LilyPond

The music typesetter

Contributor’s Guide

The LilyPond development team

s ~
This manual documents contributing to LilyPond version 2.25.28. It discusses technical issues

and policies that contributors should follow.

This manual is not intended to be read sequentially; new contributors should only read the
sections which are relevant to them. For more information about different jobs, see Section 1.1
[Help us|, page 1.

- /

For more information about how this manual fits with the other documentation, or to read
this manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at
https://lilypond.org/.

Copyright (© 2007-2023 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.25.28

https://lilypond.org/

Table of Contents

1 Introduction to contributing.......................... 1
L HeID US . oo 1
1.2 Overview of work flowo 2
1.3 Summary for experienced developersttt 2
1o MenbOrs . oo 3

2 Quick start ... 5
2.1 LAly DOV . o ot 5

Installing LilyDev in VirtualBoxcoo i 5
Configuring LilyDev in VirtualBox i 7
2.2 Compiling with LilyDev. i e e 8
2.3 Now start Work! 9

3 Working with sourcecode 10

B 200 S 1" 13 Y= o T PP 10
3.1.1 Installing Gito 10
3.1.2 Creating a GitLab account and setting up SSH............... o.... 10
3.1.3 Cloning and forking the repository i 11
3.1.4 Configuring Git.o 11

3.2 Git cheat sheet 11

3.3 Lifecycle of a merge request 14
3.3.1 Uploading a patch for reviewo.iiiiiin i 14
3.3.2 Automated teStingot 14
3.3.3 Patch countdown 15
3.3.4 Merging t0 mastero o e 16
3.3.5 Abandoned patChesttt e 16

3.4 Writing good commit MESSAZESo vuttt it e 16

3.5 COMIMNIT ACCESS - . - v vt ettt ettt et e e e e e e e e e e e e e 17

3.6 Further Git documentation reSOUTCes.ooii it 17

3.7 Repository directory Structure 17

4 Compiling......... . 20
4.1 Overview of compiling 20
4.2 ReqUIrements.ot e 20

4.2.1 Requirements for running LilyPond 20
4.2.2 Requirements for compiling LilyPond........... L 21
Fedora. ..o 21
Linux MInt 22
OpenS U SE .. 22
UDUNEU .« .o 23
OteT 23
4.2.3 Requirements for building documentationot 24

4.3 Getting the source code.o 25

4.4 Configuring makettt e 26
4.4.1 Build modeso 26
4.4.2 Running autogen.sh 26

4.4.3 Running configure...... ... 27

ii

Configuration options. ... 27
Checking build dependenciest 27
Configuring target directories 27

4.5 Compiling LilyPond 28
4.5.1 USINE MaKE . oottt ettt e 28
4.5.2 Saving time with the —j option....... 28
4.5.3 Useful make variables i 29
4.6 Post-compilation options. e 29
4.6.1 Installing LilyPond from a local build o i i 29
4.6.2 Generating documentation e 29
Documentation editor’s edit/compile cycle 29
Building documentation e 30
Building a single document 30
Saving time with CPU_COUNTttt ettt et e e e e e 31
Installing documentation. 31
Building documentation without compiling............. ... o it 31

4.6.3 Testing LilyPond binary ... 32
A7 Problems 32
4.8 Concurrent stable and development versions..............c..ooiiiiiiiiiiiiennnn... 33
4.8.1 Replacing the notation fonts in development versions.......................... 34
4.9 Build SyStem 34
5 Documentation work 35
5.1 Introduction to documentation work 35
5.2 \version in documentation files 35
5.3 Documentation SUZEEStIONSttt 36
5.4 Texinfo introduction and usage policyc.o i 37
5.4.1 Texinfo introductiono i 37
5.4.2 Documentation files. 37
5.4.3 Sectioning commandsoit i e 38
D44 MEIUS .« o oo e 39
5.4.5 LilyPond formattingo 39
5.4.6 Text formatting.t e 41
BA.T SYNEAX SUTVEY e ettt ettt ettt e e e e et et et e e e e 42
COMMENTS . . ettt et e et e e e e e e e 42
CroSs-TEfErENCES . ..ottt 42
External links o 42
Fixed-width font. 43
Indexingo 44

LSS e e 45
Special characters. 45
MISCEILAILY v e ettt e e 46

5.4.8 Other text CONCOINS\ttt e e 46
5.5 Documentation POLiCYo.uuui i e 47
5.0, 1 BOOKS ..ttt 47
5.5.2 Section organizationoiii i e 48
5.5.3 Checking cross-references 49
5.5.4 General Writing e 50
5.5.5 Technical writing style ... 50
5.6 Tips for writing documentation i 51

5.6.1 Working on subsectionso e 51

iii

5.6.2 Searchingt 52
5.7 Scripts to ease documentation Work i 52
5.7.1 Building only one section of the documentation................................ 52
5.7.2 Updating documentation with convert-1y....... 53
5.8 Documentation strings in the Internals Reference............ 53
5.9 Translating the documentation........... ... it 53
5.9.1 Getting started with documentation translation 53
Translation requirements. e 53
Which documentation can be translated........... oL, 54
Starting translation in a new language i 54

5.9.2 Documentation translation details......... i 95
Files to be translated 55
Translating the website and other Texinfo documentation 56
Adding a Texinfo manual 57

5.9.3 Documentation translation maintenance............... ..., 58
Check state of translation....... i e 58
Updating documentation translation 59
Updating translation committishes......... i 59
Maintaining without updating translations............. il 60

5.9.4 Technical background i 61

6 Website work 63
6.1 Introduction to website work. i 63
6.2 Uploading website 63
6.3 Debugging website and docs locallyo 64
6.4 Translating the websiteo i 64
7T LSR work 65
7.1 Introduction to LSR 65
7.2 Adding and editing SHIPPEtS . ..o .vvt e e 65
7.3 APPIOVING SIIPPEES -« ottt ettt et et e e e e 66
7.4 The makelsr.pl SCTIPt .. .out i 67
7.5 LSR t0 Gib oo 68
7.6 Renaming a SnIPPetottt e 69
7.7 Updating the LSR t0 & NeW VEISIONottt e e 69
B ISSUES . ..ttt 72
8.1 Introduction t0 ISSUES.ot e 72
8.2 Triaging DUES . . . oo e 72
8.3 Issue classification e 74
8.4 Adding issues to the tracker 75
9 Regression tests 76
9.1 Introduction to regression tests e 76
9.2 Precompiled regression tests ... 76
9.3 Compiling regression testSttt e 76
9.4 Regtest COMPATISONottt ettt et 7
9.5 Pixel-based regtest comparison. 7
9.6 Finding the cause of & regressionot 78
9.7 MuUSICX ML beStS . ottt 79

iv

10 Programming work........... 80
10.1 Overview of LilyPond architecture.......... ..o i i 80
10.2 LilyPond programming languagesuuuuitantt et 81
10.3 Programming without compiling......... ... i i i 83
10.4 Finding functions.t e 83
10.5 Code Style. .o 84

10.5.1 LanGUAZES - -« o e ottt ettt 84
10.5.2 Filenames e 85
10.5.3 Code formattingo e 85
10.5.4 Naming COnvENtionSttt ettt et e et et e aiee e 87
10.5.5 Broken code e 87
10.5.6 Code COMMENTS. . ..ottt ettt et et e et e 87
10.5.7 Handling eIrorsottt e e 88
10.5.8 Localizationcc i 88
10.6 Warnings, Errors, Progress and Debug Output............, 90
10.7 Debugging LilyPond 91
10.7.1 DebuUugging OVEIVIEWttt ettt ettt 91
10.7.2 Debugging CH+ COde. ...t e 91
10.7.3 Debugging Scheme code 93
10.7.4 Debugging scoring algorithms......... i i 94
10.7.5 Debugging skylines ... 95
10.8 Tracing object relationships 96
10.9 Tracing processing timeoutioinni i 97
10.10 Adding or modifying featuresot 97
10.10.1 Write the code 97
10.10.2 'Write regression tests.oouuu i 97
10.10.3 Write convert-ly rule 98
10.10.4 Automatically update documentation.............. L. 98
10.10.5 Manually update documentation............. i 98
10.10.6 Edit changes.tely e 99
10.10.7 Verify successful build 99
10.10.8 Verify regression testst e 99
10.10.9 Post patch for comments 100
10.10.10 Push patch. 100
10.10.11 Closing the ISSUESttt e 100
10.11 Tterator tutorialo e 100
10.12 Engraver tutorial. o e 100
10.12.1 Useful methods for information processing 100
10.12.2 Translation ProCeSSottt 101
10.12.3 Listening to music events...........o i 101
10.12.4 Acknowledging grobs ...t 101
10.12.5 Engraver declaration/documentation.................. ..o 102
10.13 Callback tutorial 102
10.14 Understanding pure properties.ttt e et 102
10.14.1 Purity in LilyPondo 103
10.14.2 Writing a pure function.......... ... 103
10.14.3 How purity is defined and stored......... ... i 104
10.14.4 Where purity is used . ..ot 104
10.14.5 Case StUIESttt 104
10.14.6 Debug@ing tipsoonntiti 105

10.15 LilyPond SCOPING . . .« v vt 105

10.16 Regular eXpressionsttt e e 106
10.17 Scheme->C Interface. 106
10.17.17 COMPATISOI « .« vt ettt et ettt e e e et e e e e e et e et 106
10.17.2 COMVETSION « o ettt ettt e e e e et e e e e e e e e e e e 107

10.18 Garbage collection for dummies............ ..o 107
10.19 LilyPond miscellany e 111
10.19.1 Spacing algorithms 111
10.19.2 Info from Han-Wen email i 111
10.19.3 Music functions and Guile debugging i, 115
10.19.4 Articulations on EventChord i 116

11 Release work 117
11.1 Development PRASESttt e 117
11.2 Release checklist. 117
11.3 Major release checklist......o 119
12 Modifying the Emmentaler font 122
12.1 Overview of the Emmentaler font 122
12.2 Font creation toolSt 122
12.3 Adding a new font SeCtiono 122
12.4 Adding a new glypho 122
12.5 Building the changed font i 123
12.6 METAFONT formatting rules e 123
13 Administrative policies.................. 124
13.1 LilyPond is GNU Software. e e 124
13.2 Environment variables. 124
13.3 Performing yearly copyright update (“grand-replace”).................c.ooiiiit. 124

A GNU Free Documentation License......................... 125

1 Introduction to contributing
This chapter presents a quick overview how people can help LilyPond.

1.1 Help us

We need you!

Thank you for your interest in helping us — we would love to see you get involved! Your
contribution will help a large group of users make beautifully typeset music.

Even working on small tasks can have a big impact: taking care of them allows experienced
developers to work on advanced tasks instead of spending time on those simple tasks.

For a multi-faceted project like LilyPond, sometimes it’s tough to know where to begin. In ad-
dition to the avenues proposed below, you can send an e-mail to the 1ilypond-devel@gnu.org
(https://lists.gnu.org/mailman/listinfo/lilypond-devel) mailing list, and we’ll help
you to get started.

Simple tasks
No programming skills required!

e Mailing list support: answer questions from fellow users. (This may entail helping them
navigate the online documentation; in such cases it may sometimes be appropriate to
point them to version-agnostic URL paths such as ‘latest’ (https://1lilypond.org/doc/
latest/Documentation/notation/) or ‘stable’ (https://lilypond.org/doc/stable/
Documentation/notation/), which are automatically redirected.)

e Bug reporting: help users create proper Section “Bug reports” in General Information,
and/or join the Bug Squad to organize Section “Issues” in Contributor’s Guide.

e Documentation: small changes can be proposed by following the guidelines for Section
“Documentation suggestions” in Contributor’s Guide.

e LilyPond Snippet Repository (LSR): create and fix snippets following the guidelines in
Section “Adding and editing snippets” in Contributor’s Guide.

e Discussions, reviews, and testing: the developers often ask for feedback about new docu-
mentation, potential syntax changes, and testing new features. Please contribute to these
discussions!

Advanced tasks

These jobs generally require that you have the source code and can compile LilyPond.

Note: We suggest that contributors using Windows or macOS do not
attempt to set up their own development environment; instead, use
Lilydev as discussed in Section “Quick start” in Contributor’s Guide.

Contributors using Linux or FreeBSD may also use Lilydev, but if they prefer their own
development environment, they should read Section “Working with source code” in Contributor’s
Guide, and Section “Compiling” in Contributor’s Guide.

Begin by reading Section “Summary for experienced developers” in Contributor’s Guide.

e Documentation: for large changes, see Section “Documentation work” in Contributor’s
Guide.

o Website: the website is built from the normal documentation source. See the info about
documentation, and also Section “Website work” in Contributor’s Guide.

https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://lilypond.org/doc/latest/Documentation/notation/
https://lilypond.org/doc/latest/Documentation/notation/
https://lilypond.org/doc/stable/Documentation/notation/
https://lilypond.org/doc/stable/Documentation/notation/

Chapter 1: Introduction to contributing 2

e Translations: see Section “Translating the documentation” in Contributor’s Guide, and
Section “Translating the website” in Contributor’s Guide.

e Bugfixes or new features: read Section “Programming work” in Contributor’s Guide.

1.2 Overview of work flow

Advanced note: Experienced developers should skip to Section 1.3 [Summary for
experienced developers|, page 2.

Git is a version control system that tracks the history of a program’s source code. The
LilyPond source code is maintained as a Git repository, which contains:

e all of the source files needed to build LilyPond, and

e a record of the entire history of every change made to every file since the program was born.

The ‘official’ LilyPond Git repository is hosted by the GNU Savannah software forge at
https://git.sv.gnu.org. The server provides two separate interfaces for viewing the Lily-
Pond Git repository online: cgit (https://git.sv.gnu.org/cgit/lilypond.git/) and gitweb
(https://git.sv.gnu.org/gitweb/?p=1lilypond.git).

However, the main development takes place at https://gitlab.com/1lilypond/lilypond/
, which also hosts the project’s issues. Automatic mirroring ensures that ‘important’ branches
(such as master and stable/*) are up to date on the ‘official’ repository at GNU Savannah, so
you can also base your development on a clone from there.

Compiling (‘building’) LilyPond allows developers to see how changes to the source code
affect the program itself. Compiling is also needed to package the program for specific operating
systems or distributions. LilyPond can be compiled from a local Git repository (for developers),
or from a downloaded tarball (for packagers). Compiling LilyPond is a rather involved process,
and most contributor tasks do not require it.

Contributors can contact the developers through the ‘lilypond-devel’ mailing list. The mail-
ing list archive is located at https://lists.gnu.org/archive/html/lilypond-devel/. If you
have a question for the developers, search the archives first to see if the issue has already been
discussed. Otherwise, send an email to 1ilypond-devel@gnu.org. You can subscribe to the
developers’ mailing list here: https://lists.gnu.org/mailman/listinfo/lilypond-devel.

Note: Contributors on Windows or macOS wishing to compile code
or documentation are strongly advised to use our Debian LilyPond
Developer Remix, as discussed in Chapter 2 [Quick start], page 5.

1.3 Summary for experienced developers

If you are already familiar with typical open-source tools, here’s what you need to know:
e ‘Official’ source repository: hosted by GNU Savannah
https://git.savannah.gnu.org/gitweb/7p=1lilypond.git
e Development platform: hosted by GitLab; also includes the issue tracker (see Chapter 8
[Issues], page 72)
https://gitlab.com/1lilypond/lilypond/

e Environment variables: needed by many maintenance scripts, and many instructions in this
guide rely on them; see Section 13.2 [Environment variables|, page 124.

e Mailing lists: given in Section “Contact” in General Information.
e Git branches:
e master: always base your work on this branch, but never push directly to it.

https://git.sv.gnu.org
https://git.sv.gnu.org/cgit/lilypond.git/
https://git.sv.gnu.org/gitweb/?p=lilypond.git
https://git.sv.gnu.org/gitweb/?p=lilypond.git
https://gitlab.com/lilypond/lilypond/
https://lists.gnu.org/archive/html/lilypond-devel/
mailto:lilypond-devel@gnu.org
https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://git.savannah.gnu.org/gitweb/?p=lilypond.git
https://gitlab.com/lilypond/lilypond/

Chapter 1: Introduction to contributing 3

e dev/foo: feel free to push any new branches under dev/ and use GitLab to create
Merge Requests (MR), which eventually get merged into master after they have passed
automatic testing (see below).

o Regression tests: also known as “regtests”. A collection of around two thousand .1y files
that are used to track LilyPond’s engraving output between released stable and unstable
versions as well as checked for all patches submitted for testing.

If a patch introduces any unintentional changes to any of the regtests it is very likely it will
be rejected (to be fixed) — if you expect any regression test changes, always make sure that
they are explained clearly as part of the patch description when submitting for testing. For
more information, see Chapter 9 [Regression tests|, page 76.

e Reviews: after finishing work on a patch or branch you should do the following.

1. Commit the changes and create a Merge Request. See Section 3.3.1 [Uploading a patch
for review|, page 14, for more information.

2. A Merge Request is usually automatically tested within an hour of submission. Once it
has passed the basic tests — make check, make, make doc — the tracker will be updated
and the patch’s status will change to Patch: :review for other developers to examine.

3. Every third day, the “Patch Meister” will examine all Merge Requests currently un-
der review, looking for any comments by other developers. Depending on what
has been posted, the patch will be either “moved on” to the next patch status
(Patch: :countdown), set back to Patch: :needs_work, or if more discussion is needed,
left at Patch: :review. In all cases the Merge Request will be updated by the Patch
Meister accordingly.

4. Once another three days have passed, any patch that has been given Patch: : countdown
status will be changed to Patch: :push, the Merge Request is updated, and the devel-
oper can now rebase and merge to the master branch (or ask one of the other developers
to merge it for you).

Advanced note: This process means that most patches will take about a week
before finally being merged into master. With the limited resources for re-
viewing patches available and a history of unintended breakages in the master
branch (from patches that have not had time to be reviewed properly), this is
the best compromise we have found.

1.4 Mentors

We have a semi-formal system of mentorship, similar to the medieval “journeyman/master”
training system. New contributors will have a dedicated mentor to help them “learn the ropes”.

Note: This is subject to the availability of mentors; certain jobs have
more potential mentors than others.

Contributor responsibilities
1. Ask your mentor which sections of the CG you should read.

2. If you get stuck for longer than ten minutes, ask your mentor. They might not be able to
help you with all problems, but we find that new contributors often get stuck with something
that could be solved or explained with two or three sentences from a mentor.

3. If you have been working on a task much longer than was originally estimated, stop and ask
your mentor. There may have been a miscommunication, or there may be some time-saving
tips that could vastly simplify your task.

Chapter 1: Introduction to contributing 4

4.
d.

Send patches to your mentor for initial comments.

Inform your mentor if you're going to be away for a month, or if you leave entirely. Con-
tributing to LilyPond isn’t for everybody; just let your mentor know so that we can reassign
that work to somebody else.

Inform your mentor if you’re willing to do more work — we always have way more work

than we have helpers available. We try to avoid overwhelming new contributors, so you’ll
be given less work than we think you can handle.

Mentor responsibilities

1.

Respond to questions from your contributor(s) promptly, even if the response is just “sorry,
I don’t know” or “sorry, I'm very busy for the next 3 days; I'll get back to you then”. Make
sure they feel valued.

Inform your contributor(s) about the expected turnaround for your emails — do you work
on LilyPond every day, or every weekend, or what? Also, if you’ll be unavailable for longer
than usual (say, if you normally reply within 24 hours, but you’ll be at a conference for a
week), let your contributors know. Again, make sure they feel valued, and that your silence
(if they ask a question during that period) isn’t their fault.

Inform your contributor(s) if they need to do anything unusual for the builds, such as doing
amake clean or make doc-clean, or switching git branches (not expected, but just in case).

. You don’t need to be able to completely approve patches. Make sure the patch meets

whatever you know of the guidelines (documentation style, code indentation, whatever).

Keep track of patches from your contributor. Either open Merge Requests by yourself or
help and encourage them to upload the patches themselves.

Encourage your contributor to review patches, particularly your own! It doesn’t matter if
they’re not familiar with C++, Scheme, the build system, or the documentation guidelines
— simply going through the process is valuable. Besides, anybody can find a typo!

Contact your contributor at least once a week. The goal is just to get a conversation started
— there’s nothing wrong with simply copying & pasting this into an email:

Hey there,

How are things going? If you sent a patch and got a review, do
you know what you need to fix? If you sent a patch but have no
reviews yet, do you know when you will get reviews? If you are
working on a patch, what step(s) are you working on?

2 Quick start

Want to submit a patch for LilyPond? Great! Never created a patch before? Never compiled
software before? No problem! This chapter is for you and will help you do this as quickly and
easily as possible.

2.1 LilyDev

Note: The following sections are based on LilyDev v2 and are not
necessarily correct for different releases.

“LilyDev” is a custom GNU /Linux operating system which includes all the necessary software
and tools to compile LilyPond, the documentation and the website (also see Chapter 6 [Website
work], page 63).

While compiling LilyPond on macOS and Windows is possible, both environments are com-
plex to set up. LilyDev can be easily run inside a ‘virtual machine’ on either of these operating
systems relatively easily using readily available virtualization software. We recommend using
VirtualBox as it is available for all major operating systems and is very easy to install & config-
ure.

LilyDev comes in two ‘flavours’: containers and a standard disk image. Windows or macOS
users should choose the Debian disk image (to be run in a virtual machine), that is the file
named LilyDev-VERSION-debian-vm.zip. GNU/Linux users are recommended to choose one
of the containers (currently Debian or Fedora), which are smaller in size, lightweight and easier
to manage. The Fedora disk image has currently not been released, you can create it from the
sources located in the /mkosi subdirectory of the LilyDev repository, however.

Download the appropriate file from here:

https://github.com/fedelibre/LilyDev/releases/latest

s ~
Note: Apart from installing and configuring LilyDev in VirtualBox,
the rest of the chapter assumes that you are comfortable using the
command line and is intended for users who may have never created a
patch or compiled software before. More experienced developers (who
prefer to use their own development environment) may still find it

instructive to skim over the following information.
- /

If you are not familiar with GNU /Linux, it may be beneficial to read a few “introduction to
Linux” type web pages.

Installing LilyDev in VirtualBox

This section discusses how to install and use LilyDev with VirtualBox.

Note: If you already know how to install a virtual machine using a disc
image inside VirtualBox (or your own virtualization software) then you
can skip this section.

1. Download VirtualBox from here:

https://www.virtualbox.org/wiki/Downloads

https://github.com/fedelibre/LilyDev/releases/latest
https://www.virtualbox.org/wiki/Downloads

Chapter 2: Quick start 6

10.

Note: In virtualization terminology, the operating system where
VirtualBox is installed is known as the host. LilyDev will be
installed ‘inside’ VirtualBox as a guest.

The zip archive you downloaded contains the raw disk image and its SHA256 checksum.
You can verify the integrity of the downloaded archive with any hashing tool your OS does
support. On Linux, run the following command in the directory where you have extracted
the files (this may take some time):

sha256sum —-c SHA256SUMS
For Windows, look for the tools FCIV or certutil to compute the archive’s hash.

As VirtualBox does not support the raw format, you have to extract it and then convert it to
VDI format. Make sure that ‘VBoxManage’ is in your PATH or call it from your VirtualBox
installation directory:

VBoxManage convertfromraw LilyDev-VERSION-debian-vm.img \
LilyDev-VERSION-debian-vm.vdi

Note: You need a fair amount of disk space (around 30 GB) to
extract the raw image. After converting to a dynamic VirtualBox
image it will take up much less space (only the amount of space
that is actually allocated by the guest filesystem)

Start the VirtualBox software and click ‘New’ to create a new “virtual machine”.

The ‘New Virtual Machine Wizard’ walks you through setting up your guest virtual machine.
Choose an appropriate name for your LilyDev installation and select the ‘Linux’ operating
system. When selecting the ‘version’ choose ‘Debian (64-bit)’. If you do not have that
specific option choose ‘Linux 2.6/3.x/4.x (64-bit)’.

Select the amount of RAM you allow the LilyDev guest to use from your host operating
system when it is running. If possible, use at least 1 GB of RAM; the more RAM you can
spare from your host the better

In the ‘Hard Disk’ step, you use the VDI file you have previously created. You may move
it within the virtual machine’s folder already created by the wizard (in GNU/Linux the
default should be ~/VirtualBox VMs/NAME). Click on ‘Use an existing virtual hard disk file’
and browse to the VDI file.

Verify the summary details and click ‘Create’ as soon as you are satisfied. Your new guest
shall be displayed in the VirtualBox window now.

Enable EFI within the virtual machine’s settings — click on System — Motherboard and
select ‘Extended features: Enable EFT’. Otherwise, you won’t be able to boot the image.

VirtualBox ‘guest additions’, which are installed by default in the debian image, provide
some additional features such as being able to dynamically resize the LilyDev window,
allow seamless interaction with your mouse pointer on both the host and guest, and let you
copy/paste between your host and guest if needed. It seems that dynamic window resizing
works only with the ‘VBoxVGA’ graphics controller, which you can choose in Display —
Graphics Controller. To enable clipboard sharing between guest and host, choose General
— Advanced — Shared Clipboard — Bidirectional.

Click the ‘Start’ button and wait until the login screen appears. Log in as dev user then;
type the password 1ilypond. Before starting any work, be sure to complete the next steps.

Chapter 2: Quick start 7

Note: Since the default keyboard layout is US (American), you
may have to type the password differently if you are using another
layout, like ‘lilzpond’ on a German keyboard, for example.

11. Open a terminal by clicking Applications — Terminal at the upper left of the screen. You
may want to change the password of user ‘dev’ before doing further work with the command
passwd.

12. You might need to change the keyboard layout from default US (American) to your national
layout. Therefore open a terminal and run

sudo dpkg-reconfigure keyboard-configuration

Note: You need superuser rights to change certain aspects of the
system configuration. The sudo tool allows to gain superuser
rights temporarily. It does show you a warning message on its
first use that reminds you to use your extended rights carefully.

At first, you are prompted for the model of your keyboard. Press Enter to show further
models. In most cases, it is sufficient to choose ‘Generic, 105 keys’. After that, choose
your keyboard layout. Now, you can customize the function of your A1tGr key. Normally,
the default layout settings fit well, so take number 1. The same holds for the question
of whether you want to configure a ‘compose’ key. At last, you are asked if you want to
configure Ctrl+Alt+Backspace as a shortcut to terminate the X server. Presumably, you
do not need this, so you can safely type ‘no’.

13. To set up your system language (charset, localized messages etc.), continue with

sudo dpkg-reconfigure locales

Note: Restarting is required in order to take the changes into
effect.

14.

Finally, you should run a setup script. If you are on the command line already, simply
type ./setup.sh to run the interactive script that does set up git and downloads all the
repositories needed to build LilyPond.

Configuring LilyDev in VirtualBox
e In the settings for the virtual machine, set the network to Bridged mode to allow you to
access shared folders when using Windows hosts.

e Set up any additional features, such as ‘Shared Folders’ between your main operating system
and LilyDev. This is distinct from the networked share folders in Windows. Consult the
external documentation for this.

Some longtime contributors have reported that ‘shared folders’ are rarely useful and not
worth the fuss, particularly since files can be shared over a network instead.

e Pasting into a terminal is done with Ctrl1+Shift+v.
e Right-click allows you to edit a file with the text editor (default is Leafpad).

Known issues and warnings

Not all hardware is supported in all virtualization tools. In particular, some contributors have
reported problems with USB network adapters. If you have problems with network connection

Chapter 2: Quick start 8

(for example Internet connection in the host system is lost when you launch virtual system), try
installing and running LilyDev with your computer’s built-in network adapter used to connect
to the network. Refer to the help documentation that comes with your virtualization software.

2.2 Compiling with LilyDev

LilyDev is our custom GNU /Linux which contains all the necessary dependencies to do LilyPond
development; for more information, see Section 2.1 [LilyDev], page 5.

Preparing the build
To prepare the build directory, enter (or copy&paste) the below text. This should take less than
a minute.

cd $LILYPOND_GIT

sh autogen.sh --noconfigure
mkdir -p build/

cd build/

../configure

Building 1ilypond

Compiling LilyPond will take anywhere between 1 and 15 minutes on most ‘modern’ computers
— depending on CPU and available RAM. We also recommend that you minimize the terminal
window while it is building; this can help speed up on compilation times.

cd $LILYPOND GIT/build/
make

It is possible to run make with the -j option to help speed up compilation times even more. See
Section 4.5 [Compiling LilyPond], page 28,
You may run the compiled 1ilypond with:

cd $LILYPOND GIT/build/
out/bin/lilypond my-file.ly

Building the documentation

Compiling the documentation is a much more involved process, and will likely take 2 to 10 hours.

cd $LILYPOND GIT/build/
make
make doc

The documentation is put in out-www/offline-root/. You may view the html files by
entering the below text; we recommend that you bookmark the resulting page:

firefox $LILYPOND GIT/build/out-www/offline-root/index.html

Installing

Don’t. There is no reason to install LilyPond within LilyDev. All development work can (and
should) stay within the $LILYPOND_GIT directory, and any personal composition or typesetting
work should be done with an official release.

Problems and other options

To select different build options, or isolate certain parts of the build, or to use multiple CPUs
while building, read Chapter 4 [Compiling], page 20.

In particular, contributors working on the documentation should be aware of some bugs in
the build system, and should read the workarounds in Section 4.6.2 [Generating documentation],
page 29.

Chapter 2: Quick start 9

2.3 Now start work!

LilyDev users may now skip to the chapter which is aimed at their intended contributions:
e Chapter 5 [Documentation work], page 35,
e Section 5.9 [Translating the documentation], page 53,
e Chapter 6 [Website work], page 63,
e Chapter 9 [Regression tests|, page 76,
e Chapter 10 [Programming work], page 80,
These chapters are mainly intended for people not using LilyDev, but they contain extra

information about the “behind-the-scenes” activities. We recommend that you read these at
your leisure, a few weeks after beginning work with LilyDev.

e Chapter 3 [Working with source code|, page 10,
e Chapter 4 [Compiling], page 20,

10

3 Working with source code

The LilyPond project uses Git (https://git-scm.com/) as a version control system. This sec-
tion is intended at getting new contributors started with Git, and helping senior developers with
less frequently used procedures.

3.1 Setting up

3.1.1 Installing Git

On UNIX systems (such as GNU/Linux, macOS, FreeBSD), the easiest way to download and
install Git is through a package manager. Alternatively, you can visit the Git website (https://
git-scm.com/) for downloadable installers.

For convenience, you may also install a graphical front-end to Git. Packaged in the installers
come gitk (for browsing the history) and git-gui (for committing). Git’s official website pro-
vides a list of GUI clients (https://git-scm.com/downloads/guis/), including free software
for various platforms.

3.1.2 Creating a GitLab account and setting up SSH

First of all, since the patch review happens on GitLab, you need to create an account there if
you do not already have one. Visit https://gitlab.com and register.

Second, you have to configure SSH keys for your GitLab account. The GitLab documentation
has a dedicated page (https://docs.gitlab.com/ee/user/ssh.html) explaining the full steps.
(Although this initial setup may look a little tedious, it ensures that you will not need to log in
with your GitLab credentials every time you need to create or modify a merge request.)

Note that on the first Git operation you perform that involves connecting with GitLab
(namely git clone if you follow the rest of this section in order), SSH will issue the follow-
ing warning:

The authenticity of host 'gitlab.com' can't be established.

ECDSA key fingerprint is SHA256:HbW3g8zUjNSksFbqTiUWPWg2Bqlx8xdGUrliXFzSnUw.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

When you see this, make sure the key fingerprint displayed matches the one above or one
of the others published by GitLab (https://docs.gitlab.com/ee/user/gitlab_com/index.
html#ssh-host-keys-fingerprints). If it doesn’t, respond “no” and check that you config-
ured Git properly in the previous step. If it does match, respond “yes”. SSH should then issue
another warning:

Warning: Permanently added 'gitlab.com' (ECDSA) to the list of known hosts.
The list of known hosts is stored in the file ~/.ssh/known_hosts.

You might see error messages like these:

Permission denied (publickey).
fatal: The remote end hung up unexpectedly

If you get the above error, you may have made a mistake when registering your SSH key — for
example, a common problem is to inadvertently add a final newline while copying and pasting
the long key string. If the key is properly registered and it still doesn’t work after an hour, ask
for help on the mailing list.

If you would like to work on LilyPond from several machines, you may simply copy the .ssh
folder contents from one to the other.

https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/downloads/guis/
https://gitlab.com
https://docs.gitlab.com/ee/user/ssh.html
https://docs.gitlab.com/ee/user/gitlab_com/index.html#ssh-host-keys-fingerprints
https://docs.gitlab.com/ee/user/gitlab_com/index.html#ssh-host-keys-fingerprints

Chapter 3: Working with source code 11

3.1.3 Cloning and forking the repository

Clone the LilyPond repository (https://gitlab.com/lilypond/lilypond) to get the source
code and its history:

git clone git@gitlab.com:1lilypond/lilypond.git

New contributors need to fork it in order to push branches. Using a fork is no longer nec-
essary (but may be convenient) when you are given developer access. Visit https://gitlab.
com/1lilypond/lilypond and press “Fork” on the top right. After the fork is created, set up a
new remote:

cd lilypond
git remote add fork git@gitlab.com:your-username/lilypond.git

To list remote repositories that are configured, along with their URLs:
git remote -v

You should have origin pointing to the official LilyPond repository, and fork pointing to
your your private fork.

3.1.4 Configuring Git

Settings apply to any repository on your computer, unless you leave out the --global option.
You first need configure some basic settings required for keeping track of commit authors:

git config --global user.name "John Smith"
git config --global user.email john@example.com

It is also recommended to enable colored output:
git config --global color.ui auto

If none of your editor-related environment variables are set, the default text editor used for
writing commit messages, etc., is usually vim. If your are not familiar with it, change it to an
editor that you are comfortable with; for example, Gedit:

git config --global core.editor '"gedit --wait -—-new-window"

Finally, and in some ways most importantly, let’s make sure that we can easily see the state
of our working copy. If you are not using LilyDev or Windows, add the following lines to your
~/ .bashrc:

export PS1="\u@\h \w\$(__git_ps1)$ "
export GIT_PS1_SHOWDIRTYSTATE=true
export GIT_PS1_SHOWUNTRACKEDFILES=true
export GIT_PS1_SHOWUPSTREAM=auto

After starting a new terminal, your prompt will show the current branch (this term and
others are explained below). Additionally, some symbols next to the branch name indicate
certain states. A star “*” means that there are unstaged changes. With a plus “+”, the changes
are staged. If there are untracked files, a percent “%” will appear. Finally, we can also see the
state of the local repository compared to upstream: “=" means up to date, “<” is behind, “>”

is ahead, “<>” means they have diverged.

You may need to install the additional bash-completion package.

3.2 Git cheat sheet

The intent of this section is to get you working on LilyPond quickly. If you want to learn about
Git, see Section 3.6 [Further Git documentation resources], page 17.

Also, these instructions are designed to eliminate the most common problems we have found
in using Git. If you already know Git and have a different way of working, great! Feel free to
ignore this advice.

https://gitlab.com/lilypond/lilypond
https://gitlab.com/lilypond/lilypond
https://gitlab.com/lilypond/lilypond

Chapter 3: Working with source code 12

Pulling recent changes

As LilyPond’s source code is continously improved, it is wise to integrate recent changes into
your local copy whenever you start a working session. On the master branch (this term is
explained below), run:

git pull

Viewing the history

Each change is contained in a commit with an explanatory message. To list commits starting
from the latest:
git log

Press Enter to see more or Q to exit.

