Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

The Molecular Clock and Evolutionary Rates Across the Tree of Life

  • Chapter
  • First Online:
The Molecular Evolutionary Clock
  • 2059 Accesses

  • 15 Citations

Abstract

The molecular evolutionary clock was proposed in the 1960s and has undergone considerable evolution over the past six decades. After arising from early studies of the amino acid sequences of proteins, the molecular clock became a point of contention between competing theories of molecular evolution. In this chapter, I describe the origins of the molecular clock hypothesis and the mixture of evidence that emerged throughout the 1970s and 1980s, including the discovery of departures from clocklike evolution in proteins and DNA. I review some of the broad patterns of evolutionary rate variation across the tree of life, including rates of spontaneous mutation and long-term evolution in viruses, bacteria, animals, and plants. With the remarkable growth of genomic data over the past two decades, the molecular clock is now primarily seen as a tool for reconstructing evolutionary timescales. In the final parts of this chapter, I summarize the key developments in molecular dating methods and describe how these approaches have been used to infer the timing of major evolutionary events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aiewsakun P, Katzourakis A (2016) Time-dependent rate phenomenon in viruses. J Virol 90:7184–7195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allio R, Donega S, Galtier N, Nabholz B (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Biol Evol 34:2762–2772

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Carretero S, Goswami A, Yang Z, dos Reis M (2019) Bayesian estimation of species divergence times using correlated quantitative characters. Syst Biol 68:967–986

    Article  PubMed  Google Scholar 

  • Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 51:703–714

    Article  PubMed  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Article  Google Scholar 

  • Ayala FJ (1997) Vagaries of the molecular clock. Proc Natl Acad Sci USA 94:7776–7783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 8:619–631

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ, Ayala FJ (2003) Dating the tree of life. Science 300:1698–1700

    Article  CAS  PubMed  Google Scholar 

  • Bernard H-U (1994) Coevolution of papillomaviruses with human populations. Trends Microbiol 2:140–143

    Article  CAS  PubMed  Google Scholar 

  • Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Brochu CA, Sumrall CD, Theodor JM (2004) When clocks (and communities) collide: Estimating divergence times from molecules and the fossil record. J Paleontol 78:1–6

    Article  Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224

    Article  CAS  PubMed  Google Scholar 

  • Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW (2018) Bayesian molecular dating: opening up the black box. Biol Rev 93:1165–1191

    Article  PubMed  Google Scholar 

  • Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91:6491–6495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintalapati M, Moorjani P (2020) Evolution of the mutation rate across primates. Curr Opin Genet Dev 62:58–64

    Article  CAS  PubMed  Google Scholar 

  • Christensen AC (2013) Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol 5:1079–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christin P-A, Spriggs E, Osborne CP, Strömberg CAE, Salamin N, Edwards EJ (2014) Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol 63:153–165

    Article  PubMed  Google Scholar 

  • Cutler D (2000) Understanding the overdispersed molecular clock. Genetics 154:1403–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies TJ, Savolainen V (2006) Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60:476–483

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol 34:1363–1377

    Article  CAS  Google Scholar 

  • Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1:26–45

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF, Blombäck B (1964) Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature 202:147–152

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477

    Article  CAS  PubMed  Google Scholar 

  • dos Reis M, Donoghue PCJ, Yang Z (2013) Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biol Lett 10:20131003

    Article  Google Scholar 

  • dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z (2015) Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol 25:2939–2950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Reis M, Donoghue PCJ, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 17:71–80

    Article  PubMed  CAS  Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Forsberg R, Rodrigo AG (2001) The inference of stepwise changes in substitution rates using serial sequence samples. Mol Biol Evol 18:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLOS Biol 4:e88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duchêne S, Ho SYW (2015) Mammalian genome evolution is governed by multiple pacemakers. Bioinformatics 31:2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Duchêne S, Holmes EC, Ho SYW (2014) Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc R Soc B 281:20140732

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchêne S, Foster CSP, Ho SYW (2016a) Estimating the number and assignment of clock models in analyses of multigene datasets. Bioinformatics 32:1281–1285

