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Abstract

In his Formalization of Logic (1943) Carnap pointed out that there are non-normal
interpretations of classical logic: non-standard interpretations of the connectives and
quantifiers that are consistent with the classical consequence relation of a language.
Different ways around the problem have been proposed. In a recent paper, Bonnay
and Westerstahl argue that the key to a solution is imposing restrictions on the type
of interpretation we take into account. More precisely, they claim that if we restrict
attention to interpretations that are (a) compositional, (b) non-trivial and (c) in the case
of the quantifiers, invariant under permutations of the domain, Carnap’s Problem is
avoided. This paper has two goals. The first is to show that Bonnay and Westerstahl’s
solution to Carnap’s Problem doesn’t work. The second is to argue that something
similar to their proposal seems to do the job. The problems with Bonnay and West-
erstahl’s approach trace back to issues concerning the (un)definability of subsets of
the domain of first-order structures, as well as to the compositionality of first-order
languages. After expanding on these problems, I’ll propose a way to modify Bonnay
and Westerstahl’s account and solve Carnap’s Problem.

Keywords Inferentialism - Categoricity - Carnap’s Problem - Compositionality -
Definability - Meta-Semantics

1 Introduction

It’s a platitude to say that linguistic signs are conventional, that they mean what they
do because speakers use them (or have used them) in a certain way. There is nothing
wrong with the idea, as far as it goes, but it doesn’t go far. ‘Use determines meaning’,
understood this way, says too little to be useful.

Inferentialism is one way to flesh out the slogan. It claims that the meaning of words
is determined by the way they are used in inferences. This is not a popular view, at least
if applied to language at large, but it has found more acceptance when restricted to
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logical vocabulary. Words like ‘or’, ‘some’ and ‘not’ play a central role in arguments.
And conversely, the way we use these words in arguments seems especially telling
about what they mean. Inferentialists think this connection is tight enough for us to
base a theory of meaning on it.!

There are different ways to be an inferentialist. Hard-line versions of the position
—see [6, 20]- characterise meanings directly in terms of inference rules. To know the
meaning of ‘and’, on these accounts, is simply to know that one can make certain
inferences involving it (say, infer ‘p’ and ‘g’ from ‘p and ¢’ and vice versa). This
type of inferentialism is fairly radical: it does without, or at least plays down, the usual
notions of reference, truth-conditions and the like. A moderate form of inferentialism is
favoured by Hacking [8], Garson [7] or Murzi and Topey [16]. Moderate inferentialists
don’tidentify meanings with inference rules, but still claim that the meaning of logical
vocabulary can be, in some sense, read off its role in inference.

What exactly is a ‘role in inference’, though? For instance, what is the role in infer-
ence of the classical connectives and quantifiers? Here’s an idea: take some language
£ and consider the classical consequence relation -, on it.? I gives full informa-
tion about which sentences logically follow from which, alone or in combination with
others, so we could take it to encode the inferential role of the logical vocabulary of
L. The idea is natural and straightforward, but a well-known result by Carnap weighs
against it. In his [5] Carnap pointed out that there are ‘non-normal’ interpretations of
classical logic: deviant interpretations of the connectives and quantifiers that are con-
sistent with the classical consequence relation. In other words, if roles in inference are
given by -, and meanings are what Carnap calls interpretations, then the meaning of
classical logical vocabulary is not fixed by its inferential role. The situation is similar
to the case of arithmetic: the Peano axioms have non-standard models, and so does,
in a sense, classical logic itself. Let’s call this Carnap’s Problem.

Philosophers have come up with several workarounds to Carnap’s Problem. Some
propose to use multiple conclusion consequence relations [23], or bilateral ones [21,
24]. Others hold that inferential roles are given by the rules governing logical vocab-
ulary, rather than by consequence relations [7]. Here I'll focus on a third kind of
approach, recently put forward by Bonnay and Westerstahl [3]. According to Bonnay
and Westerstdahl some assignments of meanings to the expressions of a language can
be ruled out from the get go. The ‘space of possible interpretations’ as they put it,
is ‘a priori restricted by universal semantic principles’ [3, p. 721]. More precisely,
they claim that if we restrict attention to interpretations that are (a) compositional, (b)
non-trivial and (c) in the case of the quantifiers, invariant under permutations of the
domain, Carnap’s Problem is avoided.

This paper has two goals. The first is to show that Bonnay and Westerstahl’s solution
to Carnap’s Problem doesn’t work. The second is to argue that something similar to
their proposal seems to do the job.

! From now on I'll use ‘inferentialism’ to mean inferentialism as applied to logical vocabulary (what’s
sometimes known as logical inferentialism). ‘Logical vocabulary’, here and in what follows, is short for
‘connectives and quantifiers’.

2 Where - r is understood ‘syntactically’, as a relation between sets of sentences and sentences.

@ Springer



Carnap’s Problem, Definability and Compositionality 1323

There are two problems with Bonnay and Westerstahl’s approach. The first concerns
the main result of their paper, a characterisation of the interpretations of the universal
quantifier V that are consistent with the classical consequence relation of a language.
I will show that their characterisation holds only for second-order languages, and not
for first-order ones; for that reason their strategy doesn’t fix the normal interpretation
of first-order quantifiers. The underlying problem has to do with the (un)definability of
subsets of the domain of a structure. It’s well-known that given a first-order language
and a structure for it there are, in general, subsets of the domain that can’t be defined
by any formula. This can be exploited to construct non-normal interpretations, and
makes Carnap’s Problem for first-order languages particularly challenging.

The second problem with Bonnay and Westerstahl’s approach concerns the way
they define interpretations. Although they hold that we should restrict attention to com-
positional interpretations, their normal interpretations of first-order languages aren’t
compositional after all. I will also show that if we redefine interpretations to avoid this
problem, compositionality, non-triviality and invariance under permutations don’t pin
down the standard meaning of logical vocabulary. In this case the underlying problem
is Bonnay and Westerstahl’s demand for compositionality itself. The usual semantics
for first-order logic is not compositional. While different compositional semantics for
first-order languages are available, they all involve a large range of semantic values.
This, in its turn, makes Carnap’s Problem all the more difficult to solve: more seman-
tic values means more possible interpretations, and therefore more non-normal ones
that may be consistent with a given consequence relation. In the first-order case, then,
demanding compositionality is counter-productive.

After expanding on these problems I'll propose a way to modify Bonnay and West-
erstahl’s solution that avoids them. Roughly put, I’ll argue that there are plausible
reasons to strengthen the notion of an interpretation being consistent with a conse-
quence relation, and that this is enough to clinch the usual interpretation of classical
logical vocabulary.

Here’s the plan: Section 2 sets the stage by introducing Carnap’s Problem for
propositional languages and Bonnay and Westerstahl’s solution to it. Section 3 looks
at the interplay between Carnap’s Problem and definability, and Section 4 at Carnap’s
Problem and compositionality. Section 5 then presents an alternative to Bonnay and
Westerstahl’s solution, Section 6 looks at different ways of defining interpretations,
and Section 7 takes stock and concludes.

2 Carnap’s Problem and Propositional Logic

Let’s begin by sorting out the terminology. Take a propositional language £ built
up from atoms p, ¢, r, ... and connectives in the usual way. A valuation for L is an
assignment of truth-values 1 or O to all sentences, i.e. a function from L-sentences to
{1,0}. A consequence relation - for L is a binary relation between sets of £-sentences
and L-sentences. A valuation v is consistent with a consequence relation - if it makes
all valid arguments truth-preserving: if ' F ¢ and v(I") = 1, then v(p) = 13 A

3 Here and in what follows ‘v(I") = " is short for v(y) = 1 forall y € T.
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valuation is o—normal for a connective ¢ if it interprets ¢ in the intended way. A-
normal valuations, for instance, are such that v(p A ) = 1 iff v(p) = v(¥) = 1,
and —-normal valuations are such that v(—¢) = 1 iff v(¢) = 0. Finally, a valuation is
normal if it is ©—normal for all connectives ¢ of L.

What Carnap [5] pointed out is that some non-normal valuations are consistent with
the classical consequence relation of any (truth-functionally complete) language. Say
for concreteness that £ has connectives A, V, — and —, and consider the valuation vy
such that vy () = 1 for all sentences ¢. v is consistent with the classical consequence
relation . of £, but not —-normal. Or take v., the valuation such that v.(¢) = 1 iff
@ is a classical tautology. It is easy to check that v, is normal only for A but, once
again, consistent with .

