Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content
Log in

Electrodeposition and Passivation of ZnNi Alloy Coating on Q235B Steel and its Corrosion Resistance Performance in Simulated Concrete Pore Solution

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A Zn-Ni coating is electrodeposited on the surface of Q235B steel and passivated via a trivalent chromium solution with silicate to greatly improve its corrosion resistance in a simulated concrete pore solution. The surface roughnesses of the zinc coating and Zn-Ni coating are approximately 0.457 and 0.332 μm, respectively. The surface of the passivated Zn-Ni coating is covered with metal oxides and hydroxides due to chemical reactions, which slightly increase the roughness. The thicknesses of the Zn coating, Zn-Ni coating and passivated Zn-Ni coating are all approximately 25 μm. The surface of the Zn-Ni alloy coating is composed of many compact nodular structures. After passivation, the passivated Zn-Ni alloy coating presents a net-shaped morphology. The passivated Zn-Ni alloy coating contains 76.9 Zn, 14.3 Ni, 6.3 Cr and 2.5% Si. After immersion in the simulated concrete pore solution for 9 days, the passivated Zn-Ni alloy coating has the lowest current density of 10.529 μA/cm2, indicating the best corrosion resistance. The corrosion products on the passivated Zn-Ni coating are denser and less porous than those on the surface of the Zn and ZnNi coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Reference

  1. X.H. Liu, Y.H. Gao, Y.G. Gao, Y. Yang, W.T. Li, N. Ma, and J.Q. Zhao, Synthesis of Polyaspartic Acid-Glycidyl Adduct and Evaluation of its Scale Inhibition Performance and Corrosion Inhibition Capacity for Q235 Steel Applications, Arab. J. Chem., 2023, 16, 104515.

    Article  CAS  Google Scholar 

  2. F.J. Wang, Z.Y. Xin, Y.C. Wang, S.Y. Sui, Q. Zheng, and J.Y. Jiang, Inhibition Mechanisms of HAIB on Q235 Rebar in the Simulated Concrete Pore Solution, J. Build. Eng., 2023, 72, 106565.

    Article  Google Scholar 

  3. W.C. Wang, Y.J. Ye, G.Y. Li, Z.X. Yang, J.Z. Duan, J.W. Sunn, and Y.Q. Yan, High-Efficiency Photocathodic Protection Performance of Novel MnIn2S4/TiO2 n-n Heterojunction Films for Q235 Carbon Steel in Chloride-Containing Simulated Concrete Pore Solution, J. Alloys Compd., 2023, 941, 168957.

    Article  CAS  Google Scholar 

  4. Y.Z. Zhao, T. Pan, X.T. Yu, and D. Chen, Corrosion Inhibition Efficiency of Triethanolammonium Dodecylbenzene Sulfonate on Q235 Carbon Steel in Simulated Concrete Pore Solution, Corros. Sci., 2019, 158, 108097.

    Article  CAS  Google Scholar 

  5. X.P. Wang, M.H. Shao, C.Q. Ye, S.G. Dong, R.G. Du, and C.J. Lin, Study on Effect of Chloride Ions on Corrosion Behavior of Reinforcing Steel in Simulated Polluted Concrete Pore Solutions by Scanning Micro-reference Electrode Technique, J. Electroanal. Chem., 2021, 895, 115454.

    Article  CAS  Google Scholar 

  6. X.X. Wang, Z.Q. Jin, J.P. Liu, F.X. Chen, P. Feng, and J.H. Tang, Research on Internal Monitoring of Reinforced Concrete under Accelerated Corrosion, using XCT and DIC Technology, Constr. Build. Mater., 2021, 266, 121018.

    Article  CAS  Google Scholar 

  7. A. Mohamed, U. Martin, T. Townsend, and D.M. Bastidas, Interphase Corrosion Inhibition Mechanism of Sodium Borate on Carbon Steel Rebars in Simulated Concrete Pore Solution, Constr. Build. Mater., 2023, 408, 133763.

    Article  CAS  Google Scholar 

  8. G. Qiu and H. Peng, Effect of Sealing Treatment on Corrosion Resistance of Zinc-Calcium Phosphate Coating Prepared on HRB335 Rebar in Simulated Concrete Pore Solution, Int. J. Electrochem. Sci., 2023, 18, 100163.

    Article  Google Scholar 

  9. H. Yang, N. Xu, X.Y. Liu, D. Zhang, P. Jiang, Y.K. Qin, C.S. Xiong, A. Liu, and R. Ding, The Dual Pretreatment of Phytate-Molybdate for Corrosion Resistance of Carbon Steel in Simulated Concrete Pore Solution, J. Build. Eng., 2023, 78, 107643.