Start work: make a new branch

The Git workflow is based on branches, which can be viewed as different copies of the source
code with concurrent changes that are eventually merged. You start a contribution by creating
a branch, freezing the initial state of the source code you will base your work onto. Ultimately,
your branch will be merged into master. This latter, special branch centralizes all features
developed simultaneously and is the source for unstable releases.

{Note: Remember, never directly commit to master. ‘J

Let’s pretend you want to add a section to the Contributor’s Guide about using branches.
To create a new branch for this:

git branch cg-add-branches

Switching branches

Switching branches is somehow like “loading a file”, although in this case it is really “loading a
directory and subdirectories full of files”. The command to use is git switch.!

git switch master
git switch cg-add-branches
git switch origin/release/unstable

Branches that begin with origin/ are part of the remote repository, rather than your local
repository, so when you check them out you get a temporary local branch. Therefore, do not
commit to these either. Always work in a local branch.

Listing branches
To list local branches:
git branch
If you want remote branches too:
git branch -a

In the output, the current branch is prefixed with a star.

Staging and committing files
Now edit files. To show a summary of your edits:

git status

L If you are using an outdated version of Git (older than 2.23), you need to use git checkout instead.

Chapter 3: Working with source code 13

For every file that you modified or added, first preview your changes:
git diff file
If everything looks right:
git add file
Then commit your changes:
git commit
A text editor window appears for you to write a commit message. See Section 3.4 [Writing
good commit messages|, page 16.

Amending and reverting changes

To add some more changes to the latest commit, stage them using git add, then run:
git commit --amend
This also works for rephrasing the commit message.

You might want to use git add -p instead of git add; this allows you to add changes incre-
mentally in an interactive way.

To revert changes to a file that have not been committed yet, use git restore:?
git restore filename
You might want to use git reset -p instead of git restore; this allows you to revert changes
incrementally in an interactive way.
To get back to the last commit, discarding all changes:
git reset —--hard HEAD
If the commit to edit is not the top one, you need to perform an interactive rebase with git

rebase -i $(git merge-base master HEAD). The full functionality of git rebase -i is not
covered here; please try it and follow Git’s instructions or read any tutorial on the Web.

Uploading your branch for review

To upload the current branch on the remote repository:
git push -u fork cg-add-branches
This sets the remote branch so subsequent pushes are simpler:
git push
The next section covers how to create a Merge Request® from your branch.

In response to review comments, you may need to amend your changes. Do not close your
merge request and open a new one; instead, amend your commits, which can be done with git
commit --amend or git rebase -i as explained above. Note that Git will by default refuse a
push when you have amended your commits. This is because this kind of push is a destructive
operation: once it is done, the old commits are no longer available on the remote branch. Git
prevents this as a safety measure against deleting commits added by someone else without you
realizing it. Do not follow Git’s advice to do git pull (which would try to integrate the remote
changes into the local ones); instead, just force it with

git push --force-with-lease

Also note that due to the way GitLab compares successive revisions of a merge request, it
is preferable if you do not mix catching up with master and changing your commits. In other
words, use git rebase -i $(git merge-base master HEAD) rather than git rebase -i master.
Alternatively, first rebase on master and push, then do the interactive rebase and push again.

2f you are using an outdated version of Git (older than 2.23), you need to use git checkout instead.

3 You may probably know this already under the name Pull Request, as it is called on the GitHub platform.
It’s not exactly the same, though.

Chapter 3: Working with source code 14

Deleting branches
After the merge request has passed testing and was merged to master, or after a failed experi-
ment, you can delete your local branch.

git switch master
git branch -d cg-add-branches

As a safety measure, this will fail if the commits of cg-add-branches are not present in
master. This can be because you used GitLab to rebase your branch, which modifies the
commit data and changes the hash. If you are sure that the branch is not needed anymore,
replace the -d on the final line with a -D instead.

Over time, remote branches of accepted merge requests may accumulate in your local repos-
itory. If you want to delete these and get back to the state of the official repository, run

git fetch -p origin

(short for —-prune) once in a while.

3.3 Lifecycle of a merge request

3.3.1 Uploading a patch for review
e Any non-trivial change should be reviewed as a merge request:
https://gitlab.com/lilypond/lilypond/-/merge_requests
e Ensure your branch differs from latest master by just the changes to be uploaded.

e Make sure that make, make test, and make doc succeed. Even if the individual commits
contain incomplete features, they must all pass these tests.

e The names of branches pushed on the main repository should start with dev/.

e After pushing, create a merge request to start the review cycle. There are multiple op-
tions for this as outlined in GitLab’s documentation (https://docs.gitlab.com/ee/user/
project/merge_requests/). This will also ask you for a message that will accompany your
patch.

e If you are not a member of the team and create the merge request from a fork, consider
enabling the box to “Allow commits from members who can merge to the target branch”.
This makes it possible for somebody with permissions to rebase your changes and merge
them for you. Please refer to Section 3.3.4 [Merging to master|, page 16, for more details.

- ~
Note: When commenting on GitLab, be careful if you talk about
Texinfo markup. An ‘@ sign starts a reference to a person or a
group. If you leave it without special markup, ‘@foo’ makes the per-
son who has foo as a GitLab username receive unsolicited notifica-
tions. To avoid this, enclose the markup in backticks: ~@lilypond".
For code suggestions, there is also a dedicated feature, see the Git-
Lab documentation (https://docs.gitlab.com/ee/user/project/

merge_requests/reviews/suggestions.html) for information.
k)

3.3.2 Automated testing

When a merge request is opened, a bot automatically adds the Patch: :new label to it, and it
enters the countdown cycle. GitLab triggers automated testing, which ensures that the patch
completes make, make check, and make doc.

After the CI pipeline has succeeded, the patch meister or any developer (even the author)
should check the regression test comparison. When there are no differences, the “Test summary”

https://gitlab.com/lilypond/lilypond/-/merge_requests
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/reviews/suggestions.html
https://docs.gitlab.com/ee/user/project/merge_requests/reviews/suggestions.html
https://docs.gitlab.com/ee/user/project/merge_requests/reviews/suggestions.html

Chapter 3: Working with source code 15

section of the merge request page has a green check mark. If it instead has a yellow exclamation
mark, click the caret to expand the section, then click the “View details” link next to the
“Machine review” entry. A window pops up with a link to the regression test visual comparison
page.

If tests display no obviously bad differences, the patch can be advanced to Patch: :review.
If the size of the regression test visual differences allows it, please paste screenshots of them
on the merge request page for easier review. Otherwise, simply paste a link to the that page.
Also, for changes that are by nature not expected to yield regression test differences, such as
documentation improvements, it is not necessary to leave a comment at all. In case any of the
testing steps fails, the patch should be set to Patch: :needs_work. When revisions are made,
this process repeats (if the regression test diff is not changed by the latest iteration, a comment
stating so can replace posting screenshots again).

3.3.3 Patch countdown

The Patch Meister is the person who advances patches in the countdown process based on review
comments.

Note: The Patch Meister’s role is a purely administrative one and no
programming skill or judgement is assumed or required.

The current Patch Meister is Colin Campbell (cpkc.music@shaw.ca).

The Patch Meister reviews the tracker periodically, to list patches which have been on review
for at least 24 hours. For each patch, the Patch Meister reviews any discussion on the merge
request, to determine whether the patch can go forward. If there is any indication that a
developer thinks the patch is not ready, the Patch Meister marks it with Patch: :needs_work
and makes a comment regarding the reason, referring to the comment if needed.

Patches with explicit approval, or at least no negative comment, are updated to
Patch: :countdown. The countdown is a 48-hour waiting period in which any final reviews or
complaints should be made.

The Patch Meister sends an email to the developer list. The subject line has a fixed formatting,
to enable filtering by email clients, like so:

PATCHES: Countdown for February 30th

The text of the email sets the deadline for this countdown batch. At present, batches are
done on Tuesday, Thursday and Sunday evenings.

At the next countdown, if no problems were found, the patch will be set to Patch: :push.
New contributors should ask for it to be merged. Developers merge their patches themselves,
see Section 3.3.4 [Merging to master|, page 16, and Section 3.5 [Commit access]|, page 17.

Alternately, your patch may be set to Patch: :needs_work, indicating that you should fix
something (or at least discuss why the patch needs no modification). It also happens that
patches waiting for minor fixes are put on countdown a second time.

Successive revisions made in response to comments are uploaded by pushing to the same
branch. GitLab automatically keeps track of all pushed commits and allows to compare revisions
with each other.

As in most organisations of unpaid volunteers, fixed procedures are useful in as much as they
get the job done. In our community, there is room for senior developers to bypass normal patch
handling flows, particularly now that the testing of patches is largely automated. Similarly, the
minimum age of 24 hours can reasonably be waived if the patch is minor and from an experienced
developer.

mailto:cpkc.music@shaw.ca

Chapter 3: Working with source code 16

3.3.4 Merging to master

Before allowing a merge request to be merged, GitLab ensures the following:

1. The merge must be of type ‘fast-forward’. In most cases, this can be achieved by ‘rebasing’
the branch with the most recent commits from master. GitLab provides a convenient
button for that if no conflicts arise. Otherwise, or if preferred, the operation can be (or has
to be) performed locally.

Please don’t combine a rebase operation with changes of the merge request! Do it in two
steps instead (usually first committing changes to the merge request, then rebasing). This
makes it easier to review the changes.

2. The (possibly rebased) changes must have passed automatic testing. This ensures that the
master branch is always clean and ready for development and translation.

After rebasing, GitLab will immediately start the automatic testing pipeline. At the moment,
all steps may take up to one hour to complete. If you are confident about the rebased result of
your changes, you may click “Merge when pipeline succeeds” to avoid waiting for the tests. On
failure, the merge will be aborted and no harm is done to the master branch.

Because GitLab enforces fast-forward merges, this means only one set of changes can be
rebased and merged at once. A second merge request would be rejected later on because it does
not contain the commit(s) merged first. To avoid wasting testing resources, please prevent this
situation by checking first whether a pipeline with a scheduled merge is already running. View
the list of merge requests (https://gitlab.com/lilypond/lilypond/-/merge_requests) and
verify that no merge request with Patch: :push status has a blue “timer” icon.

How to merge a branch without rebasing

It is generally recommended to rebase commits before merging to get a linear history. How-
ever, this is not always possible or wanted. This particularly holds for translations and the
release/unstable branch, which cannot be force-pushed. For these cases, use the following
procedure:

1. Merge the branch manually using the command line. The example merges the dev/
translation branch, assuming no pending changes in the local master branch:

git switch master

git pull

git merge dev/translation

git push origin HEAD:dev/translation

2. Open a merge request at GitLab. This will immediately trigger automatic testing as de-
scribed above.

3. Accept the merge request once the testing finishes, or use the button to “Merge when
pipeline succeeds”.

3.3.5 Abandoned patches

Roughly at six month intervals, the Patch Meister can list the patches which have been set
to Patch::needs_work and send the results to the developer list for review. In most cases,
these patches should be marked Patch: :abandoned but this should come from the developer if
possible.

3.4 Writing good commit messages

Your commit message should begin with a one-line summary describing the change (no more than
50 characters long), and if necessary a blank line followed by more explanatory text (wrapped
at 72 characters). Here is how a good commit message looks like:

Doc: add Baerenreiter and Henle solo cello suites

https://gitlab.com/lilypond/lilypond/-/merge_requests

Chapter 3: Working with source code 17

Added comparison of solo cello suite engravings to new essay with
high-resolution images. Fixed cropping on Finale example.

Closes #1234.

The “Closes” part is specially recognized by GitLab. See the documentation for closing issues
automatically (https://docs.gitlab.com/ee/user/project/issues/managing_issues.
html#closing-issues-automatically).

Commit messages often start with a short prefix describing the general location of the changes.
Commits affecting the documentation in English (or in several languages simultaneously) should
be prefixed with “Doc:”. When the commit affects only one of the translations, use “Doc-**:”,
where ** is the two-letter language code. For the website, this is “Web:” or “Web-**”. Commits
that change CSS files should use “Web: CSS” or “Doc: CSS:”. Finally, changes to a single file
are often prefixed with the name of the file involved.

The imperative form, e.g. “Include this in that”, is strongly preferred over the descriptive
form “That is now included in this”.

See also this blog post (https://chris.beams.io/posts/git-commit/) for details on how
to write good commit messages.

3.5 Commit access

New contributors are not able to push branches directly to the main repository — only members
of the LilyPond development team have commit access. If you are a contributor and are inter-
ested in joining the development team, contact the Project Manager through the mailing list
(1ilypond-devel@gnu.org). Generally, only contributors who have already provided a number
of patches which have been merged to the main repository will be considered for membership.

If you have been approved by the Project Manager, navigate to https://gitlab.com/
lilypond and ‘Request access’ to the group. Make sure that your account can be related
to your activity on the mailing list. If in doubt, please post the user name after requesting
access.

Note that you will not have commit access until the Project Manager activates your member-
ship. Once your membership is activated, LilyPond should appear under the heading “Groups”
on your profile page. When this is done, you can test your commit access with a dry run:

git push --dry-run --verbose

3.6 Further Git documentation resources
The following page on the Git website provides links to the Pro Git book and a variety of
tutorials, as well as the official man pages (also available with man git ...).
https://git-scm.com/doc
The GitLab user documentation contains tutorials on using Git and GitLab:

https://docs.gitlab.com/ee/tutorials/#use-git

3.7 Repository directory structure

The following is a verbatim output of the file ROADMAP, which can be found in the top-level
directory of LilyPond’s git repository.

Prebuilt Documentation and packages are available from:

http://www.lilypond.org

https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://chris.beams.io/posts/git-commit/
mailto:lilypond-devel@gnu.org
https://gitlab.com/lilypond
https://gitlab.com/lilypond
https://git-scm.com/doc
https://docs.gitlab.com/ee/tutorials/#use-git

Chapter 3: Working with source code

LilyPond development is hosted at:
https://gitlab.com/lilypond/
Here is a simple explanation of the directory layout for
LilyPond's source files.
Toplevel READMEs, files for
configuration and building, etc.
-- Documentation/ Top sources for most of the manuals
INDIVIDUAL CHAPTERS FOR EACH MANUAL:

|

|

| Note: "Snippets" and "Internals Reference" are

| auto-generated during the Documentation Build process.
|

|-- en/contributor/ Contributor's Guide

|-- en/essay/ Essay on automated music engraving

|-- en/extending/ Extending the functionality of LilyPond

|-- en/included/ Doc files that are used more than once

|-- en/learning/ Learning Manual

|-- en/notation/ Notation Reference

|-- en/usage/ How to run the programs that come with LilyPond
|-- en/web/ Website files

|
| TRANSLATED MANUALS:

| Each language's directory can contain...

| 1) translated versions of:

| * "en/*" sources for manuals

| * individual chapters for each manual

| 2) a texidocs/ directory for snippet translations

|-- de/ German

|-- es/ Spanish
|-—— fr/ French

[-- it/ Italian
|-- ja/ Japanese
|-—— tr/ Turkish
|-- zh/ Chinese

| MISCELLANEOUS DOC STUFF:

|-- bib/ Bibliography files for documentation

|-- css/ CSS files for HTML docs

|-- logo/ Web logo and "note" icon

|-= ly-examples/ “.1ly" example files for the webpage

|-- misc/ 01d announcements, Changelogs and NEWS

|-- pictures/ Images (eps/jpg/png/svg) for the webpage

| ~—— pdf/ (pdf)

|-- po/ Translations for build/maintenance scripts
|-- snippets/ Auto-generated from the LSR and from ./new/
| “-- new/ Snippets too new for the LSR

|-- tex/ TeX and texinfo library files

|-- topdocs/ AUTHORS, INSTALL

“-- webserver Support files for the lilypond.org web server

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |-- ca/ Catalan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| C++ SOURCES:
|

18

Chapter 3: Working with source code

flower/

“—— include/
lily/

“—— include/

LIBRARIES:

ly/
mf/
ps/

scm/

SCRIPTS:

config/
mé/
python/
“-— auxiliar/
“—— vendored/
scripts/
|-- auxiliar/
“-- build/

BUILD PROCESS:

A simple C++ library

C++ header files for basic LilyPond structures
C++ sources for the LilyPond binary

C++ header files for higher-level stuff

“.1y" \include files

MetaFont sources and scripts for Emmentaler fonts
PostScript library files

Scheme sources for LilyPond and subroutine files

Autoconf helpers for configure script

Files used while generating the configure script
Python modules, MIDI module

Python modules for build/maintenance

External Python packages used during build
End-user scripts (--> lilypond/usr/bin/)
Maintenance and non-essential build scripts
Essential build scripts

(also see SCRIPTS section above)

make/

docker/
|-- base/
|-= ci/
“—- doc/

release/

|-- binaries/

| |-- ansible/
| |-- 1ib/

| | -- patches/
| -- relocate/

REGRESSION TESTS:

Specific make subroutine files

CI Docker files used for running “make’
Support for continuous integration (CI) on gitlab
CI Docker files used for running "make doc”

Scripts to generate and upload release packages
Scripts to build binaries

Ansible playbooks for building binaries
Auxiliary files for building binaries

Patch files for external programs

Relocation data for lilypond binary

Scripts to build documentation

".ly" regression tests
“.abc” regression tests

|-- include-path-modification/

Regression test directory for include paths

“lilypond-book™ regression tests

‘'midi2ly” regression tests

MusicXML regression tests (for “musicxml2ly’)
Regression tests without graphical output

Emacs LilyPond mode and syntax coloring

input/
“-- regression/
|-- abc2ly/
|
| -- lilypond-book/
|
|-- midi/
| -- musicxml/
“—— other/
MISCELLANEQUS:
elisp/
vim/

po/

Vi(M) LilyPond mode and syntax coloring
Translations for binaries and end-user scripts

19

20

4 Compiling
This chapter describes the process of compiling the LilyPond program from source files.

4.1 Overview of compiling

Compiling LilyPond from source is an involved process, and is only recommended for developers
and packagers. Typical program users are instead encouraged to obtain the program from a
package manager (on Unix) or by downloading a precompiled binary configured for a specific
operating system. Pre-compiled binaries are available on the Section “Download” in General
Information page.

Compiling LilyPond from source is necessary if you want to build, install, or test your own
version of the program.

A successful compile can also be used to generate and install the documentation, incorpo-
rating any changes you may have made. However, a successful compile is not a requirement
for generating the documentation. The documentation can be built using a Git repository in
conjunction with a locally installed copy of the program. For more information, see [Building
documentation without compiling], page 31.

Attempts to compile LilyPond natively on Windows have been unsuccessful, though a
workaround is available (see Section “LilyDev” in Contributor’s Guide).

4.2 Requirements

4.2.1 Requirements for running LilyPond

This section contains the list of software packages that are required to run LilyPond (this is, to
successfully execute the 1ilypond binary and its subprograms to output a PDF, and to execute
other programs like 1ilypond-book that are installed, too).

Additional software packages are necessary to compile LilyPond from its sources; this gets
handled in a later section.

e Cairo (https://www.cairographics.org)
Use version 1.16 or newer.

e FontConfig (https://www.fontconfig.org)
Use at least version 2.13; however, we recommend version 2.15 or newer so that LilyPond
can better reject Font Variations (see Section “Unsupported font formats” in Notation
Reference and [this warning], page 25).

e FreeType (https://www.freetype.org)
Use version 2.10 or newer.

e Ghostscript (https://www.ghostscript.com)
Use version 9.03 or newer.

e GLib (https://gitlab.gnome.org/GNOME/glib/) (also required for Pango)
Use version 2.64 or newer. Please note that LilyPond requires GRegex support in GLib. In
turn, this implies that PCRE, the library GLib utilizes for regular expressions, must be built
with Unicode support. In PCREL, the flags -—enable-utf --enable-unicode-properties
must have been passed to the configure script when compiling PCRE; this is the case in
most GNU/Linux distributions. In PCRE2, Unicode support is enabled by default.

e Guile (https://www.gnu.org/software/guile/guile.html)
Use version 3.0.7 or later point releases.

e libpng (http://www.libpng.org/pub/png/libpng.html)
Use version 1.6 or newer.

https://www.cairographics.org
https://www.fontconfig.org
https://www.freetype.org
https://www.ghostscript.com
https://gitlab.gnome.org/GNOME/glib/
https://www.gnu.org/software/guile/guile.html
http://www.libpng.org/pub/png/libpng.html

Chapter 4: Compiling 21

e Pango (https://wuw.pango.org)
Use version 1.44.5 or newer.

e Python (https://www.python.org)
Use version 3.10 or newer.

e Text fonts
By default, LilyPond uses the families C059, Nimbus Mono PS; and Nimbus Sans of the
URW++ package.
Some distributions do not provide these fonts’” OTF files. If they are missing, download and
manually extract the OTF files to your local ~/.fonts/ directory.

Some languages, such as Vietnamese, do not have glyphs in the URW++ fonts. When a glyph
is not found in those fonts, LilyPond attempts to fall back to the families Cursor, Heros,
and Schola of the TeX Gyre package. Note for downstream packagers: while packaging the
URW++ fonts is important in order to make (most) LilyPond files render the same across
environments, packaging the TeX Gyre fonts is optional; you can make them an optional
dependency, for example.

For more details on text fonts, please see Section “Fonts” in Notation Reference.

4.2.2 Requirements for compiling LilyPond
This section contains instructions on how to quickly and easily get all the software packages
required to build LilyPond.

Most of the more popular Linux distributions only require a few simple commands to down-
load all the software needed. For others, there is an explicit list of all the individual packages
(as well as where to get them from) for those that are not already included in your distributions’
own repositories.

Additional software packages are necessary to compile LilyPond’s documentation from its
sources; this gets handled in a later section.

Fedora
The following instructions were tested on ‘Fedora’ versions 22 & 23 and will download all the
software required to both compile LilyPond and build the documentation.
e Download and install all the LilyPond build-dependencies (approximately 700MB);
sudo dnf builddep lilypond --nogpgcheck
e Download and install additional ‘build’ tools required for compiling;
sudo dnf install autoconf gcc-c++
e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.
sudo dnf install git
Also see Section “Working with source code” in Contributor’s Guide.

-
Note: By default, when building LilyPond’s documentation, pdfTEX

is used. However, ligatures (fi, fl, ff, etc.) may not be printed in the
PDF output. In this case XeTEX can be used instead. Download and
install the texlive-xetex package.

sudo dnf install texlive—-xetex

The scripts used to build the LilyPond documentation will use XeTgX
instead of pdfTEX to generate the PDF documents if it is available.

No additional configuration is required.
- J

https://www.pango.org
https://www.python.org

Chapter 4: Compiling 22

Linux Mint

The following instructions were tested on ‘Linux Mint 17.1’ and ‘LMDE - Betsy’ and will down-
load all the software required to both compile LilyPond and build the documentation.

e Enable the sources repository;
1. Using the Software Sources GUI (located under Administration).
2. Select Official Repositories.
3. Check the Enable source code repositories box under the Source Code section.
4

. Click the Update the cache button and when it has completed, close the Software
Sources GUI.

e Download and install all the LilyPond build-dependencies (approximately 200MB);
sudo apt-get build-dep lilypond

e Download and install additional ‘build’ tools required for compiling;
sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo apt-get install git

Also see Section “Working with source code” in Contributor’s Guide.

s ~
Note: By default, when building LilyPond’s documentation, pdfTEX

is used. However, ligatures (fi, fl, ff, etc.) may not be printed in the
PDF output. In this case XeTEX can be used instead. Download and
install the texlive-xetex package.

sudo apt-get install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTEX
instead of pdfTEX to generate the PDF documents if it is available.

No additional configuration is required.
N /)

OpenSUSE

The following instructions were tested on ‘OpenSUSE 13.2’ and will download all the software
required to both compile LilyPond and build the documentation.

e Add the sources repository;

sudo zypper addrepo -f \
"http://download.opensuse.org/source/distribution/13.2/repo/oss/" sources

e Download and install all the LilyPond build-dependencies (approximately 680MB);
sudo zypper source-install lilypond

e Download and install additional ‘build’ tools required for compiling;
sudo zypper install make

e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo zypper install git

Also see Section “Working with source code” in Contributor’s Guide.

Chapter 4: Compiling 23

s ~
Note: By default, when building LilyPond’s documentation, pdfTEX
is used. However, ligatures (fi, fl, ff, etc.) may not be printed in the
PDF output. In this case XeTEX can be used instead. Download and
install the texlive-xetex package.

sudo zypper install texlive-xetex
The scripts used to build the LilyPond documentation will use XeTEX

instead of pdfTEX to generate the PDF documents if it is available.

No additional configuration is required.
-

Ubuntu

The following commands were tested on Ubuntu versions 14.04 LTS, 14.10 and 15.04 and will
download all the software required to both compile LilyPond and build the documentation.

e Download and install all the LilyPond build-dependencies (approximately 200MB);
sudo apt-get build-dep lilypond

e Download and install additional ‘build’ tools required for compiling;
sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

e Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo apt-get install git

Also see Section “Working with source code” in Contributor’s Guide.

s ~
Note: By default, when building LilyPond’s documentation, pdfTEX
is used. However, ligatures (fi, fl, ff, etc.) may not be printed in the
PDF output. In this case XeTEX can be used instead. Download and
install the texlive-xetex package.

sudo apt-get install texlive-xetex
The scripts used to build the LilyPond documentation will use XeTEX

instead of pdfTEX to generate the PDF documents if it is available.

No additional configuration is required.
k J

Other

The following software packages are required to compile LilyPond, in addition to the run-time
packages (see Section 4.2.1 [Requirements for running LilyPond], page 20).

e GNU Autoconf (https://www.gnu.org/software/autocont)
e pkg-config (https://www.freedesktop.org/wiki/Software/pkg-config)

e GNU Bison (https://www.gnu.org/software/bison)
Use version 2.4.1 or newer.

e Compiler with support for C++17
Version 8 or newer of the GNU Compiler Collection (https://gcc.gnu.org) and version 8
or newer of Clang (https://clang.llvm.org) should work. Your mileage may vary with
older versions.

e Flex (https://github.com/westes/flex)
Use version 2.5.29 or newer.

https://www.gnu.org/software/autoconf
https://www.freedesktop.org/wiki/Software/pkg-config
https://www.gnu.org/software/bison
https://gcc.gnu.org
https://clang.llvm.org
https://github.com/westes/flex

Chapter 4: Compiling 24

e FontForge (https://fontforge.org)
Use version 20200314 or newer with enabled Python 3 scripting; it must also be compiled
with the -—enable-double switch, else this can lead to inaccurate intersection calculations,
which in turn cause poorly-rendered glyphs in the output.

o GNU gettext (https://www.gnu.org/software/gettext/gettext.html)
Use version 0.17 or newer.

e GNU Make (https://www.gnu.org/software/make)
Use version 4.2 or newer.

e MetaFont (http://metafont.tutorial.free.fr)
The MetaFont binary (usually called mf-nowin, mf, mfw, or mfont) and its support files are
normally packaged along with TEX. Most GNU/Linux and other free software distributions
already provide packages for TEX Live (https://tug.org/texlive), see above. TEX Live
can can also be installed separately; it contains stand-alone binaries for most platforms.

e MetaPost (https://www.tug.org/metapost.html)
The mpost binary is also usually packaged with TEX (https://tug.org/texlive). Use
version 2.0 or newer.

e Perl (https://www.perl.org)
Use version 5.6.1 or newer.

e Texinfo (https://www.gnu.org/software/texinfo)
Use version 6.8 or newer.

e Type 1 utilities (https://www.lcdf.org/~eddietwo/type/#tlutils)
We need tlasm. Use version 1.33 or newer.

4.2.3 Requirements for building documentation

The entire set of documentation for the most current build of LilyPond is available online
at https://lilypond.org/doc/latest/Documentation/web/development, but you can also
build them locally from the source code. This process requires the following tools and packages,
in addition to the build and run-time packages (see Section 4.2.2 [Requirements for compiling
LilyPond], page 21, and Section 4.2.2 [Requirements for compiling LilyPond], page 21).

Note: If the instructions for one of the GNU/Linux distributions
listed earlier (see Section 4.2.2 [Requirements for compiling LilyPond],
page 21) have been used, the following can be ignored, as the necessary
software packages should already be installed.

e ImageMagick (https://www.imagemagick.org)
We need the convert tool.

e gzip (https://gzip.org)

e rsync (https://rsync.samba.org)

e To get reproducible documentation builds (this is, PDF documentation files contain the
same fonts regardless of the build platform), the following font families should be installed.

URW++ and TeX Gyre, as described before
Bitstream Vera Sans

Bitstream Charter

DejaVu Sans

DejaVu Serif

DejaVu Sans Mono

Linux Libertine O

https://fontforge.org
https://www.gnu.org/software/gettext/gettext.html
https://www.gnu.org/software/make
http://metafont.tutorial.free.fr
https://tug.org/texlive
https://www.tug.org/metapost.html
https://tug.org/texlive
https://www.perl.org
https://www.gnu.org/software/texinfo
https://www.lcdf.org/~eddietwo/type/#t1utils
https://lilypond.org/doc/latest/Documentation/web/development
https://www.imagemagick.org
https://gzip.org
https://rsync.samba.org

Chapter 4: Compiling 25

Noto Serif CJK JP/Noto Serif JP

It is recommended to install the standard Roman (or Regular), Italic, Bold, and Bold Italic
styles for all listed families; for the large Japanese fonts of the ‘Noto Serif CJK JP’ or ‘Noto
Serif JP’ family, Regular and Bold styles are sufficient.

p
Note: Be careful to install a version of ‘Noto Serif CJK JP’ that

works with LilyPond! For technical reasons, neither the CFF2
font format nor Font Variations (VF) are supported, and many
GNU/Linux distributions use exactly that for the Noto CJK fam-
ily as a fallback. While Font Variations are filtered out by Lily-
Pond’s 99-1ilypond-fonts.conf configuration file for FontCon-
fig, this cannot be done for CFF2. If you encounter errors during
make doc related to Noto Serif CJK, consider to download fitting
fonts directly from their repository!? and to install them into your
local fonts directory (for example, ~/.fonts) so that FontConfig
\ﬁnds them first.

e extractpdfmark (https://github.com/trueroad/extractpdfmark)

This is an optional component. However, it is highly recommended due to the large number
of included PDF snippets. While making the compilation process much slower, it helps re-
duce the PDF output size by large amounts: for example, the size of the Notation Reference
shrinks from approx. 30 MB to 7 MB.

e Finally, to convert LilyPond’s documentation (in Texinfo format) to PDF files, including
more than thousand PDF snippets generated by LilyPond, XeTgX (https://tug.org/
xetex/) is used by default. If not available, pdfTEX (https://tug.org/applications/
pdftex/index.html) is tried instead.

Not surprisingly, both XeTgX and pdfTEX are also part of TEX Live. Most GNU/Linux and
other free software distributions already provide packages for TEX Live (https://tug.org/
texlive), see above. TEX Live can can also be installed separately; it contains stand-alone
binaries for most platforms.

To support syntax highlighting of LilyPond source code in the PDF manuals (using the
‘pygments’ Python package), typewriter shapes of the Computer Modern font family are re-
placed with the extended set of shapes provided by Latin Modern. For this reason, two more
TEX Live packages are necessary in case they are not already installed: ‘fontinst’ (a macro
package for plain TEX) and ‘lmodern’ (we need some .pfb and .afm files). Additionally,
the utility program pltotf must be available.

4.3 Getting the source code

Downloading the Git repository

In general, developers compile LilyPond from within a local Git repository. Setting up a local
Git repository is explained in Section “Setting up” in Contributor’s Guide.

Downloading a source tarball

Packagers are encouraged to use source tarballs for compiling.

The tarball for the latest stable release is available on the Section “Source” in General
Information page.

! https://github.com/notofonts/noto-cjk/blob/main/Serif/0TF/Japanese/NotoSerifCIJKjp-Regular.otf
2 https://github.com/notofonts/noto-cjk/blob/main/Serif/0TF/Japanese/NotoSerifCJKjp-Bold.otf

https://github.com/trueroad/extractpdfmark
https://tug.org/xetex/
https://tug.org/xetex/
https://tug.org/applications/pdftex/index.html
https://tug.org/applications/pdftex/index.html
https://tug.org/texlive
https://tug.org/texlive
https://github.com/notofonts/noto-cjk/blob/main/Serif/OTF/Japanese/NotoSerifCJKjp-Regular.otf
https://github.com/notofonts/noto-cjk/blob/main/Serif/OTF/Japanese/NotoSerifCJKjp-Bold.otf

Chapter 4: Compiling 26

The latest source code snapshot (http://git.savannah.gnu.org/gitweb/?p=1ilypond.
git;a=snapshot) is also available as a tarball from the GNU Savannah Git server.

All tagged releases (including legacy stable versions and the most recent development release)
are available here:

https://lilypond.org/download/source/
Download the tarball to your ~/src/ directory, or some other appropriate place.

Note: Be careful where you unpack the tarball! Any subdirectories of
the current folder named 1ilypond-2.25.28/ are overwritten if there
is a name clash with the tarball.

Unpack the tarball with this command:
tar -xzf lilypond-2.25.28.tar.gz
This creates a subdirectory within the current directory called 1ilypond-2.25.28/. Once
unpacked, the source files occupy about 66 MB of disk space.

Windows users wanting to look at the source code may have to download and install the
free-software 7zip archiver (https://www.7-zip.org) to extract the tarball.

4.4 Configuring make

4.4.1 Build modes

LilyPond supports two build modes to prepare the execution of the make command.

e ‘In-tree’ compilation. This is the classical build mode of projects that use a configure
script. The main disadvantage, however, is cluttering the source directory with generated
files. We thus don’t recommend it except for special purposes® that we don’t cover here.

e Compilation using a build directory. A common name and location is a directory called
build/ in the top-level source directory; the following instructions expect exactly that.

4.4.2 Running autogen.sh

(If you use a tarball, follow the instructions in this subsection but don’t actually run the
autogen.sh script — the tarball already comes with a configure script.)

After cloning the Git repository or downloading and unpacking a Git snapshot, the contents
of your top source directory should be similar to the current source tree listed at https://git.
sv.gnu.org/gitweb/7p=1lilypond.git;a=tree.

Note that the top-level source directory is called 1ilypond-2.25.28/ if you use the tarball.
It is called 1ilypond-HEAD-ID/ if you use a Git snapshot, with ID being a hexadecimal, seven-
digit number (for example, 1ilypond-HEAD-80113f7/). It is simply called 1ilypond/ if you
directly use the Git clone, and we use this in the following instructions.

Start with changing to the source directory, creating a build directory, and changing into it.

cd lilypond/
mkdir build/
cd build/

Because there are no generated files in the repository, you have to generate the configure
script first. There are two possibilities to do that.

e Generate the configure script in the top-level source directory. This is what the instruc-
tions below do.

3 For example, translators are required to build LilyPond in-tree, otherwise the translation helper scripts won’t
work.

http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
https://lilypond.org/download/source/
https://www.7-zip.org
https://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree
https://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree

Chapter 4: Compiling 27

e Using autogen.sh’s ——currdir option it is possible to generate the configure script in
the build directory. We don’t cover this slightly more complicated setup here.