According to Bonnay and Westerstahl the key to a solution is imposing restrictions
on the type of valuation we take into account. They begin by noting that ‘as speakers,
we know that our language [...] is going to have some true and some false sentences’
[3, p. 733]. This means that the trivial valuation vy such that vy (¢) = 1 for all ¢ is
ruled out from the start, by means of a ‘semantic a priori’.

The second restriction they impose is compositionality. The usual, fast and loose
formulation of the principle of compositionality says that the meaning of a complex
expression depends on the meanings of its parts and the syntactic rules used to put them
together. This formulation can be made more precise in a number of non-equivalent
ways.* Bonnay and Westerstihl go for the following one: an assignment . of semantic
values to the expressions of some language is compositional if:

(PC): For every n-ary syntactic rule O there is a semantic composition
function Fp such that for any well-formed expression O(ey, ...e,) we have

w(O(ey, ...ep)) = Fo(uler), ...u(ey)).

In the case of propositional logic, where w is a valuation v, (PC) just says that v must
treat each connective as a truth-function.

These two requirements, compositionality and non-triviality, are enough to rule out
all non-normal interpretations of propositional languages. In fact, compositionality
alone gets rid of all valuations that are non-normal for A, V or —. The requirement
of non-triviality is only needed to get rid of the valuation vz, which is compositional
and normal for all our connectives except —. Let’s make this into a theorem, for future
reference:

Theorem 1 Let L be a propositional language and v a valuation for L. If v is compo-
sitional, non-trivial, and consistent with \-, then v is normal.

Proof See [3]. O

The situation can be summarised as follows: all non-normal valuations for
propositional logic (except vr) are non-compositional. Therefore, demanding compo-
sitionality and banning vr leaves us with all and only the normal valuations: Carnap’s
Problem is avoided. Now let’s move on to the first-order case.

4 See [17] for a detailed discussion and further references.
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3 Carnap’s Problem and Definability

Formulating Carnap’s Problem for propositional languages is straightforward. Doing
it for first-order languages is more delicate, and it will pay off to be cautious. Let’s
begin by being very clear about the languages at play. I’ll assume that they have A, —
and V as logical vocabulary, but this is only for concreteness; any other signature would
do. As for non-logical vocabulary, all languages will have infinitely many individual
variables x1, ..., X, ... and a stock of predicate symbols P, R, ... of finite arity. They
may or may not contain, in addition, individual constants cy, ...cy, ... and function
symbols f1, ..., fu, ..., also of finite arity.

Now, in order to state Carnap’s Problem we have to do several things. First we have
to define interpretations, and agree on what the normal and non-normal interpretations
of first-order languages are. Then we have to explain what it is for an interpretation to
be consistent with a consequence relation, and in particular with the classical conse-
quence relation of a language. And, finally, since we’re going to formulate Carnap’s
Problem the way Bonnay and Westerstahl do, we also have to consider what compo-
sitionality, non-triviality, and invariance under permutations amount to in this setting.

Let’s begin with interpretations. When we talk about semantics for first-order logic,
what comes to mind is the Tarskian definition of satisfaction of a formula ¢ under a
variable assignment o in a structure M = (D, I) —where D is a domain and [ a
function interpreting the non-logical vocabulary. Given such an M, the usual clauses
for satisfaction are:

) M, o0 = P(x1, ...xp) iff (0(x1), ..., 0(x)) € I(P).
(Y M,0 EpAyiff Mo Egpand M, 0o = ¢.
(i) M, 0 = =g iff M, o & ¢.

(iv)y M, o =Vxpiff M,ola/x] = ¢ foralla € D.
V) M, o |EIxgiff M, ola/x] = ¢ forsomea € D.

where o [a/x]is the variable assignment that results from setting o (x) = a and leaving
o otherwise unchanged. When V and 3 are treated as generalised quantifiers clauses
(iv) and (v) are slightly modified. Quantifiers, in these contexts, denote sets of subsets
of the domain: V denotes the set { D} containing only the domain D of the structure,
and 3 denotes the set of all non-empty subsets of D (let’s call it Ep for short). The
corresponding clauses for satisfaction are:

(iv) M, o =Vxeiff {a € D| M, ola/x] = ¢} € {D}.
VY M, o =3xeiff {a € DM, ola/x] = ¢} € Ep.

It should be clear that clauses (iv)-(v) are equivalent to (iv)’ -(v)’, in the sense that they
give rise to the same satisfaction relation. Bonnay and Westerstdhl prefer the latter
formulation, and I will follow suit. They introduce the general notion of a first-order
interpretation as follows:

Since we assume compositionality, our interpretations amount to giving syntac-
tically adequate semantic values to the logical and non-logical vocabulary. Since
we furthermore assume non-triviality, we need not worry about the interpretation
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of connectives, which has to be standard by [Theorem 1]. Hence, our interpre-
tations can be taken to be pairs of the form (M, Q) where M is a standard
L-structure [...] interpreting the non-logical vocabulary of M, and Q is a set of
subsets of [the domain of the structure], interpreting V. [3, p. 729]

As 1 mentioned in the introduction, there’s a problem with the appeal to composi-
tionality in the paragraph above. I’ll put it aside until the next section, so as to not
juggle too many issues at once. For now let’s follow Bonnay and Westerstdhl to the
letter, and assume that compositionality and non-triviality fix the standard meaning
of connectives in the first-order case. In the rest of this section I’'ll show that, even if
we take the standard meaning of connectives for granted, Bonnay and Westerstahl’s
restrictions are not enough to to pin down the normal interpretation of quantifiers.
Let’s see the details.

In Bonnay and Westerstahl’s set-up an interpretation for a language L is a weak
model M, Q, where M = (D, I) is an L-structure and Q is a set of subsets of D.
Given a weak model M, Q, they define satisfaction as follows:>

(HOM, Q,0 = P(xy,..xp) iff (o (x1), ..., 0(x,)) € I(P).
M, Q0,0 EpAyYiff M, Q0,0 Epand M, Q0,0 E ¢.
BYM, Q,0 E—piff M, Q,c W ¢.

@' M, Q,0 =Vxgpiff {a € DM, Q,0la/x] = ¢} € Q.

Clauses (2) and (3) are just the usual clauses for A and —. This is to be expected;
as we’ve seen Bonnay and Westerstahl claim that compositionality and non-triviality
fix the normal interpretation of connectives. Clause (4)’ is almost identical to (iv)’, the
standard clause for V. The only difference is that in (4) the denotation of V can be any
set of subsets of D, and not just the usual one, {D}. In other words, the only possible
source of non-normality in a weak model comes from deviant interpretations of V. A
weak model M, Q, then, is normal if O = {D}, and non-normal otherwise.

Bonnay and Westerstdhl also require that the interpretation of quantifiers be invari-
ant under permutations. They define this notion in the usual way: a permutation 7
of the domain D of a structure is a bijection of D onto itself. If 7 is a permutation
of Dand X C D, let n(X) = {n(a) € D|a € X}. Then Q € P(D) is invariant
under permutations if Q = {m(X) € P(D) | X € Q} for all permutations . It’s easy
to check that { D}, the normal interpretation of V, is indeed invariant under permuta-
tions. Lastly, Bonnay and Westerstahl take the classical consequence relation . of a
first-order language L to be a relation between sentences (closed formulas) only; this
means that a weak model M, Q is consistent with the classical consequence relation
k. for Lif, whenever I' -, ¢ and M, Q =T, we have that M, QO = ¢ (no reference
to variable assignments is needed, since we’re dealing with sentences).

The main result of Bonnay and Westerstahl’s paper is a characterisation of the
interpretations of the universal quantifier V that are consistent with the classical con-
sequence relation of a language. This characterisation uses the notion of a principal
filter closed under the interpretation of terms. Recall that a principal filter F' on a

5 Of course, if £ contains individual constants and function symbols, clause (i) is modified in the usual
way to account for terms.
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set S is a non-empty set of subsets of § such that for some G C S, we have that
F ={X C S |G C X}. Given a weak model M, Q for a language L, possibly con-
taining individual constants and function symbols, we say that Q is a principal filter
closed under the interpretation of terms in M if:

(i) Q is a principal filter on D generated by some G C D.

(i1) For any n-ary function symbol f of L, if ay, ..., a, € G,then I(f)(ay, ...a,) €
G.

(iii) For any individual constant ¢ of £, I(c) € G.

Bonnay and Westerstahl’s characterisation is as follows:

(BW1) Let £ be a language with V primitive, let M, Q be a weak model for
it. Then M, Q is consistent with I, iff Q is a principal filter closed under the
interpretation of terms in M.

They combine this characterisation with an ancillary result:
(BW2) A principal filter Q on D is invariant under permutations iff Q = {D}.

