Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developing machine learning for heterogeneous catalysis with experimental and computational data

Abstract

Machine learning techniques have emerged as a useful tool for identifying complex patterns and correlations in large datasets, such as associating catalyst performance to its physicochemical properties. In the heterogeneous catalysis communities, machine learning models have mostly been developed using high-throughput quantum chemistry calculations, with only a few case studies resulting in experimentally validated catalyst improvements. This limited success may be due to the use of simplified catalyst structures in computational studies and the lack of comprehensive experimental datasets. In this Review, we bring together studies integrating high-throughput approaches and machine learning for the advancement of solid heterogeneous catalysis, leveraging both experimental and computational data. We systematically analyse trends in the field, based on the descriptors used as model input and output; the materials, devices, or reactions investigated; the dataset size; and the overall achievements. Furthermore, for models reporting unitless R2 values, we compare the performances based on these mentioned trends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the applications of machine learning methods for heterogeneous catalysis.
Fig. 2: Bibliometric analysis of the experimental and computational datasets found in machine-learning studies of heterogeneous catalysis.
Fig. 3: Machine learning model comparison based on the goodness of fit, R2.

References

  1. Rothenberg, G. Catalysis. Concepts and Green Applications 127–187 (Wiley-VCH, 2008).

  2. Tembhurne, S., Nandjou, F. & Haussener, S. A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. Nat. Energy 4, 399–407 (2019).

    CAS  Google Scholar 

  3. Steinfeld, A. Solar thermochemical production of hydrogen — a review. Sol. Energy 78, 603–615 (2005).

    CAS  Google Scholar 

  4. Fukushima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Google Scholar 

  5. Taibi, E., Blanco, H., Miranda, R. & Carmo, M. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 °C climate goal. International Renewable Energy Agency https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction (2020).

  6. Burwell, R. L. in Catalysis. Science and Technology (eds Anderson, J. R. & Boudart, M.) 1–87 (Springer, 1982).

  7. Moulijn, J. A. & van Santen, R. A. in Contemporary Catalysis. Science, Technology, and Applications (eds Kamer, P. C. J., Vogt, D. & Thybaut, J. W.) 3–28 (Royal Society of Chemistry, 2017).

  8. Baerlocher, C., McCusker, L. B. & Olson, D. H. Atlas of Zeolite Framework Types 6th edn (Elsevier, 2007).

  9. Margeta, K. & Farkaš, A. in Zeolites - New Challenges (eds Margeta, K. & Farkaš, A.) Ch. 1 (IntechOpen, 2020).

  10. Green, M. L. et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105 (2017).

    Google Scholar 

  11. Dar, Y. L. High-throughput experimentation: a powerful enabling technology for the chemicals and materials industry. Macromol. Rapid Commun. 25, 34–47 (2004).

    CAS  Google Scholar 

  12. Steinmann, S. N., Hermawan, A., Bin Jassar, M. & Seh, Z. W. Autonomous high-throughput computations in catalysis. Chem Catal. 2, 940–956 (2022).

    CAS  Google Scholar 

  13. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  Google Scholar 

  14. Farrusseng, D. High-throughput heterogeneous catalysis. Surf. Sci. Rep. 63, 487–513 (2008).

    CAS  Google Scholar 

  15. Allen, C. L., Leitch, D. C., Anson, M. S. & Zajac, M. A. The power and accessibility of high-throughput methods for catalysis research. Nat. Catal. 2, 2–4 (2019).

    Google Scholar 

  16. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd edn (O’Reilly, 2019).

  17. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  18. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. OSDI’16: Proc. 12th USENIX conference on Operating Systems Design and Implementation 265–283 (OSDI, 2016).

  19. Guido, S. & Müller, A. C. Introduction to Machine Learning with Python: a Guide for Data Scientists 1st edn (O’Reilly, 2016).

  20. Royse, C., Wolter, S. & Greenberg, J. A. Emergence and distinction of classes in XRD data via machine learning. In Proc. SPIE 10999, Anomaly Detection and Imaging with X-Rays (ADIX) https://doi.org/10.1117/12.2519500 (SPIE, 2019).

  21. Kalinin, S. V. et al. Machine learning in scanning transmission electron microscopy. Nat. Rev. Methods Primers 2, 11 (2022).

    CAS  Google Scholar 

  22. Carbone, M. R., Topsakal, M., Lu, D. & Yoo, S. Machine-learning X-ray absorption spectra to quantitative accuracy. Phys. Rev. Lett. 124, 156401 (2020).

    CAS  PubMed  Google Scholar 

  23. Modarres, M. H. Neural network for nanoscience scanning electron microscope image recognition. Sci. Rep. 7, 13282 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Howarth, A., Ermanis, K. & Goodman, J. M. DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chem. Sci. 11, 4351–4359 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jensen, Z. et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 5, 892–899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huo, H. et al. Semi-supervised machine-learning classification of materials synthesis procedures. npj Comput. Mater. 5, 62 (2019).

    Google Scholar 

  27. Tang, B. et al. Machine learning-guided synthesis of advanced inorganic materials. Mater. Today 41, 72–80 (2020).

    CAS  Google Scholar 

  28. Shimizu, R., Kobayashi, S., Watanabe, Y., Ando, Y. & Hitosugi, T. Autonomous materials synthesis by machine learning and robotics. APL Mater. 8, 111110 (2020).

