes other than Turing's proof required 
that the machine be reformulated somewhat. Most of Turing's machines spend the 
rest of infinity computing the digits of some real number between 0 and l .  A much 
more common task in mathematics - as well as computer programming - is the 
computation of a function. A function requires one or more numbers as input, also 
called the arguments to the function. Based on that input the function calculates 
output, also known as the value of the function. 

One important class of functions is the number-theoretic functions, so called 
because the input and output are both limited to natural numbers. Turing devised 
a technique to compute number-theoretic functions in Section 10 of his paper 
(page 235 of this book) by printing runs of consecutive 1 figures separated by 
single 0 figures. The number of consecutive ls in the first run is the value of the 

1 This hierarchy is described in Charles Petzold, Code: The Hidden Language of Computer Hardware and 

Software (Microsoft Press, 1999). 
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function for an argument of O; the number of consecutive ls occurring next is the 
value of the function for 1 ;  and so forth. 

One mathematician to take a good long critical look at Turing's number-theoretic 
function machines was Stephen Cole Kleene. Kleene was a student of Alonzo 
Church at Princeton and received his Ph.D.  in 1934, after which he began teaching 
at the University of Wisconsin in Madison. 

Kleene later wrote, "While fully honoring Turing's conception of what his 
machines could do, I was skeptical that his was the easiest way to apply them to 
the computation of number-theoretic functions. In any case, only a total function 
</J(x) could be computed in this way."2 Turing's technique doesn't work for partial 
functions, which are functions valid for only a proper subset of the natural 
numbers. 

Beginning in the spring of 194 1 ,  Kleene began pursuing a different approach 
in a seminar on the foundations of mathematics that he taught at the University 
of Wisconsin. Kleene's reformulated Turing Machines were later featured in 
Chapter Xlll of his now-classic 1952 book Introduction to Metamathematics. 

Kleene's version of the Turing Machine still reads symbols, writes symbols, and 
moves left and right along a tape. However, it is limited to only one symbol , which 
is a simple vertical line , called a tick or tally mark. The machine differentiates 
between this symbol and a blank square. A natural number is represented by a 
series of tick symbols in consecutive squares delimited by blank squares. Because 
Kleene begins his natural numbers with 0, one tick mark represents 0, two tick 
marks represents 1 ,  and so forth. Kleene appears to be the first author to show a 
sample Turing Machine tape as a diagram in his text. 3 

Turing's machines generally begin with a blank tape. Kleene's reformulated 
machines begin with a tape on which the input to a function is already encoded 
as one or more runs of consecutive tick marks separated by blanks. Kleene's 
machines then compute the value of the function and encode that number back on 
the tape. The first example Kleene shows is a successor function that calculates the 
next number after the encoded number; it performs this amazing feat by simply 
printing another tick mark after the existing run of tick marks. 

Kleene's function-calculating machines require only a finite period of time to 
calculate, so the machine can stop when it's finished. There is no specific "stop" 
or "halt" configuration, but there are what Kleene calls "passive situations" where 
there is no place for the machine to go. When a machine is instructed to switch to 
a configuration that does not exist, "the machine is said then to stop. The situation 
in which it stops we call the tenninal situation or output. "4 

2Stephen C Kleene, "Ongins of Recursive Function Theory," Annals of the History of Computing, Vol 3, No 
1 Qan 1 981) ,  6 1  
3Stephen C Kleene, Introduction 10 Metamathematics (D Van Nostrand, 1952), 358-360 
4Kleene, Introduction to Metamathematics, 358 
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In Turing's conception, a good machine - which Turing calls a circle-free 
machine or a satisfactory machine - never stops. In Kleene's reformulation, a 
good machine finishes the function and then halts. A Kleene machine that gets 
into an infinite loop and never stops is a bad machine. In this respect, Kleene's 
machines obviously are much closer in concept to conventional mathematical and 
computer functions that calculate output from input in a finite number of steps. 

As I discussed in Chapter 15 ,  by 1936 there existed three different formulations 
of the intuitive notion of effective calculability: 

• Turing Machines; 
• recursive functions as defined by Kurt Godel in 1934 based on a suggestion 

of Jacques Herbrand and further explored by Kleene; and 
• ).-definable functions developed by Church and his students, most promi-

nently Kleene. 

The equivalence of these three formulations was established partially by Turing 
in the appendix to his paper on computable numbers and more rigorously in 
his 1937 paper "Computability and A.-Definability," and by Stephen Kleene in his 
1936 paper "A.-Definability and Recursiveness." These days the term "recursive 
function" is nearly synonymous with "computable function." 

Stephen Kleene was the first person to come up with terms to describe how 
these formalizations capture the intuitive notion of calculability. It is in Introduction 
to Metamathematics that Kleene first states something he explicitly calls Church's 
thesis: "Every effectively calculable function (effectively decidable predicate) is general 
recursive." Two chapters later Kleene says: "Turing's thesis that every function 
which would naturally be regarded as computable is computable under his 
definition, i.e. by one of his machines, is equivalent to Church's thesis . . .  "5 

In a 1967 book, Kleene combined the two theses into one: 

Turing's and Church's theses are equivalent. We shall usually 
refer to them both as Church's thesis, or in connection with that 
one of its three versions which deals with 'Turing machines" as 
the Church-Turing thesis.6 

Since then, "Church-Turing thesis" has become the preferred term. 
Introduction to Metamathematics is obviously a book for mathematicians. Six 

years later, another now-classic book crossed the line from mathematics into 
computer science. 

Martin Davis was born in 1928 in New York City. He took his Ph.D. at 
Princeton University in 1950 with a dissertation entitled On the Theory of Recursive 

5Kleene, Introduction to Metamathtmatics, 300, 376 
6Stephen Cole Kleene, Mathematical Logic Gohn Wiley & Sons, 1967; Dover, 2002), 232. 
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Unsolvability. Davis's thesis advisor was Alonzo Church, who had also been Kleene's 
thesis advisor in 1934 and Turing's in 1938. 

In a course that Davis taught at the University of Illinois, he began speaking 
of the problem of determining whether a Turing Machine finishes its calculation 
as the "halting problem," perhaps as early as 1952. 7 This phrase became more 
widely known following the publication of Davis's book Computability and Unsolv­
ability in 1958. In the book's Preface, Davis slyly notes, "Although there is little in 
this volume that is actually new, the expert will perhaps find some novelty in the 
arrangement and treatment of certain topics," and then clarifies: "In particular, 
the notion of the Turing machine has been made central in the development."8 

Whereas the Turing Machine doesn't make an appearance until page 32 1 of 
Kleene's Introduction to Metamathematics, and doesn't get deeply involved in the 
discussion until Chapter 13 ,  in Davis's Computability and Unsolvability the Turing 
Machine is right up front: on the first page of the first chapter. 

Like Kleene , Davis denotes the natural numbers with successive tick marks 
and uses the machines to compute functions. Examples of machines that perform 
addition, subtraction, and multiplication begin on page 12 .  

Although Computability and Unsolvability is  ostensibly a mathematics textbook, 
Davis realized that the book "because of its relevance to certain philosophi­
cal questions and the theory of digital computers [is] of potential interest to 
nonmathematicians. "9 

To further accentuate the difference, Computability and Unsolvability was pub­
lished in a new McGraw-Hill Series in Information Processing and Computers. 
Even within that series, the book was unique. Other books in the series focused on 
the "practical" topics of computer hardware and programming. Titles published in 
this series in 1958 and 1959 included Analog Simulation: Solution of Field Problems; 
High-Speed Data Processing; Digital Computer Primer; Digital Computing Systems; and 
A Primer of Programmingfor Digital Computers . 

Martin Davis's Computability and Unsolvability can truly be said to have initiated 
the study of computability as a topic that later became part of the standard 
curriculum for computer science majors. 

It is on page 70 of Computability and Unsolvability that Davis introduces a term 
used frequently in connection with Turing Machines: 

Now, let Z be a simple Turing machine . We may associate with 
Z the following decision problem: 

To determine, of a given instantaneous description a, whether or not 
there exists a computation of Z that begins with a .  

7See B jack Copeland, Th e  Essential Tunng (Oxford University Press, 2004), 40, footnote 61 
8Martin Davis, Computability and Unsolvability (Mcuraw-Hill, 1958. Dover, 1982), vii-viii 
9Davis, Computability and Unsolvability, vii 
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That is, we wish to determine whether or not Z, if placed in a 
given initial state, will eventually halt. We call this problem the 
halting problem for Z. 10 

later on that same page , Davis formulates a theorem: "There exists a Turing 
machine whose halting problem is recursively unsolvable." 

The widespread influence of Martin Davis's book is such that the halting 
problem is now forever associated with Turing Machines despite the fact that 
Turing's original machines never halt! 

Aside from speed, memory capability, and ever fancier human-interface devices, 
all modem computers are basically the same. Every computer that can emulate a 
Turing Machine - and that's a very easy requirement - is a universal computer. 
Moreover, any universal computer can emulate any other universal computer. 

Some very early computers were not as powerful as the Turing Machine. 
Apparently the first computer to be at least potentially universal was the machine 
that Konrad Zuse built called the Z3 , constructed between 1938 and 194 1 .  1 1 If 
built, Charles Babbage's Analytical Engine of the 1830s would have qualified as a 
universal machine, even though it would have been constructed from gears rather 
than switching mechanisms. Virtually all computers built since 1944 have been 
universal machines. 

One crucial element of a universal machine is programmability. There must 
be some way to introduce a stream of instructions into the computer and have 
the computer respond. In modem computers, these instructions are bytes in 
memory called machine code. In Zuse's machine, instructions were encoded as 
holes punched in 35mm movie film. Babbage's machine would have used punched 
cards similar to those that controlled jacquard silk-weaving looms. 

Some early computers could be programmed only with an inflexible sequence 
of instructions. A universal machine must be able to skip around in the 
instruction stream based on the values of previous calculations. This feature 
is known as conditional branching, and it is essential for implementing calculational 
loops. 

Computer programming languages are often called 'Turing complete" if the 
syntax of the language allows them to mimic a Turing Machine. 

The basic HyperText Markup language (HTML) used extensively on the Web is 
not intended for computation and is certainly not Turing complete. JavaScript often 
used within HTML is certainly Turing complete, as are virtually all programming 
languages in use today. Any Turing-complete programming language can emulate 
any other Turing-complete language. 

10DaVIS, Computability and Unsolvability, 70 
1 1  Raul Rojas, "How to Make Zuse's Z3 a Universal Computer," IEEE Annals of the History of Computing, Vol. 
20, No 3 (1998), 5 1-54. 
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The Turing Machine not only established the basic requirements for effective 
calculability but also identified limits: No computer or programming language 
known today is more powerful than the Turing Machine; no computer or pro­
gramming language can solve the halting problem; no computer or programming 
language can determine the ultimate destiny of another computer program. You 
can't get around these limitations with a "better" programming language or a 
different kind of machine. At best you can only do jobs faster. You can rig 
up thousands of processors to perform in parallel, and you can strive to create 
quantum computers that perform massively parallel computations, but you simply 
can't bring infinity any closer to this hopelessly finite world in which we live. 