In theory (BW1) and (BW2) should take care of Carnap’s Problem. According to
(BW1) consistency with the classical consequence relation forces us to interpret V as a
principal filter closed under the interpretation of terms. (BW2) then shows that the only
such filter that’s also invariant under permutations is { D}, the normal interpretation of
V. Therefore (or so it seems) non-normal weak models are ruled out.

The reason Bonnay and Westerstahl’s strategy fails is simple: (BW1) is false for
first-order languages. They prove (BW1) only for languages with predicate variables
(that is, for second-order languages without second-order quantifiers), and claim that
the addition of predicate variables is a ‘simplifying assumption’ without which ‘similar
results would hold’ [3, p. 729]. This, however, is a mistake. Some of the weak models
that falsify (BW1) are both non-normal and invariant under permutations, and so the
normal interpretation of quantifiers is not secured. To see why we need an extra bit of
terminology: given a weak model M, Q for a language L, the extension of a formula
¢ relative to o and x is ||¢||(/,YL’Q :={a € D|(M, Q),cla/x] = ¢}, and a subset X
of D is definable if X = ||¢| |?§’Q for some ¢, o and x. Now, the following lemma
gives a counterexample to (BW1) that is simultaneously non-normal and invariant
under permutations:

Lemma 2 There is a first-order language L1 with a non-normal weak model N, Q
consistent with the classical consequence relation =, .

Proof Take the language £ with A, — and V as logical constants and a unary predicate
symbol P as non-logical vocabulary. Consider the £;-structure N' = (D, I) where D
isany setsuchthat |D| > 1and I (P) = D.Next we need a (non-normal) interpretation
for ¥ to make V into a weak model. Say we interpret V with E p, the set of all non-empty
subsets of D —in other words, we’ll (mis)interpret V as 3.

We now have a weak model (N, Ep). It’s clear that (N, Ep) is non-normal, and it
is easy to check that Ep is invariant under permutations. The only thing left to show
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is that (N, Ep) is consistent with the classical consequence relation 2, of £i. A
routine induction on formulas shows that for any ¢, o and x:

N.{D N {D
@) lgllos™” = D or [lgllns”! = 0.

N E N (D
() oI350 = [l 1217

A second induction on formulas then shows that for any ¢ and o, we have that
N,{D},o = @ iff N, Ep,o = ¢. All steps of this second induction are trivial
except the quantifier one, which goes as follows:

N, (D}, o = Vxg iff by (4)

AD :

lplior”! = D iff by @), @)

llios™” = Diff by (), (d2)

I¢ll2 " € Ep iff by (4)

N, Ep,o = Vxo.

Finally, \/, {D} is a normal interpretation, and hence consistent with -, . But by the
above the normal weak model A, {D} is equivalent to the non-normal weak model
N, Ep,soN, Ep is also consistent with Fz,- O

Lemma 2 is formulated for the very simple language £, but it can be adapted to
richer ones. If a language has function symbols and individual constants, the function
I can give them any value whatsoever, and if it has further predicate letters R of arity
n we just need to set /(R) = D". It’s also important to note that the fact that we
(mis)interpreted V as 3 is largely irrelevant. For instance, let E,, be the set of subsets
of D containing at least n elements. Then Lemma 2 also applies if the denotation of
Vis E, for any n > 1. And finally, Lemma 2 can be adapted to languages with 3,
rather than V, as a primitive symbol. Let a weak model M, Q for a language where 3
is primitive be 3-normal if Q = Ep. Then:

Corollary 3 There is a a language Lo with 3 as a primitive symbol and a non 3-normal
weak model N, Q consistent with - Lo

Proof Let L, be exactly as £1 but with 3 primitive instead of V. It follows from Lemma
1 that A, {D} is a non 3-normal weak model for £, consistent with -, . O

We can explain what’s going on from a more general perspective by adapting a
result from [1]. Consider once again the normal interpretation of 3:

M, Ep,o E=3xgpiff {a e DM, cla/x] = ¢} € Ep

There’s a certain sense in which this interpretation overshoots the mark. We don’t
really need 3 to denote all non-empty subsets of the domain in order to get the usual
satisfaction relation. It’s enough that it denotes all the definable subsets of the domain,
those that are the extension of some formula. Let’s make this observation more precise
and more general. Given a weak model M, Q, let Def(M, Q) be the set of definable
subsets of D. Then:®

6 Lemma 4 is a modification of the Hull Theorem from [1]. The modification is needed to (a) adapt
Antonelli’s idea to the present setting and (b) avoid a problem with Antonelli’s definition of the hull of a
model, pointed out in [2].
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Lemma4 If M, Q and M, Q' are weak models such that Q' = Q N Defi M, Q),
then M, Q,0 =g iff M, Q',0 &= ¢ forany ¢ and .

Proof The proof is by induction on formulas. The weak models agree on the interpre-
tation of atomic formulas and connectives, so all steps are trivial except the quantifier
one. Let Q be whatever quantifier Q and Q' are meant to interpret. Then:

M, Q,0 = Oxv iff

||1/f||é\:l5’Q € Q N Def(M, Q) iff (by induction hypothesis)
|WI|%C’Q/ € Q N Def(M, Q) iff by (by assumption)
Wilev? e Q' iff

M, Q0 = Oxy.

O

Corollary 3 can now be seen as a special case of Lemma 4. The only definable sets
of N, Ep are D and @. Thus {D} = Ep N Def(N, Ep), and so the non 3-normal
model AV, {D} is equivalent to the 3-normal model N, Ep.

Something similar happens with the normal interpretation of V:

M, (D}, o = Vxgiff {a € D| M, ola/x] = ¢} € {D}

In this case we don’t need V to denote the set containing only D. We can, for instance,
clutter its denotation with undefinable subsets and get an equivalent weak model:

Lemma5 Let M, Q and M, Q' be weak models such that Q' = Q U B for some
B C P(D) such that B N DefiM, Q) = 0. Then M, Q,0 = ¢ iff M, Q",0 = ¢
forany ¢ and o.

Proof Again by induction on formulas. All steps are trivial except the quantifier one.
For the left-to-right direction note that

M, 0,0 = 0xy = ¢4 € 0 = (by induction hypothesis) ||y |24 < e
0= WM e QUB= M, Q.0 k= Oxy.

For the right-to left direction, note that

M,0,0 E Oxy = I|W||%'Q/ € Q U B = (by induction hypothesis)
112t 2 e QUB = Y1242 e 0 = M, 0,0 = Oxy.

]

Lemma 2 can then be seen as a special case of Lemma 5. The only definable
sets of NV, {D} are D and §J. Thus Ep = {D} U B fora B € P(D) such that
B N Def(NV, {D}) = @, and hence the non V-normal weak model N, Ep is equivalent
to the Y-normal weak model \V, {D}.

The results in this section also explain why Bonnay and Westerstahl’s use of pred-
icate variables is not a simplifying assumption, but a crucial part of their set-up. The
non-normal weak models above exploit the fact that, given a first-order language and
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1330 P. del Valle-Inclan

a structure for it, there are often subsets of the domain that can’t be defined by any
formula.” Adding predicate variables to a first-order language boosts its expressive
power, and therefore rules out a host of non-normal interpretations. Bonnay and West-
erstdhl’s proof of (BW1) —for second-order languages— hinges on this, and cannot be
adapted to first-order ones. Ultimately, this is why their strategy to solve Carnap’s
Problem doesn’t scale up from the propositional to the first-order case. Even if we
assume that the standard interpretation of connectives is fixed —and we shouldn’t,
as the next section will make clear— there are still non-normal interpretations of the
quantifiers that fulfil all of Bonnay and Westerstahl’s constraints.

4 Carnap’s Problem and Compositionality

In the previous section I flagged a problem with Bonnay and Westerstahl’s definition
of an interpretation. In this section I’ll explain the problem in detail, and explore some
of its consequences.

The key fact to keep in mind is the following: the usual, two-valued semantics for
first-order languages is not compositional. This calls for some explanation. When we
talk about a semantics for first-order languages, as I said, we usually have in mind the
Tarskian satisfaction relation defined by means of clauses (i)-(v) —or equivalently, (i)-
(v)'— in the previous section. Strictly speaking, however, these clauses are are not an
assignment of semantic values; they are the definition of a ternary relation = between
structures, variable assignments, and formulas. The notion of compositionality only
applies to assignments of semantic values, so it doesn’t really make sense to say that
a satisfaction relation is, or isn’t, compositional. Still, there’s a well-known way in
which a satisfaction relation |= determines a class of valuations: just set vé\/l (p) = 1if
M, o = ¢, else vévl (¢) = 0, for any formula ¢. As the notation suggests, this yields
a valuation v*! for each variable assignment o from £ to M.