    CAS  Google Scholar 

  29. Shambhawi, Mohan, O., Choksi, T. S. & Lapkin, A. A. The design and optimization of heterogeneous catalysts using computational methods. Catal. Sci. Technol. 14, 515–532 (2024).

    CAS  Google Scholar 

  30. Günay, M. E. & Yıldırım, R. Recent advances in knowledge discovery for heterogeneous catalysis using machine learning. Catal. Rev. 63, 120–164 (2021).

    Google Scholar 

  31. McCullough, K., Williams, T., Mingle, K., Jamshidi, P. & Lauterbach, J. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery. Phys. Chem. Chem. Phys. 22, 11174–11196 (2020).

    CAS  PubMed  Google Scholar 

  32. Goldsmith, B. R., Esterhuizen, J., Liu, J., Bartel, C. J. & Sutton, C. Machine learning for heterogeneous catalyst design and discovery. AIChE J. 64, 2311–2323 (2018).

    CAS  Google Scholar 

  33. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Google Scholar 

  34. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    CAS  Google Scholar 

  35. Jain, A. et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. Pract. Exp. 27, 5037–5059 (2015).

    Google Scholar 

  36. Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Research 10, 33 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020).

    PubMed  PubMed Central  Google Scholar 

  38. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    PubMed  Google Scholar 

  39. Scheidgen, M. et al. NOMAD: a distributed web-based platform for managing materials science research data. J. Open Source Softw. 8, 5388 (2023).

    Google Scholar 

  40. Esters, M. et al. aflow.org: a web ecosystem of databases, software and tools. Comput. Mater. Sci. 216, 111808 (2023).

    Google Scholar 

  41. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013).

    CAS  Google Scholar 

  42. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  43. Bo, C., Maseras, F. & López, N. The role of computational results databases in accelerating the discovery of catalysts. Nat. Catal. 1, 809–810 (2018).

    Google Scholar 

  44. Tran, R. et al. The open catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catal. 13, 3066–3084 (2023).

    CAS  Google Scholar 

  45. Chanussot, L. et al. Open catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    CAS  Google Scholar 

  46. Tezak, C. et al. BEAST DB: grand-canonical database of electrocatalyst properties. J. Phys. Chem. C 128, 20165–20176 (2024).

    CAS  Google Scholar 

  47. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Alegre-Requena, J. V., Sowndarya, S., Alturaifi, T., Pérez-Soto, R. & Paton, R. AQME: automated quantum mechanical environments for researchers and educators. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1663 (2023).

    CAS  Google Scholar 

  49. Senocrate, A. et al. Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics. Nat. Catal. 7, 742–752 (2024).

    CAS  Google Scholar 

  50. Jones, R. J. R. et al. Accelerated screening of gas diffusion electrodes for carbon dioxide reduction. Digit. Discov. 3, 1144–1149 (2024).

    CAS  Google Scholar 

  51. Chammingkwan, P., Terano, M. & Taniike, T. High-throughput synthesis of support materials for olefin polymerization catalyst. ACS Comb. Sci. 19, 331–342 (2017).

    CAS  PubMed  Google Scholar 

  52. Nguyen, T. N. et al. High-throughput experimentation and catalyst informatics for oxidative coupling of methane. ACS Catal. 10, 921–932 (2020).

    CAS  Google Scholar 

  53. Barad, H.-N. et al. Combinatorial growth of multinary nanostructured thin functional films. Mater. Today 50, 89–99 (2021).

    CAS  Google Scholar 

  54. Batchelor, T. A. A. et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021).

    CAS  Google Scholar 

  55. Strotkötter, V. et al. Discovery of high-entropy oxide electrocatalysts: from thin-film material libraries to particles. Chem. Mater. 34, 10291–10303 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Zerdoumi, R. et al. Combinatorial screening of electronic and geometric effects in compositionally complex solid solutions toward a rational design of electrocatalysts. Adv. Energy Mater. 14, 2302177 (2024).

    CAS  Google Scholar 

  57. Yang, K. et al. Development of a high-throughput methodology for screening coking resistance of modified thin-film catalysts. ACS Comb. Sci. 14, 372–377 (2012).

    CAS  PubMed  Google Scholar 

  58. Abed, J. et al. Open catalyst experiments 2024 (OCx24): bridging experiments and computational models. Preprint at https://doi.org/10.48550/arXiv.2411.11783 (2024).

  59. Reddington, E. et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735–1737 (1998).

    CAS  PubMed  Google Scholar 

  60. Seley, D., Ayers, K. & Parkinson, B. A. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb. Sci. 15, 82–89 (2013).

    CAS  PubMed  Google Scholar 

  61. Katz, J. E., Gingrich, T. R., Santori, E. A. & Lewis, N. S. Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ. Sci. 2, 103–112 (2009).

    CAS  Google Scholar 

  62. Stein, H. S. et al. Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space. Mater. Horiz. 6, 1251–1258 (2019).

    CAS  Google Scholar 

  63. Gregoire, J. M. et al. Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts. J. Electrochem. Soc. 160, F337 (2013).

    CAS  Google Scholar 

  64. Shinde, A. et al. High-throughput screening for acid-stable oxygen evolution electrocatalysts in the (Mn–Co–Ta–Sb)Ox composition space. Electrocatalysis 6, 229–236 (2015).