    Article  PubMed  CAS  Google Scholar 

  • Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC (2016b) Genome-scale rates of evolutionary change in bacteria. Microb Genom 2:e000094

    PubMed  PubMed Central  Google Scholar 

  • Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276

    Article  CAS  PubMed  Google Scholar 

  • Easteal S (1999) Molecular evidence for the early divergence of placental mammals. BioEssays 21:1052–1058

    Article  CAS  PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, San Francisco, CA, pp 82–115

    Google Scholar 

  • Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M (2015) The spontaneous mutation rate in the fission yeast Schizosaccharomyces pombe. Genetics 201:737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 27:2038–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1936) The measurement of selective intensity. Proc R Soc B 121:58–62

    Google Scholar 

  • Fitch WM (1976) Molecular evolutionary clocks. In: Ayala FJ (ed) Molecular evolution. Sinaeuer Associates, Sunderland, MA, pp 160–178

    Google Scholar 

  • Fitch WM, Beintema JJ (1990) Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol 7:438–443

    CAS  PubMed  Google Scholar 

  • Freese E (1962) On the evolution of base composition at DNA. J Theor Biol 3:82–101

    Article  CAS  Google Scholar 

  • Gaut B, Muse SV, Clark WD, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35:292–303

    Article  CAS  PubMed  Google Scholar 

  • Gaut B, Yang L, Takuno S, Eguiarte LE (2011) The patterns and causes of variation in plant nucleotide substitution rates. Annu Rev Ecol Evol Syst 42:245–266

    Article  Google Scholar 

  • Geoghegan JL, Duchêne S, Holmes EC (2017) Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLOS Pathog 13:e1006215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson B, Eyre-Walker A (2019) Investigating evolutionary rate variation in bacteria. J Mol Evol 87:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JH (1984) The molecular clock may be an episodic clock. Proc Natl Acad Sci USA 81:8009–8013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JH (1989) Lineage effects and the index of dispersion of molecular evolution. Mol Biol Evol 6:636–647

    CAS  PubMed  Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Gillespie JH (1993) Substitution processes in molecular evolution. I. Uniform and clustered substitutions in a haploid model. Genetics 134:971–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92:6723–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman M (1961) The role of immunologic differences in the phyletic development of human behavior. Hum Biol 33:131–162

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1957) The cost of natural selection. J Genet 55:511–524

    Article  Google Scholar 

  • Hanlon VCT, Otto SP, Aitken SN (2019) Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol Lett 3:348–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1989) Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea. J Hum Evol 18:461–476

    Article  Google Scholar 

  • Heath TA, Moore BR (2014) Bayesian inference of species divergence times. In: Chen M-H, Kuo L, Lewis PO (eds) Bayesian phylogenetics: methods, algorithms, and applications. CRC Press, Boca Raton, FL, pp 277–318

    Google Scholar 

  • Heath TA, Huelsenbeck JP, Stadler T (2014) The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci USA 111:E2957–E2966

    Google Scholar 

  • Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229

    Article  CAS  PubMed  Google Scholar 

  • Ho SYW (2014) The changing face of the molecular evolutionary clock. Trends Ecol Evol 29:496–503

    Article  PubMed  Google Scholar 

  • Ho SYW, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 23:5947–5965

    Article  PubMed  Google Scholar 

  • Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101

    Article  PubMed  Google Scholar 

  • Ho SYW, Chen AZY, Lins LSF, Duchêne DA, Lo N (2016) The genome as an evolutionary timepiece. Genome Biol Evol 8:3006–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkinson A, Eyre-Walker A (2011) Variation in the mutation rate across mammalian genomes. Nat Rev Genet 12:756–766

    Article  CAS  PubMed  Google Scholar 

  • Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 72:659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jukes TH, Kimura M (1984) Evolutionary constraints and the neutral theory. J Mol Evol 21:90–92