Each satisfaction relation, then, defines a two valued semantics for first-order lan-
guages. But there’s a catch: this semantics is not always compositional. Take a language
L, an L-structure M, and the standard satisfaction relation = between them. In
any valuation determined by =, the semantic value of a formula ¢ A ¥ is a func-
tion of the semantic value of ¢ and the semantic value of : v(/,\/( eny) =1
iff v(/,\/l((p) = vé\/t(w) = 1, for any o. Something similar happens with negation:
v(/,\/‘ (—p) = 1iff vé\/l (¢) = 0 (again, for arbitrary o). But the same does not hold for
quantifiers: the truth value of Vx¢ does not depend only on the truth value of ¢. Put
more formally, the value of v{,\/l (Vx¢) is not a function of the value of v[/,\/‘ (¢), but of
the values of vé\fl (¢) for all appropriate o’ 8 Indeed, it’s easy to find structures M such

that for some ¢, ¥ and o, we have that vé‘/t (p) = v{,\/t () = 1but vé\" (Vx¢) = 0and

7 Note, by the way, that undefinability is a pervasive phenomenon that applies to languages with more
expressive power than I've considered above. For instance, a simple cardinality argument shows that given
any countable £ and any L-structure M = (D, I') with a countably infinite D, some subsets of D are not
definable by any £-formula.

8 The appropriate o’ are of course those of the form o[a/x] for some element a of the domain.
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vé\" (Vxyr) = 1. In those cases no function on semantic values (i.e. no truth-function)
corresponds to the syntactic operation generating Vx¢ from ¢ —and similarly for 3.°

The fact that the valuations v/*! are not compositional is not a problem in and of
itself. They assign truth-values to formulas in a natural and systematic way, following
the recursive clauses for satisfaction. Nevertheless, this failure of compositionality
must be a problem for Bonnay and Westerstahl. For them compositionality is a uni-
versal constraint that all interpretations, normal or not, must abide by. Unfortunately,
they seem to have a two-valued semantics in mind when defining interpretations of

first-order languages. Recall what they say:

Since we assume compositionality, our interpretations amount to giving syn-
tactically adequate semantic values to the logical and non-logical vocabulary.
Since we furthermore assume non-triviality, we need not worry about the inter-
pretation of connectives, which has to be standard, by [Theorem 1]. Hence, our
interpretations can be taken to be pairs of the form (M, Q) where... [3, p. 729]

Theorem 1 says that if our only semantic values are 0 and 1, compositionality and non-
triviality rule out all non-normal interpretations of the connectives. But then something
must be wrong with the passage above. If the only semantic values are 0 and 1, then
normal interpretations are not (always) compositional. If, on the other hand, there are
semantic values besides 1 and 0, then the appeal to Theorem 1 is moot, and we can’t
assume that compositionality and non-triviality pin down the standard interpretation
of connectives. This is the second problem with Bonnay and Westerstahl’s approach:
their definition of a first-order interpretation either violates compositionality or else
begs the question against non-normal interpretations of the connectives.

It is possible to give compositional semantics for first-order languages, which leads
to a natural question. Suppose we reformulate Bonnay and Westerstahl’s notion of an
interpretation so that (a) normal interpretations are always compositional and (b) we
don’t beg the question against non-normal interpretations of the connectives. Do com-
positionality, non-triviality and invariance under permutations pin down the normal
interpretation of logical vocabulary?

The answer is ‘no’. The reason, roughly put, is that compositional semantics for
first-order languages require a large number of semantic values. This, in its turn,
makes Carnap’s Problem more difficult to solve, since more semantic values entail
more possible interpretations, and therefore more unintended ones to rule out. As we’ll
see, this means that in the new setting Bonnay and Westerstahl’s restrictions are not
enough to fix the standard interpretation of connectives, let alone quantifiers.

The most common strategy to set up a compositional semantics for first-order
languages is to take the semantic value ﬂ(p]]M of aformula ¢ in a structure M to be the

9 Note that if we use partial valuations that assign truth-values to sentences (closed formulas) only, the
resulting semantics is not compositional either. Set, for all sentences ¢, oM (p) = Lif M | ¢, else
M (¢) = 0 (no reference to assignments o is needed, since we are dealing with sentences). Composition-
ality, on Bonnay and Westerstahl’s formulation, requires that for each syntactic operation O there should
be a corresponding operation on semantic values. The syntactic components of sentences, however, are not
in general sentences themselves. For instance, the syntactic components of Vx P (x) are all subsentential,
S0 no operation on semantic values corresponds to the syntactic operation that generates Vx P (x).
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set of variable assignments o such that M, o = ¢.!? Here’s some new notation: given
a structure M = (D, I) for a language L, AM is the set of all variable assignments
from £ to D. Then first-order formulas can be interpreted as follows:!!

() [P(x1, ox)]M = {0 € AM | (0(x1), ..., 0 (xn)) € [(P)}
@) [o AYIM = [p]M N [y ]M

3) [-]M = AM — [p]M

@) [Axp]M = {0 € AM |6 ~, o’ for some o' € [p]™M}

(5) [Vxg]M = {0 € AM |0’ € [p]M forall o' st. 0 ~, o’}

The general idea is clear: the semantic values of formulas are sets of assignments,
and conjunction and negation are interpreted as operations on semantic values (inter-
section and complementation, respectively). As pointed out in [26], however, the
resulting semantics is not fully compositional either. The problem lies again with
the interpretation of quantifiers —that is, with clauses (4) and (5). Compositionality,
remember, demands that for each syntactic operation O there should be a correspond-
ing operation on semantic values. The usual way of setting up the syntax of first-order
languages has one syntactic operation that takes the quantifier V, any variable x, and
any formula ¢, and returns a formula Vx¢ — and similarly for 3. Clause (5), on the
other hand, covertly defines one semantic operation for each variable x; the right-hand
side of (5) refers to x qua syntactic object —and so does (4).

Different (and somewhat strained) solutions to this problem have been put forward.
One option is giving semantic values to variables. We could, for instance, take the value
[[x]]M of x in M to be the variable x itself, and reformulate the interpretations of 3 and
V accordingly, as functions that take a set of assignments and a variable as arguments,
and map them to a set of assignments.'? On this account the normal interpretations of A
and — would still be intersection and complementation, but the normal interpretations
of quantifiers would be the following functions from Vars xP(AM) to P(AM):

fa(x,Y) ={o € AM|o ~ ¢/ for some ¢’ € Y}
fo(x,Y)={oc € AM|o' €Y forall o' st.c ~, o’}

Another option is to slightly change the formulation of the syntax, so that for each
variable x we have a syntactic operation O, that takes a string ‘Vx’ and a formula ¢
and returns a formula Vx¢ (similarly for 3); on this account the string ‘Vx’ is then
interpreted as a single unit. The normal interpretations of A and — are intersection
and complementation, as before, but the normal interpretations of quantifier-variable
strings are functions from ’P(AM) to P(AM):

fax(Y) ={o € AM |6 ~, o’ forsome ¢’ € Y}
fox(Y) ={o € AM |0’ e Y forallo’ st.o ~, o’}

10°See [11, 13, 15] or [10].

1 Once again, if a language contains individual constants and function symbols clause (1) is modified in
the obvious way to account for terms. The notation ‘c ~, o'’ means that the assignment o differs from
the assignment o’ at most in the value it assigns to x.

12 Thisis a simplification of [27, Ch. 10], which takes a similar but more elaborate route.
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All of what I'll say applies, with obvious modifications, to either option. The second
one saves some time and some brackets, so I'll take it as the official normal interpre-
tation. Again, nothing hinges on this.

Now we have to adapt the rest of the notions involved in formulating Carnap’s
Problem. It will be useful to keep the simpler propositional case in mind while we do
it, just to make sure we don’t go astray. An interpretation for a propositional language
is a valuation v from formulas to {1, 0}. In the first-order case interpretations depend
on structures M = (D, I). Given such an M, an interpretation is a function from
formulas to P(A™M).

