Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Advertisement

Log in

Bacillus siamensis strain B30 as a biocontrol agent for enhancing systemic resistance and mitigating bean yellow mosaic virus infestation in faba bean plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacillus siamensis strain B30 was isolated from the rhizosphere of faba bean and molecularly identified using the 16S rRNA (Acc# OQ878652) and rpoB (Acc# OR061338) genes. Under greenhouse conditions, the application of B30, whether through soil inoculum or foliar application of its culture filtrate, significantly promoted growth and triggered systemic resistance against bean yellow mosaic virus (BYMV) infection in faba bean. As a result, the disease severity and viral accumulation levels were significantly reduced, by about 64% and 88%, respectively, for foliar application treatment. Furthermore, B30 treatments resulted in significant elevations in antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), and superoxide dismutase (SOD), as well as total chlorophyll content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. A significant decrease in oxidative stress markers, namely hydrogen peroxide (H2O2) and malondialdehyde (MDA), was observed. These changes were accompanied by an upregulation of the transcriptional levels of pathogenesis-related genes. Furthermore, HPLC analysis revealed that most polyphenolic compounds were induced and accumulated in plants undergoing B30 treatments. GC–MS analysis revealed that the ethyl acetate extract of B30 culture filtrate contains significant amounts of 3,3-dimethylbutan-1,2-dione oxime; 3,4-dihdro-2H-1,5-(3"-T-butyl) benzodioxepine;1-nonadecene; 1-dodecanol, 3,7,11-trimethyl-; 1-docosene; 3,7,11-trimethyl-; pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-; 2,2-dideutero octadecanal and á-sitosterol. The capability of B. siamensis B30 to boost faba bean growth and induce systemic resistance against BYMV infection implies that it could be utilized as a biocontrol agent, a viable and environmental approach to protecting faba bean plants from BYMV infection. This is the first time B. siamensis has been reported to have antiviral activity against plant viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The generated and analyzed data during the current study are available from the corresponding author on reasonable request.

References

  • Abdelkhalek, A. (2019). Expression of tomato pathogenesis related genes in response to Tobacco mosaic virus. JAPS, Journal of Animal and Plant Sciences, 29(6), 1596–1602.

    CAS  Google Scholar 

  • Abdelkhalek, A., Al-Askar, A. A., Arishi, A. A., & Behiry, S. I. (2022a). Trichoderma hamatum Strain Th23 Promotes Tomato Growth and Induces Systemic Resistance against Tobacco Mosaic Virus. Journal of Fungi, 8(3), 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelkhalek, A., Al-Askar, A. A., Elbeaino, T., Moawad, H., & El-Gendi, H. (2022b). Protective and Curative Activities of Paenibacillus polymyxa against Zucchini yellow mosaic virus Infestation in Squash Plants. Biology, 11(8), 1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelkhalek, Ahmed, El-Gendi, H., Al-Askar, A. A., Maresca, V., Moawad, H., Elsharkawy, M. M., et al. (2022c). Enhancing systemic resistance in faba bean (Vicia faba L.) to Bean yellow mosaic virus via soil application and foliar spray of nitrogen-fixing Rhizobium leguminosarum bv. viciae strain 33504-Alex1. Frontiers in Plant Science, 13, 933498. https://doi.org/10.3389/fpls.2022.933498

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelkhalek, Ahmed, & Hafez, E. (2020). Plant Viral Diseases in Egypt and Their Control. In Cottage Industry of Biocontrol Agents and Their Applications (pp. 403–421). Springer.

  • Abdelkhalek, Ahmed, Bashir, S., El-Gendi, H., Elbeaino, T., El-Rahim, W. M. A., & Moawad, H. (2023). Protective Activity of Rhizobium leguminosarum bv. viciae Strain 33504-Mat209 against Alfalfa Mosaic Virus Infection in Faba Bean Plants. 12 Plants. https://doi.org/10.3390/plants12142658

  • AbdEl-Rahim, W. M., Khalil, W. K. B., & Eshak, M. G. (2010). Evaluation of the gene expression changes in Nile tilapia (Oreochromis niloticus) as affected by the bio-removal of toxic textile dyes from aqueous solution in small-scale bioreactor. The Environmentalist, 30(3), 242–253.