Regardless of the limitations of the Turing Machine, some mathematicians 
have journeyed into the realm of hypercomputation and described machines that 
transcend the Turing limit. Alan Turing himself partially instigated this research 
by briefly describing a magical "oracle" in his Ph.D.  thesis, the difficult 1939 paper 
"Systems of Logic Based on Ordinals": 

Let us suppose we are supplied with some unspecified means 
of solving [undecidable) number-theoretic problems; a kind of 
oracle as it were. We shall not go any further into the nature 
of this oracle apart from saying that it cannot be a machine. With 
the help of the oracle we could form a new kind of machine (call 
them o-machines) , having as one of its fundamental processes 
that of solving a given number-theoretic problem. 12 

Perhaps we'd all like a little oracle in our lives to help with the really tough 
questions. Researchers exploring hypercomputation have built on the oracle idea 
and introduced other features into Turing Machines so that they are not bound 
by normal real-life limitations. While interesting mathematical constructs, these 
hypercomputers are never quite practical because they violate basic laws of physics, 
such as accelerating time so that each step of the computation takes half as long 
as the previous step. Martin Davis has even gone so far as to refer to the "myth" of 
hypercomputation and compares the hypercomputationalists to trisectors of the 
angle and inventors of perpetual motion machines. 13 

To my mind, explorations into hypercomputation are valuable more for the 
questions they raise about computational universality. Alan Turing designed his 
imaginary machine to model the basic operations of a human computer in 

1 2Alan Tunng, "Systems of Logic Based on Ordinals," Proceedings of the London Mathematical Society, 

Senes 2, Volume 45 (1939), 172-1 73 
1 3Manin DaVJs, "The Myth of Hypercomputation," in Chnstof Teuscher, ed . Alan Turing Life and Legacy of 

a Great Thinher (Spnnger, 2004). 195-2 1 1  
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mechanically carrying out a precise algorithm. He discovered that these machines 
have some inherent limitations. In the decades since, we have built computers that 
are computationally equivalent to Turing Machines and hence have those same 
constraints. We see no practical way to go beyond these limitations. 

For that reason, the universality of computation - both in capability and 
limitations - seems very fundamental to any type of data-processing activity. 
These limitations seem as ingrained in the fabric of the natural world as the laws 
of thermodynamics. 

If the Turing Machine has inherent limitations that seemingly can't be overcome 
without breaking the laws of physics, then what exactly are the implications 
for natural mechanisms that perform computational or logical operations? This 
question becomes most profound (and perhaps even a bit troubling) when we 
consider the two most important "natural mechanisms" in our lives that we might 
want to investigate in this way: the human mind, and the universe itself. 

Strictly speaking, the Turing thesis involves only an equivalence between Turing 
Machines and mechanical algorithms. It does not necessarily imply that there can 
never be a computing machine that can outperform the Turing Machine, or that 
such machines violate some kind of known universal law. 14 

Perhaps we're missing something. Perhaps there's some kind of mysterious 
physical mechanism that can perform some powerful computational operation 
that simply can't be emulated on the Turing Machine. Does the model of the 
Turing Machine really help us to understand the human mind and the universe? 
Or are we foolishly bringing the most complex objects we know down to the level 
of a reductionist machine that can't even properly add? 

The legacy of the Turing Machine outside the fields of mathematics and 
computing began several years after the 1936 publication of Turing's paper with 
the fortuitous meeting between Warren McCulloch (1898-1969) and Walter Pitts 
(1923-1969). 

As a youngster in Detroit, the brilliant Walter Pitts taught himself Latin and 
Greek, philosophy and mathematics, and consequently was regarded by his family 
as a freak. He ran away to Chicago when he was 15 .  Homeless, Pitts spent 
much time in the park, where he made the acquaintance of an old man named 
Bert. He and Bert had similar interests in philosophy and mathematics, and 
Bert suggested that he read a book by University of Chicago professor Rudolf 
Carnap (1891- 1970) - probably The Logical Syntax of Language published in 
1937. Walter Pitts read the book and then headed to Carnap's office to discuss 

liFor a concise cntique with a good bibliography see C Jack Copeland, "The Church-Tunng Thesis," 
Stanford Encyclopedia of Philosophy, http //plato stanford edu/emnes/church-tunng 
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some problems that he had discovered. The old man named Bert turned out to be 
Bertrand Russell. 15 

If you don't believe that story, perhaps this one is more plausible: During the 
time that Bertrand Russell was teaching at the University of Chicago, he was taking 
a stroll through Jackson Park when he spotted a young man reading Carnap's 
book. They began talking, and Russell took Walter Pitts to Carnap's office . 16 

Then there is this one: When Pitts was 12 years old and still living in Detroit, he 
was chased by some bullies and took refuge in a library. When the library closed, 
he was trapped inside . He decided to read Whitehead and Russell's Principia 
Mathematica, and remained in the library for three days, finally sending a letter 
to Russell pointing out some errors. When Russell wrote back inviting him to 
Cambridge , Pitts decided to become a mathematician. 17 

What is known for sure is that Walter Pitts did attend a lecture by Bertrand 
Russell in Chicago in 1938, and that he also visited Rudolf Carnap's office the 
same year. Carnap was impressed with the young man and wanted to help him 
out by giving him a student job, but he didn't even know Pitts' name, and there 
was no way to find him. 18  

Pitts was "a shy, introverted lost soul, with glasses, bad teeth, a habit of twirling 
his hair, a slight nervous tremor, and a tendency to bump into things." 19 (Later 
on, during the Second World War, Pitts received a 4F classification from the draft 
board and was labeled "pre-psychotic," yet he was also recruited for the Manhattan 
Project and received top-secret clearance. 20) After Carnap tracked down Pitts 
almost a year after the office visit, Pitts began studying logic with Carnap and 
attending classes at the University of Chicago, including seminars given by the 
red-bearded Ukrainian-born Nicolas Rashevsky (1899-1972) . 

Rashevsky had received his doctorate in theoretical physics from the University 
of Kiev, and immigrated to the United States in 1924. He became interested in 
applying mathematical models to biological processes, a discipline that relied on 
empirical research done by others, but which involved no laboratory work of 

1 5The story is aunbuted to McCulloch's former student Manual Blum in Pamela McCorduck, Machines Who 
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1 7!nterview with Jerome Y Lettvin in Talking Nets, 2 In Jerome Y Lettvin, "Warren and Walter," Collected 

Works of Warren 5 McCulloch, Vol 11, 5 14-529, Pitts spent a week in the library reading Pnncipia 

Mathematica, but only when the library was open 
18Neil R Smalheiser, "Walter Pitts," Perspectives in Biology and Medicine, Vol 43, No 2 (Winter 2000), 2 18  
19Smalheiser, "Walter Pius," 22  
20!bid 



Is Everything a Turing Machine? 333 

its own. By 1934, Rashevsky had even come up with a name to explain what 
he was doing: mathematical biophysics. In 1935, he became the first Assistant 
Professor of Mathematical Biophysics at the University of Chicago. A book 
entitled Mathematical Biophysics followed in 1938, and then a journal, the Bulletin 
of Mathematical Biophysics in 1939, devoted to publishing papers of Rashevsky and 
his followers. 2 1  

In 194 2 and 194 3, Pitts published three papers in the Bulletin of Mathematical 
Biophysics, and around this time was introduced to Warren McCulloch. 

Warren McCulloch grew up in New jersey and first attended Haverford, a 
Quaker college in Pennsylvania. Shonly after McCulloch entered the college in 
1917, the teacher and philosopher Rufus Jones (1863- 1948) - who about this 
time helped found the American Friends Service Committee - asked McCulloch 
"What is Thee going to be? . . .  And what is Thee going to do?" McCulloch said he 
had no idea, "but there is one question I would like to answer. What is a number, 
that a man may know it, and a man, that he may know a number?" To which Rufus 
Jones could only respond, "Friend, Thee will be busy as long as Thee lives."22 

McCulloch attended Yale to study philosophy and psychology, got his M.D. 
at the College of Physicians and Surgeons in New York in 1927, treated people 
with severe brain injuries at Bellevue Hospital Center in New York City, and 
worked with insane patients at Rockland State Hospital.23 Back at Yale in 1934, 
McCulloch worked with Dusser de Barenne (1885- 1940), who had pioneered 
the technique of mapping functional areas of the brain by applying strychnine to 
exposed ponions of a cat's brain and observing what happens. In 1941 , McCulloch 
moved to the Neuropsychiatric Institute of the University of Illinois. 

McCulloch was a swashbuckling figure who "looked like Moses; he had this long 
beard and bushy eyebrows [and] a strange gleam in his eye. He really looked like 
he was crazy a lot of the time. He had gray eyes, and when they got really bright and 
glaring, he looked like a spectacle ."24 McCulloch was gregarious, "found a bottle 
[of Scotch] each night a fine lubricant for his side of the conversion,"25 and was a 
big storyteller. (The stories about Walter Pitts meeting Benrand Russell in Jackson 
Park all ultimately came from McCulloch.) McCulloch wrote poetry, discoursed 
on philosophy, and flaunted his polymathic learning whenever possible . 

2 1  Tara H Abraham, "Nicholas Rashevsky's Mathematical Biophysics," journal of the History of Biology, Vol 
37, No 2 (Summer 2004), 333-385. 
22Warren S. McCulloch, "What is a Number, That a Man May Know it, and a Man, That he May Know a 
Number7", Collected Words of Warren S. McCulloch, Vol IV, 1226 
23Much of the biographical information on McCulloch comes from Michael A Arbib, "Warren McCulloch's 
Search for the Logic of the Neivous System," Perspectives in Biology and Medicine, Vol 43, No. 2 (Winter 
2000), 193-2 16. 
H1memew wuh Jack D. Cowan in Talking Nets, 102. 
1' Arbib, "Warren McCulloch's Search for the Logic of the Neivous System," 202. 
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It's not quite clear how Warren McCulloch and Walter Pitts were introduced, 
but they immediately hit it off, even to the extent of Pitts moving into the 
McCulloch household. McCulloch was attempting to formulate a theory of 
the workings of the brain, and Pitts' knowledge of mathematical logic was 
exactly what he needed. They hammered out a paper over the McCulloch kitchen 
table with McCulloch's daughter Taffy drawing the article's illustrations.26 The 
historic paper that resulted from this first collaboration between McCulloch and 
Pitts was "A Logical Calculus of Ideas Immanent in Nervous Activity" published 
in Rashevsky's Bulletin of Mathematical Biophysics in 1943. 