A compositional valuation associates a truth-function to each connective. Thus,
compositional valuations can be defined as tuples v = (v, ta, tv, t-, ), Where v, is
avaluation for atoms and the 7,, are truth-functions. In the first-order case compositional
interpretations can also be defined as tuples 7 = (f,, Fa, F-, Fy, F3). Here f, is a
function from atoms to P(AM), and the F,, are operations on 79(AM).13

In a normal, compositional valuation the z,, are the intended truth-functions. Sim-
ilarly, in a normal, compositional interpretation 7 = (fo, Fa, F-, Fy, F3) the F,
are the intended operations. There’s an additional wrinkle to take care of, though.
Given the usual definition of satisfaction, the semantic value of an atomic formula
P(x1, ...xn) is closed under assignments that agree on the free variables x1, ...x,. For-
mally, this means thatif o € [P (xy, ...x,,)]]M and o, o’ agree on the value of x, ...x,,
then o’ € [P(x1, ...xn)]]M. Our interpretations are tuples 7 = (fo, Fa, F—, Fy, F3)
where f, is an arbitrary function from atomic formulas to P(AM), and arbitrary
functions need not respect that closure condition. In order for an interpretation to
be normal, then, we must also demand that f obeys clause (1) above. And finally,
a valuation is non-trivial if it does not assign the value 1 to all formulas. Similarly,
(fo, Fn, F=, Fy, F3) is non-trivial if it does not assign the value AM 10 all formulas.

This takes care of the normal interpretations, as well as the non-normal, composi-
tional and non-trivial ones. Now we need to address invariance under permutations.
The notion of invariance in Section 3 works well if we take quantifiers to denote
sets of subsets of D. In order to achieve compositionality, however, we’ve had to
interpret quantifiers as operations on sets of assignments; the definition of invari-
ance has to be adapted. Luckily there is a well-known, off-the-shelf way to do this
due to [13]. If & is a permutation of D and X is a set of variable assignments, let
7*(X) ={mroo € AM| o € X}. Then an n-ary operation O on AM s invariant
under permutations if 7*(O(X1q, ..., X)) = O(@*(Xy), ..., #*(X},)) for all permuta-
tions .

The last missing piece of the puzzle is consistency with a consequence relation
. This is also easy to address. We’ll say that 7 is consistent with - if, whenever

I + ¢, we have that () [y]7 < [¢]7. where []7 is the semantic value of ¥ on
yel

the interpretation 7.'* Following Bonnay and Westerstihl - is a relation between
sentences only (although this doesn’t really matter).

13 Strictly speaking, given our official normal interpretation Fyy and F3 are sets of operations (one for each
variable).

14 At the risk of stating the obvious: this definition of consistency just says that, given a valid argument,
any assignment that makes the premises true must make the conclusion true too.
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We have, at last, formulated all the notions related to Carnap’s Problem in a way
that’s compatible with Bonnay and Westerstahl’s assumptions. The following lemma
shows that, in this setting, compositionality, non-triviality, and invariance under per-
mutations don’t fix the standard meaning of logical vocabulary.

Lemma 6 There is a first-order language L3 with a compositional, non-normal, non-
trivial, invariant-under-permutations interpretation T that is consistent with b .

Proof Take the language £3 with A, —and V as logical constants and a binary predicate
symbol R as non-logical vocabulary. Consider the £3-structure M = (D, I) where D
is any set such that |[D| > 1 and I(R) = D?. We will now construct an interpretation
T = (fy, Fn, F-, Fy, F3) based on M. Let C C AM be the set of variable assign-
ments such that o (x) = o (y) for all variables x, y. Note that C is indeed a proper
subset of AM, since |D| > 1. Then 7 is defined as follows:

fo(R(x1, x2)) = {o € AM [ (0(x1), 0(x2)) € I(R)}
FA(X,Y)=XNY.

F-(AM) = C, and if X # AM F_(X) = AM.
F3y(X) = Fyy(X) = X for all variables y.

T is clearly compositional, so it remains to show that (a) 7 is non-normal, (b) 7°
is non-trivial, (c) the F,, are invariant under permutations and (d) 7 is consistent with
e,

The fact that (a) 7 is non-normal is obvious; F-, Fy and F3 are not the intended
operations. To see that that (b) 7 is non-trivial just note that
[—3x13x2 R (x1, xz)]]T = C # AM . Next we need to prove that (c) the F,, are invariant
under permutations. This is obvious for F,, which is just intersection, and also for
the operations in F3 and Fy, which are just the identity function. To show the same
for F-, first note that, for any permutation 7 of the domain, n*(AM) = AM and
7*(C) = C. In other words, AMand C , seen as 0-ary operations, are invariant under
permutations. But then:

Fo(m*(AM)) = FL(AM) = C = n*(C) = n*(F-(AM))
Fo(r*(X)) = AM = 7*(AM) = 7*(F_ (X)) for X # AM

where the second identity rests on the fact that if X # AM then 7*(X) * AM for
any permutation .

Finally, we need to prove that (d) 7 is consistent with l-¢,. A trivial induction on
formulas shows that for any ¢:

d) [¢]Z = aAMor [¢]” = C.
() [¢]” = AM iff [p]M = AM.
(d3) [p]7 = Ciff [p]M = 0.

Now we can prove the result by contraposition. Let I' U {¢} be a set of sentences,
and suppose that () [y]7 ¢ [¢]7. By (d1) we must have that [y]7 = AM for all
yel

y € I'and [¢]7 = C. By (d2) and (d3) this means that [y]™ = AM forall y € T
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and [¢]M = @. Therefore, I" c5 ¢- Note, incidentally, that if we had taken ., to
be a relation between all formulas, open and closed, the proof would have still gone
through. O

As before, Lemma 6 is stated for the very limited language L3, but can be adapted
to richer ones: if a language has constants and function symbols, the function / can
give them any value whatsoever, and if it has further predicate letters P of arity n, we
just need to set I (P) = D".

There is a second, more important sense in which Lemma 6 can be generalised. It
turns out that if we take the semantic values of formulas to be sets of assignments, there
are non-normal interpretations even if every subset of D (and every subset of D", for
any n) is definable."> The reason is simple: given a sufficiently large domain, certain
sets of assignments can never be the semantic value of any formula on any normal
interpretation. This allows us to construct non-normal interpretations that differ from
normal ones only in the way they behave with respect to these ‘extra’ semantic values,
and this is possible regardless of the interpretation of non-logical vocabulary. Let’s
spell out the details.

The semantic value [[(p]]M of an open formula ¢ on the normal interpretation based
on a structure M is the set of variable assignments o such that M, o = ¢, where = is
the usual satisfaction relation. Clearly, whether M, o = ¢ or not hinges on the value
o assigns to the (finitely many) free variables X of ¢. We need some terminology to
describe this. Given a structure M for £ and a (non-empty) finite sequence of variables
X1, ...xp = X, we’ll say that a set of assignments ¥ C AM depends on X if there is a
o and a o’ that differ at most in the values they assign to some variables in X, but such
thato € Yando' ¢ Y. AsetY C AM s dependent if it depends on some finite X,
and independent otherwise. Now, it is easy to check that:

Observation 7 The semantic value ﬂwﬂM of an arbitrary formula ¢ in a normal inter-
pretation based on M is always AM ¢, ora dependent subset of AM.

Crucially, Observation 7 holds regardless of whether every subset of the domain D
is definable. In addition:

Observation 8 Given a structure M for £, some independent subsets Y of AM are
invariant under permutations.

For instance, given any structure M, the set Co, of assignments that give the same
value to (at least) countably infinitely many variables is independent and invariant
under permutations. By combining Observations 7 and 8 we get that:

Lemma9 Let L be any first-order language. Then there is a compositional, non-
normal, non-trivial, invariant-under-permutations interpretation T consistent with
Fr.

15 Adapting the notion of definability to this setting is trivial: the extension of a formula ¢ (relative to o
and x, on an interpretation Z) is ||go||£x :={a € D|ola/x] € [[(p]]I}, and a subset X of D is definable if

X = |lg| \g  for some ¢, o and x. This is extended to cover subsets of D" in the obvious way.
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Proof Take any L-structure M = (D, I) with |D| > w. By Observations 7 and 8
some independent subsets of AM are invariant under permutations. Since |D| > w,
we have that C, # AM. Thus, some independent subsets of AM are invariant
under permutations and not the semantic value of any formula under the normal
interpretation based on M. Next we’ll define a non-normal 7" = (fy, Fn, F-, Fy, F3)
based on M. Let fo interpret atoms normally, and let the F,, behave like the normal
operations except when applied to subsets of AM that are independent, invariant under
permutations, and not the semantic value of a formula under the normal interpretation;
for those sets (pairs of sets, in the case of F,), the F, are the constant function
to Coo. Then 7 = (fo, Fa, F-, Fy, F3) is compositional, non-normal and invariant
under permutations. Moreover, since the F, behave non-normally only for sets of
assignments that are not the semantic value of a formula, and otherwise behave like
the normal operations, 7 is non-trivial and consistent with 2. Note that, as mentioned
above, this construction works regardless of how the function I interprets non-logical
vocabulary O

It is time to take stock now. There are, I think, three morals to this section. The first
is that there’s a problem with Bonnay and Westerstahl’s interpretations: they either
violate compositionality or else beg the question against non-normal interpretations of
the connectives. The second is that demanding compositionality does not, in general,
help to avoid Carnap’s Problem. Take the first-order case. If we want the usual two-
valued semantics, then compositionality is too strong a requirement: it rules out normal
valuations. If, on the other hand, we enrich our range of semantic values, then Carnap’s
Problem suddenly becomes much more difficult. And this takes us to the third, related
moral. The more semantic values we throw into the mix, the harder Carnap’s Problem
(in general) becomes. Now let’s see if we can find our way out of the woods.

