Abstract
The molecular evolutionary clock was proposed in the 1960s and has undergone considerable evolution over the past six decades. After arising from early studies of the amino acid sequences of proteins, the molecular clock became a point of contention between competing theories of molecular evolution. In this chapter, I describe the origins of the molecular clock hypothesis and the mixture of evidence that emerged throughout the 1970s and 1980s, including the discovery of departures from clocklike evolution in proteins and DNA. I review some of the broad patterns of evolutionary rate variation across the tree of life, including rates of spontaneous mutation and long-term evolution in viruses, bacteria, animals, and plants. With the remarkable growth of genomic data over the past two decades, the molecular clock is now primarily seen as a tool for reconstructing evolutionary timescales. In the final parts of this chapter, I summarize the key developments in molecular dating methods and describe how these approaches have been used to infer the timing of major evolutionary events.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aiewsakun P, Katzourakis A (2016) Time-dependent rate phenomenon in viruses. J Virol 90:7184–7195
Allio R, Donega S, Galtier N, Nabholz B (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Biol Evol 34:2762–2772
Álvarez-Carretero S, Goswami A, Yang Z, dos Reis M (2019) Bayesian estimation of species divergence times using correlated quantitative characters. Syst Biol 68:967–986
Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 51:703–714
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522
Ayala FJ (1997) Vagaries of the molecular clock. Proc Natl Acad Sci USA 94:7776–7783
Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 8:619–631
Benton MJ, Ayala FJ (2003) Dating the tree of life. Science 300:1698–1700
Bernard H-U (1994) Coevolution of papillomaviruses with human populations. Trends Microbiol 2:140–143
Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398
Brochu CA, Sumrall CD, Theodor JM (2004) When clocks (and communities) collide: Estimating divergence times from molecules and the fossil record. J Paleontol 78:1–6
Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224
Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW (2018) Bayesian molecular dating: opening up the black box. Biol Rev 93:1165–1191
Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91:6491–6495
Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971
Chintalapati M, Moorjani P (2020) Evolution of the mutation rate across primates. Curr Opin Genet Dev 62:58–64
Christensen AC (2013) Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol 5:1079–1086
Christin P-A, Spriggs E, Osborne CP, Strömberg CAE, Salamin N, Edwards EJ (2014) Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol 63:153–165
Cutler D (2000) Understanding the overdispersed molecular clock. Genetics 154:1403–1417
Davies TJ, Savolainen V (2006) Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60:476–483
Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington, DC
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol 34:1363–1377
Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1:26–45
Doolittle RF, Blombäck B (1964) Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature 202:147–152
Doolittle RF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477
dos Reis M, Donoghue PCJ, Yang Z (2013) Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biol Lett 10:20131003
dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z (2015) Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol 25:2939–2950
dos Reis M, Donoghue PCJ, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 17:71–80
Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164
Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686
Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831
Drummond AJ, Forsberg R, Rodrigo AG (2001) The inference of stepwise changes in substitution rates using serial sequence samples. Mol Biol Evol 18:1365–1371
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLOS Biol 4:e88
Duchêne S, Ho SYW (2015) Mammalian genome evolution is governed by multiple pacemakers. Bioinformatics 31:2061–2065
Duchêne S, Holmes EC, Ho SYW (2014) Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc R Soc B 281:20140732
Duchêne S, Foster CSP, Ho SYW (2016a) Estimating the number and assignment of clock models in analyses of multigene datasets. Bioinformatics 32:1281–1285
Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC (2016b) Genome-scale rates of evolutionary change in bacteria. Microb Genom 2:e000094
Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276
Easteal S (1999) Molecular evidence for the early divergence of placental mammals. BioEssays 21:1052–1058
Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, San Francisco, CA, pp 82–115
Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M (2015) The spontaneous mutation rate in the fission yeast Schizosaccharomyces pombe. Genetics 201:737–744
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 27:2038–2051
Fisher RA (1936) The measurement of selective intensity. Proc R Soc B 121:58–62
Fitch WM (1976) Molecular evolutionary clocks. In: Ayala FJ (ed) Molecular evolution. Sinaeuer Associates, Sunderland, MA, pp 160–178
Fitch WM, Beintema JJ (1990) Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol 7:438–443
Freese E (1962) On the evolution of base composition at DNA. J Theor Biol 3:82–101
Gaut B, Muse SV, Clark WD, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35:292–303
Gaut B, Yang L, Takuno S, Eguiarte LE (2011) The patterns and causes of variation in plant nucleotide substitution rates. Annu Rev Ecol Evol Syst 42:245–266
Geoghegan JL, Duchêne S, Holmes EC (2017) Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLOS Pathog 13:e1006215
Gibson B, Eyre-Walker A (2019) Investigating evolutionary rate variation in bacteria. J Mol Evol 87:317–326
Gillespie JH (1984) The molecular clock may be an episodic clock. Proc Natl Acad Sci USA 81:8009–8013
Gillespie JH (1989) Lineage effects and the index of dispersion of molecular evolution. Mol Biol Evol 6:636–647
Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, Oxford, UK
Gillespie JH (1993) Substitution processes in molecular evolution. I. Uniform and clustered substitutions in a haploid model. Genetics 134:971–981
Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92:6723–6727
Goodman M (1961) The role of immunologic differences in the phyletic development of human behavior. Hum Biol 33:131–162
Haldane JBS (1957) The cost of natural selection. J Genet 55:511–524
Hanlon VCT, Otto SP, Aitken SN (2019) Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol Lett 3:348–358
Hasegawa M, Kishino H, Yano T (1989) Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea. J Hum Evol 18:461–476
Heath TA, Moore BR (2014) Bayesian inference of species divergence times. In: Chen M-H, Kuo L, Lewis PO (eds) Bayesian phylogenetics: methods, algorithms, and applications. CRC Press, Boca Raton, FL, pp 277–318
Heath TA, Huelsenbeck JP, Stadler T (2014) The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci USA 111:E2957–E2966
Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229
Ho SYW (2014) The changing face of the molecular evolutionary clock. Trends Ecol Evol 29:496–503
Ho SYW, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 23:5947–5965
Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101
Ho SYW, Chen AZY, Lins LSF, Duchêne DA, Lo N (2016) The genome as an evolutionary timepiece. Genome Biol Evol 8:3006–3010
Hodgkinson A, Eyre-Walker A (2011) Variation in the mutation rate across mammalian genomes. Nat Rev Genet 12:756–766
Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 72:659–670
Jukes TH, Kimura M (1984) Evolutionary constraints and the neutral theory. J Mol Evol 21:90–92
Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36
Kern AD, Hahn MW (2018) The neutral theory in light of natural selection. Mol Biol Evol 35:1366–1371
Kikuno R, Hayashida H, Miyata T (1985) Rapid rate of rodent evolution. Proc Japan Acad 61:153–156
Kim S-H, Elango N, Warden C, Vigoda E, Yi SV (2006) Heterogeneous genomic molecular clocks in primates. PLOS Genet 2:e163
Kimura M (1967) On the evolutionary adjustment of spontaneous mutation rates. Genet Res 9:23–34
Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626
Kimura M (1969) The rate of molecular evolution considered from the standpoint of population genetics. Proc Natl Acad Sci USA 63:1181–1188
Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge
Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26:24–33
King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798
Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18:352–361
Kohne DE (1970) Evolution of higher-organism DNA. Q Rev Biophys 3:327–375
Kreitman M, Akashi H (1995) Molecular evidence for natural selection. Annu Rev Ecol Syst 26:403–422
Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6:654–662
Kumar S, Hedges SB (2016) Advances in time estimation methods for molecular data. Mol Biol Evol 33:863–869
Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci USA 99:803–808
Laird CD, McConaughy BL, McCarthy BJ (1969) Rate of fixation of nucleotide substitutions. Nature 224:149–154
Lanfear R, Welch JJ, Bromham L (2010) Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol Evol 25:495–503
Lanfear R, Ho SYW, Davies TJ, Moles AT, Aarssen L, Swenson NG, Warman L, Zanne AE, Allen AP (2013) Taller plants have lower rates of molecular evolution. Nat Commun 4:1879
Langley CH, Fitch WM (1974) An examination of the constancy of the rate of molecular evolution. J Mol Evol 3:161–177