From research in the second half of the nineteenth century, scientists had known 
that the nervous system consisted of cells called neurons, and that these neurons 
seemed to be connected in a network. Additional research in the twentieth century 
had shown that these neurons worked much like switches that are triggered when 
a stimulus reaches a threshold.27 

To McCulloch and Pitts, these neurons resembled logical functions, so they 
modeled the neurons with a form of propositional logic using Rudolf Carnap's 
notation. One crucial element not in traditional logic was a time delay between 
input and output; this time delay allowed neurons to be organized in circular 
patterns so that signals could be kept active just circling through the network. The 
McCulloch-Pitts paper defines axioms for this simplified model and then proceeds 
to prove some theorems. 

"A Logical Calculus of Ideas Immanent in Nervous Activity" doesn't have many 
precursors. The bibliography consists solely of Carnap's Logical Syntax of Language, 
Hilbert and Ackermann's Grundzuge der Theoretischen Logik (spelled "Grunduge"), 
and Whitehead and Russell's Principia Mathematica. On page 1 5  of this 19-page 
paper, McCulloch and Pitts reveal a little broader reading when they conclude 

first, that every net , if furnished with a tape, scanners connected 
to afferents, and suitable efferents to perform the necessary 
motor-operations, can compute only such numbers as can a 
Turing machine; second, that each of the latter numbers can 
be computed by such a net . . .  This is of interest in affording a 
psychological justification of the Turing definition of 
computability and its equivalents, Church's A.-definability and 
Kleene's primitive recursiveness: If any number can be com­
puted by an organism, it is computable by these definitions and 
conversely. 28 

26 Arbib, "Warren McCulloch's Search for the Logic of the Neivous System," 199 
27Tara H Abraham, "(Physio)logical Circuits The Intellectual Ongins of the McCulloch-Pitts Neural 
Networks," journal of the History of the Behavioral Sciences, Vol 38, No 1 (Winter 2002) , 19 
28W S McCulloch and W Pitts, "A Logical Calculus in the Ideas Immanent in Neivous Activity," 
Bulletin of Mathematical Biophysics. Vol 5 ( 1943). 129. Also in Collected Works of Warren 5 McCulloch, 
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Several years later, in 1948, McCulloch made the Turing connection more 
explicit. He explained that he was searching for a way to develop a theory in 
neurophysiology, 

and it was not until I saw Turing's paper that I began to get 
going the right way around, and with Pitts' help formulated 
the required logical calculus. What we thought we were doing 
(and I think we succeeded fairly well) was treating the brain as 
a Turing machine; that is, as a device which could perform the 
kind of functions which a brain must perform if it is only to go 
wrong and have a psychosis . . . .  The delightful thing is that the 
very simplest set of appropriate assumptions is sufficient to show 
that a nervous system can compute any computable number. It 
is that kind of a device, if you like - a Turing machine.29 

Still later (in 1955), McCulloch was blunter: "Pitts and I showed that brains 
were Turing machines, and that any Turing machine could be made out of 
neurons,"30 although current knowledge was insufficient to put this equivalence 
to any practical use : 

To the theoretical question, Can you design a machine to do 
whatever a brain can do? the answer is this: If you will specify in 
a finite and unambiguous way what you think a brain does do 
with information, then we can design a machine to do it. Pitts 
and I have proved this construction. But can you say what you 
think brains do?3 1  

The McCulloch and Pitts paper might have languished in mathematical bio­
physical obscurity had it not caught the attention of two major figures in 
twentieth-century computing: Norben Wiener and john von Neumann. 

Norbert Wiener was the product of the most notorious experiment in 
home-schooling since the regimen endured by John Stuart Mill. Both men later 
wrote memoirs about the experience of being molded into a prodigy by overbear­
ing fathers; in Wiener's case , the scars remained raw and unhealed for most of his 
life. For years he battled a bipolar disorder without diagnosis, combining periods 
of brilliant research with inexplicable rages and suicidal despair. 

29Warren McCulloch in Lloyd A Jeffress, ed , Cerebral Mechanisms in Behavior. The Hixon Symposium 
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Wiener entered Tufts University when he was 1 1  years old, received a B.A. in 
mathematics at 14, and then became the youngest recipient of a Harvard Ph.D. at 
the age of 18. Still, Wiener's father would tell members of the press that his son 
was "not even exceptionally bright" and indeed, "lazy."32 His parents also withheld 
information from him: Norben Wiener was 15 before he found out he was Jewish. 

After leaving Harvard, Wiener studied mathematical logic at Cambridge with 
Bertrand Russell and number theory with G. H. Hardy, differential equations 
with David Hilben at G6ttingen on the eve of the Great War, and philosophy 
with john Dewey at Columbia University. In 1919 ,  he joined the faculty of the 
Massachusetts Institute of Technology. 

In the period between the wars, Wiener pioneered in the fledgling fields 
of communication engineering and analog computing. He was involved with 
Vannevar Bush's analog-computing projects at MIT, and seems to have influenced 
Claude Elwood Shannon in the development of communication theory. During 
World War II, Wiener worked on systems to implement anti-aircraft fire. These 
systems incorporated a more complex form of prediction than previous techniques 
to anticipate the ways that the aircraft would try to avoid the missile being aimed 
at it. Wiener was particularly interested in the concept of feedback - getting 
information back to incrementally correct a process. 

Norbert Wiener was not in attendance at the first historic meeting of physi­
ologists, psychologists, and anthropologists who gathered at the Beekman Hotel 
on May 13,  1942 , under the sponsorship of the Josiah Macy, Jr. Foundation to 
explore some interdisciplinary connections. Warren McCulloch was there as were 
the husband-and-wife anthropology team of Gregory Bateson and Margaret Mead. 
Wiener was present at the first postwar Macy conference entitled "The Feedback 
Mechanisms and Circular Causal Systems in Biology and the Social Sciences Meet­
ing,"33 as were Walter Pitts and john von Neumann, with everyone assimilating 
everyone else's work and examining how everything seemed to fit together. 

In 194 7, N orben Wiener wrote a book bringing together some of the research 
that had been discussed at these conferences. He wanted a new word for studies 
that encompassed communication and feedback in machines, living things, and 
social structures. He chose the Greek word cybernetics, meaning steersman, or 
helmsman, or pilot. Essential to the job of steering a ship is the incorporation 
of feedback to compensate and correct for any drift off course . Wiener's book, 
published in 1948, became Cybernetics: or Control and Communication in the Animal 
and the Machine. 

Time magazine proclaimed, "Once in a great while a scientific book is published 
that sets bells jangling wildly in a dozen different sciences. Such a book is 

32 Flo Conway and Jim Siege Iman. Dark Hero of the liifonnation Age In Search of Norbert Wiener, the Father of 
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Cybernetics."34 Read today, Cybernetics is an odd little book combining startling 
visionary prose with dense pages of mathematics. In the introduction, Wiener pays 
homage to the many people whose work he had assimilated, including Warren 
McCulloch, "who was interested in the study of the organization of the cortex of 
the brain," Alan Turing, "who is perhaps first among those who have studied the 
logical possibilities of the machine as an intellectual experiment," Walter Pitts, 
who "had been a student of Carnap at Chicago and had also been in contact with 
Professor Rashevsky and his school of biophysicists," as well as early computer 
pioneers "Dr. Aiken of Harvard, Dr. von Neumann of the Institute for Advanced 
Study, and Dr. Goldstine of the Eniac and Edvac machines at the University of 
Pennsylvania. "35 

Chapter 5 of Cybernetics is devoted to "Computing Machines and the Nervous 
System."  Wiener compares the switching mechanisms of digital computers with 
the McCulloch and Pitts model of the brain: 

It is a noteworthy fact that the human and animal nervous 
systems, which are known to be capable of the work of a com­
putation system, contain elements which are ideally suited to act 
as relays. These elements are the so-called neurons or nerve cells. 
While they show rather complicated properties under the influ­
ence of electrical currents, in their ordinary physiological action 
they conform very nearly to the "all-or-none" principle;  that 
is, they are either at rest, or when they "fire" they go through a 
series of changes almost independent of the nature and intensity 
of the stimulus. 36 

Two chapters later, Wiener notes that "the realization that the brain and the 
computing machine have much in common may suggest new and valid approaches 
to psychopathology and even to psychiatrics."37 Wiener was no blind technophile, 
however. He was profoundly concerned about the impact that this new science 
and technology would have on people, and wrote The Human Use of Human Beings: 
Cybernetics and Society (Houghton Mifflin, 1950) as a follow-up to his 1948 book. 

Cybernetics became a focal point for wide-ranging research until late in 1951 
when Wiener suddenly and without explanation severed all ties with Warren 
McCulloch and the group of cyberneticians who had formed around McCulloch's 
charismatic personality, including Pitts, who had been writing his Ph.D. thesis 

34December 27, 1948 issue, quoted in Conway and Siegelman, Dark Hero, 182 
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under Wiener's supervision. Several explanations have been suggested for this 
split: One theory is that the emotionally damaged Wiener was unable to gauge 
the nuances of McCulloch's personality. Sometimes Wiener couldn't distinguish 
between McCulloch's recitation of facts and his wild speculations. 38 Another 
theory is that Wiener's wife ,  in jealously guarding her husband's reputation, had 
falsely told him that McCulloch's "boys" had seduced their daughter. 39 

Without the Wiener-McCulloch connection, cybernetics as a unified discipline 
suffered greatly. Among those personally affected by the rift, perhaps Walter Pitts 
took it hardest. He was emotionally devastated, destroyed his research and his 
Ph.D. thesis, and began a long slow decline. "He did not simply drink - as 
befitting a man of his talents, he synthesized novel analogues of barbiturates and 
opiates in the laboratory and experimented on himself by ingesting long-chain 
alcohols. "40 Walter Pitts died in 1969 at the age of 46 from bleeding esophageal 
varices, a problem often associated with chronic alcoholism. 

Even without the split between Wiener and McCulloch, it's not certain that 
cybernetics would have survived. The concept of a broad interdisciplinary umbrella 
doesn't quite fit into American academia, where specialization is the key to success. 
Although there have been numerous attempts to revive the ideals of cybernetics, it 
lives on mostly linguistically in popular culture with words like cyborg (short for 
"cybernetic organism"), and the ubiquitous cyber- prefix in cyberspace, cybercafe, 
cyberpunk, and the oxymoronic cybersex. Even the use of these cyber- words has 
been diminishing in recent years in submission to the popular "e-" prefix. 