(If you omit the ——noconfigure option, autogen.sh not only creates the configure script
but also executes it, forwarding all given command-line options. This is a convenient shorthand
for experienced users. For clarity, however, we explain the process in two separate steps.)

Execute the autogen.sh script now.

../autogen.sh --noconfigure

4.4.3 Running configure

Configuration options

Note: make sure that you are in the build/ subdirectory of your
source tree.

The . ./configure command (generated by ../autogen.sh) provides many options for con-
figuring make. To see them all, run

../configure --help

Checking build dependencies

Note: make sure that you are in the build/ subdirectory of your
source tree.

When . ./configure is run without any arguments, it checks whether your system has ev-
erything required for compilation.

../configure
If any build dependency is missing, . ./configure returns with
ERROR: Please install required programs: foo

The following message is issued if you are missing programs that are only needed for building
the documentation.

WARNING: Please consider installing optional programs: bar

If you intend to build the documentation locally, you need to install or update these programs
accordingly.

Note: ../configure may fail to issue warnings for certain documenta-
tion build requirements that are not met. If you experience problems
when building the documentation, you may need to do a manual check;
see Section 4.2.3 [Requirements for building documentation|, page 24.

Configuring target directories

Note: make sure that you are in the build/ subdirectory of your
source tree.

If you intend to use your local build to install a local copy of the program, you probably
want to configure the installation directory. Here are the relevant lines taken from the output
of ../configure —-help:

Chapter 4: Compiling 28

By default, make install will install all the files in /usr/local/bin, /usr/local/
lib etc. You can specify an installation prefix other than /usr/local using
--prefix, for instance —-prefix=$HOME.

A typical installation prefix is $HOME/usr.
../configure --prefix=$HOME/usr

Note that if you plan to install a local build on a system where you do not have root privileges,
you need to do something like this anyway — make install only succeeds if the installation
prefix points to a directory where you have write permission (such as your home directory). The
installation directory is automatically created if necessary.

The location of the 1ilypond command installed by this process is prefix/bin/1ilypond;
you may want to add prefix/bin/ to your $PATH if it is not already included.

It is also possible to specify separate installation directories for different types of program
files. See the full output of ../configure —-help for more information.

See Section 4.7 [Problems|, page 32, if you encounter any problems.
4.5 Compiling LilyPond

4.5.1 Using make

Note: make sure that you are in the build/ subdirectory of your
source tree.

LilyPond is compiled with the make command. Assuming make is configured properly, you
can simply run:

make
‘make’ is short for ‘make all’. To view a list of make targets, run:
make help

By default, .scm files are byte-compiled. If you don’t want to do that for whatever reason,
add BYTECODE=no as an argument to make.?

TODO: Describe what make actually does.

See also

Section 4.6.2 [Generating documentation], page 29, provides more info on the make targets
used to build the LilyPond documentation.

4.5.2 Saving time with the -j option

If your system has multiple CPUs, you can speed up compilation by adding ‘-=jX’ to the make
command, where ‘X’ is one more than the number of cores you have. For example, a typical
Core2Duo machine would use:

make -j3
If you get errors using the -j option, and ‘make’ succeeds without it, try lowering the X value.

Because multiple jobs run in parallel when -j is used, it can be difficult to determine the
source of an error when one occurs. In that case, running ‘make’ without the -j is advised.

4 Byte compilation of Scheme code is disabled while cross-compiling since Guile must bootstrap itself to do
that, which is not possible in general.

Chapter 4: Compiling 29

4.5.3 Useful make variables

make normally echoes each command, but LilyPond makefiles suppress this behavior by default.
The goal is to show progress without hiding warnings and errors in the noise of long commands.

To enable echoing commands, and to increase the verbosity of some of the commands, set
VERBOSE=1 on the command line or in local.make at the top of the build tree.

Similarly, to reduce the verbosity, set SILENT=1. Because of the way these options are
implemented, make -s does not serve this purpose.

4.6 Post-compilation options

4.6.1 Installing LilyPond from a local build

If you configured make to install your local build in a directory where you normally have write
permission (such as your home directory), and you have compiled LilyPond by running make,
you can install the program in your target directory by running:

make install

If instead your installation directory is not one that you can normally write to (such as
the default /usr/local/, which typically is only writeable by the superuser), you will need to
temporarily become the superuser when running make install:

sudo make install
or. .
su —-c¢ 'make install'

If you don’t have superuser privileges, then you need to configure the installation directory
to one that you can write to, and then re-install. See [Configuring target directories|, page 27.

If you have added BYTECODE=no as an argument to make all, you should do the same for
make install.

4.6.2 Generating documentation

Three levels of documentation are available for installation. The following table lists them in
order of increasing complexity, along with the command sequence to install each.

Level Images Web Command

Reduced Info no no make && make install

Full Info Yes no make && make info && make install-info
Web yes yes make && make doc && make install-doc

The web documentation includes all info files, images, and web documents. The reduced
info option omits images and info files that are either highly dependent upon images, or discuss
technical program details.

Documentation editor’s edit/compile cycle
To work on a manual, do the following
e Build lilypond itself
make [-jX]
e Then build the specific manual to work on, and inspect:

edit source files, then...
make CPU_COUNT=X -C Documentation out=www out-www/LANGUAGE/MYMANUAL.pdf

1f you prefer checking HTML files
make CPU _COUNT=X -C Documentation out=www out-www/LANGUAGE/MYMANUAL/index.html

Chapter 4: Compiling 30

e To remove compiled documentation from your system, use ‘make doc-clean’ in the toplevel
build directory.

Building documentation
After a successful compile (using make), the documentation can be built by issuing:
make doc
or, to build only the PDF documentation and not the HT'ML version,

make -C Documentation out=www pdf

Note: The first time you run make doc, the process can easily take a
very long time with not much output on the command line.

After this initial build, make doc only makes changes to the documentation where needed,
so it may only take a minute or two to test changes if the documentation is already built.

If make doc succeeds, the HI'ML documentation tree is available in out-www/offline-root/,
and can be browsed locally. The documentation can also be inspected in the
Documentation/out-www subdirectory.

make doc sends the output from most of the compilation to logfiles. If the build fails for any
reason, it should print the name of a logfile, explaining what failed.

make doc compiles the documents for all languages. To save some compile time, the English
language documents can be compiled on their own with:
make LANGS='en' doc
Similarly, it is possible to compile a subset of the translated documentation by specifying their

language codes on the command line. For example, the French and German translations are
compiled with:

make LANGS='de fr' doc
To get correct word hyphenation in the non-English PDF documentation files you should

install proper TEX Live packages for your platform, for example, ‘texlive-hyphen-german’ or
‘texlive-hyphen-french’. If you have enough disk space you might simply install ‘texlive-full’
instead to get everything in one rush.
Compilation of documentation in Info format with images can be done separately by issuing:

make info
An issue when switching branches between master and translation is the appear-

ance/disappearance of translated versions of some manuals. If you see such a warning from
make:

No rule to make target 'X', needed by 'Y'
Your best bet is to delete the file Y.dep and to try again.

Building a single document

It’s possible to build a single document. For example, to rebuild only contributor.pdf, do the
following;:

cd build/

cd Documentation/

touch ../../Documentation/en/contributor.texi

make out=www out-www/en/contributor.pdf

If you are only working on a single document, test-building it in this way can give substantial
time savings - recreating contributor.pdf, for example, takes a matter of seconds.

Chapter 4: Compiling 31

Saving time with CPU_COUNT

The most time consuming task for building the documentation is running LilyPond to build
images of music, and there cannot be several simultaneously running 1ilypond-book instances,
so the -j make option does not significantly speed up the build process. To help speed it up, the
makefile variable CPU_COUNT may be set in local.make or on the command line to the number
of .1y files that LilyPond should process simultaneously, e.g., on a dual core machine:

make -j2 CPU_COUNT=2 doc

The recommended value of CPU_COUNT is the number of cores. If the build runs into out-of-
memory problems, use a lower number.

Installing documentation

The HTML, PDF and if available Info files can be installed into the standard documentation
path by issuing

make install-doc

This also installs Info documentation with images. The final installation of Info documentation
(integrating it into the documentation directory) is printed on standard output.

To install the Info documentation separately, run:
make install-info

Note that to get the images in Info documentation, install-doc target creates symbolic links
to HTML and PDF installed documentation tree in prefix/share/info, in order to save disk
space, whereas install-info copies images in prefix/share/info subdirectories.

It is possible to build a documentation tree in out-www/online-root/, with special process-
ing, so it can be used on a website with content negotiation for automatic language selection;
this can be achieved by issuing

make WEB_TARGETS=online doc
and both ‘offline’ and ‘online’ targets can be generated by issuing
make WEB_TARGETS="offline online" doc

Several targets are available to clean the documentation build and help with maintaining
documentation; an overview of these targets is available with

make help

from every directory in the build tree. Most targets for documentation maintenance are available
from Documentation/; for more information, see Section “Documentation work” in Contribu-
tor’s Guide.

The makefile variable QUIET_BUILD may be set to 1 for a less verbose build output, just like
for building the programs.

Building documentation without compiling

The documentation can be built locally without compiling LilyPond binary, if LilyPond is already
installed on your system.

From a fresh Git checkout, do

./autogen.sh # ignore any warning messages

cp GNUmakefile.in GNUmakefile

make -C scripts && make -C python

nice make LILYPOND_EXTERNAL_BINARY=/path/to/bin/lilypond doc

This may break: if a new feature is added with a test file in input/regression, even the latest
development release of LilyPond will fail to build the docs.

Chapter 4: Compiling 32

You may build the manual without building all the input/* stuff (i.e., mostly regression
tests): change directory, for example to Documentation/, issue make doc, which will build
documentation in a subdirectory out-www from the source files in current directory. In this case,
if you also want to browse the documentation in its post-processed form, change back to top
directory and issue

make out=www WWW-post

4.6.3 Testing LilyPond binary

LilyPond comes with an extensive suite that exercises the entire program. This suite can be
used to test that the binary has been built correctly.

The test suite can be executed with:
make test
If the test suite completes successfully, the LilyPond binary has been verified.

More information on the regression test suite is found at Section “Regression tests” in Con-
tributor’s Guide.

4.7 Problems

For help and questions wuse 1lilypond-user@gnu.org. Send bug reports to
bug-lilypond@gnu.org.

Bugs that are not fault of LilyPond are documented here.

Compiling on macOS

Here are special instructions for compiling under macOS. These instructions assume that de-
pendencies are installed using MacPorts. (https://www.macports.org/) The instructions have
been tested using Mac~OS~X 10.5 (Leopard).

First, install the relevant dependencies using MacPorts.

Next, add the following to your relevant shell initialization files. This is ~/.profile by
default. You should create this file if it does not exist.

export PATH=/opt/local/bin:/opt/local/sbin:$PATH
export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib:$DYLD_FALLBACK_LIBRARY_ PATH

At this point, you should verify that you have the appropriate fonts installed with your
Ghostscript installation. Check 1s /opt/local/share/ghostscript/fonts for: ’c0590* files
(.pfb, .pfb and .afm). If you don’t have them, run the following commands to grab them from
the Ghostscript SVN server and install them in the appropriate location:

svn export http://svn.ghostscript.com/ghostscript/tags/urw-fonts-1.0.7predd/
sudo mv urw-fonts-1.0.7pred44/* /opt/local/share/ghostscript/fonts/
rm -rf urw-fonts-1.07pred4d

Now run the ./configure script. To avoid complications with automatic font detection, add

--with-fonts-dir=/opt/local/share/ghostscript/fonts

FreeBSD

To use system fonts, dejaview must be installed. With the default port, the fonts are installed
in usr/X11R6/1ib/X11/fonts/dejavu.

Open the file $LILYPONDBASE/usr/etc/fonts/local.conf and add the following line just
after the <fontconfig> line. (Adjust as necessary for your hierarchy.)

<dir>/usr/X11R6/1ib/X11/fonts</dir>

mailto:lilypond-user@gnu.org
mailto:bug-lilypond@gnu.org
https://www.macports.org/

Chapter 4: Compiling 33

International fonts

On macOS, all fonts are installed by default. However, finding all system fonts requires a
bit of configuration; see this post (https://lists.gnu.org/archive/html/1ilypond-user/
2007-03/msg00472.html) on the 1ilypond-user mailing list.

On Linux, international fonts are installed by different means on every distribution. We
cannot list the exact commands or packages that are necessary, as each distribution is different,
and the exact package names within each distribution changes. Here are some hints, though:

Red Hat Fedora

taipeifonts fonts-xorg-truetype ttfonts-ja fonts-arabic \
ttfonts-zh_CN fonts-ja fonts-hebrew

Debian GNU/Linux

apt-get install emacs-intl-fonts xfonts-intl-.* \
fonts-ipafont-gothic fonts-ipafont-mincho \
xfonts-bolkhov-75dpi xfonts-cronyx-100dpi xfonts-cronyx-75dpi

Using LilyPond Python libraries

If you want to use LilyPond’s Python libraries (either running certain build scripts manually,
or using them in other programs), add the path to the python subdirectory in your LilyPond
source code (or git) tree to PYTHONPATH. Alternatively, add prefix/share/lilypond/2.25.28/
python if LilyPond is installed in prefix (for example, /usr/local).

4.8 Concurrent stable and development versions

It can be useful to have both the stable and the development versions of LilyPond available at
once. One way to do this on GNU/Linux is to install the stable version using the precompiled
binary, and run the development version from the source tree. After running make all from
the top directory of the LilyPond source files, there will be a binary called 1ilypond in the out
directory:

<path to>/lilypond/out/bin/lilypond

This binary can be run without actually doing the make install command. The advantage
to this is that you can have all of the latest changes available after pulling from git and running
make all, without having to uninstall the old version and reinstall the new.

So, to use the stable version, install it as usual and use the normal commands:
lilypond foobar.ly

To use the development version, create a link to the binary in the source tree by saving the
following line in a file somewhere in your $PATH:

exec <path to>/lilypond/out/bin/lilypond "$@"

Save it as Lilypond (with a capital L to distinguish it from the stable 1ilypond), and make
it executable:

chmod +x Lilypond

Then you can invoke the development version this way:
Lilypond foobar.ly

TODO: ADD

- other compilation tricks for developers

https://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html
https://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html

Chapter 4: Compiling 34

4.8.1 Replacing the notation fonts in development versions

The instructions to install other notation fonts (see Section “Replacing the notation font” in
Notation Reference) are slightly different if you call the 1i1ypond binary directly from the build
directory: instead of using a version directory name X.Y.Z in the path, you have to use current
— LilyPond supports this special case to avoid re-installation in case you are updating the git
repository, or if you are testing patches.

Assuming that you have compiled LilyPond in directory ~/1ilybuild/, additional font files
should go into ~/1ilybuild/out/share/lilypond/current/fonts/otf/ (this is usually a soft
link to directory ~/1ilybuild/mf/out/). Note, however, that you have to repeat the installa-
tion of additional notation fonts after calling make clean (and a subsequent make), since this
operation removes all out/ subdirectories.

4.9 Build system

Version-specific Texinfo macros

e made with scripts/build/create-version-itexi.py and
scripts/build/create-weblinks-itexi.py

e used extensively in the WEBSITE_ONLY_BUILD version of the website (made with
website.make, used on lilypond.org)

e not (?) used in the main docs?
e the numbers in VERSION file: MINOR_VERSION should be 1 more than the last release,

VERSION_DEVEL should be the last online release. Yes, VERSION_DEVEL is less than
VERSION.

35

5 Documentation work

There are currently 11 manuals for LilyPond, not counting the translations. Each of them is
available in split HTML (many small files), big HTML (a single file), PDF, and Info format.
The documentation is written in a markup language called Texinfo — this allows us to generate
different output formats from a single set of source files.

To allow multiple authors work simultaneously, we also use git (as previously discussed, see
Chapter 3 [Working with source code], page 10) for the documentation.

5.1 Introduction to documentation work

Our documentation tries to adhere to our documentation policy (see Section 5.5 [Documenta-
tion policy], page 47). This policy contains a few items which may seem odd. One policy in
particular is often questioned by potential contributors: we do not repeat material in the No-
tation Reference, and instead provide links to the “definitive” presentation of that information.
Some people point out, with good reason, that this makes the documentation harder to read:
if we repeated certain information in relevant places, readers would be less likely to miss that
information.

That reasoning is sound, but we have two counter-arguments. First, the Notation Reference
— one of five manuals for users to read — is already over 900 pages long. If we repeated material,
we would easily need a few hundred pages more! Second, and much more importantly, LilyPond
is an evolving project. New features are added, bugs are fixed, and bugs are discovered and
documented. If features are discussed in multiple places, the documentation team must find
every instance. Since the manual is so large, it is impossible for one person to have the location
of every piece of information memorized, so any attempt to update the documentation will
invariably omit a few places. This second concern is not at all theoretical; the documentation
used to be plagued with inconsistent information.

If the documentation were targeted for a specific version — say, LilyPond 2.24.1 — and we
had unlimited resources to spend on documentation, then we could avoid this second problem.
However, since LilyPond evolves (and that is a very good thing!), and since we have quite limited
resources, this policy remains in place.

A few other policies (such as avoiding the use of tweaks in the main portion of Notation
Reference chapters 1 and 2) may also seem counter-intuitive, but they also stem from attempting
to find the most effective use of limited documentation help.

Before undertaking any large documentation work, contributors are encouraged to contact
the 1ilypond-devel@gnu.org mailing list.

5.2 \version in documentation files

Every documentation file that includes LilyPond code should begin with a \version statement,
referencing a version of LilyPond that is consistent with the syntax of the contained code. Since
the \version statement is not valid Texinfo input it must be put into a comment like this:

@c \version "2.24.1"

So, if you are adding LilyPond code not consistent with the current version header, you
should

1. run convert-1ly on the file using the latest version of LilyPond (which should, if everybody
has done proper maintenance, not change anything);

2. add the new code;

3. modify the version number to match the new code.

mailto:lilypond-devel@gnu.org

Chapter 5: Documentation work 36

5.3 Documentation suggestions

Small additions

For small additions to the documentation you might follow these steps.

1.

Tell us where the addition should be placed. Please include both the section number and
title (for example, ‘LM 2.13 Printing lyrics’).

Please write exact changes to the text.

3. A formal patch to the source code is not required; we can take care of the technical details.

Send the suggestions to the bug-1ilypond@gnu.org mailing list as discussed in Section
“Contact” in General Information.

Here is an example of a perfect documentation report:

To: bug-lilypond@gnu.org
From: helpful-user@example.net
Subject: doc addition

In LM 2.13 (printing lyrics), above the last line ("More options,
like..."), please add:

To add lyrics to a divided part, use blah blah blah. For example,

\score {
\notes {blah <<blah>> }
\lyrics {blah <<blah>> }
blah blah blah

In addition, the second sentence of the first paragraph is
confusing. Please delete that sentence (it begins with "Users
often...") and replace it with this:

To align lyrics with something, do this thing.

Have a nice day,
Helpful User

Larger contributions

To

replace large sections of the documentation, the guidelines are stricter. We cannot remove

parts of the current documentation unless we are certain that the new version is an improvement.

1.

Ask on the 1ilypond-devel mailing list if such a rewrite is necessary; somebody else might
already be working on this issue!

Split your work into small portions; this makes it much easier to compare the new and old
documentation.

Please prepare a formal git patch, ideally submitted as a Merge Request for our repository
(see Section 3.3 [Lifecycle of a merge request], page 14).

mailto:bug-lilypond@gnu.org

Chapter 5: Documentation work 37

Contributions that contain examples using overrides

We try to avoid overrides, tweaks, customer Scheme functions, etc., as much as possible in
examples shown in the main text of the manuals, as there would be far too many, equally useful,
candidates.

The correct way is to submit your example, with appropriate explanatory text and tags, to
the LilyPond Snippet Repository (LSR). Snippets that have the “docs” tag can then be easily
added as a selected snippet in the documentation. It will also appear automatically in the
Snippets lists. See Section 7.1 [Introduction to LSR], page 65.

Snippets that don’t have the “docs” tag will still be searchable and viewable within the LSR,
but will be not be included in the Snippets list or be able to be included as part of the main
documentation.

Generally, any new snippets that have the “docs” tag are more carefully checked for syntax
and formatting.

Announcing your snippet

Once you have followed these guidelines, please send a message to 1ilypond-devel with your
documentation submissions.

We may edit your suggestion for spelling, grammar, or style, and we may not place the
material exactly where you suggested, but if you give us some material to work with, we can
improve the manual much faster.

Thanks for your interest!

5.4 Texinfo introduction and usage policy

5.4.1 Texinfo introduction

The markup language we use for writing LilyPond documentation is called Texinfo; you can see
its manual here:

https://www.gnu.org/software/texinfo/manual/texinfo/

However, you don’t need to read those documents. The most important thing to notice is that
text is text. If you see a mistake in the text, you can fix it. If you want to change the order of
something, you can cut and paste that stuff into a new location.

Note: As a rule of thumb, follow the examples in the existing docu-
mentation. You can learn most of what you need to know from this;
if you want to do anything fancy, discuss it on 1ilypond-devel first.

5.4.2 Documentation files

All manuals live in subdirectories of Documentation/XX, where ‘XX’ is a two-letter language code
like ‘en’ for English. All non-English documents are translations of the English ones.

Here is a table of the most important user manuals together with the name of their master
source files (the extension .tely stands for Texinfo + LilyPond code).

https://www.gnu.org/software/texinfo/manual/texinfo/

Chapter 5: Documentation work 38

Learning Manual (LM) learning.tely
Notation Reference (NR) notation.tely

Music Glossary (MG) music-glossary.tely
Application Usage (AU) usage.tely
Extending Guide (EG) extending.tely

Each chapter is put into a separate file, ending in .itely for files containing LilyPond
code, and .itexi for files without LilyPond code (the ‘i’ in the file name extension stands for
‘included’), located in a subdirectory associated with the manual (1earning/ for learning.tely,
and so on); list the subdirectory of each manual to determine the file name of the specific chapter
you wish to modify.

Developer manuals live in Documentation/ too. Currently there is only one: the Contribu-
tor’s Guide (contributor.texi) you are reading right now.

Many snippet files are part of the Notation Reference, and the Snippet List (SL), which
holds all snippets, lives in Documentation/ just like the manuals; its master file is called
snippets.tely. For information about how to modify the snippet files and SL, see Chapter 7
[LSR work], page 65.

5.4.3 Sectioning commands
The Notation Reference uses section headings at four, occasionally five, levels.

level section command

1 Qchapter

2 @section

3 Q@subsection

4 Qunnumberedsubsubsec
5 Osubsubsubheading

The first three levels are numbered in HTML, the last two are not. A numbered section
corresponds to a single HTML page in the split HIML documents.

The first four levels always have accompanying @node commands so they can be referenced;
they are also included in the table of contents in HTML.

Most of the manual is written at level 4 under headings created with

@node Foo
Qunnumberedsubsubsec Foo

Level 3 subsections are created with

@node Foo
@subsection Foo

Level 4 headings must be preceded by level 3 headings, and so on for level 3 and level 2. If
this is not what is wanted, please use:

Osubsubsubheading Foo
Leave two blank lines above a @node; this makes it easier to find sections in Texinfo code.

Do not use any @-commands within a @node. They may be used for any @sub. .. sections or
headings, however.

not:

@node @code{Foo} bar
O@subsection ©@code{Foo} bar

but instead:
@node Foo bar
Osubsection Q@code{Foo} bar

Chapter 5: Documentation work 39

Similarly, do not use punctuation in node names. If the heading text uses punctuation (in
particular, colons and commas) simply leave this out.

Onode We all love Bach Mozart and Gregorian chant
Osubsection We all love Bach, Mozart, and Gregorian chant

As can be seen in the previous examples, we use sentence-style capitalization (not title case),
which means that a heading starts with an uppercase letter, and you should only capitalize
words in the remaining part of the heading if you would do so in an English sentence.

Backslashes must not be used in node names either.

@Gnode set and unset
O@subsection Q@code{\set} and Q@code{\unset}

With the exception of @-commands, \-commands and punctuation, the section name should
match the node name exactly. If it happens that the heading starts with a command name that
in turn starts with a lowercase letter, do not capitalize the command name in the node name.

Sectioning commands (@node and @section) must not appear inside an @ignore ... Gend
ignore block. Separate those commands with a space, i.e., ‘On ode’.

5.4.4 Menus

A Texinfo menu is a @menu ... @end menu block that holds node names of all subsections of a
section. By default, such blocks are auto-generated while creating Info and HTML output; in
PDF output, they are not used. This means that it is not necessary to create menus normally.

The auto-generated menus simply use node names (and display the corresponding section
names). If you want to add some description to one or more menu entries, however, you have
to create the Gmenu block manually, to be put at the end of the current node, right before the
first subsection node.

Assuming that the current section contains subsection node names ‘foo’, ‘bar’, and ‘baz’, the
syntax is as follows.

Omenu

* foo:: A very long description of an extremely
important topic.

* bar::

*x baz:: A1l you want to know about Q@code{baz}.

@end menu

As can be seen, the description of a menu entry might contain Texinfo commands, and it
can be broken across multiple lines (in Info mode, the formatting of the @menu block is taken
directly).

In the LilyPond documentation, most top-level menus contain descriptions.

5.4.5 LilyPond formatting
Here are some guidelines how to format LilyPond code in @1ilypond ... @end lilypond blocks.

e Most LilyPond examples throughout the documentation can be produced with:
©@lilypond[verbatim,quote]

If you need \book{} in your example then you must also include the papersize=X variable,
where X is a paper size as defined in file scm/paper.scm. This is to avoid the default
ad paper size being used and leaving too much unnecessary whitespace and potentially
awkward page breaks in the PDFs.

The preferred papersize values are ab, a6, or a8landscape.
a8landscape works best for a single measure with a single title and/or a single tagline:

@lilypond [papersize=a8landscape,verbatim]

Chapter 5: Documentation work 40

\book {
\header {
title = "A scale in LilyPond"
+
\relative {
cdef
+
}
Q@end lilypond

and can also be used to easily show features that require page breaks (i.e., page numbers)
without taking large amounts of space within the documentation. Do not use the quote
option with this paper size.

ab or a6 paper sizes are best used for examples that have more than two measures of music
or require multiple staves (i.e., to illustrate cross-staff features, right-hand and left-hand
parts, etc.) and where \book{} constructions are required or where a8landscape produces
an example that is too cramped. Depending on the example the quote option may need to
be omitted.

In rare cases, other options may be used (or omitted), but ask first.
e For consistency with the existing documentation source code, please avoid using extra spac-
ing either after or within the @1ilypond parameters.
not: @lilypond [verbatim, quote, fragment]
but instead: @lilypond[verbatim,quote,fragment]

e Inspirational headwords are produced with:
@lilypondfile[quote,ragged-right,line-width=16\cm,staffsize=16]
{topic-headword.ly}

e LSR snippets are linked with:
@lilypondfile[verbatim,quote,ragged-right,texidoc,doctitle]
{name.1ly}

e Use two spaces for indentation in LilyPond examples (no tabs).

e Try to avoid using #' or #° when describing context or layout properties outside of an
©@example or @1ilypond, unless the description explicitly requires it.

13

Example:
it invisible.”

.. .setting the transparent property leaves the object where it is, but makes

e If possible, only write one bar per line.

e If you only have one bar per line, you might omit bar checks. If you must put more than
one bar per line (not recommended), then do include bar checks.

e \override tweaks should, if possible, also occur on their own line.

not: \override TextScript.padding = #3 c1™"hi"
but instead: \override TextScript.padding = #3
Cl"llhill

e Avoid long stretches of input code. Nobody is going to read them in print. Create small
examples. However, this does not mean it has to be minimal.

e Specify durations for at least the first note of every bar.
e If possible, end with a complete bar.
e Comments should go on their own line, and be placed before the line(s) to which they refer.

9

e For clarity, use ‘{’ and ‘}’ even if they are not technically required.

not:

Chapter 5: Documentation work 41

\context Voice \repeat unfold 2 \relative c' {
c2 d
}

but instead:
\context Voice {

\repeat unfold 2 {
\relative c¢' {

c2 d
+
+
}
e Add a space around ‘{’ and ‘}’.
not: \chordmode{c e g}

but instead: \chordmode { c e g }
e Use ‘{" and ‘}’ for additional \markup format commands.
not: c"\markup \tiny\sharp
but instead: ¢ \markup { \tiny \sharp }
e Remove any space around ‘<’ and ‘>’ (except for situations like <c e g-> >, which would
cause a syntax error otherwise).
not: <ceg>4
but instead: <c e g>4
e Beam and slur marks should begin immediately after the first note (i.e., without a space in
between), and end immediately after the last. Ties should also be attached without a space
before the tilde sign.

a8\ (ais16[b cis(d] b) cisd4~ b' cis,\)
e If you want to work on an example outside of the manual (for easier/faster processing), use
this header.
\paper {
indent = O\mm
line-width = 135.68\mm
}

\layout {}
This is the default line width and indentation value used by 1ilypond-book (which converts

the LilyPond code to PDF or PNG images) for @1ilypond blocks with the quote option
and no other overrides. Without the quote option, the line width is 156 mm.

5.4.6 Text formatting

e Lines should be less than 72 characters long. (We personally recommend writing with 66-
char lines, but do not bother modifying existing material). See Section 5.4.7 [Syntax survey],
page 42, for recommendations on how to use fixed-width fonts.

The main reason for using short lines is that it makes it easy later on to add a forgotten
@code{. ..} around a word, say, without the (aesthetical) need to reformat the text. Not
reformatting a paragraph makes it much more straightforward to compare small changes
with git repository viewers like gitk or TortoiseGit.

e Do not use tabs.

Chapter 5: Documentation work 42

e Do not use spaces at the beginning of a line (except in @example or @verbatim environ-
ments), and do not use more than a single space between words. texi2any (which processes
the Texinfo source files) copies the input lines verbatim without removing those spaces, and
some output formats (plain text and Info) retain them in the generated output.

e Use two spaces after a period.
e In examples of syntax, use @var{musicexpr} for a music expression.

e Don’t use @rinternals{} in the main text. If you’re tempted to do so, you're probably
getting too close to “talking through the code”. If you really want to refer to a context, use
©@codeq{} in the main text and @rinternals{} in the @morerefs block.

5.4.7 Syntax survey

Comments
e Qc ... — single-line comment.
e Qignore — multi-line comment:

Q@ignore
Q@end ignore
Cross-references

Enter the exact @node name of the target reference between the braces (for example,
@ref{Syntax survey}). While cross references use the node name as an argument, they are set
up for our documentation to display the corresponding section command in PDF and HTML
output.

command link target

Oref current manual
O@rchanges Changes file
@rcontrib Contributor’s Guide
Oressay Engraving Essay
@rextend Extending Manual
Orglos Music Glossary
@rinternals Internals Reference
Orlearning Learning Manual
Orlsr a Snippet section
Qrprogram Application Usage
O@rnotation Notation Reference
O@rweb General Information webpage

All these commands also have a @...named version, which allows to specify the displayed
text for the reference as a second argument. This is mainly used in translations, for example
O@rlearningnamed{I'm hearing voices, J'entends des voix}.

If you want to refer to an external manual as a whole instead of a specific section, use ‘Top’
as an argument. Example: @rinternals{Top}.

External links
e Qemail{...} — create amailto: e-mail link.
e OQuref{URL[, link text]} — link to an external URL:
Quref{https://www.gnu.org, The GNU project}

Chapter 5: Documentation work 43

Fixed-width font
e Ocode{...}, @samp{...}

Use the @code{. ..} command when referring to individual, language-specific tokens (key-
words, commands, engravers, Scheme symbols, etc.) in the text. Ideally, a single @code{. ..}
block should fit within one line in the PDF output.

Use the @samp{. ..} command when you have a short example of user input (for example,
one or two letters), unless it constitutes an entire @item by itself, in which case @code{. ..}
is preferable. Otherwise, both should only be used when part of a larger sentence within
a paragraph or @item. Do not use @code{...} or @samp{...} inside an @example block,
and do not use either as a free-standing paragraph; use @example instead.

A single, unindented line in the PDF has space for about 79 fixed-width characters (76
if indented). Within an @item there is space for about 75 fixed-width characters. Each
additional level of @itemize or @enumerate shortens the line by about 4 columns.

However, even short blocks of @code{. ..} and @samp{. ..} can run into the margin if the
Texinfo line-breaking algorithm gets confused. Additionally, blocks that are longer than
this may in fact print nicely; it all depends where the line breaks end up. If you compile
the documentation by yourself, check the PDF output to make sure the line breaks are
satisfactory.

The Texinfo setting @allowcodebreaks is set to false in the manuals, so lines within
©@codeq{...} or @samp{. ..} blocks will only break at spaces, not at hyphens or underscores.
If the block contains significant spaces, use @w{@code{...}} or @w{@samp{...}} to prevent
unexpected line breaks.

The Texinfo settings txicodequoteundirected and txicodequotebacktick are both set in
the manuals, so backticks () and apostrophes (') placed within blocks of @code, @example,
or @verbatim are not converted to left- and right-angled quotes (¢ ’>) as they normally
are within the text, so the apostrophes in ‘@w{@code{\relative c''}}’ will display cor-
rectly. However, these settings do not affect the PDF output for anything within a @samp
block (even if it includes a nested @code block), so entering ‘@w{@samp{\relative c''}}’
wrongly produces ‘\relative ¢’’’ in PDF. Consequently, if you want to use a @sampf{. ..}
block which contains backticks or apostrophes, you should instead use ‘@q{@code{...}}’
(or ‘@q{@w{@code{...}}} if the block also contains significant spaces).

e Qcommand{...} — Use when referring to command-line commands within the text (e.g.,
‘@command{convert-1y}’). Do not use inside an @example block.

e Qexample — Use for examples of program code. Do not add extraneous indentation (i.e.,
don’t start every line with whitespace). Use the following layout (notice the use of blank
lines). Omit the @noindent if the text following the example starts a new paragraph:

...text leading into the example. ..
Qexample

ééﬁd example

Onoindent

continuation of the text...

Individual lines within an @example block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @example block
is part of an @item, individual lines in the @example block should not exceed 70 columns.
Fach additional level of @itemize or @enumerate shortens the line by about 4 columns.

Chapter 5: Documentation work 44

For long command-line examples, if possible, use a trailing backslash to break up a single
line, indenting the next line with 2 spaces. If this isn’t feasible, use ‘@smallexample ...
Q@end smallexample’ instead, which uses a smaller font size. Use Qexample whenever possi-
ble, but if needed, @smallexample can fit up to 90 characters per line before running into the
PDF margin. Each additional level of @itemize or @enumerate shortens a @smallexample
line by about 5 columns.

e @file{...} — Use when referring to file names, file name extensions, and directories in the
text. Do not use inside an @example block.

e Qoption{...} — Use when referring to command-line options in the text (e.g.,
‘@option{--format}’). Do not use inside an @example block.

e Qverbatim — Print the block exactly as it appears in the source file (including whitespace,
etc.), without handling any Texinfo commands. The characters ‘@, ‘{’, and ‘}’ don’t need to
be quoted with a leading ‘@ character. For program code examples, use @example instead.
@verbatim uses the same format as G@example.

