Understanding EXT4 (Part 5): Large Extents

Hal Pomeranz, Deer Run Associates

I've received a lot of positive feedback from the forensics community about this series of articles, but what's
really rewarding is when other forensics researchers teach me something I didn't know. I recently received
an email from a colleague in Europe who was looking at the extent trees for a large file in his EXT4 file
system and saw something he couldn't explain.

To replicate the finding I created a large file-- about 4GB in size. Recall from our discussion in Part 1 of this
series that there is a 16-bit field to store the size of an extent. However, the high bit in that field is reserved to
mark a preallocated extent, so you can only have 32K blocks in an extent. Assuming a typical 4K block size,
that means you can only have 128MB of data in a single extent. A 4GB file is therefore going to require at
least 32 extents, and even that assumes you can find 32 runs of 32K contiguous blocks to use. More likely
we'll have more than 32 extents, some of which don't use the full 128 MB length.

After creating my 4GB file, I used the techniques described in Part 3 to decode the extent tree structure for
the file and find the data block that was holding the actual extents for the file:

~ xtent-tree - GHex BlEIE

File Edit View Windows Help

00000006/0A F3 34 00 54 01 00 00 60 60 00 00 00 00 00 00| [..4.T...........
0000001600 30 00 00 00 56 A4 01 00 30 00 oo|iEEs]ee"es .o...p...0...... :
00000020@8VABNAZT0T 00 Bo 00 00 00 80 00 00 00 20 A5 01 |............. .
00000036(00 30 01 00 00 58 00 00 00 A® A5 01 00 88 01 00 |.0...X..........
00000046(00 68 60 00 00 30 A6 01 00 90 01 00 00 ©8 00 00 |..... B
0000005600 40 A6 01 00 98 01 00 00 10 00 00 00 20 A6 01 |.@........... .
00000066(00 A8 ©1 00 00 50 00 00 00 50 A6 01 00 F8 01 00 |..... P...P......
00000076(00 18 00 00 00 A8 A6 01 00 10 02 00 00 28 00 00 |............. (..
0000008600 C8 A6 01 00 38 02 00 00 68 00 00 00 F8 A6 01 |..... : P
0000009600 40 062 00 00 80 00 00 00 48 A7 ©1 00 CO 02 00 .@....... Hoovne
000000AB|00 30 00 00 00 DO A7 01 00 FO 02 00 00 80 00 00 |.0..............
000000B6|00 88 A8 01 00 76 03 00 00 28 00 00 00 ©8 A9 01 |..... Pevilennnn.
000000C6|00 98 03 00 00 80 00 00 00 70 A9 ©1 00 18 04 00 Peuenn.
000000D6|00 10 60 00 00 FO A9 01 00 28 04 00 00 10 00 00 (vevnen
000OOER(PO F8 AA 01 00 38 04 00 00 68 00 00 00 30 AB 01 |..... : FU 0..
00000OFE(00 40 04 00 00 70 00 00 00 48 AB 01 00 BO 04 0@ |.@...p...H..... 15

Offset: FF b

In fact, if you look at the number of extents field from the extent header (highlighted in yellow above) you
can see that the file actually uses 52 (0x0034) extents. But what's really interesting is the second extent
structure that I've highlighted above. Decoding this structure we have an extent that starts at logical offset
0x00003000 (block 12288 from the start of the file) and physical block 0x0000 01A4A000 (block number
27566080).

The thing that really surprised my colleague, however, is the extent size-- 0x8000. In binary, that's a 16-bit
value with the high bit set and the lower 15 bits all zeros. Because the high-bit is used by EXT4 to mark a
preallocated extent, that would mean a preallocated extent with zero bytes. And that makes no sense at all.
So what's really going on here?

https://web.archive.org/web/20120128233915/http://computer-forensics.sans.org/blog/tags/ext4
https://web.archive.org/web/20120128233915/http://computer-forensics.sans.org/blog/tags/ext4
https://web.archive.org/web/20120128233915/http://computer-forensics.sans.org/blog/2010/12/20/digital-forensics-understanding-ext4-part-1-extents
https://web.archive.org/web/20120128233915/http://computer-forensics.sans.org/blog/2010/12/20/digital-forensics-understanding-ext4-part-1-extents
https://web.archive.org/web/20120128233915/http://computer-forensics.sans.org/blog/2011/03/28/digital-forensics-understanding-ext4-part-3-extent-trees
https://web.archive.org/web/20120128233915/http://computer-forensics.sans.org/blog/2011/03/28/digital-forensics-understanding-ext4-part-3-extent-trees
https://web.archive.org/web/20120128233915/http://blogs.sans.org/computer-forensics/files/2011/08/Screenshot-largefile-extent-tree1.png
https://web.archive.org/web/20120128233915/http://blogs.sans.org/computer-forensics/files/2011/08/Screenshot-largefile-extent-tree1.png

It's Easier When Somebody Else Does the Legwork

I received the initial email about this issue literally the day before I had to go to SANSFIRE to teach, so I
wasn't able to do any research on the problem immediately. While I was dancing around in front of my
students, however, my colleague in Europe was flexing his Google kung fu and found a couple of interesting
links that seemed related to the behavior we were seeing.

The first was a short note in the EXT4 developers' conference call minutes:

Amit will first be merging in Andreas' patch to fallocate, which allows initialized extents to be the full
32768 blocks. Uninitialized extents are limited to 32767 blocks. Amit will also add comments to this, and
have the update patches ready by tomorrow.

The second link was what appears to be the code/comments referenced in the note above, specifically:

-#define EXT_MAX_LEN ((1UL

https://web.archive.org/web/20120128233915/https://ext4.wiki.kernel.org/index.php/Minutes07-9-2007
https://web.archive.org/web/20120128233915/https://ext4.wiki.kernel.org/index.php/Minutes07-9-2007
https://web.archive.org/web/20120128233915/http://www.gossamer-threads.com/lists/linux/kernel/794447
https://web.archive.org/web/20120128233915/http://www.gossamer-threads.com/lists/linux/kernel/794447