The McCulloch and Pitts paper on the mathematical model of the neural 
network also served as a catalyst for john von Neumann, who was involved in 
the design of several seminal computer projects including the EDV AC (Electronic 
Discrete Variable Automatic Computer) . In the First Draft of a Report on the 
EDVAC (dated June 30, 1945) ,  von Neumann described the computer switching 
mechanism: "Every digital computing device contains certain relay like elements, 
with discrete equilibria. Such an element has two or more distinct states in which 
it can exist indefinitely."41 Citing the McCulloch and Pitts paper, von Neumann 
wrote: "It is worth mentioning, that the neurons of the higher animals are definitely 
elements in the above sense."42 

By the following year, von Neumann was exploring the connections between 
living beings and machines using a Greek word for a mechanism that exhibits 

38Arbib, "Warren McCulloch's Search for the Logic of the Nervous System," 201 -202 
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living characteristics: automaton.43 In a letter to Norbert Wiener, von Neumann 
wondered aloud how they had ambitiously come to study the human brain, surely 
the most complex of all natural or anificial automata: 

Our thoughts - I mean yours and Pitts' and mine - were 
so far mainly focused on the subject of neurology, and more 
specifically on the human nervous system, and there primarily 
on the central nervous system. Thus, in trying to understand 
the function of automata and the general principles govern­
ing them, we selected for prompt action the most complicated 
object under the sun - literally . . .  Our thinking - or at any 
rate mine - on the entire subject of automata would be much 
more muddled than it is, if these extremely bold efforts - with 
which I would like to put on one par the very un-neurological 
thesis of R. (sic] Turing - had not been made. 44 

To von Neumann, an automaton was anything with an input, output, and some 
kind of processing in the middle. In September 1948, he gave the lead presentation 
in a "Cerebral Mechanisms in Behavior" symposium at the California Institute of 
Technology. His talk (entitled "The General and Logical Theory of Automata") 
contains much comparison of the human brain and 1948-era computers in terms 
of size, speed, switches, and energy dissipation. He identified the need to develop 
a new kind of logic, and speculated about something that was to become one of 
von Neumann's major interests: self-reproducing automata.45 

Wiener kidded von Neumann about the concept: "I am very much interested in 
what you have to say about the reproductive potentialities of the future . . . .  It may 
be an opponunity for a new Kinsey report. "46 To von Neumann, self-reproducing 
automata were no laughing matter. He wondered whether there was some kind 
of unknown law that prohibited a machine from building a replica of itself. Even 
living things don't reproduce in this way (although DNA itself does) so the question 
presents some interesting ontological issues as well. 

Increased research into the theory of automata and Turing Machines made 
possible the seminal book Automata Studies edited by founder of communications 
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theory Claude Elwood Shannon and artificial-intelligence pioneer and inventor 
of the Lisp programming language john McCarthy, and published by Princeton 
University Press in 1956. The book includes papers on automata by john von 
Neumann, Stephen Kleene, and artificial-intelligence pioneer Marvin Minsky (b. 
1927), and some of the first papers on Turing Machines by Claude E. Shannon 
and Martin Davis. 

As the Cold War of the early 1950s heated up, Norbert Wiener and john von 
Neumann found themselves at opposing political poles. Wiener was appalled by 
the use of nuclear weapons against the j apanese cities of Hiroshima and Nagasaki 
in the Second World War. He stopped taking government money for research 
and his writings increasingly focused on social concerns prompted by the rising 
use of technology in both war and peace. In contrast, the Cold War sparked john 
von Neumann's anti-communist tendencies and he became a strong advocate of 
nuclear weapons. In 1955,  von Neumann discovered he had bone cancer. He was 
hospitalized in 1956 and died the following year at the age of 53. It's possible that 
the cancer was caused by exposure to radiation while witnessing atomic bomb 
tests.47 

john von Neumann left behind an unfinished series of lectures that were 
published in 1958 as the book The Computer and the Brain. Ultimately unsatisfying, 
the book contains many tantalizing hints of what the completed version might 
have offered. A long unfinished manuscript on automata was edited and completed 
by Arthur W. Burks (b. 19 1 5) and published in 1966 under the title Theory of 
Self-Reproducing Automata. 

Early in his investigations into self-reproducing automata, von Neumann 
imagined a machine that might live in a big soup with spare parts floating around, 
and explored how the machine might assemble its duplicate from these parts. 
These types of automata became known as kinematic automata, and might be 
similar to what we commonly regard as robots. 

In discussions with his friend Stanislaw Ulam (who was doing research into 
crystal growth), von Neumann decided to investigate instead a much simpler 
model called cellular automata. 

Cellular automata are mathematical constructs that resemble a structure of 
cells. Cellular automata can potentially exist in various dimensions, but most 
studies have been restricted to a two-dimensional grid. Each cell in the grid is 
affected by its neighbors as if the cells are linked in a simple network. Through 
successive "moves" or "generations," cells change state according to certain rules. 
Simple rules for cellular automata can often lead to complex behavior. john von 
Neumann worked with cells that have 29 states, and proved that these can be 
implemented to form a Universal Turing Machine.48 
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Cellular automata burst from their academic confines in 1970 when British 
mathematician john Horton Conway (b . 1937) designed a simple type of cellular 
automata that he called the Game of Life (not to be confused with the board 
game of the same name) . The Game of Life automata have simple rules: In a 
two-dimensional grid resembling graph paper, a cell is either alive (filled) or dead 
(not filled). In each successive generation a cell potentially changes its state based 
on its eight immediate neighbors: If a live cell is surrounded by two or three 
live cells, it remains alive. If surrounded by only zero or one live cell , it dies of 
loneliness; surrounded by four or more live cells, it dies of overcrowding. A dead 
cell surrounded by exactly three live cells becomes alive as a result of an obscure 
form of reproduction. 

Several of Manin Gardner's "Mathematical Games" columns in Scientific Ameri­
can popularized Conway's Game ofLife,49 and by 1974, Time magazine complained 
that "millions of dollars in valuable computer time may have already been wasted 
by the game's growing horde of fanatics."50 Of course, in 1974 these were not 
personal computers, but corporate mainframes. Today the Game of Life is mostly 
played on personal computers, about which Time magazine would presumably be 
less frantic. 

Despite the simple rules, Game of Life automata exhibit some very complex 
patterns. It is possible to create patterns that continuously spawn offspring, for 
example. Although it hardly seems possible , Turing Machines can be constructed 
from these cellular automata. The Game of Life is Turing complete.5 1 

Also interested in cellular automata was German engineer Konrad Zuse (whose 
last name is pronounced "tsoo-za") . Zuse was born just two years and one day 
earlier than Alan Turing, and while Turing was writing his paper on computable 
numbers, Zuse was building a computer in his parent's apartment in Berlin. 

In 1969, Zuse published a shon, 74-page book entitled Rechnender Raum 
(translated as Calculating Space) that pioneered the field of "digital physics" - the 
interpretation of the workings and laws of the universe within a framework of 
computability. 

Historically, the laws of physics had been assumed to be continuous. Quantities 
of distance, velocity, mass, and energy seem best described with real numbers 
and manipulated through differential equations. Some aspects of quantum theory 
instead suggest that the underlying structure of the universe might be discrete 
and digital in nature , and the continuous nature of the real world might be 

49These columns on the Game of life were later collected in Manin Gardner, Wheels, Life, and Other 

Mathematical Amusements 0N. H. Freeman, 1983). 
50Issue of January 2 1 ,  197 4, quoted in William Poundstone, The Recursive Universe: Cosmic Complexity and 

the Limits of Scientific Knowledge (William Morrow, 1985), 24. 
5 1 Paul Rendell, "A Tunng Machine in Conway's Game of life," March 8, 200 1 ,  
http.//www cs ualberta cal-bulitko/F02/papers/tm_ words pdf See also http //rendell-attic orggoVtm htm 
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only an illusion. "Is nature digital, analog or hybrid?" Zuse asked. "And is there 
essentially any justification in asking such a question?"52 To explore physical laws 
in a digital manner, Zuse created "digital particles" that he manipulated with the 
rules of cellular automata. Rechnender Raum is a very tentative exploration into 
the potential of digital physics to model the universe , but it is nonetheless an 
ambitious step. 

At first glance, it's hard to conceive of the universe as a massive computer. If we 
ignore the relatively insignificant life forms inhabiting at least one celestial object 
in the universe, there doesn't seem to be a lot of computational activity involved. 
Isn't the universe really just a lot of rocks flying around? 

It might help to view the broader temporal picture. The current cosmological 
model indicates that the universe arose from the Big Bang 13 .7 billion years ago, 
the Earth formed about 4.5 billion years ago, life on Earth first appeared about 3.7 
billion years ago, early primates perhaps about 10  million years ago, and modem 
humans about 200,000 years ago. Certainly something's been happening that has 
resulted in increased complexity. Immediately following the Big Bang, the universe 
was completely uniform - the epitome of simplicity - and then more complex 
particles and eventually atoms and molecules began developing. This progression 
from the simple to the complex - presumably based on the relatively simple laws 
of the universe - is very reminiscent of cellular automata. 

Computational models of the universe often owe as much to the communi­
cation theory of Claude Elwood Shannon and Norbert Wiener as they do to 
Turing. The use of the concept of entropy to measure information has forged 
a tight bond between communications and thermodynamics that has been the 
subject of several entertaining popular books over the past few years. 53 Maxwell's 
Demon, for example - that imaginary imp invented by James Clerk Maxwell 
( 1831-1879) who can operate a door to separate gases into fast-moving molecules 
and slow-moving molecules and hence reduce entropy - turns out to be impos­
sible because the demon is extracting information from the system. 

American physicist john Archibald Wheeler ( 191 1-2008) linked the existence 
of the universe to the human observation of it. We ask yes-no questions in these 
observations and receive information in answer. Wheeler's three-word description 
of this process is the indelibly catchy phrase "It from bit" : 

�2 Konrad Zuse, Calculating Space, translation of Rechnender Raum (MIT Technical Translation, 1970), 22 
(page 16 in the German publication) 
�3Tom Siegned, The Bit and the Pendurum: From Quantum Computing to M Theory - The New Physics of 

Information Oohn Wiley &: Sons, 2000) Hans Chnstian von Baeyer, Information The New Language 

of Science (Harvard University Press, 2003). Charles Seife, Decoding the Universe· How the New Science of 

Information is Explaining Everything in the Cosmos from Our Brains to Blach Holes (Viking, 2006) 



Is Everything a Turing Machine? 343 

It from bit symbolizes the idea that every item of the phys-
ical world has at bottom - at a very deep bottom, in most 
instances - an immaterial source and explanation; that what 
we call reality arises in the last analysis from the posing of yes-no 
questions and the registering of equipment-evoked responses; in 
short, that all things physical are information-theoretic in origin 
and this is a participatory universe. 54 

While proposing a universe fabricated from information, Wheeler rejected the 
concept of the universe as any type of machine because it "has to postulate 
explicitly or implicitly, a supermachine, a scheme, a device, a miracle, which will 
tum out universes in infinite variety and infinite number. "55 

Quite a different conception is that of David Deutsch (b. 1953), one of the 
pioneers of quantum computing. Deutsch is a strong advocate of the "many worlds" 
interpretation of quantum physics originated by American physicist Hugh Everett 
( 1930- 1982) . What we perceive as the paradoxes of the particle and wave duality 
of quantum physics is actually interference from multiple worlds that branch off 
with quantum events. The universe that we know is only one possible universe in 
a complete multiverse. 