Individual lines within an @verbatim block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @verbatim block
is part of an @item, individual lines in the @verbatim block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

Indexing
Use the following two commands.
e Qcindex ... — for the general index
e Qfunindex ... — for commands and properties like \bar or left-margin

Here are some rules how index entries should look like.
e Only capitalize the first word of a @cindex entry if you would do so in the middle of an
English sentence. Examples:
Q@cindex ancient clef
Qcindex Kievan clef
@funindex entries are written as-is; don’t omit the leading backslash if there is one.
e Use singular forms as much as possible. After a comma, use whatever looks better. Exam-
ples:
Qcindex clef
Ocindex fingering instruction, for chords
e Permute index entries if it makes sense. Example:
Q@cindex ancient note head
@cindex note head, ancient

e Try to make entries fit into groups so that the printed index looks like this:

text, framing

text, horizontal alignment
text, in columns

text, in volta bracket
text, justified

e Don’t insert @funindex{\foo} and @cindex{\foo} simultaneously.

e If both foo and \foo need to be indexed with @funindex you have to use the @funindexpre
or @funindexpost command: @funindexpre foo gets sorted before @funindex \foo, and
@funindexpost \foo gets sorted after @funindex foo. Example:

Chapter 5: Documentation work 45

@funindex [
@funindexpost \[

e If you mention entities in a @cindex entry that would normally be entered with @funindex,
use @code to mark them. Example:

O@cindex @codef{\context}, in @code{\layoutl} block
e To get a literal ‘{’ or ‘}’ in an index, write @{ and @}, respectively.

e As of November 2022, if an index entry starts with an accented character, use a Texinfo
accent macro instead of the real character. For example, an index entry for ‘Aolisch’ should
be entered as

@cindex ©@"Aolisch

to circumvent a problem with texindex (used by Texinfo to sort and unify index entries
in PDF output): this program currently has no support for locale-specific collation. In the
above example, the entry is now sorted as ‘Aolisch’.

In case this is not sufficient it is always possible to explicitly specify a sorting key using the
@sortas command: Assuming that entries starting with letter ‘4’ must be sorted after all
entries starting with letter ‘a’, writing

@cindex @sortas{azzzAolisch} Aolisch

would make this work. Unfortunately, this trick doesn’t create an initial letter in the printed
index for entries starting with ‘A’

Lists

e Qenumerate — create an ordered list (with numbers). Always put ‘@item’ on its own line. As
an exception, if all the items in the list are short enough to fit on single lines, placing them
on the ‘@item’ lines is also permissible. ‘@item’ and ‘@end enumerate’ should be preceded
by a blank line except for short, compact entries (this is for Info file generation).

Q@enumerate

@item

A long multi-line item like this one must begin
on a line of its own and all the other items in

the list must do so too.

@item
Even short ones

@end enumerate

Qenumerate
@item Short item
Q@item Short item

@end enumerate

e Qitemize — create an unordered list (with bullets). Use the same format as @enumerate.
Do not use ‘@itemize @bullet’.

Special characters

Chapter 5: Documentation work 46

s ~
Note: In Texinfo, the backslash is an ordinary character, and is en-
tered without escaping (e.g. ‘The @code{\fool} command’). However,
within double-quoted Scheme and/or LilyPond strings, backslashes (in-
cluding those ending up in Texinfo markup) need to be escaped by
doubling them:

(define (foo x)
"The Q@code{\\foo} command..."

o)
=)

--, ——— — create an en dash (—) or an em dash (—) in the text. To print two or three literal
hyphens in a row, wrap one of them in a @w{. ..} (e.g., ‘-@w{-}-’"). Note that the LilyPond
manuals almost never use em dashes in text.

@0, @f, @} — create an at-sign (‘@’), a left brace (‘{’), or a right brace (‘}’).

@tie{} — create a wvariable-width, non-breaking space in the text (use ‘@w{ }’ for a single
fized-width, non-breaking space). Variables or numbers that consist of a single, unquoted
character (probably followed by a punctuation mark) should be tied properly, either to the
previous or to the next word depending on context. Example: ‘... item@tie{}3 in the
previous list ...’

Miscellany

@notation{. ..} —refer to pieces of notation, e.g., ‘@notation{clef}’. Also use for specific
lyrics (‘the @notation{A - men} is centered’). Only use once per subsection per term.

©@g{...} — single quotes. Used for ‘vague’ terms. This is the preferred quoting mechanism
in the LilyPond manuals.

@qq{...} — double quotes. Used for actual quotes (“he said”) or for introducing special
input modes.

@var{...} — use for metasyntactic variables (such as foo, bar, argi, etc.). In most cases,
when the @var{. ..} command appears in the text (and not in an @example block) it should
be wrapped with an appropriate code-highlighting Texinfo command (such as @code, @samp,
@file, @command, etc.). For example: ‘@code{@var{foo}}’, ‘@file{@var{myfile.ly}}’,
‘Osamp{git switch @var{branch}}’, etc. This improves readability in the PDF and HTML
output.

@version{} — return the current LilyPond version string. Use ‘@u{@version{}}’ if it’s at
the end of a line (to prevent an ugly line break in PDF); use ‘@w{"@version{}"}" if you
need it in quotes.

@w{...} — do not allow any line breaks.
Owarning{...} — produce a “Note: ” box. Use for important messages.

5.4.8 Other text concerns

References should occur at the end of a sentence; for more information see the Texinfo man-
ual (https://www.gnu.org/software/texinfo/manual/texinfo/). Ideally this should
also be the final sentence of a paragraph, but this is not required. Any link in a doc
section must be duplicated in the @morerefs section at the bottom.

Introducing examples should be done with

(i.e., finish the previous sentence/paragraph)
(i.e., 'in this example:')
, (i.e., 'may add foo with the blah construct,')

The method “sentence runs directly into the example” is discouraged.

https://www.gnu.org/software/texinfo/manual/texinfo/
https://www.gnu.org/software/texinfo/manual/texinfo/

Chapter 5: Documentation work 47

e Write abbreviation and acronyms in uppercase letters, e.g., HTML, DVI, MIDI.
e Colon usage
1. To introduce lists.
2. When beginning a quote: “So, he said,...”.
This usage is rarer. Americans often just use a comma.
3. When adding a defining example at the end of a sentence.

e Non-ASCII characters should be directly used; this is, don’t say ‘Ba@ss{}tuba’ but
‘BaB3tuba’. This ensures that all such characters appear in all output formats. There are
limitations for PDF output, though, because the used fonts only support a relatively small
number of Unicode characters.

5.5 Documentation policy

5.5.1 Books

The five main parts of the documentation are the Learning Manual, the Notation Reference, the
Application Usage, the Music Glossary, and the Internals Reference.

e Learning Manual

The LM is written in a tutorial style which introduces the most important concepts, struc-
ture and syntax of the elements of a LilyPond score in a carefully graded sequence of steps.
Explanations of all musical concepts used in the manual can be found in the Music Glos-
sary, and readers are assumed to have no prior knowledge of LilyPond. The objective is to
take readers to a level where the Notation Reference can be understood and employed to
both adapt the templates in the Appendix to their needs and to begin to construct their
own scores. Commonly used tweaks are introduced and explained. Examples are provided
throughout which, while being focused on the topic being introduced, are long enough to
seem real in order to retain the readers’ interest. Each example builds on the previous ma-
terial, and comments are used liberally. Every new aspect is thoroughly explained before it
is used.

Users are encouraged to read the complete Learning Manual from start to finish.
e Notation Reference

This is a (hopefully complete) description of LilyPond’s input notation. Some material from
here may be duplicated in the Learning Manual (for teaching), but consider the NR to be
the ‘definitive’ description of each notation element, with the LM being an ‘extra’. The
goal is mot to provide a step-by-step learning environment — do not avoid using notation
that has not be introduced previously in the NR (for example, use \break if appropriate).
The NR is written in formal technical writing style.

Avoid duplication. Although users are not expected to read this manual from start to finish,

they should be familiar with the material in the Learning Manual (particularly “Fundamen-

tal Concepts”), so do not repeat that material in each section of this book. Also watch
(~r

out for common constructs, like ‘', ‘=’ and ‘_’ for directions — those are explained in NR
chapter 5. In NR chapter 1, for example, you can use a reference and write:

Dynamics may be manually placed above or below the staff, see
@ref{Direction and placement}.

Most tweaks should be added to the LSR and not placed directly in the .itely file. In
some cases, tweaks may be placed in the main text, but ask about this first.

1 This might change in the future since recent versions of Texinfo support output to IATEX, which doesn’t have
this limitation.

Chapter 5: Documentation work 48

Finally, you should assume that users know what the notation means; explaining musical
concepts happens in the Music Glossary.

e Application Usage

This manual gives information about calling and using the 1ilypond program itself and
other tools related to it (in particular convert-1y and 1ilypond-book), issues related to
differences in the used operating system, some pointers to external programs, etc. This
manual is written in formal technical writing style.

Users are not expected to read this manual from start to finish.
e Music Glossary

Information about the music notation itself. Explanations and translations about notation
terms go here.

Users are not expected to read this manual from start to finish.
e Internals Reference

This manual is automatically generated from documentation strings embedded in the source
code. It provides an in-depth reference to almost all low-level details of LilyPond.

Users are not expected to read this manual at all. It should rather be used like a dictionary
to look up, say, all properties and sub-properties of a slur. The writing style is extremely
terse and technical (sometimes too terse, admittedly).

5.5.2 Section organization
e The order of headings inside documentation sections should be:

documentation text

Opredefined
OGendpredefined

Osnippets

Cmorerefs
@endmorerefs

O@knownissues
e You must include a @morerefs ... @endmorerefs block.
e The order of items inside the @morerefs block is
Music Glossary:

Orglos{foo},
@rglos{bar}.

Learning Manual:
O@rlearning{baz},
Orlearning{foozle}.

Notation Reference:
Ornotation{faazle},
O@rnotation{boo}.

Application Usage:
@rprogram{blah}.

Chapter 5: Documentation work 49

Essay on automated music engraving:
Qressay{yadda}.

Extending LilyPond:
@rextend{frobl}.

Installed Files:
@file{path/to/dir/blahz}.

Snippets:
Orlsr{section}.

Internals Reference:
Orinternals{fazzlel},
Orinternals{booar}.

If there are multiple entries, separate them by commas only and do not use the word
‘and’. If there are no references to a specific manual, omit it.

e Always end with a period.

e Place each link on a new line as above; this makes it much easier to add or remove
links. In the output, they appear on a single line.

e Any new concepts or links which require an explanation should appear as a full sen-
tence(s) in the main text.

e Don’t insert an empty line between @morerefs and the first entry! Otherwise there is
excessive vertical space in the PDF output.

e Use @ref{...} instead of the abovementioned reference commands if the link is within the
same manual.

e Opredefined ... @endpredefined is for commands defined in files 1y/*-init.1y.

e Do not include any real information in second-level sections (for example, ‘1.1 Pitches’). A
first-level section may have introductory material, but other than that all material goes into
third-level sections (for example, ‘1.1.1 Writing Pitches’).

e The @knownissues part should usually not describe any issues that are in LilyPond’s bug
tracker. The goal is rather to discuss any overall architecture or syntax decisions, which
may be interpreted as bugs. Normal bugs should not be discussed here, because we have so
many of them that it would be a huge task to keep @knownissues current and accurate all
the time.

5.5.3 Checking cross-references

Cross-references between different manuals are heavily used in the documentation, but they do
not cause errors during the compilation — the documentation generator, texi2any, only reports
invalid cross-references within the same manual. However, if you compile the documentation, a
script called check_texi_refs.py can help you with checking and fixing these cross-references.

To make this work properly you have to configure LilyPond for an in-tree build (see Sec-
tion 4.4.2 [Running autogen. sh], page 26), followed by calling make and make doc.

Normally, you don’t call check_texi_refs.py by yourself; instead, two make targets are
provided for this task. To call them, first change the current directory to the LilyPond source
tree where the documentation was built, then enter the Documentation directory and run:

make check-xrefs
make fix-xrefs

Chapter 5: Documentation work 50

Be careful with the second command since it can change documentation files without further

asking.

In case you have to fix cross-references in generated documentation like the Internals Refer-

ence you must locate the corresponding source code files by yourself. Scan the directories scm/
for Scheme code and 1ily/ for C++ code. See Section 5.6.2 [Searching], page 52.

5.5.4 General writing

Do not forget to create @cindex entries for new sections of text. Commands usually need
a @funindex entry, for example,

Ocindex pitches, writing in different octaves
@funindex \relative

Do not add @code{. ..} around the @funindex argument; this is handled internally. While
@cindex entries get added to the main index only, @funindex entries are added to both
the command index and the main index. Both index commands should go in front of the
actual material (each on a separate line).

@cindex entries should not be capitalized, i.e.,
Ocindex time signature

is preferred instead of “Time signature”. Only use capital letters for musical terms which
demand them, e.g., “D.S. al Fine”.

For Scheme function index entries, only include the final part, i.e.,

Ofunindex modern-voice-cautionary
and NOT
@funindex #(set-accidental-style modern-voice-cautionary)

Use American spelling. LilyPond’s internal property names use this convention.
Here is a list of preferred terms to be used:
o Simultaneous, NOT concurrent.
e Measure: the unit of music.
e Bar line: the symbol delimiting a measure, NOT barline.
e Note head, NOT notehead.
e Chord construct, NOT just chord (when referring to <...>).
e Staff, NOT stave.
e Staves, NOT Staffs: phrases such as
multiple @internalsref{Staffl}s
should be rephrased to
multiple @internalsref{Staff} contexts

5.5.5 Technical writing style

The topics discussed here refer to the NR. The LM uses a more gentle, colloquial style.

Do not refer to LilyPond in the text. The reader knows what the manual is about. If you
do, capitalization is LilyPond.

If you explicitly refer to ‘lilypond’ the program (or any other command to be executed),
write @command{lilypond}.

Do not explicitly refer to the reader or user. There is no one else besides the reader and
the writer.

Avoid contractions (don’t, won’t, etc.). Spell the words out completely.

Chapter 5: Documentation work 51

Avoid abbreviations, except for commonly used abbreviations of foreign language terms
such as ‘etc.” and ‘i.e.” (which should be both followed by a comma if mid sentence, by the

way).
Avoid fluff (“Notice that,” “as you can see,” “Currently,”).

The use of the word ‘illegal’ is inappropriate in most cases. Say ‘invalid’ instead.

5.6 Tips for writing documentation

5.6.1 Working on subsections

In the NR, we highly recommend focusing on one subsection at a time. For each subsection,

check the mundane formatting. Are the headings (@predefined, @morerefs, etc.) in the
right order?

add any appropriate index entries.

check the links in the @morerefs section — links to the Music Glossary, the Internals Refer-
ence, and other NR sections are the main concern. Check for potential additions.

move LSR-worthy material into the LSR. Add the snippet, delete the material from the
.itely file, and replace it with a @1ilypondfile command.

check the examples and descriptions. Do they still work? Do not assume that the existing
text is accurate or complete; some parts of the manual are highly out of date due to the
constant lack of manpower.

is the material in the @knownissues block still accurate?

can the examples be improved (for example, made more explanatory), or is there any
missing information? Feel free to ask specific questions on the 1ilypond-user mailing list;
a couple of people claimed to be interesting in being “consultants” who would help with
such questions.

We favor short text explanations with good examples — “an example is worth a thousand
words”. However, producing good, tiny LilyPond examples can be quite time-consuming;
making easily-understandable examples is much harder than it looks.

Tweaks

In general, any \set or \override command should go in the “selected snippets” section, which
means that they should be added to the LSR and not to the .itely file. For some cases, the
command obviously belongs in the “main text” (i.e., not inside @predefined or Cmorerefs or
whatever) — instrument names are a good example of this:

\set Staff.instrumentName = "foo"
On the other side of this,

\override Score.Hairpin.after-line-breaking = ##t

clearly belongs to the LSR.

One place where a documentation writer can profitably spend time writing or upgrading

tweaks is creating code to deal with known issues. It would be ideal if every significant known
issue had a workaround to avoid the difficulty.

See also

Section 7.2 [Adding and editing snippets|, page 65.

Chapter 5: Documentation work 52

5.6.2 Searching

If you are working with the git repository, the most useful tool on the command line to search text
is git grep, which recursively scans the repository’s files for strings using regular expressions
(regex). This manual cannot give an introduction into the use of regular expressions; there are
plenty of resources in the internet that may help you.

Files not managed by git in a repository (for example, all files generated during compilation
or building the documentation) cannot be searched with git grep, though. In such cases you
might use the standard grep tool instead, which has almost exactly the same syntax.

Another limitation of both grep and git grep is their inability to search a string across
multiple lines,? which would be extremely helpful in finding arguments of Texinfo commands.
A solution is to use a variant of grep called pcregrep (or its newer version pcre2grep — the
acronym PCRE stands for Perl Compatible Regular Expressions). You most likely have to install
this program; look for packages called ‘pcre-tools’, ‘pcre2-tools’, or something similar.

As an example, let’s assume that you want to find all occurrences of @rweb{Easier editing}
within Documentation/en/. After changing to this directory, a search with

git grep 'Orweb{Easier\sxediting}'
might return the following.

usage/external.itely:editors are listed in Q@rweb{Easier editing}.
usage/external.itely:are listed in Qrweb{Easier editing}.

[The string \s* means to search for whitespace (\s) zero or more times in succession (*).]
On the other hand, a search with
pcregrep -r -M 'Orweb{Easier\s*editing}'
shows one more hit.

./learning/installing.itely:For more information, see Q@rweb{Easier
editing}.

./usage/external .itely:editors are listed in Orweb{Easier editing}.
./usage/external.itely:are listed in Orweb{Easier editing}.

[Option -r enables recursive searching of the current directory (‘.7), option -M activates

multi-line searching.]

5.7 Scripts to ease documentation work

Since the whole LilyPond documentation build process is slow, intimidatingly complex, and hard
to master even for experts, tools have been developed over time to help authors handle the most
daunting tasks.

5.7.1 Building only one section of the documentation

In order to save build time, a script is available to build and immediately display only one section
of the documentation in English with a default HI'ML appearance.

Call the script as follows.
scripts/auxiliar/doc-section.sh manual section

section is the name of the file containing the section to be built, and manual is replaced by
the name of the directory containing the section. So, for example, to build section 1.1 of the
Notation Reference, use the command:

scripts/auxiliar/doc-section.sh notation pitches

2 There is limited support for multi-line searching with recent versions of standard grep. However, it cannot
display context around the matches for technical reasons.

Chapter 5: Documentation work 53

You can then see the generated document for the section at
build/tempdocs/pitches/out/pitches.html
To make this actually work it is necessary to first configure and compile LilyPond. Further-
more, the script listens to some environment variables.

e The location of the top-level directory of LilyPond’s git repository can be set with the
LILYPOND GIT environment variable. If not specified, the script tries to auto-detect its
location.

e The location of the compilation directory can be set with the LILYPOND_BUILD_DIR envi-
ronment variable. If not specified, the build/ directory in the git repository’s top-level
directory is tried.

e The location of the script’s output directory can be set with the LILYPOND_TEMPDOCS envi-
ronment variable. If not specified, it uses the tempdocs/ subdirectory within the compila-
tion directory.

e The used browser to display the final HIML page defaults to Firefox; this can be changed
by setting the standard BROWSER environment variable (which you probably have already
set in your environment).

If these variables are set up correctly, you can call the script from any directory on your
computer. If you configure the build process as recommended (see Section 4.4 [Configuring
make], page 26), i.e., building in the git repository’s top-level subdirectory called build/, you
don’t even need to set any of those environment variables.

This script will not work for building sections of the Contributor’s Guide. To do that, use:
scripts/auxiliar/cg-section.sh section

where section is the name of the file containing the section(s) to be built. For example, to
build chapter 5 of the Contributor’s Guide, use:

scripts/auxiliar/cg-section.sh doc-work

The cg-section.sh script uses the same environment variables and corresponding default
values as doc-section.sh.
5.7.2 Updating documentation with convert-1ly

Don’t. This should be done by programmers when they add new features. If you notice that it
hasn’t been done, complain to 1ilypond-devel.

5.8 Documentation strings in the Internals Reference

Material in the Internals Reference is generated automatically from our source code. Any doc-
umentation work on the IR therefore requires modifying files in the scm/ or 1ily/ directories.
Texinfo formatting should be used in these documentation strings.

Most documentation writers never touch these, though. If you want to work on them, please
ask for help.

5.9 Translating the documentation

5.9.1 Getting started with documentation translation

First, get the sources from the git repository, see Chapter 3 [Working with source code], page 10.

Translation requirements

Working on LilyPond documentation translations requires the following pieces of software, in
order to make use of dedicated helper tools:

Chapter 5: Documentation work 54

e Python 3.8 or higher,
e GNU make,
e gettext,
o git.
It is not required to build LilyPond and the documentation to translate the documentation.
However, if you have enough time and motivation and a suitable system, it can be very useful

to build at least the documentation so that you can check the output yourself and more quickly;
if you are interested, see Chapter 4 [Compiling], page 20.

Before undertaking any large translation work, contributors are encouraged to contact the
lilypond-devel mailing list.

Which documentation can be translated

The makefiles and scripts infrastructure currently supports translation of the following docu-
mentation:

e the website, the Learning Manual, the Notation Reference and Application Usage
e the Changes document, the Music Glossary, the Essay

Support for translating the following pieces of documentation is not yet available.
e automatically generated documentation: markup commands, predefined music functions;

e the Internals Reference.

Starting translation in a new language
At top of the source directory, do

./autogen.sh
or (if you want to install your self-compiled LilyPond locally)

./autogen.sh --prefix=$HOME
If you want to compile LilyPond — which is required to build the documentation, but is not
required to do translation only — fix all dependencies and rerun ./configure (with the same
options as for autogen.sh).

Then cd into Documentation/ and run

make ISOLANG=MY-LANGUAGE new-lang
where MY-LANGUAGE is the language’s two-letter ISO 639 code. This make call reduces the
English documentation files to bare skeleton files that are eventually moved to the direc-

tory Documentation/MY-LANGUAGE/, exactly mimicking the directory and file structure of
Documentation/en/.

However, all include files still have the en/ prefix, making it load the English documentation.
If you plan to translate, say, file foo.itely, and your language code is ‘xy’; you should replace

@includef{en/foo.itely}
with
Q@include{xy/foo.itely}
so that your translated text gets incorporated into the translated document.
Finally, add entries for the new language to the following files:

python/langdefs.py
Documentation/lilypond-lang.init
Documentation/webserver/lilypond.org.htaccess
scripts/build/create-weblinks-iteci.py
ROADMAP

Chapter 5: Documentation work 55

A Texinfo language definition file is also needed:
Documentation/tex/txi-MY-LANGUAGE.tex

The Texinfo distribution itself contains a large number of such language definition files; take
the one you need and simply copy it. If you are translating to a language for which no such file
is available and you are going to write it, please contribute it to the Texinfo project, too!

5.9.2 Documentation translation details

Please follow all the instructions with care to ensure quality work.
All files should be encoded in UTF-8.

Files to be translated

A translation of file Documentation/en/foo/bar.baz should be stored in file Documentation/
MY-LANGUAGE/foo/bar .baz. Unmentioned files should not be translated.

The table below list recommended priorities (lower values mean higher priority) of files to
be translated. Files of priority 1 should be submitted along all files generated by starting a
new language in the same commit and thus be a unique patch. Translation of files marked
with priority 2 should be committed to the git repository at the same time and thus sent in
a single patch. Priority 1 files are required before requesting a language-specific mailing list
lilypond-xyzQgnu.org. Files marked with priority 3 or lower may be submitted individually.
For knowing how to commit your work to the git repository, preferably as a Merge Request, see
Chapter 3 [Working with source code], page 10.

Only add translated files to the git repository! All other, untranslated files can be safely
deleted. If necessary, skeleton files can be regenerated by calling the new-lang make target
again (this doesn’t overwrite existing files).

1 The website: web.texi, web/introduction.itexi, and web/download.itexi. Ad-
ditionally, also translate macros.itexi and search-box.ihtml.

2 The tutorial: web/manuals.itexi, learning.tely, learning/installing.itely,
learning/tutorial.itely, and learning/common-notation.itely.

3 Fundamental concepts in learning/fundamental.itely, as well as usage.tely,
usage/running.itely, usage/updating.itely, and web/community.itexi.

4 The Changes file: changes.tely.

5 More useful information: learning/tweaks.itely, learning/templates.itely,
and usage/suggestions.itely.

6 The Notation Reference: notation.tely, all of notation/*.itely, and the snip-
pets’ titles and descriptions.

7 More tools: usage/lilypond-book.itely and usage/external.itely.

8 The Essay and the guide to extend LilyPond: essay.tely and essay/*.itely, as
well as extending.tely and extending/*.itely.

9 The Music Glossary: music-glossary.tely.

10 LilyPond Snippets: snippets.tely. A large portion of them is also included in the
NR.

A special case is file Documentation/po/MY-LANGUAGE.po, which holds strings to translate.
Currently, there are two helper scripts that access it during a documentation build:

e www_post.py, to post-process HI'ML pages. Some messages to translate are in its module
postprocess_html.py, and strings in the .po file tagged with this file name have priority 1
for translation.

e lilypond-book, to automatically translate comments within @1ilypond blocks. In the .po
file, such strings are tagged with ‘(comment)’, and translating such strings has a very low
priority.

Chapter 5: Documentation work 56

Strings tagged with other markers like ‘(variable)’ and ‘(context id)’ can be safely ignored
for the time being; the same is true for strings tagged as being a @node or a sectioning
command like G@appendix.

Note, however, that this 1ilypond-book feature is currently broken.

Do not mix up the Documentation/po/ and po/ directories! The latter holds translations of
messages emitted by 1ilypond (the program) and various other tools; they are maintained exter-
nally by the Free Translation Project (https://translationproject.org/domain/lilypond.
html).

Translating the website and other Texinfo documentation

Every piece of text should be translated in the source file, except Texinfo comments, text in
©@1ilypond blocks and a few cases mentioned below.

Node names are not translated, only the section titles are. That is, every piece in the original
file like

Onode Foo bar
@section_command Bar baz

should be translated as

Onode Foo bar
@section_command translation of Bar baz

The argument of @rglos commands and the first argument of @rglosnamed commands must
not be translated, as it is the node name of an entry in the Music Glossary.

Every time you translate a node name in a cross-reference, i.e., the argument of commands like
@ref or Orprogram (see [Cross-references|, page 42, for the complete list) or the first argument
of their @...named variants, you should make sure the target node is defined in the correct
source file. If you do not intend to translate the target node right now, you should at least write
the node definition in the expected source file and define all its parent nodes; for each node you
have defined this way but have not translated, insert a line that contains @untranslated. That
is, you should end up for each untranslated node with something like

Onode Foo bar
Q@section_command translation of Bar baz

Ountranslated
(the new-lang target does this in the skeleton files).

Please consider that it may not make sense to translate everything in some Texinfo files,
and that you may deviate from the original text if necessary or useful. For instance, in the
translation of the website section “Community”, you may add information on the community
in your language and give links to existing public forums or mailing lists.

e Section “Bug reports” in General Information: this page should be translated only if you
know that every bug report sent on your language’s mailing list or forum will be handled by
someone who will translate it to English and send it to bug-1ilypond or add an issue in the
tracker, then translate back the reply from developers. [Today, with the help of automatic
translators available in the internet, this is less of a concern.]

e Section “Help us” in General Information: this page should be translated very freely, and
possibly not at all — a translation makes only sense if there are enough people interested in
contributing language-specific documentation work. For actually working on the code you
have to communicate with the developers in English.

In any case, please mark in your work the sections which do not result from the direct translation
of a piece of English translation, using comments, i.e., lines starting with ‘@c’.

https://translationproject.org/domain/lilypond.html
https://translationproject.org/domain/lilypond.html

Chapter 5: Documentation work 57

Some pieces of text manipulated by build scripts that appear in the output are translated in
a .po file; this has been discussed in the previous section.

Take care of using typographic rules for your language, especially in macros.itexi.

If you wonder whether a word, phrase or larger piece of text should be translated, whether
it is an argument of a Texinfo command or a small piece sandwiched between two Texinfo
commands, try to track whether and where it appears in PDF and/or HTML output as visible
text. This piece of advice is especially useful for translating macros.itexi.

Please keep verbatim copies of music snippets (in @1ilypond blocks). However, some music
snippets containing text that shows in the rendered music, and sometimes translating this text
really helps the user to understand the documentation; in this case, and only in this case, you may
as an exception translate text in the music snippet, and then you must add a line immediately
before the @1ilypond block, starting with

Oc KEEP LY

Otherwise the music snippet would be reset to the same content as the English version at next
make snippet-update run — see [Updating documentation translation], page 59.

When you encounter
@lilypondfilel...,texidoc,...]J{filename.ly}

in the source, open Documentation/snippets/filename.ly, translate the texidoc header field
it contains, wrap it with texidocMY-LANGUAGE ="...", and write it into Documentation/
MY-LANGUAGE/texidocs/filename.texidoc. Additionally, you may translate the snippet’s ti-
tle in the doctitle header field in case doctitle is a fragment option used in @1ilypondfile;
you can do this exactly the same way as texidoc. For instance, Documentation/es/texidocs/
filename.texidoc may contain

doctitlees = "Spanish title baz"
texidoces = "
Spanish translation blah

n

The argument to doctitleXX must not contain a line break; it is directly passed on to
Texinfo, expecting the title on single line (which gets typeset in more than a single line if
necessary, though).

@example blocks need not be verbatim copies; it often makes sense to translate variable
names, file names, and comments.

Finally, please carefully apply every rule exposed previously; see Section 5.4 [Texinfo introduc-
tion and usage policy|, page 37, and Section 5.5 [Documentation policy|, page 47. If one of these
rules conflicts with a rule specific to your language, please ask on the 1ilypond-devel@gnu.org
list.

Adding a Texinfo manual

In order to start translating a new manual you might use the skeleton files generated by the
new-lang make target, see [Starting translation in a new language], page 54. You might also
copy the corresponding English files to your language directory instead and translate them.

For example, if you want to translate the first chapter of the Learning Manual:

cp Documentation/en/learning.tely \
Documentation/MY-LANGUAGE/learning.tely

cp Documentation/en/learning/tutorial.itely \
Documentation/MY-LANGUAGE/learning/tutorial.itely

mailto:lilypond-devel@gnu.org

Chapter 5: Documentation work 58

5.9.3 Documentation translation maintenance

Several tools have been developed to make translations maintenance easier. These helper scripts
make use of the power of git, the version control system used for LilyPond development.

You should use them whenever you would like to update the translation in your language,
which you may do at the frequency that fits your and your co-translators’ respective available
times. In the case your translation is up-to-date (which you can discover in the first subsection
below), it is enough to check its state every one or two weeks. If you feel overwhelmed by
the quantity of documentation to be updated, see [Maintaining without updating translations],
page 60.

Check state of translation

Note: Translation helper scripts will work only if you have configured
LilyPond to be built in-tree, see Section 4.4.2 [Running autogen.sh],
page 26.

First pull from the git repository —see Section 3.2 [Git cheat sheet], page 11, but do not rebase
unless you are sure to master the translation state checking and updating system — then cd into
Documentation/ (or at top of the source tree, replace make with make —-C Documentation) and
run

make ISOLANG=MY-LANGUAGE check-translation

This presents a diff of the original files since the most recent revision of the translation and
prints it to terminal output. Usually you’ll want to pass this output to a terminal pager like
less in order to scroll the diff up and down:

make ISOLANG=MY-LANGUAGE check-translation | less -R
To check a single file, cd into Documentation/ and run
make TRANSLATION_FILES=MY-LANGUAGE/manual/foo.itely check-translation

In case this file has been renamed since you last updated the translation, you should specify both
old and new file names, e.g., TRANSLATION_FILES=MY-LANGUAGE/{manual,user}/foo.itely.

To see only which files need to be updated, do
make ISOLANG=MY-LANGUAGE check-translation | grep -n 'diff --git'

The -n option of grep will print the line number of each occurrence, which can be used to
estimate the length of each diff and the amount of work required.

To avoid printing terminal color control characters, which is often desirable when you redirect
output to a file, run

make ISOLANG=MY-LANGUAGE NO_COLOR=1 check-translation

You can see the diffs generated by the commands above as changes that you should make in
your language to the existing translation, in order to make your translation up to date.

Note: do not forget to update the committish in each file you have
completely updated, see [Updating translation committishes|, page 59.

See also

[Maintaining without updating translations|, page 60.

Chapter 5: Documentation work 59

Updating documentation translation

Instead of running check-translation, you may want to execute update-translation, which
will run your favorite text editor to update files. First, make sure the environment variable
EDITOR is set to a text editor command, then run from Documentation/

make ISOLANG=MY-LANGUAGE update-translation
or, to update a single file,
make TRANSLATION_FILES=MY-LANGUAGE/manual/foo.itely update-translation

For each file to be updated, update-translation will open your text editor with this file
and a diff of the file in English; if the diff cannot be generated or is bigger than the file in English
itself, the full file in English will be opened instead.

Note: do not forget to update the committish in each file you have
completely updated, see [Updating translation committishes|, page 59.

.po message catalogs in Documentation/po/ may be updated by changing to either directory
Documentation/ or Documentation/po/ and issuing

make po-update

However, this make target doesn’t work properly right now.

Note: if you run po-update and somebody else does the same and
pushes before you push or send a patch to be applied to the git repos-
itory, there will be a conflict when you pull.

Updating music snippets can quickly become cumbersome, as most snippets should be iden-
tical in all languages. Fortunately, there is a script that can do this odd job for you (to be run
from Documentation/):

make ISOLANG=MY-LANGUAGE snippet-update

This make target calls a script to overwrite music snippets in all .itely files in the
MY-LANGUAGE/ subdirectory with music snippets taken from the en/ subdirectory. It ignores
skeleton files and doesn’t modify music snippets that are preceded by a line starting with @c
KEEP LY. It reports an error for each .itely file that has not the same music snippet count
in both languages. Always use this script with a lot of care, i.e., run it on a clean git working
tree, and check the changes it made with git diff before committing! If you don’t do so, some
@1ilypond snippets might be broken or make no sense in their context.

See also

[Maintaining without updating translations|, page 60, Section 7.2 [Adding and editing snip-
pets|, page 65.

Updating translation committishes

At the beginning of each translated file (except for .po files), there is a committish (i.e., an
SHA-1 tag consisting of 40 hexadecimal digits that uniquely identify a specific commit in a git
repository) to represent the revision of the sources that you have used to translate this file from
the file in English.

When you have pulled and updated a translation, it is very important to update this commit-
tish in the files you have completely updated (and only these); to do this, first commit possible
changes to any documentation in English which you are sure to have done in your translation

Chapter 5: Documentation work 60

as well, then replace in the up-to-date translated files the old committish by the committish of
the latest commit, which can be obtained by doing

git rev-list HEAD | head -1

Most of the changes in the LSR snippets included in the documentation concern the syntax,
not the description inside texidoc="...". This implies that sometimes you will have to update
only the committish of the matching .texidoc file and nothing else. It can be a tedious work
if there are many snippets to be marked as up do date; you can use the following command to
update the committishes at once:

cd Documentation/MY-LANGUAGE/texidocs
sed -1 -r 's/[0-9a-z]{40}/NEW-COMMITTISH/' *.texidoc

See also
Chapter 7 [LSR work], page 65.

Maintaining without updating translations

Keeping translations up to date if the English documentation has been heavily changed is a hard
task, especially when a lot of contributors submit changes.

It is possible — and even recommended — to perform some maintenance that keeps translated
documentation usable and eases future translation updating.

The following tasks are listed in decreasing priority order; a rationale is given after the list.