    Article  Google Scholar 

  10. Q.H. Wang, X.D. Wu, H.H. Zheng, L. Liu, Q. Zhang, A. Zhang, Z.T. Yan, Y. Sunn, Z.J. Li, and X.M. Li, Evaluation for Fatsia japonica Leaves Extract (FJLE) as Green Corrosion Inhibitor for Carbon Steel in Simulated Concrete Pore Solutions, J. Build. Eng., 2023, 63, 105568.

    Article  Google Scholar 

  11. J. Liao, Y.C. Wang, Y.Z. Wang, and X.P. Lai, Preparation and Evaluation of TA/APTES-HDTMS Hydrophobic Nanocomposite Coating for Enhancing Corrosion Resistance of Concrete, Constr. Build. Mater., 2023, 408, 133792.

    Article  Google Scholar 

  12. Z.Y. Zhu, H.Q. Chu, S. Jiang, M.Z. Guo, Y. Xuu, Y.C. Liang, and L.H. Jiang, Improvement in the Microbially Induced Corrosion Resistance of Concrete Sewers Using Electrodeposition, Cem. Concr. Compos., 2022, 134, 104803.

    Article  CAS  Google Scholar 

  13. T.H. Naing, S. Janudom, N. Mahathaninwong, W. Limbut, and S. Karrila, Corrosion-Resistant Superhydrophobic Films on Galvanized Steel by One-Step Electrodeposition, Mater. Today Commun., 2023, 35, 106241.

    Article  CAS  Google Scholar 

  14. L.L. Zhang, X. Liu, J.M. Yan, Z.C. Li, S.Y. Huang, Y. Weng, J. Li, C.Z. Yuan, P.W. Han, S.F. Ye, and X.M. Zhang, Preparation of Superhydrophobic Coating with Anti-corrosion and Anti-fouling Properties on the Surface of Low Manganese Steel by Electrodeposition, Surf. Coat. Technol., 2023, 460, p 129412.

    Article  CAS  Google Scholar 

  15. K. Nazarzade, R. Naderi, and M. Mahdavian, Fabrication of Corrosion-Resistant Conversion Coating Based on ZIF-8 on Electro-Galvanized Steel Utilizing Pulse Electrodeposition Technique, Surf. Coat. Technol., 2023, 457, 129292.

    Article  CAS  Google Scholar 

  16. G. Zhao, M.T. Zhao, and W.H. Zhang, Preparation of Ni-TiO2 Composite Coatings on Q390E Steel by Pulse Electrodeposition and Their Photocatalytic and Corrosion Resistance Properties, Int. J. Electrochem. Sci., 2022, 17, 220819.

    Article  CAS  Google Scholar 

  17. J. Chen, H.Y. Yang, G.Q. Xu, P.J. Zhang, J. Lv, W. Sun, B.S. Li, J. Huang, D.M. Wang, and X. Shu, Rare Earth Passivation and Corrosion Resistance of Zinc Coated NdFeB Magnets, J. Rare Earths, 2022, 40, p 302–308.

    Article  CAS  Google Scholar 

  18. M. Bockelmann, L. Reining, U. Kunz, and T. Turek, Electrochemical Characterization and Mathematical Modeling of Zinc Passivation in Alkaline Solutions: A Review, Electrochim. Acta, 2017, 237, p 276–298.

    Article  CAS  Google Scholar 

  19. F. Touri, A. Sahari, A. Zouaoui, and F. Deflorian, Detection and Characterization of ZnO on a Passive Film of Pure Zinc, Int. J. Electrochem. Sci., 2017, 12, p 10813–10823.

    Article  CAS  Google Scholar 

  20. A. Monga, A.B. Fulke, and D. Dasgupta, Recent Developments in Essentiality of Trivalent Chromium and Toxicity of Hexavalent Chromium: Implications on Human Health and Remediation Strategies, J. Hazard. Mater. Adv., 2022, 7, 100113.

    CAS  Google Scholar 

  21. J.L. Luna, M.C.G. Chavez, F.J.E. Garcia, and R.R. Vazquez, Toxicity Assessment of Soil Amended with Tannery Sludge, Trivalent Chromium and Hexavalent Chromium, using Wheat, Oat and Sorghum Plants, J. Hazard. Mater., 2009, 163, p 829–834.

    Article  Google Scholar 

  22. X. Wang, F. Yang, G. Viswanathan, S.S. Wang, and G.S. Frankel, Characterization and Electrochemical Assessment of Al-Zn-In Alloy with Trivalent Chromium Process Coating, Corros. Sci., 2020, 176, 108933.