5 Carnap’s Problem and Logical Validity

So far I've focused on the shortcomings of Bonnay and Westerstahl’s approach. In
this section I’ll change tack, and argue that a slight modification of their proposal gets
around Carnap’s Problem. The overall idea is simple: using second-order variables
won’t do, but if we look at our inferential practice, something similar to it to it can be
justified.

The way forward is to focus on the notion of consistency with a consequence
relation. Up until now we have identified consistency and truth-preservation: an inter-
pretation was consistent with the classical consequence relation of a language if it
made all classically valid arguments truth-preserving. A closer look at the way we
draw inferences, though, suggests that this is too weak a requirement.

Take the inference from ‘7 is a counterexample to Goldbach’s conjecture and 8 is
a counterexample to Goldbach’s conjecture’ to “7 is a counterexample to Goldbach’s
conjecture’. We accept this inference despite not knowing the extension of the predicate
‘is a counterexample to Goldbach’s conjecture’ (and regardless of what it happens to
be). More generally, we accept all inferences of the form P(c1) A P(c2) F P(c1),
despite not knowing the extension of every predicate P and every individual constant
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c1 and ¢, (and regardless of what they happen to be). If we want to account for the
inferential role of A, then, it isn’t enough to give it a semantic value that makes our
inferences truth-preserving given that P, ¢ and cy are interpreted a certain way:
we typically don’t know the interpretation of all the non-logical vocabulary in an
argument. To account for the inferential role of A we must give it a semantic value that
makes valid arguments truth-preserving regardless of how of non-logical vocabulary
is interpreted. This is not an isolated example, but the norm. Take any inference of
the form VxP(x) = P(c). We also accept it without knowing the extension of P
or the reference of ¢, whatever they happen to be. To account for the role of V in
inferences, then, we must give it a semantic value that makes arguments of this form
truth-preserving no matter how P and c are interpreted.'®

Let me make the point more general: so far we’ve read semantics off consequence
relations by looking at interpretations that make valid arguments truth-preserving.
But to adequately represent the role of logical vocabulary, to do justice to the way we
actually use it, is to give it semantic values that make valid arguments truth-preserving
regardless of the interpretation of non-logical vocabulary. The notion of consistency
with a consequence relation, then, should be strengthened accordingly.

The technical set-up this requires is straightforward. Taking sets of assignments as
the semantic values of formulas, as we saw, makes Carnap’s Problem worse. We’ll go
for a simpler, more natural option: the semantic values of formulas will be truth-values.
The rest of modifications are obvious. In previous sections we built interpretations
on top of structures M = (D, I). We’re going to require truth-preservation across
reinterpretations of non-logical vocabulary, so the function / has to go. Everything else
is largely as before: given a domain D, an interpretation is a tuple 7 = (Fx, F-, Q),
where F, and F-, are truth-functions interpreting A and —, respectively, and Q is
a set of subsets of D, interpreting V. When we add a function [ for the non-logical
vocabulary, formulas are evaluated in the obvious way:

T (Pxy, ..xp) = Liff (0(x1), ...,0(x,)) € I(P).
To (@ ANY) = FAlT5(9), T (Y)].

T5 () = F-[T5(p)].

75 (Vxp) = liff {a € D|Toja/x)(9) = 1} € Q.

Finally, an interpretation 7 is consistent™ with . if it is truth-preserving given
any function I for non-logical vocabulary. In other words, it is consistent™ with -,
if, given any 7, we have that I" -, ¢ and 7, (I") = 1 imply 7, (¢) = 1 (where I" and
¢ can be formulas, not just sentences).!”

16 A different way to argue for the same point is to note that the extension of non-logical predicates changes
over time, but we continue to endorse valid arguments regardless of how it changes. If I'm told that some
red object has been destroyed, I don’t pause to consider whether, given the new extension of ‘red’, the
inference from ‘Everything is red and sticky’ to ‘Everything is red’ remains acceptable. To account for this
fact, it seems, we must give A and V semantic values that make the argument truth-preserving regardless of
how non logical vocabulary is interpreted.

17 Bonnay and Westerstahl use a similar approach, mutatis mutandis, when they consider Carnap’s Problem
in the context of possible worlds semantics for propositional logic. They say quantifying over interpretations
in the definition of consistency is only done ‘for simplicity’ [3, p. 731], but it can be shown that it is a
necessary condition for the strategy to work.
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If we look at things this way, it’s easy to show that the role of classical logical
vocabulary in inferences does rule out non-normal interpretations:

Lemma10 Let T = (Fx, F-, Q) be an interpretation (with underlying domain D)
for a language L. If T is consistent™ with -, then T is normal.

Proof We’ll work by contraposition:

Conjunction: Suppose e.g. that F(1, 1) = 0. Take any ¢, ¥ and o such that
75 (p) = 75 () = 1 (there must be some such ¢, ¥ and o, because -, contains
tautologies and 7 is consistent™ with it, so tautologies must have value 1 under
any o). Since Fa(1,1) = 0, we have that 7 invalidates ¢, ¥ F, ¢ A ¥.
Remaining cases are similar.

Negation: Suppose e.g. that F-(0) = 0. Set I(P) = ( (P is a predicate symbol
of any arity. For simplicity we’ll take to be unary) and let ¢ be an arbitrary
assignment. Since I (P) = ¥ we musthave 7, (Px) = 0. Then 7, (PxA—Px) =
0, since one conjunct is false. But F-(0) = 0, so 75 (—(Px A—Px)) = 0. Thus,
7T invalidates the tautology -, —(Px A —Px). Remaining cases are similar.

Universal Quantifier: We have to show that {D} = Q. First, suppose for a
contradiction that D ¢ Q. Since -, —(Px A —Px), we must have 7,/ (—(Px A
—Px)) = 1 for all o’. We’ll use the abbreviation ¢ := —(Px A —=Px) for
readability. Now, let o be arbitrary. Then {a € D|T54/x1(¢) =1} =D ¢ O,
s0 75 (Vx—=(Px A —=Px)) = 0. Therefore, 7 invalidates -, Vx—(Px A =Px),
contradicting consistency’. Next, suppose that there is some C C D in Q.
Let I(P) = C, and let o’ be an assignment such that ¢’(x) ¢ C. Then {a €
D|T51a/x1(Px) = 1} = C € Q0,50 T,(VxPx) = 1. But 7,(Px) = 0,s0 T
invalidates Vx Px -, Px, contradicting consistency™.

m}

A couple of comments are in order. First, it should be clear that quantifying over
interpretations in the definition of consistency™ has more or less the same effect
as second-order variables in Bonnay and Westerstahl’s account. The current option,
however, has a clear motivation rooted in inferential practice. Moreover, it is a weaker
assumption than the alternative. Second-order variables make every subset of D and
D™ (for any n) definable, whereas it’s not in general the case that, given a language £
and a subset of D or D", we can always find a function / under which that subset is
definable.

Secondly, the way I've defined interpretations presupposes what type of semantic
value corresponds to each syntactic category: connectives are interpreted by truth-
functions, and quantifiers by sets of subsets of the domain. This is something Bonnay
and Westerstahl also take for granted:

One must choose the semantic values of expressions belonging to a given syn-
tactic category [...] Our hypothetical language learner already knows, or guesses,
what kind of language is to be learnt: what the syntactic categories are, and what
kinds of things expressions of these categories stand for. [3, p. 726]
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I will say more about this assumption in the next section. For now, it’s enough to
note that it doesn’t make interpretations compositional. This is a feature, not a bug: as
we’ve seen, compositionality (in the strict sense preferred by Bonnay and Westerstahl)
is too strong a requirement, and part of what gets them into trouble. It’s also important
to keep in mind that Bonnay and Westerstdhl motivate the requirement of compo-
sitionality through the usual learnability argument: natural languages have infinitely
many sentences, so speakers can’t learn their meanings one by one. Compositionality,
then, seems like ‘our currently best explanation of learnability’ [3, p. 725]. As it is
often pointed out,'® however, learnability arguments don’t establish the need for com-
positionality in the strong sense demanded by Bonnay and Westerstéihl, so nothing is
lost if we abandon it.