    CAS  Google Scholar 

  65. Rohr, B. et al. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci. 11, 2696–2706 (2020).

    PubMed  PubMed Central  Google Scholar 

  66. Guevarra, D. et al. High throughput discovery of complex metal oxide electrocatalysts for the oxygen reduction reaction. Electrocatalysis 13, 1–10 (2022).

    CAS  Google Scholar 

  67. Woodhouse, M. & Parkinson, B. A. Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem. Mater. 20, 2495–2502 (2008).

    CAS  Google Scholar 

  68. Kafizas, A. et al. Optimizing the activity of nanoneedle structured WO3 photoanodes for solar water splitting: direct synthesis via chemical vapor deposition. J. Phys. Chem. C 121, 5983–5993 (2017).

    CAS  Google Scholar 

  69. Woodhouse, M., Herman, G. S. & Parkinson, B. A. Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem. Mater. 17, 4318–4324 (2005).

    CAS  Google Scholar 

  70. Zhou, L. et al. Quaternary oxide photoanode discovery improves the spectral response and photovoltage of copper vanadates. Matter 3, 1614–1630 (2020).

    Google Scholar 

  71. Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    PubMed  Google Scholar 

  72. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Google Scholar 

  73. Thornton, A. W., Winkler, D. A., Liu, M. S., Haranczyk, M. & Kennedy, D. F. Towards computational design of zeolite catalysts for CO2 reduction. RSC Adv. 5, 44361–44370 (2015).

    CAS  Google Scholar 

  74. Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    CAS  PubMed  Google Scholar 

  75. Chen, Y., Huang, Y., Cheng, T. & Goddard, W. A. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J. Am. Chem. Soc. 141, 11651–11657 (2019).

    CAS  PubMed  Google Scholar 

  76. Gu, G. H. et al. Practical deep-learning representation for fast heterogeneous catalyst screening. J. Phys. Chem. Lett. 11, 3185–3191 (2020).

    CAS  PubMed  Google Scholar 

  77. Chen, A., Zhang, X., Chen, L., Yao, S. & Zhou, Z. A machine learning model on simple features for CO2 reduction electrocatalysts. J. Phys. Chem. C 124, 22471–22478 (2020).

    CAS  Google Scholar 

  78. Yohannes, A. G. et al. Combined high-throughput DFT and ML screening of transition metal nitrides for electrochemical CO2 reduction. ACS Catal. 13, 9007–9017 (2023).

    CAS  Google Scholar 

  79. Yang, Z., Gao, W. & Jiang, Q. A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. J. Mater. Chem. A 8, 17507–17515 (2020).

    CAS  Google Scholar 

  80. Mok, D. H. & Back, S. Atomic structure-free representation of active motifs for expedited catalyst discovery. J. Chem. Inf. Model. 61, 4514–4520 (2021).

    CAS  PubMed  Google Scholar 

  81. Noh, J., Back, S., Kim, J. & Jung, Y. Active learning with non-ab initio input features toward efficient CO2 reduction catalysts. Chem. Sci. 9, 5152–5159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    CAS  PubMed  Google Scholar 

  83. Pankajakshan, P. et al. Machine learning and statistical analysis for materials science: stability and transferability of fingerprint descriptors and chemical insights. Chem. Mater. 29, 4190–4201 (2017).

    CAS  Google Scholar 

  84. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    CAS  Google Scholar 

  85. Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).

    CAS  PubMed  Google Scholar 

  86. Kocer, E., Ko, T. W. & Behler, J. Neural network potentials: a concise overview of methods. Annu. Rev. Phys. Chem. 73, 163–186 (2022).

    CAS  PubMed  Google Scholar 

  87. Artrith, N. & Kolpak, A. M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 14, 2670–2676 (2014).

    CAS  PubMed  Google Scholar 

  88. Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    CAS  Google Scholar 

  89. Lunger, J. R. et al. Towards atom-level understanding of metal oxide catalysts for the oxygen evolution reaction with machine learning. npj Comput. Mater. 10, 80 (2024).

    CAS  Google Scholar 

  90. Li, Z., Achenie, L. E. K. & Xin, H. An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts. ACS Catal. 10, 4377–4384 (2020).

    CAS  Google Scholar 

  91. Flores, R. A. et al. Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction. Chem. Mater. 32, 5854–5863 (2020).

    CAS  Google Scholar 

  92. Andersen, M. & Reuter, K. Adsorption enthalpies for catalysis modeling through machine-learned descriptors. Acc. Chem. Res. 54, 2741–2749 (2021).

    CAS  PubMed  Google Scholar 

  93. Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal. 9, 2752–2759 (2019).

    CAS  Google Scholar 

  94. Abed, J. et al. Pourbaix machine learning framework identifies acidic water oxidation catalysts exhibiting suppressed ruthenium dissolution. J. Am. Chem. Soc. 146, 15740–15750 (2024).

    CAS  PubMed  Google Scholar 

  95. Chen, L. et al. A universal machine learning framework for electrocatalyst innovation: a case study of discovering alloys for hydrogen evolution reaction. Adv. Func. Mater. 32, 2208418 (2022).

    CAS  Google Scholar 

  96. Zheng, J. et al. High-throughput screening of hydrogen evolution reaction catalysts in MXene materials. J. Phys. Chem. C 124, 13695–13705 (2020).