Lee MSY, Ho SYW (2016) Molecular clocks. Curr Biol 26:R387–R407
Lee MSY, Soubrier J, Edgecombe GD (2013) Rates of phenotypic and genomic evolution during the Cambrian explosion. Curr Biol 23:1–7
Lee MSY, Cau A, Naish D, Dyke GJ (2014) Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves. Syst Biol 63:442–449
Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352
Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17:704–714
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453
Manceau M, Marin J, Morlon H, Lambert A (2020) Model-based inference of punctuated molecular evolution. Mol Biol Evol 37:3308–3323
Margoliash E (1963) Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA 50:672–679
Martin W, Gierl A, Saedler H (1989) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:46–48
Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA
Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, Martínez I, Gracia A, Bermúdez de Castro JM, Carbonell E, Pääbo S (2014) A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–406
Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19:28–35
Molak M, Ho SYW (2015) Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA. PeerJ 3:e821
Mooers AØ, Harvey PH (1994) Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol 3:344–350
Moorjani P, Sankararaman S, Fu Q, Przeworski M, Patterson N, Reich D (2016) A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc Natl Acad Sci USA 113:5652–5657
Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J Hist Biol 31:155–178
Muse SV, Gaut BS (1997) Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. Genetics 146:393–399
Nabholz B, Glémin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130
Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54
Nei M, Suzuki Y, Nozawa M (2010) The neutral theory of molecular evolution in the genomic era. Annu Rev Genomics Hum Genet 11:265–289
Nguyen JMT, Ho SYW (2016) Mitochondrial rate variation among lineages of passerine birds. J Avian Biol 47:690–696
Ohta T (1972) Evolutionary rate of cistrons and DNA divergence. J Mol Evol 1:150–157
Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98
Ohta T, Gillespie JH (1996) Development of neutral and nearly neutral theories. Theor Pop Biol 49:128–142
Ohta T, Kimura M (1971) On the constancy of the evolutionary rate of cistrons. J Mol Evol 1:18–25
Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L, Bustos-Segura C, Foley W, Haff T, Hsieh J-F, Morales-Suarez A, Cartwright RA, Lanfear R (2020) A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. Proc R Soc B 287:20192364
Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94
Pagel M, Venditti C, Meade A (2006) Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314:119–121
Papadopoulou A, Anastasiou I, Vogler AP (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol 27:1659–1672
Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SYW, Belshaw R, Allain J-P, Hatzakis A (2013) Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 57:908–916
Park C, Qian W, Zhang J (2012) Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep 13:1123–1129
Peck KM, Lauring AM (2018) Complexities of viral mutation rates. J Virol 92:e01031–e01017
Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740
Polly PD (2001) On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones. Genetica 112–113:339–357
Puttick MN, Thomas GH, Benton MJ (2016) Dating placentalia: morphological clocks fail to close the molecular fossil gap. Evolution 70:873–886
Pybus OG, Rambaut A (2009) Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 10:540–550
Rambaut A (2000) Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399
Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56:453–466
Rocha EPC, Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21:108–116
Rocha EPC, Maynard Smith J, Hurst LD, Holden MTG, Cooper JE, Smith NH, Feil EJ (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239:226–235
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61:973–999
Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231
Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109
Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748
Sarich VM, Wilson AC (1967a) Immunological time scale for hominid evolution. Science 158:1200–1203
Sarich VM, Wilson AC (1967b) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148
Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147
Scally A (2016) The mutation rate in human evolution and demographic inference. Curr Opin Genet Dev 41:36–43
Schmid-Siegert E, Sarkar N, Iseli C, Calderon S, Gouhier-Darimont C, Chrast J, Cattaneo P, Schütz F, Farinelli L, Pagni M, Schneider M, Voumard J, Jaboyedoff M, Fankhauser C, Hardtke CS, Keller L, Pannell JR, Reymond A, Robinson-Rechavi M, Xenarios I, Reymond P (2017) Low number of fixed somatic mutations in a long-lived oak tree. Nat Plants 3:926–929