    Article  CAS  PubMed  Google Scholar 

  • Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kern AD, Hahn MW (2018) The neutral theory in light of natural selection. Mol Biol Evol 35:1366–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuno R, Hayashida H, Miyata T (1985) Rapid rate of rodent evolution. Proc Japan Acad 61:153–156

    Article  CAS  Google Scholar 

  • Kim S-H, Elango N, Warden C, Vigoda E, Yi SV (2006) Heterogeneous genomic molecular clocks in primates. PLOS Genet 2:e163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura M (1967) On the evolutionary adjustment of spontaneous mutation rates. Genet Res 9:23–34

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1969) The rate of molecular evolution considered from the standpoint of population genetics. Proc Natl Acad Sci USA 63:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26:24–33

    Article  CAS  PubMed  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18:352–361

    Article  CAS  PubMed  Google Scholar 

  • Kohne DE (1970) Evolution of higher-organism DNA. Q Rev Biophys 3:327–375

    Article  CAS  PubMed  Google Scholar 

  • Kreitman M, Akashi H (1995) Molecular evidence for natural selection. Annu Rev Ecol Syst 26:403–422

    Article  Google Scholar 

  • Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6:654–662

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hedges SB (2016) Advances in time estimation methods for molecular data. Mol Biol Evol 33:863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci USA 99:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird CD, McConaughy BL, McCarthy BJ (1969) Rate of fixation of nucleotide substitutions. Nature 224:149–154

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Welch JJ, Bromham L (2010) Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol Evol 25:495–503

    Article  PubMed  Google Scholar 

  • Lanfear R, Ho SYW, Davies TJ, Moles AT, Aarssen L, Swenson NG, Warman L, Zanne AE, Allen AP (2013) Taller plants have lower rates of molecular evolution. Nat Commun 4:1879

    Article  PubMed  CAS  Google Scholar 

  • Langley CH, Fitch WM (1974) An examination of the constancy of the rate of molecular evolution. J Mol Evol 3:161–177

    Article  CAS  PubMed  Google Scholar 

  • Lee MSY, Ho SYW (2016) Molecular clocks. Curr Biol 26:R387–R407

    Article  CAS  Google Scholar 

  • Lee MSY, Soubrier J, Edgecombe GD (2013) Rates of phenotypic and genomic evolution during the Cambrian explosion. Curr Biol 23:1–7

    CAS  Google Scholar 

  • Lee MSY, Cau A, Naish D, Dyke GJ (2014) Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves. Syst Biol 63:442–449

    Article  PubMed  Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17:704–714

    Article  CAS  PubMed  Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453

    Article  PubMed  Google Scholar 

  • Manceau M, Marin J, Morlon H, Lambert A (2020) Model-based inference of punctuated molecular evolution. Mol Biol Evol 37:3308–3323

    Article  PubMed  Google Scholar 

  • Margoliash E (1963) Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA 50:672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin W, Gierl A, Saedler H (1989) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:46–48

    Article  CAS  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, Martínez I, Gracia A, Bermúdez de Castro JM, Carbonell E, Pääbo S (2014) A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–406

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19:28–35

    Article  CAS  PubMed  Google Scholar 

  • Molak M, Ho SYW (2015) Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA. PeerJ 3:e821

    Article  PubMed  PubMed Central  Google Scholar 

  • Mooers AØ, Harvey PH (1994) Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol 3:344–350

    Article  CAS  PubMed  Google Scholar 

  • Moorjani P, Sankararaman S, Fu Q, Przeworski M, Patterson N, Reich D (2016) A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc Natl Acad Sci USA 113:5652–5657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J Hist Biol 31:155–178

    Article  CAS  PubMed  Google Scholar 

  • Muse SV, Gaut BS (1997) Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. Genetics 146:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130

    Article  CAS  PubMed  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M, Suzuki Y, Nozawa M (2010) The neutral theory of molecular evolution in the genomic era. Annu Rev Genomics Hum Genet 11:265–289