    CAS  Google Scholar 

  97. Abraham, B. M., Sinha, P., Halder, P. & Singh, J. K. Fusing a machine learning strategy with density functional theory to hasten the discovery of 2D MXene-based catalysts for hydrogen generation. J. Mater. Chem. A 11, 8091–8100 (2023).

    CAS  Google Scholar 

  98. Ge, L. et al. Predicted optimal bifunctional electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening. J. Phys. Chem. Lett. 11, 869–876 (2020).

    CAS  PubMed  Google Scholar 

  99. Wexler, R. B., Martirez, J. M. P. & Rappe, A. M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J. Am. Chem. Soc. 140, 4678–4683 (2018).

    CAS  PubMed  Google Scholar 

  100. Parker, A. J., Opletal, G. & Barnard, A. S. Classification of platinum nanoparticle catalysts using machine learning. J. Appl. Phys. 128, 014301 (2020).

    CAS  Google Scholar 

  101. Sun, B., Barron, H., Opletal, G. & Barnard, A. S. From process to properties: correlating synthesis conditions and structural disorder of platinum nanocatalysts. J. Phys. Chem. C 122, 28085–28093 (2018).

    CAS  Google Scholar 

  102. Rück, M., Garlyyev, B., Mayr, F., Bandarenka, A. S. & Gagliardi, A. Oxygen reduction activities of strained platinum core–shell electrocatalysts predicted by machine learning. J. Phys. Chem. Lett. 11, 1773–1780 (2020).

    PubMed  Google Scholar 

  103. Chun, H. et al. First-principle-data-integrated machine-learning approach for high-throughput searching of ternary electrocatalyst toward oxygen reduction reaction. Chem Catal. 1, 855–869 (2021).

    CAS  Google Scholar 

  104. Kang, J. et al. First-principles database driven computational neural network approach to the discovery of active ternary nanocatalysts for oxygen reduction reaction. Phys. Chem. Chem. Phys. 20, 24539–24544 (2018).

    CAS  PubMed  Google Scholar 

  105. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    CAS  Google Scholar 

  106. Svane, K. L. & Rossmeisl, J. Theoretical optimization of compositions of high-entropy oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 61, e202201146 (2022).

    CAS  Google Scholar 

  107. Wan, X. et al. Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction. Patterns 3, 100553 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, W., Diesen, E., He, T., Reuter, K. & Margraf, J. T. Discovering high entropy alloy electrocatalysts in vast composition spaces with multiobjective optimization. J. Am. Chem. Soc. 146, 7698–7707 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pedersen, J. K. et al. Bayesian optimization of high-entropy alloy compositions for electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60, 24144–24152 (2021).

    CAS  Google Scholar 

  110. Jinnouchi, R., Hirata, H. & Asahi, R. Extrapolating energetics on clusters and single-crystal surfaces to nanoparticles by machine-learning scheme. J. Phys. Chem. C 121, 26397–26405 (2017).

    CAS  Google Scholar 

  111. Jinnouchi, R. & Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 8, 4279–4283 (2017).

    CAS  PubMed  Google Scholar 

  112. Hutchinson, M. L. et al. Overcoming data scarcity with transfer learning. Preprint at https://doi.org/10.48550/arXiv.1711.05099 (2017).

  113. Zafari, M., Kumar, D., Umer, M. & Kim, K. S. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. J. Mater. Chem. A 8, 5209–5216 (2020).

    CAS  Google Scholar 

  114. Kim, M. et al. Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts. Chem. Mater. 32, 709–720 (2020).

    CAS  Google Scholar 

  115. Shakouri, K., Behler, J., Meyer, J. & Kroes, G.-J. Accurate neural network description of surface phonons in reactive gas–surface dynamics: N2 + Ru(0001). J. Phys. Chem. Lett. 8, 2131–2136 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Boes, J. R. & Kitchin, J. R. Neural network predictions of oxygen interactions on a dynamic Pd surface. Mol. Simul. 43, 346–354 (2017).

    CAS  Google Scholar 

  117. Li, Z., Wang, S., Chin, W. S., Achenie, L. E. & Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 5, 24131–24138 (2017).

    CAS  Google Scholar 

  118. Back, S. et al. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10, 4401–4408 (2019).

    CAS  PubMed  Google Scholar 

  119. Davran-Candan, T., Günay, M. E. & Yıldırım, R. Structure and activity relationship for CO and O2 adsorption over gold nanoparticles using density functional theory and artificial neural networks. J. Chem. Phys. 132, 174113 (2010).

    PubMed  Google Scholar 

  120. Tomacruz, J. G. T., Pilario, K. E. S., Remolona, M. F. M., Padama, A. A. B. & Ocon, J. D. A machine learning-accelerated density functional theory (ML-DFT) approach for predicting atomic adsorption energies on monometallic transition metal surfaces for electrocatalyst screening. Chem. Eng. Trans. 94, 733–738 (2022).

    Google Scholar 

  121. Panapitiya, G. et al. Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters. J. Am. Chem. Soc. 140, 17508–17514 (2018).

    CAS  PubMed  Google Scholar 

  122. Pablo-García, S. et al. Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks. Nat. Comput. Sci. 3, 433–442 (2023).