In his 1997 book The Fabric of Reality, Deutsch sets out to explain the nature of 
the universe through interweaving four strands: 

• Epistemology as characterized by the Vienna-born philosopher of science 
Karl Popper (1902- 1994); 

• Quantum physics in the framework of the many-worlds interpretation of 
Hugh Everett; 

• Evolution as described by English naturalist Charles Darwin (1909- 1982) 
and British evolutionary biologist Richard Dawkins (b. 1941) ;  and 

• Computation as pioneered by Alan Turing. 

Within a discussion about virtual reality generators, Deutsch develops what 
he calls the Turing principle. At first, the Turing principle seems to be about 
mechanisms performing computations: "There exists an abstract universal computer 
whose repertoire includes any computation that any physically possible object can 
perform." Deutsch is actually identifying this computer as simulating every type 
of physical process. He soon shows that these computations are equivalent 
to generating a virtual-reality universe . Gradually the Turing principle evolves 

'"John Archibald Wheeler, "Information, Physics, Quantum The Search for Links" (1989) in Anthony 
] G. Hey, ed , Feynman and Computation· Exploring the Limits of Computers (Perseus Books, 1999), 3 1 1 .  
"Ibid, 3 14  but here Wheeler quoted another paper h e  wrote from 1988. 
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to a much stronger version: "It is possible to build a virtual-reality generator whose 
repertoire includes every physically possible environment,"56 which would certainly 
include the universe in which we live. 

Self-described "quantum mechanic" and MIT professor of mechanical engi­
neering Seth Lloyd (b. 1960) prefers to interpret quantum physics in terms of 
"weirdness" rather than multiple worlds, but he describes the universe and its 
parts in terms of computation and information - "The Big Bang was also a Bit 
Bang." Lloyd rejects the idea of modeling the universe on a Turing Machine, 
however. "The universe is fundamentally quantum-mechanical, and conventional 
digital computers have a hard time simulating quantum-mechanical systems."57 

This is one reason why he finds the quantum computer more appropriate to 
the task. 

The universe is a physical system. Thus, it could be simulated 
efficiently by a quantum computer - one exactly the same size 
as the universe itself. Because the universe supports quantum 
computation and can be efficiently simulated by a quantum 
computer, the universe is neither more nor less computation­
ally powerful than a universal quantum computer . . .  We can 
now give a precise answer to the question of whether the uni­
verse is a quantum computer in the technical sense. The answer 
is Yes. The universe is a quantum computer. 58 

One feature that quantum computers add to the conventional Turing Machine is 
the ability to generate true random numbers as a result of quantum processes. 

Cellular automata have also reemerged as a model for the physical laws of 
the universe in the work of British physicist, mathematician, and creator of the 
Mathematica computer program Stephen Wolfram (b. 1959) , culminating in 
the huge, ambitious, and copiously illustrated 2002 book A New Kind of Science. 
Wolfram was inspired in this quest by observing how cellular automata exhibit 
great complexity based on simple rules. He closely ties his automata to the 
universality of Turing Machines and describes how they can model physical 
processes. Wolfram does not introduce quantum mechanics into his system, but 
suggests he needn't because "it is my strong suspicion that the kinds of programs 
that I have discussed . . .  will actually in the end tum out to show many if not all 
the key features of quantum theory."59 

56David Deutsch, The Fabnc of Reality (Penguin Books, 1997), 132- 135 
57Seth Lloyd, Programming the Universe A Quantum Computer Scientist Takes on the Cosmos (Alfred A Knopf, 
2006), 46, 53 
58Ibid, 54-55 
59Stephen Wolfram. A New Kind of Science (Wolfram Media, 2002), 538 
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In A New Kind of Science, Wolfram finds computational universality in so many 
manifestations that he defines a Principle of Computational Equivalence that 

introduces a new law of nature to the effect that no system can 
ever carry out explicit computations that are more sophisticated 
than those carried out by systems like cellular automata and Tur­
ing machines . . .  So what about computations that we perform 
abstractly with computers or in our brains? Can these perhaps be 
more sophisticated? Presumably they cannot, at least if we want 
actual results, and not just generalities. For if a computation is to 
be carried out explicitly, then it must ultimately be implemented 
as a physical process, and must therefore be subject to the same 
limitations as any such process. 60 

Once we become convinced that the universe is displaying no uncomputable 
characteristics (whether of conventional digital computers or quantum computers) , 
then nothing that is part of the universe can be an exception to the rule. life ,  for 
example, is part of a computable universe, as well as one of the most mysterious 
manifestations of life that we know - the human mind. 

For centuries, philosophers, biologists, psychologists, and just plain folk have 
struggled with the nature of the human mind. While we often freely acknowledge 
that most of our bodily functions are mechanistic results of physical and chemical 
processes in our various organs, we're not quite ready to attribute the workings 
of the mind to similar mechanisms. The mind, we feel ,  is something special. 
Certainly the brain has something to do with the mind, but surely, we plead, it 
can't account for everything that goes on inside. 

In Western culture, this belief is known as "mind/body dualism" and is most 
commonly associated with Rene Descartes ( 1 596-1 650) and particularly his 
Meditationes de Prima Philosophia of 164 1 .  Descartes believed that most of our 
human bodies (and entire so-called lower animals) were basically machines, but 
that the mind operated quite differently. 

In the 1940s, dualism began taking a beating. To neuroscientist and computer 
scientist Michael A. Arbib, McCulloch and Pitts had resolved the question in their 
194 3 paper on the neuron. The brain had a suitable structure for performing 
computation; hence McCulloch and Pitts "had shown that 'anything finite enough' 
that could be logically conceived could be done by a neural network. They had 
killed dualism."61 

Several years later, philosopher Gilbert Ryle (1900-1976) took a swing at dual­
ism in his book The Concept of Mind (1949), building a strong case without referring 

60Ibid, 720, 72 1 
61 Arbib, "Warren McCulloch's Search for the Logic of the Nervous System," 2 1 3  
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to the McCulloch and Pitts paper. These days, dualism is certainly in eclipse. Most 
people who research the mind (either philosophically or neurobiologistically) do 
so from the perspective that the mind is solely a manifestation of the physical 
workings of the human body, in particular the nervous system and brain. 

Perhaps not surprising, this rejection of dualism has coincided with an increased 
understanding of computation and algorithms. The Turing Machine was conceived 
as a model of a human computer performing a precisely defined algorithmic task, 
so this connection between machine and mind has existed from the very beginnings 
of automated computation. Perhaps not surprising as well is that one of the first 
people to explore the notion of artificial intelligence was Alan Turing himself, 
most famously in his 1950 Mind article "Computing Machinery and Intelligence," 
in which he invented what's now called the Turing Test. 

Once dualism is abandoned, the mind must be viewed as a natural manifestation 
of the physical brain (along with the rest of the body) and not as a supernatural 
"something else." Despite our emotional reluctance, it becomes hard to avoid 
these conclusions: First, that the mind is basically a Turing Machine with both the 
capabilities and limitations ofTuring Machines; and secondly, that it is theoretically 
possible to build an artificial mind. 

As American philosopher Daniel Dennett (b. 1942) put it, "Alan Turing had 
the basic move that we could replace Kant's question of how it was possible for 
there to be thought, with an engineering question - let's think how can we make 
a thought come into existence. "62 

What seems to bother us most about the Turing Test - and indeed, any 
suggestion that the brain is a computer - is the nagging first-person voice inside 
our heads that we call "consciousness." Consciousness gives strength to our feelings 
of subjective autonomy and our belief in free will. 

Consciousness is nonetheless elusive and slippery. Most of us would probably 
claim to have the interior monologue of consciousness going on continuously 
during our entire waking days, but by its very nature consciousness becomes 
invisible when it's not working. Most of us interact with other people under the 
assumption that they have similar consciousnesses as our own, and yet we can't 
be sure that they do, and we'd be at a loss to convince others of the existence of 
our own consciousness. 

Determining how our brains manufacture self-awareness is what Australian 
philosopher David Chalmers (b. 1966) calls the "hard problem" of consciousness 
as opposed to the comparatively easy problems of how the brain interacts with our 
organs of sensory input and output. 

The Turing Test - which challenges machines to fool humans into thinking 
they're smart - implicitly takes a behaviorist stance that it is unnecessary to know 

62Daniel Dennett, interview in Susan Blackmore, Conversations on Consciousness What the Best Minds Think 

About the Brain, Free Will, and What it Means to be Human (Oxford University Press, 2006), 81  
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what's going on inside someone (or something) else's central processing unit to 
classify an entity as "intelligent." We're treating whatever we're conversing with 
as a "black box." This is how we ultimately interact with other human beings, 
because we can't prove that anyone else has consciousness. Yet even if we can't 
differentiate a machine from a human being, we seem to want very much to 
differentiate between the machine and ourselves. 

Everything we think we know about computers tells us that they're really only 
following a set of rules. They don't know what they're doing the same way we 
humans do. This is the issue raised by the famous thought experiment of American 
philosophy professor John Searle (b. 1932) called the "Chinese room." A person 
who knows no Chinese nonetheless has a book that lets him respond to questions 
in Chinese with reasonable answers. This person might pass a Turing Test in 
Chinese with absolutely no understanding of the questions or answers.63 

The big problem is that computers deal only with syntax, while people can 
handle semantics as well. To Searle, this means that a digital computer - no 
matter how sophisticated it becomes - will never understand what it's doing in 
the same way that a human can. 

English mathematical physicist Roger Penrose (b. 1931)  is also certain that the 
mind is more than just a computational organ. In his books The Emperor's New 
Mind ( 1989) and Shadows of the Mind ( 1 994), Penrose asserts that consciousness 
is beyond computation, and speculates that some kind of quantum process in 
the brain performs non-algorithmic chores that transcend the capabilities of the 
Turing Machine. 

Penrose finds Godel's Incompleteness Theorem to be a particularly revealing 
problem. We as human beings understand the truth of the unprovable statement 
that Godel derives, yet no computation can show that truth because it doesn't 
derive from the axioms. This is not a new observation: In their 1958 book 
Godel's Proof (New York University Press) , Ernest Nagel and James R. Newman 
found in Godel's theorem a similar rejection of machine intelligence, as did 
philosopher john Randolph Lucas (b. 1929) in his famous 1961 essay on "Minds, 
Machines and GOdel."64 These seem to be arguments that while machines can 
easily perform axiomatic mathematics, they can't perform metamathematics that 
require an understanding outside the axioms. 