1. Update macros.itexi. For each obsolete macro definition, if it is possible to update macro
usage in documentation with an automatic text or regexp substitution, do it and delete
the macro definition from macros.itexi; otherwise, mark this macro definition as obsolete
with a comment, and keep it in macros.itexi until the documentation translation has been
updated and no longer uses this macro.

2. Update .tely files completely with make check-translation — you may want to redirect
output to a file because of overwhelming output, or directly call the check-translation.py
script on individual files, see [Check state of translation], page 58.

3. In .itely files, match sections and .itely file names with those from the English documen-
tation files, which possibly involves moving the contents of complete node blocks between
files (without updating the documentation itself). In other words, the ‘game’ is to find out
where each section has been moved to. In case there are completely new sections, copy
@node and @section commands from the English documentation files and add the marker
for untranslated status (Guntranslated, on a line of its own). Note that it is often not pos-
sible to exactly match subsections or subsubsections of the English documentation when
its contents has been deeply revised; in this case, keep obsolete (sub)subsections in the
translation and mark them with a line @c obsolete just before the node.

The Emacs editor with its Texinfo mode makes this step easier; here are some tips in case
you are using it.

e Without the AUCTeX package for Emacs installed, the key sequence C-c C-s shows
the structure of the current Texinfo file in a new buffer called *Occur*. To show the
structure of two files simultaneously, first split the Emacs window in 4 tiles (with C-x 1
and C-x 2), then press C-c C-s to show the structure of one file (e.g., the translated
file), copy the contents of *Occur* into the *Scratch* buffer, then press C-c C-s for
the other file.

If you happen to have AUCTeX installed, there is a function for this, which you can
call with M-x texinfo-show-structure. You can also create a key binding in your
~/ .emacs configuration file by adding the four following lines:

(add-hook 'Texinfo-mode-hook

Chapter 5: Documentation work 61

'(lambda O
(define-key Texinfo-mode-map "\C-cs"
'texinfo-show-structure)))

After restarting Emacs you can then obtain the structure in the *Occur* buffer with
C-c s.

e Moving to the next or previous node can be easily done with incremental search: press
C-s and type node (or C-s @node if the text contains the word ‘node’), then press
C-s to move to the next node or C-r to move to the previous node. Similar operation
can be used to move to the next or previous section. Note that every cursor move
exits incremental search, and hitting C-s twice starts incremental search with the text
entered in previous incremental search.

e Moving a whole node (or even a sequence of nodes): jump to beginning of the node
(quit incremental search by pressing an arrow), press C-SPACE to set a mark, press C-s
node and repeat C-s until you have selected enough text, cut it with C-w or C-x, jump
to the right place (moving between nodes with the previous hint is often useful) and
paste with C-y or C-v.

4. While working on Documentation/po/MY-LANGUAGE.po it is recommended not to update
strings located in English documentation files that are actively revised. Instead, wait until
the ‘dust has settled’ to avoid doing the work more than once.

5. Check and fix broken cross-references by changing to directory Documentation/ and running

make ISOLANG=MY-LANGUAGE check-xrefs
make ISOLANG=MY-LANGUAGE fix-xrefs

This step requires a successful in-tree documentation build (with make doc). Some cross-
references might be broken because they point to nodes that exist in the English documen-
tation, and which have not been added to the translation. In this case, do not fix the
cross-reference but keep it ‘broken’ so that the resulting HTML link will miss the exact
spot in an existing page but still point to this page.

Rationale

You may wonder if it would not be better to leave translations as-is until you can really start
updating translations. There are several reasons to do these maintenance tasks as soon as
possible.

e The work must be done sooner or later anyway (before updating the translation of docu-
mentation contents), and in most cases it is not needed to repeat the process later since
sections in the English documentation are mostly revised once. Of course, this might not
be true sometimes, and then you really have to repeat the process.

e It makes the translation take advantage of the new documentation structure, which is better
than staying with the old one.

e Moving and renaming sections to match the sectioning of English documentation simplifies
future updating work: it allows updating the translation using a side-by-side comparison,
without bothering whether cross-reference names already exist in the translation.

e Each maintenance task except ‘Updating .po files’ can be done by the same person for
all languages, which saves overall time spent by translators to achieve this task: the node
names are in English, so you can do it just fine.

5.9.4 Technical background

A number of Python scripts handle parts of the documentation translation process; they are
located in the scripts/auxiliar/ directory.

e check_translation.py — show diff to update a translation,

Chapter 5: Documentation work 62

e texi-langutils.py — parse Texinfo files to make message catalogs and extract Texinfo
skeleton files,

e update-snippets.py — synchronize .1y snippets with those from the English documenta-
tion.
Python modules used by scripts in scripts/auxiliar/ or scripts/build/ (but not by
installed Python scripts) are located in the python/auxiliar/ directory:
e buildlib.py — common functions (read piped output of a shell command, use git, etc.),
e postprocess_html.py (imported by www_post.py) — add footer and tweak links in HTML
pages.
And finally there is
e python/langdefs.py — language definitions module.

63

6 Website work

6.1 Introduction to website work

The website is not written directly in HTML; instead it is autogenerated along with the docu-
mentation using Texinfo source files. Texinfo is the standard for documentation of GNU soft-
ware and allows generating output in HI'ML, PDF, and Info formats, which drastically reduces
maintenance effort and ensures that the website content is consistent with the rest of the docu-
mentation. This makes the environment for improving the website rather different from common
web development.

If you have not contributed to LilyPond before, a good starting point might be incremental
changes to the CSS file, to be found at https://lilypond.org/css/lilypond-website.css
or in the LilyPond source code at ./Documentation/css/lilypond-website.css.

Large scale structural changes tend to require familiarity with the project in general, a track
record in working on LilyPond documentation as well as a prospect of long-term commitment.

The Texinfo source file for generating HTML are to be found in

Documentation/en/web.texi
Documentation/en/web/*.texi

Unless otherwise specified, follow the instructions and policies given in Chapter 5 [Documen-
tation work], page 35. That chapter also contains a quick introduction to Texinfo; consulting
an external Texinfo manual should be not necessary.

Exceptions to the documentation policies
e Sectioning: the website only uses chapters and sections; no subsections or subsubsections.

e Qref{}s to other manuals (Qrnotation, @rlearning, etc): you can’t link to any pieces of
automatically generated documentation, like the IR or certain NR appendices.

e The bibliography in Community->Publications is generated automatically from .bib files;
formatting is done automatically by texi-web.bst.

e For anything not listed here, just follow the same style as the existing website texinfo files.

6.2 Uploading website

Overall idea

The website is generated by converting the Documentation/*/web.texi files to HTML, and
reorganizing the resulting files into out/website-root/. This is controlled from toplevel
GNUmakefile and Documentation/GNUmakefile.

To build the website, run make website. This leaves the website in out/website-root/.
The website is deployed onto 1ilypond.org in the following steps:

e Run the manual job to build the website, either for the merge request you want to de-
ploy or for the latest pipeline on master at https://gitlab.com/lilypond/1ilypond/~/
pipelines, by clicking the play button.

e This runs make website and stores the result in a website.zip artifact.

e On lilypond.org, the downloader https://gitlab.com/lilypond/infrastructure/-/
blob/master/website/main.go is run every 2 hours, from a systemd timed job. If a newer
website.zip is found, it is unpacked into the website directory on 1ilypond.org.

https://lilypond.org/css/lilypond-website.css
https://gitlab.com/lilypond/lilypond/-/pipelines
https://gitlab.com/lilypond/lilypond/-/pipelines
https://gitlab.com/lilypond/infrastructure/-/blob/master/website/main.go
https://gitlab.com/lilypond/infrastructure/-/blob/master/website/main.go

Chapter 6: Website work 64

6.3 Debugging website and docs locally

Install Apache (you can use version 2, but keep in mind that the server hosting lilypond.org
runs version 1.3). These instructions assume that you also enable mod_userdir, and use
$HOME/public_html as DocumentRoot (i.e., the root directory of the web server).

Build the online docs and website:

make WEB_TARGETS="offline online" doc
make website

This will make all the language variants of the website. To save a little time, just the English
version can be made with the command make WEB_LANGS='"' website or the English and
(for example) the French with make WEB_LANGS='fr' website.

Choose the web directory where to copy the built stuff. If you already have other web
projects in your DocumentRoot and don’t need to test the .htaccess file, you can copy
to ~/public_html/lilypond.org. Otherwise you’d better copy to ~/public_html. It’s
highly recommended to have your build dir and web dir on the same partition.

Add the directory for the online documentation:

mkdir -p ~/public_html/doc/v2.19/
You may want to add also the stable documentation in ~/public_html/doc/v2.18/, ex-
tracting the contents of the html directory present in the tarball available in Section “All”

in General Information. Just in case you want to test the redirects to the stable documen-
tation.

Copy the files with rsync:

rsync -av --delete out-website/website ~/public_html/
cp out-website/.htaccess ~/public_html
rsync -av --delete out-www/online-root/ ~/public_html/doc/v2.19/

6.4 Translating the website

As it has much more audience, the website should be translated before the documentation; see
Section 5.9 [Translating the documentation], page 53.

In addition to the normal documentation translation practices, there are a few additional

things to note:

Build the website with:
make website

Some of the translation infrastructure is defined in python files; you must look at the ###
translation data sections in:

scripts/build/create-weblinks-itexi.py
scripts/build/website_post.py

Do not submit a patch to add your language to this file unless make website completes
with fewer than 5 warnings.

Links to manuals are done with macros like @manualDevelLearningSplit. To get trans-
lated links, you must change that to @manualDevelLearningSplit-es (for es/Spanish trans-
lations, for example).

65

7 LSR work

7.1 Introduction to LSR

The LilyPond Snippet Repository (LSR) (https://lsr.di.unimi.it/) is a collection of Lily-
Pond examples. A subset of these examples are automatically imported into the documentation,
making it easy for users to contribute to the documentation without learning Git and Texinfo.

7.2 Adding and editing snippets

General guidelines

When you create (or find!) a nice snippet, and if it is supported by the LilyPond version run-
ning on the LSR, please add it to the LSR. Go to LSR (https://lsr.di.unimi.it/) and log
in — if you haven’t already, create an account. Follow the instructions on the website. These
instructions also explain how to modify existing snippets.

If you think a snippet is particularly informative and should be included in the documentation,
tag it with ‘docs’ and one or more other categories, or ask on the development list for somebody
who has editing permissions to do it.

Please make sure that the LilyPond code follows our formatting guidelines, see Section 5.4.5
[LilyPond formatting], page 39.

If a new snippet created for documentation purposes compiles with the LilyPond version
currently on LSR, it should be added to the LSR, and a reference to the snippet should be
added to the documentation. Please ask a documentation editor to add a reference to it in an
appropriate place in the docs. (Note — it should appear in the ‘snippets’ document automatically,
once it has been imported into git and built. See Section 7.5 [LSR to Git], page 68.)

If a new snippet uses new features that are not available in the current LSR version of
LilyPond, it should be added to directory Documentation/snippets/new/, and a reference
should be added to the manual.

Snippets created or updated in Documentation/snippets/new/ must be adjusted and copied
to directory Documentation/snippets/. This should be done by invoking the makelsr.pl script
— after you have compiled LilyPond. Assuming that your LilyPond build is in the top-level
subdirectory build/, a proper invocation is

cd /your/lilypond/git/top/dir
scripts/auxiliar/makelsr.pl --new

See Section 7.4 [The makelsr.pl script], page 67, for more details.

Be sure that ‘make doc’ runs successfully before submitting a patch, to prevent breaking
compilation (see Section 4.6.2 [Generating documentation|, page 29).

Formatting snippets in Documentation/snippets/new/
When adding a file to this directory, please start the file with the following template . . .

\version "2.xx.yy"

\header {
% Use existing LSR tags other than 'docs'; the names of the
% “*.snippet-list™ files in “Documentation/snippets/” give the
% tags currently used.
lsrtags = "rhythms, expressive-marks"

% The documentation string must use Texinfo syntax. In

https://lsr.di.unimi.it/
https://lsr.di.unimi.it/

Chapter 7: LSR work 66

% addition, “\~ and " must be written as “\\~ and “\"°,
% respectively.
texidoc = "

This snippet demonstrates @code{\\foo} ...

n

% The snippet title string must be formatted similar to
% “texidoc’.
doctitle = "Snippet title"

by

<LilyPond code starts here>
. and name the file snippet-title.ly.

It is important that the version number you use at the top of the example is the minimum
LilyPond version that the file compiles with: for example, if the LSR is currently at 2.22.2,
your example requires 2.23.4, and the current development version of LilyPond is 2.25.28, use
\version "2.23.4".

Particular attention is also necessary for the lsrtags and doctitle fields: the tags must
match tags used in the documentation, and the doctitle must match the file name (makelsr.pl
shows a helpful error message if it doesn’t).

The order of \version, \header, and the LilyPond code must be as shown above, otherwise
makelsr.pl aborts with an error. The same holds for the order of the 1srtags, texidoc, and
doctitle fields within \header.

7.3 Approving snippets

The main task of LSR editors is approving snippets. To find a list of unapproved snippets, log
into LSR (https://1lsr.di.unimi.it/) and select “No” from the drop-down menu to the right
of the word “Approved” at the bottom of the interface, then click “Enable filter”.

Here is a checklist of the necessary tasks.

1. Does the snippet make sense and does it what the author claims that it does? If you think
the snippet is suited to be included into the LilyPond documentation, add the ‘docs’ tag
and at least one other tag.

2. If the snippet is tagged with ‘docs’, check whether it matches our formatting guidelines, see
Section 5.4.5 [LilyPond formatting], page 39.

Also, snippets tagged with ‘docs’ should not be explaining (or replicating) existing material
in the documentation. They should not refer to the documentation; the documentation
should rather refer to them.

3. If the snippet uses Scheme code, check that everything looks good and there are no security
risks.

Note: Somebody could add code like #' (system "rm -rf /") to a

snippet, which would cause catastrophic results if executed! Take
this step VERY SERIOUSLY.

4. If all is well, check the box labeled “approved” and save the snippet.

https://lsr.di.unimi.it/

Chapter 7: LSR work 67

7.4 The makelsr.pl script

As you might have guessed already, makelsr.pl is a Perl (https://perl.org) script. Obviously,
you need Perl to execute it, which you should now install in case it isn’t already available on
your system.

There is a dependency on the Pandoc (https://pandoc.org) program, which the script uses
to convert LSR’s snippet documentation strings (which are formatted in HTML) to Texinfo.
This must be installed, too.

Furthermore, makelsr.pl needs a few additional modules that are not Perl core modules
(tested with Perl version 5.36):

e File::Which
e [PC::Run3
e MySQL::Dump::Parser:: XS
e Pandoc
e Parallel::ForkManager
Either install missing modules with your package manager (if available) or use the cpanm com-
mand.!
A typical call might me
cpanm --sudo Parallel::ForkManager
to download, compile, and install module ‘Parallel::ForkManager’.?
Finally, it needs to find the convert-1y script from the current LilyPond development build.
By default, executing makelsr.pl performs the following actions.

e Download a current MySQL dump of the LSR database (the dump is regenerated once a
day).

e Delete all snippet and snippet list files in directory Documentation/snippets/ (but not in
Documentation/snippets/new/).

e Extract all snippets from the LSR database that have the ‘docs’ tag set, convert their
documentation parts from HTML to Texinfo with the pandoc program, run the script
convert-1ly to update their LilyPond code parts to current syntax, and store them in
Documentation/snippets/.

e Create snippet list files named winds.snippet-1list or connecting-notes.snippet-list
that list the snippets grouped by tags assigned in the database. These files are used to
structure LilyPond’s ‘snippets’ documentation.

e Convert all snippet files in Documentation/snippets/new/ with convert-1ly and output
them to Documentation/snippets/, possibly overwriting existing files.

This flow of actions can be adjusted; say ‘scripts/auxiliar/makelsr.pl --help’ to get a
detailed description of the provided command-line options and used environment variables.

1 Most Perl distributions have this command included; if not, try to install a package named ‘cpanminus’ or
having ‘cpanminus’ in its name.
2 Note that the program cpanm might be called differently; it sometimes has the Perl version appended to its

name, for example cpanm-5.34.

The --sudo option makes the modules install into a system directory, for example /usr/lib/perl5/
site_perl/... — you need the superuser password for this. If you don’t want to do that for whatever
reason, just omit --sudo and follow the instructions shown in cpanm’s error message to install Perl modules
locally (i.e., without sudo rights).

As of this writing (August 2022) there is a small buglet in a test of the ‘Pandoc’ module that makes it necessary
to add option --notest for installing this module in case you have to use cpanm.

https://perl.org
https://pandoc.org

Chapter 7: LSR work 68

7.5 LSR to Git

Introduction

Snippets used in the documentation are in $LILYPOND_GIT/Documentation/snippets/. This
directory contains a set of all snippets in the LSR that are tagged with ‘docs’. An import is
done with the makelsr.pl script, which downloads a complete database dump of the LSR to
update this directory.

Snippets that are too new to be run on the LSR (which uses a stable LilyPond version) are
put into $LILYPOND_GIT/Documentation/snippets/new/. Once the LSR gets upgraded to a
LilyPond version that can actually compile them, they are transferred to the LSR and deleted
from snippets/new/.

‘Git’ is the shorthand name for LilyPond’s Git repository, which contains all the develop-
ment code. For further information on setting this up, see Chapter 3 [Working with source
code], page 10. An alternative to setting up a Git repository for people wanting to do LSR work
is to get the source code from https://lilypond.org/development.html. However, we don’t
recommend this since it doesn’t allow easy submission of patches as merge requests.

Importing the LSR to Git

1. Make sure that the convert-1y script is a bleeding edge version — the latest development
release, or even better, freshly compiled from Git master, with the environment variable
LILYPOND_BUILD_DIR correctly set up (see Section 13.2 [Environment variables|, page 124)
in case your build directory isn’t $LILYPOND_GIT/build/.

2. Check the other prerequisites necessary for executing the makelsr.pl script (see Section 7.4
[The makelsr.pl script], page 67).

3. If you are using a git repository, create and check out a branch, for example
git checkout -b lsr—-import

4. From the top source directory, execute
scripts/auxiliar/makelsr.pl

Say ‘scripts/auxiliar/makelsr.pl —-help’ to find out how to modify this call; for exam-
ple, command-line option --dump file makes the script use a locally stored dump file.

5. Carefully check the output of the script for warnings and errors, then carefully check the
file differences in the git repository. ‘git diff’ is your friend.

6. Rebuild the documentation. If some snippets from Documentation/snippets/ cause the
documentation compilation to fail, try the following steps to fix it.

e Look up the snippet file name foo.ly in the error output or log file, then fix the file
Documentation/snippets/foo.ly to make the documentation build successfully.

e Determine where it comes from by looking at its first two lines, e.g., run
head -2 Documentation/snippets/foo.ly

e If the snippet comes from the LSR, also apply the fix to the snippet in the LSR and send
a notification email to an LSR editor with CC to the development list, see Section 7.2
[Adding and editing snippets|, page 65.

Note that the failure may sometimes not be caused by the snippet in the LSR but by
LilyPond syntax changes that convert-1y can’t handle automatically. Such files must
be added to the new/ directory.

e If the snippet comes from Documentation/snippets/new/, apply the fix in
Documentation/snippets/new/foo.ly and run makelsr.pl as follows:

scripts/auxiliar/makelsr.pl --new

https://lilypond.org/development.html

Chapter 7: LSR work 69

Then, inspect Documentation/snippets/foo.ly to check that the fix has been well
propagated.

e If the build failure was caused by a translation string, you may have to fix some
Documentation/lang/texidocs/foo.texidoc files instead.

7. When you are done, commit your changes to your Git branch and create a merge request

(see Section 3.3 [Lifecycle of a merge request], page 14).

7.6 Renaming a snippet

Due to the potential duality of snippets (i.e., they may exist both in the LSR database and in
Documentation/snippets/new/), this process is a bit more involved than we might like.

1.
2.

Send an email to an LSR editor, requesting the renaming.

The LSR editor does the renaming (or debates the topic with you), then warns the LSR-to-
git person (wanted: better title) about the renaming.

LSR-to-git person does his normal job, but then also renames any copies of the snippets in
Documentation/snippets/new/, and any instances of the snippet name in the documenta-
tion.

git grep is highly recommended for this task.

7.7 Updating the LSR to a new version

To update the LSR, perform the following steps:

1.

Start by emailing the LSR maintainer, Sebastiano, and liaising with him to ensure that
updating the snippets is synchronised with updating the binary running the LSR.

Download the latest snippet tarball from https://lsr.di.unimi.it/download/ and ex-
tract it. The relevant files can be found in the all subdirectory. Make sure your shell is
using an English language version, for example LANG=en_US, then run convert-1ly on all
the files. Use the command-line option --to=version to ensure the snippets are updated
to the correct stable version.

Make sure that you are using convert-1y from the latest available release to gain best
advantage from the latest converting-rules-updates.
For example:

e LSR-version: 2.12.2

e intended LSR-update to 2.14.2

e latest release 2.15.30

Use convert-ly from 2.15.30 and the following terminal command for all files:
convert-ly -e -t2.14.2 *.ly

There might be no conversion rule for some old commands. To make an initial check
for possible problems you can run the script at the end of this list on a copy of the all
subdirectory.

Copy relevant snippets (i.e., snippets whose version is equal to or less than the new version
of LilyPond running on the LSR) from Documentation/snippets/new/ into the set of files
to be used to make the tarball. Make sure you only choose snippets which are already
present in the LSR, since the LSR software isn’t able to create new snippets this way. If
you don’t have a Git repository for LilyPond, you’ll find these snippets in the source-tarball
on https://lilypond.org/development.html. Don’t rename any files at this stage.

Verify that all files compile with the new version of LilyPond, ideally without any warnings
or errors. To ease the process, you may use the shell script that appears after this list.

https://lsr.di.unimi.it/download/
https://lilypond.org/development.html

Chapter 7: LSR work 70

Due to the workload involved, we do not require that you verify that all snippets produce
the expected output. If you happen to notice any such snippets and can fix them, great;
but as long as all snippets compile, don’t delay this step due to some weird output. If a
snippet is not compiling, update it manually. If it’s not possible, delete it for now.

Remove all headers and version-statements from the files. Phil Holmes has a python script
that will do this and which needs testing. Please ask him for a copy if you wish to do this.

8. Create a tarball and send it back to Sebastiano. Don’t forget to tell him about any deletions.

9. Use the LSR web interface to change any descriptions you want to. Changing the titles of

10.

11.

12.

snippets is a bit fraught, since this also changes the file names. Only do this as a last resort.

Use the LSR web interface to add the other snippets from Documentation/snippets/new/
which compile with the new LilyPond version of the LSR. Ensure that they are correctly
tagged, including the tag docs and that they are approved.

When LSR has been updated, wait a day for the tarball to update, then download another
snippet tarball. Verify that the relevant snippets from Documentation/snippets/new/ are
now included, then delete those snippets from Documentation/snippets/new/.

Commit all the changes. Don’t forget to add new files to the git repository with git add.
Run make, make doc and make test to ensure the changes don’t break the build. Any
snippets that have had their file name changed or have been deleted could break the build,
and these will need correcting step by step.

Below is a shell script to run LilyPond on all .1y files in a directory. If the script is run

with a -s parameter, it runs silently except for reporting failed files. If run with -c it also runs
convert-1ly prior to running LilyPond.

#!/bin/bash

while getopts sc opt; do
case $opt in
s)
silent=true
c)
convert=true
esac
done
param=$ if [$silent]; then
param=${param: 3}
fi
if [$convert]; then
param=${param: 3}
fi
filter=${param:-"*.1ly"}

for LILYFILE in $filter
do
STEM=$ (basename "$LILYFILE" .ly)
if [$convert]; then
if [$silent]; then
$LILYPOND_BUILD_DIR/out/bin/convert-ly -e "$LILYFILE" >& "$STEM".con.txt
else
$LILYPOND_BUILD_DIR/out/bin/convert-ly -e "$LILYFILE"
fi
fi
if [! $silent]; then
echo "running $LILYFILE..."
fi
$LILYPOND_BUILD_DIR/out/bin/lilypond --format=png "$LILYFILE" >& "$STEM".txt
RetVal=$7

Chapter 7: LSR work

if [$RetVal -gt O 1; then
echo "$LILYFILE failed"
fi
done

Output from LilyPond is in filename.txt and convert-ly in filename.con.txt.

71

72

8 Issues

This chapter deals with defects, feature requests, and miscellaneous development tasks.

8.1 Introduction to issues

Note: All the tasks in this chapter require no programming skills and
can be done by anyone with a web browser, an email client and the
ability to run LilyPond.

The term ‘issues’ refers not just to software bugs but also includes feature requests, docu-
mentation additions and corrections as well as any other general code ‘TODOs’ that need to be
kept track of. Tasks revolving around issues include:

e Monitoring the LilyPond Bugs mailing list looking for any issues reported by other users
ensuring that they are accurate and contain enough information for the developers to work
with, preferably with Section “Tiny examples” in General Information and if applicable,
screenshots.

e Adding new issues to the issue tracker or updating existing issues with new information.

To start working on bug triage, follow these steps:
1. Read every section of the Chapter 8 [Issues|, page 72, chapter in this guide.
2. Subscribe your email account to bug-lilypond. See https://lists.gnu.org/mailman/
listinfo/bug-1lilypond.
3. Create your own GitLab login (required to manage issues):
e Go to https://gitlab.com/users/sign_in.
e Click on the ‘Register’ tab to create a new account.

e Fill in your details as required and click the Register button to complete the registra-
tion.

4. Go to https://gitlab.com/lilypond and ‘Request access’ to the group. Additionally
send your GitLab username (not your email address) to bug-1ilypond@gnu.org, asking to
be given appropriate permissions to manage issues.

5. Configure your email client to use some kind of sorting and filtering as this will significantly
reduce and simplify your workload. Suggested email folder names are mentioned below to
work when sorted alphabetically.

Any email sent To: or CC: to bug-1ilypond should be configured to go into a bug-current
folder.

8.2 Triaging bugs

Emails to you personally

Sometimes a confused user will send a bug report (or an update to a report) to you personally.
If that happens, please forward such emails to the bug-1ilypond list.

Emails to bug-answers

Some of these emails will be comments on issues that you added to the tracker.

If they are asking for more information, give the additional information.

e If the email says that the issue was classified in some other manner, read the rationale given
and take that into account for the next issue you add.

https://lists.gnu.org/mailman/listinfo/bug-lilypond
https://lists.gnu.org/mailman/listinfo/bug-lilypond
https://gitlab.com/users/sign_in
https://gitlab.com/lilypond
mailto:bug-lilypond@gnu.org

Chapter 8: Issues 73

e Otherwise, move them to your bug-ignore folder.

Some of these emails will be discussions about Bug Squad work; read those.

Emails to bug-current

Dealing with these emails is your main task. Your job is to get rid of these emails in the first
method which is applicable:

1.

If the email has already been handled by a Bug Squad member (i.e. check to see who else
has replied to it), delete it.

If the email is a question about how to use LilyPond, reply with this response:

For questions about how to use LilyPond, please read our

documentation available from:
https://1lilypond.org/manuals.html

or ask the lilypond-user mailing list.

If the email mentions “the latest git”, or any version number that has not yet been officially
released, forward it to 1ilypond-devel.

If a bug report is not in the form of a Tiny example, direct the user to resubmit the report
with this response:

I'm sorry, but due to our limited resources for handling bugs, we

can only accept reports in the form of Tiny examples. Please see

step 2 in our bug reporting guidelines:
https://lilypond.org/bug-reports.html

If anything is unclear, ask the user for more information.

How does the graphical output differ from what the user expected? What version of lilypond
was used (if not given) and operating system (if this is a suspected cause of the problem)?
In short, if you cannot understand what the problem is, ask the user to explain more. It is
the user’s responsibility to explain the problem, not your responsibility to understand it.

If the behavior is expected, the user should be told to read the documentation:

I believe that this is the expected behavior -- please read our
documentation about this topic. If you think that it really is a
mistake, please explain in more detail. If you think that the
docs are unclear, please suggest an improvement as described by
‘““Simple tasks —-- Documentation’ on:
https://lilypond.org/help-us.html

If the issue already exists in the tracker, send an email to that effect:

This issue has already been reported; you can follow the
discussion and be notified about fixes here:

(copy+paste the GitLab issue URL)
Accept the report as described in Section 8.4 [Adding issues to the tracker|, page 75.

All emails should be CC’d to the bug-1lilypond list so that other Bug Squad members know

that you have processed the email.

Note: There is no option for “ignore the bug report” — if you cannot
find a reason to reject the report, you must accept it.

https://lilypond.org/manuals.html
https://lilypond.org/bug-reports.html
https://lilypond.org/help-us.html

Chapter 8: Issues 74

8.3 Issue classification

We have several labels:

Critical: normally a regression against the current stable version or the previous stable
version. Alternatively, a regression against a fix developed for the current version. This
does not apply where the “regression” occurred because a feature was removed deliberately
— this is not a bug.

Currently, only Critical items will block a stable release.

Maintainability: hinders future development.

Crash: any input which produces a crash.

Ugly: overlapping or other ugly notation in graphical output.

Defect: a problem in the core program. (the 1ilypond binary, scm files, fonts, etc).

Documentation: inaccurate, missing, confusing, or desired additional info. Must be fixable
by editing a texinfo, ly, or scm file.

Build: problem or desired features in the build system. This includes the makefiles and
python scripts.

Scripts: problem or desired feature in the non-build-system scripts. Mostly used for convert-
ly, lilypond-book, etc.

Enhancement: a feature request for the core program. The distinction between enhancement
and defect isn’t extremely clear; when in doubt, mark it as enhancement.

Other: anything else.

Regression: it used to work intentionally in the current stable release or the previous stable
release. If the earlier output was accidental (i.e., we didn’t try to stop a collision, but it just
so happened that two grobs didn’t collide), then breaking it does not count as a regression.

To help decide whether the change is a regression, please adopt the following process:
1. Are you certain the change is OK? If so, do nothing.
2. Are you certain that the change is bad? Add it to the tracker as a regression.
3. If you're not certain either way, add it to the tracker as a regression but be aware that
it may be recategorised or marked invalid.
In particular, anything that breaks a regression test is a regression.

Frog: the fix is believed to be suitable for a new contributor (does not require a great deal
of knowledge about LilyPond). The issue should also have an estimated time in a comment.

Bounty: somebody is willing to pay for the fix. Only add this tag if somebody has offered
an exact figure in US dollars or euros.

Warning: graphical output is fine, but lilypond prints a false/misleading warning message.
Alternately, a warning should be printed (such as a bar line error), but was not. Also applies
to warnings when compiling the source code or generating documentation.

Performance: performance issue.

In addition, the following labels may be used when closing an issue:
Invalid: issue should not have been added in the current state.
Duplicate: issue already exists in the tracker.

Shelved: issue won’t fix and was abandoned.

Assign an issue to yourself to indicate that you are currently working on it.

Chapter 8: Issues 75

8.4 Adding issues to the tracker

Note: This should only be done by the Bug Squad or experienced
developers. Normal users should not do this; instead, they should
follow the guidelines for Section “Bug reports” in General Information.

1. Check if the issue falls into any previous category given on the relevant checklists in Sec-
tion 8.2 [Triaging bugs]|, page 72. If in doubt, add a new issue for a report. We would prefer
to have some incorrectly-added issues rather than lose information that should have been
added.

2. Add the issue and classify it according to the guidelines in Section 8.3 [Issue classification],
page 74. In particular, the item should have Status and type labels.

3. Include output. Usually, the problem can be demonstrated in an image created using
lilypond -dcrop bug.ly, which generates bug.cropped.png. However, for spacing bugs,
this image may not show the problem; attach the full PDF produced by a normal 1ilypond
invocation in this case.

4. After adding the issue, please send a response email to the same group(s) that the initial
patch was sent to. If the initial email was sent to multiple mailing lists (such as both user
and bugs), then reply to all those mailing lists as well. The email should contain a link to
the issue you just added.

If patches are sent to the bug list, please submit them via GitLab (or help the author to do
so0). Alternatively, if discussion is needed, forward the patch to 1ilypond-devel.

76

9 Regression tests

9.1 Introduction to regression tests

LilyPond has a complete suite of regression tests that are used to ensure that changes to the
code do not break existing behavior. These regression tests comprise small LilyPond snippets
that test the functionality of each part of LilyPond.

Regression tests are added when new functionality is added to LilyPond or when bugs are
fixed.

The regression tests are compiled using special make targets. There are three primary uses
for the regression tests. First, successful completion of the regression tests means that LilyPond
has been properly built. Second, the output of the regression tests can be manually checked to
ensure that the graphical output matches the description of the intended output. Third, the
regression test output from two different versions of LilyPond can be automatically compared
to identify any differences. These differences should then be manually checked to ensure that
the differences are intended.

Regression tests (“regtests”) are available in precompiled form as part of the documentation.
Regtests can also be compiled on any machine that has a properly configured LilyPond build
system.

9.2 Precompiled regression tests

Regression test output

As part of the release process, the regression tests are run for every LilyPond release. Full
regression test output is available for every stable version and the most recent development
version.

Regression test output is available in HTML and PDF format. Links to the regression test
output are available at the developer’s resources page for the version of interest.

The latest stable version of the regtests is found at:
https://lilypond.org/doc/stable/input/regression/collated-files.html

The latest development version of the regtests is found at:
https://lilypond.org/doc/latest/input/regression/collated-files.html

9.3 Compiling regression tests

Developers may wish to see the output of the complete regression test suite for the current
version of the source repository between releases. Current source code is available; see Chapter 3
[Working with source code], page 10.

For regression testing . ./configure should be run with the --disable-optimising option.
Then you will need to build the LilyPond binary; see Section 4.5 [Compiling LilyPond], page 28.

Uninstalling the previous LilyPond version is not necessary, nor is running make install,
since the tests will automatically be compiled with the LilyPond binary you have just built in
your source directory.

From this point, the regtests are compiled with:
make test

If you have a multi-core machine you may want to use the -j option and CPU_COUNT
variable, as described in [Saving time with CPU_COUNT], page 31. For a quad-core processor the
complete command would be:

make -j5 CPU_COUNT=5 test

https://lilypond.org/doc/stable/input/regression/collated-files.html
https://lilypond.org/doc/latest/input/regression/collated-files.html

Chapter 9: Regression tests 7

The regtest output will then be available in input/regression/out-test.
input/regression/out-test/collated-examples.html contains a listing of all the
regression tests that were run, but none of the images are included. Individual images are also
available in this directory.

The primary use of ‘make test’is to verify that the regression tests all run without error. The
regression test page that is part of the documentation is created only when the documentation is
built, as described in Section 4.6.2 [Generating documentation], page 29. Note that building the
documentation requires more installed components than building the source code, as described
in Section 4.2.3 [Requirements for building documentation], page 24.

9.4 Regtest comparison

Before modified code is committed to master, a regression test comparison must be completed to
ensure that the changes have not caused problems with previously working code. The comparison
is made automatically upon compiling the regression test suite twice.

1. Before making changes to the code, establish a baseline for the comparison by checking out
the current git master, going to the $LILYPOND_GIT/build/ directory and running:
make clean # whenever any files in mf/ are modified
make test-baseline
2. Make your changes, or apply the patch(es) to consider.
3. Check for unintentional changes to the regtests:
make check
After this has finished, a regression test comparison will be available (relative to the current
build/ directory) at:
out/test-results/index.html
For each regression test that differs between the baseline and the changed code, a regression
test entry will be displayed. Ideally, the only changes would be the changes that you were
working on. If regressions are introduced, they must be fixed before committing the code.
4. If you are happy with the results, then skip to the final step.
If you want to continue programming, then make any additional code changes, and continue.