    PubMed  PubMed Central  Google Scholar 

  123. Dasgupta, A., Gao, Y., Broderick, S. R., Pitman, E. B. & Rajan, K. Machine learning-aided identification of single atom alloy catalysts. J. Phys. Chem. C 124, 14158–14166 (2020).

    CAS  Google Scholar 

  124. Jung, H., Sauerland, L., Stocker, S., Reuter, K. & Margraf, J. T. Machine-learning driven global optimization of surface adsorbate geometries. npj Comput. Mater. 9, 114 (2023).

    Google Scholar 

  125. Ock, J., Badrinarayanan, S., Magar, R., Antony, A. & Farimani, A. B. Multimodal language and graph learning of adsorption configuration in catalysis. Nat. Mach. Intell. 6, 1501–1511 (2024).

    Google Scholar 

  126. Noh, J. & Chang, H. Data-driven prediction of configurational stability of molecule-adsorbed heterogeneous catalysts. J. Chem. Inf. Model. 63, 5981–5995 (2023).

    CAS  PubMed  Google Scholar 

  127. Toyao, T. et al. Toward effective utilization of methane: machine learning prediction of adsorption energies on metal alloys. J. Phys. Chem. C 122, 8315–8326 (2018).

    CAS  Google Scholar 

  128. Singh, A. R., Rohr, B. A., Gauthier, J. A. & Nørskov, J. K. Predicting chemical reaction barriers with a machine learning model. Catal. Lett. 149, 2347–2354 (2019).

    CAS  Google Scholar 

  129. Takahashi, K. & Miyazato, I. Rapid estimation of activation energy in heterogeneous catalytic reactions via machine learning. J. Comput. Chem. 39, 2405–2408 (2018).

    CAS  PubMed  Google Scholar 

  130. Bang, G. J., Gu, G. H., Noh, J. & Jung, Y. Activity trends of methane oxidation catalysts under emission conditions. ACS Catal. 12, 10255–10263 (2022).

    CAS  Google Scholar 

  131. Li, X.-T., Chen, L., Wei, G.-F., Shang, C. & Liu, Z.-P. Sharp increase in catalytic selectivity in acetylene semihydrogenation on Pd achieved by a machine learning simulation-guided experiment. ACS Catal. 10, 9694–9705 (2020).

    CAS  Google Scholar 

  132. Ulissi, Z. W., Singh, A. R., Tsai, C. & Nørskov, J. K. Automated discovery and construction of surface phase diagrams using machine learning. J. Phys. Chem. Lett. 7, 3931–3935 (2016).

    CAS  PubMed  Google Scholar 

  133. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Gu, G. H. & Vlachos, D. G. Group additivity for thermochemical property estimation of lignin monomers on Pt(111). J. Phys. Chem. C 120, 19234–19241 (2016).

    CAS  Google Scholar 

  135. Natarajan, S. K. & Behler, J. Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Phys. Chem. Chem. Phys. 18, 28704–28725 (2016).

    CAS  PubMed  Google Scholar 

  136. Artrith, N. & Kolpak, A. M. Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput. Mater. Sci. 110, 20–28 (2015).

    CAS  Google Scholar 

  137. Lansford, J. L. & Vlachos, D. G. Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials. Nat. Commun. 11, 1513 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhai, H. & Alexandrova, A. N. Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J. Chem. Theory Comput. 12, 6213–6226 (2016).

    CAS  PubMed  Google Scholar 

  139. Fernandez, M., Barron, H. & Barnard, A. S. Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Adv. 7, 48962–48971 (2017).

    CAS  Google Scholar 

  140. Su, Y.-Q. et al. Stability of heterogeneous single-atom catalysts: a scaling law mapping thermodynamics to kinetics. npj Comput. Mater. 6, 144 (2020).

    CAS  Google Scholar 

  141. Saadun, A. J. et al. Performance of metal-catalyzed hydrodebromination of dibromomethane analyzed by descriptors derived from statistical learning. ACS Catal. 10, 6129–6143 (2020).

    CAS  Google Scholar 

  142. Pablo-García, S. et al. Generalizing performance equations in heterogeneous catalysis from hybrid data and statistical learning. ACS Catal. 12, 1581–1594 (2022).

    Google Scholar 

  143. Corma, A., Serra, J., Serna, P. & Moliner, M. Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models. J. Catal. 232, 335–341 (2005).

    CAS  Google Scholar 

  144. Corma, A. et al. Optimisation of olefin epoxidation catalysts with the application of high-throughput and genetic algorithms assisted by artificial neural networks (softcomputing techniques). J. Catal. 229, 513–524 (2005).

    CAS  Google Scholar 

  145. Baumes, L. A., Serna, P. & Corma, A. Merging traditional and high-throughput approaches results in efficient design, synthesis and screening of catalysts for an industrial process. Appl. Catal. A Gen. 381, 197–208 (2010).

    CAS  Google Scholar 

  146. Baumes, L. A., Serra, J. M., Serna, P. & Corma, A. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications. J. Comb. Chem. 8, 583–596 (2006).

    CAS  PubMed  Google Scholar 

  147. Serra, J. M., Chica, A. & Corma, A. Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods. Appl. Catal. A Gen. 239, 35–42 (2003).