Daniel Dennett - who perhaps more than anyone else has combined a philoso­
pher's thoughtfulness with a scientist's empiricism to fashion a portrait of the mind 
in fascinating books such as Consciousness Explained ( 199 1) - thinks differently. 
Dennett has assimilated the concepts of computability and combined them with a 

63john R. Searle, "Minds, Brains, and Programs," from The Behavioral and Brain Sciences, Vol 3 (Cambndge 
University Press, 1980) Republished in Douglas R Hofstandter and Daniel Dennett, eds , The Mind's [­
Fantasies and Reflections on Self and Soul (Basic, Books, 1981),  353-373. 
Ml R Lucas, "Minds, Machines and GOdel," Philosophy, Vol 36, No 137 (Apr.-jul 1961), 1 1 2-127 
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solid understanding of evolution and a vast knowledge of modem neurobiological 
research. His vision of the brain and mind seem an unlikely medium for a Turing 
Machine: The brain is part of a nervous system that is itself part of a body; there 
can be no separation. Get a little excited about a train of thought, and the heart 
may pump a little faster to deliver more oxygen to the brain. Various drugs affect 
the brain in a variety of ways. The brain receives a barrage of stimuli from the 
eyes, ears, and other organs, and constantly interacts through the body with 
the real world. 

The brain is not a linear processing system. lt is a massively parallel decentralized 
system without even an area where it all "comes together" in one central "Cartesian 
theater" (as Dennett derisively calls the concept). Dennett suggests instead a 
"multiple drafts" model of the mind in which bits and pieces of sensory input, 
visual data, and words remain unfinished, sketchy, and incomplete. lf the brain is 
a computer, it's not like a computer any rational engineer would design! lt is truly 
a mess in there . 

Moreover, what we think of as consciousness is a more serial activity riding on 
top of this parallel structure. Dennett posits, 

the hypothesis that human consciousness (1) is too recent an 
innovation to be hard-wired into the innate machinery, (2) is 
largely a product of cultural evolution that gets imparted to 
brains in early training, and (3) its successful installation is 
determined by myriad microsettings in the plasticity of the brain, 
which means that its functionally important features are very 
likely to be invisible to neuroanatomical scrutiny in spite of the 
extreme salience of the effects. 65 

Consciousness is, in some sense at least, "talking" to oneself, and that requires the 
cultural construct of language. 

Certainly there would be little point in designing a computer to mimic the 
human mind . It would need to have a heavy amount of fancy input, and wouldn't 
even work satisfactorily without years of education and experience . Nonetheless, 
is it theoretically possible to construct a computer that can pass an unrestricted 
Turing Test (which Dennett believes to be a very difficult and just test) and 
would such a computer have consciousness? Dennett believes the answer to both 
questions is Yes. 

Regardless of which mechanistic view of the brain you prefer, another chilling 
implication is that the machinery determines our decisions rather than the other 
way around . What's happened to free will? 

The disappearance of free will in a mechanistic universe was really implied 
long ago by the discovery that strict deterministic laws govern the movement 

65Daniel Dennett, Consciousness Explained (Back Bay Books, 1991), 219 
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of every particle. Early in his book Essai Philosophique sur les Probabilites ( 1814) 
Pierre-Simon, Marquis de Laplace (1 749- 1827) wrote, 

Given for one instant an intelligence which could comprehend 
all the forces by which nature is animated and the respective 
situation of the beings who compose it - an intelligence suffi­
ciently vast to submit these data to analysis - it would embrace 
in the same formula the movements of the greatest bodies of the 
universe and those of the lightest atom; for it, nothing would 
be uncertain and the future, as the past, would be present to its 
eyes.66 

This concept is sometimes known as Laplace's Demon. It's hard to avoid the 
implication that the motion of every atom in the universe - including those 
atoms that make up the cells in our brains - became fixed at the time of the Big 
Bang, and these atoms have been bouncing around in the predetermined pattern 
ever since. 

Of course, Laplace's Demon can't really exist. To store all the information 
required to track every particle in the universe would require a computer larger 
than the universe itself. The Heisenberg Uncertainty Principle tells us that we can't 
know both the location and momentum of elementary particles. Mathematically 
anticipating the outcome of these atomic collisions is classically known as the 
"many-body problem," and even the three-body problem is enough for major 
algorithmic headaches. 

If the universe is truly a Turing Machine, and even if we could know the current 
"complete configuration" and could have a table of all the configurations that 
govern the machine, we could not predict where this universe is going without 
actually "running" the "program." 

Undecidability is essentially free will. Seth Lloyd notes that the halting problem, 

foils not only conventional digital computers but any system 
capable of performing digital logic. Since colliding atoms intrin­
sically perform digital logic, their long-term future is uncomput­
able . . .  The inscrutable nature of our choices when we exercise 
free will is a close analog of the halting problem: once we set a 
train of thought in motion, we do not know whether it will lead 
anywhere at all . Even it if does lead somewhere, we don't know 
where that somewhere is until we get there.67 

66Pierre Simon, Marquis de Uiplace, A Philosophical Essay on Probabilities, translated by Fredenck Wilson 
Truscott and Fredenck Lincoln Emory Oohn Wiley & Sons, 1902, Dover, 1995) 
67Uoyd, Programming the Universe, 98, 36 
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David Deutsch mulls over the possibilities that the brain is a "classical" 
non-quantum computer or a quantum one: 

It is often suggested that the brain may be a quantum computer, 
and that its intuitions, consciousness and problem-solving abil­
ities might depend on quantum computations. This could be so, 
but I know of no evidence and no convincing argument that it 
is so. My bet is that the brain, considered as a computer, is a 
classical one.68 

He then acknowledges that "the Turing explanation of computation seems to leave 
no room, even in principle, for any future explanation in physical terms of mental 
attributes such as consciousness and free will." Keep in mind, however, that in 
the many-worlds interpretation of quantum physics, worlds constantly split off, so 
that in this world you may choose to do one thing, while in another world, you're 
really choosing another. If that isn't free will, then what is? Deutsch concludes, 
''Turing's conception of computation seems less disconnected from human values, 
and is no obstacle to the understanding of human attributes like free will, provided 
it is understood in a multi verse context. "69 

When Stephen Wolfram began studying the complex structures that arise from 
cellular automata, he tried to find ways to predict the outcomes and perhaps 
make shortcuts through the generations. He could not, for "there can be no way 
to predict how the system will behave except by going through almost as many 
steps of computation as the evolution of the system itself . . .  For many systems 
no systematic prediction can be done, so that there is no general way to shoncut 
their process of evolution . . .  " The inability to make predictions in effect gives 
freedom to the system to exercise free will, and Wolfram even provides a diagram 
of a "cellular automaton whose behavior seems to show an analog of free will."70 

It's a consolation. Even if the universe and the human brain have as their 
foundations the simple rules and complex structure of a cellular automaton or 
a Turing Machine, we can't predict the future based simply on those rules. The 
future doesn't exist until the program runs the code. 

Or, as Dr. Emmett Brown says to Marty McFly and Jennifer Parker at the 
conclusion of the "Back to the Future" trilogy71 , "It means your future hasn't been 
written yet. No one's has. Your future is whatever you make it. So make it a good 
one, both of you." 

68Deutsch, The Fabric of Reality, 238. 
69lbid, 336, 339 
70Wolfram, A New Kind of Science, 739, 741 ,  750 
71 Screenplay by Bob Gale, based on the story and characters by Gale and Roben Zemeckis 



The Long  S leep 
of D iophantus 

L
ong after Alan Turing and Alonzo Church had proved that there can be 
no general decision procedure for first-order logic, the very first decision 

problem was still unresolved. This was the famous Tenth Problem listed by David 
Hilbert in his address to the International Congress of Mathematicians in 1900 as 
one of the challenges facing mathematicians of the twentieth century: 

10.  Determination of the Solvability of a Diophantine Equation 

Given a diophantine equation with any number of unknown 
quantities and with rational integral numerical coefficients: To 
devise a process according to which it can be determined by a finite 
number of operations whether the equation is solvable in rational 
integers. 1 

The algebra problems created by third-century Alexandrian mathematician 
Diophantus in his Arithmetica can always be expressed as polynomials with integer 
coefficients and multiple variables. Hilbert's Tenth Problem asked for a general 
process to show if a particular Diophantine equation has a solution in whole 
numbers. 

Of course, after Godel's Incompleteness Theorem and the undecidability results 
of Church and Turing, few mathematicians expected anyone to fulfill Hilbert's 
wish and actually "devise a process" to determine the solvability of Diophantine 
equations. Pretty much everyone expected a negative result - a proof that such a 
general process was impossible. 

Many mathematicians were fascinated by the Tenth Problem, and at least one 
devoted almost her entire professional career to pursuing this elusive negative 
proof. This was Julia Robinson. 

One of Julia Robinson's earliest memories was of arranging pebbles near a giant 
saguaro cactus near her home in Arizona. 

1 Ben H Yandell, The Honors dass Hilbert's Problems and Their Solvers (A. K. Peters, 2002), 406 
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I think that I have always had a basic liking for the natural num­
bers. To me they are the one real thing. We can conceive of a 
chemistry that is different from ours, or a biology, but we cannot 
conceive of a different mathematics of numbers. What is proved 
about numbers will be a fact in any universe.2 

Julia Robinson was bornJulia Bowman in St. Louis in 1919.  Her sister Constance 
was two years older. When Julia was about 2 ,  their mother died, and they were 
sent to live with their grandmother near Phoenix. They were later joined by their 
father with his new wife, and they moved to Point Loma on San Diego Bay. 

When Julia was 9 years old, she came down with scarlet fever, and then 
rheumatic fever, and eventually missed more than two years of school. To help her 
catch up, her parents hired a tutor who brought Julia through the fifth through 
eighth grades in one year. 

One day she told me that you could never carry the square root 
of 2 to a point where the decimal began to repeat. She knew 
that this fact had been proved, although she did not know how. 
I didn't see how anyone could prove such a thing and I went 
home and utilized my newly acquired skills at extracting square 
roots to check it but finally, late in the afternoon, gave up.3 

Julia entered San Diego High School in 1933, the same year that mathematicians 
began fleeing Gottingen and other German universities. Her childhood illnesses 
had left her shy, quiet, and awkward, but also able to work alone with great 
determination and patience. 