With this in mind, it seems that the current proposal fares better than Bonnay
and Westerstahl’s. Their approach assumes compositionality, non-triviality, invariance
under permutations, and doesn’t work for first-order languages, since it is essentially
tied to the use of second-order variables. The current approach starts from a similar
notion of interpretation and only uses consistency ™, a substitute for predicate variables
motivated by our inferential practice.

Finally, it may be useful to close the section by comparing the current proposal
to another family of solutions to Carnap’s Problem, those built around the notion of
‘open-endedness’. In his [14] Vann McGee attempts to read classical semantics from
certain inference rules for classical logic, rather than from the resulting consequence
relation. According to McGee those rules are open-ended, meaning that ‘they are
valid [...] not only within the language £, but will remain valid however the language
may be enriched by the addition of new sentences’ [14, p. 65]. Open-endedness is
put to use as follows: McGee holds that, given any class of models, there is some
‘mathematically possible language’ which contains a sentence that is true in all and
only those models. He then shows that any non-normal interpretation of a first-order
language £ invalidates a classically valid inference when extended to a richer language
L', where £’ contains new sentences that are true only in certain ad hoc classes of
models; non-normal interpretations, then, are ruled out on the grounds that they violate
open-endedness.

Clearly, open-endedness plays a similar role to quantification over interpretations
of non-logical vocabulary: it bypasses the expressive limitations of first-order lan-
guages, and ensures that each non-normal interpretation invalidates a classically valid
inference. At the same time, open-endedness is stronger and more problematic than
consistency’. McGee assumes that interpretations which correctly account for the
role of logical vocabulary make valid inferences truth-preserving across all mathe-
matically possible extensions of a language. But firstly, it’s not clear what the range
of mathematically possible extensions of a language consists in, and the extent to
which we need to modify the notion of a model as we enrich first-order languages
with arbitrary sentences. And secondly, it is dubious that acceptance of the rules of
classical logic is (in general) open-ended. For instance, it’s fairly common to hold that

18 Seee.g. [18, 25].
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classical logic has to be abandoned when first-order languages are extended in certain
ways (say, with vague predicates, or with truth-predicates).'® In contrast, here we only
assume that, given our inferential practice, an adequate interpretation must make valid
arguments truth-preserving under well-behaved reinterpretations of the non-logical
vocabulary that we already have.*°

Murzi and Topey [16] have recently put forward a solution similar to McGee’s.
Like McGee, they attempt to read classical semantics from rules of inference, and
take those rules to be open-ended. They cash out open-endedness more modestly than
McGee, though: for Murzi and Topey rules must remain valid across all extensions of
a language obtained by adding new predicate letters and individual constants. This is,
again, stronger than consistency™, the assumption that valid inferences must remain
truth-preserving across reinterpretations of the current non-logical vocabulary. Murzi
and Topey also assume which type of semantic value can be given to quantifiers.>! And
finally, the inference rules from which they read the semantics are quite unusual: they
use a higher-order natural deduction system in the style of [22]. In standard natural
deduction systems the rules conclude and discharge formulas. In higher-order systems,
on the other hand, rules can conclude and discharge other rules. Say that a rule that
discharges a formula is of level 1, and a rule that discharges a rule of level n is itself
of level n 4+ 1. Then Murzi and Topey’s system allows one to conclude and discharge
rules of arbitrary finite level.

It’s unclear that a system of this type is a faithful representation of our use of
logical vocabulary. This, I think, makes it unsuitable to show that the meaning of
logical constants is determined by the way we (actually) use them. Murzi and Topey
arguably only show that classical semantics can be read off non-standard rules that
deviate from inferential practice. The proposal in this section, on the other hand, reads
the semantics of logical vocabulary from the classical consequence relation itself. It
is blind to the format and specific formulation of whatever rules we take to govern
logical vocabulary, and for that reason is immune to this sort of problem.??

19 There are other problems with McGee’s approach. The proof-system —due to Mates [12]- from which
he reads the semantics of logical vocabulary is only complete for languages containing infinitely many
individual constants, and he imposes some extra constraints on interpretations in order to secure the normal
interpretation of quantifiers. I will say a smidgen more about this in the next section.

20 Where ‘well-behaved’ just means that the re-interpretations give standard, unproblematic semantic
values to non-logical vocabulary, and don’t smuggle in vagueness, self-reference and the like.

21 Their language sometimes suggests they take the denotation of V to be a subset of the domain of
quantification, rather than a set of subsets [see16, p.3407]. If this is so, it’s unclear how the approach could
be extended to other quantifiers like 3.

22 Julien Murzi has kindly pointed out to me that although [16] uses higher-order rules, their approach can
avoid Carnap’s Problem with more modest assumptions. It turns out that they can read the usual semantics
from any natural deduction system that allows for empty succedents (i.e. empty conclusions). Note, however,
that this is still a restriction to a specific, and fairly non-standard, type of proof-system. In contrast (see
below) the current approach reads the usual semantics from any standard calculus for classical logic.
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In fact, the present approach also allows us to read classical semantics off any
standard calculus for classical logic. I'll take V as an example, but the cases for A and
— are similar. Consider these typical natural deduction rules (in sequent notation) for
v:

I' = o(y/x) D) I' = Vxp VE)
I' = Vxp I' = e(y/x)

Rule (V 1) has the usual restrictions: y must be free for x in ¢, ¢(y/x) is the result
of replacing all free occurrences of x in ¢ for y, and y must not occur free in I" or
Vxg. Now, given a model M = (D, I), a sequent A =  is valid in M if, for
any assignment o, we have that M, o = A implies M, o = ¥. Similarly, a rule R
preserves validity in M if whenever the premiss-sequents of an application of R are
valid in M, so is the conclusion-sequent. Murzi, Topey, and McGee read semantics
off a rule R by looking at which interpretations are such that R preserves validity in
them (the ‘rule analogue’ of consistency with a consequence relation). We can adapt
the current approach to this setting. It’s clear that we often draw inferences according
to (V I) and (V E) —and take them to be valid— without knowing the interpretation of
the non-logical vocabulary involved. Therefore, to adequately represent the inferential
role of V, we must give it a semantic value that makes inferences sanctioned by (V I)
and (V E) valid regardless of the interpretation of non-logical vocabulary. Let’s make
this more formal. Given an interpretation 7 and some [ for the non-logical vocabulary,
we’ll say that A = v is valid in 7 if 7,(A) = 1 implies 7, () = 1 (for any o).
Moreover, an interpretation 7 = (Fa, F-, Q) is consistent™ with a rule R if, given
any I, whenever the premiss-sequents of R are valid in 7, so is its conclusion-sequent.
Then it’s easy to show that:

Lemma 11 Let 7 = (Fn, F—, Q) an interpretation (with underlying domain D) for
a language L. If T is consistent™ with (Y 1) and (¥ E) then Q = {D}.

Proof We’ll assume for simplicity that £ has a unary predicate P, and work by con-
traposition. Suppose D ¢ Q. Let I(P) = D. Then we have that 7,(Px) = 1 and
7o (Vx Px) = 0 for any assignment o. In other words, = Px is valid, and = Vx Px
is not. But we can infer = Vx Px from = Px by (¥ I), so 7 is not consistent™ with
(V D). Similarly, suppose there is some C C D in Q. Let I(P) = C, and let ¢’ be an
assignment such that o’(x) ¢ C. Then we have that 7, (VxPx) = 1 for any o, but
T, (Px) = 0. Therefore = Vx Px is valid but = Px is not. Since we can infer the
latter from the former using (¥ E), 7 is not consistent™ with (V E). O

A similar argument works for any other standard set of natural deduction (or
sequent) rules for V, and the corresponding result for the connectives is easy to prove.
To summarise, then: the approach in this section also seems to improve on solutions
to Carnap’s Problem built around open-endedness. It avoids the problematic aspects
of the claim that our acceptance of classical rules of inference is open-ended, and it
allows one to read classical semantics from standard calculi for classical logic.
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6 Carnap’s Problem and Interpretations

Let’s take a step back and put what we have done so far in perspective. We began with a
relatively simple question: whether the inferential role of (classical) logical vocabulary
rules out its non-normal interpretations. This question is sensible only insofar as we
can explain three things:

(i) What we mean by ‘interpretations’.
(i) What we mean by ‘inferential roles’.
(iii)) What we mean inferential roles ‘ruling out’ interpretations.