    CAS  Google Scholar 

  148. Holeňa, M. & Baerns, M. Feedforward neural networks in catalysis. Catal. Today 81, 485–494 (2003).

    Google Scholar 

  149. Klanner, C. et al. The development of descriptors for solids: teaching “catalytic intuition” to a computer. Angew. Chem. Int. Ed. 43, 5347–5349 (2004).

    CAS  Google Scholar 

  150. Artrith, N., Lin, Z. & Chen, J. G. Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning. ACS Catal. 10, 9438–9444 (2020).

    CAS  Google Scholar 

  151. Jayakumar, T. P., Suresh Babu, S. P., Nguyen, T. N., Le, S. D. & Taniike, T. Exploration of ethanol-to-butadiene catalysts by high-throughput experimentation and machine learning. Appl. Catal. A Gen. 666, 119427 (2023).

    CAS  Google Scholar 

  152. Hattori, T. & Kito, S. Neural network as a tool for catalyst development. Catal. Today 23, 347–355 (1995).

    CAS  Google Scholar 

  153. Madaan, N., Shiju, N. R. & Rothenberg, G. Predicting the performance of oxidation catalysts using descriptor models. Catal. Sci. Technol. 6, 125–133 (2016).

    Google Scholar 

  154. Arcotumapathy, V., Siahvashi, A. & Adesina, A. A. A new weighted optimal combination of ANNs for catalyst design and reactor operation: methane steam reforming studies. AIChE J. 58, 2412–2427 (2012).

    CAS  Google Scholar 

  155. Baysal, M., Günay, M. E. & Yıldırım, R. Decision tree analysis of past publications on catalytic steam reforming to develop heuristics for high performance: a statistical review. Int. J. Hydrog. Energy 42, 243–254 (2017).

    CAS  Google Scholar 

  156. Şener, A. N., Günay, M. E., Leba, A. & Yıldırım, R. Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis. Catal. Today 299, 289–302 (2018).

    Google Scholar 

  157. Hossain, M. A., Ayodele, B. V., Cheng, C. K. & Khan, M. R. Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts. Int. J. Hydrog. Energy 41, 11119–11130 (2016).

    CAS  Google Scholar 

  158. Han, X. et al. Using data mining technology in screening potential additives to Ni/Al2O3 catalysts for methanation. Catal. Sci. Technol. 7, 6042–6049 (2017).

    CAS  Google Scholar 

  159. Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011).

    CAS  Google Scholar 

  160. Takahashi, K., Takahashi, L., Nguyen, T. N., Thakur, A. & Taniike, T. Multidimensional classification of catalysts in oxidative coupling of methane through machine learning and high-throughput data. J. Phys. Chem. Lett. 11, 6819–6826 (2020).

    CAS  PubMed  Google Scholar 

  161. Taniike, T., Fujiwara, A., Nakanowatari, S., García-Escobar, F. & Takahashi, K. Automatic feature engineering for catalyst design using small data without prior knowledge of target catalysis. Commun. Chem. 7, 11 (2024).

    PubMed  PubMed Central  Google Scholar 

  162. Palkovits, S. A primer about machine learning in catalysis – a tutorial with code. ChemCatChem 12, 3995–4008 (2020).

    CAS  Google Scholar 

  163. Pirro, L. et al. Descriptor–property relationships in heterogeneous catalysis: exploiting synergies between statistics and fundamental kinetic modelling. Catal. Sci. Technol. 9, 3109–3125 (2019).

    CAS  Google Scholar 

  164. Schmack, R. et al. A meta-analysis of catalytic literature data reveals property-performance correlations for the OCM reaction. Nat. Commun. 10, 441 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Takahashi, K., Miyazato, I., Nishimura, S. & Ohyama, J. Unveiling hidden catalysts for the oxidative coupling of methane based on combining machine learning with literature data. ChemCatChem 10, 3223–3228 (2018).

    CAS  Google Scholar 

  166. Kondratenko, E. V., Schlüter, M., Baerns, M., Linke, D. & Holena, M. Developing catalytic materials for the oxidative coupling of methane through statistical analysis of literature data. Catal. Sci. Technol. 5, 1668–1677 (2015).

    CAS  Google Scholar 

  167. Odabaşı, Ç., Günay, M. E. & Yıldırım, R. Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012. Int. J. Hydrog. Energy 39, 5733–5746 (2014).

    Google Scholar 

  168. Günay, M. E. & Yildirim, R. Modeling preferential CO oxidation over promoted Au/Al2O3 catalysts using decision trees and modular neural networks. Chem. Eng. Res. Des. 91, 874–882 (2013).

    Google Scholar 

  169. Günay, M. E. & Yildirim, R. Knowledge extraction from catalysis of the past: a case of selective CO oxidation over noble metal catalysts between 2000 and 2012. ChemCatChem 5, 1395–1406 (2013).

    Google Scholar 

  170. Günay, M. E. & Yildirim, R. Developing global reaction rate model for CO oxidation over Au catalysts from past data in literature using artificial neural networks. Appl. Catal. A Gen. 468, 395–402 (2013).

    Google Scholar 

  171. Günay, M. E. & Yildirim, R. Neural network analysis of selective CO oxidation over copper-based catalysts for knowledge extraction from published data in the literature. Ind. Eng. Chem. Res. 50, 12488–12500 (2011).