5. Finally, you should verify that make doc completes successfully.

Advanced note: Once a test baseline has been established, there is no need to run it
again unless git master changed. In other words, if you work with several branches
and want to do regtests comparison for all of them, you can make test-baseline
with git master, checkout some branch, make check it, then switch to another
branch, make test-clean and make check it without doing make test-baseline
again.

9.5 Pixel-based regtest comparison

As an alternative to the make test method for regtest checking (which relies upon .signature
files created by a LilyPond run and which describe the placing of grobs) there is a script which
compares the output of two LilyPond versions pixel-by-pixel. To use this, start by checking out
the version of LilyPond you want to use as a baseline, and run make. Then, do the following:

cd $LILYPOND_GIT/scripts/auxiliar/

./make-regtest-pngs.sh -j9 -o

The -39 option tells the script to use 9 CPUs to create the images - change this to your own

CPU count+1. -o means this is the "old" version. This will create images of all the regtests in

$LILYPOND_BUILD_DIR/out-png-check/old-regtest-results/

Chapter 9: Regression tests 78

Now checkout the version you want to compare with the baseline. Run make again to recreate
the LilyPond binary. Then, do the following:

cd $LILYPOND_GIT/scripts/auxiliar/
./make-regtest-pngs.sh -j9 -n
The -n option tells the script to make a "new" version of the images. They are created in

$LILYPOND_BUILD_DIR/out-png-check/new-regtest-results/

Once the new images have been created, the script compares the old images with the new
ones pixel-by-pixel and prints a list of the different images to the terminal, together with a count
of how many differences were found. The results of the checks are in

$LILYPOND_BUILD_DIR/out-png-check/regtest-diffs/

To check for differences, browse that directory with an image viewer. Differences are shown
in red. Be aware that some images with complex fonts or spacing annotations always display a
few minor differences. These can safely be ignored.

9.6 Finding the cause of a regression

Git has special functionality to help tracking down the exact commit which causes a problem.
See the git manual page for git bisect. This is a job that non-programmers can do, although it
requires familiarity with git, ability to compile LilyPond, and generally a fair amount of technical
knowledge. A brief summary is given below, but you may need to consult other documentation
for in-depth explanations.

Even if you are not familiar with git or are not able to compile LilyPond you can still help
to narrow down the cause of a regression simply by downloading the binary releases of different
LilyPond versions and testing them for the regression. Knowing which version of LilyPond first
exhibited the regression is helpful to a developer as it shortens the git bisect procedure.

Once a problematic commit is identified, the programmers’ job is much easier. In fact, for
most regression bugs, the majority of the time is spent simply finding the problematic commit.

More information is in Chapter 9 [Regression tests|, page 76.

git bisect setup

We need to set up the bisect for each problem we want to investigate.

Suppose we have an input file which compiled in version 2.13.32, but fails in version 2.13.38
and above.

1. Begin the process:
git bisect start
2. Give it the earliest known bad tag:
git bisect bad release/2.13.38-1
(you can see tags with: git tag)
3. Give it the latest known good tag:
git bisect good release/2.13.32-1
You should now see something like:

Bisecting: 195 revisions left to test after this (roughly 8 steps)
[b17e2£3d7a5853a30f7d5a3cdc6b5079e77a3d2a] Web: Announcement
update for the new ‘“LilyPond Report”.

Chapter 9: Regression tests 79

git bisect actual
1. Compile the source:
make
2. Test your input file:
out/bin/lilypond test.ly
3. Test results?
e Does it crash, or is the output bad? If so:
git bisect bad
e Does your input file produce good output? If so:
git bisect good
4. Once the exact problem commit has been identified, git will inform you with a message like:

6d28aebbaaablbe9961a00bf15a1ef93achb91e30 is the first bad commit
%% ... blah blah blah ...

If there is still a range of commits, then git will automatically select a new version for you
to test. Go to step #1.

Recommendation: use two terminal windows
e One window is open to the build/ directory, and alternates between these commands:

make
out/bin/lilypond test.ly

e One window is open to the top source directory, and alternates between these commands:

git bisect good
git bisect bad

9.7 MusicXML tests

LilyPond comes with a complete set of regtests for the MusicXML (http://www.musicxml.
org/) language. Originally developed to test ‘musicxml21y’, these regression tests can be used
to test any MusicXML implementation.

The MusicXML regression tests are found at input/regression/musicxml/.

The output resulting from running these tests through ‘musicxml2ly’ followed by ‘1ilypond’
is available in the LilyPond documentation:

https://lilypond.org/doc/latest/input/regression/musicxml/collated-files

http://www.musicxml.org/
http://www.musicxml.org/
https://lilypond.org/doc/latest/input/regression/musicxml/collated-files

80

10 Programming work

10.1 Overview of LilyPond architecture

LilyPond processes the input file into graphical and musical output in a number of stages. This
process, along with the types of routines that accomplish the various stages of the process, is
described in this section. A more complete description of the LilyPond architecture and internal
program execution is found in Erik Sandberg’s master’s thesis (https://1lilypond.gitlab.io/
static-files/media/thesis-erik-sandberg.pdf).

The first stage of LilyPond processing is parsing. In the parsing process, music expressions in
LilyPond input format are converted to music expressions in Scheme format. In Scheme format,
a music expression is a list in tree form, with nodes that indicate the relationships between
various music events. The LilyPond parser is written in Bison.

The second stage of LilyPond processing is iterating. Iterating assigns each music event to a
context, which is the environment in which the music will be finally engraved. The context is
responsible for all further processing of the music. It is during the iteration stage that contexts
are created as necessary to ensure that every note has a Voice type context (e.g. Voice, TabVoice,
DrumVoice, CueVoice, MensuralVoice, VaticanaVoice, GregorianTranscriptionVoice), that the
Voice type contexts exist in appropriate Staff type contexts, and that parallel Staff type contexts
exist in StaffGroup type contexts. In addition, during the iteration stage each music event is
assigned a moment, or a time in the music when the event begins.

Each type of music event has an associated iterator. Iterators are defined in *-iterator.cc.
During iteration, an event’s iterator is called to deliver that music event to the appropriate
context(s).

The final stage of LilyPond processing is translation. During translation, music events are
prepared for graphical or midi output. The translation step is accomplished by the polymor-
phic base class Translator through its two derived classes: Engraver (for graphical output) and
Performer (for midi output).

Translators are defined in C++ files named *-engraver.cc and *-performer.cc. Much of
the work of translating is handled by Scheme functions, which is one of the keys to LilyPond’s
exceptional flexibility.

https://lilypond.gitlab.io/static-files/media/thesis-erik-sandberg.pdf
https://lilypond.gitlab.io/static-files/media/thesis-erik-sandberg.pdf

Chapter 10: Programming work 81

(£ N

User code

C++ Code

10.2 LilyPond programming languages

Programming in LilyPond is done in a variety of programming languages. Each language is used
for a specific purpose or purposes. This section describes the languages used and provides links
to reference manuals and tutorials for the relevant language.

Chapter 10: Programming work 82

C++
The core functionality of LilyPond is implemented in C++.

C++ is so ubiquitous that it is difficult to identify either a reference manual or a tutorial.
Programmers unfamiliar with C++ will need to spend some time to learn the language before
attempting to modify the C++ code.

The C++ code calls Scheme/Guile through the Guile interface, which is documented in the
Guile Reference Manual (https://www.gnu.org/software/guile/manual/html_node/index.
html).

Flex

The LilyPond lexer is implemented in Flex, an implementation of the Unix lex lexical analyser
generator. Resources for Flex can be found here (http://flex.sourceforge.net/).

GNU Bison

The LilyPond parser is implemented in Bison, a GNU parser generator. The Bison homepage
is found at gnu.org (https://www.gnu.org/software/bison/). The manual (which includes
both a reference and tutorial) is available (https://www.gnu.org/software/bison/manual/
index.html) in a variety of formats.

GNU Make

GNU Make is used to control the compiling process and to build the documentation and the
website. GNU Make documentation is available at the GNU website (https://www.gnu.org/
software/make/manual/).

Guile or Scheme

Guile is the dialect of Scheme that is used as LilyPond’s extension language. Many extensions to
LilyPond are written entirely in Guile. The Guile Reference Manual (https://www.gnu.org/
software/guile/manual/html_node/index.html) is available online.

Structure and Interpretation of Computer Programs (https://mitpress.mit.edu/sicp/
full-text/book/book.html), a popular textbook used to teach programming in Scheme is
available in its entirety online.

An introduction to Guile/Scheme as used in LilyPond can be found in the Section “Scheme
tutorial” in Extending.

MetaFont

MetaFont is used to create the music fonts used by LilyPond. A MetaFont tutorial is available
at the METAFONT tutorial page (http://metafont.tutorial.free.fr/).

PostScript

PostScript is used to generate graphical output. A brief PostScript tutorial is available online
(http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/). The PostScript
Language Reference (https://www.adobe.com/products/postscript/pdfs/PLRM.pdf) is
available online in PDF format.

Python
Python is used for XML2ly and is used for building the documentation and the website.
Python documentation is available at python.org (https://www.python.org/doc/).

https://www.gnu.org/software/guile/manual/html_node/index.html
https://www.gnu.org/software/guile/manual/html_node/index.html
http://flex.sourceforge.net/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/manual/index.html
https://www.gnu.org/software/bison/manual/index.html
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/guile/manual/html_node/index.html
https://www.gnu.org/software/guile/manual/html_node/index.html
https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book.html
http://metafont.tutorial.free.fr/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/
https://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.python.org/doc/

Chapter 10: Programming work 83

Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is an XML-based markup language used to generate graphi-
cal output. A brief SVG tutorial is available online (https://www.w3schools.com/graphics/
svg_intro.asp) through W3 Schools. The World Wide Web Consortium’s SVG 1.2 Recommen-
dation (https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf) is available online in PDF
format.

10.3 Programming without compiling

Much of the development work in LilyPond takes place by changing *.1y or *.scm files. These
changes can be made without compiling LilyPond. Such changes are described in this section.

Modifying distribution files

Much of LilyPond is written in Scheme or LilyPond input files. These files are interpreted when
the program is run, rather than being compiled when the program is built, and are present in
all LilyPond distributions. You will find .1y files in the 1y/ directory and the Scheme files in
the scm/ directory. Both Scheme files and .1y files can be modified and saved with any text
editor. It’s probably wise to make a backup copy of your files before you modify them, although
you can reinstall if the files become corrupted.

Once you’ve modified the files, you can test the changes just by running LilyPond on some
input file. It’s a good idea to create a file that demonstrates the feature you’re trying to add.
This file will eventually become a regression test and will be part of the LilyPond distribution.

Desired file formatting

Files that are part of the LilyPond distribution have Unix-style line endings (LF), rather than
DOS (CR+LF) or Mac~0S~9 and earlier (CR). Make sure you use the necessary tools to ensure
that Unix-style line endings are preserved in the patches you create.

Tab characters should not be included in files for distribution. All indentation should be
done with spaces. Most editors have settings to allow the setting of tab stops and ensuring that
no tab characters are included in the file.

Scheme files and LilyPond files should be written according to standard style guidelines.
Scheme file guidelines can be found at http://community.schemewiki.org/?scheme-style.
Following these guidelines will make your code easier to read. Both you and others that work
on your code will be glad you followed these guidelines.

For LilyPond files, you should follow the guidelines for LilyPond snippets in the documen-
tation. You can find these guidelines at Section 5.4 [Texinfo introduction and usage policy],
page 37.

10.4 Finding functions

When making changes or fixing bugs in LilyPond, one of the initial challenges is finding out
where in the code tree the functions to be modified live. With nearly 3000 files in the source
tree, trial-and-error searching is generally ineffective. This section describes a process for finding
interesting code.

Using the ROADMAP

The file ROADMAP is located in the main directory of the lilypond source. ROADMARP lists
all of the directories in the LilyPond source tree, along with a brief description of the kind of
files found in each directory. This can be a very helpful tool for deciding which directories to
search when looking for a function.

https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf
https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf
http://community.schemewiki.org/?scheme-style

Chapter 10: Programming work 84

Using grep to search

Having identified a likely subdirectory to search, the grep utility can be used to search for a
function name. The format of the grep command is

grep -i functionName subdirectory/*

This command will search all the contents of the directory subdirectory/ and display every
line in any of the files that contains functionName. The -i option makes grep ignore case — this
can be very useful if you are not yet familiar with our capitalization conventions.

The most likely directories to grep for function names are scm/ for scheme files, ly/ for
lilypond input (*.1y) files, and 1ily/ for C++ files.

Using git grep to search

If you have used git to obtain the source, you have access to a powerful tool to search for
functions. The command:

git grep functionName

will search through all of the files that are present in the git repository looking for
functionName. It also presents the results of the search using less, so the results are displayed
one page at a time.

Using TAGS support

Many programs, including Emacs, ex, vi, and less, provide the ability to jump directly to the
definition of an identifier based on precomputed cross-reference data. This data is usually
contained in files named TAGS, for Emacs, or tags, for vi and other programs.

To generate these cross-reference data files the source code must be installed, but it is not
necessary to compile LilyPond. Follow the instructions found in Section 4.3 [Getting the source
code], page 25, through ‘Checking build dependencies’. Once the configure command has run
successfully, invoke the following command in the build directory.

make TAGS
This will create both TAGS and tags files in the source directory tree. To enable and use tags
in a particular program, see the associated program documentation.
Searching on the git repository at GitLab and Savannah
GitLab’s web interface provides a built-in search.
e Go to https://gitlab.com/1lilypond/1lilypond/
e Type functionName in the search box on the top, and hit enter/return
Alternatively you can also use the equivalent of git grep on the Savannah server.
e Go to https://git.sv.gnu.org/gitweb/?p=1lilypond.git
e In the pulldown box that says commit, select grep.

e Type functionName in the search box, and hit enter/return

This will initiate a search of the remote git repository.
10.5 Code style
This section describes style guidelines for LilyPond source code.

10.5.1 Languages
C++ and Python are preferred. Python code should use PEP 8.

https://gitlab.com/lilypond/lilypond/
https://git.sv.gnu.org/gitweb/?p=lilypond.git

Chapter 10: Programming work 85

10.5.2 Filenames

Definitions of classes that are only accessed via pointers (*) or references (&) shall not be
included as include files.

file names

" hh" Include files

".cc" Implementation files
".icc" Inline definition files
".tcc" non inline Template defs

in emacs:

(setq auto-mode-alist
(append ' (("\\.make$" . makefile-mode)

("\\.cc$" . ct++-mode)

("\\.icc$" . c++-mode)

("\\.tcc$" . c++-mode)

("\\.hh$" . c++-mode)

("\\.pod$" . text-mode)

)

auto-mode-alist))

The class Class_name is coded in ‘class-name.*’
10.5.3 Code formatting

Formatting tools
For C++ files, standard GNU coding style is used. You can reformat a file according to this style
using the clang-format tool.
clang-format -i filename
The version of clang-format currently being used is version 14.0.
Bindings for clang-format are available for many editors, including Emacs and Vim.

clang-format can also be run on all files at once, but this is normally only done infrequently,
more specifically before branching the next stable release.

clang-format -i $(git ls-files "*.cc" "x.hh" "x.icc" "*.tcc")
Similarly, we have a script that reformats Scheme files.
scripts/auxiliar/fixscm.sh filename
To run it on all files, use
scripts/auxiliar/fixscm.sh $(git 1ls-files "*.scm")

This script drives Emacs behind the scenes, so Emacs users will get the right behavior out-
of-the-box.
For Python code, use autopep8 with the following settings:
autopep8 -ia --ignore=E402 file.py

However, currently files under release/binaries/ are formatted with a different tool, black.

Vim-specific configuration

For C++ formatting, although using a plugin that provides a binding for clang-format allows
you to fix indentation automatically, it does not produce correct indentation as you type. You
can, however, adjust your Vim configuration to come close. These settings were adapted from the

Chapter 10: Programming work 86

GNU GCC Wiki (https://gcc.gnu.org/wiki/FormattingCodeForGCC). Save the following in
~/.vim/after/ftplugin/cpp.vim:

setlocal cindent

setlocal cinoptions=>4,n-2,{2,7-2,:2,=2,g0,h2,p5,t0,+2,(0,u0,wl,ml
setlocal shiftwidth=2

setlocal softtabstop=2

setlocal textwidth=79

setlocal fo-=ro fot+=cql

" use spaces instead of tabs

setlocal expandtab

" remove trailing whitespace on write

autocmd BufWritePre * :%s/\s\+$//e

For Scheme code, you can use these settings in ~/.vim/after/syntax/scheme.vim:

" Additional Guile-specific 'forms'

syn keyword schemeSyntax define-public define*-public

syn keyword schemeSyntax define* lambda* let-keywords*
syn keyword schemeSyntax defmacro defmacro* define-macro
syn keyword schemeSyntax defmacro-public defmacro*-public
syn keyword schemeSyntax use-modules define-module

syn keyword schemeSyntax define-method define-class

" Additional LilyPond-specific 'forms'
syn keyword schemeSyntax define-markup-command define-markup-list-command
syn keyword schemeSyntax define-music-function def-grace-function

" All of the above should influence indenting too

setlocal lw+=define-public,define*-public

setlocal lw+=define*,lambda*,let-keywords*

setlocal lw+=defmacro,defmacro*,define-macro

setlocal lw+=defmacro-public,defmacro*-public

setlocal lw+=use-modules,define-module

setlocal lw+=define-method,define-class

setlocal lw+=define-markup-command,define-markup-list-command
setlocal lw+=define-music-function,def-grace-function

" These forms should not influence indenting
setlocal lw—=if
setlocal lw—=get!

" Try to highlight all ly: procedures
syn match schemeFunc "ly:[7) J1\+"

Files can be reindented automatically by highlighting the lines to be indented in visual mode
(use V to enter visual mode) and pressing =, or a single line correctly indented in normal mode
by pressing ==.

For documentation work on texinfo files, identify the file extensions used as texinfo files in
your .vim/filetype.vim:

if exists("did_load_filetypes")
finish

endif

augroup filetypedetect

https://gcc.gnu.org/wiki/FormattingCodeForGCC

Chapter 10: Programming work 87

au! BufRead,BufNewFile *.itely setfiletype texinfo

au! BufRead,BufNewFile *.itexi setfiletype texinfo

au! BufRead,BufNewFile *.tely setfiletype texinfo
augroup END

and add these settings in .vim/after/ftplugin/texinfo.vim:

setlocal expandtab
setlocal shiftwidth=2
setlocal textwidth=66

10.5.4 Naming Conventions

Naming conventions have been established for LilyPond source code.

Classes and Types

Classes begin with an uppercase letter, and words in class names are separated with _:

This_is_a class

Members

Member variable names end with an underscore:

Type Class::member_

Macros

Macro names should be written in uppercase completely, with words separated by _:
THIS_IS_A_MACRO

Variables
Variable names should be complete words, rather than abbreviations. For example, it is preferred
to use thickness rather than th or t.

Multi-word variable names in C++ should have the words separated by the underscore char-
acter (‘.):
cxx_multiword_variable

Multi-word variable names in Scheme should have the words separated by a hyphen (‘-’):

scheme-multiword-variable

10.5.5 Broken code

Do not write broken code. This includes hardwired dependencies, hardwired constants, slow
algorithms and obvious limitations. If you can not avoid it, mark the place clearly, and add a
comment explaining shortcomings of the code.

Ideally, the comment marking the shortcoming would include TODO, so that it is marked
for future fixing.
We reject broken-in-advance on principle.

10.5.6 Code comments

Comments may not be needed if descriptive variable names are used in the code and the logic
is straightforward. However, if the logic is difficult to follow, and particularly if non-obvious
code has been included to resolve a bug, a comment describing the logic and/or the need for the
non-obvious code should be included.

There are instances where the current code could be commented better. If significant time is
required to understand the code as part of preparing a patch, it would be wise to add comments
reflecting your understanding to make future work easier.

Chapter 10: Programming work 88

10.5.7 Handling errors

As a general rule, you should always try to continue computations, even if there is some kind
of error. When the program stops, it is often very hard for a user to pinpoint what part of the
input causes an error. Finding the culprit is much easier if there is some viewable output.

So functions and methods do not return errorcodes, they never crash, but report a program-
ming_error and try to carry on.

Error and warning messages need to be localized.

10.5.8 Localization

This document provides some guidelines to help programmers write proper user messages. To
help translations, user messages must follow uniform conventions. Follow these rules when
coding for LilyPond. Hopefully, this can be replaced by general GNU guidelines in the future.
Even better would be to have an English (en_GB, en_US) guide helping programmers writing
consistent messages for all GNU programs.

Non-preferred messages are marked with ‘+’. By convention, ungrammatical examples are
marked with ‘*’. However, such ungrammatical examples may still be preferred.

e Every message to the user should be localized (and thus be marked for localization). This
includes warning and error messages.
e Do not localize/gettextify:
e programming_error
e programming warning
e debug strings
e output strings (PostScript, TeX, etc.)

e Messages to be localized must be encapsulated in _ (string) or _f (format, ...), for
example

warning (_ ("need music in a score"));
error (_f ("cannot open file: “%s'", file_name));

In some rare cases you may need to call gettext by hand. This happens when you pre-
define (a list of) string constants for later use. In that case, you’ll probably also need to
mark these string constants for translation, using _i (string). The ‘_i’ macro is a no-op,
it only serves as a marker for xgettext.

char const* messages[] = {
_i ("enable debugging output"),
_i ("ignore lilypond version"),
0

s

void
foo (int i)
{
puts (gettext (messages 1));

+
See also flower/getopt-long.cc and lily/main.cc.

e Do not use leading or trailing whitespace in messages. If you need whitespace to be printed,
prepend or append it to the translated message

message ("Calculating line breaks..." + " ");

Chapter 10: Programming work 89

e Error or warning messages displayed with a file name and line number never start with a
capital, eg,
foo.ly: 12: not a duration: 3

Messages containing a final verb, or a gerund (‘-ing’-form) always start with a capital. Other
(simpler) messages start with a lowercase letter

Processing foo.ly...
"foo': not declared.

Not declaring: “foo'.

e Avoid abbreviations or short forms, use ‘cannot’ and ‘do not’ rather than ‘can’t’ or ‘don’t’
To avoid having a number of different messages for the same situation, we will use quoting
like this "message: “%s'" for all strings. Numbers are not quoted:

_f ("cannot open file: “%s'", name_str)
_f ("cannot find character number: %d", i)

e Think about translation issues. In a lot of cases, it is better to translate a whole message.
English grammar must not be imposed on the translator. So, instead of

stem at + moment.str () + does not fit in beam
have
_f ("stem at %s does not fit in beam", moment.str ())
e Split up multi-sentence messages, whenever possible. Instead of

warning (_f ("out of tune! Can't find: “%s'", "Key_engraver"));
warning (_f ("cannot find font “¥%s', loading default", font_name));

rather say:

warning (_ ("out of tune:"));

warning (_f ("cannot find: “%s', "Key_engraver"));
warning (_f ("cannot find font: “%s', font_name));
warning (_f ("Loading default font"));

e If you must have multiple-sentence messages, use full punctuation. Use two spaces after
end of sentence punctuation. No punctuation (esp. period) is used at the end of simple
messages.

_f ("Non-matching braces in text “%s', adding braces", text)
_ ("Debug output disabled. Compiled with NPRINT.")
_f ("Huh? Not a Request: “%s'. Ignoring.", request)

e Do not modularize too much; words frequently cannot be translated without context. It is
probably safe to treat most occurrences of words like stem, beam, crescendo as separately
translatable words.

e When translating, it is preferable to put interesting information at the end of the message,
rather than embedded in the middle. This especially applies to frequently used messages,
even if this would mean sacrificing a bit of eloquence. This holds for original messages too,
of course.

en: cannot open: "foo.ly'

+ nl: kan “foo.ly' niet openen (1)

kan niet openen: “foo.ly'x (2)

niet te openen: “foo.ly'x 3
The first nl message, although grammatically and stylistically correct, is not friendly for
parsing by humans (even if they speak dutch). I guess we would prefer something like (2)
or (3).

e Do not run make po/po-update with GNU gettext < 0.10.35

Chapter 10: Programming work 90

10.6 Warnings, Errors, Progress and Debug Output

Available log levels

LilyPond has several log levels to specify how verbose the output on the console should be, as
shown in the following table. Note that only the first few characters of a given value are checked
(as indicated); additionally, case doesn’t matter. In other words, ERR is the same as error or
ERRO, for example.

NONE no output at all, even on failure

ERR[OR] only error messages

WARN only error messages and warnings
BASIC warnings, errors, and basic progress (success, etc.)
PROG [RESS]
warnings, errors, and full progress messages
INFO warnings, errors, progress, and more detailed information (default)
DEBUG all messages, including full debug messages (very verbose!)

The log level can either be set with the environment variable LILYPOND_LOGLEVEL or on the
command line with the --loglevel=. .. option.

Functions for debug and log output
LilyPond has two different types of error and log functions:

e If a warning or error is caused by an identified position in the input file, e.g., by a grob or
by a music expression, the functions of the Input class provide logging functionality that
prints the position of the message in addition to the message.

e If a message can not be associated with a particular position in an input file, e.g., the output
file cannot be written, then the functions in the flower/include/warn.hh file will provide
logging functionality that only prints out the message, but no location.

There are also Scheme functions to access all of these logging functions from scheme. In
addition, the Grob class contains some convenience wrappers for even easier access to these
functions.

The message and debug functions in warn.hh also have an optional argument newline, which
specifies whether the message should always start on a new line or continue a previous message.
By default, progress_indication does NOT start on a new line, but rather continue the
previous output. They also do not have a particular input position associated, so there are no
progress functions in the Input class. All other functions by default start their output on a new
line.

The error functions come in three different flavors: fatal error messages, programming error
messages and normal error messages. Errors written by the error () function will cause Lily-
Pond to exit immediately, errors by Input: :error () will continue the compilation, but return
a non-zero return value of the LilyPond call (i.e., indicate an unsuccessful program execution).
All other errors will be printed on the console, but not exit LilyPond or indicate an unsuccessful
return code. Their only differences to a warnings are the displayed text and that they will be
shown with log level ERROR.

If the Scheme option warning-as-error is set, any warning will be treated as if
Input::error was called.

Chapter 10: Programming work 91

All logging functions at a glance

C++, no location C++, from input location
ERROR error (), programming_error Input::error (msg),
(msg), non_fatal_error (msg) Input: :programming error (msg)
WARN warning (msg) Input::warning (msg)
BASIC basic_progress (msg) —
PROGRESS progress_indication (msg) —
INFO message (msg) Input: :message (msg)
DEBUG debug_output (msg) Input: :debug_output (msg)
C++, from a Grob Scheme, music expression
ERROR Grob: :programming_error (msg) —
WARN Grob: :warning (msg) (ly:music-warning music msg)
BASIC — —
PROGRESS — —
INFO — (ly:music-message music msg)
DEBUG — —
Scheme, no location Scheme, input location
ERROR — (ly:error msg args),
(ly:programming-error msg args)
WARN (ly:warning msg args) (ly:input-warning input msg
args)
BASIC (ly:basic-progress msg args) —
PROGRESS (ly:progress msg args) —
INFO (1y:message msg args) (ly:input-message input msg
args)
DEBUG (ly:debug msg args) —

10.7 Debugging LilyPond

The most commonly used tool for debugging LilyPond is the GNU debugger gdb. The gdb tool
is used for investigating and debugging core LilyPond code written in C++. Another tool is
available for debugging Scheme code using the Guile debugger. This section describes how to
use both gdb and the Guile Debugger.

10.7.1 Debugging overview

Using a debugger simplifies troubleshooting in at least two ways.

First, breakpoints can be set to pause execution at any desired point. Then, when execution
has paused, debugger commands can be issued to explore the values of various variables or to
execute functions.

Second, the debugger can display a stack trace, which shows the sequence in which functions
have been called and the arguments passed to the called functions.

10.7.2 Debugging C++ code
The GNU debugger, gdb, is the principal tool for debugging C++ code.

Compiling LilyPond for use with gdb

In order to use gdb with LilyPond, it is necessary to compile LilyPond with debugging in-
formation. This is the current default mode of compilation. Often debugging becomes more

Chapter 10: Programming work 92

complicated when the compiler has optimised variables and function calls away. In that case it
may be helpful to run the following command in the main LilyPond source directory:
./configure --disable-optimising
make
This will create a version of LilyPond with minimal optimization which will allow the de-
bugger to access all variables and step through the source code in-order. It may not accurately
reproduce bugs encountered with the optimized version, however.

You should not do make install if you want to use a debugger with LilyPond. The make
install command will strip debugging information from the LilyPond binary.

Typical gdb usage

Once you have compiled the LilyPond image with the necessary debugging information it will
have been written to a location in a subfolder of your current working directory:

out/bin/lilypond

This is important as you will need to let gdb know where to find the image containing the
symbol tables. You can invoke gdb from the command line using the following:

gdb out/bin/lilypond

This loads the LilyPond symbol tables into gdb. Then, to run LilyPond on test.1ly under the
debugger, enter the following:

run test.ly
at the gdb prompt.

As an alternative to running gdb at the command line you may try a graphical interface to
gdb such as ddd:

ddd out/bin/lilypond

You can also use sets of standard gdb commands stored in a .gdbinit file (see next section).

Typical .gdbinit files

The behavior of gdb can be readily customized through the use of a .gdbinit file. A .gdbinit
file is a file named .gdbinit (notice the “.” at the beginning of the file name) that is placed in a
user’s home directory.

The .gdbinit file below is from Han-Wen. It sets breakpoints for all errors and defines func-
tions for displaying scheme objects (ps), grobs (pgrob), and parsed music expressions (pmusic).

file $LILYPOND_GIT/build/out/bin/lilypond
b programming_ error
b Grob::programming_error

define ps
print ly_display_scm($arg0)
end
define pgrob
print ly_display_scm($argO->self_scm_)
print ly_display_scm($argO->mutable_property_alist_)
print ly_display_scm($argO->immutable_property_alist_)
print ly_display_scm($argO->object_alist_)
end
define pmusic
print ly_display_scm($argO->self_scm_)
print ly_display_scm($argO->mutable_property_alist_)

Chapter 10: Programming work 93

print ly_display_scm($argO->immutable_property_alist_)
end

10.7.3 Debugging Scheme code

Scheme code can be developed using the Guile command-line interpreter top-repl. You can
either investigate interactively using just Guile or you can use the debugging tools available
within Guile.

Using Guile interactively with LilyPond

In order to experiment with Scheme programming in the LilyPond environment, it is necessary
to have a Guile interpreter that has all the LilyPond modules loaded. This requires the following
steps.

First, define a Scheme symbol for the active module in the .1y file:

#(module-define! (resolve-module '(guile-user))
'lilypond-module (current-module))

Now place a Scheme function in the .1y file that gives an interactive Guile prompt:
#(top-repl)
When the .1y file is compiled, this causes the compilation to be interrupted and an interactive
guile prompt to appear. Once the guile prompt appears, the LilyPond active module must be
set as the current guile module:

guile> (set-current-module lilypond-module)

You can demonstrate these commands are operating properly by typing the name of a Lily-
Pond public scheme function to check it has been defined:

guile> fret-diagram-verbose-markup
#<procedure fret-diagram-verbose-markup (layout props marking-list)>

If the LilyPond module has not been correctly loaded, an error message will be generated:

guile> fret-diagram-verbose-markup
ERROR: Unbound variable: fret-diagram-verbose-markup
ABORT: (unbound-variable)

Once the module is properly loaded, any valid LilyPond Scheme expression can be entered
at the interactive prompt.

After the investigation is complete, the interactive guile interpreter can be exited:
guile> (quit)
The compilation of the .1y file will then continue.

Using the Guile debugger
To set breakpoints and/or enable tracing in Scheme functions, put

\include "guile-debugger.ly"

in your input file after any scheme procedures you have defined in that file. This will invoke
the Guile command line after having set up the environment for the debug command line. When
your input file is processed, a guile prompt will be displayed. You may now enter commands to
set up breakpoints and enable tracing by the Guile debugger.

Using breakpoints
At the guile prompt, you can set breakpoints with the set-break! procedure:
guile> (set-break! my-scheme-procedure)
Once you have set the desired breakpoints, you exit the guile repl frame by typing:
guile> (quit)

Chapter 10: Programming work 94

Then, when one of the scheme routines for which you have set breakpoints is entered, guile
will interrupt execution in a debug frame. At this point you will have access to Guile debugging
commands. For a listing of these commands, type:

debug> help

Alternatively you may code the breakpoints in your LilyPond source file using a command
such as:

#(set-break! my-scheme-procedure)

immediately after the \include statement. In this case the breakpoint will be set straight
after you enter the (quit) command at the guile prompt.

Embedding breakpoint commands like this is particularly useful if you want to look at how
the Scheme procedures in the .scm files supplied with LilyPond work. To do this, edit the file
in the relevant directory to add this line near the top:

(use-modules (scm guile-debugger))

Now you can set a breakpoint after the procedure you are interested in has been declared.
For example, if you are working on routines called by print-book-with in 1ily-library.scm:

(define (print-book-with book process-procedure)

(let* ((paper (ly:parser-lookup '$defaultpaper))
(layout (ly:parser-lookup '$defaultlayout))
(outfile—name (get-outfile-name book)))

(process-procedure book paper layout outfile-name)))

(define-public (print-book-with-defaults book)
(print-book-with book ly:book-process))

(define-public (print-book-with-defaults-as-systems book)
(print-book-with book ly:book-process-to-systems))

At this point in the code you could add this to set a breakpoint at print-book-with:
(set-break! print-book-with)

Tracing procedure calls and evaluator steps

Two forms of trace are available:
(set-trace-call! my-scheme-procedure)
and
(set-trace-subtree! my-scheme-procedure)

set-trace-call! causes Scheme to log a line to the standard output to show when the
procedure is called and when it exits.

set-trace-subtree! traces every step the Scheme evaluator performs in evaluating the
procedure.

10.7.4 Debugging scoring algorithms

Formatting of beams, slurs and ties is based on scoring. A large number of configurations is
generated and each aesthetic aspect gets demerits. The best configuration (with least demerits)
wins. By setting the following variables in a \paper or \layout block it is possible to gain
some insight about the criteria that lead LilyPond to choose a particular configuration. The
information is showed adjacent to the object in question.

debug-beam-scoring
If set to #t, print demerits together with their cause, followed by the number of
configurations that have been scored before concluding. Default: unset.

Chapter 10: Programming work 95

Example: 'L 18.95 C 655.12 ¢19/625" — demerits for stem lengths (‘L’) and
collisions (‘C’), scored 19 out of 625 initially considered configurations.

Possible demerit causes: collision (‘C’), inappropriate stem length (‘L’), beam di-
rection different from damping direction (‘Sd’), difference between beam slope and
musical slope (‘Sm’), deviation from ideal slope (‘Si’), horizontal inter-quants (‘H’),
forbidden quants (‘F1’/‘Fs’).
Demerits are configurable, see Section “beam-interface” in Internals Reference for
a list of tunable parameters.

debug-slur-scoring

If set to #t, print demerits together with their cause, followed by the sum of all

demerits and the index of the slur configuration finally chosen. Default: unset.
Example: ’slope=2.00, R edge=10.51, variance=0.03 TOTAL=12.54 idx=4’
— demerits for slope, distance of the right edge to the attachment point,
variance of distance between note heads and slur. Total demerits: 12.54,
index of the chosen configuration: 4.