The literature on Carnap’s Problem contains very different answers to (i)-(iii). We
have already seen the two standard ways of spelling out what inferential roles amount
to: in terms of consequence relations and in terms of inference rules. The approach I've
put forward works with both. We have also seen that ‘ruling out’ is usually cashed out
in terms of truth-preservation. I’ve argued that it is better explained in terms of truth
preservation across all reinterpretations of non-logical vocabulary, or consistency™.
This takes care of (ii) and (iii); now it’s time to say more about (i). In this section
I’ll go through some ways interpretations have been defined, and motivate my own
approach.

The literature seems split into two camps. According to the first, interpretations are
assignments of truth-conditions to formulas. According to the second, interpretations
are assignments of semantic values to subsentential expressions (and derivatively, to
formulas). I followed Bonnay and Westerstahl down the second route, so let’s see
some examples of the first type for contrast.

Garson [7] approaches truth-conditions in terms of valuations. He distinguishes a
‘substitutional” and an ‘objectual’ reading of quantifiers. On the substitutional reading

a valuation v is V-normal when:23

(sV) v(Vxg) = L iff v(p[y/x]) = 1 for all variables y of the language.

The question that immediately arises is whether (sV) is a plausible notion of normal
interpretation. And arguably, it isn’t. Note that a first-order semantics in terms of
(sV) doesn’t so much as mention a domain of quantification, which puts it quite far
from the usual way(s) of interpreting quantifiers. But the worry goes deeper. First,
(sV) doesn’t really match the standard truth-conditions of quantified sentences: in
a (normal) classical model, we may have that M, o = Py for all variables y but
M, o = Vx Px. And secondly, as Garson himself points out [7, p. 215], (sV) induces
anon-compact consequence relation. To see this, fix a language with a unary predicate
P and no individual constants or functions symbols, and consider the argument from
all sentences of the form Py, for y a variable of the language, to Vx Px:

{P[y/x]|y € Vars}- Vx Px

This argument is truth-preserving on all valuations that satisfy (sV), and therefore
valid on Garson’s ‘normal’ substitutional semantics. The result of taking any finite

23 Asusual, if a language contains individual constants and function symbols, (s¥) can be modified in the
obvious way to account for terms.

@ Springer



Carnap’s Problem, Definability and Compositionality 1343

subset of { P[y/x]|y € Vars} as premises, on the other hand, is not. Needless to say,
no standard proof-system for classical logic is strongly complete for this substitutional
semantics.

The objectual reading of quantifiers is more involved. Garson begins by introducing
the notion of a ‘hybrid formula’. Given a domain D, hybrid formulas are recursively
defined so that any well-formed-formula is a hybrid formula, and the result ¢[d/x]
of substituting an object d € D for all free occurrences of x in a hybrid formula ¢
is a hybrid formula itself. Garson then considers valuations that range over hybrid
formulas, and takes v to be Y-normal, given a domain D, when:

(oY) v(Vxp) = 1 iff v(p[d/x]) = 1 foralld € D.

Although (0V) is, perhaps, more natural than (sV), there’s still reason to doubt it’s
adequacy. We were after a definition of normal valuations over a language £. What
we’ve been given, however, is a definition of normal valuations over a ‘hybrid’ (i.e.
extended) language £'. To avoid this sort of problem Brincus [4] restricts attention to
countable domains all of whose of elements are named by a constant, which effectively
collapses Garson’s objectual and substitutional readings. But this doesn’t really solve
the issue: he is just left without a notion of normal interpretation applicable to all
languages.?*

McGee [14] takes interpretations to be Tarski-style clauses relating sentences
(closed formulas) and models. A first reason to worry is that it’s not clear what notion
of model he has in mind. As we’ve seen, McGee wants to consider ‘all mathematically
possible extensions’ of a given language, which presumably stretches the notion of a
model accordingly, but we are not told how. There seem to be other problems as well.
The usual clause stating the truth-conditions of V is the well-known:

(iv)y M, o =Vxpiff M,ola/x] &= ¢ foralla € D.
Or equivalently, when V is seen as a generalised quantifier:
(iv) M, o =Vxeiff {a € D| M, ola/x] = ¢} € {D}.

In order to avoid the complications that arise from considering variable assignments
and satisfaction relations for open formulas, McGee states his normal interpretation of
universally quantified sentences in terms of other sentences only. If ¢ is an individual
constant, say that two models are c-variants when they differ only in the value they
assign to ¢. McGee’s normal interpretation of the universal quantifier is:

(mV) If ¢ does not appear in ¢, then Vx¢(x) is true in M iff ¢[c/x] is true in
every c-variant of M. [14, p. 71]

Note, however, that this clause is nor equivalent to the usual (iv) and (iv)’: it yields
the classical truth-conditions for quantified sentences only in languages with an infinite

24 A reviewer asks how Lemmas 10 and 11 relate non-normal valuations. The approaches are difficult to
compare and, for the reasons I've just explained, I doubt Garson’s (sV) and (oY) are adequate definitions
of normality. But in any case, given a normal interpretation (in my sense) 7', we have that for any I,
75 (Vxg) = 1iff T5[4/x)(¢) = 1 for all elements a of the domain. In the special case where all elements
are named by a constant, this is equivalent to 75 (Vx¢) = 1iff 75 (¢[7/x]) = 1 for all terms of the language.
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number of individual constants.2 In other words, we are saddled again with a notion of
normal interpretation that is neither genuinely normal nor applicable to all languages.

Things are different on the second approach, where interpretations are assignments
of semantic values to subsentential expressions. The usual set-up (at the propositional
level) has interpretations assign truth-functions to connectives (see Peacocke [19],
Hodes [9] and Hacking [8]). Bonnay and Westerstahl extend this to the first-order
case by taking quantifiers to be interpreted by sets of subsets of the domain, and I
have followed suit. The resulting notion of normal interpretation is both recognisably
normal and applicable to all first-order languages, unlike Garson’s and McGee’s. In
that sense, I take it, it is a better way of clarifying (i), a better notion of interpretation.

Admittedly, this second approach takes for granted that each syntactic category is
interpreted by means of the usual semantic type. Now, some degree of stipulation is
just inevitable: if we take interpretations to be assignments of semantic values, we
have to specify what sorts of things semantic values are. And more generally, any way
of defining interpretations rules out some options from the get-go.2® The notion of
interpretation I've used is a natural, straightforward generalisation of standard first-
order semantics. But still, some could complain that it is not ‘general enough’. I’'m not
sure of how much a definition of interpretations can take for granted before it is ‘too
much’. And while I do think that a reasonable definition of interpretations should be
applicable to languages of arbitrary signature, I don’t expect the approach I’ve settled
on to be the only way to achieve this. But in any case, readers who think my definition
of interpretations is too narrow can relativise the results of Section 5. What Section 5
shows is that if connectives and quantifiers are interpreted with the usual semantic
types, then they must be given their normal semantic values. Or put more suggestively:
that if connectives and quantifiers are interpreted as connectives and quantifiers, they
must be interpreted normally. This is not the last word on Carnap’s Problem. It couldn’t
be: there are as many ‘Carnap’s Problems’ as there are ways to define interpretations.
But it does, I hope, help to clarify the relation between what logical constants mean
and how they are used in arguments.

7 Concluding remarks

Moderate inferentialists hold that the meaning of logical vocabulary is determined
by the way it’s used in inferences. There are multiple ways of making this claim
more precise, but they all have to grapple with the same problem: ruling out non-
normal interpretations. Bonnay and Westerstahl’s way around the problem doesn’t
work, for two reasons. The first is that we can exploit the undefinability of subsets of
the domain of a structure to create non-normal interpretations that satisfy all of Bonnay

3 Ifa language has finitely many individual constants, there will be quantified sentences which contain
all of them, rendering (mV) inapplicable. Incidentally, in the course of his argument McGee smuggles in
two further assumptions. The first [14, p. 70] is that there is no model in which all sentences are true, the
analogue of Bonnay and Westerstahl’s non-triviality. The second [14, p. 71] is that if a constant ¢ does not
occur in ¥, the class of models in which 1 is true must be closed under c-variants.

26 For instance, when defining interpretations Garson and McGee assume that there are two truth-values,
no gaps and no gluts; by doing so they rule out supervaluational and many-valued semantics from the outset.
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and Westerstahl’s constraints. The second is that the normal, two-valued semantics
for first-order logic doesn’t satisfy their requirement of compositionality, and more
complex semantics make Carnap’s Problem intractable.

Something close to Bonnay and Westerstahl’s solution, however, works better. The
key is to keep in mind that interpretations that do justice to the way we use logical con-
stants must assign them semantic values that make valid arguments truth-preserving
regardless of how non-logical vocabulary is interpreted. And once we do this, it’s
easy to show that the classical consequence relation (or any standard proof-system for
classical logic) rules out non-normal interpretations.
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