    Google Scholar 

  172. Smith, A., Keane, A., Dumesic, J. A., Huber, G. W. & Zavala, V. M. A machine learning framework for the analysis and prediction of catalytic activity from experimental data. Appl. Catal. B Environ. 263, 118257 (2020).

    CAS  Google Scholar 

  173. Li, J., Pan, L., Suvarna, M. & Wang, X. Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chem. Eng. J. 426, 131285 (2021).

    CAS  Google Scholar 

  174. Baumes, L., Farrusseng, D., Lengliz, M. & Mirodatos, C. Using artificial neural networks to boost high-throughput discovery in heterogeneous catalysis. QSAR Comb. Sci. 23, 767–778 (2004).

    CAS  Google Scholar 

  175. Günay, M. E., Türker, L. & Tapan, N. A. Decision tree analysis for efficient CO2 utilization in electrochemical systems. J. CO2 Util. 28, 83–95 (2018).

    Google Scholar 

  176. Sun, Y., Yang, G., Wen, C., Zhang, L. & Sun, Z. Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor. J. CO2 Util. 24, 10–21 (2018).

    CAS  Google Scholar 

  177. Suvarna, M., Araújo, T. P. & Pérez-Ramírez, J. A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation. Appl. Catal. B Environ. 315, 121530 (2022).

    CAS  Google Scholar 

  178. Estahbanati, M. R. K., Feilizadeh, M. & Iliuta, M. C. Photocatalytic valorization of glycerol to hydrogen: optimization of operating parameters by artificial neural network. Appl. Catal. B Environ. 209, 483–492 (2017).

    CAS  Google Scholar 

  179. Leonard, K. C. & Bard, A. J. Pattern recognition correlating materials properties of the elements to their kinetics for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 15885–15889 (2013).

    CAS  PubMed  Google Scholar 

  180. Can, E. & Yildirim, R. Data mining in photocatalytic water splitting over perovskites literature for higher hydrogen production. Appl. Catal. B Environ. 242, 267–283 (2019).

    CAS  Google Scholar 

  181. Hickman, R. J., Häse, F., Roch, L. M. & Aspuru-Guzik, A. Gemini: dynamic bias correction for autonomous experimentation and molecular simulation. Preprint at https://doi.org/10.48550/arXiv.2103.03391 (2021).

  182. Jenewein, K. J. et al. Navigating the unknown with AI: multiobjective Bayesian optimization of non-noble acidic OER catalysts. J. Mater. Chem. A 12, 3072–3083 (2024).

    CAS  Google Scholar 

  183. Serra, J. M. & Vert, V. B. Quaternary mixture designs applied to the development of multi-element oxygen electrocatalysts based on the Ln0.58Sr0.4Fe0.8Co0.2O3−δ system (Ln = La1−xyzPrxSmyBaz: predictive modeling approaches. Catal. Today 159, 47–54 (2011).

    CAS  Google Scholar 

  184. Hong, W. T., Welsch, R. E. & Shao-Horn, Y. Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120, 78–86 (2016).

    CAS  Google Scholar 

  185. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Proc. 33rd International Conference on Neural Information Processing Systems (eds Wallach, A. M. et al.) 8026–8037 (Curran, 2019).

  186. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Google Scholar 

  187. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. KDD ‘16: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016).

  188. Wu, Y., Walsh, A. & Ganose, A. M. Race to the bottom: Bayesian optimisation for chemical problems. Digit. Discov. 3, 1086–1100 (2024).

    Google Scholar 

  189. Sui, F., Guo, R., Zhang, Z., Gu, G. X. & Lin, L. Deep reinforcement learning for digital materials design. ACS Mater. Lett. 3, 1433–1439 (2021).

    CAS  Google Scholar 

  190. Pizzuto, G. et al. Accelerating laboratory automation through robot skill learning for sample scraping. In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE) 2103–2110 (IEEE, 2024).

  191. Lan, T., Wang, H. & An, Q. Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms. Nat. Commun. 15, 6281 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lan, T. & An, Q. Discovering catalytic reaction networks using deep reinforcement learning from first-principles. J. Am. Chem. Soc. 143, 16804–16812 (2021).

    CAS  PubMed  Google Scholar 

  193. Mamun, O., Winther, K. T., Boes, J. R. & Bligaard, T. A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts. npj Comput. Mater. 6, 177 (2020).

    CAS  Google Scholar 

  194. Farrusseng, D. et al. Design of discovery libraries for solids based on QSAR models. QSAR Comb. Sci. 24, 78–93 (2005).

    CAS  Google Scholar 

  195. Farrusseng, D., Clerc, F., Mirodatos, C. & Rakotomalala, R. Virtual screening of materials using neuro-genetic approach: concepts and implementation. Comput. Mater. Sci. 45, 52–59 (2009).

    CAS  Google Scholar 

  196. Tapan, N. A., Günay, M. E. & Yildirim, R. Constructing global models from past publications to improve design and operating conditions for direct alcohol fuel cells. Chem. Eng. Res. Des. 105, 162–170 (2016).

    CAS  Google Scholar 

  197. Alper Tapan, N., Yıldırım, R. & Günay, M. E. Analysis of past experimental data in literature to determine conditions for high performance in biodiesel production: determining conditions for high performance in biodiesel production. Biofuels Bioprod. Biorefin. 10, 422–434 (2016).