Possible demerit causes: distance of the left /right slur edge to the attachment points
(‘L edge’/‘R edge’), inappropriate slope (‘slope’), distance variations between note
heads and slur (‘variance’), distances for heads that are between the slur and an
imaginary line between the attachment points (‘encompass’), too small distance
between slur and tie extrema (‘extra’).

Demerits are configurable, see Section “slur-interface” in Internals Reference for a
list of tunable parameters.

debug-tie-scoring

If set to #t, print the basic configuration of ties, followed by demerits and their
corresponding causes and the total sum of demerits. Default: unset.

Example: ’0 (0.23) u: vdist=1.08 lhdist=1.79 tie/stem dir=8.00 TO-
TAL=10.87" — offset from the center of the staff according tie specification:
0 staff-spaces, vertical distance of the tie’s center in y-direction to the bottom
(or top) of the tie: 0.23, direction: up. Demerits for vertical and horizontal
distance to note head, same direction of stem and tie. Total demerits: 10.87.

Possible demerit causes: wrong tie direction (‘wrong dir’), vertical distance to note
heads (‘vdist’), horizontal distance to left or right note head (‘lhdist’/‘rhdist’),
same direction of stem and tie (‘tie/stem dir’), position and direction of tie not
matching, e.g., tie is in the upper half of the staff but has direction DOWN (‘tie/pos
dir’), tie is too short (‘minlength’), tip of tie collides with staff line (‘tipline’),
collision with dot (‘dot collision’), center of tie is too close to a staff line (‘line
center’), y-position (edge or center) of currently considered tie is less than the
y-position of the previous tie (‘monoton edge’/ ‘monoton cent’), edge or center of
tie is too close to the one considered previously (‘tietie center’/‘tietie edge’),
unsymmetrical horizontal positioning with respect to the note heads (‘length symm’),
unsymmetrical vertical positioning with respect to the note heads (‘pos symmetry’).

Demerits are configurable, see Section “tie-interface” in Internals Reference for a
list of tunable parameters.

10.7.5 Debugging skylines

To show the skylines used for spacing, use

or

\override SomeGrob.show-horizontal-skylines = ##t

\override SomeGrob.show-vertical-skylines = ##t

Chapter 10: Programming work

96

The option debug-skylines is equivalent to setting show-vertical-skylines on Section

“Vertical AxisGroup” in Internals Reference and Section “System” in Internals Reference.
Another particularly useful application is showing the skylines used for note spacing:
\layout {
\context {
\Score
\override PaperColumn.show-horizontal-skylines = ##t
\override NonMusicalPaperColumn.show-horizontal-skylines = ##t

b
+

This is also an occasion to test if the pure estimates used to build them are reasonably

accurate.

10.8 Tracing object relationships

Understanding the LilyPond source often boils down to figuring out what is happening to the
Grobs. Where (and why) are they being created, modified and destroyed? Tracing Lily through

a debugger in order to identify these relationships can be time-consuming and tedious.

In order to simplify this process, a facility has been added to display the grobs that are
created and the properties that are set and modified. Although it can be complex to get set
up, once set up it easily provides detailed information about the life of grobs in the form of a

network graph.
Each of the steps necessary to use the Graphviz utility is described below.
1. Install Graphviz

In order to create the graph of the object relationships, it is first necessary to install
Graphviz. Graphviz is available for a number of different platforms:

https://www.graphviz.org/download/
. Compile LilyPond with checking enabled

In order for the Graphviz tool to work, LilyPond needs to be compiled with checking enabled.
You can achieve this by configuring with

./configure --enable-checking
The executable code of LilyPond must then be rebuilt from scratch:
make clean && make
. Create a Graphviz-compatible .1y file

In order to use the Graphviz utility, the .1y file must include 1y/graphviz-init.ly, and
should then specify the grobs and symbols that should be tracked. An example of this is
found in input/regression/graphviz.ly.
. Run LilyPond with output sent to a log file

The Graphviz data can be sent to an arbitrary output port, including files, standard output
or standard error. In the example given in input/regression/graphviz.ly, the graph is
sent to stderr, like normal progress messages. You can redirect it to a logfile:

lilypond graphviz.ly 2> graphviz.log
In this case, you have to delete everything from the beginning of the file up to but not
including the first occurrence of digraph. Also, delete the final LilyPond message about
success from the end of the file.
Alternatively, you can change the output port to stdout. See
input/regression/graphviz.ly for a commented example. Then you get only
the graph with the following invocation:

lilypond graphviz.ly 1> graphviz.dot

https://www.graphviz.org/download/

Chapter 10: Programming work 97

5. Process the logfile with dot
The directed graph is created from the log file with the program dot:
dot -Tpdf graphviz.dot > graphviz.pdf
The pdf file can then be viewed with any pdf viewer.
6. Interpret the created graph

Depending on the callbacks that were specified to be tracked within the Graphviz framework,
the graph does contain varying information. It is possible to track grob creation, modifi-
cation of grob properties and caching of grob properties. Generally, all tracked events
happening to a particular grob are presented as a directed graph, with arrows connect-
ing the events. All property modifications that occur within a specific file in the source
code are grouped by a blue border. Caching a grob property means to calculate the result
of a callback function once and store the result afterwards for further use. The node la-
bels can be configured freely. To understand which information is showed by default, see
ly/graphviz-init.1ly.

When configured with --enable-checking, LilyPond may run slower than normal. The
original configuration can be restored by rerunning ./configure with --disable-checking.
Then rebuild LilyPond with

make clean && make

10.9 Tracing processing time

The -dtime-trace-file option causes LilyPond to log its internal processing in Google’s Trace
Event Format, also known as Chrome tracing format. The resulting JSON file can be displayed
as a timeline chart using a viewer such as https://ui.perfetto.dev/.

The time-trace log includes many significant events during initialization, parsing, and output.
Other events may be added following existing uses of tracer_global.

10.10 Adding or modifying features

When a new feature is to be added to LilyPond, it is necessary to ensure that the feature is
properly integrated to maintain its long-term support. This section describes the steps necessary
for feature addition and modification.

10.10.1 Write the code

You should probably create a new git branch for writing the code, as that will separate it from
the master branch and allow you to continue to work on small projects related to master.

Please be sure to follow the rules for programming style discussed earlier in this chapter.

10.10.2 Write regression tests

In order to demonstrate that the code works properly, you will need to write one or more
regression tests. These tests are typically .1y files that are found in input/regression.

Regression tests should be as brief as possible to demonstrate the functionality of the code.

Regression tests should generally cover one issue per test. Several short, single-issue regression
tests are preferred to a single, long, multiple-issue regression test.

If the change in the output is small or easy to overlook, use bigger staff size — 40 or more (up
to 100 in extreme cases). Size 30 means "pay extra attention to details in general".

Use existing regression tests as templates to demonstrate the type of header information that
should be included in a regression test.

https://ui.perfetto.dev/

Chapter 10: Programming work 98

10.10.3 Write convert-ly rule

If the modification changes the input syntax, a convert-ly rule should be written to automatically
update input files from older versions.

convert-ly rules are found in python/convertrules.py
If possible, the convert-ly rule should allow automatic updating of the file. In some cases,

this will not be possible, so the rule will simply point out to the user that the feature needs
manual correction.

10.10.4 Automatically update documentation

convert-1y should be used to update the documentation, the snippets, and the regression tests.
This not only makes the necessary syntax changes, it also tests the convert-1y rules.

The automatic updating is performed by moving to the top-level source directory, then
running:
scripts/auxiliar/update-with-convert-1ly.sh
If you did an out-of-tree build, pass in the relative path:
LILYPOND_BUILD_DIR=../build-lilypond/ scripts/auxiliar/update-with-convert-1ly.sh

10.10.5 Manually update documentation

Where the convert-ly rule is not able to automatically update the inline LilyPond code in the
documentation (i.e., if a NOT_SMART rule is used), the documentation must be manually
updated. The inline snippets that require changing must be changed in the English version
of the docs and all translated versions. If the inline code is not changed in the translated
documentation, the old snippets will show up in the English version of the documentation.

Where the convert-ly rule is not able to automatically update snippets in Documenta-
tion/snippets/, those snippets must be manually updated. Those snippets should be copied
to Documentation/snippets/new. The comments at the top of the snippet describing its auto-
matic generation should be removed. All translated texidoc strings should be removed. The
comment “% begin verbatim” should be removed. The syntax of the snippet should then be
manually edited.

Where snippets in Documentation/snippets are made obsolete, the snippet should be copied
to Documentation/snippets/new. The comments and texidoc strings should be removed as
described above. Then the body of the snippet should be changed to:

\markup {
This snippet is deprecated as of version X.Y.Z and
will be removed from the documentation.
+
where X.Y.Z is the version number for which the convert-ly rule was written.
Update the snippet files by running;:
scripts/auxiliar/makelsr.pl --no-lsr --dump=no --no-snippet-list

Where the convert-ly rule is not able to automatically update regression tests, the regression
tests in input/regression should be manually edited.

Although it is not required, it is helpful if the developer can write relevant material for
inclusion in the Notation Reference. If the developer does not feel qualified to write the docu-
mentation, a documentation editor will be able to write it from the regression tests. In this case
the developer should raise a new issue with the Type=Documentation tag containing a reference
to the original issue number and/or the committish of the pushed patch so that the need for
new documention is not overlooked.

Any text that is added to or removed from the documentation should be changed only in the
English version.

Chapter 10: Programming work 99

10.10.6 Edit changes.tely
An entry should be added to Documentation/changes.tely to describe the feature changes to be
implemented. This is especially important for changes that change input file syntax.

Hints for changes.tely entries are given at the top of the file.

New entries in changes.tely go at the top of the file.

The changes.tely entry should be written to show how the new change improves LilyPond, if
possible.

10.10.7 Verifty successful build

When the changes have been made, successful completion must be verified by doing

make all
make doc

When these commands complete without error, the patch is considered to function success-
fully.

Developers on Windows who are unable to build LilyPond should get help from a GNU /Linux
or OSX developer to do the make tests.

10.10.8 Verify regression tests

In order to avoid breaking LilyPond, it is important to verify that the regression tests succeed,
and that no unwanted changes are introduced into the output. This process is described in
Section 9.4 [Regtest comparison|, page 77.

Typical developer’s edit/compile/test cycle
e Initial test:

make clean ## when needed (see below)
make [-jX CPU_COUNT=X] test-baseline

e Edit/compile/test cycle:

edit source files, then...

make clean ## when needed (see below)
make [-jX] ## when needed (see below)
make [-jX CPU_COUNT=X] check ## retest cases differing from baseline

e Reset:

make test-clean

If you have modified LilyPond source files that have to be compiled (such as .cc or .hh files
in flower/ or 1ily/), the regression-test targets automatically rebuild LilyPond before running
the tests.

If you have modified any font definitions in the mf/ directory, then you must run make clean
before running regression tests. This works around incomplete makefile dependencies. The
subsequent regression-test target rebuilds all of LilyPond and the fonts before running the tests.

Regression-test targets do not necessarily rebuild everything that a simple make builds. You
may omit make from the debugging cycle to save time, but it is still important to run make
before committing.

Running make check leaves an HTML page out/test-results/index.html. This page
shows all the important differences that your change introduced, whether in the layout, MIDI,
performance or error reporting.

You only need to use make test-clean to retest all cases. To retest mismatching cases only,
all that is needed is to repeat make check.

Chapter 10: Programming work 100

10.10.9 Post patch for comments
See Section 3.3.1 [Uploading a patch for review|, page 14.

10.10.10 Push patch

Once all the comments have been addressed, the patch can be pushed.

If the author has push privileges, the author will push the patch. Otherwise, a developer
with push privileges will push the patch.

10.10.11 Closing the issues

Once the patch has been pushed, all the relevant issues should be closed.

If the changes were in response to a feature request on the issue tracker for LilyPond, the
author should change the label to ‘Status::Fixed’ and set the milestone to the version where the
issue was fixed.

10.11 Iterator tutorial
TODO - this is a placeholder for a tutorial on iterators

Iterators are routines written in C++ that process music expressions and sent the music events
to the appropriate engravers and/or performers.

See a short example discussing iterators and their duties in Section 10.19.4 [Articulations on
EventChord], page 116.

10.12 Engraver tutorial

Engravers are C++ classes that catch music events and create the appropriate grobs for display
on the page. Though the majority of engravers are responsible for the creation of a single grob,
in some cases (e.g. New_fingering_ engraver), several different grobs may be created.

Engravers listen for events and acknowledge grobs. Events are passed to the engraver in
time-step order during the iteration phase. Grobs are made available to the engraver when they
are created by other engravers during the iteration phase.

10.12.1 Useful methods for information processing

An engraver inherits the following public methods from the Translator base class, which can be
used to process listened events and acknowledged grobs:

e virtual void initialize ()

e void start_translation_timestep ()

e void process_music ()

e void process_acknowledged ()

e void stop_translation_timestep ()

e virtual void finalize ()

These methods are listed in order of translation time, with initialize () and finalize ()

bookending the whole process. initialize () can be used for one-time initialization of context
properties before translation starts, whereas finalize () is often used to tie up loose ends at

the end of translation: for example, an unterminated spanner might be completed automatically
or reported with a warning message.

In addition, there is a derived_mark method that should be used to protect Scheme members
from garbage collection. See Section 10.18 [Garbage collection for dummies], page 107.

Chapter 10: Programming work 101

10.12.2 Translation process
At each timestep in the music, translation proceeds by calling the following methods in turn:

start_translation_timestep () is called before any user information enters the translators,
i.e., no property operations (\set, \override, etc.) or events have been processed yet.

process_music () and process_acknowledged () are called after all events in the current
time step have been heard, or all grobs in the current time step have been acknowledged. The
latter tends to be used exclusively with engravers which only acknowledge grobs, whereas the
former is the default method for main processing within engravers.

stop_translation_timestep () is called after all user information has been processed prior
to beginning the translation for the next timestep.

10.12.3 Listening to music events

External interfaces to the engraver are implemented by protected macros including one or more
of the following;:

e DECLARE TRANSLATOR_LISTENER (event name)
e IMPLEMENT_TRANSLATOR_LISTENER (Engraver_name, event_name)
where event_name is the type of event required to provide the input the engraver needs and
Engraver_name is the name of the engraver.
Following declaration of a listener, the method is implemented as follows:

IMPLEMENT _TRANSLATOR_LISTENER (Engraver_name, event_name)

void
Engraver_name::listen_event_name (Stream event *event)
{
...body of listener method...
+

10.12.4 Acknowledging grobs

Some engravers also need information from grobs as they are created and as they terminate.
The mechanism and methods to obtain this information are set up by the macros:

e DECLARE_ACKNOWLEDGER (grob_interface)
e DECLARE_END_ACKNOWLEDGER (grob_interface)
where grob_interface is an interface supported by the grob(s) which should be acknowledged.

For example, the following code would declare acknowledgers for a NoteHead grob (via the
note-head-interface) and any grobs which support the side-position-interface:

DECLARE_ACKNOWLEDGER (note_head)
DECLARE_ACKNOWLEDGER (side_position)

The DECLARE_END_ACKNOWLEDGER () macro sets up a spanner-specific acknowledger which
will be called whenever a spanner ends.

Following declaration of an acknowledger, the method is coded as follows:

void
Engraver_name::acknowledge_interface_name (Grob_info info)
{
...body of acknowledger method. ..
+

Acknowledge functions are called in the order engravers are \consist-ed (the only exception
is if you set must-be-last to #t).

Chapter 10: Programming work 102

There will always be a call to process-acknowledged () whenever grobs have been created,
and reading stuff from grobs should be delayed until then since other acknowledgers might write
stuff into a grob even after your acknowledger has been called. So the basic workflow is to use
the various acknowledgers to record the grobs you are interested in and write stuff into them (or
do read/write stuff that more or less is accumulative and/or really unrelated to other engravers),
and then use the process-acknowledged () hook for processing (including reading) the grobs
you had recorded.

You can create new grobs in process-acknowledged (). That will lead to a new cycle of
acknowledger () calls followed by a new cycle of process-acknowledged () calls.

Only when all those cycles are over is stop-translator-timestep () called, and then cre-
ating grobs is no longer an option. You can still ‘process’ parts of the grob there (if that
means just reading out properties and possibly setting context properties based on them) but
stop-translation-timestep () is a cleanup hook, and other engravers might have already
cleaned up stuff you might have wanted to use. Creating grobs in there is not possible since
engravers and other code may no longer be in a state where they could process them, possibly
causing a crash.

10.12.5 Engraver declaration/documentation
An engraver must have a public macro

e TRANSLATOR_DECLARATIONS (Engraver_name)

where Engraver_name is the name of the engraver. This defines the common variables and
methods used by every engraver.

At the end of the engraver file, one or both of the following macros are generally called to
document the engraver in the Internals Reference:

e ADD_ACKNOWLEDGER (Engraver_name, grob_interface)

e ADD_TRANSLATOR (Engraver_name, Engraver_doc, Engraver_creates,
Engraver_reads, Engraver_writes)

where Engraver_name is the name of the engraver, grob_interface is the name of the interface
that will be acknowledged, Engraver_doc is a docstring for the engraver, Engraver_creates is
the set of grobs created by the engraver, Engraver_reads is the set of properties read by the
engraver, and Engraver_writes is the set of properties written by the engraver.

The ADD_ACKNOWLEDGER and ADD_TRANSLATOR macros use a non-standard indentation system.
Each interface, grob, read property, and write property is on its own line, and the closing
parenthesis and semicolon for the macro all occupy a separate line beneath the final interface or
write property. See existing engraver files for more information.

10.13 Callback tutorial
TODO — This is a placeholder for a tutorial on callback functions.

10.14 Understanding pure properties

Pure properties are some of the most difficult properties to understand in LilyPond but, once
understood, it is much easier to work with horizontal spacing. This document provides an
overview of what it means for something to be ‘pure’ in LilyPond, what this purity guarantees,
and where pure properties are stored and used. It finishes by discussing a few case studies for
the pure programmer to save you some time and to prevent you some major headaches.

Chapter 10: Programming work 103

10.14.1 Purity in LilyPond

Pure properties in LilyPond are properties that do not have any ‘side effects’. That is, looking
up a pure property should never result in calls to the following functions:

e set_property
e set_object

e suicide

This means that, if the property is calculated via a callback, this callback must not only avoid
the functions above but make sure that any functions it calls also avoid the functions above. Also,
to date in LilyPond, a pure function will always return the same value before line breaking (or,
more precisely, before any version of break_into_pieces is called). This convention makes
it possible to cache pure functions and be more flexible about the order in which functions
are called. For example; Stem.length has a pure property that will never trigger one of the
functions listed above and will always return the same value before line breaking, independent
of where it is called. Sometimes, this will be the actual length of the Stem. But sometimes it
will not. For example; stem that links up with a beam will need its end set to the Y position of
the beam at the stem’s X position. However, the beam’s Y positions can only be known after
the score is broken up in to several systems (a beam that has a shallow slope on a compressed
line of music, for example, may have a steeper one on an uncompressed line). Thus, we only call
the impure version of the properties once we are absolutely certain that all of the parameters
needed to calculate their final value have been calculated. The pure version provides a useful
estimate of what this Stem length (or any property) will be, and the art of creating good pure
properties is trying to get the estimation as close to the actual value as possible.

Of course, like Gregory Peck and Tintin, some Grobs will have properties that will always
be pure. For example, the height of a note-head in not-crazy music will never depend on line
breaking or other parameters decided late in the typesetting process. Inversely, in rare cases,
certain properties are difficult to estimate with pure values. For example, the height of a Hairpin
at a certain cross-section of its horizontal span is difficult to know without knowing the horizontal
distance that the hairpin spans, and LilyPond provides an over-estimation by reporting the pure
height as the entire height of the Hairpin.

Purity, like for those living in a convent, is more like a contract than an a priori. If you write
a pure-function, you are promising the user (and the developer who may have to clean up after
you) that your function will not be dependent on factors that change at different stages of the
compilation process (compilation of a score, not of LilyPond).

One last oddity is that purity, in LilyPond, is currently limited exclusively to things that have
to do with Y-extent and positioning. There is no concept of ‘pure X’ as, by design, X is always
the independent variable (i.e., from column X1 to column X2, what will be the Y height of a
given grob). Furthermore, there is no purity for properties like color, text, and other things for
which a meaningful notion of estimation is either not necessary or has not yet been found. For
example, even if a color were susceptible to change at different points of the compilation process,
it is not clear what a pure estimate of this color would be or how this pure color could be used.
Thus, in this document and in the source, you will see purity discussed almost interchangeably
with Y-axis positioning issues.

10.14.2 Writing a pure function

Pure functions take, at a minimum, three arguments: the grob, the starting column at which
the function is being evaluated (hereafter referred to as start), and the end column at which
the grob is being evaluated (hereafter referred to as end). For items, start and end must be
provided (meaning they are not optional) but will not have a meaningful impact on the result,
as items only occupy one column and will thus yield a value or not (if they are not in the range
from start to end). For spanners however, start and end are important, as we may can get a

Chapter 10: Programming work 104

better pure estimation of a slice of the spanner than considering it on the whole. This is useful
during line breaking, for example, when we want to estimate the Y-extent of a spanner broken
at given starting and ending columns.

10.14.3 How purity is defined and stored

Purity is defined in LilyPond with the creation of an unpure-pure container (unpure is not a
word, but hey, neither was LilyPond until the 90s). For example:

#(define (foo grob)
(-1 . 1)

#(define (bar grob start end)
(-2 . 2))

\override Stem.length = #(ly:make-unpure-pure-container foo bar)

Note that items can only ever have two pure heights: their actual pure height if they are
between ‘start’ and ‘end’, or an empty interval if they are not. Thus, their pure property is
cached to speed LilyPond up. Pure heights for spanners are generally not cached as they change
depending on the start and end values. They are only cached in certain particular cases. Before
writing a lot of caching code, make sure that it is a value that will be reused a lot.

10.14.4 Where purity is used

Pure Y values must be used in any functions that are called before line breaking. Exam-
ples of this can be seen in Separation_items: :boxes to construct horizontal skylines and
in Note_spacing::stem_dir_correction to correct for optical illusions in spacing. Pure
properties are also used in the calculation of other pure properties. For example, the
Axis_group_interface has pure functions that look up other pure functions.

Purity is also implicitly used in any functions that should only ever return pure values. For
example, extra-spacing-height is only ever used before line-breaking and thus should never use
values that would only be available after line breaking. In this case, there is no need to create
callbacks with pure equivalents because these functions, by design, need to be pure.

To know if a property will be called before and/or after line-breaking is sometimes tricky and
can, like all things in coding, be found by using a debugger and/or adding printf statements to
see where they are called in various circumstances.

10.14.5 Case studies

In each of these case studies, we expose a problem in pure properties, a solution, and the pros
and cons of this solution.

Time signatures

A time signature needs to prevent accidentals from passing over or under it, but its extent does
not necessarily extend to the Y-position of accidentals. LilyPond’s horizontal spacing sometimes
makes a line of music compact and, when doing so, allows certain columns to pass over each
other if they will not collide. This type of passing over is not desirable with time signatures in
traditional engraving. But how do we know if this passing over will happen before line breaking,
as we are not sure what the X positions will be? We need a pure estimation of how much extra
spacing height the time signatures would need to prevent this form of passing over without
making this height so large as to overly-distort the Y-extent of an system, which could result in
a very ‘loose’ looking score with lots of horizontal space between columns. So, to approximate
this extra spacing height, we use the Y-extent of a time signature’s next-door-neighbor grobs
via the pure-from-neighbor interface.

Chapter 10: Programming work 105

e pros: By extending the extra spacing height of a time signature to that of its next-door-
neighbors, we make sure that grobs to the right of it that could pass above or below it do
not.

e cons: This over-estimation of the vertical height could prevent snug vertical spacing of
systems, as the system will be registered as being taller at the point of the time signature
than it actually is. This approach can be used for clefs and bar lines as well.

Stems

As described above, Stems need pure height approximations when they are beamed, as we do
not know the beam positions before line breaking. To estimate this pure height, we take all the
stems in a beam and find their pure heights as if they were not beamed. Then, we find the union
of all these pure heights and take the intersection between this interval (which is large) and an
interval going from the note-head of a stem to infinity in the direction of the stem so that the
interval stops at the note head.
e pros: This is guaranteed to be at least as long as the beamed stem, as a beamed stem will
never go over the ideal length of the extremal beam of a stem.
e cons: Certain stems will be estimated as being too long, which leads to the same problem
of too-much-vertical-height as described above.

10.14.6 Debugging tips

A few questions to ask yourself when working with pure properties:

e Is the property really pure? Are you sure that its value could not be changed later in the
compiling process due to other changes?

e Can the property be made to correspond even more exactly with the eventual impure
property?

e For a spanner, is the pure property changing correctly depending on the starting and ending
points of the spanner?

e For an Item, will the item’s pure height need to act in horizontal spacing but not in vertical
spacing? If so, use extra-spacing-height instead of pure height.

10.15 LilyPond scoping

The LilyPond language has a concept of scoping, i.e., you can do:
foo =1

#(begin
(display (+ foo 2)))
with \paper, \midi and \header being nested scope inside the .1y file-level scope. foo =1 is
translated in to a scheme variable definition.

This implemented using modules, with each scope being an anonymous module that imports
its enclosing scope’s module.

LilyPond’s core, loaded from .scm files, is usually placed in the 1ily module, outside the
.1y level. In the case of

lilypond a.ly b.ly
we want to reuse the built-in definitions, without changes effected in user-level a.1ly leaking into
the processing of b.1y.

The user-accessible definition commands have to take care to avoid memory leaks that could
occur when running multiple files. All information belonging to user-defined commands and
markups is stored in a manner that allows it to be garbage-collected when the module is dispersed,
either by being stored module-locally, or in weak hash tables.

Chapter 10: Programming work 106

10.16 Regular expressions

Never use Guile’s native regular expressions in LilyPond. They are a source of portability
problems, especially in relation with Unicode. Instead, use LilyPond’s own regular expression
interface, which is made of all 1y:regex-. .. functions (see the Internals Reference).

10.17 Scheme->C interface

Most of the C functions interfacing with Guile/Scheme used in LilyPond are described in the API
Reference of the Guile Reference Manual (https://www.gnu.org/software/guile/manual/
html_node/index.html).

The remaining functions are defined in 1lily/lily-guile.cc,
lily/include/lily-guile.hh and 1lily/include/lily-guile-macros.hh. Although their
names are meaningful there’s a few things you should know about them.

10.17.1 Comparison
This is the trickiest part of the interface.

Mixing Scheme values with C comparison operators won’t produce any crash or warning
when compiling but must be avoided:

scm_string p (scm_value) == SCM_BOOL_T

As we can read in the reference, scm_string_p returns a Scheme value: either #t or #f which
are written SCM_BOOL_T and SCM_BOOL_F in C. This will work, but it is not following to the API
guidelines. For further information, read this discussion:

https://lists.gnu.org/archive/html/1lilypond-devel/2011-08/msg00646.html

There are functions in the Guile reference that returns C values instead of Scheme values.
In our example, a function called scm_is_string (described after string? and scm_string_p)
returns the C value 0 or 1.

So the best solution was simply:
scm_is_string (scm_value)

There a simple solution for almost every common comparison. Another example: we want
to know if a Scheme value is a non-empty list. Instead of:

(scm_is_true (scm_list_p (scm_value)) && scm_value !'= SCM_EOL)
one can usually use:
scm_is_pair (scm_value)

since a list of at least one member is a pair. This test is cheap; scm_list_p is actually quite
more complex since it makes sure that its argument is neither a ‘dotted list’ where the last pair
has a non-null cdr, nor a circular list. There are few situations where the complexity of those
tests make sense.

Unfortunately, there is not a scm_is_[something] function for everything. That’s one of
the reasons why LilyPond has its own Scheme interface. As a rule of thumb, tests that are cheap
enough to be worth inlining tend to have such a C interface. So there is scm_is_pair but not
scm_is_list, and scm_is_eq but not scm_is_equal.

General definitions

bool to_boolean (SCM b)
Return true if b is SCM_BOOL_T, else return false.

This should be used instead of scm_is_true and scm_is_false for properties since in Lily-
Pond, unset properties are read as an empty list, and by convention unset Boolean properties

https://www.gnu.org/software/guile/manual/html_node/index.html
https://www.gnu.org/software/guile/manual/html_node/index.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00646.html

Chapter 10: Programming work 107

default to false. Since both scm_is_true and scm_is_false only compare with ##f in line with
what Scheme’s conditionals do, they are not really useful for checking the state of a Boolean

property.
bool ly_is_[something] (args)

Behave the same as scm_is_[something] would do if it existed.

bool is_[type] (SCM s)

Test whether the type of s is [type]. [type] is a LilyPond-only set of values (direction, axis...).
More often than not, the code checks LilyPond specific C++-implemented types using

[Type *] unsmob<Type> (SCM s)

This tries converting a Scheme object to a pointer of the desired kind. If the Scheme object is
of the wrong type, a pointer value of 0 is returned, making this suitable for a Boolean test.

10.17.2 Conversion
General definitions

bool to_boolean (SCM b)

Return true if b is SCM_BOOL_T, else return false.

This should be used instead of scm_is_true and scm_is_false for properties since empty
lists are sometimes used to unset them.

[C type] ly_scm2[C type| (SCM s)

Behave the same as scm_to_[C type] would do if it existed.

[C type] robust_scm2[C type] (SCM s, [C type] d)

Behave the same as scm_to_[C type] would do if it existed. Return d if type verification fails.

10.18 Garbage collection for dummies

Note: Reading this section is strongly recommended before attempting
complex C++ programming,.

Within LilyPond, interaction with Guile is ubiquitous. LilyPond is written in C++ and Guile
Scheme. Even in C++, most of the code uses Guile APIs to interface with the outside Scheme
world, both with user and internal Scheme code.

Scheme is a garbage-collected language. This means that once in a while, a so-called garbage
collector scans the memory for values that are no longer being used, and reclaims them. This
process ensures that the memory is given back to the computer and made available for other uses.
The garbage collector implementation used in Guile 2 and later is the Boehm-Demers-Weiser
garbage collector (BDWGC).

C++, on the other hand, usually frees values at determined points of time (although most of
the time they remain implicit, through the use of the famous “RAII” or “scope-bound resource
management” technique). It has no direct support for garbage collection. This can make memory
management of Scheme values in C++ a challenge (or a headache). Whenever you are using a
value whose memory is managed by Guile, you must keep an eye on its lifetime.

To be more precise, the garbage collector works in a mark phase and a sweep phase. During
marking, the collector scans values that the program is currently using, then asks these values

Chapter 10: Programming work 108

for containing references to other values, and continues following references until all reachable
objects have been found. Objects that are unreachable can logically no longer be used in the
program, so they are freed in the sweep phase.

In Schemeland, the interpreter takes care of marking values for you. For instance, if you
store a list in a variable, then during garbage collection, this list is automatically marked, and
this causes all elements of the list to be marked in turn, which ensures they remain alive. In
Cppland, you need to be very careful to keep values allocated on Guile’s heap as visible to the
garbage collector if they cannot be reached from the Scheme side.

Understanding which values are under garbage-collected management

To begin with, which values are allocated on the Guile heap? The basic Guile API type is the
SCM type, which represents a value boxed for usage in Scheme. The SCM type is pointer-sized
piece of data. It is either a pointer to Scheme data structures (e.g. pair, double pair, etc.) — in
this case, the pointer is 64-bit aligned and has its lower bits set to 0 —, or it is an immediate
value (short integer, boolean, ' (), etc.) —in which case the lower order bits are non-zero. Smobs,
vectors, strings and many other Scheme data structures are represented as pairs, where the car
holds a tag value (non-aligned, lower order bits set) and the cdr holds the pointer to data. From
the scheme side, the fact that these types are represented using pairs is invisible.

Thus, for immediate SCM values, all the value is contained in the SCM itself. There is no
concept of freeing these values, as they are never heap-allocated: they just keep being copied
around, and dropped by normal C++ lifetime mechanisms when done (such as dropping local
variables of a function when it returns). On the other hand, all other values point to memory
allocated on the Guile heap. It is the lifetime of this memory that you need to care about.

LilyPond adds its own object types to Guile as well. They as called “smobs”, which depending
on sources means “Scheme objects” or “small objects”. Smobs come in two flavors:

“Simple smobs” are objects that can be passed around by copy without changing the meaning.
Their classes derive from Simple_smob. Pitch and Duration are good examples. The usual
way to create them is just like a normal C++ object (e.g., Smob_type variable (constructor
parameters) ;). When created in this way, simple smobs are allocated on the stack like any
other C++ automatic variable, and dropped in the same way too. When you need to send a
simple smob to Schemeland, you should call the member function smobbed_copy (). This calls
the smob’s copy constructor to make a copy under garbage collection control, packed in an SCM
value.

“Complex smobs” are objects with an identity, such as Music, Context and Grob. Their
classes derive from Smob. They are always created via the C++ new operator. After allocating,
their memory is put under the control of the garbage collector. A complex smob has a field
containing its SCM identity, which points back to itself. You can access this field using the
member function self scm ().

The function to convert a SCM value back into the C++ smob type is unsmob<Smob_type *>
(value) (which returns a null pointer if the SCM was not a value of the smob type in question).
Because of the dual nature of simple smobs, you need to be mindful that if Smob_type derives
from Simple_smob, the memory referred to by the result of unsmob<Smob_type> (if non-null)
may either be on the stack or on the Guile heap, even though most of the time it will be on the
Guile heap. On the other hand, for a complex smob, it will systematically be on the Guile heap.

How values are protected

When the garbage collector starts a collection, it first scans all memory being used by the
program at the current point of time. This is called the root set. For Scheme, it includes all
global variables of all modules and local variables of the function being executed. C++ adds
everything that is on the stack and in registers (FIXME: investigate global variables). The
dependencies of these values are then marked, etc.

Chapter 10: Programming work 109

Marking roots

The marking of the C++ function stack is very simple: scan the stack and treat every value
as a possible pointer. This principle is called “conservative garbage collection”, and has a few
consequences. One is that there may be some false positives, if random values on the stack
happen to look the same as pointers to memory in the Guile heap. These values will be held
longer than necessary, which is harmless.

Another, much more nasty consequence is that values are only kept alive while they have an
SCM presence on the stack. Here is an example of what not to do:
Complex_smob_type *
func ()
{
Complex_smob_type *object = new Complex_smob_type ();
object->unprotect ();
return object;
+
When the caller of this function receives the object pointer, there is no reason for the object’s
SCM identity (what would be returned by its self_scm () method) to be present on the stack
or in registers. Only the pointer to the C++ object is. This does not work to protect the object
from garbage collection. The object could be freed if a GC pass occurs. The fix is to unprotect
later if possible, at a point where the object’s self_scm () is placed in a long-lived reachable
Scheme data structure. Alternatively, if this is impractical, return an SCM to keep the object
protected. The unprotect () method actually returns the SCM for convenience.