    Article  Google Scholar 

  • Abdel-Wareth, M. T. A., Ali, E. A. M., & El-Shazly, M. A. (2023). Biological activity and GC-MS/MS analysis of extracts of endophytic fungi isolated from eichhornia crassipes (Mart) solms. Journal of Applied Biotechnology Reports, 10(1), 895–909.

    CAS  Google Scholar 

  • Adhikari, K. N., Khazaei, H., Ghaouti, L., Maalouf, F., Vandenberg, A., Link, W., & O’Sullivan, D. M. (2021). Conventional and molecular breeding tools for accelerating genetic gain in faba bean (Vicia Faba L.). Frontiers in Plant Science, 12(October), 1–17. https://doi.org/10.3389/fpls.2021.744259

    Article  Google Scholar 

  • Al-Ani, R. A., & Adhab, M. A. (2013). Bean Yellow Mosaic Virus (BYMV) on broadbean: Characterization and resistance induced by Rhizobium leguminosarum. Journal of Pure and Applied Microbiology, 7(1), 135–142.

    Google Scholar 

  • Albratty, M., Alhazmi, H. A., Meraya, A. M., Najmi, A., Alam, M. S., Rehman, Z., & Moni, S. S. (2023). Spectral analysis and Antibacterial activity of the bioactive principles of Sargassum tenerrimum J. Agardh collected from the Red sea, Jazan, Kingdom of Saudi Arabia. Brazilian Journal of Biology, 83, 1–10. https://doi.org/10.1590/1519-6984.249536

    Article  Google Scholar 

  • Aseel, D. G., Soliman, S. A., Al-Askar, A. A., Elkelish, A., Elbeaino, T., & Abdelkhalek, A. (2023). Trichoderma viride Isolate Tvd44 Enhances Potato Growth and Stimulates the Defense System against Potato Virus Y. Horticulturae, 9(6), 716.

    Article  Google Scholar 

  • Bai, J., Zhang, Y., Tang, C., Hou, Y., Ai, X., Chen, X., et al. (2021). Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy, 133, 110985. https://doi.org/10.1016/j.biopha.2020.110985

    Article  CAS  Google Scholar 

  • Baker, A., Lin, C.-C., Lett, C., Karpinska, B., Wright, M. H., & Foyer, C. H. (2023). Catalase: A critical node in the regulation of cell fate. Free Radical Biology and Medicine, 199, 56–66. https://doi.org/10.1016/j.freeradbiomed.2023.02.009

    Article  CAS  PubMed  Google Scholar 

  • Balal, R. M., Khan, M. M., Shahid, M. A., Mattson, N. S., Abbas, T., Ashfaq, M., et al. (2012). Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. Journal of the American Society for Horticultural Science, 137(2), 86–95.

    Article  CAS  Google Scholar 

  • Baradar, A., Hosseini, A., Ratti, C., & Hosseini, S. (2021). Phylogenetic analysis of a Bean yellow mosaic virus isolate from Iran and selecting the phylogenetic marker by comparing the individual genes and complete genome trees of BYMV isolates. Physiological and Molecular Plant Pathology, 114, 101632.

    Article  Google Scholar 

  • Bariana, H. S., Shannon, A. L., Chu, P. W. G., & Waterhouse, P. M. (1994). Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test. Phytopathology, 84(10), 1201–1205.

    Article  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging Insights into the functions of pathogenesis-related protein 1. Trends in Plant Science, 22(10), 871–879. https://doi.org/10.1016/j.tplants.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98(4), 1222–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzivassiliou, E. K. (2021). An annotated list of legume-infecting viruses in the light of metagenomics. Plants, 10(7), 1413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, Y. K., & Ahn, H. Y. E. K. (1999). Purification and characterization of polyphenol oxidase from potato: II. Inhibition and catalytic mechanism. Journal of Food Biochemistry, 23(6), 593–605.