    CAS  Google Scholar 

  198. Suvarna, M., Preikschas, P. & Pérez-Ramírez, J. Identifying descriptors for promoted rhodium-based catalysts for higher alcohol synthesis via machine learning. ACS Catal. 12, 15373–15385 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Bozal-Ginesta, C. et al. Performance prediction of high-entropy perovskites La0.8Sr0.2MnxCoyFezO3 with automated high-throughput characterization of combinatorial libraries and machine learning. Adv. Mater. 36, e2407372 (2024).

    PubMed  Google Scholar 

  200. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Cheetham, A. K. & Seshadri, R. Artificial intelligence driving materials discovery? Perspective on the article: scaling deep learning for materials discovery. Chem. Mater. 36, 3490–3495 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Leeman, J. Challenges in high-throughput inorganic materials prediction and autonomous synthesis. PRX Energy 3, 011002 (2024).

    Google Scholar 

  203. Chen, X., Singh, M. M. & Geyer, P. Utilizing domain knowledge: robust machine learning for building energy performance prediction with small, inconsistent datasets. Knowl.-Based Syst. 294, 111774 (2024).

    Google Scholar 

  204. Murdock, R. J., Kauwe, S. K., Wang, A. Y.-T. & Sparks, T. D. Is domain knowledge necessary for machine learning materials properties? Integr. Mater. Manuf. Innov. 9, 221–227 (2020).

    Google Scholar 

  205. Wang, L., He, T. & Ouyang, B. The impact of domain knowledge on universal machine learning models. Preprint at https://doi.org/10.26434/chemrxiv-2024-fmq8p (2024).

  206. Veeramani, M., Doss, S. S., Narasimhan, S. & Bhatt, N. Semi-supervised machine learning approach for reaction stoichiometry and kinetic model identification using spectral data from flow reactors. React. Chem. Eng. 9, 355–368 (2024).

    CAS  Google Scholar 

  207. Kunz, M. R. et al. Data driven reaction mechanism estimation via transient kinetics and machine learning. Chem. Eng. J. 420, 129610 (2021).

    CAS  Google Scholar 

  208. Kollenz, P., Herten, D.-P. & Buckup, T. Unravelling the kinetic model of photochemical reactions via deep learning. J. Phys. Chem. B 124, 6358–6368 (2020).

    CAS  PubMed  Google Scholar 

  209. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Google Scholar 

  210. Xin, H., Mou, T., Pillai, H. S., Wang, S.-H. & Huang, Y. Interpretable machine learning for catalytic materials design toward sustainability. Acc. Mater. Res. 5, 22–34 (2024).

    CAS  Google Scholar 

  211. Fare, C., Fenner, P., Benatan, M., Varsi, A. & Pyzer-Knapp, E. O. A multi-fidelity machine learning approach to high throughput materials screening. npj Comput. Mater. 8, 257 (2022).

    Google Scholar 

  212. Goodlett, S. M., Turney, J. M. & Schaefer, H. F. III Comparison of multifidelity machine learning models for potential energy surfaces. J. Chem. Phys. 159, 044111 (2023).

    CAS  PubMed  Google Scholar 

  213. Liu, X., De Breuck, P.-P., Wang, L. & Rignanese, G.-M. A simple denoising approach to exploit multi-fidelity data for machine learning materials properties. npj Comput. Mater. 8, 233 (2022).

    Google Scholar 

  214. Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.B.-G. acknowledges funding from a Marie Skłodowska Curie Actions Postdoctoral Fellowship grant (101064374). C.C. and S.P.-G. acknowledge that this material is based upon work supported by the U.S. Department of Energy, Office of Science, Subaward by “University of Minnesota, Project title: Development of Machine Learning and Molecular Simulation Approaches to Accelerate the Discovery of Porous Materials for Energy-Relevant Applications” under Award Number DE-SC0023454. A.T. acknowledges support from the Generalitat de Catalunya (2021-SGR-00750, NANOEN). A.A.-G. thanks A. G. Frøseth for his generous support. A.A.-G. also acknowledges the generous support from the Acceleration Consortium, the Natural Resources Canada and the Canada 150 Research Chairs programme.

Author information

Authors and Affiliations

Authors

Contributions

C.B.-G., S.P.-G. and C.C. researched data for the article. C.B.-G. and S.P.-G. wrote the article. C.B.-G., S.P.-G., A.T. and A.A.-G. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Carlota Bozal-Ginesta, Albert Tarancón or Alán Aspuru-Guzik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Hongliang Xin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

2024 Nobel Prize in Chemistry: https://www.nobelprize.org/prizes/chemistry/2024/summary/

2024 Nobel Prize in Physics: https://www.nobelprize.org/prizes/physics/2024/summary/

Catalysis Hub: https://www.catalysis-hub.org/

Crystallography Open Database: http://www.crystallography.net/cod/

NIST databases: https://www.nist.gov/

NREL Materials Database: https://materials.nrel.gov/

OpenAI’s ChatGPT: https://chatgpt.com

Open Catalyst Project: https://opencatalystproject.org/

Pauling File – Inorganic Materials Database: https://paulingfile.com/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozal-Ginesta, C., Pablo-García, S., Choi, C. et al. Developing machine learning for heterogeneous catalysis with experimental and computational data. Nat Rev Chem (2025). https://doi.org/10.1038/s41570-025-00740-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-025-00740-4

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing