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 1.  ALGORITHMS 
 
 
 
 

Introduction 
 
Put simply, an algorithm is a procedure or set of rules designed to 
accomplish some task. Mathematical algorithms are indispensable 
tools, and assist in financial risk minimization, traffic flow 
optimization, flight scheduling, automatic facial recognition, 
Google search, and several other services that impact our daily 
lives.  
 

Often, an algorithm can give us a deeper understanding of 
mathematics itself. For instance, the famous Euclidean algorithm 
essentially lays the foundation for the field of number theory. In 
this chapter, we will focus on using algorithms to prove 
combinatorial results. We can often prove the existence of an 
object (say, a graph with certain properties or a family of sets 
satisfying certain conditions) by giving a procedure to explicitly 
construct it. These proofs are hence known as constructive proofs. 
Our main goals in this chapter will be to study techniques for 
designing algorithms for constructive proofs, and proving that 
they actually work.  
 



Olympiad Combinatorics  2 

In this chapter, and throughout the book, the emphasis will be 
on ideas. What can we observe while solving a given problem? 
How can disparate ideas and observations be pieced together 
cohesively to motivate a solution? What can we learn from the 
solution of one problem, and how may we apply it to others in the 
future? Each problem in this book is intended to teach some 
lesson - this may be a combinatorial trick or a new way of looking 
at problems. We suggest that you keep a log of new ideas and 
insights into combinatorial structures and problems that you 
encounter or come up with yourself. 
 

 
 

Greedy Algorithms 
 

Be fearful when others are greedy and greedy when others are 
fearful - Warren Buffet 

 
Greedy algorithms are algorithms that make the best possible 
short term choices, hence in each step maximizing short term 
gain. They aren’t always the optimal algorithm in the long run, but 
often are still extremely useful. The idea of looking at extreme 
elements (that are biggest, smallest, best, or worst in some 
respect) is central to this approach.  
 
Example 1 
In a graph G with n vertices, no vertex has degree greater than Δ. 
Show that one can color the vertices using at most Δ+1 colors, 
such that no two neighboring vertices are the same color. 
 
Answer:  
We use the following greedy algorithm: arrange the vertices in an 
arbitrary order. Let the colors be 1, 2, 3… Color the first vertex 
with color 1. Then in each stage, take the next vertex in the order 
and color it with the smallest color that has not yet been used on 
any of its neighbors. Clearly this algorithm ensures that two 
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adjacent vertices won’t be the same color. It also ensures that at 
most Δ+1 colors are used: each vertex has at most Δ neighbors, so 
when coloring a particular vertex v, at most Δ colors have been 
used by its neighbors, so at least one color in the set {1, 2, 3, …, 
Δ+1} has not been used. The minimum such color will be used for 
the vertex v. Hence all vertices are colored using colors in the set 
{1, 2, 3,…, Δ+1} and the problem is solved. ■ 
 
Remark: The “greedy” step here lies in always choosing the color 
with the smallest number. Intuitively, we’re saving larger 
numbers only for when we really need them. 
 
Example 2 [Russia 2005, Indian TST 2012, France 2006] 
In a 2 x n array we have positive reals such that the sum of the 
numbers in each of the n columns is 1. Show that we can select 
one number in each column such that the sum of the selected 
numbers in each row is at most (n+1)/4.  
 

0.4 0.7 0.9 0.2 0.6 0.4 0.3 0.1 
0.6 0.3 0.1 0.8 0.4 0.6 0.7 0.9 

 
Figure 1.1: 2xn array of positive reals, n=8 

 
Answer:  
A very trivial greedy algorithm would be to select the smaller 
number in each column. Unfortunately, this won’t always work, as 
can easily be seen from an instance in which all numbers in the 
top row are 0.4. So we need to be more clever. Let the numbers in 
the top row in non-decreasing order be a1, a2, …., an and the 
corresponding numbers in the bottom row be b1, b2, …., bn (in non-
increasing order, since bi = 1 - ai). Further suppose that the sum of 
the numbers in the top row is less than or equal to that of the 
bottom row. The idea of ordering the variables is frequently used, 
since it provides some structure for us to work with.  
 

Our algorithm is as follows: Starting from a1, keep choosing the 
smallest remaining element in the top row as long as possible. In 



Olympiad Combinatorics  4 

other words, select a1, a2, …, ak such that a1 + a2 + … + ak ≤ 
   

 
 but 

a1 + a2 + … + ak + ak+1 > 
   

 
  Now we cannot select any more from 

the top row (as we would then violate the problem’s condition) so 
in the remaining columns choose elements from the bottom row. 
We just need to prove that the sum of the chosen elements in the 

bottom row is at most 
   

 
  Note that ak+1 is at least the average of 

a1, a2, …, ak, ak+1 which is more than 
   

      
   

 

Hence bk+1 = (1 - ak+1) < 1 - 
   

      
. But bk+1 is the largest of the 

chosen elements in the bottom row. So the sum of the chosen 

elements in the bottom row cannot exceed (1 - 
   

      
) x (n-k). We 

leave it to the reader to check that this quantity cannot exceed 
(n+1)/4. ■ 

 
Remark: One of the perks of writing a book is that I can leave 
boring calculations to my readers.  
 
Example 3 
In a graph G with V vertices and E edges, show that there exists an 
induced subgraph H with each vertex having degree at least E/V. 
(In other words, a graph with average degree d has an induced 
subgraph with minimum degree at least d/2).  
 
Answer:  
Note that the average degree of a vertex is 2E/V. Intuitively, we 
should get rid of ‘bad’ vertices: vertices that have degree < E/V. 
Thus a natural algorithm for finding such a subgraph is as follows: 
start with the graph G, and as long as there exists a vertex with 
degree < E/V, delete it. However, remember that while deleting a 
vertex we are also deleting the edges incident to it, and in the 
process vertices that were initially not ‘bad’ may become bad in 
the subgraph formed. What if we end up with a graph with all 
vertices bad? Fortunately, this won’t happen: notice that the ratio 
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of edges/vertices is strictly increasing (it started at E/V and each 
time we deleted a vertex, less than E/V edges were deleted by the 
condition of our algorithm). Hence, it is impossible to reach a 
stage when only 1 vertex is remaining, since in this case the 
edges/vertices ratio is 0. So at some point, our algorithm must 
terminate, leaving us with a graph with more than one vertex, all 
of whose vertices have degree at least E/V.  ■ 
 
Remark: This proof used the idea of monovariants, which we will 
explore further in the next section.  
 
The next problem initially appears to have nothing to do with 
algorithms, but visualizing what it actually means allows us to 
think about it algorithmically. The heuristics we develop lead us 
to a very simple algorithm, and proving that it works isn’t hard 
either.  
 
Example 4 [IMO shortlist 2001, C4] 
A set of three nonnegative integers {x, y, z} with x < y < z satisfying 
{z-y, y-x} = {1776, 2001} is called a historic set. Show that the set 
of all nonnegative integers can be written as a disjoint union of 
historic sets.  
 
Remark: The problem is still true if we replace {1776, 2001} with 
an arbitrary pair of distinct positive integers {a, b}. These 
numbers were chosen since IMO 2001 took place in USA, which 
won independence in the year 1776. 
 
Answer:   
Let 1776 = a, 2001 =b. A historic set is of the form {x, x+a, x+a+b} 
or {x, x+b, x+a+b}. Call these small sets and big sets respectively. 
Essentially, we want to cover the set of nonnegative integers using 
historic sets. To construct such a covering, we visualize the 
problem as follows: let the set of nonnegative integers be written 
in a line. In each move, we choose a historic set and cover these 
numbers on the line. Every number must be covered at the end of 
our infinite process, but no number can be covered twice (the 
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historic sets must be disjoint). We have the following heuristics, or 
intuitive guidelines our algorithm should follow: 
 
Heuristic 1: At any point, the smallest number not yet covered is 
the most “unsafe”- it may get trapped if we do not cover it (for 
example, if x is the smallest number not yet covered but x+a+b has 
been covered, we can never delete x). Thus in each move we 
should choose x as the smallest uncovered number.  
 
Heuristic 2: From heuristic 1, it follows that our algorithm should 
prefer small numbers to big numbers. Thus it should prefer small 
sets to big sets. 
 

Based on these two simple heuristics, we construct the 
following greedy algorithm that minimizes short run risk: in any 
move, choose x to be the smallest number not yet covered. Use 
the small set if possible; only otherwise use the big set. We now 
show that this simple algorithm indeed works: 
 

Suppose the algorithm fails (that is, we are stuck because using 
either the small or big set would cover a number that has already 
been covered) in the (n+1)th step. Let xi be the value chosen for x 
in step i. Before the (n+1)th step, xn+1 hasn’t yet been covered, by 
the way it is defined. xn+1 + a + b hasn’t yet been covered since it is 
larger than all the covered elements (xn+1 > xi by our algorithm). So 
the problem must arise due to xn+1 + a and xn+1 + b. Both of these 
numbers must already be covered. Further, xn+1 + b must have 
been the largest number in its set. Thus the smallest number in 
this set would be xn+1 + b – (a+b) = xn+1 – a. But at this stage, xn+1 
was not yet covered, so the small set should have been used and 
xn+1 should have been covered in that step. This is a contradiction. 
Thus our supposition is wrong and the algorithm indeed works. ■ 
 
Remark: In an official solution to this problem, the heuristics 
would be skipped. Reading such a solution would leave you 
thinking “Well that’s nice and everything, but how on earth would 
anyone come up with that?” One of the purposes of this book is to 
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show that Olympiad solutions don’t just “come out of nowhere”. 
By including heuristics and observations in our solutions, we hope 
that readers will see the motivation and the key ideas behind 
them.  
 

 
 

Invariants and Monovariants 
 

Now we move on to two more extremely important concepts: 
invariants and monovariants. Recall that a monovariant is a 
quantity that changes monotonically (either it is non-increasing or 
non-decreasing), and an invariant is a quantity that doesn’t 
change. These concepts are especially useful when studying 
combinatorial processes. While constructing algorithms, they help 
us in several ways. Monovariants often help us answer the 
question “Well, what do we do now?” In the next few examples, 
invariants and monovariants play a crucial role in both 
constructing the algorithm and ensuring that it works.  
 
Example 5 [IMO shortlist 1989]  
A natural number is written in each square of an m x n 
chessboard. The allowed move is to add an integer k to each of 
two adjacent numbers in such a way that nonnegative numbers 
are obtained (two squares are adjacent if they share a common 
side). Find a necessary and sufficient condition for it to be 
possible for all the numbers to be zero after finitely many 
operations. 
 
Answer:  
Note that in each move, we are adding the same number to 2 
squares, one of which is white and one of which is black (if the 
chessboard is colored alternately black and white). If Sb and Sw 
denote the sum of numbers on black and white squares 
respectively, then Sb – Sw is an invariant. Thus if all numbers are 0 
at the end, Sb – Sw = 0 at the end and hence Sb – Sw = 0 in the 
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beginning as well. This condition is thus necessary; now we prove 
that it is sufficient. 
 

8 7 6 4  8 7 2 0 

7 3 2 1 → 7 3 2 1 
5 2 5 6  5 2 5 6 

 
Figure 1.2: A move on the mxn board 

 
Suppose a, b, c are numbers in cells A, B, C respectively, where 

A, B, C are cells such that A and C are both adjacent to B. If a ≤ b, 
we can add (-a) to both a and b, making a 0. If a ≥ b, then add (a-b) 
to b and c. Then b becomes a, and now we can add (-a) to both of 
them, making them 0. Thus we have an algorithm for reducing a 
positive integer to 0. Apply this in each row, making all but the 
last 2 entries 0. Now all columns have only zeroes except the last 
two. Now apply the algorithm starting from the top of these 
columns, until only two adjacent nonzero numbers remain. These 
last two numbers must be equal since Sb = Sw . Thus we can reduce 
them to 0 as well. ■ 
 
The solution to the next example looks long and complicated, but 
it is actually quite intuitive and natural. We have tried to motivate 
each step, and show that each idea follows quite naturally from 
the previous ones. 
 
Example 6 [New Zealand IMO Training, 2011] 
There are 2n people seated around a circular table, and m cookies 
are distributed among them. The cookies can be passed under the 
following rules: 
(a) Each person can only pass cookies to his or her neighbors  
(b) Each time someone passes a cookie, he or she must also eat a 

cookie 
Let A be one of these people. Find the least m such that no matter 
how m cookies are distributed initially, there is a strategy to pass 
cookies so that A receives at least one cookie. 
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Answer:  
We begin by labeling the people A–n+1, A–n+2, …., A0, A1, A2, …, An, 
such that A = A0. Also denote A-n = An. We assign weight 1/2|i| to 
each cookie held by person Ai. Thus for example, if A3 passes a 
cookie to A2, that cookie’s weight increases from 1/8 to 1/4. Note that 
A3 must also eat a cookie (of weight 1/8) in this step. Thus we see in 
this case the sum of the weights of all the cookies has remained 
the same. More precisely, if Ai has ai cookies for each i, then the 
total weight of all cookies is  

W =∑
  
    

 
         

 
Whenever a cookie is passed towards A0 (from A±i to A±(i-1) for i 

positive) one cookie is eaten and another cookie doubles its 
weight, so the total weight remains invariant. If a cookie is passed 
away from A, then the total weight decreases. Thus the total 
weight is indeed a monovariant. 
 

 
 

Figure 1.3: Labeling scheme to create a monovariant (n=5) 
 

A 0 
A 1 

A 2 

A 3 

A 4 

A 5 
A 6 

A -5 

A -4 

A -3 

A -2 

A -1 
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If m < 2
n
, then if all the cookies are initially given to An, the 

initial total weight is m/2
n
 < 1. Therefore the total weight is 

always less than 1 (since it can never increase), so A0 cannot 
receive a cookie (if A0 received a cookie it would have weight 1). 

Thus we must have m ≥ 2n.  
 

We now show that for m ≥ 2
n
, we can always ensure that A0 

gets a cookie. Intuitively, we have the following heuristic:  
 
Our algorithm should never pass away from A0, otherwise we will 

decrease our monovariant. Thus in each step we should pass 
towards A0. 

 
This heuristic, however, does not tell us which way An should 

pass a cookie, as both directions are towards A0 (An and A0 are 
diametrically opposite). This leads us to consider a new quantity 
in order to distinguish between the two directions that An can pass 
to. Let W+ be the sum of the weights of cookies held by A0, A1, A2, 
…., An  and let W- be the sum of the weights of cookies held by A0,  
A-1, A-2, …., A-n. Assume WLOG W+ ≥ W-. Then this suggests that we 
should make An pass cookies only to An-1 and that we should only 
work in the semicircle containing nonnegative indices, since this 
is the semicircle having more weight. Thus our algorithm is to 
make An pass as many cookies as possible to An-1, then make An-1 
pass as many cookies as possible to An-2, and so on until A0 gets a 
cookie. But this works if and only if W+ ≥ 1: W+ ≥ 1 is certainly 
necessary since W+ is a monovariant under our algorithm, and we 
now show it is sufficient.  

 
Suppose W+ ≥ 1. Note that our algorithm leaves W+ invariant. 

Suppose our algorithm terminates, that is, we cannot pass 
anymore cookies from any of the Ai’s with i positive, and A0 

doesn’t have any cookies. Then A1, A2, …., An all have at most 1 
cookie at the end (if they had more than one, they could eat one 
and pass one and our algorithm wouldn’t have terminated). Then 
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at this point W+ ≤ ½ + ¼ + ….. + 1/2
n < 1, contradicting the fact that 

W+ is invariant and ≥ 1. Thus W+ ≥ 1 is a sufficient condition for 
our algorithm to work.  

 
Finally, we prove that we indeed have W+ ≥ 1. We assumed W+ ≥ 

W-. Now simply note that each cookie contributes at least 1/2n-1 to 

the sum (W+ + W-), because each cookie has weight at least 1/2
n-1 

except for cookies at An. However, cookies at An are counted twice 
since they contribute to both W+ and W-, so they also contribute 

1/2n-1 to the sum. Hence, since we have at least 2n cookies, W+ + W- 
≥ 2, so W+ ≥ 1 and we are done. ■ 
 
The next example demonstrates three very useful ideas: 
monovariants, binary representation and the Euclidean algorithm. 
All of these are very helpful tools.  

 
Example 7 [IMO shortlist 1994, C3] 
Peter has 3 accounts in a bank, each with an integral number of 
dollars. He is only allowed to transfer money from one account to 
another so that the amount of money in the latter is doubled. 
Prove that Peter can always transfer all his money into two 
accounts. Can he always transfer all his money into one account? 
 
Answer:  
The second part of the question is trivial - if the total number of 
dollars is odd, it is clearly not always possible to get all the money 
into one account. Now we solve the first part. Let A, B, C with A ≤ B 
≤ C be the number of dollars in the account 1, account 2 and 
account 3 respectively at a particular point of time. If A = 0 
initially, we are done so assume A > 0. As we perform any 
algorithm, the values of A, B and C keep changing. Our aim is to 
monotonically strictly decrease the value of min (A, B, C). This will 
ensure that we eventually end up with min (A, B, C) = 0 and we 
will be done. Now, we know a very simple and useful algorithm 
that monotonically reduces a number- the Euclidean algorithm. So 
let B = qA + r with 0   r < A. Our aim now is to reduce the number 
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of dollars in the second account from B to r. Since r < A, we would 
have reduced min (A, B, C), which was our aim. 
 

Now, since the question involves doubling certain numbers, it 
is a good idea to consider binary representations of numbers. Let 

q = m0 + 2m1 + …. + 2kmk be the binary representation of q, where 
mi = 0 or 1. To reduce B to r, in step i of our algorithm, we transfer 
money to account 1. The transfer is from account 2 if mi-1 = 1 and 
from account 3 if mi-1 = 0. The number of dollars in the first 
account starts with A and keeps doubling in each step. Thus we 

end up transferring A(m0 + 2m1 + …. + 2kmk) = Aq dollars from 
account 2 to account 1, and we are left with B – Aq = r dollars in 
account 2. We have thus succeeded in reducing min (A, B, C) and 
so we are done. ■ 
 
Now we look at a very challenging problem that can be solved 
using monovariants.  
 
Example 8 [APMO 1997, Problem 5]  
n people are seated in a circle. A total of nk coins have been 
distributed among them, but not necessarily equally. A move is the 
transfer of a single coin between two adjacent people. Find an 
algorithm for making the minimum possible number of moves 
which result in everyone ending up with the same number of 
coins. 
 
Answer:  
We want each person to end up with k coins. Let the people be 
labeled from 1, 2, …, n in order (note that n is next to 1 since they 
are sitting in a circle). Suppose person i has ci coins. We introduce 
the variable di = ci – k, since this indicates how close a person is to 
having the desired number of coins. Consider the quantity 
 

X = |d1| + |d1 + d2| + |d1 + d2 + d3| + … + |d1 + d2 + … + dn-1| 
 

Clearly X = 0 if and only if everyone has k coins, so our goal is to 
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make X = 0. The reason for this choice of X is that moving a coin 
between person j and person j + 1 for 1 ≤ j ≤ n -1 changes X by 
exactly 1 as only the term |d1 + d2 + … + dj| will be affected. Hence 
X is a monovariant and is fairly easy to control (except when 
moving a coin from 1 to n or vice versa). Let sj = d1 + d2 + … + dj.  

 
We claim that as long as X > 0 it is always possible to reduce X 

by 1 by a move between j and j +1 for some 1 ≤ j ≤ n -1. We use the 
following algorithm. Assume WLOG d1 ≥ 1. Take the first j such 
that dj+1 < 0. If sj > 0, then simply make a transfer from j to j + 1. 
This reduces X by one since it reduces the term |sj| by one. The 
other possibility is sj = 0, which means d1 = d2 = … = dj = 0 (recall 
that dj+1 is the first negative term). In this case, take the first m > 
i+1 such that dm ≥ 0. Then dm-1 < 0 by the assumption on m, so we 
move a coin from m to (m-1). Note that all terms before dm were 
either 0 or less than 0 and dm-1 < 0 , so sm-1 was less than 0. Our 
move has increased sm-1 by one, and has hence decreased |sm-1| by 
one, so we have decreased X by one.  

 
Thus at any stage we can always decrease X by at least one by 

moving between j and j +1 for some 1 ≤ j ≤ n -1. We have not yet 
considered the effect of a move between 1 and n. Thus our full 
algorithm is as follows: At any point of time, if we can decrease X 
by moving a coin from 1 to n or n to 1, do this. Otherwise, decrease 
X by 1 by the algorithm described in the above paragraph.  ■ 
 
Sometimes while creating algorithms that monotonically decrease 
(or increase) a quantity, we run into trouble in particular cases 
and our algorithm doesn’t work. We can often get around these 
difficulties as follows. Suppose we want to monotonically 
decrease a particular quantity. Call a position good if we can 
decrease the monovariant with our algorithm. Otherwise, call the 
position bad. Now create an algorithm that converts bad positions 
into good positions, without increasing our monovariant. We use 
the first algorithm when possible, and then if we are stuck in a bad 
position, use the second algorithm to get back to a good position. 
Then we can again use the first algorithm. The next example 
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(which is quite hard) demonstrates this idea.  
 
Example 9 [USAMO 2003-6] 
At the vertices of a regular hexagon are written 6 nonnegative 
integers whose sum is 2003. Bert is allowed to make moves of the 
following form: he may pick a vertex and replace the number 
written there by the absolute value of the difference between the 
numbers at the neighboring vertices. Prove that Bert can make a 
sequence of moves, after which the number 0 appears at all 6 
vertices.  
 
Remark: We advise the reader to follow this solution with a paper 
and pen, and fill in the details that have been left for the reader. 
We first suggest that the reader try some small cases (with 2003 
replaced by smaller numbers). 
 
Answer:  
Our algorithm uses the fact that 2003 is odd. Let the sum of a 
position be the sum of the 6 numbers and the maximum denote 
the value of the maximum of the 6 numbers. Let A, B, C, D, E, F be 
the numbers at the 6 vertices in that order. Our aim is to 
monotonically decrease the maximum. Note that the maximum 
can never increase.  
 

We need two sub-algorithms:  
 

(i) “Good position” creation: from a position with odd sum, go to 
a position with exactly one odd number                                         

(ii) Monovariant reduction: from a position with exactly one odd 
number, go to a position with odd sum and strictly smaller 
maximum, or go to the all 0 position.                                                                                                                                    

 
For (i), since (A + B + C + D + E + F) is odd, assume WLOG that A 

+ C + E is odd. If exactly one of A, C, E is odd, suppose A is odd. 
Then make the following sequence of moves: B, F, D A, F (here we 
denote a move by the vertex at which the move is made). This 
way, we end up with a situation in which only B is odd and the 
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rest become even (check this), and we are done with step (i). The 
other possibility is that all of A, C and E are odd. In this case make 
the sequence of moves (B, D, F, C, E). After this only A is odd 
(check this). 

 
Now we are ready to apply step (ii), the step that actually 

decreases our monovariant. At this point, only one vertex contains 
an odd number; call this vertex A. Again we take two cases. If the 
maximum is even, then it is one of B, C, D, E or F. Now make moves 
at B, C, D, E and F in this order. (The reader should check that this 
works, that is, this sequence of moves decreases the maximum 
and ensures that the sum is odd). If the maximum is odd, then it is 
A. If C = E = 0, then the sequence of moves (B, F, D, A, B, F) leaves 
us with all numbers 0 and we are done. Otherwise, suppose at 
least one of C and E is nonzero so suppose C > 0 (the case E > 0 is 
similar). In this case, make the moves (B, F, A, F). The reader can 
check that this decreases the maximum and leaves us with odd 
sum. 
 

Thus starting with odd sum, we apply (i) if needed, after which 
we apply (ii). This decreases the maximum, and also leaves us 
again with odd sum (or in some cases it leaves us with all 0s and 
we are done), so we can repeat the entire procedure until the 
maximum eventually becomes 0. ■ 
 

 
 

Miscellaneous Examples 
 
Now we look at a few more problems involving moves that don’t 
directly use monovariants or greedy algorithms. These problems 
can often be solved by algorithms that build up the required 
configuration in steps. Sometimes, the required algorithm 
becomes easier to find after making some crucial observations or 
proving an auxiliary lemma. But in lots of cases, all a 
combinatorics problem needs is patience and straightforward 
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logic, as the next example shows. Here again the solution looks 
long but most of what is written is just intended to motivate the 
solution.  
 
Example 10 [China 2010, Problem 5] 
There are some (finite number of) cards placed at the points A1, 
A2, …, An and O, where n ≥ 3. We can perform one of the following 
operations in each step: 
 
(1) If there are more than 2 cards at some point Ai, we can remove 

3 cards from this point and place one each at Ai-1, Ai+1 and O 
(here A0 = An and An+1 = A1) 

(2) If there are at least n cards at O, we can remove n cards from O 
and place one each at A1, A2, …, An.  

 

Show that if the total number of cards is at least n2+3n+1, we can 
make the number of cards at each vertex at least n + 1 after 
finitely many steps.  
 
Answer:  
Note that the total number of cards stays the same. We make a few 
observations: 
 
(a) We should aim to make the number of cards at each Ai equal 

or close to equal, since if in the end some point has lots of 
cards, some other point won’t have enough.  

 
(b) We can make each of the Ai’s have 0, 1 or 2 cards.  

Proof: repeatedly apply operation (1) as long as there is a 
point with at least 3 cards. This process must terminate, since 
the number of coins in O increases in each step but cannot 
increase indefinitely. This is a good idea since the Ai’s would 
now have a ‘close to equal’ number of coins, which is a good 
thing by observation a).  

 
(c) From observation b), we see that it is also possible to make 
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each of the Ai‘s have 1, 2, or 3 cards (from the stage where 
each vertex has 0, 1 or 2 cards, just apply operation (2) once). 
This still preserves the ‘close to equal’ property, but gives us 
some more flexibility since we are now able to apply 
operation 1.  

 
(d) Based on observation c), we make each of the Ai’s have 1, 2 or 

3 cards. Suppose x of the Ai’s have 1 card, y of the Ai’s have 2 
cards and z of the Ai’s have 3 cards. The number of cards at O 

is then at least (n2+3n+1) - (x +2y + 3z). Since x + y + z = n, (x + 
2y + 3z) = (2x + 2y + 2z) + z – x = 2n + z – x ≤ 2n if x ≥ z. Thus if 

x ≥ z, O will have at least (n
2
+3n+1) – 2n = n

2
+n + 1 cards. Now 

we can apply operation (2) n times. Then all the Ai’s will now 
have at least n + 1 cards (they already each had at least 1 

card), and O will have at least n2 + n + 1 – n2 = n + 1 cards and 
we will be done. 

 
Thus, based on observation d), it suffices to find an algorithm 

that starts with a position in which each of the Ai’s have 1, 2, or 3 
cards and ends in a position in which each of the Ai’s have 1, 2, or 
3 cards but the number of points having 3 cards is not more than 
the number of points having 1 card. This is not very difficult- the 
basic idea is to ensure that between any two points having 3 
cards, there is a point containing 1 card. We can do this as follows: 
 

If there are consecutive 3’s in a chain, like (x, 3, 3, ….., 3, y) with 
(x, y ≠3), apply operation (1) on all the points with 3 cards to get 
(x + 1, 1, 2, 2, ……, 2, 1, y+1). Thus we can ensure that there are no 
adjacent 3’s. Now suppose there are two 3’s with only 2’s between 
them, like (x, 3, 2, 2, 2,…,2, 3, y) with x, y ≠3. After doing operation 
(1) first on the first 3, then on the point adjacent to it that has 
become a 3 and so on until the point before y, we get the sequence 
(x+1, 1, 1,…,1, y+1).  

 
Thus we can repeat this procedure as long as there exist two 

3’s that do not have a 1 between them. Note that the procedure 
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preserves the property that all Ai’s have 1, 2 or 3 cards. But this 
cannot go on indefinitely since the number of coins at O is 
increasing. So eventually we end up with a situation where there 
is at least one 1 between any two 3’s, and we are done. ■ 
 
Example 11 [IMO 2010, Problem 5]  
Six boxes B1, B2, B3, B4, B5, B6 of coins are placed in a row. Each box 
initially contains exactly one coin. There are two types of allowed 
moves: 
 
Move 1: If Bk with 1 ≤ k ≤5 contains at least one coin, you may 
remove one coin from Bk and add two coins to Bk+1. 
Move 2: If Bk with 1 ≤ k ≤ 4 contains at least one coin, you may 
remove one coin from Bk and exchange the contents (possibly 
empty) of boxes Bk+1 and Bk+2.  
 
Determine if there exists a finite sequence of moves of the allowed 
types, such that the five boxes B1, B2, B3, B4, B5 become empty, 

while box B6 contains exactly 201020102010
   coins.  

Note: abc = a(bc) 

 
Answer:  

Surprisingly, the answer is yes. Let A = 2010
20102010

. We denote by 
(a1, a2, …, an)  (a1’, a2’, …, an’) the following: if some consecutive 
boxes have a1, a2, …, an coins respectively, we can make them have 
a1’, a2’, …, an’ coins by a legal sequence of moves, with all other 
boxes unchanged.  
 
Observations: 
a) Suppose we reach a stage where all boxes are empty, except 

for B4, which contains at least A/4 coins. Then we can apply 
move 2 if necessary until B4 contains exactly A/4 coins, and 
then apply move 1 twice and we will be done. Thus reaching 
this stage will be our key goal. 
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b) Move 1 is our only way of increasing the number of coins. 
Since it involves doubling, we should look for ways of 
generating powers of 2. In fact, since A is so large, we should 

try to generate towers of 2’s (numbers of the form 222
 ).  

 
Based on this, we construct two sub algorithms.  
 

Algorithm 1: (a, 0, 0)  (0, 2
a
, 0) for any positive integer a.  

Proof: First use move 1: (a, 0, 0)  (a–1, 2, 0).  
Now use move 1 on the middle box till it is empty: (a–1, 2, 0)  
(a–1, 0, 4) 
Use move 2 on the first box to get (a-2, 4, 0). 
Repeating this procedure (that is, alternately use move one on the 
second box till it is empty, followed by move one on the first box 

and so on), we eventually get (0, 2a, 0).  
Now, using this algorithm, we can construct an even more 
powerful algorithm that generates a large number of coins. 
 
Algorithm 2: Let Pn be a tower of n 2’s for each positive integer n 

(eg. P3 = 2
22

 = 16). Then  
(a, 0, 0, 0)  (0, Pa, 0, 0). 
Proof: We use algorithm 1. As in algorithm 1, the construction is 
stepwise. It is convenient to explain it using induction. 
 

We prove that (a, 0, 0, 0)  (a-k, Pk, 0, 0) for each 1 ≤ k ≤ a. For 
k = 1, simply apply move 1 to the first box. Suppose we have 
reached the stage (a-k, Pk, 0, 0). We want to reach (a- (k+1), Pk+1, 0, 

0). To do this, apply algorithm 1 to get (a-k, 0, 2Pk, 0). Note that 

2Pk = Pk+1. So now just apply move 2 to the first box and we get (a- 
k-1, Pk+1, 0, 0). Thus by induction, we finally reach (for k = a) (0, Pa, 
0, 0). 
 
With algorithm 2 and observation a), we are ready to solve the 
problem.  
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First apply move 1 to box 5, then move 2 to box 4, 3, 2 and 1 in 
this order: 
(1, 1, 1, 1, 1, 1)  (1, 1, 1, 1, 0, 3)  (1, 1, 1, 0, 3, 0)  (1, 1, 0, 3, 0, 
0) (1, 0, 3, 0, 0, 0)  (0, 3, 0, 0, 0, 0). 
 

Now we use algorithm 2 twice: 
(0, 3, 0, 0, 0, 0)  (0, 0, P3, 0, 0, 0)  (0, 0, 0, P16, 0, 0).  
 

Now we leave it to the reader to check that P16 > A/4 (in fact P16 

is much larger than A). By observation a), we are done.  
 
Remark: In the contest, several contestants thought the answer 
was no, and spent most of their time trying to prove that no such 
sequence exists. Make sure that you don’t ever jump to 
conclusions like that too quickly. On a lighter note, in a conference 
of the team leaders and deputy leaders after the contest, one 
deputy leader remarked “Even most of us thought that no such 
sequence existed”. To this, one leader replied, “That’s why you are 
deputy leaders and not team leaders!”  
 
We close this chapter with one of the hardest questions ever 
asked at the IMO. Only 2 out of over 500 contestants completely 
solved problem 3 in IMO 2007. Yup, that’s right- 2 high school 
students in the entire world.   
 
Example 12 [IMO 2007, Problem 3] 
In a mathematical competition some competitors are friends; 
friendship is always mutual. Call a group of competitors a clique if 
each two of them are friends. The number of members in a clique 
is called its size. It is known that the size of the largest clique(s) is 
even. Prove that the competitors can be arranged in two rooms 
such that the size of the largest cliques in one room is the same as 
the size of the largest cliques in the other room.  
 
Answer:  
Let M be one of the cliques of largest size, |M| = 2m. First send all 
members of M to Room A and all other people to Room B. Let c(A) 
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and c(B) denote the sizes of the largest cliques in rooms A and B at 
a given point in time. Since M is a clique of the largest size, we 
initially have c(A) =|M|≥ c(B).  Now we want to “balance things 
out”. As long as c(A) > c(B), send one person from Room A to 
Room B. In each step, c(A) decreases by one and c(B) increases by 
at most one. So at the end we have c(A)≤ c(B) ≤ c(A) + 1. We also 
have c(A) = |A| ≥ m at the end. Otherwise we would have at least 
m+1 members of M in Room B and at most m−1 in Room A, 
implying c(B)−c(A) ≥ (m+1)−(m−1) = 2.  
 

Clearly if c(A) = c(B) we are done so at this stage the only case 
we need to consider is c(B) - c(A) = 1. Let c(A) = k, c(B) = k+1. Now 
if there is a competitor in B, who is also in M but is not in the 
biggest clique in B, then by sending her to A, c(B) doesn’t change 
but c(A) increases by 1 and we are done. Now suppose there is no 
such competitor. We do the following: take each clique of size k+1 
in B and send one competitor to A. At the end of this process, c(B) 
= k. Now we leave it to the reader to finish the proof by showing 
that c(A) is still k. (You will need to use the supposition that there 
is no competitor in B who is also in M but not in the biggest clique 
of B. This means that every clique in B of size (k+1) contains 
B∩M). ■ 
 

 
 

Exercises 
 

1. [Activity Selection Problem] 

On a particular day, there are n events (say, movies, classes, 
parties, etc.) you want to attend. Call the events E1, E2, …, En 
and let Ei start at time si and finish at time fi. You are only 
allowed to attend events that do not overlap (that is, one 
should finish before the other starts). Provide an efficient 
algorithm that selects as many events as possible while 
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satisfying this condition.  
(Note: We have not defined what “efficient” here means. Note 
that this problem can be solved by simply testing all 2n 
possible combinations of events, and taking the best 
combination that works. However, this uses a number of steps 
that is exponential in n. By efficient, we mean a procedure that 
is guaranteed to require at most a number of steps that is 
polynomial in n).  
 

2. [Weighted Activity Selection] 

Solve the following generalization of the previous problem: 
event Ei has now weight wi and the objective is not to 
maximize the number of activities attended, but the sum of the 
weights of all activities attended.  

 

3. [Russia 1961] 

Real numbers are written in an m × n table. It is permissible to 
reverse the signs of all the numbers in any row or column. 
Prove that after a number of these operations, we can make 
the sum of the numbers along each line (row or column) 
nonnegative. 
 

4. Given 2n points in the plane with no three collinear, show that 
it is possible to pair them up in such a way that the n line 
segments joining paired points do not intersect. 
 

5. [Czech and Slovak Republics 1997] 

Each side and diagonal of a regular n-gon (n ≥ 3) is colored 
blue or green. A move consists of choosing a vertex and 
switching the color of each segment incident to that vertex 
(from blue to green or vice versa). Prove that regardless of the 
initial coloring, it is possible to make the number of blue 
segments incident to each vertex even by following a sequence 
of moves. Also show that the final configuration obtained is 
uniquely determined by the initial coloring. 
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6. [Bulgaria 2001] 

Given a permutation of the numbers 1, 2, …, n, one may 
interchange two consecutive blocks to obtain a new 
permutation. For instance, 3 5 4 8 9 7 2 1 6 can be 
transformed to 3 9 7 2 5 4 8 1 6 by swapping the consecutive 
blocks 5 4 8 and 9 7 2. Find the least number of changes 
required to change n, n-1, n-2, …, 1 to 1, 2, …, n. 

 

7. [Minimum makespan scheduling] 

Given the times taken to complete n jobs, t1, t2, …, tn, and m 
identical machines, the task is to assign each job to a machine 
so that the total time taken to finish all jobs is minimized. For 
example, if n = 5, m = 3 and the times are 5, 4, 4, 6 and 7 hours, 
the best we can do is make machine 1 do jobs taking 4 and 5 
hours, machine 2 do jobs taking 4 and 6 hours, and machine 3 
do the job taking 7 hours. The total time will then be 10 hours 
since machine 2 takes (4 + 6) hours.  
 

Consider the following greedy algorithm: Order the jobs 
arbitrarily, and in this order assign to each job the machine 
that has been given the least work so far. Let TOPT be the total 
time taken by the best possible schedule, and TA the time 
taken by our algorithm. Show that TA/TOPT ≤ 2; in other words, 
our algorithm always finds a schedule that takes at most twice 
the time taken by an optimal schedule. (This is known as a 2-
factor approximation algorithm.) 

 

8. [USAMO 2011-2]  

An integer is written at each vertex of a regular pentagon. A 
solitaire game is played as follows: a turn consists of choosing 
an integer m and two adjacent vertices of the pentagon, and 
subtracting m from the numbers at these vertices and adding 
2m to the vertex opposite them. (Note that m and the vertices 
chosen can change from turn to turn). The game is said to be 
won at a vertex when the number 2011 is written at it and the 
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other four vertices have the number 0 written at them. Show 
that there is exactly one vertex at which the game can be won.  
 

9. [Chvatal’s set covering algorithm] 

Let S1, S2, …, Sk be subsets of {1, 2, …, n}. With each set Si is an 
associated cost ci. Given this information, the minimum set 
cover problem asks us to select certain sets among S1, …, Sk 
such that the union of the selected sets is {1, 2, …, n} (that is, 
each element is covered by some chosen set) and the total cost 
of the selected sets is minimized. For example, if n = 4, k = 3, S1 
= {1, 2}; S2 = {2, 3, 4} and S3 = {1, 3, 4} and the costs of S1, S2 
and S3 are 5, 6 and 4 respectively, the best solution would be 
to select S1 and S3. 
 

Consider the following greedy algorithm for set cover: In each 
stage of the algorithm, we select the subset Si which 

maximizes the value of 
   ⋂    

  
 , where C’ denotes the set of 

elements not yet covered at that point. Intuitively, this 
algorithm maximizes (additional benefit)/cost in each step. 
This algorithm does not produce an optimal result, but it gets 
fairly close: let CA be the cost of the selected sets produced by 
the algorithm, and let COPT be the cost of the best possible 
selection of sets (the lowest cost). Prove that CA/COPT ≤ Hn, 
where Hn = 1 + ½ + … + 1/n. (In other words, this is an Hn-
factor approximation algorithm.)  
 

10. A matroid is an ordered pair (S, F) satisfying the following 
conditions: 
(i) S is a finite set 

(ii) F is a nonempty family of subsets of S, such that if A is a 
set in F, all subsets of A are also in F. The members of F 
are called independent sets 

(iii) If A and B belong to F but |A| > |B|, then there exists an 
element x   B\A such that A U {x}   F.  
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For example, if S = {1, 2, 3, 4} and F = { , {1}, {2}, {3}, {4}, {1, 
2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3,4}}, then you can easily verify 
that the above properties are satisfied. In general, note that if 
F contains all subsets of S with k or fewer elements for some k 
≤ |S|, {S, F} will be a matroid. 

An independent set A is said to be maximal if there does not 
exist any element x in S such that A U {x}   F. (In other words, 
adding any element to A destroys its independence.) Prove 
that all maximal independent sets have the same 
cardinality. 

11. Consider a matroid {S, F} where S = {a1, …, an}. Let element ai 
have weight wi, and define the weight of a set A to be the sum 
of the weights of its elements. A problem central to the theory 
of greedy algorithms is to find an independent set in this 
matroid of maximum weight. Consider the following greedy 
approach: starting from the null set, in each stage of the 
algorithm add an element (that has not been selected so far) 
with the highest weight possible while preserving the 
independence of the set of selected elements. When no more 
elements can be added, stop.  
Show that this greedy algorithm indeed produces a maximum 

weight independent set.  

 

12. [IMO Shortlist 2013, C3] 

A crazy physicist discovered a new kind of particle which he 
called an imon. Some pairs of imons in the lab can be 
entangled, and each imon can participate in many 
entanglement relations. The physicist has found a way to 
perform the following two kinds of operations with these 
particles, one operation at a time.  
(i) If some imon is entangled with an odd number of other 

imons in the lab, then the physicist can destroy it. 
(ii) At any moment, he may double the whole family of imons 

in the lab by creating a copy I’ of each imon I. During this 
procedure, the two copies I’ and J’ become entangled if and 
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only if the original imons I and J are entangled, and each 
copy I’ becomes entangled with its original imon I; no 
other entanglements occur or disappear at this moment. 

Show that after a finite number of operations, he can ensure 
that no pair of particles is entangled. 

 

13. [Japan 1998] 

Let n be a positive integer. At each of 2n points around a circle 
we place a disk with one white side and one black side. We 
may perform the following move: select a black disk, and flip 
over its two neighbors. Find all initial configurations from 
which some sequence of such moves leads to a position where 
all disks but one are white. 
 

14. [Based on IOI 2007] 

You are given n integers a1, a2, …, an and another set of n 
integers b1, b2, …, bn such that for each i, bi ≤ ai. For each i = 1, 
2, …, n, you must choose a set of bi distinct integers from the 
set {1, 2, …, ai}. In total, (b1 + b2 +…+ bn) integers are selected, 
but not all of these are distinct. Suppose k distinct integers 
have been selected, with multiplicities c1, c2, c3, …, ck. Your 
score is defined as ∑          

   . Give an efficient algorithm 
to select numbers in order to minimize your score.  
 

15. [Based on Asia Pacific Informatics Olympiad 2007] 

Given a set of n distinct positive real numbers S = {a1, a2, …, an} 
and an integer k < n/2, provide an efficient algorithm to form k 
pairs of numbers (b1, c1), (b2, c2), …, (bk, ck) such that these 2k 
numbers are all distinct and from S, and such that the sum 
∑        

 
    is minimized.  

Hint: A natural greedy algorithm is to form pairs sequentially 
by choosing the closest possible pair in each step. However, 
this doesn’t always work. Analyze where precisely the 
problem in this approach lies, and then accordingly adapt this 
algorithm so that it works.  



Chapter 1: Algorithms  27 

16. [ELMO Shortlist 2010] 

You are given a deck of kn cards each with a number in {1, 2, 
…, n} such that there are k cards with each number. First, n 
piles numbered {1, 2, …, n} of k cards each are dealt out face 
down. You are allowed to look at the piles and rearrange the k 
cards in each pile. You now flip over a card from pile 1, place 
that card face up at the bottom of the pile, then next flip over a 
card from the pile whose number matches the number on the 
card just flipped. You repeat this until you reach a pile in 
which every card has already been flipped and wins if at that 
point every card has been flipped. Under what initial 
conditions (distributions of cards into piles) can you 
guarantee winning this game? 

17. [Russia 2005] 

100 people from 25 countries, four from each country, sit in a 
circle. Prove that one may partition them onto 4 groups in 
such way that no two countrymen, nor two neighboring 
people in the circle, are in the same group. 

18. [Saint Petersburg 1997] 

An Aztec diamond of rank n is a figure consisting of those 
squares of a gridded coordinate plane lying inside the square 
|x| + |y| ≤ n+1. For any covering of an Aztec diamond by 
dominoes, a move consists of selecting a 2x2 square covered 
by two dominoes and rotating it by 90 degrees. The aim is to 
convert the initial covering into the covering consisting of only 
horizontal dominoes. Show that this can be done using at most 
n(n+1)(2n+1)/6 moves. 
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2. ALGORITHMS – PART II 
 
 

In this chapter we focus on some very important themes in the 
study of algorithms: recursive algorithms, efficiency and 
information. A recursive algorithm is one which performs a task 
involving n objects by breaking it into smaller parts. This is known 
as a “divide and conquer” strategy. Typically, we either do this by 
splitting the task with n objects into two tasks with n/2 objects or 
by first reducing the task to a task with (n-1) objects. The latter 
approach, which is essentially induction, is very often used to 
solve Olympiad problems.  
 

 
 

Induction 
 

We first look at two problems which use induction. In the first 
one, we use the technique of ignoring one object and applying the 
induction hypothesis on the remaining (n-1) objects. This 
obviously needs some care: we cannot completely ignore the nth 
object if it has some effect on the other objects!  
 
Example 1 [China Girls Math Olympiad 2011-7]  
There are n boxes B1, B2, …, Bn in a row. N balls are distributed 
amongst them (not necessarily equally). If there is at least one ball 
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in B1, we can move one ball from B1 to B2. If there is at least 1 ball 
in Bn, we can move one ball from Bn to Bn-1. For 2 ≤ k ≤ (n -1), if 
there are at least two balls in Bk, we can remove two balls from Bk 
and place one in Bk+1 and one in Bk-1. Show that whatever the 
initial distribution of balls, we can make each box have exactly one 
ball.  
 
Answer:  
We use induction and monovariants. The base cases n =1 and 2 
are trivial. Suppose we have an algorithm An-1 for n-1 boxes; we 
construct an algorithm An for n boxes. We use two steps. The first 
step aims to get a ball into Bn and the second uses the induction 
hypothesis. 
 
Step 1: If Bn contains at least one ball, move to step two. 

Otherwise, all n balls lie in the first (n-1) boxes. Assign a weight 2k 
to box Bk. Now keep moving balls from the boxes B1, B2, …, Bn-1 as 
long as possible. This cannot go on indefinitely as the total weight 
of the balls is a positive integer and strictly increases in each move 

but is bounded above by n2
n
. Thus at some point this operation 

terminates. This can only happen if B1 has 0 balls and B2, B3, …, Bn-1 
each has at most 1 ball. But then Bn will have at least 2 balls. Now 
go to step 2. 
 
Step 2: If Bn has k > 1 balls, move (k-1) balls from Bn to Bn-1. Now 
Bn has exactly one ball and the remaining (n-1) boxes have (n-1) 
balls. Color these (n-1) balls red and color the ball in Bn blue. Now 
we apply the induction hypothesis. Use algorithm An-1 to make 
each of the first (n-1) boxes have one ball each. The only time we 
run into trouble is when a move needs to be made from Bn-1, 
because in An-1, Bn-1 only needed 1 ball to make a move, but now it 
needs 2. We can easily fix this. Whenever An-1 says we need to 
move a ball from Bn-1 to Bn-2, we first move the blue ball to Bn-1. 
Then we move a ball from Bn-1 to Bn-2 and pass the blue ball back to 
Bn. This completes the proof. ■ 
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Example 2 [IMO Shortlist 2005, C1] 
A house has an even number of lamps distributed among its 
rooms in such a way that there are at least three lamps in every 
room. Each lamp shares a switch with exactly one other lamp, not 
necessarily from the same room. Each change in the switch shared 
by two lamps changes their states simultaneously. Prove that for 
every initial state of the lamps there exists a sequence of changes 
in some of the switches at the end of which each room contains 
lamps which are on as well as lamps which are off.  
 
Answer:  
Call a room bad if all its lamps are in the same state and good 
otherwise. We want to make all rooms good. We show that if k ≥ 1 
rooms are bad, then we can make a finite sequence of switches so 
that (k-1) rooms are bad. This will prove our result. 
 

Call two lamps connected if they share a switch. Take a bad 
room R1 and switch a lamp there. If this lamp is connected to a 
lamp in R1, we are done since each room has at least 3 lamps. If 
this lamp is connected to a lamp in another room R2, then R1 
becomes good but R2 might become bad. If R2 doesn’t become bad, 
we are done. If R2 does become bad, then repeat the procedure so 
that R2 becomes good but some other room R3 becomes bad. 
Continue in this manner. If we ever succeed in making a room 
good without making any other room bad we are done, so assume 
this is not the case. Then eventually we will reach a room we have 
already visited before. We prove that at this stage, the final switch 
we made would not have made any room bad.  

 
Consider the first time this happens and let Rm = Rn for some m 

> n. We claim that Rm is good at this stage. The first time we 
switched a lamp in Rn, we converted it from bad to good by 
switching one lamp. Now when we go to Rm (= Rn), we cannot 
switch the same lamp, since this lamp was connected to a lamp in 
room Rn-1, whereas the lamp we are about to switch is connected 
to a lamp in Rm-1. So two distinct lamps have been switched in Rm 
and hence Rm is good (since there are at least three lamps, at least 
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one lamp hasn’t been switched, and initially all lamps were in the 
same state since the room was bad before). Thus our final switch 
has made Rm-1 good without making Rm bad. Hence we have 
reduced the number of bad rooms by one, and repeating this we 
eventually make all rooms good. ■ 
 
The next two examples demonstrate how to construct objects 
inductively.  
 
Example 3:  
Given a graph G in which each vertex has degree at least (n-1), and 
a tree T with n vertices, show that there is a subgraph of G 
isomorphic to T.  
 
Answer:  
We find such a subgraph inductively. Assume the result holds for 
(n-1); we prove it holds for n. Delete a terminal vertex v from T. By 
induction we can find a tree H isomorphic to T \ {v} as a subgraph 
of G. This is because T \ {v} has (n-1) vertices and each vertex in G 
has degree at least (n-1) > (n-1) - 1, so we can apply the induction 
hypothesis. Now suppose v was adjacent to vertex u in T 
(remember that v is adjacent to only one vertex). Let w be the 
vertex in G corresponding to u. w has at least (n-1) neighbors in G, 
and at most (n-2) of them are in H since H has (n-1) vertices and w 
is one of them. Thus w has at least 1 neighbor in G that is not in H, 
and we take this vertex as the vertex corresponding to v. ■ 

 
Figure 2.1: Finding H inductively 
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Example 4 [USAMO 2002] 
Let S be a set with 2002 elements, and let N be an integer with 0 ≤ 

N ≤ 22002. Prove that it is possible to color every subset of S black 
or white, such that: 

a) The union of two white subsets is white 
b) The union of two black subsets is black 
c) There are exactly N white subsets.  

 
Answer 
You may have thought of inducting on N, but instead we induct on 
the number of elements of S. In this problem |S| = 2002, but we 

prove the more general result with |S| = n and 0 ≤ N ≤ 2
n
. The 

result trivially holds for n = 1, so suppose the result holds for n = 

k. Now we prove the result for n = k+1. If N ≤ 2n-1, note that by 
induction there is a coloring for the same value of N and n = k. We 
use this coloring for all sets that do not contain the (k+1)th 
element of S, and all subsets containing the (k+1)th element of S 
(which were not there in the case |S| = k) are now colored black. 
(Essentially, all “new” subsets are colored black while the old ones 
maintain their original color). Clearly, this coloring works. 
 

If N ≥ 2
n-1

, simply interchange the roles of white and black, and 
then use the same argument as in the previous case. ■ 
 

 
 

Information, Efficiency and Recursions 
 
The next few problems primarily deal with collecting information 
and performing tasks efficiently, that is, with the minimum 
possible number of moves. Determining certain information with 
the least number of moves or questions is extremely important in 
computer science.  

The next example is a simple and well-known problem in 
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computer science. 
 
Example 5 [Merge Sort Algorithm] 
Given n real numbers, we want to sort them (arrange them in non-
decreasing order) using as few comparisons as possible (in one 
comparison we can take two numbers a and b and check whether 
a < b, b < a or a = b). Clearly, we can sort them if we make all 
possible n(n-1)/2 comparisons. Can we do better? 
 
Answer:  
Yes. We use a recursive algorithm. Let f(n) be the number of 
comparisons needed for a set of n numbers. Split the set of n 
numbers into 2 sets of size n/2 (or if n is odd, sizes (n-1)/2 and 
(n+1)/2. For the rest of this problem, suppose n is even for 
simplicity). Now sort these two sets of numbers individually. This 
requires 2f(n/2) comparisons. Suppose the resulting sorted lists 
are a1 ≤ a2 ≤ … ≤ an/2 and b1 ≤ b2 ≤ … ≤ bn/2. Now we want to 
combine or ‘merge’ these two lists. First compare a1 and b1. Thus 
after a comparison between ai and bj, if ai ≤ bj, compare ai+1 and bj 
and if bj < ai, compare bj+1 and ai in the next round. This process 
terminates after at most n comparisons, after which we would 
have completely sorted the list. We used a total of at most 2f(n/2) 
+ n comparisons, so f(n) ≤ 2f(n/2) + n.  
 

From this recursion, we can show by induction that f(2k) ≤ k x 

2
k
 and in general, for n numbers the required number of 

comparisons is of the order nlog2(n), which is much more efficient 

than the trivial bound n(n-1)/2 which is of order n2. ■ 
 
Example 6 
Suppose we are given n lamps and n switches, but we don’t know 
which lamp corresponds to which switch. In one operation, we 
can specify an arbitrary set of switches, and all of them will be 
switched from off to on simultaneously. We will then see which 
lamps come on (initially they are all off). For example, if n = 10 
and we specify the set of switches {1, 2, 3} and lamps L6, L4 and L9 
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come on, we know that switches {1, 2, 3} correspond to lamps L6, 
L4 and L9 in some order. We want to determine which switch 
corresponds to which lamp. Obviously by switching only one 
switch per operation, we can achieve this in n operations. Can we 
do better? 
 
Answer:  
Yes. We actually need only ⌈log2(n)⌉ operations, where ⌈  ⌉ is the 

ceiling function. This is much better than n operations. For 
example, if n is one million, individually testing switches requires 
999,999 operations, whereas our solution only requires 20.  We 
give two solutions. For convenience assume n is even. 
 
Solution 1:  
In the first operation specify a set of n/2 switches. Now we have 
two sets of n/2 switches, and we know which n/2 lamps they both 
correspond to. Now we want to apply the algorithm for n/2 lamps 
and switches to the two sets. Hence it initially appears that we 
have the recursion f(n) = 2f(n/2)+1, where f(n) is the number of 
steps taken by our algorithm for n lamps. However, note that we 
can actually apply the algorithms for both sets simultaneously, 
since we know which set of switches corresponds to which set of 
lamps. Thus the actual recursion is f(n) = f(n/2)+1. Since f(1) = 0, 
we inductively get f(n) = ⌈log2(n)⌉. 

 
Solution 2:  
The algorithm in this solution is essentially equivalent to that in 
solution 1, but the thought process behind it is different. Label the 
switches 1, 2, …, n. Now read their labels in binary. Each label has 
at most ⌈log2(n)⌉ digits. Now in operation 1, flip all switches that 

have a 1 in the units place of the binary representation of their 
labels. In general, in operation k we flip all switches that have a 1 
in the kth position of their binary representation. At the end of 
⌈log2(n)⌉ operations, consider any lamp. Look at all the operations 

in which it came on. For example, if a lamp comes on in the 
second, third and fifth operations, but not in the first, fourth and 
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6th operations, then it must correspond to the switch with binary 
representation 010110 (1s in the 2nd, 3rd and 5th positions from 
the right). Thus each lamp can be uniquely matched to a switch 
and we are done. ■ 
 
Example 7 [Generalization of IMO shortlist 1998, C3] 
Cards numbered 1 to n are arranged at random in a row with n ≥ 
5. In a move, one may choose any block of consecutive cards 
whose numbers are in ascending or descending order, and switch 
the block around. For example, if n=9, then 91 6 5 3 2 7 4 8 may be 
changed to 91 3 5 6 2 7 4 8. Prove that in at most 2n - 6 moves, 
one can arrange the n cards so that their numbers are in 
ascending or descending order.  
 
Answer: 
We use a recursive algorithm relating the situation with n cards to 
the situation with n-1 cards. Let f(n) be the minimum number of 
moves required to ‘monotonize’ any permutation of the n cards. 
Suppose we have a permutation with starting card k. In f(n-1) 
moves, we can monotonize the remaining (n-1) cards to get either 
the sequence (k, 1, 2, …, k-1, k+1, …, n) or (k, n, n-1, …, k+1, k–1, …, 
2, 1). In one move, we can make the former sequence (k, k-1, k-2, 
…, 1, k+1, k+2, …, n) and with one more move we get the sequence 
(1, 2, 3, …., n) and we are done. Similarly in the latter case we need 
only two additional moves to get (n, n-1, …., 1). Thus in either case, 
we can complete the task using f(n-1) + 2 moves, so f(n) ≤ f(n-1) + 
2.  
 

Now to prove the bound for general n ≥ 5, it suffices to prove it 
for n = 5 and then induct using f(n) ≤ f(n-1) + 2. To prove that f(5) 
≤ 4, first note that f(3) = 1 and f(4) = 3. With a little case work (do 
this), we can show that any permutation of 4 cards can be 
monotonized either way in at most 3 moves (thus both {1, 2, 3, 4} 
and {4, 3, 2, 1} can be reached after at most 3 moves, regardless of 
the initial permutation). Now given a permutation of {1, 2, 3, 4, 5}, 
use one move if necessary to ensure that either 1 or 5 is at an 
extreme position. Now monotonize the remaining 4 numbers in 3 
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moves, in such a way that the whole sequence is monotonized (we 
can do this by the previous statement). Hence at most 4 moves are 
required for 5 cards, and we are done. ■ 
 
Remark: Since we wanted a linear bound in this problem, we 
tried to relate f(n) to f(n-1). However, when we want a logarithmic 
bound, we generally relate f(n) to f(n/2), or use binary 
representations. Thus the question itself often gives us a hint as to 
what strategy we should use. 
 
Example 8 [Russia 2000]  
Tanya choses a natural number X ≤ 100, and Sasha is trying to 
guess this number. She can select two natural numbers M and N 
less than 100 and ask for the value of gcd (X+M, N). Show that 
Sasha can determine Tanya's number with at most seven 
questions (the numbers M and N can change each question). 
 
Answer:  

Since 26 < 100 < 27 we guess that more generally  ⌈log2(n)⌉ 

guesses are needed, where n is the maximum possible value of X 
and ⌈  ⌉ is the ceiling function.  
 

Our strategy is to determine the digits of X in binary notation; 
that is, the bits of X. First ask for gcd (X+2, 2). This will tell us 
whether X is even or odd, so we will know the units bit of X. If X is 
even, ask for gcd (X+4, 4). This tells us whether or not X is 
divisible by 4. Otherwise ask for gcd (X+1, 4). This tells us if X is 1 
or 3 mod 4 (if the gcd is 4, then X+1 is divisible by 4 and so X ≡ 3 
mod 4).  With this information we can determine the next bit of X. 
For example, if X is odd and is 3 mod 4, its last two bits will be 11. 
Now suppose X = i mod 4. To determine the next digit, ask for gcd 
(X + (4-i), 8). This gcd is either 4 or 8, according as X = i or 4+i mod 
8. This gives us the next bit. For example, if X = 3 mod 4 but X = 7 
mod 8, then the last 3 bits of X will be 111, but if X = 3 mod 8, then 
the last 3 bits would be 011. Now the pattern is clear. We continue 
in this manner until we obtain all the bits of X. This takes k 
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questions, where k is the number of bits of n (since X ≤ n, we don’t 
have to ask for further bits), which is at most equal to ⌈log2(n)⌉. ■ 

 
Example 9 [Generalization of Russia 2004, grade 9 problem 
3] 
On a table there are n boxes, where n is even and positive, and in 
each box there is one ball. Some of the balls are white and the 
number of white balls is even and greater than 0. In each turn we 
are allowed to point to two arbitrary boxes and ask whether there 
is at least one white ball in the two boxes (the answer is yes or 
no). Show that after (2n – 3) questions we can indicate two boxes 
which definitely contain white balls. 
 
Answer:  
Label the boxes from 1 to n. Ask for the pairs of boxes (1, j), where 
j= 2, 3, …, n. If at some stage we get a no, this means box 1 contains 
a black ball. Then for all j such that we got a ‘yes’ for (1, j), box j 
contains a white ball and we are done. The only other possibility is 
if we got a yes for all boxes (1, j), in which case there are 2 
possibilities: either box 1 has a white ball or box 1 has a black ball 
and all the other (n-1) boxes have white balls. The latter case is 
ruled out since we are given that an even number or boxes have 
black balls, and (n-1) is odd. Hence box 1 has a white ball. Now ask 
for the pairs (2, j) where j =3, 4, …, n. Note that now we have asked 
a total of (n-1) + (n-2) = (2n-3) questions. Again if we get a ‘no’ 
somewhere, then box 2 has a black ball and all yeses tell us which 
boxes have white balls. In this case we are done. The other case is 
if all the answers are yes. The same argument we used earlier 
shows that box 2 has a white ball and we are done. ■ 
 
Now we look at a simple problem from computer science (part a 
of the next problem), which also happens to be a game I played 
when I was a little kid. Part b is a little trick question I just came 
up with.  
 
Example 10 a) [Binary Search Algorithm]  
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My friend thinks of a natural number X between 1 and 2
k
 inclusive. 

In one move I can ask the following question: I specify a number n 
and he says bigger, smaller or correct according as n < X, n > X, or 
n = X. Show that I can determine the number X using at most k 
moves. 
 
Answer: 

In my first move I say 2
k-1

. Either I win, or I have reduced number 

of possibilities to 2
k-1

. Repeat this process- in each stage reduce 
the number of possibilities by a factor of 2. Then in k moves there 
is only one possibility left. 
 
Example: If k = 6, first guess 32. If the answer is “smaller”, guess 
16. If the answer is now “bigger”, guess 24 (the average of 16 and 
32). If the answer is now “smaller”, guess 20. If the answer is again 
smaller, guess 18. If the answer is now “bigger”, the number is 19.  
 

In general if we replace 2
k
 with n, we need ⌈log2(n)⌉ questions. ■ 

 
Example 10 b) [Binary Search with noise – a little trick] 
We play the same game, but with a couple changes. First, I can 
now ask any yes or no question. Second, now my friend is allowed 
to lie - at most once in the whole game though. Now, from part a) I 
can win with 2k + 1 moves: I simply ask each question twice, and 
if the answer changes, that means my friend has lied. Then I ask 
the question again, and this time I get the true answer (he can 
only lie once). Thus I ask each question twice except for possibly 
one question which I ask thrice, for a total of 2k + 1 questions. Can 
I do better? 
 
Answer:  
First I ask about each of the k digits in the binary representation 
of X. If the game didn’t involve lying, I would be done. Now I need 
to account for the possibility that one answer was a lie. I ask the 
question, “did you ever lie this game?” If the answer is no, we are 
done (if he had lied, he would have to say yes now as he can’t lie 
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twice). If the answer is yes, I ask the question, “was the previous 
answer a lie?” If the answer to this is yes, then that means he 
never lied in the first k questions and again we are done. If the 
answer is no, then we can be sure that one of the first k answers 
we received (about the binary digits) was a lie. Note that he 
cannot lie anymore. We want to determine which answer was a 

lie. But using part a), we can do this in at most ⌈log2( )⌉ moves! 

This is because determining which of k moves was a lie is 
equivalent to guessing a number X’ with X’ ≤ k, and for this I use 
the algorithm in part a). After this, I know which digit in my 
original binary representation of X is wrong and I change it, and 
now I am done. I have used k + 2 + ⌈log2( )⌉ questions, which is 

much less than 2k + 1 questions for large k.  
 

In general, if 2k is replaced by n, this algorithm takes ⌈log2(n)⌉+ 

⌈log2 ⌈log2(n)⌉⌉ + 2 moves. ■ 

 
As in the previous chapter, we end this section with one of the 
hardest questions ever asked at the IMO. Only 3 out of over 550 
contestants managed to completely solve it. However, the 
difficulty of this now famous problem has been hotly debated on 
AOPS, with many people arguing that it is a lot easier that the 
statistics indicate. We’ll let the reader be the judge of that. The 
following solution is based on one found during the contest. The 
official solution is much more complicated.  
 
Example 11 [IMO 2009, Problem 6] 
Let n be a nonnegative integer. A grasshopper jumps along the 
real axis. He starts at point 0 and makes n + 1 jumps to the right 
with pairwise different positive integral lengths a1, a2, … an+1 in an 
arbitrary order. Let M be a set of n positive integers in the interval 
(0, s), where s = a1 + a2 + ··· + an+1. Prove that the grasshopper can 
arrange his jumps in such a way that he never lands on a point 
from M.  
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Answer:  
We construct an algorithm using induction and the extremal 
principle. The case n = 1 is trivial, so let us assume that n > 1 and 
that the statement holds for 1, 2, ..., n−1. Assume that a1 <···< an. 
Let m be the smallest element of M. Consider the following cases: 
 
Case 1: m < an+1: If an+1 does not belong to M then make the first 
jump of size an+1. The problem gets reduced to the sequence a1, ..., 
an and the set M\{m}, which immediately follows by induction. So 
now suppose that an+1 ∈ M. Consider the following n pairs: (a1, 
a1+an+1), ..., (an, an+an+1). All numbers from these pairs that are in 
M belong to the (n−1)-element set M\{an}, hence at least one of 
these pairs, say (ak, ak +an), has both of its members outside of M. 
If the first two jumps of the grasshopper are ak and ak +an+1, it has 
jumped over at least two members of M: m and an+1. There are at 
most n−2 more elements of M to jump over, and n−1 more jumps, 
so we are done by induction.  
 
Case 2: m ≥ an+1: Note that it is equivalent to solve the problem in 
reverse: start from s = a1 + a2 + ··· + an+1 and try to reach 0 without 
landing on any point in M. By the induction hypothesis, the 
grasshopper can start from s make n jumps of sizes a1, ..., an to the 
left, and avoid all the points of M\{m}. If it misses the point m as 
well, then we are done, since we can now make a jump of size an+1 
and reach 0. So suppose that after making the jump ak the 
grasshopper landed at m. If it changes the jump ak to the jump an, 
it will jump past m and all subsequent jumps will land outside of 
M because m is the left-most point. ■ 
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Exercises 
 

 
1. [Spain 1997] 

The exact quantity of gas needed for a car to complete a single 
loop around a track is distributed among n containers placed 
along the track. Show that there exists a point from which the 
car can start with an empty tank and complete the loop (by 
collecting gas from tanks it encounters along the way). [Note: 
assume that there is no limit to the amount of gas the car can 
carry].  

 
2. [Russia] 

Arutyun and Amayak perform a magic trick as follows. A 
spectator writes down on a board a sequence of N (decimal) 
digits. Amayak covers two adjacent digits by a black disc. Then 
Arutyun comes and says both closed digits (and their order). 
For which minimal N can this trick always work? 

  
3. [Generalization of Russia 2005] 

Consider a game in which one person thinks of a permutation 
of {1, 2, …, n} and the other’s task is to deduce this 
permutation (n is known to the guesser). In a turn, he is 
allowed to select three positions of the permutation and is 
told the relative order of the three numbers in those positions. 
For example, if the permutation is 2, 4, 3, 5, 1 and the guesser 
selects positions 1, 4 and 5, the other player will reveal that 5th 
number < 1st number < 4th number. Determine the minimum 
number of moves for the guesser to always be able to figure 
out the permutation.  

 
4. [IMO Shortlist 1990] 

Given n countries with three representatives each, m 
committees A1, A2, …, Am are called a cycle if 
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i. each committee has n members, one from each country;  
ii. no two committees have the same membership;  

iii. for 1 ≤ i ≤ m, committee Ai and committee Ai+1 have no 
member in common, where Am+1 denotes A1 

iv. if 1 < |i-j| < m-1, then committees Ai and Aj have at least 
one member in common.  

 
 
Is it possible to have a cycle of 1990 committees with 11 
countries? 

 
5. [Canada 2012 – 4] 

A number of robots are placed on the squares of a finite, 
rectangular grid of squares. A square can hold any number of 
robots. Every edge of each square of the grid is classified as 
either passable or impassable. All edges on the boundary of 
the grid are impassable. A move consists of giving one of the 
commands up, down, left or right. All of the robots then 
simultaneously try to move in the specified direction. If the 
edge adjacent to a robot in that direction is passable, the robot 
moves across the edge and into the next square. Otherwise, 
the robot remains on its current square.  
 

Suppose that for any individual robot, and any square on 
the grid, there is a finite sequence of commands that will move 
that robot to that square. Prove that you can also give a finite 
sequence of commands such that all of the robots end up on 
the same square at the same time. 

 
6. [IMO Shortlist 2002, C4] 

Let T be the set of ordered triples (x, y, z), where x, y, z are 
integers with 0 ≤ x, y, z ≤ 9. Players A and B play the following 
guessing game. Player A chooses a triple in T (x, y, z), and 
Player B has to discover A’s triple in as few moves as possible. 
A move consists of the following: B gives A a triple (a, b, c) in T, 
and A replies by giving B the number |x + y – a – b| + |y + z – b 
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– c| + |z + x – c – a|. Find the minimum number of moves that B 
needs in order to determine A’s triple.  

 
7. Given a finite set of points in the plane,  

each with integer coordinates, is it always possible to color 
the points red or white so that for any straight line L parallel 
to one of the coordinate axes the difference (in absolute value) 
between the numbers of white and red points on L is not 
greater than 1?  

 
 
8. [Generalization of Russia 1993] 

There are n people sitting in a circle, of which some are 
truthful and others are liars (we don’t know who is a liar and 
who isn’t though). Each person states whether the person to 
in front of him is a liar or not. The truthful people always tell 
the truth, whereas the liars may either lie or tell the truth. The 
aim is for us to use the information provided to find one 
person who is definitely truthful. Show that if the number of 

liars is at most 2√  – 3, we can always do this. 
 

9. On each square of a chessboard is a light which has two states- 
on or off. A move consists of choosing a square and changing 
the state of the bulbs in that square and in its neighboring 
squares (squares that share a side with it). Show that starting 
from any configuration we can make finitely many moves to 
reach a point where all the bulbs are switched off 

 
10. [Indian Postal Coaching 2011] 

Let C be a circle, A1, A2, …, An be distinct points inside C and B1, 
B2, …, Bn be distinct points on C such that no two of the 
segments A1B1, …, AnBn intersect. A grasshopper can jump from 
Ar to As if the line segment ArAs does not intersect any line 
segment AtBt (t ≠ r, s). Prove that after a certain number of 
jumps, the grasshopper can jump from any Au to any Av. 
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11. [USAMO 2000, Problem 3] 

You are given R red cards, B blue cards and W white cards and 
asked to arrange them in a row from left to right. Once 
arranged, each card receives a score as follows. Each blue card 
receives a score equal to the number of white cards to its 
right. Each white card receives a score equal to twice the 
number of red cards to its right. Each red card receives a score 
equal to three times the number of blue cards to its right. For 
example, if the arrangement is Red Blue White Blue Red Blue, 
the total score will be 9 + 1 + 2 + 0 + 3 + 0 = 15. Determine, as 
a function of R, B and W, the minimum possible score that can 
obtained, and find all configurations that achieve this 
minimum.  

 
12. [IMO Shortlist 2005, C7] 

Suppose that a1, a2, …, an are integers such that n | (a1 + a2 + … 
+ an). Prove that there exist two permutations b1, b2, …, bn and 
c1, c2, …, cn of (1, 2, …, n) such that for each integer i with 1 ≤ i ≤ 
n, we have n | ai – bi – ci.  
 

13. [St. Petersburg 2001] 

In the parliament of the country of Alternativia, for any two 
deputies there exists a third who is acquainted with exactly 
one of the two. There are two parties, and each deputy 
belongs to exactly one of them. Each day the President (not a 
member of the parliament) selects a group of deputies and 
orders them to switch parties, at which time each deputy 
acquainted with at least one member of the group also 
switches parties. Show that the President can eventually 
ensure that all deputies belong to the same party.  
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3. PROCESSES 
 
 

Introduction 
 
In this chapter we analyze combinatorial processes. In Chapter 1 
on algorithms, we often encountered combinatorial processes 
from a different viewpoint. Problems from both chapters are 
similar in that they typically specify an initial configuration and 
allowed set of moves. In the chapter on algorithms, we were asked 
to prove that a certain final configuration could be reached using 
these moves, and we solved these problems by constructing 
procedures to reach the desired final configuration. In this 
chapter, our job is not to construct our own procedures, but 
rather to analyze given ones. Some questions ask us to determine 
whether a process terminates, and if it does, what the final 
configuration looks like. Others may ask us to bound the number 
of steps it takes for a certain configuration to arise.  
 

Our main tools for this chapter are invariants, the extremal 
principle, induction and other clever ideas that we will develop as 
we go further, such as making transformations to a problem that 
simplify the problem but leave the end result invariant. It must 
also be stressed that experimentation, trial and error, 
observation, intuition and conjectures play a big role in solving 
problems related to processes (and combinatorics in general). We 
remind the reader that the ideas to solve combinatorial problems 
often arise from experimenting with small values.  
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Invariants 
 
Our first few examples use invariants, a technique we have 
already used in earlier chapters. The usefulness of invariants 
while analyzing combinatorial processes can hardly be overstated.   
 
Example 1 [Indian TST 2004] 
The game of pebbles is played as follows. Initially there is a pebble 
at (0, 0). In a move one can remove a pebble from (i, j) and place 
one pebble each on (i+1, j) and (i, j+1), provided (i, j) had a pebble 
to begin with and (i+1, j) and (i, j+1) did not have pebbles. Prove 
that at any point in the game there will be a pebble at some lattice 
point (a, b) with a+b ≤ 3. 
 
Answer:  
Clearly the pebbles will always be on lattice points in the first 
quadrant. How can we find an invariant? Just assign a weight of   

2-(i+j) to a pebble at (i, j). Then in each move one pebble is replaced 
by two pebbles, each having half its weight. So the total weight of 

pebbles is invariant. Initially the weight is 2
0
 = 1. Suppose at some 

stage no pebble is on a point (a, b) with a+b ≤ 3. Then the 
maximum possible total weight of all pebbles is the weight of the 
whole first quadrant minus that of the squares (a, b) with a+b ≤ 3, 
which is  
 

(∑ ∑   
   

 
   

-(i+j)
 ) – (1 + 2 × ½ + 3 × ¼ + 4 × ⅛) 

=  4 – (1 + 1+ ¾ + ½) = ¾ < 1.  
 
This is a contradiction as the weight should always be 1. ■ 
 
Remark: The double summation was computed by noticing 

∑ ∑   
   

 
   

-(i+j) = ∑     
    x ∑     

    = 2 x 2 = 4. The second 

parenthesis was the weight of all squares a, b with a+b ≤ 3. 
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Example 2 [IMO shortlist 2005, C5] 
There are n markers, each with one side white and the other side 
black, aligned in a row so that their white sides are up. In each 
step, if possible, we choose a marker with the white side up (but 
not one of the outermost markers), remove it and reverse the 
closest marker to the left and the closest marker to the right of it. 
Prove that one can achieve the state with only two markers 
remaining if and only if n−1 is not divisible by 3. 
 
Answer: 
If n–1 is not divisible by 3, it is easy to construct an inductive 
algorithm to make only two markers remain (chapter 2 FTW!). We 
leave this to the reader (just do it for n = 5, n = 6 and induct with 
step 3). Now we do the harder part: if (n–1) is divisible by 3, we 
need to show that this cannot be done.  
 

Call a marker black or B if its black side is up and white or W if 
its white side is up. One invariant we immediately find is that the 
number of black markers is always even since each move changes 
the number of black markers by 0, 2 or -2. Now we look for 
another invariant. 
 

We assign numbers to each white marker. If a white marker 

has t black markers to its left, we assign the number (-1)t to it. Let 

S be the sum of all the labels. Initially all labels are (-1)
0
 = 1, so S = 

n initially. The labels may keep changing, but we claim that S stays 
invariant mod 3. For example, suppose we have the substring 
…WWB… and remove the middle white marker. Then it becomes 
…BW…. If the 2 white markers had t black markers to their left 
initially, then the white marker now has (t+1) black markers to its 

left. Thus the two white markers both had labels (-1)
t
 initially, but 

now the white marker has label (-1)t+1. The sum of the labels has 

changed by (-1)
t+1

 – 2(-1)
t
 = 3(-1)

t+1
 ≡ 0 mod 3. The reader can 

verify that in the other cases (WWW, BWB, BWW) as well the sum 
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of labels S doesn’t change mod 3.  
 

Now the rest is easy. If two markers remain, they are either 
both white or both black (number of black markers must be even). 
In the first case, both labels are 1 and S = 2. In the second case, S = 
0 as no markers are labeled. So S = 0 or 2 at the end and S = n in 
the beginning. Since S stays invariant mod 3, n ≡ 0 or 2 mod 3 and 
we are done. ■ 
 
Example 3 [IMO Shortlist 1998 C7] 
A solitaire game is played on an m × n board with markers having 
one white side and one black side. Each of the mn cells contains a 
marker with its white side up, except for one corner square which 
has a marker with its black side up. The allowed move is to select 
a marker with black side up, remove it, and turn over all markers 
in squares sharing a side with the square of the chosen marker. 
Determine all pairs (m, n) for which it is possible to remove all 
markers from the board. 
 
Answer:  
It is natural (but not essential) to rephrase the problem using 
graph theory. We take the markers as vertices. Each vertex is 
black or white. 2 vertices are connected by an edge if and only if 
the markers lie on adjacent squares. In each move, we are deleting 
one black vertex and all its incident edges, but all its white 
neighbors become black and all its white neighbors become black. 
Suppose in a move we delete a black vertex v and s edges, where s 
is the degree of v. Suppose w of v’s neighbors were white vertices, 
and (s–w) were black vertices. Then these w vertices become 
black and (s–w) become white, so the number of white vertices 
increases by s – 2w.  
 

This information alone does not immediately give us an 
invariant, since the quantity s – 2w is quite random. However, 
suppose we consider the quantity W + E, where W is the total 
number of remaining white vertices (don’t confuse this with w) 
and E is the number of edges. Then when E reduces by s and W 
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changes by s – 2w, (W+E) decreases by 2w, which is always even. 
Hence the parity of (W+E) remains the same. So if W+E is 0 at 
the end (when all markers are gone), we need W+E to be even in 
the beginning. But initially  

 
W = mn-1, E = m(n-1) + n(m-1), and 

 
W+E = 3mn – m – n – 1 ≡ mn – m – n + 1 (mod 2) = (m-1)(n-1), 

 
so at least one of m and n must be odd. In this case the task is 
indeed possible and we leave it to the reader to find an algorithm. 
(Assume m is odd and use an inductive procedure that makes each 
column empty one by one). ■ 
 

 
 

Good and Bad Objects 
 
Another useful idea while analyzing processes is to distinguish 
between “good” and “bad” objects. For example, if at the end of a 
process we want to show that all objects satisfy a certain 
property, call objects with that property good and the other 
objects bad. We will use this idea in different forms several times 
throughout this chapter. The next example combines this idea 
with monovariants by showing that the number of “good” objects 
monotonically increases.  
 
Example 4 [Based on Canada 1994] 
There are 2n+1 lamps placed in a circle. Each day, some of the 
lamps change state (from on to off or off to on), according to the 
following rules. On the kth day, if a lamp is in the same state as at 
least one of its neighbors, then it will not change state the next 
day. If a lamp is in a different state from both of its neighbors on 
the kth day, then it will change its state the next day. Show that 
regardless of the initial states of each lamp, after some point none 
of the lamps will change state.  
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Answer: 
Call a lamp “good” if it is in the same state as at least one of its 
neighbors. Once a lamp is good, it will remain good forever (if two 
adjacent lamps are in the same state on the kth day, they will not 
change state the next day, and hence both remain good).  Hence 
the number of good lamps never decreases and is a monovariant. 
 

We show that in fact the number of good lamps strictly 
increases until it reaches 2n+1. Initially there must be 2 adjacent 
lamps with the same state since the number of lamps is odd. 
Suppose at some point there are j good lamps and 2 ≤  j < 2n+1. 
Then there must exist 2 adjacent lamps such that one is bad and 
one is good. Then the bad lamp will switch states the next day and 
the good lamp will remain in the same state. Then the bad lamp 
will now be good, so the number of good lamps has increased 
(remember all good lamps remain good). So the number of good 
lamps increases until all lamps are good, and at this point there 
will be no more changes of state. ■ 

 
Figure 3.1: Bad lamps next to good lamps become good 

 

 

Bounds on the number of steps 
 
Now we look at another class of problems, which ask us to bound 
the number of steps or moves it takes for a process to terminate. 
To bound the total number of moves, it is often useful to bound 

 

Good Bad 

 

Good Good 
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the number of times a particular object is involved in a move.  
 
Example 5 [USAMO 2010-2] 
There are n students standing in a circle, one behind the other, all 
facing clockwise. The students have heights h1 < h2 < … < hn. If a 
student with height hk is standing directly behind a student with 
height hk-2 or less, the two students are permitted to switch places. 
Prove that it is not possible to make more than nC3 such switches 
before reaching a position in which no further switches are 
possible.  
 
Answer:  
We bound the number of times an individual student can switch 
places with another student. Let sk denote the number of times the 
student with height k switches with someone shorter. Obviously s1 
= s2 = 0. Now consider the number of people between student k 
and student (k–1) (along the clockwise direction) of height less 
than hk-1. This number is at most (k–2). This quantity decreases by 
1 each time student k switches with someone shorter and 
increases by one each time student k–1 switches with someone 
shorter. This quantity doesn’t change when students taller than 
student k switch with either student k or student (k–1). Hence sk - 
sk-1 denotes the decrease from beginning to end in the number of 
students between student k and student (k–1), which cannot 
exceed (k–2). Thus we get the bound sk – sk-1   ≤ (k–2). Using this 
recursive bound and the initial values s1 = s2 = 0, we get s3 ≤ 1, s4 ≤ 

3, etc. In general it is easy to show by induction sk ≤ (   
 
). Hence 

the total number of moves cannot exceed ∑ (   
 
) 

    = nC3 and we 

are done. ■ 
 
Note: The last step uses a well-known binomial identity. More 
generally  

∑ (   
 
) 

    = (  
   

), where by convention ( 
 
) = 0 for j < r.  

 
Example 6 [Based on Canada 2012, IMO Shortlist 1994 C4] 
A bookshelf contains n volumes, labeled 1 to n, in some order. The 
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librarian wishes to put them in the correct order as follows. The 
librarian selects a volume that is too far to the right, say the 
volume with label k, takes it out, and inserts it in the kth position. 
For example, if the bookshelf contains the volumes 3, 1, 4, 2 in that 
order, the librarian could take out volume 2 and place it in the 
second position. The books will then be in the order 3, 2, 1, 4. 

Show that the sequence (1, 2, … , n) is reached in fewer than 2
n
 

moves.   

 
Answer: 
We bound the number of times book k can be selected by the 
librarian. Clearly, book n can never be selected since it will never 
be too far right. Book 1 can only be selected once, because once 
selected, it will move to the first position and never move again. 
Book 2 can be selected twice: it may be selected once and put in 
the correct position, but then it may move because of book 1.  
 

More generally, let f(k) denote the number of times book k is 
selected for 1 ≤ k ≤ (n–1). We have  

f(k) ≤ 1 + f(k – 1) + f(k – 2) + …+ f(1). 

This is because once k is in the correct position, it can only be 
displaced f(k – 1) + f(k – 2) + … + f(1) times, because the only way 
in which book k can be displaced is if one of the books with 
number less than k “pushes” k.  
 

For example: If we start from (4, 1, 3, 2, 5) and we choose book 
2, it becomes (4, 2, 1, 3, 5). Book 3 was in the correct position, but 
has been “pushed out” because of book 2 being chosen.  
 

Thus using this recursive bound on f(k) and the fact that f(1) = 

1, we obtain by a simple induction f(k) ≤ 2
k-1

. Hence the total 
number of moves required is at most  

f(1) + f(2) + … + f(n – 1) ≤ 1 + 2 + 4 + … + 2n-2 = 2n-1 – 1. ■  
 
Remark: A solution with monovariants is also possible. 
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Induction 
 
In the previous section, we essentially broke down the analysis of 
a process into the analysis of the individual entities involved. To 
find the total time for the process to terminate, we used recursive 
bounds to estimate the time a particular object could contribute to 
the total time. These essential elements of somehow “breaking 
down” a process and using induction and/or recursion will be 
central to this section as well. However, rather than the object-
centric approach of the previous section, a structure-centric 
approach will be taken here: the inductive proofs will rely on 
exploiting the nice combinatorial structure of n x n boards.   
 
Example 7 [Belarus 2001] 
Let n be a positive integer. Each unit square of a (2n-1) × (2n-1) 
square board contains an arrow, either pointing up, down left or 
right. A beetle sits in one of the squares. In one move, the beetle 
moves one unit in the direction of the arrow in the square it is 
sitting on, and either reaches an adjacent square or leaves the 

board. Then the arrow of the square the beetle left turns 90
o
 

clockwise. Prove that the beetle leaves the board in at most        

2
3n-1

(n-1)! – 3 moves.  
 
Answer: 
The base case n = 1 is trivial since the beetle leaves in the first 
move. Now suppose the result is true for n = k; we prove it for n = 
k+1. It is natural to distinguish between boundary squares 
(squares on the edge of the board) and interior squares, since the 
interior squares form a (2k-1) × (2k-1) board and we can use the 
induction hypothesis on this board. We further distinguish 
between corner squares and non-corner boundary squares.  
 

Suppose the beetle is still on the board after T moves. We want 

to show that T < 23(k+1)-1k! – 3. At this stage, if any non-corner 
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boundary square has been visited 4 times, then one of the four 
times the arrow would have been pointing out of the board (since 
its direction changes each time). Similarly if a corner square has 
been visited 3 times, then at least once it would have pointed out 
of the board. Hence in each of the cases, the beetle would have left 
the board, contradiction. Hence the beetle has visited each corner 
square at most twice and each non-corner boundary square at 
most thrice. Moreover, the beetle can move at most once from a 
non-corner boundary square to an interior square. Thus: 
 

i. The beetle has made at most 2 × 4 + 3(8k – 4) = 24k – 4 moves 
from boundary squares to other squares of the board (since 
there are 4 corner squares and 8k – 4 non-corner boundary 
squares).  

ii. The beetle has made at most 4(2k – 1) = 8k – 4 moves from a 
boundary square to an interior square, since there are 8k – 4 
non-corner boundary squares.  

iii. If a beetle is in the interior (2k – 1) × (2k – 1) square, it can 

make at most M = 23k-1(k – 1)! – 3 moves before reaching a 
boundary square, by the induction hypothesis. 

iv. From (ii), the beetle can stay in the interior square for at most 
8k – 3 periods of time (once in the beginning, then once for 
each time it moves from a boundary square back to the 

interior). Each period lasts at most 2
3k-1

(k – 1)! – 3 moves by 
(iii). Hence the number of moves made from interior squares 
is at most  

(23k-1(k – 1)! – 3) × (8k – 3)  

< 8k × (23k-1(k – 1)! – 3) 

= 23(k+1)-1k! – 24k. 
 

From (i) and (iv), we see that  

T ≤ (24k – 4) + (2
3(k+1)-1

k! – 24k) = 2
3(k+1)-1

k! – 4, as desired. ■ 

 
Now we look at another example using induction. This problem 

is different from the previous one in that we are not asked to 
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bound the number of moves for a process to terminate. However, 
the idea of inducting by dividing an n×n board into an (n-1)×(n-1) 
sub board and an additional row and column is very similar to the 
idea in the previous example. This inductive technique is just one 
of many ways in which the structure of boards can be exploited.  
 
Example 8 [Russia 2010] 
On an n × n chart where n ≥ 4, stand n ‘+’ signs in cells of one 
diagonal and a ‘–’ sign in all the other cells. In a move, one can 
change all the signs in one row or in one column, (–  changes to + 
and + changes to –). Prove that it is impossible to reach a stage 
where there are fewer than n pluses on the board.  
 
Answer:  
Note that operating twice on a row is equivalent to not operating 
on it at all. So we can assume that each row and column has been 
operated upon 0 or 1 times. Now we use induction on n. The base 
case n = 4 is not entirely trivial, but is left to the reader in keeping 
with my general habit of dismissing base cases. 
 

Now passing to the induction step, given an n × n board there 
are at least (n – 1) pluses in the bottom right (n – 1) × (n – 1) 
square by the induction hypothesis. If we have a plus in the first 
row or column we are done. Suppose there is no plus in the first 
column or row. Then either the first row or the first column (but 
not both) has been operated upon (otherwise the top left square 
would have a plus). Suppose WLOG the first row has been 
operated upon. Then columns 2, 3, ..., n have all been operated 
upon (otherwise row 1 would have a plus). Also no other row has 
been operated upon (otherwise the first column would have a 
plus). But in this case, the lower right (n – 1) × (n – 1) square has 
had all its columns and none of its rows operated upon, and hence 
each column has (n – 2) pluses. In total it has (n – 2)(n – 1) > n 
pluses, so in this case as well we are done. ■ 
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Problem Alteration: Don’t play by the rules 
 
Next we look at a very powerful technique of solving problems 
related to processes. In the next three examples, we will alter the 
problem statement slightly in such a way that the result we need 
to show doesn’t change, but the process becomes much easier to 
analyze. In other words, we simplify the process to be analyzed 
while leaving the aspect of the process that we want to prove 
something about invariant. This may take some time to 
understand, so read through the next few examples slowly and 
carefully, and multiple times if necessary.  
 
Example 9 [warm up for example 11] 
There are n ants on a stick of length one unit, each facing left or 
right. At time t = 0, each ant starts moving with a speed of 1 unit 
per second in the direction it is facing. If an ant reaches the end of 
the stick, it falls off and doesn’t reappear. When two ants moving 
in opposite directions collide, they both turn around and continue 
moving with the same speed (but in the opposite direction). Show 
that all ants will fall off the stick in at most 1 second. (We will use 
a very similar idea in example 11, so make sure you understand 
this trick.) 
 
Answer:  
The key observation is that the problem doesn’t change if we alter 
it as follows: when two ants moving in opposite directions meet, 
they simply pass through each other and continue moving at the 
same speed. Thus instead of rebounding, if the ants pass through 
each other, the only difference from the original problem is that 
the identities of the ants get exchanged, which is inconsequential. 
Now the statement is obvious – each ant is unaffected by the 
others, and so each ant will fall of the stick of length one unit in at 
most 1 second. ■ 
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Example 10 [Russia 1993 generalized] 
The integers from 1 to n are written in a line in some order. The 
following operation is performed with this line: if the first number 
is k then the first k numbers are rewritten in reverse order. Prove 
that after some finite number of these operations, the first 
number in the line of numbers will be 1. 
 
Answer: 
The base case n = 1 is trivial. Suppose the result is true for (n – 1). 
First observe that if n appears in the first position at some point, 
then in the next step n will be in the last position and will remain 
there permanently. Then we can effectively ignore n and we are 
done by induction. So suppose n never appears in the first 
position. Let j be the number in the last position. If we switch n 
and j, it has absolutely no effect on the problem, as j will never 
appear in the first position (since we assumed n will never appear 
in the first position). Now n is in the last position and as in the 
first case, we are done by induction. ■ 
 
Remark: Based on the above proof, it is not difficult to show that 
for n > 1 if the first number becomes 1 after at most f(n) 
operations, we have the recursive bound f(n+1) ≤ 2f(n)+1. I 
believe this bound can be further improved for most values of n. 
 
As if “cheating” once isn’t bad enough, we’ll cheat twice in the next 
problem. Combining the insights obtained from these two 
instances of “cheating” will greatly restrict the possible positions 
of otherwise very chaotic ants. 
   
Example 11 [IMO Shortlist 2011, C5] 
Let m be a positive integer and consider a checkerboard 
consisting of m × m unit squares. At the midpoints of some of 
these unit squares there is an ant. At time 0, each ant starts 
moving with speed 1 parallel to some edge of the checkerboard. 
When two ants moving in opposite directions meet, they both turn 
90◦ clockwise and continue moving with speed 1. When more than 
two ants meet, or when two ants moving in perpendicular 
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directions meet, the ants continue moving in the same direction as 
before they met. When an ant reaches one of the edges of the 
checkerboard, it falls off and will not reappear. Considering all 
possible starting positions, determine the latest possible moment 
at which the last ant falls off the checkerboard or prove that such 
a moment does not necessarily exist. 
 
Answer:  
After experimenting with small values of m, we conjecture that the 

answer is 
  

 
 -1. Clearly this is attainable if initially there are only 

2 ants, one in the bottom left square facing upwards and one in 
the top left square facing downward. Now we prove that it is the 
maximum possible. Let U, D, L, R represent the directions up, 
down, left and right respectively.  
 
Step 1: We use a modified version of the trick in example 7. Using 
the same reasoning, we can change the rules so that each ant 
travels in only two directions- either U and R or D and L. So if an 
ant travelling R meets an ant travelling L, they now move U and D 
respectively (even though in the original problem they should 
now move D and U respectively). This doesn’t affect the problem. 
Now based on their initial direction, each ant can be classified into 
two types: UR or DL. UR ants can only move up and right the 
whole time and DL ants only move down and left the whole time. 
Note that we can ignore collisions between two ants of the same 
type. From now on, “collision” only refers to collisions between 
two ants of opposite types.  
 
Step 2:  Choose a coordinate system such that the corners of the 
checkerboard are (0, 0), (m, 0), (m, m) and (0, m). At time t, there 
will be no UR ants in the region {(x, y): x + y < t + 1} and no DL ants 
in the region {(x, y): x + y > 2m−t−1}. So if a collision occurs at      
(x, y) at time t, we have t + 1 ≤ x + y ≤ 2m−t−1.  
 
Step 3: In a similar manner, we can change the rules of the original 
problem (without affecting it) by assuming that each ant can only 
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move U and L or D and R, so each ant is UL or DR. Using the same 
logic as in step 2, we get a bound |x−y| ≤ m−t−1 for each collision 
at point (x, y) and time t. Thus we have shown that all collisions at 
time t are within the region bounded by the 4 lines represented by 
the equations t + 1 ≤ x + y ≤ 2m−t−1 and |x−y|≤ m−t−1. 

 
Figure 3.1: All collisions at time t must lie within the shaded region 

 
Step 4: We finish the proof for a UR ant; by symmetry the same 
final bound will hold for DL ants. Take a UR ant and suppose its 
last collision is at (x, y) at time t. Adding the bounds x+y ≥ t+1 and 

x – y ≥ – (m – t – 1), we get x ≥ t + 1 - 
 

 
. Similarly, y ≥ t + 1 - 

 

 
. 

Since this is the last collision, the ant will now move straight to an 
edge and fall off. This takes at most m−min{x, y} units of time. The 
total amount of time the ant stays on the board is hence at most 
 

t + m – min{x, y} ≤ t + m − {t + 1 − m/2} = 
  

 
 -1 

units of time. ■ 

L1 

L
2
 

L
3
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(0, 0) 

(0, m) (m, m) 

(m, 0) (t, 0) 

(0, t) 
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Remark: Let’s reverse engineer the solution a little bit, to see how 
the main ideas fit together so nicely – did you notice how the 
parameter t disappeared so conveniently in the last step? The 
basic goal in the above solution was to obtain tight bounds on the 
location of an ant after its last collision because after this the ant 
travels straight off the board. The intuition behind getting rid of t 
was that the longer an ant has been wandering around till its last 
collision, the closer it must be to an edge, and so the less time it 
will take to fall off now. But for this to work we need the ants to be 
“well behaved” - and hence the cheating! 
 

 
 

Concluding Examples 
 
Our final two examples lie at the heart of this chapter. Example 12 
is a particular case of a more general and extensively studied 
process known as a “chip firing game”, and Example 13 is a distant 
cousin of the chip firing game. Through these problems we 
introduce some important ideas such as using the extremal 
principle in different ways and obtaining contradictions, and 
combine these with ideas we have already seen like invariants and 
making assumptions that don’t affect the problem. In example 12, 
we use the following idea: if a process never terminates, there 
must be some object that is moved or operated upon infinitely 
times. If we can find an object that is only operated upon finitely 
many times, we may be able to get a contradiction.  
 
Example 12 [IMO shortlist 1994, C5] 
1994 girls are seated in a circle. Initially one girl is given n coins. 
In one move, each girl with at least 2 coins passes one coin to each 
of her two neighbors.  

(a) Show that if n < 1994, the game must terminate. 
(b) Show that if n = 1994, the game cannot terminate.  
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Answer: 
(a) Label the girls G1, G2, …, G1994 and let G1995 = G1, G0 = G1994. 

Suppose the game doesn’t terminate. Then some girl must 
pass coins infinitely times. If some girl passes only finitely 
many times, there exist two adjacent girls, one of whom has 
passed finitely many times and one of whom has passed 
infinitely many times. The girl who has passed finitely many 
times will then indefinitely accumulate coins after her final 
pass, which is impossible. Hence every girl must pass coins 
infinitely many times.  
 
Now the key idea is the following: For any two neighboring 
girls Gi and Gi+1, let ci be the first coin ever passed between 
them. After this, we may assume that ci always stays stuck 
between Gi and Gi+1, because whenever one of them has ci and 
makes a move, we can assume the coin passed to the other girl 
was ci. Therefore, each coin is eventually stuck between two 
girls. Since there are fewer than 1994 coins, this means there 
exist two adjacent girls who have never passed a coin to each 
other. This contradicts the result of the first paragraph.  
 

(b) This is simple using invariants. Let a coin with girl i have 
weight i, and let G1 have all coins initially. In each pass from Gi 
to her neighbors, the total weight either doesn’t change or 
changes by ±1994 (if G1 passes to G1994 or vice versa). So the 
total weight is invariant mod 1994. The initial weight is 1994, 
so the weight will always be divisible by 1994. If the game 
terminates, then each girl has one coin, so the final weight is 
1+2+3+…+ 1994 = (1994 x 1995)/2 which is not divisible by 
1994. Contradiction. ■ 

 
Before reading the solution to the next problem, we 

recommend that the reader experiment with small values of n and 
try to guess what the final configuration looks like. Several 
combinatorics problems require experimentation, observation 
and conjecturing before actually proving anything.  
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Example 13 [IMO shortlist 2001, C7] 
A pile of n pebbles is placed in a vertical column. This 
configuration is modified according to the following rules. A 
pebble can be moved if it is at the top of a column which contains 
at least two more pebbles than the column immediately to its 
right. (If there are no pebbles to the right, think of this as a column 
with 0 pebbles.) At each stage, choose a pebble from among those 
that can be moved (if there are any) and place it at the top of the 
column to its right. If no pebbles can be moved, the configuration 
is called a final configuration. For each n, show that, no matter 
what choices are made at each stage, the final configuration 
obtained is unique. Describe that configuration in terms of n. 
 
Answer: 
It is clear that if si denotes the number of stones in column i, then 
in the final configuration si+1 = si or si -1. After experimenting with 
small values of n, we are led to the following claim: 
 
Claim: In the final configuration, there is at most one index i such 
that si+1 = si (hence the remaining columns satisfy sj+1 = sj – 1).  
 
Proof: Call an index j bad if sj+1 = sj. Assume to the contrary that 
there exist (at least) 2 bad indices in the final configuration. Take 
k and m (k > m) to be consecutive bad indices. Then sk+1 = sk, sm+1 = 
sm and si+1 = si – 1 for m < i < k. Consider the earliest configuration, 
say C, with the 2 bad indices. Now look at the last move before C. 
Since C is the earliest such configuration, the last move was either 
from the kth or mth column. But then in either case the 
configuration before C also had 2 bad indices, contradicting our 
assumption. This proves the claim.  
 

Now it is easy to see that the claim uniquely determines the 
final configuration. For example, for n = 17 the final heights would 
be (5, 4, 3, 2, 2, 1). ■ 
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Exercises 
 
1. [Austrian-Polish Mathematical Competition 1997] 

The numbers 49/k for k = 1, 2, …, 97 are written on a 
blackboard. A move consists of choosing two number a and b, 
erasing them and writing the number 2ab – a – b + 1 in their 
place. After 96 moves, only one number remains. Find all 
possible values of this number. 

 
2. We have n(n+1)/2 stones in k piles. In each move we take one 

stone from each pile and form a new pile with these stones (if 
a pile has only one stone, after that stone is removed the pile 
vanishes). Show that regardless of the initial configuration, we 
always end up with n piles, having 1, 2, …, n stones 
respectively.  