    Article  CAS  PubMed  Google Scholar 

  • Nguyen JMT, Ho SYW (2016) Mitochondrial rate variation among lineages of passerine birds. J Avian Biol 47:690–696

    Article  Google Scholar 

  • Ohta T (1972) Evolutionary rate of cistrons and DNA divergence. J Mol Evol 1:150–157

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Gillespie JH (1996) Development of neutral and nearly neutral theories. Theor Pop Biol 49:128–142

    Article  CAS  Google Scholar 

  • Ohta T, Kimura M (1971) On the constancy of the evolutionary rate of cistrons. J Mol Evol 1:18–25

    Article  CAS  Google Scholar 

  • Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L, Bustos-Segura C, Foley W, Haff T, Hsieh J-F, Morales-Suarez A, Cartwright RA, Lanfear R (2020) A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. Proc R Soc B 287:20192364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  CAS  PubMed  Google Scholar 

  • Pagel M, Venditti C, Meade A (2006) Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314:119–121

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou A, Anastasiou I, Vogler AP (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol 27:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SYW, Belshaw R, Allain J-P, Hatzakis A (2013) Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 57:908–916

    Article  PubMed  Google Scholar 

  • Park C, Qian W, Zhang J (2012) Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep 13:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck KM, Lauring AM (2018) Complexities of viral mutation rates. J Virol 92:e01031–e01017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740

    Article  CAS  PubMed  Google Scholar 

  • Polly PD (2001) On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones. Genetica 112–113:339–357

    Article  PubMed  Google Scholar 

  • Puttick MN, Thomas GH, Benton MJ (2016) Dating placentalia: morphological clocks fail to close the molecular fossil gap. Evolution 70:873–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Pybus OG, Rambaut A (2009) Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 10:540–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2000) Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399

    Article  CAS  PubMed  Google Scholar 

  • Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56:453–466

    Article  PubMed  Google Scholar 

  • Rocha EPC, Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21:108–116

    Article  CAS  PubMed  Google Scholar 

  • Rocha EPC, Maynard Smith J, Hurst LD, Holden MTG, Cooper JE, Smith NH, Feil EJ (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239:226–235

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61:973–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231

    Article  CAS  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    Article  CAS  PubMed  Google Scholar 

  • Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarich VM, Wilson AC (1967a) Immunological time scale for hominid evolution. Science 158:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Sarich VM, Wilson AC (1967b) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Scally A (2016) The mutation rate in human evolution and demographic inference. Curr Opin Genet Dev 41:36–43

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Siegert E, Sarkar N, Iseli C, Calderon S, Gouhier-Darimont C, Chrast J, Cattaneo P, Schütz F, Farinelli L, Pagni M, Schneider M, Voumard J, Jaboyedoff M, Fankhauser C, Hardtke CS, Keller L, Pannell JR, Reymond A, Robinson-Rechavi M, Xenarios I, Reymond P (2017) Low number of fixed somatic mutations in a long-lived oak tree. Nat Plants 3:926–929

    Article  PubMed  Google Scholar 

  • Seligmann H (2010) Positive correlations between molecular and morphological rates of evolution. J Theor Biol 264:799–807

    Article  PubMed  Google Scholar 

  • Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23:7–9

    Article  CAS  PubMed  Google Scholar 

  • Shapiro B, Ho SYW, Drummond AJ, Suchard MA, Pybus OG, Rambaut A (2011) A Bayesian phylogenetic method to estimate unknown sequence ages. Mol Biol Evol 28:879–887

    Article  CAS  PubMed  Google Scholar 

  • Smeds L, Qvarnström A, Ellegren H (2016) Direct estimate of the rate of germline mutation in a bird. Genome Res 26:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR (2015) Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol 7:1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89

    Article  CAS  PubMed  Google Scholar 

  • Smith NGC, Eyre-Walker A (2003) Partitioning the variation in mammalian substitution rates. Mol Biol Evol 20:10–17

    Article  CAS  PubMed  Google Scholar 

  • Smith AB, Peterson KJ (2002) Dating the time of origin of major clades: molecular clocks and the fossil record. Annu Rev Earth Planet Sci 30:65–88