    Article  CAS  Google Scholar 

  23. Y.Y. Fan, Y.H. Jiang, and Z.L. Li, Preparation and Corrosion Resistance of Silicate Passivation Film Formed on Galvanized Zn Coatings, Rare Met. Mater. Eng., 2012, 41, p 211–214.

    Google Scholar 

  24. X.K. Yang, Y.Y. Fan, Y.H. Jiang, and Z.L. Li, Study on Chromium-Free Colour Passivation for Zinc Coating Treated with Silicate, Adv. Mater. Res., 2011, 154, p 1301–1304.

    Google Scholar 

  25. F. Berger, J. Delhalle, and Z. Mekhalif, Hybrid Coating on Steel: ZnNi Electrodeposition and Surface Modification with Organothiols and Diazonium Salts, Electrochim. Acta, 2008, 53, p 2852–2861.

    Article  CAS  Google Scholar 

  26. R.Q. Li, Q.J. Dong, J. Xia, C.H. Luo, L.Q. Sheng, F. Cheng, and J. Liang, Electrodeposition of Composition Controllable Znsingle bondNi Coating from Water Modified Deep Eutectic Solvent, Surf. Coat. Technol., 2019, 366, p 138–145.

    Article  CAS  Google Scholar 

  27. S.H. Yu, A. Lyu, I.S. Jang, H.S. Park, M. Jang, K.Y. Lee, and Y.K. Lee, Hydrogen Absorption, Desorption and Embrittlement of Zn and ZnNi-Electrodeposited Bolts, J. Mater. Res. Technol., 2021, 11, p 1604–1610.

    Article  CAS  Google Scholar 

  28. E.M.D. Oliveira and I.A. Carlos, Chemical, Physical and Morphological Characterization of ZnNi Films Electrodeposited on 1010 Steel Substrate from Acid Baths Containing Polyalcohol, Surf. Coat. Technol., 2011, 206, p 250–256.

    Article  Google Scholar 

  29. Y.D. Yu, Y. Cao, M.G. Li, G.Y. Wei, and H. Dettinger, Magnetic Electrodeposition of ZnNi Alloy Films, Mater. Res. Innov., 2014, 18, p 314.

    Article  CAS  Google Scholar 

  30. H. Nakano, S. Arakawa, Y. Takada, S. Oue, and S. Kobayashi, Electrodeposition Behavior of Zn-Ni Alloy from Alkaline Zincate Solution, J. Jpn. Inst. Met., 2012, 76, p 443–448.

    Article  CAS  Google Scholar 

  31. S.F.L. Mertens and E. Temmerman, Study of Zinc Passivation in Chromium(VI)-Containing Electrolytes with Short-Term Impedance Measurements, Corros. Sci., 2001, 43, p 301–316.

    Article  CAS  Google Scholar 

  32. J.G. Anton, R.M.F. Domene, R.S. Tovar, C.E. Cerdan, R.L. Garcia, and A. Urtiaga, Improvement of the Electrochemical Behaviour of Zn-Electroplated Steel Using Regenerated Cr (III) Passivation Baths, Chem. Eng. Sci., 2014, 111, p 402–409.

    Article  Google Scholar 

  33. C. Srivastava, S.K. Ghosh, S. Rajak, A.K. Sahu, R. Tewari, V. Kain, and G.K.K. Dey, Effect of pH on Anomalous Co-deposition and Current Efficiency During Electrodeposition of Ni-Zn-P Alloys, Surf. Coat. Technol., 2017, 313, p 8–16.

    Article  CAS  Google Scholar 

  34. Z.F. Lodhi, J.M.C. Mol, W.J. Hamer, H.A. Terryn, and J.H.W.D. Wit, Cathodic Inhibition and Anomalous Electrodeposition of Zn–Co Alloys, Electrochim. Acta, 2007, 52, p 5444–5452.

    Article  CAS  Google Scholar 

  35. R. Asseli, M. Benaicha, S. Derbal, M. Allam, and O. Dilmi, Electrochemical Nucleation and Growth of Zn-Ni Alloys from Chloride Citrate-Based Electrolyte, J. Electroanal. Chem., 2019, 847, 113261.

    Article  CAS  Google Scholar 

  36. E.M. de Oliveira and I.A. Carlos, Study of the Effect of Mannitol on ZnNi Alloy Electrodeposition from Acid Baths and on the Morphology, Composition, and Structure of the Deposit, J. Appl. Electrochem., 2009, 39, p 1849–1856.

    Article  Google Scholar 

  37. E.M. de Oliveira, W. Rubin, and I.A. Carlos, ZnNi Alloy Electrodeposition from Acid Baths Containing Sorbitol or Glycerol and Characterization of ZnNi Deposits, J. Appl. Electrochem., 2009, 39, p 1313–1321.