 
3. [ELMO Shortlist 2013, C9, generalized] 

There are n people at a party. Each person holds some number 
of coins. Every minute, each person who has at least (n – 1) 
coins simultaneously gives one coin to every other person at 
the party. (So, it is possible that A gives B a coin and B gives A 
a coin at the same time.) Suppose that this process continues 
indefinitely. That is, for any positive integer m, there exists a 
person who will give away coins during the mth minute. What 
is the smallest number of coins that could be at the party? 

 
4. [China TST 2003] 

There is a frog in every vertex of a regular 2n-gon (n ≥ 2). At a 
certain time, all frogs jump simultaneously jump to one of 
their neighboring vertices. (There can be more than one frog 
in one vertex). Suppose after this jump, no line connecting any 
two distinct vertices having frogs on it after the jump passes 
through the circumcentre of the 2n-gon. Find all possible 
values of n for which this can occur. 
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5. [Chip firing lemma] 

Let G be a connected graph with m edges. Consider 2m+1 
frogs, each placed on some vertex of G. At each second, if a 
vertex v contains at least dv frogs, then dv of the frogs on v 
jump, one on each of the dv adjacent vertices. Show that every 
vertex will be visited by a frog at some point. 

 
6. [IMO 1986, Problem 3] 

An integer is assigned to each vertex of a regular pentagon, 
and the sum of all five integers is positive. If three consecutive 
vertices are assigned the numbers x, y, z respectively, and y < 
0, then the following operation is allowed: x, y, z are replaced 
by x+y, -y, z+y respectively. Such an operation is performed 
repeatedly as long as at least one of the five numbers is 
negative. Determine whether this procedure necessarily 
comes to an end after a finite number of steps.  

 
7. [Russia 1997] 

There are some stones placed on an infinite (in both 
directions) row of squares labeled by integers. (There may be 
more than one stone on a given square). There are two types 
of moves: 
(i) Remove one stone from each of the squares n and n – 1 

and place one stone on n + 1 
(ii) Remove two stones from square n and place one stone on 

each of the squares n + 1 and n – 2.   
Show that at some point no more moves can be made, and this 
final configuration is independent of the choice of moves.  

 
8. [APMO 2007, Problem 5] 

A regular 5×5 array of lights is defective, so that toggling the 
switch for one light causes each adjacent light in the same row 
and in the same column as well as the light itself to change 
state, from on to off, or from off to on. Initially all the lights are 
switched off. After a certain number of toggles, exactly one 
light is switched on. Find all the possible positions of this light. 
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9. [IMO Shortlist 2007, C4] 

Let A0 = {a1, a2, …, an} be a finite sequence of real numbers. For 
each k ≥ 0, from the sequence Ak = {x1, x2, …, xn}  we construct a 
new sequence Ak+1 in the following way: 
 
(i) We choose a partition {1, 2, …, n} =  ⋃  , where I and J are 

two disjoint sets, such that the expression |∑       - 
∑      | is minimized. (We allow I or J to be empty; in this 

case the corresponding sum is 0.) If there are several such 
partitions, one is chosen arbitrarily.  

 
(ii) We set Ak+1 = {y1, y2, …, yn}, where yi = xi + 1 if i   I, and yi = 

xi – 1 if i   J.  
 

Prove that for some k, the sequence Ak contains an element x 
such that |x| ≥ n/2. 

 
10. [Romanian TST 2002] 

After elections, every Member of Parliament (MP) has his own 
absolute rating. When the parliament is set up, he enters a 
group and gets a relative rating. The relative rating is the ratio 
of its own absolute rating to the sum of all absolute ratings of 
the MPs in the group. An MP can move from one group to 
another only if in his new group his relative rating is greater. 
In a given day, only one MP can change the group. Show that 
only a finite number of group moves is possible (that is, the 
process eventually terminates).  

 
11. [ELMO Shortlist 2013, C10] 

Let N > 1 be a fixed positive integer. There are 2N people, 
numbered 1, 2, …, 2N, participating in a tennis tournament. 
For any two positive integers i, j with 1 ≤ i < j ≤ 2N, player i has 
a higher skill level than player j. Prior to the first round, the 
players are paired arbitrarily and each pair is assigned a 
unique court among N courts, numbered 1, 2, …, N.  
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During a round, each player plays against the other person 
assigned to his court (so that exactly one match takes place 
per court), and the player with higher skill wins the match (in 
other words, there are no upsets). Afterwards, for i = 2, 3, …, N, 
the winner of court i moves to court (i – 1) and the loser of 
court i stays on court i; however, the winner of court 1 stays 
on court 1 and the loser of court 1 moves to court N. 

 
Find all positive integers M such that, regardless of the 

initial pairing, the players 2, 3, …, N+1 all change courts 
immediately after the Mth round. 

 
12. [IMO 1993, Problem 3] 

On an infinite chessboard, a solitaire game is played as 

follows: at the start, we have n2 pieces occupying a square of 
side n. The only allowed move is to jump over an occupied 
square to an unoccupied one, and the piece which has been 
jumped over is removed. For which n can the game end with 
only one piece remaining on the board? 

 
13. [South Korea TST 2009] 

2008 white stones and 1 black stone are in a row. A move 
consists of selecting one black stone and change the color of 
its neighboring stone(s). The goal is to make all stones black 
after a finite number of moves. Find all possible initial 
positions of the black stone for which this is possible.  

 
14. [IMO Shortlist 1996, C7] 

A finite number of coins are placed on an infinite (in both 
directions) row of squares. A sequence of moves is performed 
as follows: at each stage a square containing more than one 
coin is chosen. Two coins are taken from this square; one of 
them is placed on the square immediately to the left while the 
other is placed on the square immediately to the right of the 
chosen square. The sequence terminates if at some point there 
is at most one coin on each square. Given some initial 
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configuration, show that any legal sequence of moves will 
terminate after the same number of steps and with the same 
final configuration. 

 
15. [IMO Shortlist 2010, C6] 

Given a positive integer k and other two integers b > w > 1. 
There are two strings of pearls, a string of b black pearls and a 
string of w white pearls. The length of a string is the number 
of pearls on it. One cuts these strings in some steps by the 
following rules. In each step: 
 
i. The strings are ordered by their lengths in a non-

increasing order. If there are some strings of equal lengths, 
then the white ones precede the black ones. Then k first 
ones (if they consist of more than one pearl) are chosen; if 
there are less than k strings longer than 1, then one 
chooses all of them. 

 
ii. Next, one cuts each chosen string into two parts differing 

in length by at most one. The process stops immediately 
after the step when a first isolated white pearl appears. 

 
Prove that at this stage, there will still exist a string of at least 
two black pearls. 
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4. EXISTENCE 
 

The devil’s finest trick is to persuade you that he does not exist. 
-Charles Baudelaire 

 
Introduction 
 
In this chapter, we focus on problems asking us to determine 
whether objects satisfying certain conditions exist. We 
encountered these types of problems in Chapter One, and solved 
them by creating algorithms that explicitly constructed the 
required objects. First of all, note that this approach does not give 
us any way to solve problems that ask us to prove that something 
does not exist. In addition, even when we want to prove existence, 
it may not always be possible to explicitly construct the required 
object. In these situations, we turn to less direct proof techniques, 
which are existential rather than constructive.  
 

Some of the ideas in the first two chapters, such as induction, 
invariants and the extremal principle, can be adapted to provide 
non-constructive proofs. We will also introduce several new 
techniques in this chapter, including discrete continuity, divide 
and conquer strategies, the “hostile neighbors” trick, injective 
mappings and two very powerful variants of the extremal 
principle. A key theme that will pervade the examples in this 
chapter is the notion of proofs by contradiction, which the 
mathematician G. H. Hardy described as “one of a mathematician’s 
finest weapons”.  
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Induction 
 

Our first example lies somewhere in between the inductive 
constructions of Chapter Two and the purely existential 
arguments of the rest of this chapter.  
 
Example 1 [IMO Shortlist 1985] 
A set of 1985 points is distributed around the circumference of a 
circle and each of the points is marked with 1 or -1. A point is 
called “good” if the partial sums that can be formed by starting at 
that point and proceeding around the circle for any distance in 
either direction are all strictly positive. Show that if the number of 
points marked with -1 is less than 662, there must be at least one 
good point. 
 
Answer: 
Note that 1985 = 3 x 661 + 2. This suggests that we try to show 
that for any n, if we have 3n+2 points and at most n (-1)s, then 
there will be a good point. The result is true for n = 1. Assume it is 
true for k. Now we are given 3(k+1) + 2 points, of which at most 
(k+1) are (-1)s. Take a chain of consecutive (-1)s, having at least 
one (-1) and surrounded by two 1s. For example, (1, -1, -1, -1, -1, 
1) or 1, -1, 1. Such a chain exists unless there are no (-1)s at any 
point, in which case we are trivially done. Now delete one (-1) 
from the chain as well as the bordering 1s. For example, 1, -1, -1, -
1, 1 becomes -1, -1. Now we have 3k+2 points and at most k (-1)s, 
so by induction there is a good point P. Note that P is obviously 
not part of the chain of (-1)s. Hence P is good in our original 
configuration as well, since after we add back the deleted points, 
each partial sum starting from P either doesn’t change or 
increases by 1. ■ 
 

This was an example of “top-down” induction: we started from 
a configuration of 3(k + 1) + 2 points, then reduced it to a 
configuration of 3k+2 points by deleting 3 points. We saw top 
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down induction in the chapter on processes as well, where we 
broke down n × n boards into (n-1) × (n-1) boards with an extra 
row and column in order to use induction. On the other hand, if in 
the above example we had started with 3k+2 points and then 
added 3 points, it would be “bottom up” induction. When applying 
induction, often one of the two approaches will work much better 
than the other. In the above example a top down approach works 
better since we can choose which points to delete, whereas in a 
bottom up approach we wouldn’t be able to choose where to add 
the points (as this would lead to a loss of generality).  
 

The next example uses a potent combination of induction, the 
pigeonhole principle and contradiction: we will essentially use the 
pigeonhole principle to inductively construct a contradiction.   

 
Example 2 [IMO shortlist 1990] 
Assume that the set of all positive integers is decomposed into r 
(disjoint) subsets A1 ∪ A2 ∪ … ∪ Ar = N. Prove that one of them, say 
Ai has the following property: There exists a positive m such that 
for any k one can find numbers a1, a2, …, ak in Ai with 0 < aj+1 – aj ≤ 
m (1 ≤ j ≤ k-1). 
 
Answer: 
Call a set with the given property good. Assume to the contrary 
that none of the sets is good. We will use this assumption to prove 
by induction that for each s ≤ r, As ∪ As+1 ∪ … Ar contains arbitrarily 
long sequences of consecutive integers. For s = r this will imply 
that Ar is good, contradicting our assumption.  
 

A1 is not good, so for every k there exist k consecutive numbers 
not in A1. This means that A2 ∪ A3 ∪ … ∪ Ar contains arbitrarily 
long sequences of consecutive integers. Now suppose we have 
shown that As ∪ As+1 ∪ … Ar contains arbitrarily long sequences of 
consecutive integers. Since As is not good, for each m there exists a 
number km such that As doesn’t contain a sequence of km integers 
with consecutive terms differing by at most m. Now take mkm 
consecutive integers in As ∪ As+1 ∪ … An. If As contains fewer than 
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km of these numbers, then by the pigeonhole principle there are m 
consecutive numbers in As+1 ∪ As+2 ∪ … An, proving the inductive 
step. Otherwise, if As contains at least km of the numbers, by the 
definition of km some two of them differ by at least m. The m 
numbers in between then belong to As+1 ∪ As+2 ∪ … An. Since m is 
arbitrary, this proves the inductive step. By the first paragraph, 
the proof is complete. ■ 
 

 
 

The Extremal Principle and Infinite descent 
 
The extremal principle basically says that any finite set of real 
numbers has a smallest and a largest element. “Extremal 
arguments” in combinatorics come in various forms, but the 
general idea is to look at objects that are extreme in some sense: 
smallest or largest numbers in a finite set, leftmost or rightmost 
points in combinatorial geometry problems, objects that are best 
or worst in a sense, etc. This provides a good starting point to 
solving complicated problems, since extremal objects are likely to 
satisfy certain restrictions and conditions that make them easy to 
analyze.  
 
Example 3 [France 1997] 
Each vertex of a regular 1997-gon is labeled with an integer such 
that the sum of the integers is 1. Starting at some vertex, we write 
down the labels of the vertices reading counterclockwise around 
the polygon. Is it always possible to choose the starting vertex so 
that the sum of the first k integers written down is positive for k = 
1, 2, 3,…, 1997? 
 
Some Intuition: Let the vertices be V1, V2, …, V1997 in 
anticlockwise order. Suppose we place V1 at sea level, and for each 
Vi, define the altitude of Vi be equal to the altitude of Vi-1 plus the 
number at Vi. Then, if we start at Vj and walk around the polygon, 
the sum of all the integers we have encountered is the net gain or 
loss in our altitude. Obviously, if we start at the lowest point, we 
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can never have a net loss in altitude! In other words, the sum of 
numbers encountered can never be negative. (Note that this 
argument does not break down even when we cross from V1997 to 
V1, because since the sum of all numbers is 1, the sum of 
encountered numbers is actually even more than the net altitude 
gain.) Below we convert this intuitive proof to a more formal 
proof.  
 
Answer:  
Yes. Starting from V1, let the sum of the labels at the first k vertices 
in anticlockwise order be bk. Let m be the minimum of all the bk. 
Then take k such that bk = m (if there are many such k, take the 
largest such k). We claim that the vertex Vk+1 satisfies the required 
conditions. Indeed, if the sum of the labels from Vk+1 to Vj for some 
j > k+1 is negative, then the sum of the labels from V1 to Vj is 
strictly less than m, since the sum from V1 to Vj = sum from V1 to Vk 

+ (sum from Vk to Vj) = m + (a negative number). This contradicts 
the minimality of m. The only other case is if j < k+1, in which case 
we get a similar contradiction after using the fact that the sum of 
the 1997 labels is positive (since it is given to be 1). ■ 
 
Remark: Another intuitive interpretation of this solution is as 
follows: If we have had extremely bad luck until Vk, then by the 
“law of averages”, we must have pretty good luck from there 
onwards.  
 
The existence of extremal objects enables us to reach 
contradictions using a technique known as infinite descent, 
which you may have seen in the famous proof of the irrationality 

of √ . This technique works as follows: suppose we want to show 
that no number in a finite set S satisfies a certain property P. We 
assume to the contrary that some number in S does satisfy P, and 
use this assumption to show that there exists an even smaller 
number in S satisfying P.  
 

This immediately yields a contradiction as follows: the 
argument shows that for any x1 in S satisfying P, we can find x2 in S 
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satisfying P with x1 > x2. But repeating the same argument, we get 
a number x3 in S satisfying P with x2 > x3. We can continue this 
indefinitely, to get numbers x1 > x2 > x3 > x4 > … all in S and 
satisfying P. But S is finite, so we cannot have infinitely many 
numbers in S; contradiction.  
 

In the next example, infinite descent will provide a key lemma 
needed to solve the problem.  
 
Example 4 [Indian TST 2003] 
Let n be a positive integer and {A, B, C} a partition of (1, 2, 3, …, 
3n) such that |A| = |B| = |C| = n. Prove that there exist x є A, y є B, z 
є C such that one of x, y, z is the sum of the other two. 
 
Answer: 
Assume to the contrary that there exists a partition that does not 
have this property. WLOG suppose that 1 є A. Let k be the smallest 
number not in A, and suppose WLOG that k   B. Hence 1, …, k – 1 
are all in A and k is in B. Hence: 
(i) No elements from C and A can differ by k 
(ii) No elements from B and C can differ by less than k, since 1, 2, 

…, k-1 are in A. In particular no elements from B and C can 
differ by 1.  

 
Let m be any element in C. By (ii), m-1 is not in B. What 

happens if m-1 is in C? First, m-k is not in A by (i). Further, m-k is 
not in B, since (m-1) – (m-k) = k-1, which is in A. So m-k must be in 
C. Also, m-k-1 is not in A, since (m-1) – (m-k-1) = k. By (ii), m-k-1 is 
not in B since m-k is in C. Hence m-k-1 is also in C.  
 

Thus starting with any pair of consecutive numbers in C, 
namely (m, m-1) we get a smaller pair, namely (m-k, m-k-1). This 
leads to an infinite descent, which is a contradiction. Hence if m is 
in C, m-1 has to be in A. Hence we have an injective 
correspondence between elements in C and elements in A. This 
correspondence must also be bijective (otherwise |A| > |C|, but we 
are given that |A| = |C| = n). Thus if t є A, t+1 є C. So 1   A implies 2 
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  C. This is a contradiction since we assumed that the smallest 
number not in A belongs to B. ■ 
 

Let us analyze the above proof. Essentially, we were given an 
abstract problem about sets and we simplified things by making a 
few assumptions. A natural starting point was to place 1 in one of 
the sets. Then using the extremal principle by assuming k was the 
least element not in A gave us some more structure. The infinite 
descent we used was almost accidental – even if we were not 
deliberately looking for an extremal argument, we were fortunate 
to find that given a pair of consecutive numbers in C, we could find 
a smaller such pair. These “accidental” infinite descents pop up 
very frequently in combinatorics, graph theory, number theory 
and algebra problems. So keep your eyes open while solving 
Olympiad problems – keep making observations, and you might 
just walk right into the solution! 
  
 
Example 5 [ELMO Shortlist 2012] 
Find all ordered pairs of positive integers (m, n) for which there 
exists a set C = {c1, c2, … ck) (k ≥ 1) of colors and an assignment of 
colors to each of the mn unit squares of an m × n grid such that for 
every color ci and unit square S of color ci, exactly two direct (non-
diagonal) neighbors of S have color ci. 
 
Answer: 
If m and n are both even, then we can partition the board into 2 × 
2 squares. Then color each 2 × 2 square with a different color. This 
clearly satisfies the problem’s conditions. 
 

Now suppose at least one of m and n is odd. WLOG suppose the 
width of the board is odd. Consider a horizontal chain of squares 
of the same color in the top row of the board of odd length. 
Define a good chain as a chain of squares of the same color C of 
odd length. For example, if the width is 7 and the top row consists 
of colors c1, c1, c4, c4, c4, c5, c5 then the 3 c4’s form a good chain. A 
good chain in the top row must exist since the width of the board 



Olympiad Combinatorics  8 

is odd. Note that there can be no good chain of length 1 in the top 
row, since then that square will have at most one neighbor with 
the same color (the square below it).  
 

Now look at the set of squares below the good chain in the top 
row. Let the good chain in the top row be x, ci, ci, … ci, y where 
there are an odd number of ci’s flanked by two colors that are 
different from ci (or by edges of the board). There are no squares 
above this chain. Thus there are no squares of color ci directly 
above, left or right of the chain. The leftmost and rightmost ci 
have only one neighboring square that is of color ci; hence the 
squares below these two squares must have color ci. The squares 
below the other squares in our chain of ci’s cannot have color ci 
(since these squares of our chain already have exactly 2 neighbors 
with color ci). Thus the set of squares below our row of ci’s must 
be of the form ci, X, Y, Z, …, W, ci where W, X, Y, Z stand for any 
colors other than ci. An example is shown below. 

 

X ci ci ci ci ci ci ci Y 
 ci c5 c4 c4 c4 c3 ci  
         

There are an odd number of squares between the two ci’s in the 
second row. Hence among these squares we can find a chain of 
odd length of squares having the same color ck (different from ci). 
Furthermore this chain is of smaller length than our original 
chain. Since all the squares above this chain are of color ci, which 
is different from ck, the new chain is bordered on 3 sides by 
squares not having color ck, which is just like the first good chain. 
Hence we can repeat the above argument to obtain an even 
smaller good chain, obtaining a descent. We obtain smaller and 
smaller good chains until finally we get a good chain of length 1. 
This is a contradiction, because we would then have a single 
square bordered on three sides by squares of other colors, and it 
would hence have at most one neighbor of the same color. ■ 
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Optimal Assumption 
Assume first, ask questions later 

 
Now we turn to an idea related to the extremal principle that I call 
the “optimal assumption” method. Suppose we want to find a set 
of size at least X satisfying some condition. Instead of constructing 
such a set using an algorithm, we merely prove its existence. We 
take the largest set S satisfying the required condition, and then 
use the assumption that S is as large as possible to prove that |S| 
must be at least X.  
 

Here is a simple example to demonstrate this idea. 
 
Example 6 
In a graph G, suppose all vertices have degree at least δ. Show that 
there exists a path of length at least δ + 1. 
 
Answer:  
Take the longest possible path (optimal assumption) and let v be 
its last vertex. By the assumption that this is the longest possible 
path, we cannot extend the path any further. This means that all of 
v’s neighbors must already lie in the path. But v has at least δ 
neighbors. Thus the path must contain at least δ + 1 vertices (v 
and all of its neighbors). ■ 
 

The next example shows the true power of this approach.  
 
Example 7 [Italy TST 1999] 
Let X be an n-element set and let A1, A2, …, Am be subsets of X such 
that: 
(i) |Ai| = 3 for i = 1, 2, …, m 
(ii) |Ai   Aj|   1 for any two distinct indices i, j. 

Show that there exists a subset of X with at least ⎿√  ⏌elements 
which does not contain any of the Ai’s. (Note: Here ⎿⏌ denotes 
the floor function).  
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Answer:  
Call the elements of X b1, b2, …, bn. Let S be the largest subset of X 
not containing any of the Ai’s. Let |S| = k. We want to show that k   

⎿√  ⏌. Now comes the crucial observation.  For any element x in 
X but not in S, there exists a pair of elements {y, z} in S such that 
{x, y, z} = Ai for some i. Otherwise we could add x to S, and the new 
set would still not contain any set Ai, contradicting our 
assumption that S is the largest set satisfying this property.  
 

Thus we can construct a mapping from elements in X \ S to 
pairs of elements in S such that the element in X \ S together with 
the pair of elements it is mapped to forms one of the sets Ai. 
Moreover, it cannot happen that two distinct elements in X \ S are 
mapped to the same pair of elements. If this happened, say x1 and 
x2 were both mapped to {y, z}, then {x1, y, z} = Ai and {x2, y, z} = Aj 

for some i and j, and then |Ai   Aj|= 2. This violates condition 2 of 
the problem. Thus the mapping we have constructed is injective. 
This implies that the number of elements in X \ S is cannot exceed 

the number of pairs of elements in S. Hence we get (n – k)   ( 
 
). 

This simplifies to k2 + k   2n, and from this the result easily 
follows (remember that k is an integer). ■ 
 
Example 8  
Show that it is possible to partition the vertex set V of a graph G 
on n vertices into two sets V1 and V2 such that any vertex in V1 has 
at least as many neighbors in V2 as in V1, and any vertex in V2 has 
at least as many neighbors in V1 as in V2. 
 
Answer:  
What properties would such a partition have? Intuitively, such a 
partition would have lots of ‘crossing edges’, that is, edges joining 
a vertex in V1 to a vertex in V2. This suggests the following idea: 
 

Take the partition maximizing the number of crossing edges. We 
claim that such a partition satisfies the problem conditions. 
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Suppose it doesn’t. Suppose there is a vertex v in V1 that has more 
neighbors in V1 than in V2. Consider a new partition V1’ = V1 \ {v}, 
V2’ = V2 ∪ {v} (in other words, we have just moved v from V1 to V2). 
This has more crossing edges than the original partition by the 
assumption on v. This contradicts our earlier assumption that we 
took the partition maximizing the number of crossing edges. 
Hence the initial partition indeed works. ■ 
 
Remark 1: A partition of the vertices into two sets is known as a 
cut. The partition maximizing the number of crossing edges is 
known as a max cut.  
 
Remark 2: The algorithmic problem of efficiently finding 
maximum or minimum cuts in general graphs is very difficult. 
Algorithms for finding approximate solutions to these and related 
problems have been extensively studied, and a rich combinatorial 
theory surrounding cuts, flows (the “dual” of a cut) and multicuts 
and multiway cuts (generalizations of cuts) has been developed. 
Several problems in this field remain open.  
 

 
 

Invariants  
(Again. Some things just don’t change.) 

 
Example 9 [Italy TST 1995] 
An 8 × 8 board is tiled with 21 trominoes (3 × 1 tiles), so that 
exactly one square is not covered by a tromino. No two trominoes 
can overlap and no tromino can stick out of the board. Determine 
all possible positions of the square not covered by a tromino. 
 
Answer: 
The idea is to color the board in 3 colors, such that each tromino 
covers one square of each color. The figure shown below 
demonstrates such a coloring, where 1, 2, 3 denote 3 colors.  
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1 2 3 1 2 3 1 2 

2 3 1 2 3 1 2 3 

 3 1 2 3 1 2 3 1 

1 2 3 1 2 3 1 2 

2 3 1 2 3 1 2 3 

3 1 2 3 1 2 3 1 

1 2 3 1 2 3 1 2 

2 3 1 2 3 1 2 3 
 

Figure 4.1: Coloring of the board 
 

Since any tromino covers one square of each color, in total 
exactly 21 squares of each color will be covered. However, in the 
figure there are 22 2s, 21 1s and 21 3s. So the uncovered square 
would contain a 2. Now for my favorite part: symmetry. Suppose 
we take the initial coloring and create a new coloring by reflecting 
the board across its vertical axis of symmetry. For example, the 
top row of the board would now be colored 2, 1, 3, 2, 1, 3, 2, 1- the 
same coloring “backwards”.  
 

In the new coloring also, the uncovered square should be 
colored with the number 2. So the uncovered square should be 
colored by a 2 in both colorings. The only such squares are the 
ones underlined in the figure, since when one of these 2s is 
reflected in the vertical axis the image is on another 2.  
 

Thus we have 4 possible positions of the uncovered square. To 
construct a tiling that works for these positions, first tile only the 
inner 4 × 4 square with one corner missing, and then tile the outer 
border. ■ 
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The Hostile Neighbors Principle 
(Yes, I made that name up) 

 
Suppose we have n objects, A1, A2, …, An. Suppose some of these 
objects are of type one, and the rest are of type two. Further 
suppose that there is at least one object of each type. Then there 
exists an index i such that Ai and Ai+1 are of opposite type. This 
statement is obvious, but as the next two examples demonstrate, 
it is surprisingly powerful.  
 
Example 10 [Redei’s theorem] 
A tournament on n vertices is a directed graph such that for any 
two vertices u and v, there is either a directed edge from u to v or 
from v to u. Show that in any tournament on n vertices, there 
exists a (directed) Hamiltonian path.  
(Note: a Hamiltonian path is a path passing through all the 
vertices. In other words we need to show that we can label the 
vertices v1, v2, …, vn such that for each i, 1 ≤ i ≤ n-1, there is a 
directed edge from vi to vi+1.)  

 
Answer: 

 
Figure 4.2: Illustration of how to extend the path to include V 

 
We use induction on n, with the base cases n = 1, 2 and 3 being 
trivial. Suppose the result is true for n-1 vertices. Delete a vertex 
and form a Hamiltonian path with the remaining n-1 vertices. Let 
the path be v1  v2  v3  …  vn-1. Let the remaining vertex be v. 

V1 V2 V3 Vk V
k+1

 V
n
 

V 

. . .  . . .  
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If vn-1  v, we are done, since we get the path v1  v2  v3  …  
vn-1  v. Similarly if v  v1 we are done. So suppose v  vn-1 and v1 
 v. Hence there must be an index k such that vk  v and v  vk+1. 
Then the path v1  v2  … vk  v  vk+1…  vn-1 is a Hamiltonian 
path and we are done. ■ 
 

The next example demonstrates the true power of this idea. 
 
Example 11 [IMO shortlist 1988] 

The numbers 1, 2, … , n2 are written in the squares of an n × n 
board, with each number appearing exactly once. Prove that there 
exist two adjacent squares whose numbers differ by at least n.   
 
Answer: 
Assume to the contrary that there exists a labeling such that the 
numbers in any pair of adjacent squares differ by at most n-1. 
 

Let Sk = {1, …, k} for each k ≥ 1. Let Nk = {k+1, k+2, … , k+n-1}. 
These are the numbers that can possibly neighbor a number in Sk. 

Let Tk = {k+n, k+n+1, …, n
2
}. No number from Sk can be next to a 

number from Tk.  
 

For each k, since |Nk| = n-1, there exists a row that contains no 
element of Nk. Similarly there exists a column containing no 
element of Nk. The union of this row and this column must contain 
either only elements from Sk or only elements from Tk, 
otherwise some element of Sk would be next to an element of Tk. 
Call the union of this row and column a cross.  

 
For k = 1, the cross cannot contain only elements from Sk (since 

there are 2n-1 squares in the cross and only one element in S1). 

Thus this cross contains only elements from Tk. But for k = n
2
–n, 

the cross will contain only elements from Sk, as       has only one 

element. Hence from some j with 1 ≤ j < n
2
 – n, the cross formed 

due to Nj will have elements only from Tk but the cross formed due 
to Nj+1 will have elements only from Sj+1. But these crosses 
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intersect at two squares. The numbers in these two squares 
belong to both Sj+1 and Tj. This is a contradiction since Sj+1 ⋂ j = Ø. 
■ 

 

 
Figure 4.3: The black squares illustrate a contradiction as they 

cannot simultaneously belong to Tj and Sj+1. 
 

 
 

Divide and Conquer 
 
In the next example, we use the following idea: we are asked the 
minimum number of tiles needed to cover some set of squares. 
What we do is that we take a certain subset of these squares, such 
that no tile can cover more than one of these squares. Then clearly 
we need at least as many tiles as the number of squares in our 
subset, which gives us a good bound. This type of idea is 
frequently used in tiling problems as well as in other 
combinatorics problems asking for bounds of some sort. 
 
Example 12 [IMO shortlist 2002, C2] 
For n an odd positive integer, the unit squares of an n × n 
chessboard are colored alternately black and white, with the four 
corners colored black. An L-tromino is an L-shape formed by three 
connected unit squares. For which values of n is it possible to 
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cover all the black squares with non-overlapping L-trominoes? 
When it is possible, what is the minimum number of L-trominoes 
needed?  

 
Figure 4.4: An L-tromino 

Answer:   
Let n = 2k+1. Consider the black squares at an odd height (that is, 
in rows 1, 3, 5, …, n). The key observation is that each L-tromino 

can cover at most one of these squares. There are (k+1)2 such 

squares, so at least (k+1)2 L-trominoes are needed. These L-

trominoes cover a total of 3(k+1)2 squares. For n = 1, 3 or 5 this 

exceeds n
2
 so we require n ≥ 7 and at least  (k+1)

2 = 
      

 
 L-

trominoes.  
 

To construct tilings, induct with step 2. The base case 7 is left to 
the reader (do it systematically: start with the corners and then 
keep covering black squares of odd height). Given a 2k+1 × 2k+1 
board, divide it into the top left (2k-1) × (2k-1) board along with a 
border of thickness 2. The (2k-1) × (2k-1) board can be tiled with 

k2 tiles by induction. Now tile the border with 2k+1 squares (this 

is left to the reader again). This shows that (k+1)
2
 L-trominoes are 

sufficient, so the answer is n ≥ 7 and (k+1)2 L-trominoes are 
necessary and sufficient.  

 

 
 

Discrete Continuity 
 
The following example uses an idea known as discrete continuity 
that is very similar to the hostile neighbors principle. Discrete 
continuity is a very intuitive concept: basically, suppose in a 
sequence of integers, each pair of consecutive terms differ by at 
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most 1. Then if a and b are members of the sequence, all integers 
between a and b will necessarily be members of the sequence. For 
instance, if 2 and 5 are in the sequence, then 3 and 4 must be as 
well. In particular, if we have such a sequence containing both a 
positive and a negative term, the sequence must contain 0 at some 
point. Such sequences where consecutive terms differ by at most 
one arise very often in combinatorics, and several problems can 
be solved by exploiting this “discrete continuity”.  
 
Example 13 [USAMO 2005, Problem 5] 
Let n be an integer greater than 1. Suppose 2n points are given in 
the plane, no three of which are collinear. Suppose n of the given 
2n points are colored blue and the other n colored red. A line in 
the plane is called a balancing line if it passes through one blue 
and one red point and, for each side of the line, the number of blue 
points on that side is equal to the number of red points on the 
same side.  
Prove that there exist at least two balancing lines.  
 
Answer: 
Take the convex hull of the 2n points. If it contains points of both 
colors, then there will be two pairs of adjacent points in the hull 
that are of different colors. Take the two lines through these two 
pairs of points. There will be 0 points on one side and n-1 points 
of each color on the other side, so we are done. From now suppose 
the convex hull contains points of only 1 color, WLOG blue.  
 

Take a point P that is part of this convex hull. Take a line L 
through P, such that all other points lie on the same side of L (this 
is possible since P lies on the convex hull). Now rotate L clockwise 
and let R1, R2, … Rn be the red points in the order in which they are 
encountered. Let bi be the number of blue points encountered 
before Ri (excluding P) and ri be the number of red points 
encountered before Ri (hence ri = i-1). Let f(i) = bi – ri  and note 
that f(i) = 0 if and only if PRi is a balancing line. Also f(1) = b1 – 0 ≥ 
0 and f(n) = bn – (n-1) ≤ 0, since bn is at most n-1. Thus f(i) goes 
from nonnegative to nonpositive as i goes from 1 to n. 
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Furthermore, f can decrease by at most 1 when going from i to i+1, 
since ri increases by only 1. Hence at some point f becomes 0, and 
we get a balancing line through P. 

 
Repeating this argument for each point on the convex hull, we 

get balancing lines for each point on the convex hull, so we get at 
least 3 balancing lines in this case (there are at least 3 points on 
the convex hull), so we are done. ■ 

 
Figure 4.5: A balancing line for f(i) = 0 

 
 

Miscellaneous Examples 
(Because I ran out of imaginative names) 

 
Example 14 [Romania 2001] 
Three schools each have 200 students. Every student has at least 
one friend in each school (friendship is assumed to be mutual and 
no one is his own friend). Suppose there exists a set E of 300 
students with the following property: for any school S and two 
students x, y   E who are not in school S, x and y do not have the 
same number of friends in S. Prove that there exist 3 students, one  
in each school, such that any two are friends with each other.  

i-1 blue points 

i-1 red points 

n-i red points 

n-i blue points 

P 

Ri 
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Answer: 
Let S1, S2, S3 be the sets of students in the three schools. Since 
there are 300 students in E, one of the schools must have at most 
300/3 = 100 students in E. WLOG let |S1 ⋂ | ≤ 100. Then consider 
the 200 or more students in E \ S1.  Each of these students has at 
least one at and most 200 friends in S1, and moreover no two of 
them have the same number of friends in S1 (by the conditions of 
the problem and the condition on E). This implies that exactly one 
of them has 200 friends in S1. Let this student by X, and assume 
WLOG that X is in S2. Then X has a friend Y in S3 and Y has a friend 
Z in S1 (everyone has at least one friend in each school). But Z and 
X are friends since Z is friends with everyone in S1. So (X, Y, Z) is 
our required triple and we are done. ■ 
 
Example 15 [IMO shortlist 1988] 
Let n be an even positive integer. Let A1, A2, …, An+1 be sets having 
n elements each such that any two of them have exactly one 
element in common while every element of their union belongs to 
at least two of the given sets. For which n can one assign to every 
element of the union one of the numbers 0 and 1 in such a manner 
that each of the sets has exactly n/2 zeros? 
 
Answer: 
Let n = 2k. Observe that any set Aj has 2k elements and intersects 
each of the other 2k sets in exactly one element. Hence each of the 
2k elements in Aj belongs to at least one of the other 2k sets but 
each of the 2k sets contains at most one element from Aj. This 
implies that each of the 2k elements of Aj belongs to exactly one 
other set. This holds for each j, so every element in the union of 
the sets belongs to exactly two sets and any two sets intersect in 
exactly one element. 
 

Now suppose we count the number of elements labeled 0. Each 
set contains k zeros and there are 2k+1 sets. But each element 
labeled 0 is in two sets, and if we simply multiplied k and 2k+1 we 
would be counting each element twice. So the total number of 
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elements labeled 0 will be k(2k+1)/2. This quantity must be an 
integer, so k must be divisible by 2. Hence n must be divisible by 4.  
 

To show that such a coloring indeed exists when n is divisible 
by 4, incidence matrices provide an elegant construction. 
Incidence matrices will be introduced in the chapter on counting 
in two ways, and the rest of the proof of this example is left as an 
exercise in that chapter. ■ 
 
Example 16 [IMO shortlist 2001 C5] 
Find all finite sequences x0, x1, x2, … , xn such that for every j, 0 ≤ j ≤ 
n, xj equals the number of times j appears in the sequence. 
 
Answer: 
The terms of such a sequence are obviously nonnegative integers. 
Clearly x0 > 0, otherwise we get a contradiction. Suppose there are 
m nonzero terms in the sequence. Observe that the sum x1 + x2 … + 
xn counts the total number of nonzero terms in the sequence; 
hence x1 +… +xn = m. One of the nonzero terms is x0, so there are 
exactly m-1 nonzero terms among x1, x2, …, xn. These m-1 nonzero 
terms add up to m, so m-2 of these terms are equal to 1 and one 
term is equal to 2. This means that no term of the sequence is 
greater than two, except possibly x0. Hence at most one of x3, x4, … 
can be positive (For example, if x0 = 4, then x4 will be positive 
since 4 appears in the sequence). Thus the only terms that can be 
positive are x0, x1, x2 and at most one xk with k > 2. It follows that m 
≤ 4. Also m =1 is impossible. So we have 3 cases: 
 

(i) m = 2. Then there are m-2 = 0 1s and one 2 among the terms 
x1, x2, … xn. Hence x2 = 2 (as x1 = 2 is impossible) and the 
sequence is (2, 0, 2, 0). 

(ii) m = 3. Either x1 = 2 or x2 = 2. These cases give the sequences 
(1, 2, 1, 0) and (2, 1, 2, 0, 0) respectively. 

(iii) m = 4. Then the positive terms are x0, x1, x2 and xk for some k 
> 2. Then x0 = k and xk = 1. There are m-2 = 2 1s so x1 = 2, and 
hence x2 = 1. The final sequence is (k, 2, 1, 0, …., 0, 1, 0, 0, 0), 
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where there are k 0s between the two 1s.  
Hence the sequences listed in (i), (ii) and (iii) are the only 

possible sequences and we’re done. ■ 
 
 

 
 

Exercises 
 

 
1. [Russia 2001] 

Yura put 2001 coins of 1, 2 or 3 kopeykas in a row. It turned 
out that between any two 1-kopeyka coins there is at least one 
coin; between any two 2-kopeykas coins there are at least two 
coins; and between any two 3-kopeykas coins there are at 
least 3 coins. Let n be the number of 3-kopeyka coins in this 
row. Determine all possible values of n.  

 
2. [Indian TST 2001] 

Given that there are 168 primes between 1 and 1000, show 
that there exist 1000 consecutive numbers containing exactly 
100 primes.  

 
3. [Canada 1992] 

2n+1 cards consists of a joker and, for each number between 1 
and n inclusive, two cards marked with that number. The 
2n+1 cards are placed in a row, with the joker in the middle. 
For each k with 1 ≤ k ≤ n, the two cards numbered k have 
exactly (k–1) cards between them. Determine all the values of 
n not exceeding 10 for which this arrangement is possible. For 
which values of n is it impossible? 

 
4. [IMO 1997-4] 

An n × n matrix whose entries come from the set S = {1, 2, …, 
n} is called a silver matrix if, for each i = 1, 2, …, n, the i-th row 
and the i-th column together contain all elements of S. Show 
that: 
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a) there is no silver matrix for n = 1997; 
b) silver matrices exist for infinitely many values of n. 

 
5. [Russia 1996] 

Can a 5 × 7 board be tiled by L-trominoes (shown in the figure 
below) with overlaps such that no L-tromino sticks out of the 
board, and each square of the board is covered by the same 
number of L-trominoes?  

 
An L-tromino 

 
6. IMO Shortlist 2011, C2] 

Suppose that 1000 students are standing in a circle. Prove that 
there exists an integer k with 100 ≤ k ≤ 300 such that in this 
circle there exists a contiguous group of 2k students, for which 
the first half contains the same number of girls as the second 
half.  

 
7. [Bulgaria 2001] 

Let n be a given integer greater than 1. At each lattice point (i, 
j) we write the number k in {0, 1, …, n-1} such that k   (i+j) 
mod n. Find all pairs of positive integers (a, b) such that the 
rectangle with vertices (0,0), (a, 0), (a, b) and (0, b) has the 
following properties:  
(i) Each number 0, 1, …, n-1 appears in its interior an equal 

number of times 
(ii) Each of these numbers appear on the boundary an equal 

number of times 

 
8. [Russia 1998] 

Each square of a board contains either 1 or -1. Such an 
arrangement is called successful if each number is the product 
of its neighbors. Find the number of successful arrangements. 
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9. [IMO Shortlist 2010, C3] 
2500 chess kings have to be placed on a 100 × 100 chessboard 
so that  
i. no king can capture any other one (i.e. no two kings are 

placed in two squares sharing a common vertex); 
ii. each row and each column contains exactly 25 kings. 
 
Find the number of such arrangements. (Two arrangements 
differing by rotation or symmetry are supposed to be 
different.) 

 
10. [Russia 2011] 

There are some counters in some cells of 100 × 100 board. Call 
a cell nice if there are an even number of counters in adjacent 
cells. Is it possible for there to exist exactly one nice cell? 

 
11. [Bulgaria 1997] 

A triangulation of a convex n-gon is a division of the n-gon into 
triangles by diagonals with disjoint interiors. Call a 
triangulation even if each vertex of the n-gon is the endpoint 
of an even number of diagonals. Determine all natural 
numbers n for which an even triangulation of an n-gon exists.  

 
12. [India Postal Coaching 2011] 

On a circle there are n red and n blue arcs given in such a way 
that each red arc intersects each blue one. Prove that there 
exists a point contained by at least n of the given colored arcs. 

 
13. Call a rectangle integral if at least one of its dimensions is an 

integer. Let R be a rectangle such that there exists a tiling of R 
with smaller integral rectangles with sides parallel to the sides 
of R. Show that R is also integral.  

 
14. [IMO Shortlist 1999, C6] 

Suppose that every integer has been given one of the colors 
red, blue, green or yellow. Let x and y be odd integers so that 
|x| ≠ |y|. Show that there are two integers of the same color 
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whose difference has one of the following values: x, y, (x+y) or 
(x-y).  

 
15. [China TST 2011] 

Let l be a positive integer, and let m, n be positive integers 
with m ≥ n, such that A1, A2, …, Am, B1, B2, …, Bn are (m+n) 
pairwise distinct subsets of the set {1, 2, …, l}. It is known that 
Ai Δ Bj are pairwise distinct, for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 
run over all nonempty subsets of {1, 2, …, l}. Find all possible 
values of (m, n). 

 
16. [IMO 1996, Problem 6] 

Let p, q, n be three positive integers with p+q < n. Let (x0, x1, …, 
xn) be an (n+1)-tuple of integers satisfying the following 
conditions: :  
(a) x0 = xn = 0, and  
(b) For each i with 1 ≤ i ≤ n, either xi – xi-1 = p or xi – xi-1 = -q.  
 
Show that there exist indices i < j with (i, j) ≠ (0, n) such that xi 
= xj. 

 
17. [IMO 2004, Problem 3] 

Define a hook to be a figure made up of six unit squares as 
shown below in the picture, or any of the figures obtained by 
applying rotations and reflections to this figure. Determine all 
m × n rectangles that can be tiled with hooks without gaps, 
overlaps, and parts of any hook lying outside the rectangle.  

 
A hook 
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5. COMBINATORIAL GAMES 
 

I’m afraid that sometimes,  
you’ll play lonely games too. 

Games you can’t win 
‘cause you’ll play against you. 

-Doctor Seuss  
 

 
Introduction 
 
In this chapter, we study combinatorial games involving two 
players. Typical problems describe a game, and ask us to find a 
winning strategy for one of the players or determine whether one 
exists.  
 

As in problems in the chapters on algorithms and processes, 
games are specified by a starting position, allowed move(s) and 
the final or winning position. These and other attributes make 
problems in this chapter seem superficially similar to those in the 
first three chapters, but a fundamental difference is that our 
algorithms or strategies now need to compete against those of an 
opponent. Some of the techniques we will develop in this chapter 
are hence significantly different from earlier ones. One simple yet 
surprisingly powerful technique we use is exploiting symmetry. 
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Others include coloring and invariants, recursion, induction, 
parity and a very important technique we will introduce known as 
positional analysis.  
 

The term “combinatorial games” is generally used to describe 
games with the following characteristics: 

 
(i) There are no elements of luck or chance (so no dice rolling or 

coin flipping involved). 

(ii) There is usually perfect information, unlike in card games, 
where I cannot see your hand (unless I peak). 

(iii) Players typically move alternately. In this chapter, all our 
games are played by Alice and Bob, whom we refer to as A 
and B respectively. In general A starts.  

(iv) There is no cheating (unfortunately). 
 

One more thing we will use frequently is that if a game is finite 
and does not have ties, then someone has to eventually lose. 
Because of the perfect information property and the absence of 
probabilistic elements, one player will hence have a winning 
strategy. In particular, one concept we will use frequently to 
develop strategies is that if one player can ensure that he always 
“stays alive”, the other player will eventually lose. 
 

 
  

Symmetry, Pairing and Copying 
 

They said no cheating, but we can still copy! 
 
This section is devoted to the very important technique of 
“copycat strategies” and pairing techniques. The next few 
examples should illustrate what these techniques are about.  
 
Example 1 
A and B each get an unlimited supply of identical circular coins. A 
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and B take turns placing the coins on a finite square table, in such 
a way that no two coins overlap and each coin is completely on 
the table (that is, it doesn’t stick out). The person who cannot 
legally place a coin loses. Assuming at least one coin can fit on the 
table, prove that A has a winning strategy.  
 
Answer: 
A first places a coin such that its center is at the center of the 
table. Then whenever B places a coin with center at a point X, A 
places a coin with center at the point X’, where X’ is the reflection 
of X in the center of the table. This ensures that after each of A’s 
moves, the board is completely symmetrical. Thus if B can make a 
legal move, then by symmetry, A’s next move is also legal. Since 
the area of the table is finite, eventually the game must terminate 
and someone must lose. Since A can always “stay alive”, B loses. ■ 
 
Example 2 [Saint Petersburg 1997] 
The number N is the product of k different primes (k ≥ 3). A and B 
take turns writing composite divisors of N on a board, according 
to the following rules. One may not write N. Also, there may never 
appear two coprime numbers or two numbers, one of which 
divides the other. The first player unable to move loses. If A starts, 
who has the winning strategy? 
 
Answer: 
A has a winning strategy. A first writes pq for some primes p and q 
dividing N. Then all the subsequent numbers written must be of 
the form pm or qm for some m dividing N, by the conditions of the 
problem. Whenever B writes qm, A writes qn. This “copying 
strategy” ensures that A always has a move. Since the game is 
finite (N has a finite number of divisors), A will eventually win. ■ 
 
Example 3 [USAMO 2004 – 4] 
Alice and Bob play a game on a 6 × 6 grid. On his or her turn, a 
player chooses a rational number not yet appearing in the grid 
and writes it in an empty square of the grid. Alice goes first and 
then the players alternate. When all of the squares have numbers 
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written in them, in each row, the square with the greatest number 
in that row is colored black. Alice wins if she can then draw a path 
from the top of the grid to the bottom of the grid that stays in 
black squares, and Bob wins if she can’t. (A path is a sequence of 
squares such that any two consecutive squares in the path share a 
vertex). Find, with proof, a winning strategy for one of the players. 
 
Answer: 
 

X X X 
   X X X 
   X X 

  
X 

 

   
X X X 

   
X X X 

   
X X X 

 
Figure 5.1 

 
B has a winning strategy. The idea is to ensure that the largest 
number in each row is in one of the squares marked X in Figure 
5.1. Then clearly there will be no path and B will win.  
 

To do this, B pairs each square marked with an X with a square 
not marked with an X in the same row. Whenever A plays in a 
square marked with an X, B writes a smaller number in the paired 
square. Whenever A writes a number in a square not having an X, 
B writes a larger number in the paired square. This ensures that 
after each of B’s moves, the largest number in each row is in one 
of the squares marked with an X. ■ 
 
Example 4 [Tic Tac Toe for mathematicians] 
On a 5 × 5 board, A and B take turns marking squares. A always 
writes an X in a square and B always writes O. No square can be 
marked twice. A wins if she can make one full row, column or 
diagonal contain only Xs. Can B prevent A from winning? 
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Answer: 
Yes. Mark the board as shown.  
 

5 9 11 9 6 

8 1 1 2 7 

12 4 
 

2 12 

8 4 3 3 7 

6 10 11 10 5 
 

Figure 5.2: Squares with equal numbers are paired 

 
Since each number from 1 to 12 appears in 2 squares, B can 

ensure that he always marks at least one square of each number 
(if A marks an X in a square with number i, B puts an O in the 
other square marked i). Observe that each row, column and 
diagonal contains a pair of squares having equal numbers. Since B 
ensures that at least one number in each pair is marked, each row, 
column and diagonal would have been marked by B at least once. 
■ 
 
Remark 1: This is one of those solutions that initially appears to 
come out of nowhere, but actually has a very intuitive explanation. 
Here’s one way of thinking about it. There are 5 columns, 5 rows 
and 2 diagonals, for a total of 12 “winning lines”. We can only 
make 12 pairs of numbers (since there are 25 squares and 12 x 2 
= 24). Thus our idea is to construct a pairing strategy such that 
each row, column and diagonal is covered by exactly one pair. In 
this example, a natural way to construct the pairing is to start with 
the inner 3 x 3 square, covering its border, and then fill the outer 
layer, ensuring that the remaining winning lines are taken care of.  
 
Remark 2: The game of tic-tac-toe can be generalized to getting k 
squares in a row on an m × n board (regular tic-tac-toe has k = m = 
n = 3 and this problem has k = m = n = 5). For most values of k, m 
and n, the question of whether there exists a winning strategy for 
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the starting player remains an open problem. In addition, the 
game of tic-tac-toe in higher dimensions (such as on 3-D cubes or 
in general, n-dimensional hyperspaces) has strong connections to 
a branch of extremal combinatorics known as Ramsey theory.  
 