As she progressed through the grades, eventually she became the only girl in her 
class taking courses in mathematics and physics, and found herself getting the best 
grades in those subjects as well. Her high school graduation present was a slide 
rule, and in the fall of 1936, not yet 17 years old, she began attending San Diego 
State College (now called San Diego State University) majoring in mathematics. 
The tuition was $ 1 2  a semester and Julia expected she'd be a teacher. "At the time 
I had no idea that such a thing as a mathematician (as opposed to a math teacher) 
existed."4 

2Constance Reid, Julia. A Life in Mathematics (Mathematical Association of Amenca, 1996), 3 This 
quotation is from the pan of the book entitled "The Autobiography of Julia Robinson," which was 
actually wntten by Constance Reid based on inte1V1ews wlth her sister The Autobiography was 
prevtously published in the book Constance Reid, More Mathematical People (Academic Press, 1990), 
262-280 
3Constance Reid, Julia. A Life in Mathematics, 9 
4 Ibid, 2 1 .  
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In 1937, Simon & Schuster published the now-famous book Men of Mathematics 
by mathematician Edward Temple Bell ( 1883-1960) . Reading it, Julia got her first 
insights into who mathematicians are and what they actually do. Despite its rather 
fanciful interpretations of history and personalities, Men of Mathematics was a real 
inspiration to Julia, as it has been for many budding mathematicians in the decades 
since. 

In 1939, Julia left San Diego State College for the University of California 
at Berkeley, which at the time was building an impressive mathematics faculty. 
During her first year, her teacher in a class in number theory was Raphael 
M. Robinson, just about eight years older than Julia. "In the second semester there 
were only four students - I was again the only girl - and Raphael began to ask 
me to go on walks with him . . . .  On one of our early walks, he introduced me to 
Godel's results. "5 

Perhaps they spoke of other theorems as well, for Raphael Robinson and 
Julia Bowman were married in 194 1 .  Due to a nepotism rule, Julia could not 
teach in the mathematics department at Berkeley, although she already had 
a job as a teaching assistant in the statistics department. (When she applied 
for that job, the personnel department asked what she did each day. She 
wrote , "Monday - tried to prove theorem, Tuesday - tried to prove theorem. 
Wednesday - tried to prove theorem, Thursday - tried to prove theorem, 
Friday - theorem false ."6) 

Although Raphael and Julia Robinson wanted to raise a family. Julia's childhood 
illnesses had seriously weakened her heart. She had one miscarriage and their 
doctor strongly advised against her continuing to try to have children. 7 

In the academic year 1946-1947, Raphael was a visiting professor at Princeton 
University. He and Julia attended classes given by Alonzo Church, and heard 
Kurt Godel lecture on the foundations of mathematics during the Princeton 
bicentennial. 

Back in Berkeley, Julia Robinson studied under famed Polish-born logician 
Alfred Tarski (1902- 1983), and received her Ph.D.  in 1948. Even at that time her 
dissertation revealed "that her main field of interest lay on the borderline between 
logic and number theory."8 

In 1948, Tarski got her working on a question peripherally connected to the 
problem that would dominate her life as a professional mathematician: Hilbert's 
Tenth Problem. 

5Ibid, 31 ,  35  
6Ibid, 33 
7Ibid, 43 
8Constance Reid with Raphael M Robinson, ''.Julia Bowman Robinson ( 1919-1985)," in A Century of 

Mathematics in Amenca, Pan III (Amencan Mathematical Society, 1989). 410 
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Like most mathematicians, Julia Robinson had no illusions that the Tenth 
Problem could have a solution that would have made Hilbert happy. As her first 
paper on Diophantine Equations9 explained, 

Since there are many classical diophantine equations with one 
parameter for which no effective method is known to determine 
the solvability for an arbitrary value of the parameter, it is very 
unlikely that a decision procedure can be found. For example, 
no way is known to determine the values for which the diophan­
tine system, 

xi + ay2 = si , x2 - ay2 
= ti , 

is solvable . (This problem was first studied by the Arabs in the 
Middle Ages.) 

Some mathematicians trying to get a handle on Diophantine equations 
approached the problem obliquely rather than head on. They defined a Dio­
phantine set as the set of all solutions to a particular Diophantine equation. For 
example, the set of all even numbers is actually the set of whole number values x 
that are solutions to the following Diophantine equation: 

x - 2y = 0 

This equation has two variables, but the set is constructed from just the x values; 
if x and y are whole number solutions, then x is always even. 

It's also possible to define a Diophantine relation among multiple variables. For 
example, suppose you want to express the relation x is less thany. The values x and 
y that satisfy this condition are solutions to the following Diophantine equation: 

x - y + z + l = O  

Julia Robinson's paper didn't prove that certain sets and relations were Dio­
phantine, but instead that certain sets and relations could be defined in terms of 
exponentiation - that is, xY ,  where both x and y are variables. 

The introduction of exponentiation into a discussion of Diophantine equations 
at first seems irrelevant. Exponentiation isn't allowed in Diophantine equations. A 
Diophantine equation can contain variables raised to whole number powers, but 
not a variable raised to a variable power. 

Nevertheless, the paper showed that exponentiation was an important relation­
ship because binomial coefficients, the factorial function, and the set of primes 

9Julia Robinson, "Existential Definability in Anthmetic," Transactions of the Amencan Mathematical Society, 

Vol 72 (195i), 437-449. Also published in Julia Robinson, The Collected Works oflulia Robinson, ed 
Solomon Feferman (Amencan Mathematical Society, 1996), 47-59 
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could all be defined in terms of exponentiation. Was it  possible that exponentia­
tion was truly Diophantine because it could be defined as a Diophantine relation? 
That was not clear, but Julia Robinson's paper also proved that exponentiation 
could be defined in terms of any Diophantine relation that exhibited roughly 
exponential growth. No such Diophantine relation was known, but it seemed to 
her "very likely"10 that one existed. 

Strictly speaking, Fermat's last Theorem (also known as Fermat's Great 
Theorem) is not a Diophantine equation: 

x" + y" = z" 

Fermat's Theorem states that the equation is not solvable in whole numbers for any 
n greater than 2, which means that n is being treated as a variable. Replace n with 
any whole number greater than 2 and only then does it become a Diophan­
tine equation. If exponentiation turned out to be a Diophantine relation, 
then Fermat's equation could actually be expressed as a normal Diophantine 
equation - albeit one much more complex than its common form. 

Julia Robinson's paper was presented in 1950 to the International Congress of 
Mathematicians, held that year at Harvard. It was here that Julia Robinson first 
met Manin Davis. 

Manin Davis had been bitten by the Tenth Problem bug while an undergraduate 
at City College in New York. Among the faculty in the mathematics department at 
CCNY was Emil Post, who had written that the Tenth Problem just "begs for an 
unsolvability proof."1 1 

While a graduate student at Princeton, Davis found that he "couldn't stop myself 
from thinking about Hilben's Tenth Problem. I thought it unlikely that I would 
get anywhere on such a difficult problem and tried without success to discipline 
myself to stay away from it," although his Ph.D. thesis did touch on the topic. 

Martin Davis had just received his Ph.D. when he attended the International 
Congress, and Julia Robinson remembers Davis's reaction to her paper as rather 
mystified: "I remember that he said he didn't see how my work could help to solve 
Hilben's problem, since it was just a series of examples. I said, well, I did what I 
could."12 Davis later confessed: "It's been said that I told her that I doubted that 
her approach would get very far, surely one of the more foolish statements I've 
made in my life." 13 

Julia and her older sister Constance hadn't been close while growing up, but 
in 1950, Constance married Neil Dan Reid, a law student at the University of San 
Francisco. Now living nearby each other, the two sisters soon became friends. With 

10Robinson, "Existential Definability in Anthmetic," 4 38. 
1 1 Manin DaVJS, Foreword lo Yun V. MatiyaseVJch , Hilbert's Tenth Problem (MIT Press, 1993), xiii 
12Reid, julia. A ufe in Mathematics, 6 1 .  
13DaVJS, Foreword to Hilbert's Tenth Problem, xiv 
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encouragement from the Robinsons, Constance Reid wrote her first book From 
Zero to Infinity (Crowell, 1955). Following a pilgrimage by the sisters to Gottingen, 
Constance Reid wrote a biography of David Hilbert (1970) that I greatly relied 
on in Chapter 3 of this book. Constance Reid's later biographical subjects were 
Richard Courant (1 976) , Jerzy Neyman (1982), E. T. Bell ( 1993), as well as the 
tribute to her sister, Julia: A Life in Mathematics (1996). 

In the summers of 1958, 1959, and 1960, Martin Davis had the opportunity 
to work with Hilary Putnam (b. 1926), known more as a philosopher than a 
mathematician, but skilled in both fields. In the summer of 1959, they began 
combining their work with Julia Robinson's methods. Eventually Davis and 
Putnam sent Julia Robinson a paper they had drafted. She improved some parts 
and all three collaborated on a new paper, ''The Decision Problem for Exponential 
Diophantine Equations" published in 196 1 . 14 

As the title says, this paper was about exponential Diophantine equations, which 
are a variation of Diophantine equations where exponentiation is allowed in several 
forms: exponentiation either of one variable to the power of another, or a constant 
to a variable power, or a variable to a constant power (as in normal Diophantine 
equations) . The second sentence of the Davis-Putnam-Robinson paper states the 
result of the proof that "there is no general algorithm for deciding whether or not 
an exponential Diophantine equation has a solution in positive integers." 

A negative solution to Hilbert's Tenth Problem was now missing one crucial 
piece, which Davis referred to as "Julia Robinson's hypothesis."1 5 This was the 
existence of a Diophantine relation of roughly exponential growth, which would 
then imply that exponentiation itself is a Diophantine relation, which would mean 
that exponential Diophantine equations can be expressed as normal Diophantine 
equations. 

Throughout the 1960s, Julia Robinson was a lecturer in mathematics (and for 
one semester, philosophy) at Berkeley, occasionally working on and publishing on 
Hilbert's Tenth Problem. For a 1969 book Studies in Number Theory, she wrote a 
40-page chapter that summed up the progress to that point, leaving open the one 
major question: 

Is the relation r = st diophantine? If so, then every exponen­
tial diophantine equation could be replaced by an equivalent 
diophantine equation in more variables. Also, every recursively 
enumerable relation would be diophantine and hence Hilbert's 

14Manin Davis. Hilary Putnam, and Julia Robinson, 'The Decision Problem for Exponential Diophantine 
Equations,'' Annals of Mathematics, Vol. 74, No. 3 (November 1961) ,  425-436. Also in The Collected Works 

ofju!ia Robinson, 77-88 
1 5DaVIS, Foreword to Hilbert's Tenth Problem, xiii. 
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problem would be unsolvable . At present, we don't know the 
answer to this question. 16 

During the 1960s, Martin Davis taught at Rensselaer Polytechnic Institute and 
New York University, and often had occasion to lecture about Hilbert's Tenth 
Problem. If someone asked his predictions on its solvability or unsolvability, 
he had a ready answer: Like a prophet from the Hebrew Bible, Davis would 
pronounce, "I think that Julia Robinson's hypothesis is true, and it will be proved 
by a clever young Russian.'' 17  

Yuri Vladimirovich Matiyasevich was born in Leningrad in 194 7, and attended 
high schools dedicated to mathematics and science. He went to Leningrad State 
University at the age of 17 ,  and spoke at the 1966 International Congress of 
Mathematicians, held that year in Moscow. He received his Ph.D. in 1970 from the 
Leningrad Department of the Steklov Institute of Mathematics, known as LOMI. 

Matiyasevich had first heard about Hilbert's Tenth Problem in 1965 when he was 
a sophomore at Leningrad State University. His advisor Sergei Maslov (1939- 198 1) 
told him to "Try to prove the algorithmic unsolvability of Diophantine equations. 
This problem is known as Hilbert's tenth problem, but that does not matter 
to you." He also recommended a course of action: "Unsolvability is nowadays 
usually proved by reducing a problem already known to be unsolvable to the 
problem whose unsolvability one needs to establish." What Maslov could not 
recommend was any literature on the subject, only that "there are some papers by 
American mathematicians about Hilbert's tenth problem, but you need not study 
them . . . .  So far the Americans have not succeeded, so their approach is most likely 
inadequate." 18 

After pursuing some unpromising approaches to the Tenth Problem for a few 
years, Matiyasevich's obsession became rather well known around the Leningrad 
State University campus. One professor would taunt him, "Have you proved 
the unsolvability of Hilbert's tenth problem? Not yet? But then you will not be 
able to graduate from the university! "19 Matiyasevich finally decided to read the 
Americans' papers, including the crucial Davis-Putnum-Robinson paper of 196 1 .  

Shortly after New Year's Day in 1970, Matiyasevich found a Diophantine relation 
involving Fibonacci numbers that satisfied Julia Robinson's hypothesis. He was 
22 years old. He gave his first public lecture on the unsolvability of Hilbert's 
Tenth Problem toward the end of January, and word traveled around the world. 

16julia Robinson, "Diophantine Decison Problems," in W J LeVeque, ed , Studies in Number Theory 

(Mathematical Association of Amenca, 1969), 107 Also in Collected Works of Julia Robinson, 176. 
17DaV1s, Foreword to Hilbert's Tenth Problem, xiii 
18Yun Matiyasevich, "My Collaboration with Julia Robinson," The Mathematical Intelligencer, Vol. 14, No 4 
( 1992), 38-45 Repnnted in Reid. Julia A Life in Mathematics, 99- 1 1 6  
19Ibid 
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Julia Robinson wrote to him, "If you really are 22, I am especially pleased to think 
that when I first made the conjecture you were a baby and I just had to wait for 
you to grow up!"20 

Julia and Raphael Robinson went to Leningrad in 1971 to meet Yuri Matiyasevich 
and his wife. In the next several years, they collaborated by mail on a few papers 
on Diophantine equations. 

Martin Davis wrote a popular article on the subject for Scientific American21 ,  
and a more technical article22 that became Appendix 2 when his classic book 
Computability and Unsolvability was republished by Dover Publications in 1982. 
In May 1974, the American Mathematical Society held a symposium in pure 
mathematics at Northern Illinois University focusing on the Hilbert problems. 
Davis, Matiyasevich, and Robinson presented a paper, "Diophantine Equations: 
Positive Aspects of a Negative Solution,''23 in which they explored some promising 
outcomes of the proof. 

With her prominent role in the resolution of Hilbert's Tenth Problem, Julia 
Robinson was now famous. In 1976, she was finally made a full professor at 
Berkeley and became the first female mathematician elected to the National 
Academy of Sciences. In 1982, she became the first female president of the 
American Mathematical Society, and the Ladies Home journal included her in a list 
of the hundred most outstanding women in America.24 

In 1 983 , Julia Robinson was awarded a MacArthur Fellowship (popularly 
known as the "genius grant") and donated part of the money anonymously to 
make possible the publication of the Collected Works of Kurt Godel by Oxford 
University Press - books that are essential to anyone doing research in the field 
of mathematical logic and computability. 

In 1984, Julia Robinson was diagnosed with leukemia, and she died the 
following year at the age of 65. Her husband Raphael Robinson died in 1995 at 
the age of 83. 

Matiyasevich recently turned 60 years old, and Martin Davis will tum 80 years 
old in the year this book is published. Both are still very active in mathematics. 

In 1993, Yuri Matiyasevich wrote a book entitled Hilbert's Tenth Problem that 
was quickly translated into English and published by MIT Press. Although the 

20Reid,]ulia: A life in Mathematics, 73. 
2 1  Manin Davis and Reuben Hersh, "Hilben's 101h Problem," Scientific American, Vol. 229, No. 5 (Nov. 
1973), 84-91 .  
22Manin Davis, "Hilben's Tenth Problem is Unsolvable," The American Mathematical Monthly, Vol. 80, 
No. 3 (Mar. 1973), 233-269. 
23Manin Davis, Yuri Matijasevic, and Julia Robinson, "Hilbert's Tenth Problem. Diophantine Equations: 
Positive Aspects of a Negative Solution," in Felix E. Browder, ed .. Mathematical Developments Arisingfrom 

Hilbert Problems (American Mathematical Society, 1976), Vol. 2. 323-378. Also in Collected Works of]ulta 

Robinson, 269-324 
24Reid , julia: A l.Jfe in Mathematics, 81 .  
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proof that Hilbert's Tenth Problem is unsolvable occupies the book's first hundred 
pages, Matiyasevich reworked the proof to be entirely self-contained and require 
almost no prior knowledge of the topics involved. 

Turing Machines enter the proof in Chapter 5 of Hilbert's Tenth Problem. As a 
child of the computer age, Matiyasevich gives his machines names reminiscent of 
keywords in modem programming languages, and then illustrates their linkages 
with program-like statements. He proves that "Turing machines are incapable 
of deciding whether or not the equations belonging to one particular family 
of Diophantine equations have solutions, to say nothing of arbitrary Diophantine 
equations . "25 

The ancient riddle tells us that Diophantus was a boy for the sixth part of his 
life, acquired a beard after another twelfth, married after another seventh, bore a 
son five years later, and then saw his son die after reaching half the measure of his 
father's years. He then spent the last four years of his life assuaging his grief by 
writing a book of algebra problems. 

Seventeen centuries later, Alan Turing died at very nearly the same age as 
Diophantus's son. He had built a tool of the imagination that continues to allow 
us to explore the capabilities and limitations of the human mind, and its logical 
and mathematical pursuits. 

Both Diophantus and Turing left behind mysteries. like human motivations, 
some Diophantine equations have solutions, some do not, and for many others, 
we'll just never know. 

25MatiyaseV1ch, Hilbert's T enrh Problem, 93 
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as non-enumerable, 24-26, 28-30, 6 1 ,  173 
Tunng Machine handling of, 233-234 

recursion 
infinite, 1 1 7  
recursive functions, 289, 327 

Reduced Instruction Set Computers (RISC). 168 
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Stead, William Thomas, 196 
Stibitz, George, 65, 73 
Stigt, Walter P van. 304 
StraVJnsky, Igor, 42 
subroutines 
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satisfactory machines, 6 1  
skele1on tables, 1 1 3-1 1 7  
S1andard Descnplion, 139- 140, 294 
subroutines, 1 1 1- 1 1 3  
symbols pnnted by, 73, 76, 85-86 
tangent, calcula1ion of, 239-241 
1ranscendental numbers, computabiliry of, 66, 170 
Tunng descnp1ion of, 68-77 
Tunng 1hesis, 188 
Universal Computing Machine xe Universal Tunng 

Machine (UTM) 
unsatisfactory machines, 61 ,  180 
use of 1erm, first, 63 

Tunng pnnciple, 343-344 
Tunng tar-pit, 122 
Tunng Test, 194-195, 346-347 

Ulam, S1aruslaw, 165, 340 
Uncenainry Pnnciple, 42 
universal quantifiers, 2 1 2-213,  2 16, 265 
Universal Tunng Machine (UTM), 143-161  

bugs, 149, 150, 161  
colons, use of, 148, 1 5 1 - 1 54, 1 57-1 58 
compleie configuration, 144-148, 1 5 1 ,  153-161 
copy-and-erase, 1 2 1-122, 124- 125 
copy and replace, 1 22- 123 
descnptionlbehavtor of, 149-161  
functions, 120-125 
input and outpu1, 14 3-146 
limiralions of, 14 7, 161 
m-configuralions, 1 47- 150, 1 53- 161 
m-functions, 153 

compared to modem computer, 93 
priming method, 93-94, 146-148 
as programmable, 14 3 
search and replace, 123-124 
semicolons, use of, 1 50-151 ,  154-155 
skeleton tables, 1 14-1 15,  149- 150, 1 52-153 
Standard Descnption, 143-147, 153 

universe, computa1ional models, 342 
unsatisfactory machines, 6 1 ,  180 

xe also circular machines 

value, of func1ions, 231 
vanables, 214 

bound, 214, 265, 287 
dependent and independent, 231 
free, 2 1 4  

vtnual reality genera1ors, 343 
von Neumann, john, 5 1 ,  59, 98, 202 

on au1omation, 338-340 
cellular automala, 340-342 
on random number generation, 172 
and Tunng, 164- 167 
von Neumann architecture, 166 

Weber, Wilhelm, 38 
Weierstrass, Karl, 302 
Weiner, Norben, 166-167, 335-340 

cybernetics, 336-340 
well-formed 

Descnption Number, 177 
formula (W.F.F ), 290-294 

Weyl, Hermann, 51 ,  98, 309 
Wheeler, john Archibald, 342-34 3 
Whitehead, Alfred Nonh, 44, 201,  283 
Wilde, Oscar, 197 
Williams, F C ,  169 
Williams Tube, 169 
Winh, Nicholas, 125 
Wolfram, Stephen, 344-345, 350 
Womersley, j. R ,  167 

Y2K, 35-36, 53 

ZI machine, 82 
Z3 machine, 82, 329 
Zaumreit (spacelime), 42 
zero, as integer, 13 
zero power, equivalence of, 17  
Zuse, Konrad, 65,  73,  82, 329 

digual physics, 341-342 




	Cover
	Title Page
	Copyright
	Epigraph
	Credits
	Contents
	Introduction
	I. Foundations
	1. This Tomb Holds Diophantus
	2. The Irrational and the Transcendental
	3. Centuries of Progress

	II. Computable Numbers
	4. The Education of Alan Turing
	5. Machines at Work
	6. Addition and Multiplication
	7. Also Known as Subroutines
	8. Everything Is a Number
	9. The Universal Machine
	10. Computers and Computability
	11. Of Machines and Men

	III. Das Entscheidungsproblem
	12. Logic and Computability
	13. Computable Functions
	14. The Major Proof
	15. The Lambda Calculus
	16. Conceiving the Continuum

	IV. And Beyond
	17. Is Everything a Turing Machine?
	18. The Long Sleep of Diophantus

	Selected Bibliography
	Index