    Article  CAS  Google Scholar 

  • Snir S, Wolf YI, Koonin EV (2012) Universal pacemaker of genome evolution. PLOS Comput Biol 8:e1002785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S, Ho SYW, Cooper A (2012) The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol Biol Evol 29:3345–3358

    Article  CAS  PubMed  Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL, Lewontin RC (1972) Comparative evolution at the levels of molecules, organisms and populations. In: Le Cam LM, Neyman J, Scott EL (eds) Proceedings of the sixth Berkeley symposium on mathematical statistics and probability. Volume V: Darwinian, neo-Darwinian, and non-Darwinian evolution. University of California Press, Berkeley, CA

    Google Scholar 

  • Sturtevant AH (1937) Essays on evolution. I. On the effects of selection on mutation rate. Q Rev Biol 12:467–477

    Article  Google Scholar 

  • Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48:582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung W, Tucker AE, Doak TG, Choi E, Thomas WK, Lynch M (2012) Extraordinary genome stability in the ciliate Paramecium tetraurelia. Proc Natl Acad Sci USA 109:19339–19344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata N (1987) On the overdispersed molecular clock. Genetics 116:169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata N (2007) Molecular clock: an anti-neo-Darwinian legacy. Genetics 176:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JA, Welch JJ, Lanfear R, Bromham L (2010) A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol 27:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, Nagylaki T, Hudson R, Bergelson J, Chen J-Q (2008) Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature 455:105–108

    Article  CAS  PubMed  Google Scholar 

  • Tong KJ, Lo N, Ho SYW (2016) Reconstructing evolutionary timescales using phylogenomics. Zool Syst 41:343–351

    Google Scholar 

  • Wang Z, Zhang J (2009) Why is the correlation between gene importance and gene evolutionary rate so weak? PLOS Genet 5:e1000329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Jiang Y-Y, Kim KM, Qu G, Jo H-F, Mittenthal JE, Zhang H-Y, Caetano-Anollés G (2011) A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 28:567–582

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ji Y, Hu Y, Hu H, Jia X, Jiang M, Zhang X, Zhao L, Zhang Y, Jia Y, Qin C, Yu L, Huang J, Yang S, Hurst LD, Tian D (2019) The architecture of intra-organism mutation rate variation in plants. PLOS Biol 17:e3000191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster AJ, Payne RJH, Pagel M (2003) Molecular phylogenies link rates of evolution and speciation. Science 301:478

    Article  CAS  PubMed  Google Scholar 

  • Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328

    Article  CAS  PubMed  Google Scholar 

  • Weller C, Wu M (2015) A generation-time effect on the rate of molecular evolution in bacteria. Evolution 69:643–652

    Article  CAS  PubMed  Google Scholar 

  • Wilson AC, Sarich VM (1969) A molecular time scale for human evolution. Proc Natl Acad Sci USA 63:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray GA, Levinton JS, Shapiro LH (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568–573

    Article  CAS  Google Scholar 

  • Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitutions in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2014) Molecular evolution: a statistical approach. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Yue J-X, Li J, Wang D, Araki H, Tian D, Yang S (2010) Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biol 10:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Yang J-R (2015) Determinants of the rate of protein sequence evolution. Nat Rev Genet 16:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YO, Siegal ML, Hall DW, Petrov DA (2014) Precise estimates of mutation rate and spectrum in yeast. Proc Natl Acad Sci USA 111:E2310–E2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerkandl E (1978) Multilocus enzymes, gene regulation, and genetic sufficiency. J Mol Evol 12:57–89

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 189–225

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Y. W. Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ho, S.Y.W. (2020). The Molecular Clock and Evolutionary Rates Across the Tree of Life. In: Ho, S.Y.W. (eds) The Molecular Evolutionary Clock. Springer, Cham. https://doi.org/10.1007/978-3-030-60181-2_1

Download citation

Keywords

Publish with us

Policies and ethics