Example 5 [IMO Shortlist 1994, C1] 
A and B play alternately on a 5 × 5 board. A always enters a 1 into 
an empty square, and B always enters a 0 into an empty square. 
When the board is full, the sum of the numbers in each of the nine 
3 × 3 squares is calculated and A's score S is the largest such sum. 
What is the largest score A can make, regardless of the responses 
of B? 
 
Answer: 

          

D D D D D 

D D D D D 

          

          
 

Figure 5.3: A pairing strategy for B 

 
Tile the board with 10 dominoes (marked D in the figure), leaving 
the bottom row untiled. B can ensure that each domino contains 
at least one 0, since whenever A plays in a domino B writes a 0 in 
the other square. Each 3 × 3 square has at least 3 full dominoes, 
and hence will have at least three 0s. Thus B can ensure that S is at 
most 6. Now we leave it to the reader to show that A can ensure 
that S is at least 6. ■ 
 

 
 

Parity Based Pairing 
 
We solved the last few examples by explicitly constructing pairing 
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strategies. But all we actually need to do sometimes is prove the 
existence of a pairing strategy. This is often remarkably easy- 
observe that if there are an even number of objects, there exists a 
way to pair them up. 
 
Example 6 [Based on Italy TST 2009, problem 6] 
A and B play the following game. First A writes a permutation of 
the numbers from 1 to n, where n is a fixed positive integer 
greater than 1. In each player’s turn, he or she must write a 
sequence of numbers that has not been written yet such that 
either:  
a) The sequence is a permutation of the sequence the previous 

player wrote, OR 
b) The sequence is obtained by deleting one number from the 

previous player’s sequence 
 

For example, if A first writes 4123, B could write 3124 or 413. 
The player who cannot write down a sequence loses. Determine 
who has the winning strategy. 
 
Answer: 
If n = 2, B wins: after A’s first move, B deletes the number 2 and is 
left with the sequence {1}. Then A has no move.  
 

The idea now is to construct an inductive strategy for B. 
Suppose B wins for n = k; we now want a strategy for n = k+1. B’s 
aim is to make A be the first player to delete a number from the 
sequence. Then from this point the game is reduced to a game 
with k numbers, and B will win this by induction. But this is very 
easy to do – whenever A writes a sequence of k+1 numbers, there 
will always exist at least one permutation of the k+1 numbers that 
has not been written yet, simply because the total number of 
permutations is even ((k+1)! is even). ■ 

 
Remark: You can also use an explicit pairing strategy. One 
example is that whenever A writes a sequence, B writes the same 
sequence backwards.  
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Example 7 [USAMO 1999-5] 
The Y2K Game is played on a 1 × 2000 grid as follows. Two players 
in turn write either an S or an O in an empty square. The first 
player who produces three consecutive boxes that spell SOS wins. 
If all boxes are filled without producing SOS then the game is a 
draw. Prove that the second player has a winning strategy.  
 
Answer: 
Call an empty square bad if playing in that square will let the other 
player form SOS in the next turn. We claim that an empty square is 
bad if and only if it is in a block of 4 squares of the form S_ _ S.  
 

It is easy to see that both these empty squares are bad, as 
playing either S or O will allow the other player to form SOS. 
Conversely, if a square is bad, then playing an O in it will allow the 
other player to win, so it must have an S next to it and an empty 
square on the other side. Also, playing an S in a bad square allows 
the other player to win, so there must be another S beyond the 
empty square. This forces the configuration to be S_ _S, proving 
our claim. 
 

Now after A’s first move, B writes an S at least 4 squares away 
from either end of the grid and A’s first move.  On B’s second 
move, he writes S three squares away from his first S so that the 
two squares in between are empty. These two squares are bad. 
Note that at any point in the game there will always be an even 
number of bad squares (since they come in pairs, by our claim 
above). So whenever it is B’s turn, an odd number of moves would 
have been made, so an odd number of squares would be empty, of 
which an even number would be bad. Hence there will always be 
at least one square that is not bad on B’s turn, so B won’t lose. 
Eventually the game will end since there are at least 2 bad 
squares, so B must win. ■ 
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Positional Analysis 
Heads I win, tails you lose. 

 
For the rest chapter, we will use the following convention: a 
position in a game is a P-position if the player who has just played 
can force a win (that is, if he has a winning strategy). A position is 
called an N-position if the player whose turn it is can force a win. 
P and N respectively stand for Player and Next player.  
 

This means that the starting player has a winning strategy if 
and only if the initial position of a game is an N-position (he is the 
“next player” as it is his turn at the start of the game). The second 
player has a winning strategy if and only if the initial position is a 
P-position (even though the game has not yet begun, by 
convention, he is the player who has “just played”, since it is not 
his turn).  
 

Our definition of P- and N-positions also implies the following: 
From an N-position, the player whose turn it is can move into a P-
position. In other words, the player who has a winning strategy 
can move to a position in which he still has a winning strategy. 
From a P-position, the player whose turn it is must move into an 
N-position. The winning strategy for a player is to always 
move to P-positions.  
 
Example 8 
A and B play a game as follows. First A says 1, 2 or 3. Then B can 
add 1, 2 or 3 to the number the first player said. The game 
continues with the players playing alternately, in each turn adding 
1, 2 or 3 to the previous number. For example, A can say 2, then B 
can say 5, then A could say 6, and so on. The player who says 100 
wins. Who has the winning strategy? 
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Answer: 
Observe that B can always say a multiple of 4 in his turn. For 
example, consider the following sequence of moves: A-1; B-4; A-6; 
B-8 and so on. Regardless of what A says, B can always say a 
multiple of 4. This is fairly obvious, but if you want to be more 
rigorous you can prove it by induction – if B says 4k then A says 
4k+1, 4k+2 or 4k+3, and in all cases B can say 4k+4. Hence B will 
say 100 and will win. ■ 
 
Remark 1: Let’s analyze this proof. First of all, how would one 
come up with it? One idea is to work backwards. Clearly the player 
who says 100 wins. Hence 100 is a P-position – the person who 
has just played wins. Then 99, 98 and 97 are N-positions as the 
next player can reach 100 from these positions. But 96 is a P-
position, since from 96 only N-positions can be reached (97, 98 
and 99). Continuing in this manner, we see that every multiple of 
4 is a P-position, so the winning strategy is to always play 
multiples of 4. This type of analysis of P- and N-positions will be 
the central idea in the rest of this chapter. 
 
Remark 2: This game can be generalized- instead of 1, 2, or 3 we 
can allow a player to increase the number by 1, 2, …, or k for any 
positive integer k and we can replace 100 by n. If k+1 divides n, 
then all multiples of k+1 are P-positions, so 0 is a P-position and B 
has a winning strategy. Otherwise, suppose n ≡ r mod (k+1). Then 
all numbers that are congruent to r mod k+1 are P-positions, and 
A has a winning strategy by saying r in her first move. 
 
Note: In several problems, we will use arguments of the form “If 
one player does this, then the other player does that, then the first 
player does this…”. In order to avoid referring to the players as 
“one” or “the other” or the particularly ambiguous “the first 
player”, we will use X and Y in these situations. X could refer to 
either of the players A and B, and Y refers to the other one. (On the 
other hand this precludes the usage of personal pronouns… 
writing a book is just frustrating sometimes.) 
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Example 9 [Lithuania 2010] 
In an m × n rectangular chessboard there is a stone in the lower 
leftmost square. A and B move the stone alternately, starting with 
A. In each step one can move the stone upward or rightward any 
number of squares. The player who moves it into the upper 
rightmost square wins. Find all (m, n) such that A has a winning 
strategy. 
 
Answer: 
For convenience, lets flip the board upside down so that the stone 
starts in the upper rightmost square and the player who moves it 
to the lower leftmost square wins. All moves are now down or left. 
Now we label the squares by their coordinates, so that the lower 
leftmost square is (1, 1) and the upper rightmost square is (m, n). 
Note that the game must terminate – this is a key ingredient for 
positional analysis to work. 
 

            P    Start 
          P       
        P         
      P           
    P             
    P               
P                 

 
Figure 5.4: The P-positions 

 
The crucial observation is that the P-positions are squares with 

equal coordinates, that is, squares with coordinates (k, k) for 
some k. These are marked P in the figure. This is because if X 
moves to a square marked P, Y cannot reach any other P square in 
Y’s turn. Then X can move back to a P-position. This continues – X  
keeps moving to P-positions, and eventually reaches (1, 1) and 
wins. 
 

Thus if m ≠ n, the initial position is N, so A wins by always 



Olympiad Combinatorics  12 

moving to a square marked P. If  m = n, the initial position is P, so 
B wins. Hence A wins if and only if m ≠ n. ■ 
 

The previous two examples illustrate the general approach to 
problems in this section: characterize the N- and P-positions. If 
the starting position is an N-position, A wins; otherwise B wins. 
The next example is similar to example 8, but the inductive proof 
for characterizing N-positions is slightly trickier. There is also an 
important difference between this example and the previous two, 
discussed in the remark at the end.  
 
Example 10 [Saint Petersburg 2001] 
The number 1,000,000 is written on a board. A and B take turns, 
each turn consisting of replacing the number n on the board with 
n – 1  or ⌊       ⌋. The player who writes the number 1 wins. 
Who has the winning strategy? 
 
Answer: 
Note that the game eventually ends, so one of the players must 
have a winning strategy. After experimenting with 1,000,000 
replaced with smaller values, we see that A wins when the 
starting number is 2, 4, 6 and 8 and conjecture that A wins for any 
even starting number. In other words, we claim that all even 
numbers are N-positions. We prove this by induction. 
 

2 is an N-position, so now suppose that all even numbers less 
than 2k are N-positions. We show that 2k is also an N-position. If k 
is a P-position, A can write k in her first move and win. Otherwise 
A first writes 2k – 1. Then B must write 2k – 2 or k, both of which 
are N-positions by assumption, so A wins in this case as well. Thus 
all even numbers are N-positions, so 1,000,000 is an N-position 
and A has a winning strategy. ■ 
 
Remark: Note that unlike the solutions in examples 8 and 9, this 
solution does not characterize all positions as P or N. We proved 
all even numbers are N-positions, but didn’t prove anything about 
odd numbers since we didn’t need to. All we really cared about 
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was the number 1,000,000, so characterizing the positions of even 
numbers was sufficient. Another interesting thing to observe is 
the following: suppose N = 50. A’s strategy says to write 25 if 25 
is a P-position, and otherwise write 49. But we don’t know 
whether 25 is a P-position or an N-position! Does that mean 
our solution is incomplete or wrong? No. The problem only asked 
who has the winning strategy, not what the winning strategy is. 
We have guaranteed the existence of a winning strategy for A, 
without explicitly finding all its details – that’s Alice’s problem! 
(Well, actually, it’s kind of your problem too- exercise 6 asks you 
to characterize the odd positions of this problem.) 
 

An idea that has started to recur in this book is to take the 
techniques used in constructive proofs and use them for 
existential proofs. The next proof is a beautiful example of this 
idea, in which we use positional analysis to prove the existence of 
a winning strategy for one player by contradiction.  
 
Example 11 [Russia 2011, adapted] 

There are N > n
2
 stones on a table. A and B play a game. A begins, 

and then they alternate. In each turn a player can remove k stones, 
where k is a positive integer that is either less than n or a multiple 
of n. The player who takes the last stone wins. Prove that A has a 
winning strategy. 
 
Answer: 
The game is finite and deterministic so some player must have a 
winning strategy. Suppose to the contrary that B can win. A first 
removes kn stones. If B removes jn stones for some j, then that 
means N – (k + j) n is a P-position (since we are assuming B is 
playing his winning strategy). In this case A could have removed 
(k + j) n stones in her first move and won, meaning that A has a 
winning strategy, which is a contradiction.  
 

Thus if A removes kn stones in the first move, where 1 ≤ k ≤ n, 
let f(k) denote the number of stones B takes in response according 
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to his winning strategy. By the first paragraph, 1 ≤ f(k) ≤ n – 1. 
Hence by the pigeonhole principle, for some distinct k and j, f(k) = 
f(j). This means that both N – kn – f(k) and N – jn – f(k) are P-
positions, since these are the positions that arise after B’s move. 
 

Now WLOG let k < j. A first removes kn stones, then B removes 
f(k) stones. Now A removes (k – j)n stones. There are now N – kn – 
f(k) stones remaining, which is a P-position by the second 
paragraph. Hence A will win, contradicting our assumption that B 
has a winning strategy. ■ 
 

In slightly harder problems recursion often proves to be a 
useful technique. This means that we relate the outcome of a game 
of size N to games of smaller size. 
 
Example 12 [IMO Shortlist 2004, C5] 
A and B take turns writing a number as follows. Let N be a fixed 
positive integer. First A writes the number 1, and then B writes 2. 
Hereafter, in each move, if the current number is k, then the player 
whose turn it is can either write k + 1 or 2k, but no player can 
write a number larger than N. The player who writes N wins. For 
each N, determine who has a winning strategy.  
 
Answer: 
Step 1: We quickly observe that if N is odd, A can win. A can 
always ensure that she writes an odd number, after which B 
would have to write an even number. Hence B cannot say N so A 
wins. Now suppose N is even. 
 
Step 2: The key observation is that all even numbers greater 
than N/2 are P-positions. This is because after this point neither 
player can double the number (otherwise it will exceed N). 
Hence they both must keep adding 1 in their turns, and one player 
will keep writing even numbers and the other will keep writing 
odd numbers. The player who wrote the even number greater 
than N/2 will hence write N since N is even. 
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Step 3: If N = 4k or N = 4k+2, then k is a P-position. This is 
because if X writes k, Y must write k+1 or 2k. Then X writes 2k+2 
if Y writes k and X writes 4k if Y writes 2k. X has thus written an 
even number greater than N/2 and by step 2, X wins.  
 
Steps 2 and 3 now give us the final critical lemma. 
 
Step 4: If X has a winning strategy for N = k, then X has a 
winning strategy for N = 4k and N = 4k+2. 
Proof: Consider a game where N = 4k or 4k + 2. If X writes k at 
some point during the game, we are done by step 3. So X’s aim is 
to write k, so X starts implementing the winning strategy for N = k. 
How can Y prevent X from writing k? By “jumping over” k at some 
point: after X says some number j with k/2 < j < k, Y doubles it, 
resulting in a number 2j with (k + 1) ≤ 2j ≤ N/2. But then X simply 
doubles this number, resulting in an even number at least equal to 
2(k+1) > N/2. So X wins by step 2.  
 

Finally, we have a recursive method of determining the answer 
for even N. The answer for N is the same as that for ⌊   ⌋. To 
convert this recursion into an explicit answer, write N in base 4. 
The function ⌊   ⌋ is equivalent to removing the last digit of N in 
base 4. Starting from the base 4 representation of N, keep 
removing the rightmost digit. The resulting numbers will all be 
winning for the same player by our recursion. If at some point we 
obtain an odd number, then A wins for this number and hence A 
wins for N. Hence if N has an odd digit in base 4, then A wins. 
Otherwise, suppose N has only 0s and 2s in its base 4 
representation. Then applying our procedure we eventually end 
up with the number 2, and since B wins for 2, B wins for N in this 
case. ■ 
 

The final example of this chapter is different in a few ways. 
First, it is asymmetrical, in the sense that the two players have 
different (in fact, opposite) objectives. Such games are typically 
called “maker-breaker” games. We cannot define P- and N-
positions the way we did before. However, similar ideas of 
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analyzing positions based on outcome still apply, and winning 
strategies are still based on always sticking to some particular 
type of position. These positions are typically characterized by 
some specific property or invariant, as the next example shows. 
 
Example 13 [IMO Shortlist 2009, C5] 
Five identical empty buckets of 2-liter capacity stand at the 
vertices of a regular pentagon. Cinderella and her wicked 
Stepmother go through a sequence of rounds: At the beginning of 
every round the Stepmother takes one liter of water from the 
nearby river and distributes it arbitrarily over the five buckets. 
Then Cinderella chooses a pair of neighboring buckets, empties 
them into the river, and puts them back. Then the next round 
begins. The Stepmother’s goal is to make one of these buckets 
overflow. Cinderella’s goal is to prevent this. Can the wicked 
Stepmother enforce a bucket overflow? 
 
Answer: 
Let the volume of water in the buckets be B1, B2, B3, B4 and B5. 
Indices will be taken mod 5. Clearly if both Bi and Bi+2 are greater 
than one before one Cinderella’s moves, she cannot empty both of 
them and hence the stepmother will win enforce an overflow in 
her turn. Thus Cinderella’s aim is to prevent this from happening. 
To do this, clearly it is sufficient to ensure that Bi + Bi+2 is at most 
one for each i after each of Cinderella’s turns. Call such a situation 
good. 
 

Suppose after some round we have a good situation: two 
buckets are empty, say B4 = B5 = 0. Then B1 + B3 ≤ 1 and B2 ≤ 1 
(since B2 + B4 ≤ 1). After the stepmother’s turn, we will have B1 + 
B3 + B4 + B5 ≤ 2. Hence either B5 + B3 ≤ 1 or B4 + B1 ≤ 1. WLOG B5 + 
B3 ≤ 1. Then Cinderella empties B1 and B2. Now observe that the 
new configuration is still good, since B4 ≤ 1 and B5 + B3 ≤ 1.  
 

Hence starting from a good configuration, Cinderella can 
ensure that at the end of the round the new configuration is still 
good. Initially the buckets are all empty, so this configuration is 
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good. Hence Cinderella can prevent an overflow by always staying 
in a good position. ■  

 

 
 

Exercises 
 
1. [Cram] 

A and B take turns placing dominoes on an m × n rectangular 
grid, where mn is even. A must place dominoes vertically and 
B must place dominoes horizontally, and dominoes cannot 
overlap with each other or stick out of the board. The player 
who cannot make any legal move loses. Given m and n, 
determine who has a winning strategy, and find this strategy. 

 
2. [Double Chess]  

The game of double chess is played like regular chess, except 
each player makes two moves in their turn (white plays twice, 
then black plays twice, and so on). Show that white can always 
win or draw.  

 
3. [Russia 1999] 

There are 2000 devices in a circuit, every two of which were 
initially joined by a wire. The hooligans Vasya and Petya cut 
the wires one after another. Vasya, who starts, cuts one wire 
on his turn, while Petya cuts two or three. A device is said to 
be disconnected if all wires incident to it have been cut. The 
player who makes some device disconnected loses. Who has a 
winning strategy? 
 

4. [IMO Shortlist 2009, C1] 
Consider 2009 cards, each having one gold side and one black 
side, lying on parallel on a long table. Initially all cards show 
their gold sides. Two players, standing by the same long side 
of the table, play a game with alternating moves. Each move 
consists of choosing a block of 50 consecutive cards, the 
leftmost of which is showing gold, and turning them all over, 
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so those which showed gold now show black and vice versa. 
The last player who can make a legal move wins. 
a) Does the game necessarily end? 
b) Does there exist a winning strategy for the starting player?  

 

5. [Russia 1999] 
There are three empty jugs on a table. Winnie the Pooh, 
Rabbit, and Piglet put walnuts in the jugs one by one. They 
play successively, with the order chosen by Rabbit in the 
beginning. Thereby Winnie the Pooh plays either in the first or 
second jug, Rabbit in the second or third, and Piglet in the first 
or third. The player after whose move there are exactly 1999 
walnuts in some jug loses. Show that Winnie the Pooh and 
Piglet can cooperate so as to make Rabbit lose. 
 

6. Solve the problem in example 10 with 1,000,000 replaced by 
n, an arbitrary odd number. Use this complete character-
ization of positions to provide a complete description of the 
winning strategy. If you have some programming experience, 
you could also write a program to play this game against you.  
Remark (for programmers): You could also write a program 
to solve this probem, that is, to determine for each n who has a 
winning strategy. A simple dynamic programming approach 
would run in O(n) time. Using this as a subroutine, the 
program to play the game against you would take O(n) time 
for each move. However, if you found the characterization of 
positions on your own first, the program to play the game 
would only take O(log n) time for each move.  
 

7. [Bulgaria 2005] 
For positive integers t, a, b, a (t, a, b)-game is a two player 
game defined by the following rules. Initially, the number t is 
written on a blackboard. In his first move, the first player 
replaces t with either t – a or t – b. Then, the second player 
subtracts either a or b from this number, and writes the result 
on the blackboard, erasing the old number. After this, the first 
player once again erases either a or b from the number 
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written on the blackboard, and so on. The player who first 
reaches a negative number loses the game. Prove that there 
exist infinitely many values of t for which the first player has a 
winning strategy for all pairs (a, b) with (a + b) = 2005. 

 
8. [Rioplatense Math Olympiad 2010] 

Alice and Bob play the following game. To start, Alice arranges 
the numbers 1, 2, …, n in some order in a row and then Bob 
chooses one of the numbers and places a pebble on it. A 
player's turn consists of picking up and placing the pebble on 
an adjacent number under the restriction that the pebble can 
be placed on the number k at most k times. The two players 
alternate taking turns beginning with Alice. The first player 
who cannot make a move loses. For each positive integer n, 
determine who has a winning strategy. 

 
9. [Russia 2007] 

Two players take turns drawing diagonals in a regular (2n+1)-
gon (n > 1). It is forbidden to draw a diagonal that has already 
been drawn or intersects an odd number of already drawn 
diagonals. The player who has no legal move loses. Who has a 
winning strategy? 
 

10. [Indian Practice TST 2013] 

A marker is placed at the origin of an integer lattice. Calvin 
and Hobbes play the following game. Calvin starts the game 
and each of them takes turns alternatively. At each turn, one 
can choose two (not necessarily distinct) integers a and b, 
neither of which was chosen earlier by any player and move 
the marker by a units in the horizontal direction and b units in 
the vertical direction. Hobbes wins if the marker is back at the 
origin any time after the first turn. Determine whether Calvin 
can prevent Hobbes from winning. 
Note: A move in the horizontal direction by a positive quantity 
will be towards the right, and by a negative quantity will be 
towards the left (and similarly in the vertical case as well). 
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11. [Based on South Korea 2009, Problem 5] 

Consider an m × (m+1) grid of points, where each point is 
joined by a line segment to is immediate neighbors (points 
immediately to the left, right, above or below). A stone is 
initially placed on one of the points in the bottom row. A and B 
alternately move the stone along line segments, according to 
the rule that no line segment may be used more than once. 
The player unable to make a legal move loses. Determine 
which player has a winning strategy.   

12. [IMO Shortlist 1994, C6] 
Two players play alternatively on an infinite square grid. The 
first player puts an X in an empty cell and the second player 
puts an O in an empty cell. The first player wins if he gets 11 
adjacent X's in a line - horizontally, vertically or diagonally. 
Show that the second player can always prevent the first 
player from winning. 
 

13. [Nim] 

There are k heaps of stones, containing a1, a2, …, ak stones 
respectively, where the ai’s are positive integers. Players A 
and B play alternately as follows: in each turn, a player 
chooses one non-empty heap and removes as many stones as 
he or she wants. The person who takes the last stone wins. 
Determine when each player has a winning strategy, and find 
this winning strategy. 

14. [The name of this problem would give the answer away] 
There is one pile of N counters. A and B play alternately as 
follows. In the first turn of the game, A may remove any 
positive number of counters, but not the whole pile. 
Thereafter, each player may remove at most twice the number 
of counters his opponent took on the previous move. The 
player who removes the last counter wins. Who has the 
winning strategy? 
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6. COUNTING IN TWO WAYS 
 
 
 
Introduction 
 
Several combinatorics problems ask us to count something – for 
example, the number of permutations of the numbers from 1 to n 
without fixed points, or the number of binary strings of length n 
with more 1s than 0s. What’s interesting is that the techniques 
used to solve counting or enumeration problems can be applied to 
problems that don’t ask us to count anything. Problems in fields 
such as combinatorial geometry, graph theory, extremal set 
theory and even number theory can be solved by clever 
applications of counting – twice. 
 
The basic idea underlying this chapter is to compute or estimate 
some quantity Q (which will depend on the problem and 
information given to us) by counting in two different ways. We 
hence obtain two different expressions or bounds for Q. For 
instance, we may obtain E1 ≥ Q and E2 = Q. This allows us to 
conclude that E1 ≥ E2, which may have been very difficult to prove 
directly. The role of counting in this approach is thus to allow us 
to convert complicated combinatorial information into convenient 
algebraic statements. The main challenge lies in choosing Q 
appropriately, so that we use all the information given to us and 
derive an algebraic conclusion relevant to what we are trying to 
prove.   
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Incidence Matrices 
 
Let A1, A2, …, An be subsets of S = {1, 2, …, m}. A convenient way to 
express this information is by drawing an n × m matrix, with the n 
rows representing A1, A2, …, An and the m columns representing 
the elements of S. Entry aij = 1 if and only if element j belongs to Ai. 
Otherwise, aij = 0. The idea of counting the total number of 1s in 
an incidence matrix is very useful.  
 
Example 1 
Let A1, A2, …, A6 be subsets of S = {1, 2, …, 8}. Suppose each set Ai 
has 4 elements and each element in S is in m of the Ai’s. Find m.   
 
Answer: 
We draw an incidence matrix with six rows, representing the 
subsets A1, A2, …, A6 and eight columns representing the elements 
of S. The entry in the ith row and jth column is 1 if and only if the 
element j belongs to Ai. Otherwise the entry is 0. Since |Ai| = 4, 
each row contains four 1s. There are 6 rows, so the total number 
of 1s in our matrix is 6×4 = 24. 

 
Now each element of S is in m of the Ai’s. Thus each column of 

our matrix contains m 1s. So the total number of 1s in the matrix 
is 8m, since there are 8 columns. Thus 24 = 8m, so m = 3. ■ 

 
                

                

1 1  0 1 1  0  0  0 

                

                

                

Figure 6.1: A sample 6 x 8 incidence matrix with one row filled in, 
illustrating set A3 containing elements 1, 2, 4 and 5. 
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Counting Pairs and Triples 
 
What we are actually doing in the above proof is counting pairs of 
the form (element, set) where the set contains the element. Each 1 
in the matrix corresponds to such a pair. If we choose the set first 
and then the element, there are 6 choices for the set and then 4 for 
the element, for a total of 24 pairs. We can also choose the 
element first (8 choices), and then choose the set (m choices, since 
each element belongs to m sets) for a total of 8m pairs. Equating 
the two answers, 8m = 24, so m = 3.  
 

More generally, we have the following result: If A1, A2, …, Am are 
subsets of {1, 2, …, n} and each element j belongs to dj of the 
subsets, then 

∑     
 
    = ∑   

 
     

 
Both sides count the total number of 1s in the matrix, which is 

the number of pairs (set, element). The left side counts this 
quantity by picking the set first and the right side counts it by 
picking the element first. Note that both sides are also the sum of 
1s in the incidence matrix.  
 

In the first example, we counted pairs of the form (set, element) 
where the element belongs to the set. There are a few important 
variations of this technique: 

 
(i) Count triples of the form (set, set, element) where the two sets 

are distinct both contain the element. This is especially useful 
if we are given information about the intersection size of any 
two sets. These triples can be counted either by first fixing the 
two sets and then picking the element from their intersection, 
or by fixing the element and then picking two sets to which it 
belongs.  
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Note that counting triples of the form (set, set, element) is 
equivalent to counting the number of pairs of 1s that are in 
the same column in the incidence matrix representation.  

 
(ii) Count triples of the form (element, element, set) where the two 

elements both belong to the set. This is useful if we are given 
information about how many sets two elements appear 
together in. These triples can be counted in two ways: you can 
either fix the two elements first or you can fix the set first.   
 
Note that counting triples of the form (element, element, set) is 
equivalent to counting the number of pairs of 1s in the same 
row in the incidence matrix representation. 

 
The next example demonstrates (ii) in part (a), and the original 

idea of counting pairs (set, element) in part (b).  
 
Example 2 [Balanced block designs] 
Let X = {1, 2, …, v} be a set of elements. A (v, k, λ) block design over 
X is a collection of distinct subsets of X (called blocks) such that: 
(i) Each block contains exactly k elements of X 

(ii) Every pair of distinct elements of X is contained in exactly λ 
blocks 

 
Let b be the number of blocks. Prove that: 
(a) Each element of X is contained in exactly r = λ (v – 1)/(k – 1) 

blocks. (In particular, this means that each element is in the 
same number of blocks, which is initially not obvious) 

(b) r = b k / v 
 
Answer: 
(a) Consider an element s in X. We count in two ways the number 

of triples (s, u, B) where u is an element (different from s) and 
B is a block containing s and u. The first way we count will be 
to fix B and then u, and the second way will do the reverse. If s 
is in r blocks, then there are r ways to choose B,  and then (k – 
1) ways to choose u from B. This gives a total of r (k – 1). On 
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the other hand, there are (v – 1) ways to choose u first, and 
then λ ways to choose B such than B contains both u and s (by 
condition (ii)). This gives a total of λ (v – 1). Hence  r (k – 1) = λ 
(v – 1), which is what we wanted. 
 

(b) We count in two ways the number of pairs (x, B) where x is an 
element in a block B. There are v ways to choose x, and then r 
ways to choose B. This gives v r pairs. On the other hand, there 
are b ways to choose B first, and then k ways to choose x since 
|B| = k. This gives b k pairs. Hence b k = v r. ■ 

 
The real power of counting in two ways lies in proving 
inequalities. Typically, we count the number of pairs P (or triples 
T) of some objects in two ways. At least one of the two counting 
procedures should give us a bound on P (or T, as may be the case). 
To do this, we need to cleverly exploit information given to us in 
the problem statement. The next example is fairly simple, as we 
use ideas we have already seen in preceding examples.  
 
Example 3 [USA TST 2005] 
Let n be an integer greater than 1. For a positive integer m, let Sm = 
{1, 2, …, mn}. Suppose that there exists a 2n-element set T such 
that 
(a) each element of T is an m-element subset of Sm 
(b) each pair of elements of T shares at most one common 

element; and  
(c) each element of Sm is contained in exactly two elements of T. 

 
Determine the maximum possible value of m in terms of n. 
 
Remark: Make sure you understand the problem – the “elements” 
of T are actually sets, that is, T is actually a family of subsets of Sm. 
 
Answer: 
Let A1, A2, …, A2n be the elements of T. Let S be the number of 
triples (x, Ai, Aj) where x is an element of Sm belonging to both sets 
Ai and Aj. If we choose x first, there is only one choice for the pair 
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(Ai, Aj) since x belongs in exactly two elements of T by (c). This 
gives S = mn (the number of choices for x). If we select Ai and Aj 

first, there is at most one choice for x by (b). Thus S ≤ (  
 
), the 

number of ways of choosing the pair (Ai, Aj). Hence 
 

mn = S ≤(  
 
)   

 
⇒  m ≤ 2n – 1. 

 
To give a construction when m = 2n-1, simply take 2n lines in 

the plane, no three of which concur and no two of which are 

parallel. There will be (  
 
) = mn intersection points formed. The 

2n lines are the 2n elements of T, and the mn points are the 
elements of Sn. The conditions of the problem are satisfied, since 
each point lies on exactly two lines, each two lines meet at exactly 
one point and each line contains m = 2n – 1 points since it meets 
the other 2n-1 lines once each. ■ 

 
Slightly harder problems require a clever choice of what pairs or 
triples to count, and how to use the information in the problem to 
get the bounds we want. This comes with practice. One general 
principle to note is to pay attention to key phrases in the problem 
like “at most” and “at least”. These pieces of information often give 
a good idea of what we should count.  

 
Example 4 [IMO 1998, Problem 2] 
In a competition, there are a contestants and b judges, where b ≥ 3 
is an odd integer. Each judge rates each contestant as either pass 
or fail. Suppose k is a number such that for any two judges, their 

ratings coincide for at most k contestants. Prove that 
 

 
 ≥ 

   

  
. 

 
Answer: 
Let T be the number of triples (judge, judge, contestant) where the 
two judges both gave the same rating to the contestant. We can 

select the two judges in ( 
 
) ways, and then select the contestant in 

at most k ways by the condition of the problem. Hence T ≤ k ( 
 
).    

 



Chapter 6: Counting in Two Ways  7 

Now take any individual contestant, and suppose the number 
of judges who rated her “pass” is p and the number who rated her 
“fail” is b – p. The number of triples containing this candidate is 

( 
 
) + (   

 
) ≥ (       

 
) + (       

 
) = (b – 1)

2
/4. Here we used 

convexity and the fact that b is odd.  
 

Thus each candidate is in at least (b – 1)2/4 triples, so T ≥ a(b – 

1)2/4. Combining this with our earlier estimate, 
 

a(b – 1)2/4 ≤ kb(b – 1)/2  ⇒  
 

 
 ≥ 

   

  
 ■ 

 
Unlike the previous example, the next problem offers us no clues 
that lead us to guess what we should count. However, we can 
exploit the geometry of the problem to our advantage.  
 
Example 5 [Iran 2010] 
There are n points in the plane such that no three of them are 
collinear. Prove that the number of triangles whose vertices are 
chosen from these n points and whose area is 1 is not greater than 
 

 
 (n

2
 - n). 

 
Answer: 
Let the number of such triangles be k. We count pairs (edge, 
triangle) such that the triangle contains the edge. If the number of 
such pairs is P, then clearly P = 3k, since each triangle has 3 edges.  
 

On the other hand, for any edge AB, there are at most four 
points such that the triangles they form with A and B have the 
same area. This is because those points have to be the same 
distance from line AB, and no three of them are collinear. Hence P 
is at most 4 times the number of edges, which is at most ( 

 
)  Thus 

P ≤ 4 ( 
 
). This gives 

 

3k ≤  ( 
 
)  ⇒ k ≤ 

 

 
(n2 - n) ■ 
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Figure 6.2: At most four points P1, P2, P3, P4  can form a triangle of 

unit area with segment AB 
 
Remark: Whenever I’m faced with a combinatorial geometry 
problem that involves proving an inequality, like the above 
problem, I use the following principle: use the geometry of the 
situation to extract some combinatorial information. After that, 
ignore the geometry completely and use the combinatorial 
information to prove the inequality. We use this principle in the 
next example as well.  
 
Example 6 [IMO 1987] 
Let n and k be positive integers and let S be a set of n points in the 
plane such that: 
(i) No three points of S are collinear 
(ii) For every point P in S, there are at least k points in S 

equidistant from P. 
 

Prove that k < 
 

 
 + √  .  

 
Answer: 
Condition (ii) implies that for each point Pi in S, there exists a 
circle Ci with center Pi and passing through at least k points of S.  

 
Now we count pairs (Pi, Pj) such that Pi and Pj are points in S. 

P1 P
2
 

P
3
 P

4
 

A B 
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Obviously the number of such pairs is ( 
 
)  On the other hand, each 

circle Ci has k points on its circumference, which give rise to 

( 
 
) pairs of points. Thus the n circles in total give us n ( 

 
) points. 

However, there is over counting, since some pairs of points may 
belong to two circles. Since any two circles meet in at most 2 
points, the number of pairs of points that we have counted twice 

is at most equal to the number of pairs of circles, which is ( 
 
).  

Hence the total number of pairs of points in S is at least n( 
 
) - ( 

 
).  

This implies 
 

n( 
 
) - ( 

 
) ≤ ( 

 
) 

 
⇒  ( 

 
) ≤ 2( 

 
) 

 
⇒ k

2
 + k – (n-1) ≤ 0. 

 
Solving this quadratic inequality, noting that k and n are 

integers, gives us the desired result. ■ 
 
The next example again requires a good choice of what to count, in 
order to capture all the given information. 
 
Example 7 [IMO Shortlist 2004, C1] 
There are 10001 students at a university. Some students join 
together to form several clubs (a student may belong to different 
clubs). Some clubs join together to form several societies (a club 
may belong to different societies). There are a total of k societies. 
Suppose that the following conditions hold: 
(i) Each pair of students is in exactly one club. 
(ii) For each student and each society, the student is in exactly 

one club of the society. 
(iii) Each club has an odd number of students. In addition, a club 

with 2m + 1 students (m is a positive integer) is in exactly m 
societies. 

Find all possible values of k. 
 
Answer: 
In order to use all the information in the question, we count 
triples (a, C, S), where a is a student, C is a club and S is a society, 
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where a   C and C   S. Let the number of such triples be T. 
 

Suppose we first fix a, then S, then C. We can choose a in 10001 
ways, S in k ways and then finally C in only one way (by condition 
(ii)). Hence T = 10001 k. 
 

Now suppose we fix C first. There are |C| ways of doing this. 
Then by condition (iii), there are (|C| -1)/2 ways to choose S. 
Finally there is only one way to choose a, by (ii). This gives 
 

T = ∑                         = ∑ (   
 
)            

 

On the other hand, the sum ∑ (   
 
)            is actually equal to 

the number of pairs of students. This is because each pair of 
students is in exactly one club by (i), so each pair of students is 

counted exactly once. Hence this sum is equal to (     
 

), so 

putting everything together 
 

(     
 

) = T = 10001 k  ⇒  k = 5000. 

 
Finally, to construct a configuration for k = 5000, let there be 

only one club C containing all students and 5000 societies all 
containing only one club (C). It’s easy to see that this works. ■ 
 

 
 

Counting with Graphs 
 
In the next few examples, we show how to use counting in two 
ways to solve some problems on graphs. Modeling situations 
using graphs is very useful, since graphs are very convenient to 
work with while counting in two ways. For example, suppose we 
want to count pairs of people such that the two people are friends. 
If we draw a graph with vertices representing people and an edge 
between two people if and only if they are friends, then the 
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problem is equivalent to counting the number of edges in the 
graph.  
 
Some useful properties of graphs 
 
Let G be a graph with n vertices v1, v2, …, vn. Let di be the degree of 
vi, E be the set of edges and |E| = k. All summations without indices 
are assumed to be from 1 to n. We have the following useful 
properties: 
 
Lemma 1: ∑   = 2k   (this is because the LHS counts each edge of 
the graph twice) 
 

Lemma 2: ∑  
  ≥  

 ∑   
 

 
 (By Cauchy-Schwarz)  

 
 
⇒ ∑  

  ≥ 
   

 
 

 

Lemma 3: ∑(  
 
) ≥ 

   

 
 – k  

 

Proof: (  
 
) = 

  
    

 
 . Using lemma 1 and lemma 2 produces the 

result.  
 
Lemma 4: ∑               )  = ∑   

  
     

 
Proof: Each term di appears in the sum on the LHS di times (once 
for each of the neighbors of vi). Thus the total sum will be the sum 

of di × di = di
2 for each i, which is the RHS. 

 
There are also some important results on directed graphs, 

especially tournaments. A tournament on n vertices is a directed 
graph such that between any two vertices u and v, there is either a 
directed edge from u to v or a directed edge from v to u. One can 
interpret these graphs as follows: the n vertices stand for 
participants in a tournament, and each two players play a match. 
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There are no ties. If v beats u, then there is a directed edge from v 
to u.  
 

Let P1, P2, …, Pn be the n participants. Let wi and li denote the 
number of wins and losses of Pi. Clearly wi + li = (n – 1) for each i, 
because each person plays against (n – 1) others. Also, ∑   = ∑    
since each match has a winner and a loser, and so contributes 1 to 
both sides. Hence in fact both sides are equal to ( 

 
), the total 

number of matches. We have another interesting but less obvious 
result: 

 
Lemma 5: ∑  

  = ∑   
 .  

 
Proof: Define a noncyclic triple to be a set of 3 players A, B and C 
such that A beat both B and C and B beat C. Call A the winner of the 
triplet and C the loser of the triplet. If we count noncyclic triplets 
by winners, the sum would be ∑(  

 
)  since after choosing the 

winner there are (  
 
) ways to choose the other two players who 

he beat. If we count by losers, the sum is ∑(  
 
), since after 

choosing the loser there are (  
 
) ways to choose the other two 

players. Hence ∑(  
 
) = ∑(  

 
)  Combining this with ∑   = ∑    we 

get the result.  
 
Remark: Whenever you see expressions of the type in this lemma, 
like a sum of squares, try to interpret them combinatorially. For 

instance, it is often useful to convert x2 to  ( 
 
) + 2x. Allow these 

sums to give you hints as to what to count. In the proof of lemma 
5, the term  (  

 
) gives us a hint to count triples of the form (X, Y, Z) 

such that X beat both Y and Z. This almost automatically leads us 
to the solution.  
 
Example 8 [APMO 1989] (U*) 
Show that a graph with n vertices and k edges has at least k (4k – 

n2 )/3n triangles. 
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Note: The symbol U* in brackets next to a problem indicates that 
it is a useful result and should be remembered.  
 
Answer: 
We count pairs (edge, triangle) where the triangle contains the 
edge. Consider an edge vivj. How many triangles have vivj as an 
edge? vi is joined to (di – 1) vertices other than vj, and vj is joined to 
dj vertices other than vi. There are only n – 2 vertices other than vi 

and vj. Hence at least (di – 1) + (dj – 1) – (n – 2) = (di + dj – n) 
vertices are joined to both vi and vj. Each of these gives one 
triangle. Hence each edge vivj is in at least max {0, (di + dj – n)} 
triangles.  

 
Figure 6.3: The set of vertices neighboring both vi and vj must 

contain at least (di + dj – n) vertices 
 

Thus the total number of triangles is at least  
 

 

 
∑                 )  = 

 

 
∑   

  
    – 

  

 
    (Using lemma 4) 

 

≥ 
 

 
 × 

   

 
 - 

  

 
 = 

        

  
.    (Using lemma 3) 

 
Note that we divided by 3 because otherwise each triangle 

would be counted thrice (once for each edge). ■ 
 
 

 

Neighbors of vi Neighbors of v
j
 

vi v
j
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Corollary 1 (U*) 
A graph with no triangles has at most ⌊    ⌋ edges. Equality is 
achieved only by bipartite graphs with an equal or almost equal 
number of vertices in each part. This is an extremely useful result, 
and is a special case of Turan’s theorem, which will be discussed 
in the exercises of chapter 8.   
  
Example 9 [Indian TST 2001] (U*) 
Let G be a graph with E edges, n vertices and no 4-cycles. Show 

that E ≤ 
 

 
(1 + √    ).  

 
Answer: 
Let the vertices be {v1, …, vn} and let the degree of vi be di. Let T be 
the number of “V-shapes”: that is, triples of vertices (u, v, w) such 
that v and w are both adjacent to u. The vertices v and w may or 
may not be adjacent and triples {u, v, w} and {u, w, v} are 
considered the same.  

 
Figure 6.4: A “V shape” 

 
The reason for this choice of T is that if we first select v and w, 

then there is at most one u such that {u, v, w} is a triple in T. 
Otherwise there would be a 4 cycle. Hence we get T ≤ ( 

 
), since 

for each of the ( 
 
) ways of choosing v and w, there is at most one 

way to choose u.  
 

If we choose u first, there are (  
 
) ways of choosing v and w, 

where du is the degree of u. Summing over all choices for u, and 
then using lemma 3, we get 

v w 

u 
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T = ∑ (  
 
) 

    ≥ 
   

 
 - E 

 
Combining this with T ≤ ( 

 
), 

 
   

 
 – E ≤ 

      

 
. 

 
This reduces to a quadratic inequality in E, which yields the 

desired bound. ■ 
 

Sometimes, when we need to bound or count the number of 
objects satisfying some property, it is easier or more convenient 
to count the number of objects not satisfying the property. Then 
we can subtract this from the total number of objects to get the 
result.  
 
Example 10 [USAMO 1995] 
Suppose that in a certain society, each pair of persons can be 
classified as either amicable or hostile. We shall say that each 
member of an amicable pair is a friend of the other, and each 
member of a hostile pair is a foe of the other. Suppose that the 
society has n people and q amicable pairs, and that for every set of 
three persons, at least one pair is hostile. Prove that there is at 

least one member of the society whose foes include q (1- 4q/n
2
) or 

fewer amicable pairs. 
 
Answer: 
We naturally rephrase the problem in graph theoretic terms, with 
vertices representing people and an edge joining two vertices if 
and only if they form an amicable pair. The graph has no triangles 
by assumption, n vertices and q edges. We wish to estimate the 
number of edges containing 2 foes of X, where X is a vertex. To do 
this, we first count P, the number of pairs (E, X), where E is an 
edge containing X or a friend of X.  
 

First we count the number of pairs (X, E) where E is an edge 
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containing a neighbor of X but not containing X. This quantity will 
be equal to T, the number of triples (X, Y, Z) such that XY and YZ 
are edges. (X, Y, Z) is considered different from (Z, Y, X). Note that 
XZ cannot be an edge by the condition that there are no triangles. 
To compute T, we count by Y. The number of triples containing Y 
is dY (dY – 1), so the total number of triples is ∑   

   i(di – 1). 
 

Now clearly the number of pairs (X, E) where E is an edge 
containing X is given by the sum ∑   

   i. If we add this summation 
to the previous summation, we would have counted the number of 
pairs (X, E) where E is an edge containing X OR a friend of X but 
not X. Thus the total number of such pairs is 

 

P = ∑   
   i(di – 1) + ∑   

   i = ∑   
   i

2 ≥ 4q
2
/n, 

 
by lemma 2.  
 

Hence by averaging, there is some X such that there at least 

4q
2
/n

2
 pairs (X, E), where E is an edge X or at least one neighbor of 

X. Thus the number of edges joining two foes of X is at most q – 

4q2/n2 = q (1 – 4q/n2). 
 
Example 11 [Generalization of Iran TST 2008] 
In a tournament with n players, each pair of players played exactly 
once and there were no ties. Let j, k be integers less than n such 

that j < 1 + 
  (

       
 

)

(  )
 . Show that there exist sets A and B of k 

players and j players respectively, such that each player in A beat 
each player in B.  
 
Answer 
Count (k + 1)–tuples of the form (P1, P2, …, Pk, L) where L lost to 
each of the players P1, P2, …, Pk. Let T be the total number of such 

tuples. If we fix L, we get (  
 
) tuples containing L, where dL is the 

number of players L lost to. Summing over all n choices of L, T ≥ 
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∑ (  
 
) 

   , where di is the number of losses of the ith player. Hence 

by Jensen’s inequality, T ≥ n × (
∑   

 
     

 
) = n × (       

 
), since 

∑   
 
    = n (n – 1)/2.  

 
Now assume to the contrary that there do not exist such sets A 

and B. Then for any choice of P1, P2, …, Pk, there are at most (j – 1) 

choices for L. Hence T ≤ ( 
 
)(j – 1).  

 

Combining these estimates gives (j – 1) ≥ 
  (

       
 

)

(  )
, which 

contradicts the condition of the problem. Thus, our assumption in 
the second paragraph is false, and such sets A and B indeed exist.   
 
Example 12 [IMO Shortlist 2010 C5] 
n ≥4 players participated in a tennis tournament. Any two players 
have played exactly one game, and there was no tie game. We call 
a company of four players bad if one player was defeated by the 
other three players, and these three players formed a cyclic triple 
(a set (A, B, C) such that A beat B, B beat C and C beat A). Suppose 
that there is no bad company in this tournament. Let wi and li be 
respectively the number of wins and losses of the ith player. Prove 
that 
 

∑         
     

     
 

Answer: 
Note that  

∑         
 
   

3 = ∑    
  

      
   +  ∑   

       
     

     
 
We will show that  
 
(i) ∑   

  
    ≥ ∑   

  
    

 
(ii) ∑     

  
    ≥ ∑   
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From now on, any summation without indices is assumed to be 
from 1 to n. Note that by using lemma 5, we can reduce (i) to the 
“more combinatorial” form 

 

(iii) ∑(  
 
) ≥ ∑(  

 
) 

 
Let us define a “chained quadruple” as a set of 4 players with 

no cyclic triple amongst them. It is easy to see that a chained 
quadruple has  
(a) A person who won against all the other three players, called 

the winner 
(b) A person who lost against all the other three players, called 

the loser 
 

The converse of (a) is not true, since the other three players 
may form a cyclic triple. However, the converse of (b) holds, since 
by assumption there is no bad quadruple. Let Q be the number of 
chained quadruples. If we count Q by picking the loser first, we get 

 

Q = ∑(  
 
) 

 
If we count Q by picking the winner first, noting that the 

converse of (a) doesn’t hold, then 
 

Q ≤ ∑(  
 
) 

 

Hence ∑(  
 
) ≥ ∑(  

 
), which proves (iii) and hence (i).  

 
To prove (ii), subtract ∑     from both sides and divide by 2, 

to write it as: 
 

(iv)  ∑  (
  
 
)   ∑   (

  
 
)     

 
Observe that the LHS of this expression counts pairs of the 

form (quadruple, person) such that the person won exactly one 
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game against the other three in the quadruple. Similarly, the RHS 
counts pairs such that the person won exactly two games.  
 

Now let us look at the types of quadruples we can have. If in a 
certain quadruple the number of games won by each person 
against the other three are a, b, c, d in non-increasing order, we 
say that this quadruple is of type (a, b, c, d). The only types we can 
have are: 
 
(3, 1, 1, 1) – Note that this refers to a quadruple in which one 
person beat the other three, and the other three each won one 
game. This type of quadruple contributes 3 to the LHS of (iv) 
(three people won one game) and 0 to the RHS (no one won two 
games). 
(2, 2, 1, 1) – This contributes 2 to both sides of (iv) 
(3, 2, 1, 0) – This contributes 1 to both sides of (iv) 
(2, 2, 2, 0) – This is not allowed: this is a bad company.  
 

Thus we see that every allowed quadruple contributes at least 
as much to the LHS of (iv) as it does to the RHS. Hence (iv) indeed 
holds, which proves (ii). Hence (i) and (ii) together give us the 
desired result and we are done.  
 
Remark 1: This example shows the true power of “interpreting 
things combinatorially”.  

Remark 2: This problem was the first relatively hard (rated 
above C2 or C3) combinatorics problem I ever solved, and my 
solution was essentially the one above. The thought process 
behind this solution is fairly natural – keep expressing things 
“combinatorially”, let these expressions guide what you choose to 
count, and exploit the fact that there is no “(2, 2, 2, 0)”. Also note 
that it is not essential to prove (i) and (ii) separately: one can 

directly show that ∑(  
 
) + ∑  (

  
 
) ≥ ∑(  

 
) + ∑   (

  
 
)  by 

comparing the contributions to each side by each type of 
quadruple.  



Olympiad Combinatorics  20 

 
 

Miscellaneous Applications 
 
In this section we look at some unexpected applications of 
counting in two ways.  
 