    Article  CAS  Google Scholar 

  • Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., Klessig, D. F., D’Maris Amick Dempsey, A. C., Vlot, M. C. W., et al. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists, 9, e0156. https://doi.org/10.1199/tab.0156

    Article  PubMed Central  Google Scholar 

  • El Gamal, A. Y., Tohamy, M. R., Abou-Zaid, M. I., Atia, M. M., El Sayed, T., & Farroh, K. Y. (2022). Silver nanoparticles as a viricidal agent to inhibit plant-infecting viruses and disrupt their acquisition and transmission by their aphid vector. Archives of Virology, 167(1), 85–97.

    Article  PubMed  Google Scholar 

  • El-Gendi, H., Al-Askar, A. A., Király, L., Samy, M. A., Moawad, H., & Abdelkhalek, A. (2022). Foliar applications of bacillus subtilis HA1 culture filtrate enhance tomato growth and induce systemic resistance against tobacco mosaic virus infection. Horticulturae. https://doi.org/10.3390/horticulturae8040301

    Article  Google Scholar 

  • El-Helaly, S., Awad, H., Ahmed, A., & Al-Attar, A. (2016). Studies on bean yellow mosaic virus infecting some leguminous crops in Egypt. Egyptian Journal of Crop Protection, 11(2), 1–9.

    Article  Google Scholar 

  • Elhelaly, S. H. (2022). The effectiveness of the bacteria Rhizobium leguminosarum against bean yellow mosaic (BYMV) potyvirus infecting faba bean (Vicia faba L.) Plants. Annals of Agricultural Science, Moshtohor, 60(1), 181–190.

    Article  Google Scholar 

  • Eslahi, N., Kowsari, M., Zamani, M., & Motallebi, M. (2021). The profile change of defense pathways in phaseouls vulgaris L. by biochemical and molecular interactions of Trichoderma harzianum transformants overexpressing a chimeric chitinase. Biological Control, 152, 104304. https://doi.org/10.1016/j.biocontrol.2020.104304

    Article  CAS  Google Scholar 

  • Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, 102048.

    Article  CAS  Google Scholar 

  • Gorai, P. S., Ghosh, R., Mandal, S., Ghosh, S., Chatterjee, S., Gond, S. K., & Mandal, N. C. (2021). Bacillus siamensis CNE6-a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiological Research, 252, 126859.

    Article  CAS  PubMed  Google Scholar 

  • Habib, M. R., & Karim, M. R. (2009). Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) flower. Mycobiology, 37(1), 31–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafez, E. E., Abdelkhalek, A. A., Abd El-Wahab, A. S. E. D., & Galal, F. H. (2013). Altered gene expression: Induction/suppression in leek elicited by Iris Yellow Spot Virus infection (IYSV) Egyptian isolate. Biotechnology and Biotechnological Equipment, 27(5), 4061–4068. https://doi.org/10.5504/BBEQ.2013.0068

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Heflish, A. A., Abdelkhalek, A., Al-Askar, A. A., & Behiry, S. I. (2021). Protective and curative effects of trichoderma asperelloides Ta41 on tomato root rot caused by rhizoctonia solani Rs33. Agronomy, 11(6), 1162.

    Article  CAS  Google Scholar 

  • Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias, V. A., Meins, F., & Meins, F., Jr. (2000). Movement of plant viruses is delayed in a β-1, 3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. The Plant Journal, 21(2), 157–166. https://doi.org/10.1046/j.1365-313X.2000.00658.x

    Article  CAS  PubMed  Google Scholar 

  • Javed, M. R., Salman, M., Tariq, A., Tawab, A., Zahoor, M. K., Naheed, S., et al. (2022). The antibacterial and larvicidal potential of Bis-(2-Ethylhexyl) phthalate from lactiplantibacillus plantarum. Molecules, 27(21), 7220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha, U. C., Nayyar, H., Chattopadhyay, A., Beena, R., Lone, A. A., Naik, Y. D., et al. (2023). Major viral diseases in grain legumes: Designing disease resistant legumes from plant breeding and OMICS integration. Frontiers in Plant Science, 14, 1183505.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao, X., Takishita, Y., Zhou, G., & Smith, D. L. (2021). Plant associated rhizobacteria for biocontrol and plant growth enhancement. Frontiers in Plant Science, 12(March). https://doi.org/10.3389/fpls.2021.634796