Seligmann H (2010) Positive correlations between molecular and morphological rates of evolution. J Theor Biol 264:799–807
Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23:7–9
Shapiro B, Ho SYW, Drummond AJ, Suchard MA, Pybus OG, Rambaut A (2011) A Bayesian phylogenetic method to estimate unknown sequence ages. Mol Biol Evol 28:879–887
Smeds L, Qvarnström A, Ellegren H (2016) Direct estimate of the rate of germline mutation in a bird. Genome Res 26:1211–1218
Smith DR (2015) Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol 7:1227–1234
Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89
Smith NGC, Eyre-Walker A (2003) Partitioning the variation in mammalian substitution rates. Mol Biol Evol 20:10–17
Smith AB, Peterson KJ (2002) Dating the time of origin of major clades: molecular clocks and the fossil record. Annu Rev Earth Planet Sci 30:65–88
Snir S, Wolf YI, Koonin EV (2012) Universal pacemaker of genome evolution. PLOS Comput Biol 8:e1002785
Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S, Ho SYW, Cooper A (2012) The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol Biol Evol 29:3345–3358
Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061
Stebbins GL, Lewontin RC (1972) Comparative evolution at the levels of molecules, organisms and populations. In: Le Cam LM, Neyman J, Scott EL (eds) Proceedings of the sixth Berkeley symposium on mathematical statistics and probability. Volume V: Darwinian, neo-Darwinian, and non-Darwinian evolution. University of California Press, Berkeley, CA
Sturtevant AH (1937) Essays on evolution. I. On the effects of selection on mutation rate. Q Rev Biol 12:467–477
Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48:582–592
Sung W, Tucker AE, Doak TG, Choi E, Thomas WK, Lynch M (2012) Extraordinary genome stability in the ciliate Paramecium tetraurelia. Proc Natl Acad Sci USA 109:19339–19344
Takahata N (1987) On the overdispersed molecular clock. Genetics 116:169–179
Takahata N (2007) Molecular clock: an anti-neo-Darwinian legacy. Genetics 176:1–6
Thomas JA, Welch JJ, Lanfear R, Bromham L (2010) A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol 27:1173–1180
Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657
Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, Nagylaki T, Hudson R, Bergelson J, Chen J-Q (2008) Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature 455:105–108
Tong KJ, Lo N, Ho SYW (2016) Reconstructing evolutionary timescales using phylogenomics. Zool Syst 41:343–351
Wang Z, Zhang J (2009) Why is the correlation between gene importance and gene evolutionary rate so weak? PLOS Genet 5:e1000329
Wang M, Jiang Y-Y, Kim KM, Qu G, Jo H-F, Mittenthal JE, Zhang H-Y, Caetano-Anollés G (2011) A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 28:567–582
Wang L, Ji Y, Hu Y, Hu H, Jia X, Jiang M, Zhang X, Zhao L, Zhang Y, Jia Y, Qin C, Yu L, Huang J, Yang S, Hurst LD, Tian D (2019) The architecture of intra-organism mutation rate variation in plants. PLOS Biol 17:e3000191
Webster AJ, Payne RJH, Pagel M (2003) Molecular phylogenies link rates of evolution and speciation. Science 301:478
Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328
Weller C, Wu M (2015) A generation-time effect on the rate of molecular evolution in bacteria. Evolution 69:643–652
Wilson AC, Sarich VM (1969) A molecular time scale for human evolution. Proc Natl Acad Sci USA 63:1088–1093
Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639
Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058
Wray GA, Levinton JS, Shapiro LH (1996) Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568–573
Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitutions in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745
Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372
Yang Z (2014) Molecular evolution: a statistical approach. Oxford University Press, Oxford, UK
Yue J-X, Li J, Wang D, Araki H, Tian D, Yang S (2010) Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biol 10:242
Zhang J, Yang J-R (2015) Determinants of the rate of protein sequence evolution. Nat Rev Genet 16:409–420
Zhu YO, Siegal ML, Hall DW, Petrov DA (2014) Precise estimates of mutation rate and spectrum in yeast. Proc Natl Acad Sci USA 111:E2310–E2318
Zuckerkandl E (1978) Multilocus enzymes, gene regulation, and genetic sufficiency. J Mol Evol 12:57–89
Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 189–225
Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ho, S.Y.W. (2020). The Molecular Clock and Evolutionary Rates Across the Tree of Life. In: Ho, S.Y.W. (eds) The Molecular Evolutionary Clock. Springer, Cham. https://doi.org/10.1007/978-3-030-60181-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-60181-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60180-5
Online ISBN: 978-3-030-60181-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)