Example 13 [IMO 2001, Problem 4] 
Let n be an odd integer greater than 1 and let c1, c2, …, cn be 
integers. For each permutation a = {a1, a2, …, an} of {1, 2, …, n} , 
define S(a) = ∑   

   ici . Prove that there exist permutations a ≠ b of 
such that n! is a divisor of S(a) – S(b). 
 
Answer: 
Suppose to the contrary that all the S(a)’s are distinct modulo (n!). 
Since there are n! possibilities for a, this means that S(a) takes 
each value in {1, 2, … , n!} modulo n! Consider the sum of all the 
S(a)’s modulo n!. If the sum is S, then  
 

S ≡  1 + 2 + … + n! ≡ n! (n! + 1)/2 mod n! ≡ n!/2 mod n!. 
 
On the other hand, the coefficient of each ci in S is  
 

(n – 1)! (1 + 2 + … + n) = n! (n + 1)/2 ≡ 0 mod n!, 
 

since n is odd and 2 divides n + 1. Thus the coefficient of each ci in 
S is divisible by n!, so S ≡ 0 mod n!. This is a contradiction to the 
result in the first paragraph. ■ 
 
Example 14 [IMO Shortlist 2003, C4] 
Given n real numbers x1, x2, …, xn and n further real numbers y1, y2, 
…, yn. The entries aij (with 1 ≤ i, j ≤ n) of an n × n matrix A are 
defined as follows: 
 

     {
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Further, let B be an n × n matrix whose elements are numbers 
from the set {0, 1} satisfying the following condition: The sum of 
all elements of each row of B equals the sum of all elements of the 
corresponding row of A; the sum of all elements of each column of 
B equals the sum of all elements of the corresponding column of A. 
Show that in this case A = B.  

Answer: 
Let bij denote the entry in the ith row and jth column of B. Define  
 

S = ∑                         

 
On the one hand, 
 

S = ∑   
 
    ∑   

   ij - ∑   
   ij) + ∑   

 
    ∑    

 
    -∑     

 
    = 0, 

 
since ∑   

   ij = ∑   
   ij and ∑    

 
    = ∑    

 
    by the conditions of 

the problem.  
 

On the other hand, note that if xi + yj ≥ 0, then aij = 1 so (aij – bij) 
≥ 0. If xi + yj < 0, then aij = 0 so aij – bij ≤ 0. Thus in both cases, (xi + 
yj) (aij – bij) ≥ 0. Hence each term in the summation is nonnegative, 
but the total sum is 0. Thus each term is 0. Hence whenever (xi + 
yj) ≠ 0, we must have aij = bij. Whenever (xi + yj) = 0, then aij = 1. In 
these cases we must have bij = 1 since the sum of all the entries in 
both matrices is the same. Hence in all cases aij = bij, and we are 
done. ■ 

 
Remark: Where on earth does the expression  
 

S = ∑                         

 
come from?!?! Note that one way of proving that several different 
real numbers are 0 is to show that their squares sum to 0, since no 
square is negative. Thus, a first approach to the problem may be 
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to show that the sum  
 

S’ = ∑          
          

 
is 0. This doesn’t work as it doesn’t utilize information about the 
x’s and y’s. Instead we try the following modification: we seek to 
weight each term           by some other quantity that still 

ensures that each term in the summation is nonnegative, and 
additionally enables us to use the information about the x’s and y’s 
to show that the entire sum is 0.  
 
Example 15 [Indian TST 2010] 
Let A = (ajk) be a 10 x 10 array of positive real numbers such that 
the sum of numbers in each row as well as in each column is 1.  
Show that there exists j < k and l < m such that  

              
 

  
 

 
Answer: 
To make things more intuitive, let us interpret the algebraic 
expression              visually. The centers of the squares 

containing entries    ,    ,     and     form a rectangle with sides 

parallel to grid lines. Define the value of this rectangle to be 
             . Assuming to the contrary that the value of any 

such rectangle is strictly less than 1/50.  
 

Observe that as j, k, l, m vary within the bounds 1 ≤ j < k ≤ 10 

and 1 ≤ l < m ≤ 10, we obtain (  
 
)

2 = 452 such rectangles. Let S be 

the sum of values of these 452 rectangles. By our earlier 

assumption, we obtain S < 45
2
/50 = 40.5. We will now compute S 

in a different way to yield a contradiction.  
 

Note that ajl and akm lie diagonally opposite and ajm and akl lie 
diagonally opposite each other. Thus in each rectangle the 
diagonally opposite pairs of entries are multiplied. Hence, when 
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the sum of values is taken over all rectangles, each entry aij occurs 
in products with every other entry in the array except those in its 
own row or column, since two entries in the same row or column 
can never be diagonally opposite in a rectangle. Therefore, 

 

S = 
 

 
∑               , 

 
where Sij is the sum of all entries except those in the ith row and 
jth column. Note that we have divided by two since if we simply 
sum the terms aijSij, we will be counting each product aijakl twice. 
 

Observe that Sij = (10 – 1 – 1 + aij) = (8 + aij), since the sum of all 
entries is 10 and the sum in each row and column is 1. Note that 
the “ + aij” occurs since when we subtract all elements in row i and 
in column j, aij is subtracted twice. Thus the total sum is  
 

S = 
 

 
∑                = 

 

 
∑                     

= 4∑             +
 

 
 ∑    

 
         

 

Now ∑             = 10 and ∑    
 

         ≥ 
 ∑             

   

2 = 1, using 

Cauchy Schwarz. Thus  
 

S ≥ 4x10 + 0.5 = 40.5, a contradiction. ■ 
 

Remark: The visual interpretation as “diagonally opposite entries 
in rectangles” is by no means essential (and entails a little abuse 
of notation as well, for which I apologize). Simply taking a suitable 
double summation would lead to a significantly shorter but 
equivalent proof. However, I felt the basic intuition behind the 
problem may have been lost in a sea of symbols that would have 
mysteriously spat out the solution, so I chose to write the proof 
this way.    
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Exercises 
 
1. [Due to Grigni and Sipser] 

Consider an m × n table (m rows, n columns), in which each 
cell either contains a 0 or a 1. Suppose the entire table 
contains at least αmn 1s, where 0 < α < 1. Show that at least 
one of the following must be true: 

(i) There exists a row containing at least n√  1s 

(ii) There exist at least m√  rows containing at least αn 1s.  
 
2. [Italy TST 2005, Problem 1] 

A class is attended by n students (n > 3). The day before the 
final exam, each group of three students conspire against 
another student to throw him/her out of the exam. Prove that 
there is a student against whom there are at least 

√            conspirators. 

 
3. [Important Lemmas on incident matrices] (U*) 

Let A be an r × c matrix with row sums Ri (that is, the sum of 
the elements in the ith row is Ri) and column sums Cj. Suppose 
Ri and Cj are positive for all 1 ≤ i ≤ r and 1 ≤ j ≤ c.  
 

(i) Show that ∑
   

  
    = r and ∑

   

  
    = c 

(ii) Suppose Cj ≥ Ri whenever aij = 1. Using (i), show that r ≥ 
c. 

(iii) Suppose instead of the condition in (ii) we were given 
that 0 < Ri < c and 0 < Cj < r for each i and each j, and 
furthermore, Cj ≥ Ri whenever aij = 0. Prove that r ≥ c.  

 
4. [IMO 1987, Problem 1] 

Let p(n, k) denote the number of permutations of {1, 2, …, n} 
with exactly k fixed points. Show that ∑         

    = n! 
 



Chapter 6: Counting in Two Ways  25 

5. [Corradi’s Lemma] (U*) 
Let A1, A2, …, An be r-element subsets of a set X. Suppose that 

Ai ⋂   ≤ k for all 1 ≤ i < j ≤ n. Show that |X| ≥ 
   

        
. 

 
6. [Erdos-Ko-Rado] (U*) 

Let F be a family of k-element subsets of {1, 2, …, n} such that 
every two sets in F intersect in at least one element. Show that 

|F| ≤ (   
   

).  

 
7. [Indian Postal Coaching 2011] 

In a lottery, a person must select six distinct numbers from {1, 
2, …, 36} to put on a ticket. The lottery committee will then 
draw six distinct numbers randomly from {1, 2, …, 36}. Any 
ticket not containing any of these 6 numbers is a winning 
ticket. Show that there exists a set of nine tickets such that at 
least one of them will certainly be a winning ticket, whereas 
this statement is false if 9 is replaced by 8. 

 
8. [Hong Kong 2007] 

In a school there are 2007 girls and 2007 boys. Each student 
joins at most 100 clubs in the school. It is known that any two 
students of opposite genders have joined at least one common 
club. Show that there is a club with at least 11 boys and 11 
girls. 

 
9. [IMO Shortlist 1995, C5]  

At a meeting of 12k people, each person exchanges greetings 
with exactly (3k + 6) others. For any two people, the number 
of people who exchange greetings with both of them is the 
same. How many people are at the meeting? 

 
10. [Based on Furedi’s result on maximal intersecting 

families] 
Let n and k be positive integers with n > 2k – 1, and let F be a 
family of subsets of {1, 2, …, n} such that each set in F contains 
k elements, and every pair of sets in F has nonzero 
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intersection. Suppose further that for any k-element subset X 
of {1, 2, …, n} not in F, there exists a set Y in F such that X ⋂  = 

 . Show that there are at least 
(  )

(   
 )  

  sets in F. 

 
11. [IMO Shortlist 2000, C3] 

Let n > 3 be a fixed positive integer. Given a set S of n points P1, 
P2, …, Pn in the plane such that no three are collinear and no 
four concyclic, let at be the number of circles Pi Pj Pk that 
contain Pt in their interior, and let m(S) = a1 + a2 + … + an. 
Prove that there exists a positive integer f(n) depending only 
on n such that the points of S are the vertices of a convex 
polygon if and only if m(S) = f(n). 

 
12. [Iran 2010] 

There are n students in a school, and each student can take 
any number of classes. There are at least two students in each 
class. Furthermore, if two different classes have two or more 
students in common, then these classes have a different 
number of students. Show that the number of classes is at 

most (n – 1)2. 
 
13. [IMO Shortlist 2004, C4] 

Consider a matrix of size n × n whose entries are real numbers 
of absolute value not exceeding 1. The sum of all entries of the 
matrix is 0. Let n be an even positive integer. Determine the 
least number C such that every such matrix necessarily has a 
row or a column with the sum of its entries not exceeding C in 
absolute value. 

 
14. [Generalization of USAMO 2011, Problem 6] 

Let A1, A2, …, An be sets such that |Ai| = (   
 

) for each 1 ≤ i ≤ n 

and |  ⋂  | = (n – 2) for each 1 ≤ i < j ≤ n. Show that |A1 ∪ A2 

∪ … ∪ An|≥ ( 
 
), and show that it is possible for equality to 

occur.  
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15. [Iran 1999] 
Suppose that C1, C2, …, Cn (n ≥ 2) are circles of radius one in the 
plane such that no two of them are tangent, and the subset of 
the plane formed by the union of these circles is connected. 

 
Let S be the set of points that belong to at least two circles. 
Show that |S| ≥ n. 

 
16. [IMO Shortlist 2000, C5] 

Suppose n rectangles are drawn in the plane. Each rectangle 
has parallel sides and the sides of distinct rectangles lie on 
distinct lines. The rectangles divide the plane into a number of 
regions. For each region R let v(R) be the number of vertices. 
Take the sum of v(R) over all regions which have one or more 
vertices of the rectangles in their boundary. Show that this 
sum is less than 40n. 

 
17. [Indian TST 1998] 

Let X be a set of 2k elements and F a family of subsets of X 
each of cardinality k such that each subset of X of cardinality 
(k – 1) is contained in exactly one member of F. Show that (k + 
1) is a prime. 

 
18. [IMO Shortlist 1988] 

For what values of n does there exist an n × n array of entries -
1, 0 or 1 such that the 2n sums obtained by summing the 
elements of the rows and the columns are all different? 

 
19. [IMO 2001, Problem 3] 

Twenty-one girls and twenty-one boys took part in a 
mathematical competition. It turned out that each contestant 
solved at most six problems, and for each pair of a girl and a 
boy, there was at least one problem that was solved by both 
the girl and the boy. Show that there is a problem that was 
solved by at least three girls and at least three boys. 
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20. [IMO 2005, Problem 6] 
In a mathematical competition 6 problems were posed to the 
contestants. Each pair of problems was solved by more than 
2/5 of the contestants. Nobody solved all 6 problems. Show 
that there were at least 2 contestants who each solved exactly 
5 problems. 

 
21. Let A be a set with n elements, and let A1, A2, …, An be subsets 

of A such that |Ai| ≥ 2 for each 1 ≤ i ≤ n. Suppose that for each 
2-element subset A’ of A, there is a unique i such that A’ is a 
(not necessarily proper) subset of Ai. Show that for all pairs (i, 
j) such that 1 ≤ i < j ≤ n, Ai ∩ Aj  > 0.  

 
22. [USAMO 1999 proposal] 

Let n, k and m be positive integers with n > 2k. Let S be a 
nonempty set of k-element subsets of {1, 2, …, n} such that 
every (k + 1)-element subset of {1, 2, …, n} contains exactly m 
elements of S. Prove that S must contain every k-element 
subset of {1, 2, …, n}.  

 
23. [Based on Zarankeiwicz’ problem] 

At a math contest there were m contestants and n problems. It 
turned out that there were numbers a < m and b < n such that 
there did not exist a set of a contestants and b problems such 
that all a contestants solved all b problems. Define the score of 
each contestant to be the number of problems he solved, and 
let S denote the sum of the scores of all m contestants. Show 

that S ≤ (a – 1)
1/b

nm
1-1/b + (b – 1)m.  

 
24. [IMO Shortlist 2007, C7] 

Let   < 
   √ 

 
 be a positive real number. Prove that there exist 

positive integers n and p >  2
n
 for which one can select 2p 

pairwise distinct subsets S1, S2, …, Sp, T1, T2, …, Tp of the set {1, 
2, …, n} such that Si ⋂   ≠   for all 1 ≤ i, j ≤ p.  
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7. EXTREMAL COMBINATORICS 
	
	
	
Introduction 
	
Extremal	 combinatorics	 is,	 in	 essence,	 the	 combinatorics	 of	
superlatives.	 Problems	 in	 this	 field	 typically	 revolve	 around	
finding	 or	 characterizing	 the	 maximum,	 minimum,	 best,	 worst,	
biggest	or	smallest	object,	number	or	set	satisfying	a	certain	set	of	
constraints.	This	chapter	and	the	next	two	will	take	us	to	the	heart	
of	 combinatorics,	 and	 will	 represent	 a	 deep	 dive	 into	 the	
intersection	 of	 Olympiad	 mathematics,	 classical	 combinatorics,	
and	 modern	 research	 in	 the	 field.	 Extremal	 combinatorics	 is	 an	
actively	 researched	 area,	 with	 deep	 connections	 to	 fundamental	
problems	 in	 theoretical	 computer	 science,	 operations	 research	
and	statistical	learning	theory.	Entire	books	have	been	devoted	to	
the	 subject	 (and	 rightfully	 so),	 so	 we	 will	 not	 be	 able	 to	 do	
complete	 justice	 to	 this	 field	 in	 a	 single	 chapter.	 However,	 the	
powerful	arsenal	of	tools	we	have	built	up	in	the	first	six	chapters	
has	 already	 done	 much	 of	 our	 work	 for	 us:	 indeed,	 pretty	 much	
every	technique	we	have	seen	so	far	has	a	role	to	play	in	extremal	
combinatorics.	This	chapter,	 then,	will	develop	specialized,	niche	
methods	for	extremal	combinatorics,	as	well	as	demonstrate	how	
to	 effectively	 exploit	 combinatorial	 structure	 to	 apply	 classical	
techniques	 like	 induction	 effectively	 in	 the	 context	 of	 extremal	
problems.			
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Injections and Bijections 
	
One	 simple	 way	 to	 compare	 the	 cardinalities	 of	 sets	 is	 to	 find	
mappings	between	them.	For	instance,	suppose	I	have	two	sets	S	
and	T,	and	a	function	f	mapping	elements	from	S	to	elements	of	T.	
If	 f	 is	 injective	 –	 that	 is,	 f(x)	 =	 f(y)	 if	 and	 only	 if	 x	 =	 y	 –	 then	 it	
follows	that	T	must	have	at least	as	many	elements	as	S.	Moreover,	
if	 f	 is	 also	surjective	 -	 that	 is,	all	elements	 in	T	are	mapped	to	by	
some	element	in	S	-	then	it	follows	that	|S|	=	|T|.	A	function	that	is	
injective	and	surjective	is	called	a	bijection.		
	

The	 basic	 idea	 in	 this	 section	 will	 be	 to	 construct	 functions	
between	carefully	chosen	sets.	The	choice	of	these	sets	will	enable	
us	 to	 exploit	 information	 given	 in	 the	 problem	 in	 order	 to	
conclude	that	our	function	is	injective	or	bijective.	This	conclusion	
will	 give	 us	 quantitative	 results	 relating	 the	 sizes	 of	 the	 sets,	
which	will	hopefully	reduce	to	the	result	we	are	trying	to	prove.		
	
Example 1 [APMO 2008] 
Students	in	a	class	form	groups.	Each	group	contains	exactly	three	
members	and	any	two	distinct	groups	have	at	most	one	member	
in	common.	Prove	 that	 if	 there	are	46	students	 in	 the	class,	 then	
there	 exists	 a	 set	 of	 at	 least	 10	 students	 in	 which	 no	 group	 is	
properly	contained.		
	
Answer: 
Let	T	be	the	set	of	46	students.	Take	the	largest	set	S	of	students	
such	 that	 no	 group	 is	 properly	 contained	 in	 S.	 Now	 take	 any	
student	 X	 not	 in	 S.	 By	 the	 maximality	 of	 S,	 there	 exists	 a	 group	
containing	X	and	two	students	of	S	(otherwise	we	could	add	X	to	S,	
contradicting	maximality).	This	suggests	the	following	mapping:	if	
(A,	 B,	 X)	 is	 this	 group,	 define	 a	 mapping	 from	 T	 \	 S	 to	 pairs	 in	 S	
such	that	f(X)	=	(A,	B).	This	mapping	is	 injective	because	if	 f(Y)	=	
f(Z)	for	some	Y	≠	Z,	then	both	(Y,	C,	D)	and	(Z,	C,	D)	are	groups	for	
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some	 (C,	 D),	 contradicting	 the	 fact	 that	 any	 two	 groups	 have	 at	

most	one	common	student.	The	injectivity	implies	| T	\	S	|	≤	�|�|
�
�,	

or	(46-|S|)	≤	�|�|
�
�.	Simplifying	gives	|S|	≥	10.	■	

	
Example 2 [IMO Shortlist 1988] 
Let	 N	 =	 {1,	 2,	 …,	 n},	 with	 n	 ≥	 2.	 A	 collection	 F	 =	 {A1,	 A2,	 …,	 At}	 of	
subsets	of	N	is	said	to	be	separating,	if	for	every	pair	{x,	y}	there	is	
a	set	Ai	є	F	so	that	Ai	⋂ {�,�}	contains	just	one	element.	F	is	said	to	
be	covering,	if	every	element	of	N	is	contained	in	at	least	one	set	Ai	
є	F.	What	is	the	smallest	value	of	t	in	terms	of	n	so	that	there	is	a	
family	 F	 =	 {A1,	 A2,	 …,	 At}	 which	 is	 simultaneously	separating	 and	
covering?	
	
Answer: 
Associate	each	element	m	of	N	with	a	binary	string	x1x2…xt,	where	
xi	=	1	if	m	is	in	set	Ai	and	0	if	m	is	not	in	Ai.	The	condition	that	F	is	
separating	 simply	 means	 that	 distinct	 elements	 of	 N	 will	 be	
mapped	to	distinct	binary	strings.	The	condition	that	F	is	covering	
means	that	no	element	of	N	will	be	mapped	to	(0,	0,	…,	0).		
	

Thus	 we	 have	 n	 distinct	 binary	 strings	 of	 length	 t,	 none	 of	

which	 is	 the	 all	 0	string.	This	 implies	 n	 ≤	 2t–1.	 Conversely,	 if	 we	

indeed	have	n	≤	2
t
–1,	then	a	construction	is	easy	by	reversing	the	

above	 process:	 first	 label	 each	 element	 with	 a	 different	 binary	

string	and	then	place	it	into	the	appropriate	sets.	Thus	n	≤	2
t
–1	is	

necessary	and	sufficient,	so	t	=	⌊log��⌋+1	is	the	answer.	■	
	
Remark:	This	idea	of	associating	elements	with	binary	strings	 is	
more	 than	 just	 a	 useful	 trick	 on	 Olympiads	 –	 in	 fact,	 it	 plays	 an	
important	 role	 in	 a	 whole	 branch	 of	 combinatorics	 known	 as	
algebraic	combinatorics,	where	these	binary	“strings”	are	actually	
treated	 as	 vectors.	 Algebraic	 manipulations	 of	 these	 vectors	
(which	often	take	place	mod	2	or	in	some	other	field)	can	produce	
surprising	combinatorial	results.		
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Example 3 [IMO 2006-2] 
A	 diagonal	 of	 a	 regular	 2006-gon	 is	 called	 odd	 if	 its	 endpoints	
divide	 the	 boundary	 into	 two	 parts,	 each	 composed	 of	 an	 odd	
number	of	sides.	Sides	of	 the	2006-gon	are	also	regarded	as	 odd	
diagonals.	Suppose	the	2006-gon	has	been	dissected	into	triangles	
by	 2003	 nonintersecting	 diagonals.	 Define	 a	 good triangle	 as	 an	
isosceles	triangles	with	two	odd	sides.	Find	the	maximum	number	
of	good	triangles.	
	
Answer: 
Note	 a	 good	 triangle	 has	 two	 odd	 sides	 and	 an	 even	 side;	 hence	
the	pair	of	equal	sides	must	be	the	odd	sides.		
	

Experimentation	 with	 2006	 replaced	 by	 small	 even	 numbers	
hints	 that	 the	 general	 answer	 for	 a	 regular	 2n-gon	 is	 n.	 This	 is	
attainable	by	drawing	all	diagonals	of	the	form	A2kA2k+2,	where	A1,	
A2,	 …,	 A2n	 are	 the	 vertices	 of	 the	 2n-gon.	 Now	 we	 show	 this	 is	
indeed	the	maximum.	
	

Consider	 a	 2n-gon	 P.	 To	 simplify	 notation,	 draw	 the	
circumcircle	 of	 P.	 For	 a	 side	 AB	 in	 a	 triangle	 ABC,	 “arc	 AB”	 will	
denote	 the	 arc	 of	 the	 circumcircle	 not	 containing	 C.	 Arc	 AB	 is	 a	
“good	arc”	if	AB	is	odd	in	a	good	triangle	ABC.		
	

Our	 basic	 idea	 is	 to	 construct	 a	 mapping	 f	 from	 sides	 of	 P	 to	
good	 triangles	 such	 that	 each	 good	 triangle	 is	 mapped	 to	 by	 at	
least	 2	 sides,	 and	 no	 side	 is	 mapped	 to	 more	 than	 one	 good	
triangle.	This	will	immediately	imply	the	result.		
	

Consider	 a	 side	 XY	 of	 P.	 Let	 AB	 denote	 the	 smallest	 good	 arc	
containing	 vertices	 X	 and	 Y,	 if	 it	 exists.	 (Note	 that	 {A,	 B}	may	 be	
equal	to	{X,	Y}.)	Let	C	be	the	third	vertex	of	the	good	triangle	ABC.	
Then	we	will	map	XY	to	ABC:	f(XY)	=	ABC.		
	

All	we	need	to	show	is	that	each	good	triangle	is	mapped	to	by	
at	least	two	sides.	In	fact,	for	a	good	triangle	DEF,	with	DE	and	EF	
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odd,	we	will	show	that	at	 least	one	side	of	P with	vertices	 in	arc	
DE	is	mapped	to	triangle	DEF;	the	same	argument	will	hold	for	EF	
and	we	will	hence	have	two	sides	mapped	to	DEF.	
	

Suppose	to	the	contrary	that	no	side	with	vertices	in	arc	DE	is	
mapped	to	DEF.	Consider	some	side	RS	of	P with	vertices	R	and	S	
in	arc	DE.	Let	f(RS)	=	D’E’F’	for	some	D’,	E’,	F’	lying	on	arc	DE	with	
D’E’	 and	 E’F’	 the	 odd	 sides	 of	 good	 triangle	 D’E’F’.	 Then	 by	
symmetry,	 the	 side	 of	 P that	 is	 the	 reflection	 of	 RS	 across	 the	
perpendicular	bisector	of	D’F’	will	also	be	mapped	to	D’E’F’.		
	

In	this	manner,	sides	in	arc	DE	can	be	paired	up,	with	each	pair	
of	sides	being	mapped	to	the	same	triangle.	But	there	are	an	odd	
number	 of	 sides	 in	 arc	 DE,	 so	 they	 cannot	 all	 be	 paired	 up.	
Contradiction.	■ 
	

	
	

The Alternating Chains Technique 
(Yes, I made that name up) 

	
The	basic	idea	that	we	will	use	in	some	form	or	the	other	for	the	
next	 few	 problems	 is	 a	 simple	 consequence	 of	 the	 pigeonhole	
principle.	 Suppose	 you	 have	 n	 points	 on	 a	 line,	 and	 you	 are	
allowed	to	mark	some	of	them	such	that	no	consecutive	points	are	
marked.	 Then	 the	 maximum	 number	 of	 points	 you	 can	 mark	 is	
⌈�/2⌉,	and	this	can	be	achieved	by	marking	alternate	points.	If	the	
n	 points	 were	 on	 a	 circle	 and	 not	 a	 line	 segment,	 then	 the	
maximum	 would	 be	 ⌊�/2⌋.	 These	 obvious	 statements	 can	 be	
cleverly	applied	in	several	combinatorial	settings.		
	
Example 4 [IMO Shortlist 1990] 
Let	n	≥	3	and	consider	a	set	E	of	2n-1	distinct	points	on	a	circle.	
Suppose	that	exactly	k	of	these	points	are	to	be	colored	red.	Such	a	
coloring	is	good	if	there	is	at	least	one	pair	of	red	points	such	that	
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the	 interior	 of	 one	 of	 the	 arcs	 between	 them	 contains	 exactly	 n	
points	 from	 E.	 Find	 the	 smallest	 value	 of	 k	 so	 that	 every	 such	
coloring	of	k	points	of	E	is	good.	
	
Answer: 
Let	 j	 be	 maximum	 number	 of	 colored	 points	 a	 bad	 coloring	 can	
have.	Then	k	=	j+1,	so	it	suffices	to	find	j.		

	
Let	the	points	be	A1,	A2,	…,	A2n-1.	Join	vertices	Ai	and	Ai+n+1	by	an	

edge	 for	 each	 i	 (indices	 modulo	 2n-1).	 This	 decomposes	 E	 into	
disjoint	 cycles.	 The	 coloring	 is	 bad	 if	 and	 only	 if	 no	 two	 red	
vertices	are	joined	by	an	edge.	In	other	words,	no	two	consecutive	
vertices	 in	 the	 cycle	 are	 both	 red.	 How	 many	 cycles	 are	 there?	
Using	 elementary	 number	 theory,	 it	 is	 easy	 to	 show	 that	 the	
number	of	cycles	is	equal	to	gcd	(n+1,	2n-1).		

	
Since	2n-1	=	2(n+1)–3,	gcd (n+1,	2n-1)	=	3	if	n+1	is	divisible	by	

3,	and	gcd (n+1,	2n-1)	=	1	otherwise.	If	gcd (n+1,	2n-1)	=	1,	we	get	
only	 one	 cycle	 containing	 all	 2n-1	 points.	 Then	 j	 =	 n-1	 by	 our	
earlier	discussion.	Hence	k	=	j+1	=	n.	

	
Figure 7.1. 

1	

2	

3	

4	5	

6	

7	
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Figure 7.2. 

	

If	gcd(n+1,	2n-1)	=	3,	then	we	get	3	cycles,	each	containing	
����

�
	

vertices.	Each	cycle	then	can	have	at	most	⌊(2� − 1)/6⌋	red	points	
in	a	bad	coloring.	Thus	 at	most	3⌊(2� − 1)/6⌋	points	 in	 total	can	
be	 colored	 in	 a	 bad	 coloring.	 Hence	 k	 =	 3⌊(2� − 1)/6⌋+1	 if	 3	
divides	n+1,	and	k	=	n	otherwise.	■	
	
Example 5 [USAMO 2008, Problem 3] 
Let	n	be	a	positive	integer.	Denote	by	Sn	the	set	of	points	(x,	y)	with	
integer	coordinates	such	that	|x|	+	|y+½|	≤	n.	A	path	is	a	sequence	
of	distinct	points	(x1,	y1),	(x2,	y2),	…,	(xk,	yk)	in	Sn	such	that,	for	i	=	1,	
2,	…,	k-1,	the	distance	between	(xi,	yi)	and	(xi+1,	yi+1)	is	1	(in	other	
words,	the	points	(xi,	yi)	and	(xi+1,	yi+1)	are	neighbors	in	the	lattice	
of	 points	 with	 integer	 coordinates).	 Prove	 that	 the	 points	 in	 Sn	
cannot	 be	 partitioned	 into	 fewer	 than	 n	 paths	 (a	 partition	 of	 Sn	
into	m	paths	is	a	set	P	of	m	nonempty	paths	such	that	each	point	in	
Sn	appears	in	exactly	one	of	the	m	paths	in	P).	
	
Answer: 
Color	 the	 points	 of	 each	 row	 of	 Sn	 alternately	 red	 and	 black,	
starting	 and	 ending	 with	 red.	 Any	 two	 neighboring	 points	 are	 of	
opposite	color,	unless	they	are	from	the	middle	two	rows.		

1 

2 

3 

4 

5 6 

7 

8 

9 
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Consider	a	partition	of	Sn	into	m	paths,	for	some	m.		For	each	of	

the	 m	 paths,	 split	 the	 path	 into	 two	 paths	 wherever	 there	 are	
consecutive	 red	 points.	Now	 no	 path	has	consecutive	 red	 points.	
Further,	 since	 there	 are	 n	 pairs	 of	 consecutive	 red	 points	 in	 Sn	
(from	the	middle	two	rows),	we	have	split	paths	at	most	n	times.	
Thus	 we	 now	 have	 at	 most	 m+n	 paths	 (each	 split	 increases	 the	
number	of	paths	by	one).		

	
Figure 7.3. Example for n = 3 

	
Now,	there	are	2n	more	red	points	than	black	points	in	Sn,	but	

each	of	 the	m+n	paths	contains	at	most	one	more	red	point	than	
black	point	(since	no	path	contains	consecutive	red	points).	Thus	
we	obtain	m+n	≥	2n,	or	m	≥	n,	proving	the	result.	■	
	
In	the	next	example,	in	order	to	use	the	chain	decomposition	idea	
we	 need	 some	 starting	 point,	 that	 is,	 some	 information	 or	
assumption	that	 lends	enough	structure	to	the	problem	for	us	to	
exploit.	To	this	end,	we	use	the	extremal	principal	by	considering	
the	smallest	element	in	a	certain	set.		
	
Example 6 [USAMO 2009-2] 
Let	n	be	a	positive	integer.	Determine	the	size	of	the	largest	subset	
S	of	N	=	{-n,	-n+1,	…,	n-1,	n}	which	does	not	contain	three	elements	
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(a,	b,	c)	(not	necessarily	distinct)	satisfying	a +	b +	c	=	0.	
	
Answer: 
Obviously	0	is	not	in	S	since	0+0+0	=	0.	We	claim	the	answer	is	n	if	
n	 is	 even	 and	 (n+1)	 if	 n	 is	 odd.	 These	 bounds	 can	 clearly	 be	
achieved	 by	 taking	 all	 the	 odd	 numbers	 in	 N, since	 the	 sum	 of	
three	odd	numbers	can	never	be	0.	To	show	this	is	the	maximum,	
let	j	be	the	element	of	smallest	absolute	value	in	S	(if	both	j	and	–j	
are	present,	consider	the	positive	one).	Assume	WLOG	that	 j	>	0,	
and	let	T	denote	the	set	of	elements	with	absolute	value	at	least	j.	
Note	that	all	elements	of	S	are	in	T.		
	
Case 1:	 (-j)	 is	 not	 in	 S.	 Consider	 the	 pairs	 (j,	 –2j),	 (j+1,	 –(2j+1)),	
(j+2,	 –(2j+2)),	 ….,	 (n–j,	 –n).	 In	 each	of	 these	 pairs	 the	sum	 of	 the	
numbers	 is	 (-j),	 so	 at	 most	 one	 of	 the	 two	 elements	 is	 in	 S	
(otherwise	the	sum	of	the	two	elements	plus	j	would	be	0).	There	
are	 exactly	 (n-2j+1)	 pairs,	 so	 at	 most	 (n-2j+1)	 of	 the	 paired	
numbers	are	in	S.		
	
Furthermore,	there	are	exactly	2j-1	unpaired	numbers	in	T	\	{-j}:		j	
positive	 unpaired	 numbers	 (namely	 n,	 n–1,	 …,	 n–j+1),	 and	 (j–1)		
negative	 unpaired	 numbers	 (namely	 –(j+1),	 –(j+2),	 …,	 –(2j–1)).	
Thus	the	maximum	number	of	elements	in	S	is	(2j–1)	+	(n–2j+1)	=	
n.		
	
Case 2:	(–j)	is	also	in	S.	Now	we	use	the	chain	decomposition	idea.	
If	a	and	b	are	elements	in	T,	then	a	is	joined	to	b	by	an	edge	if	and	
only	 if	 a+b	 =	 j	 or	 a+b	 =	 –j.	 This	 ensures	 that	 no	 two	 elements	
joined	by	an	edge	can	both	be	in	S.	Each	element	x	in	T	is	joined	to	
at	least	one	and	at	most	two	other	elements	of	T	((j–x)	and	(–j–x)).	
Hence	 the	 elements	 of	 T	 have	 been	 partitioned	 into	 disjoint	
chains.		
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Figure 7.4: n = 13, j = 3. There are 6 chains, of which 2 are shown. 

	
	

Now	 the	 rest	 is	 just	 counting.	 There	 are	 exactly	 2j	 chains,	
namely	 the	 chains	 starting	 with	 ±j,	 ±(j+1),	 …,	 ±(2j-1).	 Let	 the	
lengths	of	these	chains	be	l1,	l2,	…,	l2j.	From	a	chain	of	 length	li,	at	

most	�
��

�
�	elements	can	be	in	S.	Thus	the	total	number	of	elements	

we	can	take	is	at	most		
	

∑ �
��

�
�

��
��� 	≤	∑

����

�

��
��� 	=	j	+	

∑ ��
��
���

�
	=	j	+	

����(���)

�
	=	n+1.	

	

Here	we	used	∑ ��
��
��� 	=	2n	–	2(j-1)	since	both	sides	are	equal	to	

the	number	of	elements	of	absolute	value	at	least	j.		
	

Now	we	are	done	if	n	is	odd.	If	n	is	even,	we	need	to	tighten	our	

bound	to	n.	For	this	we	note	that	the	inequality	∑ �
��

�
�

��
��� 	≤	∑

����

�

��
��� 	

is	strict	 if	 there	 is	a	chain	of	even	length,	since	�
�

�
�	 is	strictly	 less	

than	
���

�
	 for	 even	 x.	 It	 now	 suffices	 to	 prove	 the	 existence	 of	 a	

chain	of	even	length	if	n	is	even;	this	is	pretty	simple	and	is	left	to	
the	reader.	■	
	
	
	

9	 10	 11	 12	 13	

-9	 -10	 -11	 -12	 -13	

1	 2	 3	 4	 5	 6	 7	 8	

-1	 -2	 -3	 -4	 -5	 -6	 -7	 -8	
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Two problems on boards 
	
We	now	look	at	two	problems	based	on	n×n	boards	that	initially	
look	 quite	 similar	 but	 are	 actually	 very	 different.	 Through	 these	
two	 problems	 we	 will	 demonstrate	 two	 important	 ways	 of	
thinking	about	and	exploiting	the	structure	of	boards.	
	
The	 following	 example	 uses	 the	 idea	 of	 examining	 individual	
objects’	contributions	toward	some	total.	We	saw	a	similar	idea	in	
examples	5	and	6	from	chapter	3.		
	
Example 7 [USAMO 1999-1] 
Some	 checkers	 placed	 on	 an	 n×n	 checkerboard	 satisfy	 the	
following	conditions:		
	
a) Every	 square	 that	 does	 not	 contain	 a	 checker	 shares	 a	 side	

with	one	that	does;		
b) Given	 any	 pair	 of	 squares	 that	 contain	 checkers,	 there	 is	 a	

sequence	of	squares	containing	checkers,	starting	and	ending	
with	 the	 given	 squares,	 such	 that	 every	 two	 consecutive	
squares	of	the	sequence	share	a	side.		

	

Prove	that	at	least	
����

�
	checkers	have	been	placed	on	the	board.	

	
Answer: 
Suppose	 we	 have	 an	 empty	 board,	 and	 we	 want	 to	 create	 an	
arrangement	 of	 k	 checkers	 satisfying	 (a)	 and	 (b).	 Call	 a	 square	
good	 if	 it	 contains	 a	 checker	 or	 shares	 a	 side	 with	 a	 square	
containing	 a	 checker.	 By	 (a),	 every	 square	 must	 eventually	 be	
good.	Let	us	place	the	checkers	on	the	board	as	follows:	place	one	
checker	 on	 the	 board	 to	 start,	 and	 then	 in	 each	 step	 place	 one	
checker	 adjacent	 to	 one	 that	 has	 already	 been	 placed.	 Since	 any	
arrangement	 of	 checkers	 that	 satisfies	 the	 problem	 must	 be	
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connected	 by	 (b),	 we	 can	 form	 any	 arrangement	 of	 checkers	 in	
this	manner.	
	

In	the	first	step	at	most	5	squares	become	good	(the	square	we	
placed	the	checker	on	and	its	neighbors).	In	each	subsequent	step,	
at	 most	 3	 squares	 that	 are	 not	 already	 good	 become	 good:	 the	
square	 we	 just	 put	 a	 checker	 on	 and	 the	 square	 next	 to	 it	 are	
already	good,	 leaving	3	neighbors	that	could	become	good.	Thus,	
at	the	end	of	placing	k	checkers,	at	most	5+3(k-2)	=	3k+2	squares	

are	good.	But	we	know	all	n
2
	squares	are	good	at	the	end,	so	n

2
	≤	

3k+2,	proving	the	result.	■	
	
Remark 1: Initially	 the	problem	 appears	 difficult	due	 to	 the	 fact	
that	 a	 given	 square	 may	 be	 good due	 to	 more	 than	 one	 checker.	
This	makes	it	hard	to	calculate	“individual	contributions”,	that	is,	
the	number	of	squares	that	are	good	because	of	a	certain	checker.	
We	 get	 around	 this	 problem	 by	 imagining	 the	 k	 checkers	 being	
added sequentially,	rather	than	simply	“being	there.”	This	allowed	
us	to	measure	the	“true	contribution”	of	a	checker	by	not	counting	
its	 neighbors	 that	 are	 already	 good.	 This	 was	 just	 a	 simple	
example,	 but	 the	 ideas	 of	 introducing	 an	 element	 of	 time	 and	
adopting	 a	 dynamic	 view	 of	 a	 static	 problem	 have	 powerful	
applications	in	combinatorics	and	algorithms.		
	
Remark 2:	 The	 only	 property	 of	 the	 board	 we	 are	 using	 is	 that	
any	 square	 has	 at	 most	 4	 neighboring	 squares.	 Thus	 we	 can	
actually	 think	of	 the	board	as	a	graph	with	vertices	representing	
squares	 and	 two	 vertices	 being	 connected	 if	 and	 only	 if	 they	
correspond	to	adjacent	squares	on	the	board.	This	 interpretation	
of	 problems	 involving	 n×n	 boards	 is	 often	 very	 useful,	 and	 we	
have	 already	 used	 this	 idea	 in	 example	 3	 of	 chapter 3.	 With	 the	
present	 problem,	 we	 can	 easily	 generalize	 to	 graphs	 with	
maximum	degree	Δ.			
	
At	first	glance,	the	next	example	looks	very	similar	to	the	previous	
one.	 However,	 it	 is	 significantly	 more	 difficult,	 and	 the	 solution	
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uses	 a	 clever	 coloring.	 Coloring	 is	 another	 extremely	 important	
way	of	exploiting	the	structure	of	boards.		
	
Example 8 [IMO 1999, Problem 3] 
Let	n	be	an	even	positive	integer.	We	say	that	two	different	cells	of	
an	n×n	board	are	neighboring	if	 they	have	a	common	side.	Find	
the	 minimal	 number	 of	 cells	 on	 the	 n×n	 board	 that	 must	 be	
marked	 so	 that	 any	 cell	 (marked	 or	 not	 marked)	 has	 a	 marked	
neighboring	cell.	
	
Answer: 
Let	n	=	2k.	Color	the	board	black	and	white	in	layers	as	shown	in	
figure.	 Note	 that	 any	 square	 (black	 or	 white)	 neighbors	 exactly	
two	 black	 squares.	 Hence,	 since	 the	 number	 of	 black	 squares	 is	
2k(k+1),	we	must	mark	at	least	k(k+1)	squares.	On	the	other	hand,	
this	bound	can	be	achieved	by	marking	alternate	black	squares	in	
each	 layer,	 in	 such	 a	 way	 that	 each	 white	 cell	 neighbors	 exactly	
one	marked	black	square.	■ 

	
Figure 7.5: Example for n = 6. 
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The Classification Method 
 
Suppose	 we	 have	 a	 set	 S	 of	 objects,	 and	 we	 want	 to	 show	 that	
there	exists	a	large	subset	S’	of	these	objects	such	that	S’	satisfies	a	
particular	condition.	The	idea	behind	the	classification	method	is	
to	partition	(split)	S	into	sets	S1,	S2,	…,	Sk	such	that	S1 ∪ S2 ∪… ∪ Sk	
=	S,	and	furthermore,	each	of	the	sets	S1,	S2,	…,	Sk	satisfies	the	given	
condition.	Then,	by	the	pigeonhole	principle,	at	least	one	of	these	
sets	will	have	size	at	least	|S|/k,	thereby	proving	the	existence	of	a	
subset	of	S	of	size	at	least	|S|/k	satisfying	the	given	condition.		
	
Example 9 [IMO Shortlist 2001, C6] 
For	a	positive	integer	n	define	a	sequence	of	zeros	and	ones	to	be	
balanced	 if	 it	 contains	 n	 zeros	 and	 n	 ones.	 Two	 balanced	
sequences	 a	 and	 b	 are	 neighbors	 if	 you	 can	 move	 one	 of	 the	 2n	
symbols	 of	 a	 to	 another	 position	 to	 form	 b.	 For	 instance,	 when	
n	=	4,	 the	 balanced	 sequences	 01101001	 and	 00110101	 are	
neighbors	because	the	third	(or	fourth)	zero	in	the	first	sequence	
can	 be	 moved	 to	 the	 first	 or	 second	 position	 to	 form	 the	 second	

sequence.	Prove	that	there	is	a	set	S	of	at	most	
�

���
���

�
�	balanced	

sequences	 such	 that	 every	 balanced	 sequence	 is	 equal	 to	 or	 is	 a	
neighbor	of	at	least	one	sequence	in	S.	
	
Answer: 
Call	such	a	set	S	a	dominating set.	Our	idea	is	to	partition	the	set	of	

���
�
�	 balanced	 sequences	 into	 (n+1)	 classes,	 so	 that	 the	 set	 of	

sequences	 in	 any	 class	 form	 a	 dominating	 set.	 Then	 we	 will	 be	
done	 by	 the	 pigeonhole	 principle,	 since	 some	 class	 will	 have	 at	

most	
�

���
���

�
�	balanced	sequences.		

	
To	construct	such	a	partition,	for	any	balanced	sequence	A	let	

f(A)	denote	the	sum	of	the	positions	of	the	ones	in	A	(mod	(n+1)).	
For	example,	f(100101)	≡	1+4+6	(mod	4)	≡	3	mod	4.	A	sequence	
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is	 in	 class	 i	 if	 and	 only	 if	 f(A)	 ≡	 i	 mod	 (n+1).	 It	 just	 remains	 to	
show	that	every	class	 is	 indeed	a	dominating	set,	 that	 is,	 for	any	
class	Ci	and	any	balanced	sequence	A	not	in	Ci,	A	has	a	neighbor	in	
Ci.		
	

This	isn’t	difficult:	if	A	begins	with	a	one,	observe	that	moving	
this	one	immediately	to	the	right	of	the	kth	zero	gives	a	sequence	
B	 satisfying	 f(B)	 ≡	 f(A)	 +	 k	 mod	 (n+1).	 Hence	 simply	 choose	
k	≡	I	-	f(A)	 mod	 (n+1),	 and	 then	 by	 shifting	 the	 first	 one	 to	 the	
right	 of	 the	 kth	 zero	 we	 end	 up	 with	 a	 sequence	 B	 satisfying	
f(B)	≡	i	mod	(n+1).	Hence	B	is	a	sequence	in	Ci.	The	case	when	A	
begins	 with	 a	 zero	 is	 similar.	 Thus	 each	 class	 is	 indeed	 a	
dominating	set	and	we	are	done	by	the	first	paragraph.	■	
	
Remark:	 It	 is	 worth	 mentioning	 that	 the	 reason	 for	 naming	 S	 a	
“dominating	 set”	 is	 that	 this	 problem	 has	 a	 very	 nice	 graph	
theoretic	 interpretation.	 Dominating	 sets	 are	 graph	 structures	
that	we	will	encounter	in	chapters	8	and	9.		

	
	

Two Graph Theory Problems 
 
Graphs	 are	 a	 rich	 source	 of	 extremal	 problems.	 We	 present	 two	
here,	and	you	will	see	several	more	in	the	next	chapter.	The	main	
thing	 to	 keep	 in	 mind	 when	 dealing	 with	 such	 problems	 is	
dependencies	 –	 how	 are	 all	 the	 quantities	 in	 question	 related?	
How	does	the	size	of	one	 impact	the	size	of	another?	Indeed,	 the	
entire	 purpose	 of	 a	 graph	 is	 to	 model	 connections	 and	
dependencies,	so	the	structure	of	a	graph	invariably	proves	useful	
for	answering	these	types	of	extremal	questions.		
	
Example 10 [Swell coloring] 
Let	Kn	denote	the	complete	graph	on	n	vertices,	that	is,	the	graph	
with	n	vertices	such	that	every	pair	of	vertices	is	connected	by	an	
edge.	A	swell coloring	of	Kn	is	an	assignment	of	a	color	to	each	of	
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the	 edges	 such	 that	 the	 edges	 of	 any	 triangle	 are	 either	 all	 of	
distinct	colors	or	all	the	same	color.	Further,	more	than	one	color	
must	be	used	in	total	(otherwise	trivially	if	all	edges	are	the	same	
color	we	would	have	a	swell	coloring).	Show	that	if	Kn	can	be	swell	

colored	with	k	colors,	then	k	≥	√�	+	1.		
	
Answer: 
Let	 N(x,	 c)	 denote	 the	 number	 of	 edges	 of	 color	 c	 incident	 to	 a	
vertex	x.	Fix	x0,	c0	such	that	N(x0,	c0)	is	maximum	and	denote	this	
maximum	value	by	N.	There	are	n–1	edges	incident	to	x0,	colored	
in	 at	 most	 k	 colors,	 with	 no	 color	 appearing	 more	 than	 N	 times.	
Hence	Nk	≥	n–1.		
	

Now	consider	vertex	y	such	that	edge	yx0	is	not	of	color	c0.	Also	
let	x1,	x2,	…,	xN	be	the	N	vertices	joined	to	x0	by	color	c0.	Note	that	
for	any	i	and	j	in	{1,	2,	…,	N},	xixj	is	of	color	c0	since	x0xi	and	x0xj	are	
of	color	c0.		
	

Suppose	yxi	is	of	color	c0	for	some	i in	{1,	2,	…,	N}.	Then	triangle	
yxix0	contradicts	the	swell	coloring	condition,	since	two	sides	(yxi	
and	 xxi)	 are	 the	 same	 color	 c0	 but	 the	 third	 side	 isn’t.	 Hence	 the	
color	of	yxi	is	not	c0	for	i	=1,	2,	…,	N.		
	

Now	suppose	yxi	and	yxj	are	the	same	color	for	some	distinct	i	
and	j	in	{0,	1,	2,	…,	N}.	Then	xixj	also	must	be	this	color.	But	xixj	is	of	
color	c0,	which	implies	yxi		and	yxj	are	also	of	color	c0,	contradicting	
our	earlier	observation.		
	

It	 follows	 that	 yx0,	 yx1,	 yx2,	 …,	 yxN	 are	 all	 different	 colors,	 and	
none	of	them	is	c0.	This	implies	that	there	are	at	least	N+2	distinct	
colors,	so	k	≥	N+2.	Since	we	already	showed	Nk	≥	n–1,	 it	 follows	
that	k(k	–	2)	≥	n–1,	from	which	the	desired	bound	follows.	■ 
 
Remark: Basically, one can think about the above proof as follows: 
either there is a big clique of one color, or there isn’t. If there isn’t, 
then we need many colors to avoid big monochromatic cliques. If 
there is, then anything outside this clique needs many different colors 
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to be connected to the clique. 
 
Example 11 [Belarus 2001] 
Given	 n	 people,	 any	 two	 are	 either	 friends	 or	 enemies,	 and	
friendship	 and	 enmity	 are	 mutual.	 I	 want	 to	 distribute	 hats	 to	
them,	in	such	a	way	that	any	two	friends	possess	a	hat	of	the	same	
color	 but	 no	 two	 enemies	 possess	 a	 hat	 of	 the	 same	 color.	 Each	
person	can	receive	multiple	hats.	What	is	the	minimum	number	of	
colors	required	to	always	guarantee	that	I	can	do	this?	
	
Answer: 
Set	up	a	graph	in	the	usual	way,	with	vertices	standing	for	people	
and	edges	between	two	people	if	and	only	if	they	are	friends.	Note	
that	if	we	have	a	complete	bipartite	graph	with	⌊�/2⌋	vertices	on	
one	 side	 and	 ⌈�/2⌉	 vertices	 on	 the	 other,	 then	 we	 need	 at	 least	
⌊�/2⌋⌈�/2⌉	colors.	 This	 is	 because	 we	 need	 one	 for	 each	 pair	 of	
friends	 and	 no	 color	 could	 belong	 to	 more	 than	 two	 people	
(otherwise	 some	 two	 people	 on	 the	 same	 side	 of	 the	 bipartition	
would	 have	 the	 same	 color,	 which	 is	 not	 possible	 since	 they	 are	
enemies).	We	claim	this	is	the	worst	case,	that	is,	given	⌊�/2⌋⌈�/2⌉	
colors	 we	 can	 always	 satisfy	 the	 given	 conditions.	 We	 will	 use	
strong	induction,	the	base	cases	n	=	1,	2,	3	being	easy	to	check.		
	

Obviously	if	the	graph	has	fewer	than		⌊�/2⌋⌈�/2⌉	edges	we	are	
done,	since	we	can	assign	a	separate	color	for	each	pair	of	friends.	
Now	 if	 the	 graph	 has	 more	 than	 ⌊�/2⌋⌈�/2⌉	 edges,	 then	 by	 the	
contrapositive	of	corollary	1	 in	chapter	6	(example	8),	 the	graph	
contains	a	triangle.	Use	one	color	for	the	triangle	(that	is,	give	each	
member	 of	 the	 triangle	 a	 hat	 of	 that	 color).	 Using	 at	 most	 n–3	
colors,	we	can	ensure	that	each	person	not	in	the	triangle	who	is	
friends	with	some	member(s)	of	the	triangle	has	a	common	color	
with	 them.	 Now	 among	 the	 remaining	 n–3	 people,	 we	 need	 at	
most	 ⌊(� − 3)/2⌋⌈(� − 3)/2⌉	 more	 colors	 by	 the	 induction	
hypothesis.	Hence	in	total	we	use	at	most		

(1+(n–3)+⌊(� − 3)/2⌋⌈(� − 3)/2⌉)	≤	⌊�/2⌋⌈�/2⌉	colors.	■	
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Remark:	The	important	part	of	the	previous	example	is	guessing	
the	 worst	 case	 scenario.	 Intuitively,	 when	 there	 are	 too	many	 or	
too	few	edges,	we	don’t	need	many	colors,	because	we	would	then	
have	either	very	few	enemies	or	very	few	friends.	This	leads	us	to	
guess	that	the	worst	case	 is	“somewhere	 in	the	middle”.	 In	these	
cases,	bipartite	graphs	should	be	your	first	suspects	(followed	by	
multipartite	 graphs).	 This	 gives	 us	 the	 intuition	 needed	 to	
complete	the	solution-	the	simplest	structure	we	can	exploit	 in	a	
graph	with	“too	many	edges”	is	that	it	will	have	triangles.		
	

	
	

Induction and Combinatorics of Sets 
	
In	 this	 section	 we	 will	 use	 induction	 to	solve	extremal	 problems	
on	sets.	We	first	establish	two	simple	lemmas.		
	
Lemma 7.1: Let	S	be	a	set	with	n	elements,	and	let	F	be	a	family	of	
subsets	 of	 S	 such	 that	 for	 any	 pair	 A,	 B	 in	 F,	 A	 ∩	 B	 ≠	 ∅.	 Then	

|F|	≤	2
n-1

. 
	
Proof: For	any	set	A	in	F,	the	complement	of	A,	that	is,	S\A,	cannot	
be	in	F.	So	at	most	½	of	the	total	number	of	subsets	of	S	can	be	in	
F.	Equality	is	achieved	by	taking	all	subsets	of	S	containing	a	fixed	
element	x	in	S.				 
	
Lemma 7.2: Let	S	be	a	set	with	n	elements,	and	let	F	be	a	family	of	
subsets	of	S	such	that	for	any	pair	A,	B	in	F,	S	is	not	contained	by	

A	⋃�.	Then	|F|	≤	2n-1.	 
 
Proof: The	proof	is	identical	to	that	of	 lemma	7.1.	Equality	holds	
by	taking	all	subsets	of	S	excluding	a	fixed	element	x	of	S. 
	
	
Example 12 [Iran TST 2008] 

Let	 S	 =	 {1,	 2,	 …,	 n},	 and	 let	 F	 be	 a	 family	 of	 2n-1	 subsets	 of	 S.	
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Suppose	for	all	A,	B	and	C	in	S,	A	∩	B	∩	C	≠	∅.	Show	that	there	is	an	
element	in	S	belonging	to	all	sets	in	F.		
	
Answer 
Suppose	there	are	sets	X	and	Y	in	F	such	that	|X	∩	Y|	=	1.	Then	we	
are	trivially	done	since	all	sets	in	F	must	contain	this	element	by	
the	 intersection	 condition	 of	 the	 problem.	 Now	 assume	 that	 F	 is	
2-intersecting;	that	is,	|X	∩	Y|	≥	2	for	each	X	and	Y	in	F.	We	prove	

by	induction	on	n	that	in	this	case,	|F|	<	2
n-1

,	showing	that	this	case	
cannot	occur.		
	

Base	cases	n	=	1	and	2	are	trivial,	so	assume	the	result	holds	for	
n–1	 and	 that	 we	 are	 trying	 to	 prove	 it	 for	 n.	 We	 can	 write	 F	 as	
F	=	Fn	∪	Fn-1,	where	Fn	consists	of	all	sets	in	F	containing	n	and	Fn-1	
consists	of	all	sets	in	F	not containing	n.		
	

By	the	induction	hypothesis,	|Fn-1|	<	2
n-2

.	Now	define	Fn’ =	{S\n	|	
S	∈	Fn}.	In	other	words,	define	Fn’ is	obtained	from	Fn	by	deleting	n	
from	all	sets	in	Fn.	Since	Fn	is	2-intersecting,	Fn’	is	still	intersecting,	

so	 by	 lemma	 7.1,	 |Fn’|	 ≤	 2
n-2

.	 Note	 that	 |Fn’|	 =	 |Fn|,	 so	 we	 get	

|F|	=	|Fn|	+	|	Fn-1|	=		|Fn’|	+	|	Fn-1|	<	2n-2	+	2n-2	<	2n-1,	as	desired.	■	
	
Example 13 [Kleitman’s lemma] (U*) 
A	set	family	F	is	said	to	be	downwards closed	if	the	following	holds:	
if	X	is	a	set	in	F,	then	all	subsets	of	X	are	also	sets	in	F.	Similarly,	F	
is	 said	 to	 be	 upwards closed	 if	 whenever	 X	 is	 a	 set	 in	 F,	 all	 sets	
containing	X	are	also	sets	in	F.	Let	F1	and	F2	be	downwards	closed	
families	 of	 subsets	 of	 S	 =	 {1,	 2,	 …,	 n},	 and	 let	 F3	 be	 an	 upwards	
closed	family	of	subsets	of	S.		

(a) Show	that	|	F1	∩	F2|	≥	
|	��||��|

�� .		

(b) Show	that	|	F1	∩	F3|	≤	
|	��||��|

�� .	.		

	
Answer 
a) Induct	on	n.	The	base	case	n	=	1	is	trivial,	so	assume	the	result	



Olympiad Combinatorics  20 

holds	for	(n–1)	and	that	we	are	trying	to	prove	it	for	n.	Let	X1	
be	the	family	of	sets	in	F1	containing	n	and	Y1	be	the	family	of	
sets	not	containing	n.	Delete	n	from	each	set	in	X1	to	obtain	a	
new	 family	 X1’.	 Note	 that	 |X1’|=	 |X1|	 and	 |X1’|+|Y1|	 =	 |F1|.	 Also	
note	 that	 X1	 and	 Y1	 are	 still	 downwards	 closed.	 Analogously	
define	X2,	Y2	and	X2’	for	the	family	F2.		

Observe	 that	 |F1	 ∩	 F2|	 =	 |Y1	 ∩	 Y2|	 +	 |	 X1’	 ∩	 X2’|	 ≥	
|	��||��|

���� 	 +	
|	��

�||��
�|

���� 	 (applying	 the	 induction	 hypothesis).	 Since	 F1	 and	 F2	

are	downwards	closed,	X1’	is	a	subset	of	Y1,	and	similarly	X2’	is	
a	 subset	 of	 Y2.	 Hence	 |Y1|	 ≥	 |X1’|,	 |Y2|	 ≥	 |X2’|,	 so	 Chebyshev’s	

inequality	 (or	 just	 basic	 algebra)	 yields	
|	��||��|

���� 	 +	
|	��

�||��
�|

���� 		

≥	(|Y1|	+	|X1’|)(|Y2|	+	|X2’|)/2
n
	=	

|	��||��|

�� .		

	
b) The	 proof	 is	 similar	 to	 that	 in	 part	 (a),	 but	 with	 inequality	

signs	reversed.	■	
	
Lemmas	(i)	and	(ii)	in	this	section	are	fairly	straightforward.	Note	
that	in	both	cases,	the	imposition	of	a	certain	constraint	decreases	
the	number	of	sets	we	can	have	by	a	factor	of	½	(we	can	include	

2
n-1	 sets	 out	 of	 2

n
	 total	 possibilities).	 A	 natural	 question	 is	 what	

happens	 if	 we	 impose	 both	 conditions	 simultaneously	 –	 will	 the	
number	of	possible	sets	 in	the	family	be	decreased	by	a	factor	of	
4?	 Interestingly,	 Kleitman’s	 lemma	 answers	 this	 question	 in	 the	
affirmative.		
	
Example 14 (U*) 
Let	F	=	{A1,	A2,	…,	Ak}	be	a	family	of	subsets	of	S	=	{1,	2,	…,	n}	(n	>	
2),	such	that	for	any	distinct	subsets	Ai	and	Aj,	Ai	∩	Aj	≠∅	and	Ai	∪	Aj	

≠	S.	Show	that	k	≤	2n-2.		
	
Answer 
F	can	be	extended	to	a	downward	closed	system	D	by	adding	all	
subsets	of	the	sets	in	F.	Similarly,	F	can	be	extended	to	an	upward	
closed	system	U	by	adding	all	subsets	of	S	that	contain	some	set	in	
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F.	 Note	 that	 F	 =	 U	 ∩	 D.	 Since	 F	 is	 intersecting,	 so	 is	 U	 (since	 in	
creating	 U	 we	 only	 added	 “big”	 sets).	 Hence	 by	 lemma	 7.1,	

|U|	≤	2
n-1

.	 Similarly,	 since	 the	 union	 of	 no	 two	 sets	 in	 F	 covers	 S,	

the	same	holds	for	D.	Hence	by	lemma	7.2,	|D|≤	2
n-1

.	Then	by	part	
(b)	of	the	previous	problem,		

k	=	|F|	=	|U	∩	D|	≤	|U||D|/2n	≤	2n-1	×	2n-1/2n	=	2n-2	.	■	
 
Example 15 [stronger version of USA TST 2011] 
Let	n	≥	1	be	an	integer,	and	let	S	be	a	set	of	integer	pairs	(a,	b)	with	

1	 ≤	 a	 <	 b	 ≤	 2n.	 Assume	 |S|	 >	 n2n.	 Prove	 that	 there	 exist	 four	
integers	 a	 <	 b	 <	 c	 <	 d	 such	 that	 S	 contains	 all	 three	 pairs	 (a,	 c),	
(b,	d)	and	(a,	d).	
	
Answer: 
We	 induct	 on	 n.	 The	 base	 cases	 being	 trivial,	 suppose	 the	 result	

holds	for	(n–1).	Let	S’	be	the	set	of	pairs	(a,	b)	in	S	with	a	<	b	≤	2n-1.	

If	 |S’|	 ≥	 (n–1)2
n-1

,	 we	 would	 be	 done	 by	 applying	 the	 induction	
hypothesis	to	S’.		
	

Similarly,	 let	 S’’	 be	 the	 set	 of	 pairs	 (a,	 b)	 with	 2n-1	 	 <	 a	 <	 b.	 If	

|S’’|	≥	(n–1)2
n-1	we	would	again	be	done	by	applying	the	induction	

hypothesis	 to	 S’’,	 treating	 the	 pair	 (a,	 b)	 as	 if	 it	 were	 the	 pair	

(a-2
n-1

,	b-2
n-1

).	(Take	a	moment	to	fully	understand	this.)		
	

Now	 suppose	 neither	 of	 these	 cases	 arises.	 Then	 more	 than	

(n2n–2(n–1)2n-1)	=	2n	pairs	(a,	b)	would	have	to	satisfy	a	≤	2n-1	<	b.		
	

We	call	a	pair	(a,	b)	in	S	a	B-champion	if	a	≤	2n-1	<	b,	and	b	is	the	

smallest	 number	 greater	 than	 2
n-1	 with	 which	 a	 occurs	 in	 a	 pair.	

Note	 that	 there	 is	at	 most	 1	 B-champion	 for	 fixed	a,	 and	 at	 most	

2n-1	 choices	 for	 a.	 Thus	 there	 are	 at	 most	 2n-1	 B-champions.	

Similarly,	define	an	A-champion	to	be	a	pair	(a,	b)	in	S	if	a	≤	2n-1	<	b	



Olympiad Combinatorics  22 

such	 that	 a	 is	 the	 largest	 number	 less	 than	 or	 equal	 to	 2
n-1	 with	

which	 B	 is	 paired.	 The	 same	 argument	 shows	 that	 there	 are	 at	

most	2n-1	A-champions.		
	

Since	 there	 are	 more	 than	 2
n
	 pairs	 (a,	 b)	 with	 a	 ≤	 2

n-1	 <	 b,	 at	
least	one	of	these	pairs,	say	(x,	y)	is	neither	an	A-champion	nor	a	

B-champion.	Then	there	must	exist	z	such	that	2
n-1	

<	z	<	y	and	(x,	
z)	is	in	S	(since	(x,	y)	is	not	a	B-	champion).	Similarly,	there	exists	

w	such	that	x	<	w	≤	2
n-1	and	(y,	w)	is	in	S.	Hence	x	<	w	<	z	<	y,	and	

(x,	 z),	 (w,	 y)	 and	 (x,	 y)	 are	 all	 in	 S,	 proving	 the	 statement	 of	 the	
problem.	The	induction	step,	and	hence	the	proof,	is	complete.	■	
	
Remark 1: Observe	the	structure	of	this	solution-	we	first	tried	to	
find	a	suitable	subset	of	S	to	which	we	could	apply	the	induction	
hypothesis;	that	is,	we	tried	to	break	the	problem	down.	We	then	
solved	 the	 problem	 for	 the	 cases	 in	 which	 this	 didn’t	 work.	 By	
dealing	with	an	easy	case	of	a	problem	first,	we	do	more	than	just	
get	the	easy	case	out	of	the	way.	We	actually	learn	some	important	
conditions	a	case	must	satisfy	to	not	be	easy-	and	this	information	
is	 crucial	 for	 handling	 the	 hard	 case.	 This	 subtly	 illustrates	 the	
following	 problem	 solving	 tenet	 -	 the first step in solving a hard 
problem often lies in identifying what makes the problem hard. 	
  
Remark 2:	The	definition	of	A-champions	and	B-champions	in	the	
above	solution	initially	appears	to	come	out	of	nowhere.	However,	
after	 carefully	 reading	 the	 whole	 solution,	 the	 purpose	 behind	 it	
becomes	 clear:	 we	 are	 trying	 to	 find	 a	 pair	 (x,	 y)	 with	 w	 and	 z	
“squished	between”	x	and	y	such	that	(x,	z)	and	(w,	y)	are	pairs	in	
S.	 The	 only	 way	 this	 can	 happen	 is	 if	 (x,	 y)	 is	 neither	 an	
A-champion	nor	a	B-champion.		
		
Example 16 [The Sunflower Lemma] 
A	sunflower	with	k	petals	and	a	core	X	is	a	family	of	sets	S1,	S2,	…,	
Sk	such	that	Si	⋂ ��	=	X	for	each	i	≠	j.	(The	reason	for	the	name	is	

that	the	Venn	diagram	representation	for	such	a	family	resembles	
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a	 sunflower.)	 The	 sets	 Si	 \	 X	 are	 known	 as	 petals	 and	 must	 be	
nonempty,	though	X	can	be	empty.	Show	that	if	F	is	a	family	of	sets	

of	cardinality	s,	and	|F|	>	s!(k-1)
s
,	then	F	contains	a	sunflower	with	

k	petals.		

	
	

Figure 7.6: A Sunflower. 
	

Answer: 
Induct	 on	 s.	 The	 result	 is	 trivial	 for	 s	 =	 1,	 since	 then	 k	 singleton	
sets	 will	 form	 the	 sunflower	 (its	 core	 will	 be	 empty	 but	 that’s	
okay,	no	one	said	 the	sunflower	has	 to	be	pretty).	Passing	to	 the	
inductive	step,	 let	s	≥	2	and	take	a	maximal	 family	A	=	{A1,	A2,	…,	
At}	 of	 pairwise	 disjoint	 sets	 in	 F.	 If	 t	 ≥	 k	 we	 are	 done,	 since	 this	
family	will	 form	our	required	sunflower	(with	empty	core).	Now	
suppose	t	≤	k	–	1	and	let	B	=	A1	U	A2	U	…	U	At.	Note	that	|B|	=	st	≤	
s(k–1).	Also,	by	the	maximality	of	A,	it	follows	that	B	intersects	all	
sets	 in	F	 (otherwise	we	could	 add	more	sets	 to	A).	Hence	by	 the	
pigeonhole	principle,	some	element	x	of	B	must	be	contained	in	at	
least	

|�|

|�|
	>	

�!(���)�

�(���)
	=	(s	–	1)!(k	–	1)s-1	

sets	 in	 F.	 Deleting	 x	 from	 these	 sets	 and	 applying	 the	 induction	
hypothesis	 to	 these	sets	(which	now	contain	s–1	elements	each),	

Core 
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we	see	that	there	exists	a	sunflower	with	k	petals.	Adding	x	back	
to	 all	 these	 sets	 doesn’t	 destroy	 the	 sunflower	 since	 it	 just	 goes	
into	the	core,	so	we	get	the	desired	sunflower.	■	
	
Example 17 [IMO Shortlist 1998, C4] 
Let	U	=	{1,	2,	…,	n},	where	n	≥	3.	A	subset	S	of	U	is	said	to	be	split	
by	 an	 arrangement	 of	 the	 elements	 of	 U	 if	 an	 element	 not	 in	 S	
occurs	in	the	arrangement	somewhere	between	two	elements	of	S.	
For	example,	13542	splits	{1,	2,	3}	but	not	{3,	4,	5}.	Prove	that	for	
any	family	F	of	(n–2)	subsets	of	U,	each	containing	at	least	2	and	at	
most	n–1	elements,	there	is	an	arrangement	of	the	elements	of	U	
which	splits	all	of	them.		
	
Answer: 
We	induct	on	n.	As	always,	we	unceremoniously	dismiss	the	base	
case	as	trivial	and	pass	to	the	induction	step,	assuming	the	result	
for	n–1	and	prove	it	for	n.	We	first	prove	a	claim.	
	
Claim:	 There	 exists	 an	 element	 a	 in	 U	 that	 is	 contained	 in	 all	
subsets	of	F	containing	n – 1	elements,	but	 in	at	most	one	of	 the	
2-element	subsets.	
Proof:	 A	 simple	 counting	 argument	 suffices.	 Let	 F	 contain	 k	
(n-1)-element	subsets	and	m	2-element	subsets.	Note	that	k+m	is	
at	 most	 the	 total	 number	 of	 subsets	 in	 F,	 which	 is	 n–2.	 Hence	
(k+m)	 ≤	 (n–2).	 The	 intersection	 of	 the	 k	 (n–1)-element	 subsets	
contains	exactly	(n–k)	elements.	This	is	because	for	each	of	these	
subsets	there	is	exactly	one	element	it	doesn’t	contain.	
	

But	n–k	≥	m+2	and	at	most	m	elements	can	be	in	more	than	one	
of	the	two-element	sets.	Thus	one	of	these	elements	that	is	in	the	
intersection	 of	 all	 the	 (n–1)-element	 subsets	 is	 in	at	 most	one	 of	
the	2-element	sets,	proving	the	claim.	
	

Now	 let	A	 be	 the	 2-element	 subset	 that	 contains	 a	 if	 it	exists;	
otherwise	 let	 it	 be	 an	 arbitrary	 subset	 of	 F	 containing	 a.	 Now	
exclude	a	from	all	subsets	in	F	\	A.	We	get	at	most	n–3	subsets	of	
U	\	 {a} containing	 at	 least	 2	 and	at	most	 n–2	 elements.	 Applying	
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the	inductive	hypothesis,	we	can	arrange	the	elements	of	U	\	a	so	
as	 to	split	all	 subsets	 of	F	\	A.	Replace	a	anywhere	away	 from	A	
and	we	are	done.	■ 

	

	
	

Exercises 
	
1. [Generalization of USAMO 1999, Problem 4] 

Find	the	smallest	positive	integer	m	such	that	if	m	squares	of	
an	 n×n	 board	 are	 colored,	 then	 there	 will	 exist	 3	 colored	
squares	whose	centers	form	a	right	triangle	with	sides	parallel	
to	the	edges	of	the	board.	

	
2. [Erdos-Szekeres Theorem] (U*) 

Show	that	any	sequence	of	n2	distinct	real	numbers	contains	a	
subsequence	 of	 length	 n	 that	 is	 either	 monotonically	
increasing	or	monotonically	decreasing.		

	
3. [USA TST 2009, Problem 1] 

Let	m	and	n	be	positive	integers.	Mr.	Fat	has	a	set	S	containing	
every	rectangular	 tile	with	 integer	side	 lengths	and	area	of	a	
power	 of	 2.	 Mr.	 Fat	 also	 has	 a	 rectangle	 R	 with	 dimensions	

2
m

×2
n
	but	with	a	1×1	square	removed	from	one	of	the	corners.	

Mr.	 Fat	 wants	 to	 choose	 (m+n)	 rectangles	 from	 S,	 with	

respective	 areas	 2
0
,	 2

1
,	 …,	 2

m+n-1
	 and	 then	 tile	 R	 with	 the	

chosen	 rectangles.	 Prove	 that	 this	 can	 be	 done	 in	 at	 most	
(m+n)!	ways.	

	
4. [Generalization of APMO 2012, Problem 2] 

Real	numbers	in	[0,	1]	are	written	in	the	cells	of	an	n×n	board.	
Each	 gridline	 splits	 the	 board	 into	 two	 rectangular	 parts.	
Suppose	that	for	any	such	division	of	the	board	into	two	parts	
along	a	gridline,	at	least	one	of	the	parts	has	weight	at	most	1,	
where	the	weight	of	a	part	is	the	sum	of	all	numbers	written	in	
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cells	belonging	to	that	part.	Determine	the	maximum	possible	
sum	of	all	the	numbers	written	on	the	board.		
[Challenge:	generalize	to	k	dimensional	boards.]	

	
5. [Indian postal coaching 2011] 

Consider	2011
2
	points	arranged	in	the	form	of	a	2011	x	2011	

grid.	 What	 is	 the	 maximum	 number	 of	 points	 that	 can	 be	
chosen	among	them	so	that	no	four	of	them	form	the	vertices	
of	either	an	isosceles	trapezium	or	a	rectangle	whose	parallel	
sides	are	parallel	to	the	grid	lines?	

	
6. [China Girls Math Olympiad 2004] 

When	 the	 unit	 squares	 at	 the	 4	 corners	 are	 removed	 from	 a	
3×3	 square,	 the	 resulting	 shape	 is	 called	 a	 cross.	 Determine	
the	maximum	number	of	non-overlapping	crosses	that	can	be	
placed	within	the	boundary	of	a	10×11	board.		

	
7. [IMO Shortlist 2010, C2] 

Let	n	>	3	be	a	positive	integer.	A	set	of	n	distinct	binary	strings	
of	 length	 n	 is	 said	 to	 be	 diverse	 if	 there	 exists	 an	 n×n	 array	
whose	rows	are	these	n	binary	strings	in	some	order,	and	all	
entries	 along	 the	 main	 diagonal	 of	 this	 array	 are	 equal.	 Find	
the	smallest	integer	m,	such	that	among	any	m	binary	strings	
of	length	n,	there	exist	n	strings	forming	a	diverse	set.	

	
8. [Iran TST 2007] 

Let	A	be	the	largest	subset	of	{1,	2,	…,	n}	such	that	for	each	x	∈	
A,	 x	 divides	 at	 most	 one	 other	 element	 in	 A.	 Show	 that	

2n/3	≤	|A|	≤	�
��

�
�.		

	
9. [IMO 2014, Problem 2] 

Let	 n	 be	 a	 positive	 integer,	 and	 consider	 an	 n×n	 board.	
Suppose	some	rooks	are	placed	on	this	board	such	 that	each	
row	 contains	 exactly	 one	 rook	 and	 each	 column	 contains	
exactly	one	rook.	Find	 the	 largest	 integer	k	such	 that	 for	any	
such	 configuration	 as	 described	 above,	 there	 necessarily	
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exists	a	k×k	square	which	does	not	contain	a	rook	on	any	of	its	

k
2
	squares.		

	
10. [IMO 2013, Problem 2] 

A	 configuration	 of	 4027	 points	 in	 the	 plane	 is	 called	
Colombian	 if	 it	 consists	 of	 2013	 red	 points	 and	 2014	 blue	
points,	and	no	three	points	of	the	configuration	are	collinear.	
By	 drawing	 some	 lines,	 the	 plane	 is	 divided	 into	 several	
regions.	 An	 arrangement	 of	 lines	 is	 good	 for	 a	 Colombian	
configuration	if	the	following	conditions	are	satisfied:	
(i) No	line	passes	through	any	point	of	the	configuration	
(ii) No	region	contains	points	of	both	colors		
Find	 the	 least	 value	 of	 k	 such	 that	 for	 any	 Colombian	
configuration	of	4027	points,	there	is	a	good	arrangement	of	k	
lines.		

	
11. [IMO Shortlist 2005, C3] 

Consider	 an	 m×n	 rectangular	 board	 consisting	 of	 mn	 unit	
squares.	 Two	 of	 its	 unit	 squares	 are	 called	 adjacent	 if	 they	
have	a	common	edge,	and	a	path	is	a	sequence	of	unit	squares	
in	which	any	two	consecutive	squares	are	adjacent.	Two	paths	
are	 called	 non-intersecting	 if	 they	 don't	 share	 any	 common	
squares.	Suppose	each	unit	square	of	the	rectangular	board	is	
colored	either	black	or	white.		
Let	N	be	the	number	of	colorings	of	the	board	such	that	there	
exists	at	least	one	black	path	from	the	left	edge	of	the	board	to	
its	right	edge.	Let	M	be	the	number	of	colorings	of	 the	board	
for	which	there	exist	at	least	two	non-intersecting	black	paths	
from	the	left	edge	of	the	board	to	its	right	edge.		

Prove	that	N2	≥	M	x	2mn.	
	
12. [Balkan Math Olympiad 1994] 

Find	the	smallest	number	n	≥	5	for	which	there	can	exist	a	set	
of	n	people,	such	that	any	two	people	who	are	friends	have	no	
common	friends,	and	any	two	people	who	are	not	friends	have	
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exactly	two	common	acquaintances.		
	

13. Given	a	set	S	of	n	points	in	3-D	space,	no	three	on	a	line,	show	

that	there	exists	a	subset	S’	of	S	containing	at	least	n
1/4

	points,	
such	that	no	subset	of	the	points	in	S’	form	a	regular	polygon. 

	
14. [IMO Shortlist 2000, C4] 

Let	n	and	k	be	positive	integers	such	that	n/2	<	k	≤	2n/3.	Find	
the	 smallest	 number	 m	 for	 which	 it	 is	 possible	 to	 mark	 m	
squares	on	an	n×n	board	such	that	no	row	or	column	contains	
a	block	of	k	adjacent	unoccupied	squares.		

	
15. [IMO Shortlist 1988] 

The	code	for	a	safe	is	a	three	digit	number	with	digits	in	{1,	2,	
…,	 8}.	 Due	 to	 a	 defect	 in	 the	 safe,	 it	 will	 open	 even	 if	 the	
number	 we	enter	matches	 the	correct	code	 in	 two	 positions.	
(For	example,	 if	 the	correct	code	 is	 245	and	we	enter	285,	 it	
will	 open.)	 Determine	 the	 smallest	 number	 of	 combinations	
that	must	be	tried	in	order	to	guarantee	opening	the	safe.		

	
16. [Bulgaria 1998] 

Let	 n	 be	 a	 given	 positive	 integer.	 Determine	 the	 smallest	
positive	 integer	 k	 such	 that	 there	 exist	 k	 binary	 (0-1)	
sequences	 of	 length	 2n+2,	 such	 that	 any	 other	 binary	
sequence	 of	 length	 2n+2	 matches	 one	 of	 the	 k	 binary	
sequences	in	at	least	n+2	positions.			

	
17. [IMO Shortlist 1996, C3] 

Let	k,	m,	n	be	 integers	satisfying	1	<	n	≤	m–1	≤	k.	Determine	
the	maximum	size	of	a	subset	S	of	the	set	{1,	2,	…,	k}	such	that	
no	n	distinct	elements	of	S	add	up	to	m.	

	
18. [IMO Shortlist 1988] 

49	students	took	part	in	a	math	contest	with	three	problems.	
Each	 problem	 was	 worth	 7	 points,	 and	 scores	 on	 each	
problem	were	integers	from	0	to	7.	Show	that	there	exist	two	
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students	A	and	B	such	that	A	scored	at	least	as	many	points	as	
B	on	each	of	the	three	problems.		

	
19. [USAMO 2007, Problem 3] 

Let	S	be	a	set	containing	(n
2
+n–1)	elements,	for	some	positive	

integer	 n.	 Suppose	 that	 the	 n-element	 subsets	 of	 S	 are	
partitioned	 into	 two	 classes.	 Prove	 that	 there	 are	 at	 least	 n	
pairwise	disjoint	sets	in	the	same	class.	

	
20. [IMO Shortlist 2009, C6] 

On	a	999	×	999	board	a	limp	rook	can	move	in	the	following	
way:	 from	 any	 square	 it	 can	 move	 to	 any	 of	 its	 adjacent	
squares,	 that	 is,	 a	 square	 having	 a	 common	 side	 with	 it,	 and	
every	move	must	be	a	turn,	that	 is,	 the	directions	of	any	two	
consecutive	moves	must	be	perpendicular.	A	non-intersecting	
route	 of	 the	 limp	 rook	 consists	 of	 a	 sequence	 of	 pairwise	
different	squares	that	the	limp	rook	can	visit	in	that	order	by	
an	 admissible	 sequence	 of	 moves.	 Such	 a	 non-intersecting	
route	 is	 called	 cyclic,	 if	 the	 limp	 rook	 can,	 after	 reaching	 the	
last	square	of	the	route,	move	directly	to	the	first	square	of	the	
route	and	start	over.		
How	 many	 squares	 does	 the	 longest	 possible	 cyclic,	 non-
intersecting	route	of	a	limp	rook	visit?	

	
21. [USAMO 2002, Problem 6] 

Some	trominoes	(3×1	tiles)	are	to	be	placed	on	an	n×n	board	
without	 overlaps	 or	 trominoes	 sticking	 out	 of	 the	 board.	 Let	
b(n)	denote	the	minimum	number	of	trominoes	that	must	be	
placed	so	that	no	more	can	be	placed	according	to	the	above	
rules.	 Show	 that	 there	 exist	 constants	 c	 and	 d	 such	 that	

n2/7	-	cn	≤	b(n)	≤	n2/5	+	dn.		
	
22. [IberoAmerican Math Olympiad 2009, Problem 6] 

6000	points	on	the	circumference	of	a	circle	are	marked	and	
colored	 with	 10	 colors	 such	 that	 every	 group	 of	 100	
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consecutive	 points	 contains	 all	 ten	 colors.	 Determine	 the	
smallest	positive	integer	k	such	that	there	necessarily	exists	a	
group	of	k	consecutive	points	containing	all	ten	colors.	

	
23. [IMO Shortlist 2011, C6] 

Let	 n	 be	 a	 positive	 integer,	 and	 let	 W	 =	 …	 x-1	 x0	 x1	 …	 be	 an	
infinite	 periodic	 word,	 consisting	 of	 just	 letters	 a	 and/or	 b.	

Suppose	that	the	minimal	period	N	of	W	is	greater	than	2
n
.	

A	finite	nonempty	word	U	is	said	to	appear	in	W	if	there	exist	
indices	 k	 ≤	 l	 such	 that	 U	 =	 xk…xl.	 A	 finite	 word	 U	 is	 called	
ubiquitous	 if	 the	 four	words	Ua,	Ub,	aU	and	bU	all	appear	 in	
W.	Prove	that	there	are	at	least	n	ubiquitous	finite	nonempty	
words.	

	
24. [IMO Shortlist 2007, C8] 

Consider	a	convex	polygon	P	with	n	vertices.	A	triangle	whose	
vertices	 lie	on	vertices	of	P	 is	called	good	if	all	 its	sides	have	
equal	length.	Prove	that	there	are	at	most	2n/3	good	triangles.	

	
25. [Stronger version of IMO Shortlist 2008, C6] 

For	n	>	2,	let	S1	,	S2,	…,	���	be	2n	subsets	of	A	=	{1,	2,	…,	2n+1}	
that	satisfy	the	following	property:	There	do	not	exist	indices	
a	and	b	with	a	<	b	and	elements	x,	y,	z	∈	A	with	x	<	y	<	z	and	y,	
z	∈	Sa	and	x,	z	∈	Sb.		Prove	that	at	least	one	of	the	sets	S1	,	S2,	…,	
���	 contains	 at	 most	 2n+1	 elements.	 (Note:	 the	 original	
problem	had	a	weaker	bound	of	4n	instead	of	2n+1.)		

	
26. [IMO Shortlist 2005, C8] 

In	a	certain	n-gon,	some	(n–3)	diagonals	are	colored	black	and	
some	 other	 (n–3)	 diagonals	 are	 colored	 red,	 so	 that	 no	 two	
diagonals	 of	 the	 same	 color	 intersect	 strictly	 inside	 the	
polygon,	although	they	can	share	a	vertex.	(Note:	a	side	is	not	
a	diagonal.)	Find	the	maximum	number	of	intersection	points	
between	 diagonals	 colored	 differently	 strictly	 inside	 the	
polygon,	in	terms	of	n.	
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27. [IMO Shortlist 2011, C7] 
On	 a	 2011×2011	 square	 table	 we	 place	 a	 finite	 number	 of	
napkins	 that	 each	 cover	 a	 square	 of	 52	 by	 52	 cells.	 Napkins	
can	overlap,	and	in	each	cell	we	write	the	number	of	napkins	
covering	it,	and	record	the	maximal	number	k	of	cells	that	all	
contain	 the	 same	 nonzero	 number.	 Considering	 all	 possible	
napkin	configurations,	what	is	the	largest	value	of	k?	

	



Olympiad	
Combinatorics	

	

	

	

	

Pranav	A.	Sriram	

August 2014	

 



Chapter 8: Graph Theory  1 

Copyright notices 

	

All USAMO and USA Team Selection Test problems in this chapter 

are copyrighted by the Mathematical Association of America’s 

American Mathematics Competitions. 

 

© Pranav A. Sriram. This document is copyrighted by Pranav A. 

Sriram, and may not be reproduced in whole or part without 

express written consent from the author.  

 

About the Author 

 

Pranav Sriram graduated from high school at The International 

School Bangalore, India, and is currently pursuing undergraduate 

studies at Stanford University.  



 

  



Chapter 8: Graph Theory  1 

 
 
 
 
 

8. GRAPH THEORY 
	
	
	
Introduction 
 
Graphs	 rule	 our	 lives:	 from	 Google	 Search	 to	 molecular	
sequencing,	 flight	scheduling	 to	Artificial	 Intelligence,	graphs	 are	
the	underlying	mathematical	abstraction	fueling	the	world’s	most	
advanced	 technology.	 Graphs	 are	 also	 pervasive	 in	 models	 of	
speech,	 group	 dynamics,	 disease	 outbreaks	 and	 even	 the	 human	
brain,	 and	 as	 such	 play	 a	 crucial	 role	 in	 the	 natural	 and	 social	
sciences.	 Where	 does	 this	 versatility	 come	 from?	 Problems	 in	
several	 of	 the	 above-mentioned	 fields	 involve,	 at	 their	 core,	
entities	 existing	 in	 complex	 relationships	 with	 each	 other:	
hyperlinks	 between	 web	 pages,	 subject-object	 relationships	
between	 words,	 flights	 between	 cities	 and	 synapses	 between	
neurons.	The	power	of	graph	theory	stems	from	the	simplicity	and	
elegance	 with	 which	 graphs	 can	 model	 such	 relationships.	 Once	
you’ve	cast	a	problem	 as	a	problem	on	graphs,	you	have	at	your	
disposal	 powerful	 machinery	 developed	 by	 mathematicians	 over	
the	centuries.	This	is	the	power	of	abstraction.	
 

This	 chapter	 is	 by	 no	 means	 an	 exhaustive	 reference	 on	 the	
subject	 –	 graph	 theory	 deserves	 its	 own	 book.	 However,	 we	 will	
see	several	powerful	 lemmas	and	techniques	that	underlie	a	vast	
majority	 of	 Olympiad	 and	 classical	 graph	 theory	 problems,	 and	
hopefully	build	plenty	of	graph	theoretic	 intuition	along	the	way.	



Olympiad Combinatorics  2 

In	the	final	section	of	this	chapter,	we	will	 leverage	the	power	of	
graphs	 mentioned	 in	 the	 first	 paragraph	 to	 solve	 Olympiad	
problems	that	initially	appear	to	have	nothing	to	do	with	graphs.		
	

We	now	recall	some	results	we	have	proven	in	earlier	chapters,	
that	prove	to	be	extremely	useful	both	in	Olympiad	problems	and	
in	 classical	 graph	 theory	 problems.	We	 also	advise	 the	 reader	 to	
go	over	their	proofs	again,	because	the	proof	techniques	for	these	
results	are	as	important	as	the	results	themselves.		
	

	
	

Some Useful Results 
 
(i) In	a	graph	G	with	n	vertices,	suppose	no	vertex	has	degree	

greater	than	Δ.	Then	one	can	color	the	vertices	using	at	most	
Δ+1	 colors,	 such	 that	 no	 two	 neighboring	 vertices	 are	 the	
same	color.	[Chapter	1,	example	1]	

	
(ii) In	 a	 graph	 G	 with	 V	 vertices	 and	 E	 edges,	 there	 exists	 an	

induced	subgraph	H	with	each	vertex	having	degree	at	least	
E/V.	(In	other	words,	a	graph	with	average	degree	d	has	an	
induced	 subgraph	 with	 minimum	 degree	 at	 least	 d/2)	
[Chapter	1,	example	3]	

	
(iii) Given	 a	 graph	 G	 in	 which	 each	 vertex	 has	 degree	 at	 least	

(n−1),	and	a	tree	T	with	n	vertices,	there	is	a	subgraph	of	G	
isomorphic	to	T.	[Chapter	2,	example	3]	

	
(iv) In	a	graph	G,	if	all	vertices	have	degree	at	least	δ,	then	there	

exists	a	path	of	length	at	least	δ+1.	[Chapter	4,	example	6]	
	
(v) The	 vertex	 set	 V	 of	 a	 graph	 G	 on	 n	 vertices	 can	 be	

partitioned	into	two	sets	V1	and	V2	such	that	any	vertex	in	V1	
has	at	least	as	many	neighbors	in	V2	as	in	V1	and	vice	versa.	
[Chapter	4,	example	8]	
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(vi) A	tournament	on	n	vertices	is	a	directed	graph	such	that	for	
any	two	vertices	u	and	v,	there	is	either	a	directed	edge	from	
u	 to	v	or	 from	v	 to	u.	A	 Hamiltonian path	 is	a	path	passing	
through	 all	 the	 vertices.	 Every	 tournament	 has	 a	
Hamiltonian	path.	[Chapter	4,	example	10]	

	

	
 

More Useful Results and Applications 
 
Dominating Sets 
In	 a	 graph	 G	 with	 vertex	 set	 V,	 a	 subset	 D	 of	 V	 is	 set	 to	 be	 a	
dominating set if	every	vertex	v	is	either	in	D	or	has	a	neighbor	in	
D.	 The	 next	 lemma	 tells	 us	 that	under	 certain	simple	conditions,	
there	exists	a	fairly	small	dominating	set.	
	
Lemma 8.1:	If	G	has	no	isolated	vertices,	then	it	has	a	dominating	

set	of	size	at	most	
|�|

�
.		

	
Proof:	By (v),	there	exists	a	bipartition	V	=	V1	∪	V2	so	that	every	
vertex	 in	V1	has	at	 least	as	many	neighbors	 in	V2	and	vice	versa.	
Since	 each	 vertex	 has	 degree	 at	 least	 1,	 this	 implies	 that	 every	
vertex	 in	V1	has	at	 least	one	neighbor	 in	V2	and	vice	versa.	Thus	

both	 V1	 and	 V2	 are	 dominating	 sets.	 One	 of	 them	 has	 at	 most	
|�|

�
	

vertices	and	we	are	done.		
	
Remark:	 In	 the	 next	 chapter	 we	 will	 show	 that	 if	 the	 minimum	
degree	in	an	n-vertex	graph	G	is	d	>	1,	then	G	has	a	dominating	set	

containing	at	most	n	
����(���)

���
	vertices.		

	
Spanning Trees 
Recall	 that	 a	 spanning subgraph	 of	 a	 graph	 G	 is	 a	 subgraph	 of	 G	
containing	 all	 of	 the	 vertices	 of	 G.	 A	 spanning tree in	 G	 is	 a	
spanning	subgraph	that	is	a	tree	(that	is,	it	is	acyclic).	Note	that	if	
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G	 is	 not	 connected,	 it	 cannot	 have	 a	 spanning	 tree	 (because	
otherwise	 there	 would	 be	 a	 path	 between	 every	 pair	 of	 vertices	
along	 edges	 in	 this	 tree,	 contradicting	 disconnectedness).	 Do	 all	
connected	graphs	have	spanning	trees?	

 

Figure 8.1. A graph G and a spanning tree of G 
 
Lemma 8.2: Every	 (finite)	 connected	 graph	 G	 =	 (V,	 E)	 has	 a	
spanning	tree.		
	
Proof:	Delete	edges	from	G	as	follows.	As	long	as	there	is	at	least	
one	cycle	present,	take	one	cycle	and	delete	one	edge	in	that	cycle.	
Notice	 that	 this	 procedure	 cannot	 destroy	 connectivity,	 so	 the	
graph	 obtained	 at	 each	 stage	 is	 connected.	 This	 process	 cannot	
continue	 indefinitely	 (we	 are	 dealing	 with	 finite	 graphs),	 so	
eventually	 we	 get	 a	 connected	 graph	 with	 no	 cycles.	 This	 is	 the	
required	 spanning	 tree	 (note	 that	 all	 the	 vertices	 of	 V	 are	 still	
present	since	we	only	deleted	edges).		
	

Spanning	 trees	 arise	 very	 often	 in	 the	 study	 of	 graphs,	
especially	in	optimization	problems.	I	like	to	think	of	them	as	the	
“skeleton”	 of	 the	 graph,	 since	 they	 are	 in	 a	 sense	 the	 minimal	
structure	 that	 is	 still	 connected	 on	 its	own.	 Their	main	usage	 on	
Olympiad	problems	is	that	instead	of	focusing	on	general	graphs	G	
which	may	have	a	complicated	structure,	we	can	sometimes	 find	
what	 we	 are	 looking	 for	 just	 by	 taking	 a	 spanning	 tree.	 For	 our	
purposes,	all	you	really	need	to	know	about	spanning	trees	is	

a) They	are	trees	
b) They	exist	(unless	G	isn’t	connected).		

A	

B	
C	

D	

E	F	

C 
B E 

F D A 



Chapter 8: Graph Theory  5 

We’ll	 now	 use	 our	 arsenal	 of	 lemmas	 to	 reduce	 some	 rather	
challenging	Olympiad	problems	to	just	a	few	lines.	
			
Example 1 [Based on ELMO Shortlist 2011, C7] 
Let	T	be	a	tree	with	t	vertices,	and	let	G	be	a	graph	with	n	vertices.	
Show	 that	 if	 G	 has	 at	 least	 (t−1)n	 edges,	 then	 G	 has	 a	 subgraph	
isomorphic	to	T.	
	
Answer: 
By	(ii),	G has	a	subgraph	H	such	that	all	vertices	in	H	have	degree	
at	least	t−1	(in	H).	Applying	(iii),	H	has	a	subgraph	isomorphic	to	
T.	■	
Remark: This	 is	 probably	 the	 shortest	 solution	 to	 a	 problem	 in	
this	book.	Note	that	it	would	actually	be	quite	a	difficult	problem	if	
you	didn’t	know	the	super	useful	lemmas	listed	above!	
	
Example 2 [Based on ELMO Shortlist 2011, C2] 
Let	G	be	a	directed	graph	with	n	vertices	such	that	each	vertex	has	
indegree	and	outdegree	equal	to	2.	Show	that	we	can	partition	the	
vertices	of	 G	 into	 three	 sets	 such	 no	 vertex	 is	 in	 the	 same	 set	 as	
both	the	vertices	it	points	to.		
	
Answer: 
Take	 a	 partition	 that	 maximizes	 the	 number	 of	 “crossing	 edges”,	
that	is,	edges	between	distinct	sets.	If	some	v belongs	to	the	same	
set	as	both	of	its	out-neighbors,	moving	v	to	one	of	the	other	two	
sets	 (whichever	 has	 fewer	 in-neighbors	 of	 v)	 will	add	 2	 crossing	
edges	but	destroy	at	most	1	old	one.	Then	we	get	a	partition	with	
even	 more	 crossing	 edges,	 contradiction.	 Thus	 the	 original	
partition	indeed	works.	■	
Remark:	This	is	essentially	the	same	idea	used	to	prove	(v).		
	
Example 3 [Russia 2001] 
A	company	with	2n+1	people	has	the	following	property:	For	each	
group	 of	 n	 people,	 there	 exists	 a	 person	 amongst	 the	 remaining	
n+1	 people	 who	 knows	 everyone	 in	 this	 group.	 Show	 that	 there	
exists	 a	 person	 who	 knows	 all	 the	 people	 in	 the	 company.	 (As	
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usual,	knowing	is	mutual:	A	knows	B	if	and	only	if	B	knows	A).		
	
Answer: 
Assume	 to	 the	 contrary	 that	 no	 one	 knows	 everyone	 else.	
Construct	 a	 graph	 G	 with	 2n+1	 vertices	 representing	 the	 people,	
and	an	edge	between	two	vertices	if	and	only	if	those	two	people	
do not know	 each	 other.	 Our	 assumption	 implies	 that	 every	
vertex	has	degree	at	least	1.	Now	applying	lemma	8.1,	there	exists	
a	dominating	set	of	G	containing	n	vertices.	This	means	that	each	
of	the	other	n+1	vertices	has	a	neighbor	in	this	set	of	n	vertices.	In	
other	 words,	 no	 person	 outside	 this	 set	 of	 n	 people	 knows	
everyone	 in	 this	 set,	 contradicting	 the	 problem	 statement.	 This	
contradiction	establishes	the	result.	■	
	

	
	

The Extremal Principle 
 
We’ve	already	encountered	the	extremal	principle	several	times	in	
various	 forms.	 The	 true	 power	 of	 this	 technique	 lies	 in	 its	
ubiquitous	use	in	graph	theory.	In	each	of	the	next	five	examples,	
the	step	in	which	we	use	the	extremal	principle	is	marked	in	bold	
letters.	
	
Example 4 [IMO Shortlist 2004, C3] 
The	 following	operation	 is	 allowed	on	a	 finite	graph:	choose	any	
cycle	 of	 length	 4	 (if	 one	exists),	 choose	 an	 arbitrary	 edge	 in	 that	
cycle,	 and	 delete	 this	 edge	 from	 the	 graph.	 For	 a	 fixed	 integer	
n	≥	4,	 find	 the	 least	 number	 of	 edges	 of	 a	 graph	 that	 can	 be	
obtained	 by	 repeated	 applications	 of	 this	 operation	 from	 the	
complete	graph	on	n	vertices	(where	each	pair	of	vertices	is	joined	
by	an	edge).		
	
Answer: 
Clearly	 the	 answer	 cannot	 be	 less	 than	 n−1,	 since	 the	 graph	
obtained	at	each	stage	will	always	be	connected.	We	claim	that	the	
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graph	obtained	at	each	stage	is	also	non	bipartite.	This	will	imply	
that	the	answer	 is	at	 least	n	(since	a	graph	with	n-1	vertices	 is	a	
tree	which	is	bipartite).		
	

Kn	 is	 non-bipartite	 (it	 has	 a	 triangle),	 so	 suppose	 to	 the	
contrary	 that	 at	 some	 stage	 the	 deletion	 of	 an	 edge	 makes	 the	
graph	bipartite.	Consider	the	first	time	this	happens.	Let	edge	AB	
from	the	4	cycle	ABCD	be	the	deleted	edge.	Since	the	graph	is	non	
bipartite	 before	 deleting	 AB	 but	 bipartite	 afterwards,	 it	 follows	
that	A	and	B	must	lie	on	the	same	side	of	the	partition.	But	since	
BC,	CD,	DA	are	edges	in	the	now-bipartite	graph,	it	follows	that	C	
and	 A	 are	 on	 one	 side	 and	 B	 and	 D	 are	 on	 the	 other	 side	 of	 the	
bipartition.	Contradiction.	

 

Figure 8.2. 
	

To	 show	 n	 can	 be	 achieved,	 let	 the	 vertices	 be	 V1,	 V2,	 …,	 Vn.	
Remove	every	edge	ViVj	with	3	≤	i	<	j	<	n	from	the	cycle	V2	Vi Vj Vn.	
Then	for	3	≤	i	<	n	delete	edges	V2	Vi	and	Vi Vn	from	cycles	V1	V2	Vi Vn	
and	V1	Vi Vn V2	respectively.	This	leaves	us	with	only	n	edges:	V1	Vi	
for	2	≤	i	≤	n	and	V2	Vn.	■	
	
Remark:	You	may	have	been	tempted	to	guess	that	the	answer	is	
(n−1),	 since	 the	problem	looks	 like	 the	algorithm	for	obtaining	a	
spanning	 tree.	 While	 guessing	 and	 conjecturing	 is	 an	 important	
part	of	solving	problems,	it	is	important	to	verify	these	guesses	by	
experimenting	a	bit	before	trying	to	prove	the	guess.	The	process	
of	realizing	your	guess	was	wrong	may	give	you	a	clue	as	to	how	
to	proceed	with	the	proof.	In	this	example,	you	may	have	noticed	
that	 the	 graph	 you	 end	 up	 with	 always	 had	 an	 odd	 cycle,	 which	

C B 

D A 
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would	 lead	 to	 the	correct	 claim	 that	 the	 graph	 obtained	 is	 never	
bipartite.		
		
Example 5 [Croatian TST 2011] 
There	 are	 n	 people	 at	 a	 party	 among	 whom	 some	 are	 friends.	
Among	any	4	of	 them	there	are	either	3	who	are	all	 friends	with	
each	other	or	3	who	aren’t	friends	with	each	other.	Prove	that	the	
people	can	be	separated	into	two	groups	A	and	B	such	that	A	is	a	
clique	(that	is,	everyone	in	A	is	friends	with	each	other)	and	B	is	
an	 independent	 set	 (no	 one	 in	 B	 knows	 anyone	 else	 in	 B).	
(Friendship	is	a	mutual	relation).			
	
Answer 
Construct	a	graph	G	with	vertices	representing	people	and	edges	
between	two	people	if	they	are	friends.	The	natural	idea	is	to	let	A	
be	 the	 largest clique in G,	 and	 the	 remaining	 people	 as	 B.	 We	
prove	that	this	works.	
	

If	A=G	or	|A|=1	we	are	trivially	done,	so	assume	that	n	>|A|	≥	2.	
We	 only	 need	 to	 show	 that	 B	 is	 independent,	 that	 is,	 G-A	 is	
independent.	Assume	to	the	contrary	v1,	v2	belong	to	G−A	and	v1v2	
is	an	edge.	Since	A	 is	 the	 largest	clique,	 there	exists	 u1	 in	A	such	
that	v1u1	is	not	an	edge	(otherwise	we	could	add	v1	to	A,	forming	a	
bigger	clique).		

 

Figure 8.3. 

 

A 

u 
u1

	

v
2
 v

1
 



Chapter 8: Graph Theory  9 

If	u1v2	is	not	an	edge,	then	let	u	be	any	other	vertex	in	A.	Since	
v1v2	and	uu1	are	edges,	by	the	condition	of	the	problem	there	must	
be	 a	 triangle	 amongst	 these	 four	 vertices.	 The	 only	 possibility	 is	
uv1v2	since	u1v2	and	u1v1	are	not	edges.	Then	uv1	and	uv2	are	edges	
for	all	u	in	A,	so	A	U	{v1,	v2}\	{u1}	is	a	larger	clique,	contradiction.	
	

Similarly,	 if	 v2u1	 is	 an	 edge,	 then	 for	 all	 u	 in	 A	 either	 v2u1u	 or	
v2v1u	must	be	a	triangle.	In	either	case	v2u	is	an	edge	for	all	u	in	A.	
Thus	A	U	{v2}	is	a	larger	clique,	contradiction.	■	
	
Example 6 [Degree vectors] 
A	 vector	 v	 =	 [d1	 d2	 …	 dk]	 with	 d1	 ≥	 d2	 ≥	 …	 ≥	 dk	 is	 said	 to	 be	 a	
graphical	vector	if	there	exists	a	graph	G	with	k	vertices	x1,	x2,	…,	xk	
having	degrees	d1,	d2,	…,	dk	respectively.	Note	that	there	could	be	
multiple	 graphs	 G	 with	 degree	 vector	 v.	 Let	 v’	 be	 the	 vector	
obtained	from	v	by	deleting	d1	and	subtracting	1	from	the	next	d1	
components	 of	 v.	 Let	 v1	 be	 the	 non-increasing	 vector	 obtained	
from	v’	by	rearranging	components	if	necessary.	(For	example,	if	v	
=	[4	3	3	2	2	2	1	1]	then	v’	=	[2 2 1 1	2	1	1]	and	v1	=	[2	2	2	1	1	1	1].)	
Show	that	v1	is	also	a	graphical	vector.		
	
Answer: 
Let	S	be	the	sum	of	the	indices	of	the	neighbors	of	x1	(for	instance,	
if	x1	is	adjacent	to	x3,	x4	and	x8,	then	S	=	15).	Take	the	graph	G	with	
degree	vector	v	such	that	the	S is as small as possible.		
	

Now	we	claim	that	there	do	not	exist	indices	i	<	j	such	that	x1xi	
is	not	an	edge	and	x1xj	is	an	edge	in	G.	Suppose	the	contrary.	Since	
di	≥	dj,	there	must	be	some	vertex	xt	such	that	xixt	is	an	edge	but	xjxt	
is	 not	 an	 edge.	 Now	 in	 G,	 delete	 edges	 x1xj	 and	 xixt	 and	 replace	
them	 with	 edges	 x1xi	 and	 xjxt.	 Note	 that	 all	 degrees	 remain	
unchanged,	 but	 the	 sum	 of	 indices	 of	 neighbors	 of	 v1	 has	
decreased	by	(j–i),	contradicting	our	assumption	on	G.	This	proves	
our	claim.		
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Figure 8.4. Illustration of a swap that decreases S 
 

Our	 claim	 implies	 that	 x1	 is	 adjacent	 to	 the	 next	 d1	 vertices,	
namely	x2,	x3,	…,	xd1+1.	Hence	v1	is	nothing	but	the	graphical	vector	

of	the	graph	obtained	from	G	by	deleting	x1,	since	then	the	degrees	
of	its	neighbors	all	reduce	by	one.	Hence	v1	is	graphical.	■	
	
Remark 1: How	did	we	come	up	with	our	rather	strange	extremal	
condition	in	 the	 first	paragraph?	The	problem	 provides	 a	hint:	 it	
says	we	delete	d1	and	subtract	1	from	the	next	d1	components	to	
obtain	 v’.	 Hence	 we	 wanted	 a	 graph	such	 that	 x1	 is	 connected	 to	
the	next	d1	vertices,	 since	 in	 this	 case	simply	removing	vertex	x1	
would	have	precisely	this	effect	on	the	degree	vector	(this	 is	our	
reasoning	in	the	last	paragraph	of	the	proof).	Now	to	prove	such	a	
graph	 exists,	 we	 needed	 a	 simple	 extremal	 property	 satisfied	 by	
such	 a	 graph.	 This	 naturally	 leads	 to	 our	 definition	 of	 S	 and	 the	
extremal	condition	that	G	minimizes	S.		
	
Remark 2: This	 is	 quite	 a	 useful	 lemma	 for	 testing	 whether	 a	
given	degree	sequence	is	graphical	(see	exercise	27).		
	
Example 7 [MOP 2008] 
Prove	that	if	the	edges	of	Kn,	the	complete	graph	on	n	vertices,	are	
colored	 such	 that	 no	 color	 is	 assigned	 to	 more	 than	 n−2	 edges,	
there	exists	a	triangle	in	which	each	edge	is	a	distinct	color.	
	
Answer 
Assume	to	the	contrary	that	there	exists	no	such	triangle.	Define	a	
C-connected component	 to	 be	 a	 set	 of	 vertices	 such	 that	 for	 any	

x1 x
i x

j 

xt 

x
1 x

i x
j 

xt 
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two	 vertices	 in	 that	 set,	 there	 exists	 a	 path	 between	 them,	 all	 of	
whose	edges	are	of	color	C.	Now	let	X	be	the	largest C-connected	
component	of	the	graph	for	any	color	C,	and	say	the	color	of	X	is	
red.		
	

Suppose	 there	 is	 a	vertex	v	not	 in	X.	Consider	 two	vertices	u1	
and	u2	that	are	joined	by	a	red	edge.	Neither	edge	vu1	nor	edge	vu2	
can	be	red	(otherwise	v	could	be	added	to	X).	So	vu1	and	vu2	are	
the	same	color	(otherwise	vu1u2	would	have	three	distinct	colors,	
contradicting	 our	 assumption).	 It	 follows	 that	 v	 is	 joined	 to	 all	
elements	of	X	by	the	same	color	edge,	say	blue.	But	then	X	∪	{v}	is	
a	larger	connected	component	(of	color	blue),	contradiction.		
	

It	 follows	that	 there	cannot	be	any	vertex	v	outside	X,	so	all	n	
vertices	are	in	X.	Now,	since	X	is	red-connected	and	has	n	vertices,	
there	must	be	at	least	n−1	red	edges,	contradiction.	■	
	
Example 8 [Generalization of USAMO 2007-4] 
Given	a	connected	graph	G	with	V	vertices,	each	having	degree	at	
most	 D,	 show	 that	 G	 can	 be	 partitioned	 into	 two	 connected	

subgraphs,	each	containing	at	least	
���

�
	vertices.		

	
Answer: 
We	induct	on	E,	the	number	of	edges	of	G.	When	E	=	1,	there	are	
only	 two	 vertices	 and	 the	 partition	 consists	 of	 two	 isolated	
vertices.	For	the	induction	step,	note	that	if	we	can	delete	an	edge	
and	 G	 remains	 connected,	 we	 are	 done	 by	 induction.	 Hence	 we	
only	consider	the	case	when	G	is	a	tree.		
	

Pick	 the	 root	 x	 such	 that	 the	 size	 of	 the	 largest subtree T is 

minimized.	Clearly	 |T|	≥	
���

�
,	 since	 there	are	at	most	D	subtrees	

and	V–1	vertices	amongst	them.	Also,	|T|	≤	
�

�
.	This	is	because	if	|T|	

>	
�

�
,	then	instead	of	rooting	the	tree	at	x	we	could	root	the	tree	at	

the	 first	 vertex	 y	 of	 T.	 This	 would	 decrease	 |T|	 by	 1,	 but	 T\{y}	
would	still	be	the	largest	subtree	since	it	would	still	have	at	least	
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���

�
	 vertices.	 This	 would	 contradict	 our	 assumption	 on	 x,	 as	 we	

would	have	a	smaller	largest	subtree.		
	

Thus	
�

�
	>|T|	≥	

���

�
.	Take	T	to	be	one	subgraph	and	G	–	T	to	be	

the	other.	Both	have	size	at	least	
���

�
	by	the	bounds	on	T	and	are	

connected,	so	we	have	found	a	valid	partition.	■	
	
Remark:	 The	 “induction”	 in	 the	 first	 paragraph	 is	 really	 just	 a	
formal	 way	 of	 saying	 “Well,	 the	 worst	 case	 for	 us	 is	 when	 G	 is	 a	
tree,	so	let’s	just	forget	about	general	graphs	and	prove	the	result	
for	trees:		if	it’s	true	for	trees,	it’s	true	for	everyone”.	Another	way	
of	reducing	the	focus	to	just	trees	is	to	take	a	spanning	tree	of	G.	
	

	
	

Hall’s Marriage theorem 
 
Given	N	sets	(not	necessarily	distinct),	we	say	that	the	family	of	N	
sets	 has	 a	 system of distinct representatives	 (SDR)	 if	 it	 is	
possible	to	choose	exactly	one	element	from	each	set	such	that	all	
the	 chosen	 elements	 are	 distinct.	 For	 example,	 if	 we	 have	 4	 sets	
{1,	2,	3},	{2,	4},	{2,	3,	4}	and	{1,	3}	then	this	family	has	(1,	2,	4,	3)	as	
a	system	of	distinct	representatives.	Under	what	conditions	does	a	
family	 have	 a	 system	 of	 distinct	 representatives?	 One	 obvious	
necessary	condition	is	that	for	any	subfamily	of	k	sets,	the	union	of	
these	 k	 sets	 must	 have	 at	 least	 k	 elements.	 It	 turns	 out	 that	 this	
condition,	known	as	the	marriage	condition,	is	also	sufficient.		
	
Example 9 [Hall’s Marriage Theorem]	
Show	that	the	marriage	condition	is	sufficient	for	the	existence	of	
an	SDR.		
	
Proof:	Let	the	marriage	condition	hold	for	the	family	A1,	A2,	…,	An.	
Keep	deleting	elements	from	these	sets	until	a	family	F’	=	A1’,	A2’,	
…,	An’	is	reached	such	that	the	deletion	of	any	element	will	cause	



Chapter 8: Graph Theory  13 

the	marriage	condition	to	be	violated.	We	claim	that	at	this	stage	
each	 set	 contains	 exactly	 one	 element.	 This	 would	 imply	 the	
result,	 since	 these	 elements	 would	 be	 distinct	 by	 the	 marriage	
condition,	and	would	hence	form	the	required	SDR.		
	

Suppose	 our	 claim	 is	 false.	 Then	 some	 set	 contains	 at	 least	 2	
elements.	 WLOG	 this	 set	 is	 A1	 and	 let	 x	 and	 y	 be	 elements	 of	 A1.	
Deleting	 x	 or	 y	 would	 violate	 the	 marriage	 condition	 by	 the	
definition	of	F’.	Thus	there	exists	subsets	P	and	Q	of	{2,	3,	4,	…,	n}	
such	that	X=(A1’–x)	∪	(⋃ ��′)�є� 	and	Y=(A1’–y)	∪	(⋃ ��′)�є� 	satisfy	

|X|	≤	|P|	and	|Y|	≤	|Q|.	Adding	gives		
	

|X|	+	|Y|	=	|X	⋂�|	+	|X	⋃�|	≤	|P|	+	|Q|.	
	

Now,	X	⋃�	=	A1’	∪	(⋃ ��′)�є�⋃� 	and	X	⋂�	=	⋃ ��′�є�⋂� .	

	
Thus	the	marriage	condition	implies	that		
	

|X	∪	Y|	≥	1	+	|P	∪	Q|,	and	|X	⋂�|	≥	|P	⋂� |.		
	

Adding	gives		
	

|X	⋂�|	+	|X	⋃�|	≥	1	+	|P	∪	Q|	+	|P	⋂� |	=	|P|	+	|Q|	+	1,	
	

contradicting	our	earlier	bound.	■	
	
Remark:	The	key	idea	in	this	proof	was	the	fact	that	the	marriage	
condition	holds	for	the	sets	A1’,	A2’,…	An’	but	not	for	A1	\	{x},	A2’,	…,	
An’	and	A1	\	{y},	A2’,	…,	An’.	This	proof	illustrates	an	important	idea:	
it’s	 useful	 to	 exploit	 conditions	 given	 to	 us,	 but	 it’s	 even	 more	
useful	to	exploit	situations	when	the	conditions	don’t	hold.	
	
Hall’s	marriage	theorem	was	phrased	above	in	the	language	of	set	
theory,	 but	 we	 can	 also	 interpret	 it	 in	 graph	 theoretical	 terms.	
Consider	 a	 bipartite	 graph	 G	 with	 vertex	 set	 V	 =	 V1	 ∪	 V2.	 A	
complete matching	of	the	vertices	of	V1	is	a	subset	of	the	edges	of	G	
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such	that:	
(i) Every	vertex	of	V1	is	incident	on	exactly	one	edge	
(ii) Each	vertex	of	V2	is	incident	on	at	most	one	edge	
	

In	 other	 words,	 it	 is	 a	 pairing	 such	 that	 every	 vertex	 in	 V1	 is	
paired	 with	 a	 vertex	 in	 V2	 and	 no	 two	 vertices	 in	 V1	 are	 paired	
with	the	same	vertex	of	V2.	The	vertices	in	a	pair	are	joined	by	an	
edge.		

	
If	 the	 vertices	 of	 V1	 represent	 the	 sets	 A1,	 A2,	 …,	 An	 and	 the	

vertices	 of	 V2	 represent	 elements	 in	 ⋃ ��
�
��� ,	 then	 a	 complete	

matching	 of	 V1	 gives	 us	 a	 system	 of	 distinct	 representatives	
(namely	 the	 vertices	 of	 V2	 to	 which	 the	 vertices	 of	 V1	 are	
matched).		
	
Example 10 [Canada 2006-3] 
In	 a	 rectangular	 array	 of	 nonnegative	 reals	 with	 m	 rows	 and	 n	
columns,	each	row	and	each	column	contains	at	least	one	positive	
element.	 Moreover,	 if	 a	 row	 and	 a	column	intersect	 in	 a	 positive	
element,	then	the	sums	of	their	elements	are	the	same.	Prove	that	
m	=	n.	
 
Answer: 
Create	a	bipartite	graph,	with	the	left	side	representing	rows	and	
the	right	side	for	columns.	Place	an	edge	between	two	vertices	 if	
and	 only	 if	 the	 corresponding	 row	 and	 column	 intersect	 in	 a	
positive	element.	The	idea	is	to	show	that	there	is	a	matching	from	
rows	to	columns,	so	n	≥	m.	By	symmetry	the	same	argument	will	
give	m	≥	n,	implying	m	=	n.	
	

Assume	 to	 the	 contrary	 there	 is	 no	 such	 matching.	 Then	 the	
marriage	condition	must	be	violated,	so	there	exists	some	set	S	of	
rows	 having	 a	 total	 set	 T	 with	 |T|	 <	 |S|	 of	 columns	 in	 which	
positive	entries	appear.	Let	the	sums	of	the	|S|	rows	be	s1,	…,	sk.	By	
the	property,	each	of	the	|T|	columns	has	sum	equal	to	one	of	the	
si.	So	the	total	sum	of	the	elements	in	the	S	rows,	when	calculated	
from	 the	 column	 point	 of	 view	 (since	 entries	 outside	 are	 all	
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nonnegative)	 is	 at	 most	a	 sum	 of	 a	subset	 of	 the	si.	 Yet	 from	 the	
row	 point	 of	 view,	 it	 is	 the	 full	 sum.	 As	 all	 si	 >	 0,	 this	 is	 a	
contradiction.	■	
	
Remark:	 This	 duality	 between	 arrays	 of	 numbers	 (i.e.	 matrices)	
and	 graphs	 (especially	 bipartite	 graphs)	 comes	 up	 very	 often.	
Keep	 an	 eye	 out	 for	 this	 trick,	 since	 it	 can	 prove	 very	 useful.	 In	
fact,	 analyzing	 and	 algebraically	 manipulating	 these	 matrices	
allows	 graph	 theory	 to	 be	 studied	 from	 an	 algebraic	 viewpoint,	
and	 fast	 algorithms	 for	 multiplying	 matrices	 form	 the	 basis	 of	 a	
class	 of	 algorithms	 for	 large	 graphs	 known	 as	 algebraic	 graph	
algorithms.			
	

	
	

Unexpected Applications of Graph Theory 
 

Most	 problems	 in	 previous	 sections	 suggested	 a	 natural	 graph	
theoretic	 interpretation.	 In	 this	 section,	 we	 will	 leverage	 the	
power	 of	 graphs	 to	 model	 complex	 relationships	 in	 nonobvious	
ways.	 Carefully	 constructed	 graphs	 can	 reduce	 unfamiliar,	
complex	problems	to	familiar	graph	theoretic	ones.	
		
Example 11 [Taiwan 2001] 
Let	n	≥	3	be	an	integer	and	let	A1,	A2,	…,	An	be	n	distinct	subsets	of	
S	=	{1,	2,	…,	n}.	Show	that	there	exists	an	element	x	є	S	such	that	
the	subsets	A1	\	{x},	A2	\	{x},	…,	An	\	{x}	are	also	distinct.	
	
Answer: 
We	 construct	 a	 graph	 G	 with	 vertices	 A1,	 A2,	 …,	 An.	 For	 each	
element	y,	 if	there	exist	distinct	sets	Ai	and	Aj	such	that	Ai	\	{y}	=	
Aj	\	{y},	we	select	exactly one	such	pair	(Ai,	Aj)	and	join	them	by	
an	edge	(even	if	there	are	multiple	such	pairs,	we	select	only	one	
for	each	y).	Suppose	to	the	contrary	there	doesn’t	exist	x	as	stated	
in	the	problem.	Then	all	elements	of	S	contribute	at	least	one	edge	
to	the	graph.	Moreover,	it	is	impossible	for	two	different	elements	
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to	contribute	the	same	edge	since	if	Ai	\	y1	=	Aj	\	y1	and	Ai	\	y2	=	
Aj	\	y2	for	distinct	y1	and	y2,	this	would	force	Ai	=	Aj.		
	

Thus	 G	 has	 at	 least	 n	 edges,	 and	 hence	 has	 a	 cycle,	 WLOG	
A1A2…AkA1	for	some	k	≥	3.	Then	there	exists	some	distinct	x1,	x2,	…,	
xk	such	that	A1	\	{x1}	=	A2	\	{x1};	A2	\	{x2}	=	A3	\	{x2},	…,	Ak	\	{xk}	=	
A1	\	xk.	Now	x1	is	in	exactly	one	of	A1	and	A2	(otherwise	A1	=	A2).	
WLOG	it	is	in	A2	but	not	in	A1.	But	then	x1	must	also	be	in	A3	since	
A2	 \	 {x2}	 =	 A3	 \	 {x2},	 and	 similarly	 must	 be	 in	 A4,	 and	 so	 on.	 We	
finally	get	that	x1	є	A1,	a	contradiction.	■	
	
The	 next	 problem,	 like	 several	 others	 in	 this	 book,	 underscores	

the	 usefulness	 of	 induction.	 Problems	 with	 around	 “2
n
”	 objects	

practically	 beg	 you	 to	 induct:	 all	 you	 need	 to	 do	 is	 find	 an	
appropriate	 way	 to	 split	 the	 set	 of	 objects	 into	 two	 parts,	 and	
apply	 the	 induction	 hypothesis	 to	 the	 larger	 or	 smaller	 part	 as	
applicable.	But	how	does	this	connect	to	graph	theory?		
	
Example 12 [USA TST 2002] 

Let	n	be	a	positive	integer	and	let	S	be	a	set	of	(2
n
+1)	elements.	Let	

f	be	a	function	from	the	set	of	two-element	subsets	of	S	to	{0,	1,	…,	

(2
n-1

−1)}.	 Assume	 that	 for	 any	 elements	 (x,	 y,	 z)	 of	 S,	 one	 of	
f({x,	y}),	f({y,	z})	and	f({z,	x})	is	equal	to	the	sum	of	the	other	two.	
Show	that	there	exist	a,	b,	c	in	S	such	that	f{a,	b},	f{b,	c)	and	f{c,	a}	
are	all	equal	to	0.	
	

Answer 
Step 1: The basic strategy 

Our	idea	is	to	find	a	subset	S’	of	S	such	that	|S’|	≥	2
n-1	+	1	and	for	all	

x,	y	in	S’	f({x, y}) is even.	Then	if	we	let	g({x,	y})	=	
�({�,�})

�
	for	all	x,	y	

in	S’,	we	would	have	a	function	from	pairs	in	S’	to	{0,	1,	…,	2
n-2

–1}	
satisfying	 the	 same	 conditions	 as	 f	 and	 we	 could	 apply	 the	
induction	 hypothesis	 to	 get	 the	 result.	 It	 remains	 to	 show	 that	
such	a	set	S’	exists.	
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Step 2: Constructing the graph and a new goal 

Construct	a	graph	G	with	2n+1	vertices	representing	elements	in	S	
as	follows:	there	is	an	edge	between	a	and	b	if	and	only	if	f({a,	b})	
is	odd.	We	now	need	to	find	an	independent	set	in	G	of	size	at	least	

2n-1+1.	 Our	 hope	 is	 that	 G	 is	 bipartite:	 then	 we	 can	 just	 take	 the	
larger	 side	 of	 the	 bipartition,	 which	 will	 have	 size	 at	 least	

⌈(2� + 1)/2⌉	=	2n-1+1.	Some	experimentation	confirms	our	hope	–	
but	of	course	we	still	need	a	proof. 
	
Step 3: A key observation 
Note	 that	 for	 any	 3	 vertices	 a,	 b,	 c	 there	 must	 be	 0	 or	 2	 edges	
amongst	 them,	 since	 f({a,	 b})	 +	 f({b,	 c})	 +	 f({c,	 a})	 is	 even	 (since	
one	of	these	terms	is	the	sum	of	the	other	two).		
	
Step 4: Proving G is bipartite 
If	G	is	not	bipartite,	it	has	an	odd	cycle,	so	consider	its	smallest	odd	
cycle	v1v2…v2k+1.	Consider	vertices	v1,	v3,	v4.	There	must	be	an	even	
number	 of	 edges	 amongst	 them.	 As	 v3v4	 is	 an	 edge,	 v1v3	 or	 v1v4	
must	 be	 an	 edge.	 v1v3	 is	 not	 an	 edge	 since	 otherwise	 amongst	
vertices	v1,	v2	and	v3	there	would	be	three	edges,	contradicting	our	
earlier	observation.	Hence	v1v4	is	an	edge.	But	then	v1v4…v2k+1	is	a	
smaller	odd	cycle,	contradicting	our	assumption.	■ 
 

 

Figure 8.5. The edge v1v4 creates a smaller odd cycle 
	
Remark 1: In	step	4	we	essentially	proved	the	following	result:	If	
G	is	a	graph	in	which	for	any	three	vertices	there	are	either	0	or	2	

v1 v2 

v2k+1 
v3 

v4 



Olympiad Combinatorics  18 

edges	between	them,	G	is	bipartite.	This	is	a	very	handy	lemma	to	
keep	 in	 mind,	 especially	 since	 so	 many	 Olympiad	 problems	 boil	
down	to	proving	that	a	certain	graph	is	bipartite.	
	
Remark 2: The	idea	of	taking	a	shortest	cycle	arises	very	often.	
	
Example 13 [IMO Shortlist 2002, C6] 
Let	n	be	an	even	positive	integer.	Show	that	there	is	a	permutation	
(x1,	x2,	…,	xn)	of	(1,	2,	…,	n)	such	that	for	every	i	є	(1,	2,	…,	n),	the	
number	xi+1	is	one	of	the	numbers	2xi,	2xi	−1,	2xi−n,	2xi–n–1.	Here	
we	use	the	cyclic	subscript	convention,	so	that	xn+1	means	x1.		
	
Answer: 
Let	n	=	2m.	We	define	a	directed	graph	with	vertices	1,	2,	…,	m	and	
edges	numbered	1,	2,…,2m	as	follows.	For	each	i	≤	m,	vertex	i	has	
two	 outgoing	 edges	 numbered	 2i−1	 and	 2i,	 and	 two	 incoming	
edges	labeled	i	and	i+m.	All	we	need	is	an	Eulerian	circuit,	because	
then	successive	edges	will	be	of	one	of	 the	forms	(i,	2i−1),	(i,	2i),	
(i+m,	 2i)	 or	 (i+m,	 2i−1).	 Then	 we	 can	 let	 x1,	 x2,	 …,	 xn	 be	 the	
successive	edges	encountered	in	the	Eulerian	circuit	and	they	will	
satisfy	the	problem’s	conditions.		
	

 

Figure 8.6. 
 

Now,	 each	 vertex’s	 indegree	 is	 equal	 to	 its	 outdegree,	 so	 we	
just	need	to	show	weak	connectivity	to	establish	that	there	is	an	
Eulerian	 circuit.	 We	 do	 this	 by	 strong	 induction.	 There	 is	 a	 path	
from	1	to	k:	since	there	is	a	path	from	1	to	j	where	2j	=	k	or	2j–1	=	
k,	and	an	edge	 from	 j	 to	k,	 there	 is	 a	path	 from	 1	to	k.	Thus	G	 is	
weakly	connected	and	hence	has	an	Eulerian	circuit.	■	

i i+m 

2i 2i–1 
i 
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Exercises 
	

Hall’s Theorem and Related Problems 
	
1. [Konig’s marriage theorem] 

Show	 that	 a	 k-regular bipartite graph	 G	 (all	 vertices	 have	
degree	k)	has	a	perfect	matching	(a	matching	covering	all	 its	
vertices).	

	
2. [Konig’s theorem] 

A	 matching	 in	 a	 graph	 G	 is	 a	 set	 M	 of	 edges	 such	 that	 each	
vertex	in	G	is	incident	to	at	most	one	edge	in	M.	A	vertex cover	
in	G	is	a	set	of	vertices	C	such	that	each	edge	is	incident	to	at 
least	 one	 vertex	 in	 C.	 Using	 Hall’s	 marriage	 theorem,	 show	
that	 in	 a	 bipartite	 graph	 G,	 the	 maximum	 possible	 size	 of	 a	
matching	 is	 equal	 to	 the	 minimum	 possible	 size	 of	 a	 vertex	
cover.		

	
3. [Vietnam TST 2001] 

A	club	has	42	members.	Suppose	that	for	any	31	members	in	
this	 club,	 there	 exists	 a	 boy	 and	 a	 girl	 among	 these	 31	
members	 who	 know	 each	 other.	 Show	 that	 we	 can	 form	 12	
disjoint	pairs	of	people,	each	pair	having	one	boy	and	one	girl,	
such	that	the	people	in	each	pair	know	each	other.	

	
4. [IMO Shortlist 2006, C6] 

Consider	 an	 upward	 equilateral	 triangle	 of	 side	 length	 n,	

consisting	 of	 n
2
	 unit	 triangles	 (by	 upward	 we	 mean	 with	

vertex	on	top	and	base	at	the	bottom).	Suppose	we	cut	out	n	
upward	 unit	 triangles	 from	 this	 figure,	 creating	 n	 triangular	
holes.	Call	the	resulting	figure	a	holey triangle.	A	diamond	is	a	
60-120	unit	rhombus.	Show	that	a	holey	triangle	T	can	be	tiled	
by	diamonds,	with	no	diamonds	overlapping,	covering	a	hole	
or	 sticking	 out	 of	 T	 if	 and	 only	 if	 the	 following	 holds:	 every	
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upward	 equilateral	 of	 side	 length	 k	 in	T	 has	 at	most	 k	 holes,	
for	all	1	≤	k	≤	n.		

	
5. [Dilworth’s theorem] 

A	 directed acyclic graph	 (DAG)	 is	 a	 directed	 graph	 with	 no	
directed	 cycles.	 An	 antichain	 in	 a	 DAG	 (with	 some	 abuse	 of	
notation)	is	a	set	of	vertices	such	that	no	two	vertices	in	this	
set	have	a	directed	path	between	them.	Show	that	the	size	of	
the	 maximum	 antichain	 of	 the	 DAG	is	 equal	 to	 the	 minimum	
number	 of	 disjoint	 paths	 into	 which	 the	 DAG	 can	 be	
decomposed.		

	
6. [Romanian TST 2005] 

Let	S	be	a	set	of	n
2
+1	positive	integers	such	that	in	any	subset	

X	 of	 S	 with	 n+1	 integers,	 there	 exist	 integers	 x	 ≠	 y	 such	 that	
x|y.	Show	that	there	exists	a	subset	S’	of	S	with	S’	=	{x1,	x2,	…	,	
xn+1}	such	that	xi|xi+1	for	each	1	≤	i	≤	n.			

	

Coloring Problems 
 
7. [Welsh-Powell theorem] (U*) 

A	proper coloring	of	the	vertices	of	a	graph	G	is	an	assignment	
of	 one	 color	 to	 each	 vertex	 of	 a	 graph	 G	 such	 that	 no	 two	
adjacent	 vertices	 in	 G	 have	 the	 same	 color.	 Let	 G	 be	 a	 graph	
with	vertices	having	degrees	d1	≥	d2	≥	…	≥	dn.	Show	that	there	
exists	a	proper	coloring	of	G	using	at	most	maxi	(min{i,	di+1}	
colors.		

	
8. [Dominating sets and coloring] (U*) 

If	a	graph	on	n	vertices	has	no	dominating	set	of	size	less	than	
k,	 then	show	 that	 its	 vertices	 can	 be	 properly	colored	 in	 n–k	
colors.			

	
9. [IMO 1992, Problem 3] 

Let	G	be	the	complete	graph	on	9	vertices.	Each	edge	is	either	
colored	blue	or	red	or	left	uncolored.	Find	the	smallest	value	



Chapter 8: Graph Theory  21 

of	n	such	that	if	n	edges	are	colored,	there	necessarily	exists	a	
monochromatic	triangle.	

	
10. [IMO Shortlist 1990] 

The	edges	of	a	K10	are	colored	red	and	blue.	Show	that	there	
exist	two	disjoint	monochromatic	odd	cycles,	both	of	the	same	
color.		

	
11. [Szekeres-Wilf theorem] (U*) 

Show	that	any	graph	G	can	be	properly	colored	using	at	most	
1+max	 Δ(G’)	 colors,	 where	 the	 maximum	 is	 taken	 over	 all	
induced	 subgraphs	 G’	 of	 G	 and	 Δ(G’)	 refers	 to	 the	 maximum	
degree	of	a	vertex	in	the	induced	subgraph	G’.			

	
12. [Generalization of USA TST 2001] 

Let	G be	a	directed	graph	on	n	vertices,	such	that	no	vertex	has	
out-degree	greater	than	k.	Show	that	the	vertices	of	G	can	be	
colored	in	2k+1	colors	such	that	no	two	vertices	of	 the	same	
color	have	a	directed	edge	between	them.	

	
13. [Brook’s theorem] (U*) 

We	 know	 from	 (i)	 that	 ∆+1	 colors	 are	 sufficient	 to	 properly	
color	 the	 vertices	 of	 a	 graph	 G,	 where	 ∆	 is	 the	 maximum	
degree	of	any	vertex	 in	G.	Show	that	 if	G	 is	connected	and	 is	
neither	 a	 complete	 graph	 nor	 an	 odd	 cycle,	 then	 actually	 ∆	
colors	suffice.		
[Easy	 version:	 prove	 the	 result	 above	 with	 the	 added	
condition	that	not	all	vertices	have	the	same	degree.]		

	
Turan’s theorem and applications 
	
14. [Turan’s theorem] (U*) 

The	Turan graph	T(n,	r)	 is	 the	graph	on	n	vertices	 formed	as	
follows:	 partition	 the	 set	 of	 n	 vertices	 into	 r	 equal	 or	 almost	
equal	(differing	by	1)	parts,	and	join	two	vertices	by	an	edge	if	
and	only	if	they	are	in	different	parts.	Note	that	T(n,	r)	has	no	
(r+1)-clique.	 Show	 that	 amongst	 all	 graphs	 having	 no	 (r+1)-
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clique,	 the	 Turan	 graph	 has	 the	 most	 edges.	 Hence,	 deduce	
that	 the	 maximum	 number	 of	 edges	 in	 a	 Kr+1-free	 graph	 is	
(���)��

��
.	 This	 generalizes	 the	 bound	 of	 n2/4	 edges	 in	 triangle-

free	graphs	that	we	proved	in	chapter	6.		
	
[Hint:	first	prove	the	following	claim:	there	do	not	exist	three	
vertices	u,	v,	w	such	that	uv	is	an	edge	in	G	but	uw	and	vw	are	
not.	 Show	 this	 by	 assuming	 the	 contrary	 and	 then	 making	
some	 adjustments	 to	 G	 to	 obtain	 a	 graph	 with	 more	 edges,	
contradicting	 the	 fact	 that	 G	 has	 the	 maximum	 possible	
number	 of	 edges	 amongst	 all	 Kr+1-free	 graphs.	 The	 claim	
establishes	 that	 if	 two	 vertices	 u	 and	 v	 have	 a	 common	 non-
neighbor,	 then	 u	 and	 v	 themselves	 are	 non-neighbors.	 This	
shows	 that	 G	 is	 k-partite	 for	 some	 k.	 Now	 show	 that	 the	
maximum	 number	 of	 edges	 will	 occur	 when	 k	 =	 r	 and	 the	
parts	are	equal	or	differ	by	1.]	
Remark:	 This	 method	 of	 proving	 that	 G	 is	 multipartite	 is	
extremely	 important,	 and	 is	 sometimes	 called	 Zykov	
symmetrization.		

	
15. [Poland 1997] 

There	 are	 n	 points	 on	 a	 unit	 circle.	 Show	 that	 at	 most	 n
2
/3	

pairs	of	these	points	are	at	distance	greater	than	√2.		
	
16. [IMO Shortlist 1989] 

155	birds	sit	on	the	circumference	of	a	circle.	It	is	possible	for	
there	 to	 be	 more	 than	 one	 bird	 at	 the	 same	 point.	 Birds	 at	
points	P	and	Q	are	mutually	visible	if	and	only	if	angle	POQ	≤	

10o,	 where	 O	 is	 the	 center	 of	 the	 circle.	 Determine	 the	
minimum	possible	number	of	pairs	of	mutually	visible	birds.	

	
17. [USA TST 2008] 

Given	 two	 points	 (x1,	 y1)	and	 (x2,	 y2)	 in	 the	coordinate	 plane,	
their	Manhattan distance	is	defined	as	 |x1−x2|	+	|y1−y2|.	Call	a	
pair	of	points	 (A,	B)	 in	 the	plane	harmonic	 if	1	<	d(A,	B)	≤	2.	
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Given	 100	 points	 in	 the	 plane,	 determine	 the	 maximum	
number	of	harmonic	pairs	among	them.		

	
	

More Extremal Graph problems 
	
18. [China TST 2012] 

Let	n	and	k	be	positive	integers	such	that	n	>	2	and	n/2	<	k	<	n.	
Let	G	be	a	graph	on	n	vertices	such	that	G	contains	no	(k+1)-
clique	 but	 the	 addition	 of	 any	 new	 edge	 to	 G	 would	 create	a	
(k+1)-clique.	Call	a	vertex	in	G	central	 if	it	 is	connected	to	all	
(n−1)	other	vertices.	Determine	 the	 least	possible	number	of	
central	vertices	in	G.	

	
19. [China TST 2011] 

Let	G	be	a	graph	on	3n2	vertices	(n	>	1),	with	no	vertex	having	
degree	 greater	 than	 4n.	 Suppose	 further	 that	 there	 exists	 a	
vertex	of	degree	one	and	that	for	any	two	points,	there	exists	a	
path	 of	 length	 at	 most	 3	 between	 them.	 Show	 that	 G	 has	 at	

least	(7n
2
–3n)/2	edges.		

	
20. [Generalization of IMO Shortlist 2013, C6] 

In	a	graph	G,	for	any	vertex	v,	there	are	at	most	2k	vertices	at	
distance	 3	 from	 it.	 Show	 that	 for	 any	 vertex	 u,	 there	 are	 at	
most	k(k+1)	vertices	at	distance	4	from	it.		

	
21. [IMO Shortlist 2004, C8] 

For	a	finite	graph	G,	let	f(G)	denote	the	number	of	triangles	in	
G	 and	 g(G)	 the	 number	 of	 tetrahedra	 (K4s).	 Determine	 the	

smallest	constant	c	such	that	g(G)3	≤	c f(G)4	for	all	graphs	G.		
	
22. [IMO Shortlist 2002, C7] 

In	 a	 group	 of	 120	 people,	 some	 pairs	 are	 friends.	 A	 weak	
quartet	 is	 a	 group	 of	 4	 people	 containing	 exactly	 one	 pair	 of	
friends.	 What	 is	 the	 maximum	 possible	 number	 of	 weak	
quartets?				
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Tournaments 
	
23. Show	 that	 if	 a	 tournament	 has	 a	directed	 cycle,	 then	 it	 has	 a	

directed	triangle.			
	
24. [Landau’s theorem] 

Call	 a	 vertex	 v	 in	 a	 tournament	 T	 a	 champion	 if	 for	 every	
vertex	u	in	T,	there	is	a	directed	path	from	v	to	u	in	T	of	length	
at	most	2.	Show	that	every	tournament	has	a	champion.		

	
25. [Moon-Moser theorem] 

A	 directed	 graph	 G	 is	 called	 strongly connected	 if	 there	 is	 a	
directed	path	from	each	vertex	in	G	to	every	other	vertex	in	G.	
A	 directed	 graph	 with	 n	 vertices	 is	 called	 vertex-pancyclic	 if	
every	 vertex	 is	 contained	 in	 a	 cycle	 of	 length	 p,	 for	 each	
3	≤	p	≤	n.	Show	that	a	strongly	connected	tournament	is	vertex	
pancyclic.			

	
26. [Based on USA TST 2009] 

Let	n>m>1	be	integers	and	let	G	be	a	tournament	on	n	vertices	
with	no	(m+1)-cycles.	Show	that	the	vertices	can	be	labeled	1,	
2,	…,	N	such	that	if	a	≥	b+m–1,	there	is	a	directed	edge	from	b	
to	a.	

	

Miscellaneous 
	
27. [Generalization of Saint Petersburg 2001] 

For	each	positive	integer	n,	show	that	there	exists	a	graph	on	
4n	vertices	with	exactly	two	vertices	having	degree	d,	for	each	
1	≤	d	≤	2n.		
Remark:	 The	 degree	 vector	 lemma	 kills	 this	 otherwise	
difficult	problem.		

	
28. [Iran 2001] 

In	 an	 n×n	 matrix,	 a	 generalized diagonal	 refers	 to	 a	 set	 of	 n	



Chapter 8: Graph Theory  25 

entries	with	one	in	each	row	and	one	in	each	column.	Let	M	be	
an	n×n	0-1	matrix,	and	suppose	M	has	exactly	one	generalized	
diagonal	containing	all	1s.	Show	that	it	is	possible	to	permute	
the	 rows	 and	 columns	 of	 M	 to	 obtain	 a	 matrix	 M’	 such	 that	
(i,	j)	entry	in	M’	is	0	for	all	1	≤	j	<	i	≤	n.		

	
29. [Generalization of Russia 2001]  

Let	G	be	a	tree	with	exactly	2n	leaves	(vertices	with	degree	1).	
Show	 that	 we	 can	 add	 n	 edges	 to	 G	 such	 that	 G	 becomes	
2-connected,	 that	is,	 the	destruction	of	any	edge	at	this	point	
would	still	leave	G	connected.		

	
30. [Russia 1997] 

Let	 m	 and	 n	 be	 odd	 integers.	 An	 m×n	 board	 is	 tiled	 with	
dominoes	such	that	exactly	one	square	is	left	uncovered.	One	
is	allowed	to	slide	vertical	dominoes	vertically	and	horizontal	
dominoes	 horizontally	 so	 as	 to	 occupy	 the	 empty	 square	
(thereby	changing	the	position	of	the	empty	square).	Suppose	
the	 empty	 square	 is	 initially	 at	 the	 bottom	 left	 corner	 of	 the	
board.	 Show	 that	 by	 a	 sequence	 of	 moves	 we	 can	 move	 the	
empty	square	to	any	of	the	other	corners.	

	
31. [Generalization of Japan 1997] 

Let	G	be	a	graph	on	n	vertices,	where	n	≥	9.	Suppose	that	for	
any	 5	 vertices	 in	 G,	 there	 exist	 at	 least	 two	 edges	 with	
endpoints	 amongst	 these	5	vertices.	Show	that	G	has	at	 least	
n(n−1)/8	edges.	Determine	all	n	for	which	equality	can	occur.		

	
32. [Japan 1997]  

Let	n	be	a	positive	integer.	Each	vertex	of	a	2n-gon	is	labeled	0	

or	 1.	 There	 are	 2n	 sequences	 obtained	 by	 starting	 at	 some	
vertex	 and	 reading	 the	 first	 n	 labels	 encountered	 clockwise.	

Show	that	there	exists	a	labelling	such	that	these	2
n
	sequences	

are	all	distinct.		
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33. [Based on USA TST 2011] 
In	an	undirected	graph	G,	all	edges	have	weight	either	1	or	2.	
For	each	vertex,	the	sum	of	the	weights	of	edges	incident	to	it	
is	 odd.	 Show	 that	 it	 is	 possible	 to	 orient	 the	 edges	 of	 G	 such	
that	 for	 each	 vertex,	 the	 absolute	 value	 of	 the	 difference	
between	 its	 in-weight	 and	 out-weight	 is	 1,	 where	 in-weight	
refers	to	the	sum	of	weights	of	incoming	edges	and	out-weight	
refers	to	the	sum	of	weights	of	outgoing	edges.		

	
34. [IMO Shortlist 1990] 

Consider	 the	 rectangle	 in	 the	 coordinate	 plane	 with	 vertices	
(0,	0),	(0,	m),	(n,	0)	and	(m,	n),	where	m	and	n	are	odd	positive	
integers.	This	rectangle	is	partitioned	into	triangles	such	that	
each	triangle	 in	 the	partition	has	at	 least	one	side	parallel	 to	
one	of	 the	coordinate	axes,	and	the	altitude	on	any	such	side	
has	 length	 1.	 Furthermore,	 any	 side	 that	 is	 not	 parallel	 to	 a	
coordinate	 axis	 is	 common	 to	 two	 triangles	 in	 the	 partition.	
Show	 that	 there	 exist	 two	 triangles	 in	 the	 partition	 each	
having	one	side	parallel	 to	the	x	axis	and	one	side	parallel	 to	
the	y	axis.		
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9. THE PROBABILISTIC METHOD 
	
	
	

Introduction 

Our	final	chapter	will	focus	on	an	idea	that	has	had	a	tremendous	
impact	 on	 combinatorics	 over	 the	 past	 sixty	 years,	 and	 that	 is	
playing	 a	 critical	 role	 in	 the	 “big	 data”	 driven	 applications	 of	
today’s	 digitized	 world.	 The	 probabilistic method	 is	 a	 technique	
that	 broadly	 refers	 to	 using	 arguments	 based	 on	 probability	 to	
prove	 results	 in	 fields	 not	 necessarily	 directly	 related	 to	
probability.	 Probabilistic	 combinatorics	 is	 an	 extremely	 active	
area	 of	 research	 today,	 and	 several,	 if	 not	 most,	 recent	
developments	 in	 graph	 theory,	 extremal	 combinatorics,	
computational	 geometry,	 and	 combinatorial	 algorithms	 have	
relied	 extensively	 on	 probabilistic	 arguments.	 In	 addition,	 the	
probabilistic	method	has	 led	 to	breakthroughs	 in	number	 theory	
and	 additive	 group	 theory,	 and	 has	 surprisingly	 elegant	
connections	 to	 information	 theory	 and	 the	 theory	 of	 error	
correcting	 codes.	 Modern	 paradigms	 for	 efficiently	 monitoring	
computer	 network	 traffic,	 finding	 hidden	 patterns	 in	 large	
datasets,	 and	 solving	 extremely	 large	 scale	 mathematical	
problems	have	leveraged	the	power	of	the	probabilistic	method	in	
advanced	ways.		
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Each	section	 in	 this	chapter	 illustrates	 one	general	method	of	

solving	 combinatorial	 problems	 via	 probabilistic	 arguments.	 We	
will	 assume	 knowledge	 of	 basic	 concepts	 from	 high	 school	
probability,	 such	 as	 the	 notion	 of	 random	 variables,	 expected	
value,	 variance,	 independent	 events,	 and	 mutually	 exclusive	
events.	  No	 formal	 background	 in	 Lebesgue	 integration	 or	 real	
analysis	is	required.		

 
 

	
 

Linearity of Expectation 
 

The	 linearity	 of	 expectation	 refers	 to	 the	 following	 (fairly	
intuitive)	principle:	if	X	is	the	sum	of	n	random	variables	X1,	X2,	…,	
Xn,	 then	 the	 expected	 value	 of	 X	 is	 equal	 to	 the	 sum	 of	 expected	
values	of	X1,	X2,	…,	Xn.	In	symbols,		
	

E[X]	=	E[X1	+	X2	+	…	+	Xn]	=	E[X1]	+	E[X2]	…	+	E[Xn].	
	

This	 holds	 even	 when	 the	 variables	 X1,	 X2,	 …,	 Xn	 are	 not	
independent	from	each	other.	Another	intuitive	principle	we	will	
use,	sometimes	referred	to	as	the	“pigeonhole	property”	(PHP)	of	
expectation,	is	that	a	random	variable	cannot	always	be	less	than	
its	 average.	 Similarly,	 it	 cannot	 always	 be	 more	 than	 its	 average.	
For	example,	if	the	average	age	at	a	party	is	24	years,	there	must	
be	at	least	one	person	at	most	24	years	old,	and	one	person	who	is	
at	least	24	years	old.		
	

How	can	we	use	this	to	solve	combinatorial	problems?		
	
Example 1 [Szele’s Theorem] 
For	 each	 n,	 show	 that	 there	 exists	 a	 tournament	 on	 n	 vertices	

having	at	least	
�!

����
	Hamiltonian	paths.		
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Answer:	
The	 basic	 idea	 is	 as	 follows:	 instead	 of	 explicitly	 constructing	 a	
tournament	 with	 the	 required	 properties,	 we	 use	 a	 randomized 
procedure	for	creating	some	tournament	T.	We	will	show	that	on 

average,	 the	 tournament	 we	 (randomly)	 construct	 contains	
�!

����	

Hamiltonian	 paths.	 Then	 by	 the	 pigeonhole	 principle,	 some	

tournament	must	contain	at	least	
�!

����
	Hamiltonian	paths.		

	
The	randomized	procedure	is	to	construct	a	tournament	where	

each	 of	 the	 matches	 is	 decided	 independently	 by	 a	 flip	 of	 a	 fair	
coin.	Thus	for	two	vertices	u	and	v,	the	probability	that	u	lost	to	v	
is	 0.5	 and	 vice	 versa.	 To	 compute	 the	 expected	 total	 number	 of	
Hamiltonian	 paths,	 observe	 that	 each	 Hamiltonian	 path	
corresponds	to	a	permutation	of	the	vertices	of	the	graph.	
	

Consider	a	random	permutation	of	the	vertices	(v1,	v2,	v3,	…,	vn).	
For	this	sequence	(in	order)	to	form	a	Hamiltonian	path,	we	need	
to	 have	 v1	 lost	 to	 v2,	 v2	 lost	 to	 v3,	 …,	 vn-1	 lost	 to	 vn.	 Each	 of	 these	
happens	with	probability	0.5,	so	the	probability	that	they	all	occur	

is	 (0.5)
n-1

.	Thus,	each	permutation	of	 the	vertices	has	probability	

(0.5)n-1	of	being	a	Hamiltonian	path,	and	there	are	n!	permutations	
that	can	give	rise	to	Hamiltonian	paths.	Hence	the	expected	total	
number	 of	 Hamilton	 paths,	 by	 the	 linearity	 of	 expectation,	 is	

n!/2
n-1.	