SCM

func ()

{
Complex_smob_type *object = new Complex_smob_type ();
return object->unprotect ();

b

A different, even nastier trap can be illustrated with this example:
LY DEFINE (ly_func, "ly:func",
1, 0, 0, (SCM param),
R“ (
Doc

)"

Smob_type *object = unsmob<Smob_type> (param);
// do some stuff here, including

scm_cons (a, b)

/...

return to_scm (object->some_field_);
+

At first glance, this looks fine. The SCM value param should remain on the stack until
the end of the function, keeping the smob protected. This is not always true, however. If
the compiler does a clever optimization, it might reuse the memory of the param variable for
something else. If this happens, the object is unprotected while the memory of the cons cell is
being allocated, which could cause the smob to be collected. The access object->some_field_
is then use-after-free.

The solution to this is to use scm_remember_upto_here, which allows to forcefully keep the
object alive:

LY DEFINE (ly_func, "ly:func",

Chapter 10: Programming work 110

1, 0, 0, (SCM param),
R“(
Doc

)"

Smob_type *object = unsmob<Smob_type> (param);
// do some stuff here, including

scm_cons (a, b)

/] ...

SCM field = to_scm (object->some_field_);
scm_remember_upto_here (param);

return field;

GC marking for smobs

Guile automatically marks the elements contained in compound values of the types it provides,
like lists and vectors. LilyPond’s smobs must do the same in order to keep elements they refer
to alive while they are themselves alive. This is done by implementing the member function SCM
mark_smob () const. This function must call scm_gc_mark on every Scheme value that needs
to be kept alive with the object. It can return an SCM value, which is marked in the same way.
(This dates back to Guile 1, which used the C++ function stack to mark objects. It was necessary
to keep the stack depth constant when marking objects such as lists, or stack overflows would
have easily ensued. It is no longer very relevant in Guile 2.)

For many smob types, mark_smob needs to add marking to the implementation of the super-
class. This is usually done using a derived_mark method. This is the case for translators, for
example. The child class should thus just implement derived_mark and not override mark_smob.

For simple smobs allocated as automatic variables, i.e., outside of Guile’s control, mark_smob
is not called during garbage collection. In this case, the only marking that the object receives
is conservative scanning of the stack. This has the strong implication that a simple smob must
contain all SCM values it refers to in its memory image on the stack. Anything that needs more
complex marking behavior should be a complex smob. For example, it’s not OK for a simple
smob to contain an std::vector<SCM>. On the other hand, that would be OK for a complex
smob as long as its mark_smob function iterates over the vector to mark each element. The
simplest solution is storing a Guile vector, of SCM type, which is OK even in simple smobs
because the memory image on the stack is an SCM vector value, which during marking causes
the marking of all vector elements, unlike an std: :vector<SCM>.

Initial protection for complex smobs

When you create a complex smob, it receives an initial GC protection, which should be removed
with its unprotect () method once the complex smob enters an area where it is protected by
other means.

There is no such protection for a smobbed_copy () of a simple smob because those tend to
be more short-lived and are often just returned to Scheme after being created.

TODO: expand on smob constructors, especially the need for Preinit classes. See
lily/include/smobs.hh.

TODO: explain the quirks of finalization (non-)ordering. See commit 6555b3841a.

Chapter 10: Programming work 111

10.19 LilyPond miscellany

This is a place to dump information that may be of use to developers but doesn’t yet have a
proper home. Ideally, the length of this section would become zero as items are moved to other
homes.

10.19.1 Spacing algorithms
Here is information from an email exchange about spacing algorithms.

On Thu, 2010-02-04 at 15:33 -0500, Boris Shingarov wrote: I am experimenting with some
modifications to the line breaking code, and I am stuck trying to understand how some of it
works. So far my understanding is that Simple_spacer operates on a vector of Grobs, and it
is a well-known Constrained-QP problem (rods = constraints, springs = quadratic function to
minimize). What I don’t understand is, if the spacer operates at the level of Grobs, which are
built at an earlier stage in the pipeline, how are the changes necessitated by differences in line
breaking, taken into account? in other words, if I take the last measure of a line and place it on
the next line, it is not just a matter of literally moving that graphic to where the start of the
next line is, but I also need to draw a clef, key signature, and possibly other fundamental things
— but at that stage in the rendering pipeline, is it not too late??

Joe Neeman answered:

We create lots of extra grobs (e.g., a BarNumber at every bar line) but most of them are not
drawn. See the break-visibility property in item-interface.

Here is another e-mail exchange. Janek Warchot asked for a starting point to fixing 1301
(change clef colliding with notes). Neil Puttock replied:

The clef is on a loose column (it floats before the head), so the first place I'd look would be
lily /spacing-loose-columns.cc (and possibly lily /spacing-determine-loose-columns.cc). I'd guess
the problem is the way loose columns are spaced between other columns: in this snippet, the
columns for the quaver and tuplet minim are so close together that the clef’s column gets dumped
on top of the quaver (since it’s loose, it doesn’t influence the spacing).

10.19.2 Info from Han-Wen email

In 2004, Douglas Linhardt decided to try starting a document that would explain LilyPond ar-
chitecture and design principles. The material below is extracted from that email, which can be
found at http://thread.gmane.org/gmane.comp.gnu.lilypond.devel/2992. The headings
reflect questions from Doug or comments from Han-Wen; the body text are Han-Wen’s answers.

Figuring out how things work.

I must admit that when I want to know how a program works, I use grep and emacs and dive
into the source code. The comments and the code itself are usually more revealing than technical
documents.

What’s a grob, and how is one used?

Graphical object - they are created from within engravers, either as Spanners (derived class)
-slurs, beams- or Items (also a derived class) -notes, clefs, etc.

There are two other derived classes System (derived from Spanner, containing a "line of
music") and Paper_column (derived from Item, it contains all items that happen at the same
moment). They are separate classes because they play a special role in the linebreaking process.

What’s a smob, and how is one used?

A C(++) object that is encapsulated so it can be used as a Scheme object. See Guile info, "19.3
Defining New Types (Smobs)"

http://thread.gmane.org/gmane.comp.gnu.lilypond.devel/2992

Chapter 10: Programming work 112

When is each C++ class constructed and used?
e Music classes
In the parser.yy see the macro calls MAKE_MUSIC_BY_NAMEY().
e Contexts
Constructed during "interpreting" phase.
e Engravers

Executive branch of Contexts, plugins that create grobs, usually one engraver per grob type.
Created together with context.

e Layout Objects
= grobs
e Grob Interfaces

These are not C++ classes per se. The idea of a Grob interface hasn’t crystallized well.
ATM, an interface is a symbol, with a bunch of grob properties. They are not objects that
are created or destroyed.

e Iterators

Objects that walk through different music classes, and deliver events in a synchronized way,
so that notes that play together are processed at the same moment and (as a result) end
up on the same horizontal position.

Created during interpreting phase.

BTW, the entry point for interpreting is ly:run-translator (ly_run_translator on the C++
side)

Can you get to Context properties from a Music object?

You can create music object with a Scheme function that reads context properties (the \apply-
context syntax). However, that function is executed during Interpreting, so you can not really
get Context properties from Music objects, since music objects are not directly connected to
Contexts. That connection is made by the Music_iterators

Can you get to Music properties from a Context object?

Yes, if you are given the music object within a Context object. Normally, the music objects
enter Contexts in synchronized fashion, and the synchronization is done by Music_iterators.

What is the relationship between C++ classes and Scheme objects?

Smobs are C++ objects in Scheme. Scheme objects (lists, functions) are manipulated from C++
as well using the Guile C function interface (prefix: scm.)

How do Scheme procedures get called from C++ functions?

scm_call_*, where * is an integer from 0 to 4. Also scm_c_eval_string (), scm_eval ()

How do C++ functions get called from Scheme procedures?
Export a C++ function to Scheme with LY _DEFINE.

What is the flow of control in the program?

Good question. Things used to be clear-cut, but we have Scheme and SMOBs now, which means
that interactions do not follow a very rigid format anymore. See below for an overview, though.

Chapter 10: Programming work 113

Does the parser make Scheme procedure calls or C++ function calls?

Both. And the Scheme calls can call C++ and vice versa. It’s nested, with the SCM datatype
as lubrication between the interactions

(I think the word "lubrication" describes the process better than the traditional word "glue")

How do the front-end and back-end get started?
Front-end: a file is parsed, the rest follows from that. Specifically,

Parsing leads to a Music + Music_output_def object (see parser.yy, definition of
toplevel_expression)

A Music + Music_output_def object leads to a Global_context object (see ly_run_translator

0)

During interpreting, Global_context + Music leads to a bunch of Contexts (see
Global_translator::run_iterator_on_me ()).

After interpreting, Global_context contains a Score_context (which contains staves, lyrics
etc.) as a child. Score_context::get_output () spews a Music_output object (either a Paper_score
object for notation or Performance object for MIDI).

The Music_output object is the entry point for the backend (see ly_render_output ()).
The main steps of the backend itself are in

e paper-score.cc , Paper_score::process_

e system.cc , System::get_lines()

e The step, where things go from grobs to output, is in System::get_line(): each grob delivers
a Stencil (a Device independent output description), which is interpreted by our outputting
backends (scm/output-tex.scm and scm/output-ps.scm) to produce TeX and PS.

Interactions between grobs and putting things into .tex and .ps files have gotten a little
more complex lately. Jan has implemented page-breaking, so now the backend also involves
Paper_book, Paper_lines and other things. This area is still heavily in flux, and perhaps not
something you should want to look at.

How do the front-end and back-end communicate?

There is no communication from backend to front-end. From front-end to backend is simply the
program flow: music + definitions gives contexts, contexts yield output, after processing, output
is written to disk.

Where is the functionality associated with KEYWORDs?

See my-1ily-lexer.cc (keywords, there aren’t that many) and ly/+*.ly (most of the other
backslashed /\words are identifiers)

What Contexts/Properties/Music/etc. are available when they are
processed?

What do you mean exactly with this question?

See ly/engraver-init.ly for contexts, see scm/define-*.scm for other objects.

How do you decide if something is a Music, Context, or Grob
property?

Why is part-combine-status a Music property when it seems (IMO) to be related to the Staff
context?

The Music_iterators and Context communicate through two channels

Chapter 10: Programming work 114

Music_iterators can set and read context properties, idem for Engravers and Contexts

Music_iterators can send "synthetic" music events (which aren’t in the input) to a context.
These are caught by Engravers. This is mostly a one way communication channel.

part-combine-status is part of such a synthetic event, used by Part_combine_iterator to com-
municate with Part_combine_engraver.

Deciding between context and music properties

I’'m adding a property to affect how \autoChange works. It seems to me that it should be a
context property, but the Scheme autoChange procedure has a Music argument. Does this mean
I should use a Music property?

\autoChange is one of these extra strange beasts: it requires look-ahead to decide
when to change staves. This is achieved by running the interpreting step twice (see
scm/part-combiner.scm , at the bottom), and storing the result of the first step (where to
switch staves) in a Music property. Since you want to influence that where-to-switch list, your
must affect the code in make-autochange-music (scm/part-combiner.scm). That code is
called directly from the parser and there are no official "parsing properties" yet, so there is no
generic way to tune \autoChange. We would have to invent something new for this, or add a
separate argument,

\autoChange #around-central-C ..music..

where around-central-C is some function that is called from make-autochange-music.

More on context and music properties

From Neil Puttock, in response to a question about transposition:

Context properties (using \set & \unset) are tied to engravers: they provide information
relevant to the generation of graphical objects.

Since transposition occurs at the music interpretation stage, it has no direct connection with
engravers: the pitch of a note is fixed before a notehead is created. Consider the following
minimal snippet:

{c'}
This generates (simplified) a NoteEvent, with its pitch and duration as event properties,

(make-music
'NoteEvent
'duration
(ly:make-duration 2 0 1 1)
'pitch
(ly:make-pitch 0 0 0)
which the Note_heads_engraver hears. It passes this information on to the NoteHead grob it
creates from the event, so the head’s correct position and duration-log can be determined once
it’s ready for printing.
If we transpose the snippet,
\transpose ¢ d { ¢' %}

the pitch is changed before it reaches the engraver (in fact, it happens just after the parsing
stage with the creation of a TransposedMusic music object):

(make-music
'NoteEvent
'"duration
(l1y:make-duration 2 0 1 1)
'pitch

Chapter 10: Programming work 115

(ly:make-pitch O 1 0)
You can see an example of a music property relevant to transposition: untransposable.
\transpose ¢ d { c¢'2 \withMusicProperty #'untransposable ##t c' }
-> the second ¢’ remains untransposed.

Take a look at 1ily/music.cc to see where the transposition takes place.

How do I tell about the execution environment?

I get lost figuring out what environment the code I'm looking at is in when it executes. I found
both the C++ and Scheme autoChange code. Then I was trying to figure out where the code got
called from. I finally figured out that the Scheme procedure was called before the C++ iterator
code, but it took me a while to figure that out, and I still didn’t know who did the calling in
the first place. I only know a little bit about Flex and Bison, so reading those files helped only
a little bit.

Han-Wen: GDB can be of help here. Set a breakpoint in C++, and run. When you hit the
breakpoint, do a backtrace. You can inspect Scheme objects along the way by doing

p ly_display_scm(obj)
this will display OBJ through Guile.

10.19.3 Music functions and Guile debugging

Tan Hulin was trying to do some debugging in music functions, and came up with the following
question (edited and adapted to current versions):

HI all, I'm working on the Guile Debugger Stuff, and would like to try debugging a music
function definition such as:

conditionalMark =
#(define-music—function () ()
#{ \tag instrumental-part {\mark \defaultl} #})

It appears conditionalMark does not get set up as an equivalent of a Scheme
(define conditionalMark = define-music-function () ()
although something gets defined because Scheme apparently recognizes
#(set-break! conditionalMark)
later on in the file without signalling any Guile errors.

However the breakpoint trap is never encountered as define-music-function passed things
on to 1y:make-music-function, which is really C++ code 1y_make music_function, so Guile
never finds out about the breakpoint.

The answer in the mailing list archive at that time was less than helpful. The question
already misidentifies the purpose of 1y:make-music-function which is only called once at the
time of defining conditionalMark but is not involved in its later ezecution.

Here is the real deal:

A music function is not the same as a Guile function. It boxes both a proper Scheme function
(with argument list and body from the define-music-function definition) along with a call
signature representing the types of both function and arguments.

Those components can be reextracted using ly:music-function-extract and
ly:music-function-signature, respectively.

When LilyPond’s parser encounters a music function call in its input, it reads, interprets,
and verifies the arguments individually according to the call signature and then calls the proper
Scheme function.

Chapter 10: Programming work 116

While it is actually possible these days to call a music function as if it were a Scheme function
itself, this pseudo-call uses its own wrapping code matching the argument list as a whole to the
call signature, substituting omitted optional arguments with defaults and verifying the result
type.

So putting a breakpoint on the music function itself will still not help with debugging uses
of the function using LilyPond syntax.

However, either calling mechanism ultimately calls the proper Scheme function stored as part
of the music function, and that is where the breakpoint belongs:

#(set-break! (ly:music-function-extract conditionalMark))

will work for either calling mechanism.

10.19.4 Articulations on EventChord

From David Kastrup’s email https://lists.gnu.org/archive/html/1ilypond-devel/
2012-02/msg00189 . html:

LilyPond’s typesetting does not act on music expressions and music events. It acts exclusively
on stream events. It is the act of iterators to convert a music expression into a sequence of stream
events played in time order.

The EventChord iterator is pretty simple: it just takes its "elements" field when its time
comes up, turns every member into a StreamEvent and plays that through the typesetting pro-
cess. The parser currently appends all postevents belonging to a chord at the end of "elements",
and thus they get played at the same point of time as the elements of the chord. Due to this de-
sign, you can add per-chord articulations or postevents or even assemble chords with a common
stem by using parallel music providing additional notes/events: the typesetter does not see a
chord structure or postevents belonging to a chord, it just sees a number of events occuring at
the same point of time in a Voice context.

So all one needs to do is let the EventChord iterator play articulations after elements, and
then adding to articulations in EventChord is equivalent to adding them to elements (except in
cases where the order of events matters).

https://lists.gnu.org/archive/html/lilypond-devel/2012-02/msg00189.html
https://lists.gnu.org/archive/html/lilypond-devel/2012-02/msg00189.html

117

11 Release work

11.1 Development phases

There are 2 states of development on master:
1. Normal development: Any commits are fine.

2. Build-frozen: Do not require any additional or updated libraries or make non-trivial changes
to the build process. Any such patch (or branch) may not be merged with master during
this period.

This should occur approximately 1 month before any alpha version of the next stable release,
and ends when the next unstable branch begins.
After announcing a beta release, branch stable/2.x. There are 2 states of development for
this branch:
1. Normal maintenance: The following patches MAY NOT be merged with this branch:

e Any change to the input syntax. If a file compiled with a previous 2.x (beta) version,
then it must compile in the new version.

Exception: any bugfix to a Critical issue.

e New features with new syntax may be committed, although once committed that syntax
cannot change during the remainder of the stable phase.

e Any change to the build dependencies (including programming libraries, documentation
process programs, or python modules used in the buildscripts). If a contributor could
compile a previous lilypond 2.x, then he must be able to compile the new version.

2. Release prep: Only translation updates and important bugfixes are allowed.

11.2 Release checklist

A “minor release” means an update of y in 2.x.y.

Preparing the release

1. Prepare the release branch (release/unstable for unstable releases or stable/2.x for
stable releases). It is recommended to use a separate repository for this, or at least a
worktree. The checked out repository must have no changes to tracked files.

e Pull the latest changes in the remote repository, then switch to and update the branch:

git fetch origin
git rebase origin/master release/unstable

(adapt as necessary for stable/2.x)
¢ Remove untracked files from the repository, especially the configure script:
git clean -dfx --exclude release/

(Keep untracked files in the release/ directory, such as
release/binaries/downloads/ and local test builds.)

2. Generate the configure script and run it:
./autogen.sh

3. Update the translation template po/1lilypond.pot:
make po-replace

4. Edit the news files:

e Copy the previous announcement from Documentation/en/web/news-new.itexi to
Documentation/en/web/news-old.itexi.

Chapter 11: Release work 118

e Create a new announcement in Documentation/en/web/news-new.itexi by adjusting
the version number and the date.

e Adjust the headlines in Documentation/en/web/news-headlines.itexi accordingly.

5. Adjust version numbers in VERSION. In most cases, this means setting VERSION_DEVEL to
the current version. Only change VERSION STABLE if releasing a stable version.

6. Commit the changes:

git commit -m "po: Update template" -- po/lilypond.pot
git commit -m "web: Update news" -- Documentation/en/web/
git commit -m "Bump VERSION_DEVEL" -- VERSION

Creating the source release

1. Remove untracked files from the repository (see above):
git clean -dfx --exclude release/

2. Generate the configure script and run it:
./autogen.sh

3. Create the source tarball:
make dist

The last step creates out/lilypond-2.x.y.tar.gz, which will be the “single source of truth”
for the following steps. Put it into a directory for the final upload step.

Building the binaries and documentation
These steps can be run in any order, or in parallel, with the exception of the Windows (mingw)
build, that needs a run of the Linux build before.

e Build binaries on “native” platforms (Linux and macOS) with the scripts in
release/binaries/ from the tarball:

./build-dependencies && ./build-lilypond /path/to/lilypond-2.x.y.tar.gz
e Build binaries for Windows (needs a run of the previous step on Linux):
./build-dependencies --mingw && ./build-lilypond --mingw /path/to/lilypond-2.x.y.tz
e Build the documentation using release/doc/build-doc. sh:
./build-doc.sh /path/to/lilypond-2.x.y.tar.gz
Collect all created binaries (.tar.gz and .zip) and documentation archives (.tar.xz) in

the directory next to the source tarball. If possible, give them some short testing to make sure
everything works as expected.

Uploading the release
During this step, the artifacts from the previous steps are uploaded to 1ilypond.org and GitLab
for the world to see. Make sure everything is ready before proceeding.

1. Create a personal access token at https://gitlab.com/-/user_settings/
personal_access_tokens and select the ‘api’ scope (complete read/write access). The
token can be limited to auto-expire the next day.

2. Upload the source tarball to 1ilypond.org:
scp lilypond-2.x.y.tar.gz graham@gcp.lilypond.org:/var/www/lilypond/downloads/sour«
3. In the directory where you collected the binaries, run the script to upload the files to GitLab:
/path/to/lilypond/release/upload.py --token TOKEN 2.x.y

4. Extract the web documentation from 1lilypond-2.x.y-webdoc.tar.xz and adjust the
group permissions:

chmod -R g+w lilypond-2.x.y-webdoc

https://gitlab.com/-/user_settings/personal_access_tokens
https://gitlab.com/-/user_settings/personal_access_tokens

Chapter 11: Release work 119

5. Synchronize the documentation to 1ilypond.org:

rsync —-delay-updates --delete --delete-after --progress -prtvuz lilypond-2.x.y-wetl

Tagging and announcing the release
1. In the repository that was used to create the release (check that git log has the expected
commits; “Bump VERSION_DEVEL” should be the last one), tag the release:
git tag -am "LilyPond 2.x.y" v2.x.y
2. Push the changes and the tag:
git push origin HEAD:release/unstable v2.x.y
(adapt as necessary for stable/2.x)

3. Create a file description.md with a copy of the release announcement (may be formatted
as Markdown for links).

4. Create the release on GitLab:
/path/to/lilypond/release/create-release.py —--token TOKEN --description descriptior

Creating a release on GitLab will automatically send an email to everbody who subscribed
to release notifications.

Post unstable release

In this case, the release branch is release/unstable.
1. Update the master branch with the latest changes:

git fetch origin
git rebase origin/master master

2. Merge the release branch:
git merge --no-ff release/unstable
3. Bump PATCH_LEVEL in the VERSION file and commit:
git commit -m "Bump VERSION" -- VERSION
4. Push the branch to GitLab:
git push origin HEAD:release/unstable
5. Create a merge request from release/unstable to merge the changes into master.
6. Update the website as described in Section 6.2 [Uploading website|, page 63.
7. Update the milestones at GitLab:

1. Make sure all merge requests and issues are added to the milestone of the released
version. Fill in the due date and close it.

2. Create a new milestone for the next release (unless no more bugfix release is planned)
and set the start date.

8. Check open merge requests and remind people to update the \version statement in con-
version rules and regression tests.

After the website update appears on 1ilypond.org, send a release notice to 1ilypond-devel
and lilypond-user with the same announcement text and possibly further instructions.

11.3 Major release checklist

A “major release” means an update of x in 2.x.0.

Main requirements

These are the current official guidelines.
e 0 Critical issues for two weeks (14 days) after the latest release candidate.

Chapter 11: Release work 120

Potential requirements

These might become official guidelines in the future.
e Check reg test
e Check all 2ly scripts
e Check for emergencies the docs:

grep FIXME --exclude "misc/*" --exclude "*GNUmakefile" \
-—exclude "snippets/*" 7777%/x

e Check for altered regtests, and document as necessary:

git diff -u -r release/2.FIRST-CURRENT-STABLE \
-r release/2.LAST-CURRENT-DEVELOPMENT input/regression/

Housekeeping requirements

Before the release:
e write release notes. note: stringent size requirements for various websites, so be brief.
e Run convert-ly on all files, bump parser minimum version.
e Update lilypond.pot:

make -C $LILYPOND_BUILD_DIR po-replace
mv $LILYPOND_BUILD_DIR/po/lilypond.pot po/

e Make directories on lilypond.org:
~/download/sources/v2. NEW-STABLE
~/download/sources/v2. NEW-DEVELOPMENT
Shortly after the release:
e Move all current contributors to previous contributors in Documentation/en/included/authors.itexi.

e Delete old material in Documentation/en/changes.tely, but don’t forget to check it still
compiles! Also update the version numbers:

Onode Top
Otop New features in 2.NEW-STABLE since 2.0LD-STABLE

e Update the version of the search boxes in the Table of Contents sidebar to 2. NEW-
DEVELOPMENT (in Documentation/lilypond.init).

e Prevent crawlers from indexing the old documentation by adding lines to
Documentation/webserver/robots.txt until:

Disallow: /doc/v2.0LD-STABLE/

Do not yet add a line for 2.OLD-DEVELOPMENT because the search for the documenta-
tion of 2. NEW-STABLE relies on it!

e Update the htaccess redirections (/latest/, /stable/, etc.) in
Documentation/webserver/lilypond.org.htaccess.

e Add a link to the previous stable version’s announcement, list of changes and contributors
acknowledgements to the ‘Attic’ page, in Documentation/en/web/community.itexi.

e Add a link to the previous stable version’s documentation to
Documentation/en/web/manuals.itexi.

Unsorted

e submit po template for translation: send url of tarball to
coordinator@translationproject.org, mentioning lilypond-VERSION.pot

mailto:coordinator@translationproject.org

Chapter 11: Release work

e Send announcements to...

News:

Mail:

comp.music.research
comp.os.linux.announce

comp.text.tex
rec.music.compose

info-lilypond®@gnu.org
info-gnu@gnu.org
planet@gnu.org

linux-audio-announce@lists.linuxaudio.org

linux-audio-user@lists.linuxaudio.org
linux-audio-dev@lists.linuxaudio.org
consortium@lists.linuxaudio.org
planetccrma@ccrma.stanford.edu

tex-music@tug.org

rosegarden-user@lists.sourceforge.net
denemo-devel@gnu.org

Web (forums):

imslpforums.org

abcusers (Yahoo group)

canorus (Github? Freenode IRC?)
musescore.org/forum
reddit.com/1lilypond
linuxquestions.org

Slashdot

Web (websites and aggregators):

lilypond.org

https://savannah.gnu.org/news/submit . php?group_id=1673

freshmeat.sourceforge.net
linuxtoday.com

lxer.com

fossmint.com

fsdaily.com
freesoftwaremagazine.com
lwn.net

hitsquad.com/smm

in French: linuxfr.org; framalibre.org

121

122

12 Modifying the Emmentaler font

12.1 Overview of the Emmentaler font

Emmentaler was created specifically for use in LilyPond. The font consists of two sub-sets of
glyphs. “Feta”, used for clasical notation and “Parmesan”, used for Ancient notation. The
sources of which are all found in mf/*.mf.

The font is merged from a number of subfonts. Each subfont can contain at most 224 glyphs.
This is because each subfont is limited to a one-byte address space (256 glyphs maximum) and
we avoid the first 32 points in that address space, since they are non-printing control characters
in ASCII.

In LilyPond, glyphs are accessed by a ‘glyph name’, rather than by code point. Therefore,
the name of a glyph is significant.

Information about correctly creating glyphs is found in mf/README. Please make sure you
read and understand this file.

TODO - we should get mf/README automatically generated from texinfo source and in-
clude it here.

12.2 Font creation tools
The sources for Emmentaler are written in metafont. The definitive reference for metafont is
"The METAFONT book" — the source of which is available at CTAN.

mf2ptl is used to create type 1 fonts from the metafont sources.

FontForge is used to postprocess the output of mf2ptl and clean up details of the font. It
can also be used by a developer to display the resulting glyph shapes.

12.3 Adding a new font section
The font is divided into sections, each of which contains less than 224 glyphs. If more than 224
glyphs are included in a section, an error will be generated.

Each of the sections is contained in a separate .mf file. The files are named according to the
type of glyphs in that section.

When adding a new section, it will be necessary to add the following;:

The code for the glyphs, in a file <section-name>.mf
Driver files used to create the font in different sizes

An entry in the generic file used to create the font, or a new generic file

If necessary, new entries in the GNUmakefile

An entry in scripts/build/gen-emmentaler-scripts.py

See the examples in mf/ for more information.

12.4 Adding a new glyph

Adding a new glyph is done by modifying the .mf file to which the glyph will be added.

Necessary functions to draw the glyph can be added anywhere in the file, but it is standard
to put them immediately before the glyph definition.

The glyph definition begins with:
fet_beginchar ("glyph description", "glyphname");

with glyph description replaced with a short description of the glyph, and glyphname replaced
with the glyphname, which is chosen to comply with the naming rules in mf /README.

Chapter 12: Modifying the Emmentaler font 123

The metafont code used to draw the glyph follows the fet_beginchar entry. The glyph is
finished with:

fet_endchar;

12.5 Building the changed font

In order to rebuild the font after making the changes, the existing font files must be deleted.
The simplest and quickest way to do this is to do:

rm mf/out/*
make

12.6 METAFONT formatting rules
There are special formatting rules for METAFONT files.

Please do not use tabs for the indentation of commands.

When a path contains more than two points, put each point on a separate line, with the
operator at the beginning of the line. The operators are indented to the same depth as the
initial point on the path using spaces. The indentation mechanism is illustrated below.

def draw_something (expr test) =
set_char_box (staff_space#, 1.6 linethickness# / 2,
0.5 staff_space#, 0.5 staff_space#);

if test:
fill z1
-— z2
-— z3
. cycle;
fi;

enddef;

124

13 Administrative policies
This chapter discusses miscellaneous administrative issues which don’t fit anywhere else.

13.1 LilyPond is GNU Software

LilyPond is a GNU software package. As such, it falls under the requirements found in the GNU
Coding Standards (https://www.gnu.org/prep/standards/). All suggested changes should
move toward increased compliance with these Standards.

13.2 Environment variables

Some maintenance scripts and instructions in this guide rely on the following environment vari-
ables. They should be predefined in LilyDev distribution (see Section 2.1 [LilyDev], page 5); if
you set up your own development environment, you can set them by appending these settings
to your ~/.bashrc (or whatever defines your default environment variables for the user account
for LilyPond development), then logging out and in (adapt directories to your setup):

LILYPOND_GIT=~/1ilypond-git

export LILYPOND_GIT

LILYPOND_BUILD_DIR=~/lilypond-git/build

export LILYPOND_BUILD_DIR

The standard build and install procedure (with autogen. sh, configure, make, make install,

make doc ...) does not rely on them.

13.3 Performing yearly copyright update (“grand-replace”)
At the start of each year, copyright notices for all source files should be refreshed by running
the following command from the top of the source tree:

make grand-replace

Internally, this invokes the script scripts/build/grand-replace.py, which performs a reg-
ular expression substitution for old-year -> new-year wherever it finds a valid copyright notice.

Note that snapshots of third party files such as texinfo.tex should not be included in
the automatic update; grand-replace.py ignores these files if they are listed in the variable
copied_files.

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/

125

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

https://fsf.org/

Appendix A: GNU Free Documentation License 126

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix A: GNU Free Documentation License 127

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix A: GNU Free Documentation License 128

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix A: GNU Free Documentation License 129

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix A: GNU Free Documentation License 130

10.

11.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://
www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

Appendix A: GNU Free Documentation License 131

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~ GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

	Table of Contents
	1 Introduction to contributing
	Help us
	Overview of work flow
	Summary for experienced developers
	Mentors

	2 Quick start
	LilyDev
	Installing LilyDev in VirtualBox
	Configuring LilyDev in VirtualBox

	Compiling with LilyDev
	Now start work!

	3 Working with source code
	Setting up
	Installing Git
	Creating a GitLab account and setting up SSH
	Cloning and forking the repository
	Configuring Git

	Git cheat sheet
	Lifecycle of a merge request
	Uploading a patch for review
	Automated testing
	Patch countdown
	Merging to master
	Abandoned patches

	Writing good commit messages
	Commit access
	Further Git documentation resources
	Repository directory structure

	4 Compiling
	Overview of compiling
	Requirements
	Requirements for running LilyPond
	Requirements for compiling LilyPond
	Fedora
	Linux Mint
	OpenSUSE
	Ubuntu
	Other

	Requirements for building documentation

	Getting the source code
	Configuring make
	Build modes
	Running autogen.sh
	Running configure
	Configuration options
	Checking build dependencies
	Configuring target directories

	Compiling LilyPond
	Using make
	Saving time with the -j option
	Useful make variables

	Post-compilation options
	Installing LilyPond from a local build
	Generating documentation
	Documentation editor's edit/compile cycle
	Building documentation
	Building a single document
	Saving time with CPU_COUNT
	Installing documentation
	Building documentation without compiling

	Testing LilyPond binary

	Problems
	Concurrent stable and development versions
	Replacing the notation fonts in development versions

	Build system

	5 Documentation work
	Introduction to documentation work
	version in documentation files
	Documentation suggestions
	Texinfo introduction and usage policy
	Texinfo introduction
	Documentation files
	Sectioning commands
	Menus
	LilyPond formatting
	Text formatting
	Syntax survey
	Comments
	Cross-references
	External links
	Fixed-width font
	Indexing
	Lists
	Special characters
	Miscellany

	Other text concerns

	Documentation policy
	Books
	Section organization
	Checking cross-references
	General writing
	Technical writing style

	Tips for writing documentation
	Working on subsections
	Searching

	Scripts to ease documentation work
	Building only one section of the documentation
	Updating documentation with convert-ly

	Documentation strings in the Internals Reference
	Translating the documentation
	Getting started with documentation translation
	Translation requirements
	Which documentation can be translated
	Starting translation in a new language

	Documentation translation details
	Files to be translated
	Translating the website and other Texinfo documentation
	Adding a Texinfo manual

	Documentation translation maintenance
	Check state of translation
	Updating documentation translation
	Updating translation committishes
	Maintaining without updating translations

	Technical background

	6 Website work
	Introduction to website work
	Uploading website
	Debugging website and docs locally
	Translating the website

	7 LSR work
	Introduction to LSR
	Adding and editing snippets
	Approving snippets
	The makelsr.pl script
	LSR to Git
	Renaming a snippet
	Updating the LSR to a new version

	8 Issues
	Introduction to issues
	Triaging bugs
	Issue classification
	Adding issues to the tracker

	9 Regression tests
	Introduction to regression tests
	Precompiled regression tests
	Compiling regression tests
	Regtest comparison
	Pixel-based regtest comparison
	Finding the cause of a regression
	MusicXML tests

	10 Programming work
	Overview of LilyPond architecture
	LilyPond programming languages
	Programming without compiling
	Finding functions
	Code style
	Languages
	Filenames
	Code formatting
	Naming Conventions
	Broken code
	Code comments
	Handling errors
	Localization

	Warnings, Errors, Progress and Debug Output
	Debugging LilyPond
	Debugging overview
	Debugging C++ code
	Debugging Scheme code
	Debugging scoring algorithms
	Debugging skylines

	Tracing object relationships
	Tracing processing time
	Adding or modifying features
	Write the code
	Write regression tests
	Write convert-ly rule
	Automatically update documentation
	Manually update documentation
	Edit changes.tely
	Verify successful build
	Verify regression tests
	Post patch for comments
	Push patch
	Closing the issues

	Iterator tutorial
	Engraver tutorial
	Useful methods for information processing
	Translation process
	Listening to music events
	Acknowledging grobs
	Engraver declaration/documentation

	Callback tutorial
	Understanding pure properties
	Purity in LilyPond
	Writing a pure function
	How purity is defined and stored
	Where purity is used
	Case studies
	Debugging tips

	LilyPond scoping
	Regular expressions
	Scheme->C interface
	Comparison
	Conversion

	Garbage collection for dummies
	LilyPond miscellany
	Spacing algorithms
	Info from Han-Wen email
	Music functions and Guile debugging
	Articulations on EventChord

	11 Release work
	Development phases
	Release checklist
	Major release checklist

	12 Modifying the Emmentaler font
	Overview of the Emmentaler font
	Font creation tools
	Adding a new font section
	Adding a new glyph
	Building the changed font
	METAFONT formatting rules

	13 Administrative policies
	LilyPond is GNU Software
	Environment variables
	Performing yearly copyright update (grand-replace)

	A GNU Free Documentation License