  • Khan, A., Bano, A., Khan, R. A., & Khan, N. (2023). Role of PGPR in suppressing the growth of Macrophomina phaseolina by regulating antioxidant enzymes and secondary metabolites in Vigna radiata (L.) R Wilczek. South African Journal of Botany, 158, 443–451. https://doi.org/10.1016/j.sajb.2023.05.040

    Article  CAS  Google Scholar 

  • Kiran, G. S., Priyadharsini, S., Sajayan, A., Ravindran, A., & Selvin, J. (2018). An antibiotic agent pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Advances, 8(32), 17837–17846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo, S., Ikeda, T., Imaizumi, S., Takanami, Y., & Mikami, Y. (1990). A potent plant virus inhibitor found in Mirabilis jalapa L. Japanese Journal of Phytopathology, 56(4), 481–487.

    Article  Google Scholar 

  • Kumar, S., Anjali, Arutselvan, R., Masurkar, P., Singh, U. B., Tripathi, R., et al. (2024). Bacillus subtilis-Mediated Induction of Disease Resistance and Promotion of Plant Growth of Vegetable Crops. In Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond (pp. 165–211). Springer.

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Marín, L., Gutiérrez-del-Río, I., Entrialgo-Cadierno, R., Claudio, Villar, J., & Lombó, F. (2018). De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE, 13(11), 1–16. https://doi.org/10.1371/journal.pone.0207278

    Article  CAS  Google Scholar 

  • Mathioudakis, M. M., Veiga, R. S. L., Canto, T., Medina, V., Mossialos, D., Makris, A. M., & Livieratos, I. (2013). Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Molecular Plant Pathology, 14(6), 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moawad, H., Abd El-Rahim, W. M., & Abd El-Haleem, D. (2004). Performance of phaseolus bean rhizobia in soils from the major production sites in the Nile Delta. Comptes Rendus Biologies, 327(5), 445–453.

    Article  PubMed  Google Scholar 

  • Moawad, H., El-Rahim, A., Mohamed, W., Hashem, M. M., Gebreil, G. M., Sabbor, A., & Sedik, M. Z. (2019). Retting and degumming of flax using biotechnology eco-friendly approach. Egyptian Journal of Chemistry, 62(11), 2033–2045.

    Google Scholar 

  • Mrkvová, M., Kemenczeiová, J., Achs, A., Alaxin, P., Predajňa, L., Šoltys, K., et al. (2024). Molecular characteristics and biological properties of bean yellow mosaic virus isolates from Slovakia. Horticulturae, 10(3), 262.

    Article  Google Scholar 

  • Nabi, M., Zargar, M. I., Tabassum, N., Ganai, B. A., Wani, S. U. D., Alshehri, S., et al. (2022). Phytochemical profiling and antibacterial activity of methanol leaf extract of Skimmia anquetilia. Plants, 11(13), 1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagella, P., Ahmad, A., Kim, S.-J., & Chung, I.-M. (2012). Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacology and Immunotoxicology, 34(2), 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880.

    CAS  Google Scholar 

  • Otulak-Kozieł, K., Kozieł, E., & Lockhart, B. (2018). Plant cell wall dynamics in compatible and incompatible potato response to infection caused by Potato virus Y (PVYNTN). International Journal of Molecular Sciences, 19(3), 862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellegrini, M., Pagnani, G., Bernardi, M., Mattedi, A., Spera, D. M., & Del Gallo, M. (2020). Cell-free supernatants of plant growth-promoting bacteria: A review of their use as biostimulant and microbial biocontrol agents in sustainable agriculture. Sustainability (switzerland), 12(23), 1–22. https://doi.org/10.3390/su12239917

    Article  CAS  Google Scholar 

  • Petrova, D., Chaneva, G., Stoimenova, E., & Kapchina-Toteva, V. (2012). Effect of cucumber mosaic virus on the contents of chlorophyll, proline, the degree of lipid peroxidation and phenotypic expression of pepper lines with different susceptibility to virus. Oxidation Communications, 35(1), 182–189.