    Article  CAS  Google Scholar 

  38. M. Rezaei, D.F. Haghshenas, M. Ghorbani, and A. Dolati, Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates, J. Electrochem. Sci. Technol., 2018, 9, p 202–211.

    Article  CAS  Google Scholar 

  39. E. Moti, M.H. Shariat, and M.E. Bahrololoom, Influence of Cathodic Overpotential on Grain Size in Nanocrystalline Nickel Deposition on Rotating Cylinder Electrodes, J. Appl. Electrochem., 2008, 38, p 605–612.

    Article  CAS  Google Scholar 

  40. K. Foster, J. Claypool, W.G. Fahrenholtz, M. Okeefe, T. Nahlawi, and F. Almodovar, Characterization of Cobalt Containing and Cobalt-Free Trivalent Chromium Passivations on γ-ZnNi Coated Steel Substrates, Thin Solid Films, 2021, 735, 138894.

    Article  CAS  Google Scholar 

  41. Y.G. Wang and Y.L. Qi, Study on Electrodeposition of ZnNi/Al2O3 Composite Coating on 40Mn Steel and its Corrosion Behavior in Simulated Concrete Pore Solution, Int. J. Electrochem. Sci., 2022, 17, 221037.

    Article  CAS  Google Scholar 

  42. J. Yang, Z.H. Li, J.F. Shi, and Z.W. Yan, Study on the Corrosion Inhibition Performance of Sodium Silicate and Polyaspartic Acid for 35CrMo Steel, Int. J. Electrochem. Sci., 2023, 18, 100042.

    Article  Google Scholar 

  43. M. Matinfar and J.A. Nychka, A Review of Sodium Silicate Solutions: Structure, Gelation, and Syneresis, Adv. Colloid Interface Sci., 2023, 322, 103036.

    Article  CAS  PubMed  Google Scholar 

  44. A. Kaleva, T. Tassaing, V. Saarimaa, G.L. Bourdon, P. Vaisanen, A. Markkula, and E. Levanen, Formation of Corrosion Products on Zinc in Wet Supercritical and Subcritical CO2: In-Situ Spectroscopic Study, Corros. Sci., 2020, 174, 108850.

    Article  CAS  Google Scholar 

  45. Y. Meng, L.J. Liu, D.W. Zhang, C.F. Dong, Y. Yan, A.A. Volinsky, and L.N. Wang, Initial Formation of Corrosion Products on Pure Zinc in Saline Solution, Bioact. Mater., 2019, 4, p 87–96.

    PubMed  Google Scholar 

  46. G.J. Liu, J.L. Li, and Y.S. Zhang, Corrosion of Carbon Steels Subjected to Chloride and Sulfate in Simulated Concrete Pore Solutions with Different pH, Constr. Build. Mater., 2024, 440, 137445. https://doi.org/10.1016/j.conbuildmat.2024.137445

    Article  CAS  Google Scholar 

  47. B. Abedini, N.P. Ahmadi, S. Yazdani, and L. Maganin, Structure and Corrosion Behavior of Zn-Ni-Mn/ZnNi Layered Alloy Coatings Electrodeposited under Various Potential Regimes, Surf. Coat. Technol., 2019, 372, p 260–267.

    Article  CAS  Google Scholar 

  48. H.M.E. Lateef, A.R.E. Sayed, and H.S. Mohran, Role of Ni Content in Improvement of Corrosion Resistance of Zn–Ni Alloy in 3.5% NaCl Solution. Part I: Polarization and Impedance Studies, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2807–2816.

    Article  Google Scholar 

  49. S.W. Kim and C.T. Lee, Environment-Friendly Trivalent Chromate Treatment for Zn Electroplating, Appl. Chem. Eng., 2006, 17, p 433–442.

    CAS  Google Scholar 

  50. S. Hesamedini and A. Bund, Trivalent Chromium Conversion Coatings, J. Coat. Technol. Res., 2019, 16, p 623–641.

    Article  CAS  Google Scholar 

  51. H.H. Sheu, H.B. Lee, S.Y. Jian, C.Y. Hsu, and C.Y. Lee, Investigation on the Corrosion Resistance of Trivalent Chromium Conversion Passivate on Electroplated Zn-Ni Alloy, Surf. Coat. Technol., 2016, 305, p 241–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiejun, C., Yan, W., Jing, W. et al. Electrodeposition and Passivation of ZnNi Alloy Coating on Q235B Steel and its Corrosion Resistance Performance in Simulated Concrete Pore Solution. J. of Materi Eng and Perform (2025). https://doi.org/10.1007/s11665-025-11982-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-025-11982-0

Keywords