    CAS  Google Scholar 

  • Radwan, D. E. M., Lu, G., Fayez, K. A., & Mahmoud, S. Y. (2008). Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology, 165(8), 845–857. https://doi.org/10.1016/j.jplph.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., & Lu, G. (2010). Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiologiae Plantarum, 32(5), 891–904.

    Article  CAS  Google Scholar 

  • Rooney, A. P., Price, N. P. J., Ehrhardt, C., Swezey, J. L., & Bannan, J. D. (2009). Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 59(10), 2429–2436.

    Article  CAS  PubMed  Google Scholar 

  • Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., et al. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910529

  • Scholthof, K. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., et al. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ser, H. L., Palanisamy, U. D., Yin, W. F., Abd Malek, S. N., Chan, K. G., Goh, B. H., & Lee, L. H. (2015). Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Frontiers in Microbiology, 6(AUG), 1–11. https://doi.org/10.3389/fmicb.2015.00854

    Article  Google Scholar 

  • Serteyn, L., Quaghebeur, C., Ongena, M., Cabrera, N., Barrera, A., Molina-Montenegro, M. A., et al. (2020). Induced systemic resistance by a plant growth-promoting rhizobacterium impacts development and feeding behavior of aphids. Insects, 11(4), 234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethupathy, S., Ananthi, S., Selvaraj, A., Shanmuganathan, B., Vigneshwari, L., Balamurugan, K., et al. (2017). Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Scientific Reports, 7(1), 1–17. https://doi.org/10.1038/s41598-017-16507-x

    Article  CAS  Google Scholar 

  • Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., et al. (2021). PGPR in Agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems, 5(July), 1–22. https://doi.org/10.3389/fsufs.2021.667546

    Article  Google Scholar 

  • Sharma, A., Kaushik, N., Sharma, A., Bajaj, A., Rasane, M., Shouche, Y. S., et al. (2021). Screening of tomato seed bacterial endophytes for antifungal activity reveals lipopeptide producing Bacillus siamensis strain NKIT9 as a potential bio-control agent. Frontiers in Microbiology, 12, 609482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smaoui, S., Mathieu, F., Elleuch, L., Coppel, Y., Merlina, G., Karray-Rebai, I., & Mellouli, L. (2012). Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World Journal of Microbiology and Biotechnology, 28, 793–804.

    Article  CAS  PubMed  Google Scholar 

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59–66.

    Article  CAS  Google Scholar 

  • Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 9(9), 1–18. https://doi.org/10.3390/microorganisms9091988

    Article  CAS  Google Scholar 

  • Xu, B.-H., Ye, Z.-W., Zheng, Q.-W., Wei, T., Lin, J.-F., & Guo, L.-Q. (2022). Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech, 2018(8), 10.

    Google Scholar 

  • Yılmaz, H. Ö., & Meriç, Ç. S. (2024). Grains and Pulses in Diets of the Middle East and a Focus on Buckwheat. In Ancient and Traditional Foods, Plants, Herbs and Spices used in the Middle East (pp. 3–14). CRC Press.

  • Zhao, S., & Li, Y. (2021). Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathogens, 17(2), e1009242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, F., Zhang, Q. P., Che, Y. P., Zhu, P. X., Zhang, Q. Q., & Ji, Z. L. (2021). Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. Molecular Plant Pathology, 22(12), 1668–1687. https://doi.org/10.1111/mpp.13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by Science, Technology & Innovation Funding Authority (STDF) under grant (33504). The authors would like to extend their appreciation to the Researchers Supporting Project number (RSP2024R505), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdelkhalek.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkhalek, A., Al-Askar, A.A., Hamzah, K.A. et al. Bacillus siamensis strain B30 as a biocontrol agent for enhancing systemic resistance and mitigating bean yellow mosaic virus infestation in faba bean plants. Eur J Plant Pathol 171, 257–275 (2025). https://doi.org/10.1007/s10658-024-02943-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-024-02943-9

Keywords

Profiles

  1. Ahmed Abdelkhalek