It	 follows	 that	 some	 tournament	 must	 have	 at	 least	 the	
expected	number	of	Hamiltonian	paths.	■	
	
Example 2 [Generalization of MOP 2010] 
Let	G	be	a	graph	with	E	edges	and	n	vertices	with	degrees	d1,	d2,	…,	

dn.	Let	k	be	an	integer	with	k	≤	
��

�
.	Show	that	G	contains	an	induced	

subgraph	H	such	 that	H	contains	no	Kk+1	and	H	has	at	 least	
���

����
	

vertices.	(Recall	that	a	Kk+1	is	a	complete	graph	on	k+1	vertices.)	
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Answer: 
The basic idea 
Note	that	it	if	all	the	vertices	in	H	have	degree	at	most	k-1	(in	H),	
then	 H	 clearly	 cannot	 contain	 a	 Kk+1.	 This	 gives	 us	 the	 following	
idea	for	a	greedy	construction.	
	

Take	 a	 random	 permutation	 of	 the	 vertices	 v1v2…vn.	 Starting	
from	v1	and	continuing,	we	select	vertex	vi	if	and	only	if	amongst	vi	
and	its	neighbors,	vi	is	one	of	the	first	k	appearing	in	the	sequence.	
This	 ensures	 that	 every	 chosen	 vertex	 has	 at	 most	 k-1	 chosen	
neighbors,	 so	 the	 final	 set	 of	 chosen	 vertices	 will	 not	 contain	 an	
induced	 Kk+1.	 Then	 we	 just	 need	 to	 show	 that	 the	 expected	

number	of	chosen	vertices	is	at	least	
���

����
.		

	
Computing the expectation 

Now,	each	vertex	vi	will	be	chosen	with	probability	
�

����
	,	where	di	

is	its	degree.	This	is	because	vi	is	selected	if	and	only	if	amongst	vi	
and	 its	 di	 neighbors,	 vi	 is	 amongst	 the	 first	 k in	 the	 permutation.	

The	expected	number	of	chosen	vertices	is	hence	∑
�

����
�
��� .		

	
And the rest is just algebra…  
The	 function	 1/(x+1)	 is	 convex	 (check	 this).	 Hence	 by	 Jensen’s	

inequality,	 ∑
�

����
�
��� 	 ≥	 �

�

���
,	 where	 d	 is	 the	 average	 degree	

(
∑ ��
�
���

�
).	Finally	using	d	=	

��

�
	and	multiplying	by	k	on	both	sides	we	

get	the	result.	■	
	

Remark 1:  Note	 that	 “
���

����
”	 in	 the	 problem	 can	 be	 replaced	 by	

“∑
�

����
�
��� ”.	 Also	 note	 that	

���

����
	 is	 equal	 to	

��

���
,	 where	 d	 is	 the	

average	 degree	 of	 a	 vertex,	 that	 is,	 d	 =	 2E/n.	 Both results are 
extremely useful.	The	summation	form	is	obviously	more	useful	
in	situations	when	we	have	(or	can	find)	some	information	about	
the	 degrees	 of	 individual	 vertices	 in	 the	 graph	 we	 are	 analyzing	
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(see	example	5),	whereas	the	other	two	forms	are	useful	when	we	
have	 some	 information	 about	 the	 total	 number	 of	 edges	 in	 a	
graph.	 
	
Corollary 1: Any	graph	G	with	n	vertices	and	E	edges	contains	an	

independent	set	containing	 at	 least	
��

����
	 vertices.	 (Recall	 that	 an	

independent	 set	 is	 a	 set	 of	 vertices	 such	 that	 no	 two	 vertices	 in	
that	set	have	an	edge	between	them.)	 
	
Proof:	 Note	 that	 an	 independent	 set	 can	 be	 interpreted	 as	 a	 K2-
free	 graph.	 Apply	 the	 above	 result	 for	 k	 =	 1,	 and	 the	 corollary	
follows.	■	
	
Corollary 2: A	tree	T	on	n	vertices	has	an	independent	set	of	size	
greater	than	n/3. 
	
Proof: Apply	corollary	1,	taking	E	=	n	–	1.	■		
(Exercise:	what	is	the	best	constant	c	such	that	a	tree	always	has	
an	independent	set	of	size	at	least	n/c?)	
	
Remark 2:	The	above	problem	is	representative	of	a	typical	class	
of	 problems	 in	extremal	graph	 theory.	These	 problems	 ask	us	 to	
show	 that	 in	 graphs	 under	 certain	 conditions	 there	 exist	
sufficiently	large	or	small	subgraphs	with	certain	properties.		
	
Example 3 [dominating sets] 
Show	that	if	the	minimum	degree	in	an	n	vertex	graph	G	is	δ	>	1,	

then	G	has	a	dominating set	containing	at	most	n	
����(���)

���
	vertices.		

	
Answer: 
Form	a	subset	S	of	the	vertices	of	G	by	choosing	each	vertex	with	
probability	p,	where	p	is	a	parameter	in	(0,	1)	we	will	specify	later.	
Let	T be	the	set	of	vertices	that	have	no	neighbor	in	S.	Then	S	⋃ �	
is	a	dominating	set.	We	now	estimate	its	expected	size.		
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Clearly	E[|S|]	=	np.	The	probability	that	a	vertex	v	is	in	T	is	the	
probability	that	neither	v	nor	any	of	its	neighbors	is	in	S.	This	is	at	
most	 (1 − �)���,	 since	 v	 has	 at	 least	 d	 neighbors.	 Thus	 E[|T|]	 ≤	

�(1 − �)���	≤	����(���).		
	

Finally,	 E[|S	 ∪ 	 T|]	 ≤	 �� + ����(���).	 To	 minimize	 this	

expression,	 we	 choose	 p	 =	
��	(���)

���
,	 and	 we	 get	 E[|S	 ∪ 	 T|]	 ≤	

n	
����(���)

���
.	There	exists	some	S	and	T	such	that	|S	∪ 	T|	is	at	most	

the	expected	value,	and	we	are	done.	■	
	

Remark 1:	The	value	of	p	minimizing	the	expression	np	+	ne
-p(d+1)	

is	found	by	choosing	p	so	that	the	derivative	with	respect	to	p	is	0.	
Remember	 that	 p	 is	a	 parameter	 we	 are	 free	 to	choose,	 unlike	 n	
and	 d.	 We	 could	 have	 also	 directly	 chosen	 p	 to	 be	 the	 value	

minimizing	 np	 +	 n(1−p)d+1,	 and	 we	 could	 have	 skipped	 the	 step	

where	we	estimate	n(1−p)d+1	≤	ne-p(d+1).	Although	this	would	give	a	
slightly	 sharper	 bound,	 it	 would	 have	 been	 a	 lot	 uglier.	 Anyway	

both	bounds	asymptotically	approach	
����

�
.		

	
Remark 2:	 The	 basic	 idea	 in	 this	 proof	 is	 quite	 typical.	 Pick	
something	 randomly,	 and	 then	 make	 adjustments	 for	 whatever	
got	missed.		
 
Example 4 [USAMO 2010-6]	
A	blackboard	contains	68	pairs	of	nonzero	integers.	Suppose	that	
for	 no	 positive	 integer	 k	 do	 both	 the	 pairs	 (k,	 k)	 and	 (−k,	 −k)	
appear	 on	 the	 blackboard.	 A	 student	 erases	 some	 of	 the	 136	
integers,	subject	to	the	condition	that	no	two	erased	integers	may	
add	 to	 0.	 The	 student	 then	 scores	 one	 point	 for	 each	 of	 the	 68	
pairs	 in	 which	 at	 least	 one	 integer	 is	 erased.	 Determine,	 with	
proof,	 the	 largest	 number	 N	 of	 points	 that	 the	 student	 can	
guarantee	to	score	regardless	of	which	68	pairs	have	been	written	
on	the	board.		
Note:	The	68	pairs	need	not	all	be	distinct;	some	may	be	repeated.	
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Answer: 
Note	 that	 if	 (j,	 j)	 occurs	 then	 (−j,	 −j)	 does	 not,	 so	 we	 can	 WLOG	
assume	that	if	(j,	j)	occurs	then	j	>	0	(by	replacing	j	by	(−j)).		
	

Now	 for	 each	 integer	 k	 >	 0,	 we	 can	 either	 delete	 all	
appearances	of	k	on	the	board	(if	any)	OR	all	appearances	of	(−k)	
(if	 any),	 but	 not	 both.	 So,	 for	 each	 k	 >	 0,	 we	 delete	 all	 k’s	 with	
probability	 p,	 and	 otherwise	 delete	 all	 (−k)’s,	 where	 p	 is	 a	
parameter	 in	 (1/2,	 1)	 to	 be	 specified	 later.	 We	 now	 consider	 3	
types	of	pairs	of	numbers	that	can	occur,	and	in	each	case	bound	
the	probability	that	we	score	a	point.	
	
(i) A	pair	of	the	form	(k,	k)	

We	score	a	point	for	 this	pair	with	probability	p,	since	k	 is	
deleted	with	probability	p.		

	
(ii) A	pair	of	the	form	(k,	−k)	

We	score	a	point	with	probability	1,	since	we	delete	either	k	
or	(−k)		

	
(iii) A	pair	of	the	form	(a,	b),	where	b	≠	±a	

We	score	a	point	with	probability	(1	–	P[a	not	deleted]	×	P[b	

not	deleted])	≥	(1	-	p
2
).	Note	that	we	are	using	p	>	(1-p).			

	
In	 all	 the	 above	 cases,	 the	 probability	 of	 scoring	 a	 point	 is	 at 

least	 min	 {p,	 (1−p2)}.	 Thus	 the	 expected	 number	 of	 points	 we	

score	 totally	 is	 at	 least	 68	 ×	 min	 {p,	 (1−p2)}.	 This	 quantity	 is	

maximized	by	setting	p	=	
√���

�
,	and	at	this	point	the	expectation	is	

at	least	68	×	p	=	68	×	
√���

�
,	which	is	greater	than	42.	Therefore,	it	is	

always	possible	to	score	at least 43 points.		
	

We	 leave	 it	 to	 the	 reader	 to	 construct	 an	 example	
demonstrating	 that	 it	 is	 not	 always	 possible	 to	 score	 44	 points.	
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This	will	show	that	the	bound	of	43	is	tight,	and	hence	the	answer	
is	43.	■	
	
Example 5 [IMO Shortlist 2012, C7] 

There	are	2
500

	points	on	a	circle	labeled	1,	2,	…,	2
500

	in	some	order.	
Define	the	value	of	a	chord	joining	two	of	these	points	as	the	sum	
of	numbers	at	its	ends.	Prove	that	there	exist	100	pairwise	disjoint	
(nonintersecting)	chords	with	equal	values.	 

Answer: 
Step 1: Basic observations 

Let	n	=	2
499

.	There	are	���
�
�	chords	joining	pairs	of	labeled	points,	

and	all	chord	values	clearly	belong	to	{3,	4,	…,	4n–1}.	Furthermore,	
note	that	chords	with	a	common	endpoint	have	different	values.	

Step 2: Interpretation and reduction to familiar terms 
Let	 Gc	 denote	 the	 graph	 with	 vertices	 representing	 chords	 with	
value	 c.	 Two	 vertices	 in	 Gc	 are	 neighbors	 if	 the	 corresponding	
chords	 intersect.	(Note:	don’t	confuse	vertices	 in	our	graphs	with	
points	 on	 the	 circle.)	 So	 we’re	 basically	 just	 looking	 for	 a	 large 
independent set	in	some	Gc.	We	already	know	that	by	example	2,	

each	Gc	has	an	independent	set	of	size	at	least	I(Gc)	=	∑
�

����
�∈��

	.	

By	 the	 pigeonhole	 principle,	 it	 now	 suffices	 to	 show	 that	 the	
average	of	I(Gc)	over	all	values	c	is	at	least	100.	

	
Step 3: From graphs to individual vertices 
Note	that	the	average	value	of	I(Gc)	is	

�

����
	∑ �(��)

����
��� 	=	

�

����
	∑ (∑

�

����
�∈��

)����
���  

The	double	summation	on	the	right	 is	 nothing	but	 the	sum	of	
�

����
	over	all 2n vertices,	since	each	vertex	belongs	to	exactly	one	

of	the	4n−3	graphs.		
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Step 4: Estimating the degrees 
For	 a	 given	 chord	 L,	 let	 m(L)	 denote	 the	 number	 of	 points	
contained	by	its	minor	arc.	m(L)	=	0	if	the	chord	joins	consecutive	
points	and	m(L)	=	n−1	if	the	chord	is	a	diameter.	Clearly,	a	chord	L	
can	intersect	at	most	m(L)	other	chords.		

Now	for	each	i	∈	{0,	1,	2,	…,	n−1},	there	are	exactly	2n	chords	
with	m(L)	=	i.	Thus	for	each	i	∈	{0,	1,	2,	…,	n−1},	there	are	at	least	

2n	vertices	with	degree	at	most	i.	Therefore,	the	sum	of	
�

����
	over	

all	vertices	is	at	least	∑
��

�
�
��� .	Finally,		

	

Average	of		I(Gc)	≥	
��

����
	∑

�

�
�
��� 	>	

�

�
	ln(n+1)	

	

>	
�

�
	ln(2

499
)	=	

���	��	(�)

�
	>	249.5	×	0.69	>	100.	

	
This	proves	the	desired	result.	■	

	

Remark:	In	fact,	
���	��	(�)

�
	>	172.	Even	with	rather	loose	estimates	

throughout,	this	proof	improves	the	bound	significantly	from	100	

to	 172.	 More	 generally,	 2500	 and	 100	 can	 be	 replaced	 by	 2n	 and	
��	��	(���)

����
.		

	
Example 6 [Biclique covering]	
In	a	certain	school	with	n	students,	amongst	any	(α+1)	students,	
there	 exists	 at	 least	 one	 pair	 who	 are	 friends	 (friendship	 is	 a	
symmetric	 relation	 here).	 The	 principal	 wishes	 to	 organize	 a	
series	 of	 basketball	 matches	 M1,	 M2,	 …,	 Mj	 under	 certain	
constraints.	Each	match	Mi	 is	played	by	 two	teams	 Ai	and	Bi,	and	
each	 team	 consists	 of	 1	 or	 more	 students.	 Furthermore,	 each	
person	in	Ai	must	be	friends	with	each	person	in	Bi.	Finally,	for	any	
pair	of	friends	u	and	v,	they	must	appear	on	opposite	teams	in	at	
least	one	match.	Note	that	a	particular	student	can	participate	 in	
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any	number	of	matches,	and	different	matches	need	not	be	played	
by	a	disjoint	set	of	people.	Let	|Mi|	denote	the	number	of	students	
playing	 match	 Mi,	 and	 let	 S	 denote	 the	 sum	 of	 |Mi|	 over	 all	
matches.	Show	that	S	≥	nlog2(n/α).	
		
Answer: 
For	each	match	Mi,	randomly	fix	the	winner	by	flipping	a	fair	coin	
(note	that	we	are	free	to	do	this	as	the	problem	mentions	nothing	
about	 the	 winners	 of	 matches).	 Hence	 for	 each	 i,	 Ai	 wins	 with	
probability	 0.5	 and	 Bi	 wins	 with	 probability	 0.5.	 Call	 a	 student	 a	
champion	if	he	is	on	the	winning	team	of	each	match	that	he	plays.		
	
Key observation:	the	total	number	of	champions	is	at	most	α.		
Proof:	 If	 there	 were	 α+1	 champions,	 some	 pair	 must	 be	 friends	
(see	 first	 statement	 of	 the	 problem),	 and	 hence	 they	 must	 have	
played	 against	 each	 other	 in	 some	 match.	 But	 then	 one	 of	 them	
would	have	lost	that	match	and	would	hence	not	be	a	champion;	
contradiction.	
	

On	the	other	hand,	call	the	students	s1,	s2,	…,	sn.	The	probability	
that	 a	 student	 sk	 becomes	 a	 champion	 is	 2�� �,	 where	 mk	 is	 the	
number	 of	 matches	 played	 by	 sk.	 Hence	 the	 expected	 number	 of	
champions	 is	 ∑ 2�� ��

��� .	 Applying	 the	 AM-GM	 inequality,	

∑ 2�� ��
��� 	 ≥	 n	 ×	 2�(∑ � �)/�

�
��� 	 =	 n	 ×	 2

-S/n
.	 But	 the	 number	 of	

champions	 is	bounded	by	α,	 so	 the	expectation	obviously	cannot	

exceed	α.	Hence	n	×	2-S/n	≤	α.	This	implies	S/n	≥	log2(n/α).	Hence	
proved.	■	
	
Remark 1:	As	a	corollary,	note	that	the	number	of	matches	must	
be	 at	 least	 log2(n/α),	 since	 each	 match	 contributes	 at	 most	 n	
people	to	the	sum.	
	
Remark 2:	Interpreted	graph	theoretically,	this	problem	is	about	
covering	 the	 edges	 of	 a	 graph	 by	 bipartite	 cliques	 (complete	
bipartite	 graphs).	 S	 is	 the	 sum	 of	 the	 number	 of	vertices	 in	 each	
bipartite	clique	and	α	is	the	independence	number	of	the	graph.		
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Mutually Exclusive Events 
	
Two	events	A	and	B	are	said	to	be	mutually exclusive	if	they	cannot	
both	 occur.	 For	 instance,	 if	 an	 integer	 is	 selected	 at	 random,	 the	
events	 A:	 the	 integer	 is	 divisible	by	5,	and	B:	 the	 last	digit	of	 the	
integer	is	3	are	mutually	exclusive.	More	formally,	P(A|B)	=	P(B|A)	
=	 0.	 If	 n	 events	 are	 pairwise	 mutually	 exclusive,	 then	 no	 two	 of	
them	 can	 simultaneously	 occur.	 A	 useful	 property	 of	 mutually	
exclusive	events	is	that	if	E1,	E2,	…,	En	are	mutually	exclusive,	then	
the	 probability	 that	 some	 Ei	 occurs	 is	 equal	 to	 the	 sum	 of	 the	
individual	probabilities:	P[⋃ ��]

�
��� 	=	P[E1]	+	P[E2]		+	…	+	P[En].	On	

the	other	hand,	all	probabilities	are	bounded	by	1,	so	P[⋃ ��]
�
��� 	≤	

1,	which	implies	P[E1]	+	P[E2]		+	…	+	P[En]	≤	1.	Thus	we	have	the	
following	simple	lemma:		
	
Lemma: If	E1,	E2,	…,	En	are	mutually	exclusive	events,	then	P[E1]	+	
P[E2]		+	…	+	P[En]	≤	1.	
	

Like	 so	 many	 other	 simple	 facts	 we	 have	 encountered	 in	 this	
book,	 this	 lemma	 can	 be	 exploited	 in	 non-trivial	 ways	 to	 give	
elegant	 proofs	 for	 several	 combinatorial	 results.	 The	 next	 five	
examples	demonstrate	how.	
	
Example 7 [Lubell-Yamamoto-Meshalkin Inequality] 
Let	A1,	A2,	…,	As	be	subsets	of	{1,	2,…,	n}	such	that	Ai is	not	a	subset	
of	Aj	for	any	i	and	j.	Let	ai	denote	|Ai|for	each i.	Show	that	

∑
�

��
��
�

�
��� 	≤	1.	

Answer 
Take	a	random	permutation	of	{1,	2,	…,	n}.	Let	Ei	denote	the	event	
that	 Ai	 appears	 as	 an	 initial	 segment	 of	 the	 permutation.	 (For	
example,	if	n	=	5,	the	permutation	is	3,	4,	2,	5,	1	and	A2	=	{2,	3,	4},	
then	event	E2	occurs	since	the	elements	of	A2	match	the	first	three	
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elements	 of	 the	 permutation.)	 The	 key	 observation	 is	 that	 the	
events	 Ei	 are	 mutually exclusive:	 if	 two	 different	 sets	 matched	
initial	 segments	 of	 the	 permutation,	 one	 set	 would	 contain	 the	

other.	Also	note	that	P[Ei]	=	
�

��
��
�
	,	as	there	are	��

��
�	different	choices	

for	the	 first	ai	elements.	Therefore,	 the	probability	of	some	event	

occurring	is	P[E1]	+	P[E2]		+	…	+	P[Es]	=	∑
�

��
��
�

�
��� .	But	probability	is	

always	at	most	1,	so	∑
�

��
��
�

�
��� 	≤	1.	■	

	
Corollary [Sperner’s theorem]  
Let	A1,	A2,	…,	As	be	subsets	of	{1,	2,…,	n}	such	that	Ai	is	not	a	subset	
of	Aj	for	any	i	and	j.	Such	a	family	of	sets	is	known	as	an	antichain. 

Show	that	s	 ≤	�
�

�
�

�
�
�.	 In	other	words,	an	antichain	over	 the	power	

set	Pn	has	cardinality	at	most	�
�

�
�

�
�
�.	Note	that	equality	is	achieved	

by	 taking	 all	 sets	 of	 size	 [n/2],	 since	 two	 sets	 of	 the	 same	 size	
cannot	contain	each	other.		
	
Proof: 

Since	 � �
⌊�/�⌋

�	 is	 the	 largest	 binomial	 coefficient,	 � �
⌊�/�⌋

�	 ≥	 ��
��
�	 for	

each	 ai.	 Therefore	 ∑
�

��
��
�

�
��� 	 ≥	 ∑

�

� �
⌊�/�⌋�

�
��� 	 =	

�

� �
⌊�/�⌋�

.	 Combining	 this	

with	 the	 Lubell-Yamamoto-Meshalkin	 inequality	 gives	
�

� �
⌊�/�⌋�

	 ≤	 1,	

and	the	result	follows.		■	
		
Example 8 [Bollobas’ Theorem] 
Let	A1,	A2,	…,	An	be	sets	of	cardinality	s,	and	let	B1,	…,	Bn	be	sets	of	
cardinality	 t.	Further	suppose	 that	Ai	∩	Bj	=	∅	 if	and	only	 if	 i	=	 j.	
Show	that	n	≤	����

�
�.		

	
Answer: 
We	use	a	visual	trick	similar	to	that	used	in	the	previous	problem.	
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Take	 a	 random	 permutation	 of	 all	 elements	 in	 S,	 where	 S	 is	 the	
union	 of	 all	 2n	 sets.	 Let	 Ei	 be	 the	 event	 that	 all	 elements	 of	 Ai	
precede	all	elements	of	Bi	in	the	permutation	(in	other	words,	the	
first	element	 of	 Bi	 appears	 only	 after	 the	 last	 element	 of	 Ai).	 The	
key	 observation	 is	 that	 no	 two	 events	 Ei	 and	 Ej	 can	 occur	
simultaneously:	 if	Ei	and	Ej	occurred	simultaneously,	 then	Ai	∩	Bj	
or	Aj	∩	Bi	would	be	∅,	as	these	sets	would	be	too	“far	apart”	in	the	
permutation.	 Hence,	 as	 in	 the	 previous	 problem,	 probability	 of	

some	event	occurring	is	P[E1]	+	…	+	P[En]	=	
�

����� �
	≤	1,	implying	the	

result.	■	
	
Example 9 [Tuza’s Theorem (Variant of Bollobas’ Theorem)] 
Let	A1,	A2,	…,	An	and	B1,	B2,	…,	Bn	be	sets	such	that	Ai	∩	Bi	=	0	for	all	i	
and	for	i	≠	j	(Ai	∩	Bj)	∪ 	(Aj	∩	Bi)	≠ 	∅.	In	other	words,	either	Ai	∩	Bj	
≠ 	∅	or	Aj	∩	Bi	≠ 	∅	(or	both).	Then	show	that	for	any	positive	real	

number	p	<	1,	∑ �|��|�
��� (1 − �)|��|	≤	1.		

Answer: 
The	form	of	the	result	we	need,	namely	“∑ �|��|�

��� (1 − �)|��|	≤	1”,	
gives	us	a	good	clue	as	to	what	our	random	process	should	be.	Let	
U	be	the	universe	of	all	elements	in	some	Ai	or	Bi.	Randomly	select	
elements	 from	 U	 with	 probability	 p.	 Then	 �|��|(1 − �)|��|	 clearly	
represents	 the	 probability	 that	 all	 elements	 from	 Ai	 are	 selected	
and	 no	 elements	 from	 Bi	 are	 selected.	 Call	 this	 event	 Ei.	 For	 any	
pair	i	≠	j,	we	claim	that	Ei	and	Ej	are	independent.	Suppose	to	the	
contrary	that	Ei	and	Ej	both	occur	for	some	i	≠	j.	Then	that	means	
that	all	elements	of	Ai	∪ 	Aj	have	been	selected,	but	no	elements	of	
Bi	∪ 	Bj	have	been	selected.	This	implies	that	the	sets	(Ai	∪ 	Aj)	and	
(Bi	∪ 	Bj)	are	disjoint,	so	Ai	∩	Bj	=	∅	and	Aj	∩	Bi	≠ 	∅.	Contradiction.	
Thus	 the	 n	 events	 are	 pairwise	 mutually	 exclusive,	 so	 the	
probability	that	some	event	occurs	is	P[E1]	+	…	+	P[En]	≤	1,	which	

implies	∑ �|��|�
��� (1 − �)|��|	≤	1.	■	

Corollary: 
Let	A1,	A2,	…,	An	be	sets	of	cardinality	a	and	let	B1,	B2,	…,	Bn	be	sets	
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of	cardinality	b,	such	that	Ai	∩	Bi	=	0	for	all	i	and	for	i	≠	j	(Ai	∩	Bj)	∪ 	

(Aj	∩	Bi)	≠ 	∅.	Show	that	n	≤	
(���)�� �

���� .	 

Proof: 

Simply	plug	in	p	=	
�

���
	in	Tuza’s	theorem.	■	

 
Example 10 [Original Problem, Inspired by China TST 1997] 
There	are	n	ice	cream	flavors	offered	at	an	ice	cream	parlor,	and	k	
different	cone	sizes.	A	group	of	kids	buys	ice	creams	such	that	no	
student	 buys	 more	 than	 one	 ice	 cream	 of	 a	 particular	 flavor.	
Suppose	that	for	any	two	flavors,	there	exists	some	kid	who	buys	
both	 flavors	 but	 in	 different	 cone	 sizes.	 Show	 that	 the	 total	
number	of	ice	creams	bought	by	this	group	is	at	least	nlogkn.		

Answer: 
How	 do	 we	 go	 from	 innocuous	 ice	 cream	 to	 those	 nasty	
logarithms?!	Answer:	The	Probabilistic	Method.	

Label	the	k	sizes	S1,	S2,	…,	Sk	and	the	n	flavors	F1,	F2,	…,	Fn.	Now	
randomly	 label	each	student	 with	one	 integer	 in	 {1,	 2,	 …,	 k}.	 For	
each	 flavor	Fi,	 let	Ei	denote	 the	event	 that	“all	 students	eating	an	
ice	 cream	 of	 flavor	 Fi	 are	 eating	 the	 size	 corresponding	 to	 their	
label”.	 For	 example,	 this	would	mean	 that	 a	student	 with	 label	 2	
eating	flavor	Fi	must	be	eating	it	in	cone	size	S2.		

	
The	probability	of	Ei	is	��|��|	,	where	|��|	is	the	number	of	kids	

eating	 flavor	 Fi.	 This	 is	 because	 each	 of	 these	 |Fi|	 kids	 has	
probability	1/k	of	eating	flavor	Fi	from	the	“correct”	size	cone,	as	
there	are	k	sizes.			

The	key	observation	is	that	the	Ei’s	are	mutually	exclusive:	this	
follows	 from	 the	 fact	 that	 for	 any	 two	 flavors,	 there	 exists	 some	
kid	who	buys	both	flavors	but	in	different	cone	sizes,	meaning	that	
he	 cannot	 be	 eating	 from	 the	 size	 corresponding	 to	 his	 label	 for	
both	flavors.		

It	 follows	 that	 1	 ≥	 P(⋃ ��)	 =	 ∑ ��|��|�
��� 	 ≥	 n	 ×	 ��∑ |��|

�
��� 	 �⁄ 			=	
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nk-T/n,	where	T	=	∑ |��|
�
��� 	is	the	total	number	of	ice	creams	bought.	

Here	 we	 have	 used	 the	 AM-GM	 inequality.	 Hence	 k
T/n	 ≥	 n,	 which	

implies	that	T	≥	nlogkn,	as	desired.	■	
	
Example 11 [IMO Shortlist 2009, C4] 

Consider	a	2m	×	2m	chessboard,	where	m	is	a	positive	integer.	This	
chessboard	 is	 partitioned	 into	 rectangles	 along	 squares	 of	 the	

board.	Further,	each	of	the	2
m

	squares	along	the	main	diagonal	is	
covered	 by	 a	 separate	 unit	 square.	 Determine	 the	 minimum	
possible	value	of	the	sum	of	perimeters	of	all	the	rectangles	in	the	
partition.	

Answer: 
Squares	 with	 position	 (i,	 i)	 have	 already	 been	 covered,	 and	 they	
symmetrically	divide	 the	board	 into	 two	parts.	 By	symmetry,	we	
can	restrict	our	attention	to	the	bottom	portion	for	now.	
	

Suppose	the	portion	of	the	board	below	the	diagonal	has	been	
partitioned.	 Let	 Ri	 denote	 the	 set	 of	 rectangles	 covering	 at	 least	
one	square	in	the	ith	row,	and	Ci	the	set	of	rectangles	covering	at	
least	 one	 square	 in	 the	 ith	 column.	 The	 total	 perimeter	 is	
P	=	2	∑(|��|+ |��|),	 because	 each	 rectangle	 in	 Ri	 traces	 two	
vertical	 segments	 in	 row	 i	 and	 each	 rectangle	 in	 Ci	 traces	 two	
horizontal	segments	in	column	i.		

	
Now	 randomly	 form	 a	 set	 S	 of	 rectangles	 by	 selecting	 each	

rectangle	 in	 the	 partition	 with	 probability	 ½.	 Let	 Ei	 denote	 the	
event	that	all	rectangles	from	Ri	are	chosen	and	no	rectangle	from	

Ci	 is	chosen.	Clearly,	P[Ei]	=	2�(|��|�|��|).	But	 for	distinct	 i	and	j,	Ei	
implies	that	the	rectangle	covering	(i,	j)	is	in	S,	whereas	Ej	implies	
the	 rectangle	 covering	 (i,	 j)	 is	 not	 in	 S.	 Hence	 the Ei’s are 
independent.			
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Figure 9.1. The shaded rectangle belongs to R2, R3 and C4. Its 
perimeter is 6, twice the number of sets it belongs to. 

	

Therefore,	 ∑ 2�(|��|�|��|)	≤	 1.	 But	 by	 the	 AM-GM	 inequality,	

∑ 2�(|��|�|��|)��

��� ≥	 2� 	 ×	 2�∑(|��|�|��|)/�
�

	 =	 2m	 ×	 2��/�
� ��

.	 Hence	

2�/�
� ��

≥	2m,	so	P	≥	� 2� ��.		
	

The	 same	 bound	 holds	 for	 the	 upper	 portion,	 so	 the	 overall	
perimeter	 is	 at	 least	 2P	 +	 sum	 of	 perimeters	 of	 unit	 squares	 on	

diagonal	≥	2(� 2� ��)	+	4(2� )	=	(m+1)2
m+2

.	To	show	that	this	can	
be	 achieved,	 use	 a	 recursive	 construction:	 split	 the	 board	 into	 4	

squares	of	sizes	2
m-1

	x	2
m-1

.	Two	of	them	have	no	squares	along	the	
main	 diagonal;	 leave	 these	 squares	 as	 they	 are.	 Two	 of	 them	
already	 have	 unit	 squares	 along	 their	 diagonals;	 recursively	
partition	these.		■	
	

	
 

Bounding Violated Conditions 
	
In	practically	all	existence	problems,	we	essentially	need	to	prove	
the	existence	of	an	object	that	satisfies	certain	conditions.	A	useful	
idea	 is	 as	 follows:	construct	 the	object	 randomly,	and	then	show	

C1 C2 C3 C4 C5 

R1 

R2 

R3 

R4 

R5 



Chapter 9: The Probabilistic Method
  17 

that	the	expected	number	of	conditions	violated	is	less	than	1.	In	
other	 words,	 the	 expected	 number	 of	 “failures”	 -	 conditions	 that	
fail	to	hold	-	should	be	less	than	1.	Then	some	object	must	violate	
0	 conditions;	 this	 is	 the	 required	 object.	 The	 next	 four	 examples	
illustrate	this	idea.		

Example 12 [Erdos’ theorem on tournaments] 
Say	 that	 a	 tournament	 has	 the	 property	 Pk	 if	 for	 every	 set	 of	 k	

players	there	is	one	who	beats	them	all.	If	nCk	×	(1−2−k)n−k	<	1,	then	
show	 that	 there	 exists	 a	 tournament	 of	 n	 players	 that	 has	 the	
property	Pk.	

	
Answer: 
Consider	 a	 random	 tournament	 of	 n	 players,	 i.e.,	 the	 outcome	 of	
every	game	is	determined	by	the	flip	of	fair	coin.	For	a	set	S	of	k	
players,	let	AS	be	the	event	that	no	y	not	in	S	beats	all	of	S.	Each	y	

not	 in	 S	 has	 probability	 2−k	 of	 beating	 all	 of	 S	 and	 there	 are	 n−k	
such	 possible	 y,	 all	 of	 whose	 chances	 are	 independent	 of	 each	

other.	Hence	Pr[AS]	=	(1−2−k)n−k.	Thus	the	expected	number	of	sets	

S	 such	 that	 event	 AS	 occurs	 is	 at	 most	 nCk	 ×	 (1−2−k)n−k,	 which	 is	
strictly	smaller	than	1.	Thus,	for	some	tournament	T	on	n	vertices,	
no	event	AS	occurs	and	we	are	done.	■	
	
Example 13 [Taiwan 1997] 
For	n	≥	k	≥	3,	let	X	=	{1,	2,	…,	n}and	let	Fk	be	a	family	of	k-element	
subsets	 of	 X	 such	 that	 any	 two	 subsets	 in	 Fk	 have	 at	 most	 k–2	
elements	in	common.	Show	that	there	exists	a	subset	M	of	X	with	
at	least	⌊�����⌋	+	1	elements	and	not	containing	any	subset	in	Fk.		
	
Answer: 
The basic plan 
If	 k	 ≥	 log��	 there	 is	 nothing	 to	 prove,	 so	 assume	 k	 <	 log2n.	 Let	
m	=	⌊�����⌋	+	1.	Our	idea	is	to	show	that	the	expected	number	of	
sets	in	Fk	that	a	randomly	chosen	m-element	subset	would	contain	
is	strictly	less	than	1.		
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How large is |Fk|? 

Easy	double	counting	provides	this	key	detail.	Since	each	(k−1)	
element	subset	of	X	lies	in	at	most	one	set	in	Fk,	and	each	set	in	Fk	

contains	 exactly	 k	 (k−1)-element	 subsets	 of	 X,	 |Fk|≤	
�

�
� �
���

�	

=	
�

�����
	��
�
�.		

	
Finding the expectation 

Now	 take	 a	 randomly	 chosen	 m-element	 subset	 S	 of	 X.	 S	

contains	��
�
�	k-element	subsets	of	X.	Thus	the	expected	number	of	

elements	of	Fk	it	contains	is		
	

������ 	��	�	�������	�������	��	�	���������

�����	������ 	��	�	�������	�������	��	�
	×	(number	of	subsets	in	Fk)		

	

=	
����	|��|

����
	≤	

����

�����
,	using	the	bound	on	|Fk|.	

	
The final blow 

To	 prove	 that	 this	 expression	 is	 less	 than	 1,	 it	 is	 enough	 to	

show	 that	 	 ��
�
�	 ≤	

��

�
,	 since	

��

�(�����)
	 <	 1	 for	 n	 ≥	 3	 (Check	 this:	

remember	 k	 <	 log2n).	 Replacing	 n	 ≥	 2
m-1

,	 we	 just	 need	

��
�
�	≤	3	×	2m-3	 for	 all	 m	 ≥	 k	 and	 m	 ≥	 3,	 which	 can	 be	 shown	 by	

induction	on	m:	The	base	case	holds,	and	observe	that		
	

�� ��
�

�	=	��
�
�	+	� �

���
�	≤	2	max	{��

�
�	,	� �

���
�}	

	

≤	2	×	3	×	2
m-3

	=	2	×	2
m-2	(using	the	induction	hypothesis).	

	
Thus	the	expectation	is	less	than	1	and	we	are	done.	■	

	
Example 14 [Original problem, inspired by IMO Shortlist ‘87] 
Let	 n,	 k,	 l	 and	 j	 be	 natural	 numbers	 with	 k	 >	 l,	 and	 j	 >	 l	 ≥	 1.	 Let	
S	=	{1,	2,	3,	…,	n}.	Each	element	of	S	is	colored	in	one	of	the	colors	
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c1,	 c2,	 …,	 cj.	 Call	 a	 set	 of	 k	 terms	 in	 S	 in	 arithmetic	 progression	
boring if	 amongst	 them	 there	 are	 only	 l	 or	 fewer	 colors.	 (For	
instance,	if	k	=	4,	l	=	2	and	the	numbers	1,	4,	7	and	10	are	colored	
c3,	c5,	c5	and	c3	respectively,	then	{1,	4,	7,	10}	is	boring	as	amongst	
these	 4	 numbers	 in	 AP	 there	 are	 just	 2	 colors.)	 Show	 that	 if	

n	<	[(
��

��
)	(

�

�
)(k-l)]1/2,	 there	exists	a	coloring	of	S	such	that	there	are	

no	boring	sets.	[Note:	Here	e	≈	2.718	is	Euler’s	constant]	

Answer: 
Looks	 complicated?	 The	 solution	 is	 actually	 surprisingly	
straightforward.	Take	a	random	coloring	(each	number	receives	a	
particular	color	with	probability	1/j).	Our	goal	is	to	show	that	the	
expected	number	of	boring	sets	is	less	than	1.	Then	some	outcome	
of	this	random	coloring	produces	0	boring	sets.	Now	note	that	the	
expected	number	of	boring	sets	is	(number	of	k-term	APs	in	S)	×	
(probability	 that	 a	 given	 k-term	 AP	 is	 boring).	 Denote	 the	 later	
quantity	 by	 p	 and	 the	 former	 by	 A.	 We	 just	 need	 to	 show	 that	
pA	<	1.		

Bounding A 
Any	 k-term	 arithmetic	 progression	 {x,	 x+d,	 …,	 x+(k−1)d}	 is	

uniquely	defined	by	its	starting	term	x	and	its	common	difference,	
d	where	x,	d	>	0.	Since	we	need	all	terms	to	be	in	S,	x+(k−1)d	≤	n,	
or	 x	 ≤	 n	 −	 (k−1)d.	 Hence,	 for	 each	 d	 ≤	 n/(k−1),	 there	 are	 exactly	
n	−	(k−1)d	 possible	 values	 x	 can	 take,	 and	 hence	 there	 are	
(n	−	(k−1)d)	k-term	arithmetic	progressions	for	each	d.	Therefore,		

	

A	=	∑ [� − (� − 1)�]
�

�

���
�

��� 	

	

=	n�
�

���
�	–	

�

�
(k−1)	�

�

���
�(�

�

���
�+ 1)	<	

��

��
	

	
where	the	last	step	is	simple	(boring)	algebra	(do	it	yourself!).	

So	A	<	
��

��
.		
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Bounding p 
For	a	particular	k-term	AP,	the	total	number	of	ways	in	which	it	

can	be	colored	is	j
k
.	A	coloring	making	it	boring	can	be	created	by	

choosing	l	colors	first	and	then	coloring	using	only	these	l	colors.	

There	 are	 ��
�
���	ways	 of	 doing	 this.	 (In	 fact,	 this	 may	 be	 higher	

than	the	total	number	of	bad	events	as	there	is	double	counting	-	
irrelevant	here	but	worth	noting).	Therefore,		

	

p	≤	��
�
���/	j

k
	≤	(

��

�
)�(

�

�
)�	=	el(

�

�
)���.	

And finally… 

pA	 <	 	
��

��
 × el(

�

�
)���	 <	 1,	 using	 the	 bound	 on	 n	 given	 in	 the	

problem.	 ■	
	

Example 15 [Based on a Result of Kleitman and Spencer]  

Let	n,	m	and	k	be	positive	integers	with	m ≥ k 2k ln(n)	and	n	>	k	>	3.	
Define	 S	 =	 {1,	 2,	 …,	 n}.	 Show	 that	 there	 exist	 m	 subsets	 of	 S,	
A1,	A2,	…,	 Am,	 such	 that	 for	 any	 k-element	 subset	 T	 of	 S,	 the	 m	

intersections	T	⋂ ��	for	1	≤	i	≤	m	range	over	all	2k	possible	subsets	
of	T.		
	
Answer: 
Take	 a	 few	 minutes	 to	 completely	 understand	 the	 question.	 Our	
basic	strategy	will	be	to	choose	the	Ai’s	randomly	and	then	show	
that	the	probability	of	“failure”	is	less	than	one.	

Randomly	 create	 each	 set	 Ai	 by	 including	 each	 element	 with	
probability	0.5.	Fix	a	pair	(T,	T1)	where	T	is	a	k-element	subset	of	
S	and	T1	is	a	subset	of	T.	For	each	i,	the	probability	that	Ai	∩	T	=	T1	

is	 2-k,	 because	 we	 need	 each	 element	 in	 T1	 to	 occur	 in	 Ai	 (0.5	
probability	each)	and	each	element	in	T\T1	to	not occur	in	Ai	(0.5	
probability	 each	 again).	 Therefore,	 the	 probability	 that	 no	 set	 Ai	

satisfies	Ai	∩	T	=	T1	is	(1	–	2
-k

)
m

.		
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There	are	��
�
�	choices	for	T	and	2k	choices	for	T1	once	we	have	

chosen	T.	Therefore,	the	overall	probability	of	failure	is	at	most		
	

��
�
�2

k
(1	–	2

-k
)

m
	≤	

��

�!
2

k
e-m/2k 

	

≤	
��

�!
2

k
����

���	(�)/��	=	
��

�!
	<	1,	since	k	>	3.	

	
Thus,	with	positive	probability,	no	condition	of	the	problem	is	

violated,	 and	 hence	 there	 exist	 m	 subsets	 of	 S	 satisfying	 the	
problem’s	requirements.	■ 

	

	
	

Useful Concentration Bounds 
	
In	many	situations	we	want	the	outcome	of	a	random	process	we	
design	 to	 closely	 match	 the	 expectation	 of	 that	 outcome.	
Concentration	 inequalities	 allow	 us	 to	 achieve	 this	 by	 bounding	
the	 probability	 that	 a	 random	 variable	 is	 far	 from	 its	 mean.	 The	
following	three	lemmas	represent	three	of	the	most	basic,	widely	
used	 concentration	 inequalities.	 We	 omit	 rigorous	 measure	
theoretic	 proofs,	 but	 will	 provide	 some	 intuition	 as	 to	 why	 they	
hold.		

1. Markov’s Bound:	
If	 x	 is	 a	 nonnegative	 random	 variable	 and	 a	 is	 a	 positive	
number,	

P[x	≥	a]	≤	E[x]/a.	
	
Equivalently	written	as		

P[x	≥	aE[x]]	≤	1/a.	
	
Intuition:	It’s	not	possible	for	20%	of	a	country’s	population	to	
each	earn	more	than	5	times	the	national	average.		
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2. Chebychev’s Inequality: 

Chebychev’s	inequality	allows	us	to	bound	the	probability	that	
a	random	variable	is	far	from	its	mean	in	terms	of	its	variance.	
It	is	a	direct	consequence	of	Markov’s	bound.		
	

For	 a	 random	 variable	 x,	 applying	 Markov’s	 bound	 to	 the	

positive	 random	 variable	 (x−E[x])
2
,	 and	 applying	 the	

definition	of	variance,		
	

P[|x–E[x]|	≥	a]	=	P[(x–E[x])
2
	≥	a

2
]	≤	

�[(�	–	�[�])�]

�� 	=	
���{�}

�� .	

	
This	result	is	intuitive:	The	“spread”	of	the	random	variable	is	
directly	related	to	its	variance.		

	
3. Chernoff’s Bound,	simple	version:	

Chernoff’s	 bound	 provides	 another	 bound	 on	 the	 probability	
that	a	random	 variable	 is	 far	 from	 its	mean.	 It	 is	particularly	
useful	 when	 we	 want	 relative	 guarantees	 rather	 than	
absolute,	 e.g.	 when	 we	 are	 not	 directly	 concerned	 about	 the	
difference	between	a	random	variable	and	its	mean	but	rather	
want	 to	estimate	 the	probability	 that	 it	 is	 ten	percent	higher	
than	its	mean.	In	addition,	we	do	not	need	information	about	
the	variance,	unlike	in	Chebychev’s	inequality.		
	

Let	X	be	the	sum	of	n	independent	0-1	random	variables	X1,	
X2,	…,	Xn,	where	E[Xi]	=	pi.	Denote	E[X]	=	∑ ��

�
��� 	by	µ.	Then	for	

any	0	<	δ	<	1,	

(i) P[X	>	(1+�)µ]	≤	���
��/�	

(ii) P[X	<	(1−�)µ]	≤	���
��/�			

	 	 	
In	 some	 cases,	 it	 may	 be	 clear	 that	 you	 need	 to	 use	 a	

concentration	 inequality	 but	 you	 may	 not	 be	 sure	 which	 one	 to	
use.	In	such	cases,	there’s	no	harm	in	trying	all	three	of	these	(as	
long	 as	 the	 variance	 is	 not	 difficult	 to	 compute).	 These	 three	
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bounds	 are	 the	 only	 ones	 you	 will	 need	 for	 the	 exercises	 in	 this	
book.	 However,	 there	 exist	 a	 wealth	 of	 other	 powerful,	 more	
specialized	 concentration	 inequalities	 used	 in	 probabilistic	
combinatorics,	and	interested	readers	are	encouraged	to	refer	to	
online	resources	devoted	to	these	results.		

	
	The	next	example	represents	a	very	typical	and	intuitive	use	of	

concentration	 inequalities.	 Essentially,	 we	 want	 something	 to	 be	
roughly	 balanced,	 so	 we	 designed	 a	 randomized	 procedure	 that	
would,	 in	 expectation,	 produce	 something	 perfectly	 balanced.	
Then,	 we	 used	 a	 concentration	 inequality	 to	 show	 that	 with	
nonzero	 probability,	 we	 would	 get	 something	 “not	 too	
unbalanced.”		
 
Example 16 [Hypergraph discrepancy] 
Let	 F	 be	 a	 family	 of	 m	 subsets	 of	 {1,	 2,	 …,	 n}	 such	 that	 each	 set	
contains	at	most	 s	elements.	 Each	element	of	 {1,	2,	…,	n}	 is	 to	be	
colored	either	red	or	blue.	Define	 the	discrepancy	of	a	set	S	 in	F,	
denoted	disc(S),	to	be	the	absolute	value	of	the	difference	between	
the	number	of	red	elements	in	S	and	blue	elements	in	S.	Define	the	
discrepancy	of	F	to	be	the	maximum	discrepancy	of	any	set	 in	F.	
Show	that	we	can	color	the	elements	such	that	the	discrepancy	of	

F	is	at	most	�2��	��(2� )�.	

Answer: 
Color	each	number	in	{1,	2,	…,	n}	red	with	probability	0.5	and	blue	
otherwise.	 We	 just	 need	to	 show	 that	 for	 a	 particular	 S	 in	 F,	 the	
probability	 that	 S	 has	 discrepancy	 higher	 than	 our	 desired	
threshold	is	less	than	1/m,	for	then	the	result	will	follow	from	the	
union	bound.		

Let	S	be	a	set	with	t	elements,	and	denote	by	b	the	number	of	
blue	elements	and	by	r	the	number	of	red	elements	of	S.	Note	that	
for	 a	 fixed	 number	 d	 <	 t,	 disc(S)	 >	 d	 if	 and	 only	 if	 either	
b	<	t/2−d/2	or	r	<	t/2−d/2.	Hence	the	probability	that	disc(S)	>	d	
is	equal	to	
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P[disc(S)	>	d]	=	P[b	<	t/2	–	d/2]	+	P[r	<	t/2	–	d/2]	

=	2P[b	<	t/2	–	d/2]	by	symmetry.	

Note	that	b	is	the	sum	of	t	 independent	random	0-1	variables,	
and	E[b]	=	t/2.	Write	µ	=	t/2,	δ	=	d/t.	Then	applying	the	Chernoff	
bound	and	noting	that	t	≤	s,	

	

2P[b	<	t/2	–	d/2]	=	2P[b	<	(1	–	δ)	µ]	≤	2���
��/�	

=		2exp(−d
2
/4t)	≤	2exp(−d

2
/4s).	

For	 the	 last	 quantity	 to	 be	 less	 than	 1/m,	 we	 just	 need	 d	 >	

2��	��(2� )	,	as	desired.	■	

Remark:	 Note	 that	 using	 the	 Chebychev	 inequality	 for	 this	
problem	would	prove	a	weaker	bound.	It	is	instructive	for	readers	
to	try	this,	as	 it	is	a	good	exercise	in	computing	the	variance	of	a	
random	variable.		
	

	
 

The Lovasz Local Lemma 
	
In	the	section	on	bounding	“violated	conditions,”	we	used	the	fact	
that	 if	 the	expected	 number	of	violated	conditions	 is	 less	 than	1,	
then	there	exists	an	object	satisfying	all	conditions.	Unfortunately,	
we	aren’t	always	this	 lucky:	 in	many	cases,	 the	expected	number	
of	violated	conditions	is	large.	The	Lovasz local lemma	provides	a	
much	 sharper	 tool	 for	 dealing	 with	 these	 situations,	 especially	
when	the	degree	of	dependence	(defined	below)	between	violated	
conditions	is	low.	
	
Definition:	 Let	 E1,	 E2,	 …,	 En	 be	 events.	 Consider	 a	 graph	 G	 with	
vertices	v1,	…,	vn,	such	that	there	is	an	edge	between	vi	and	vj	if	and	
only	if	events	Ei	and	Ej	are	not	independent	of	each	other.	Let	d	be	
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the	maximum	degree	of	any	vertex	 in	G.	Then	d	 is	 known	as	 the	
degree of independence between	the	events	E1,	E2,	…,	En.		
	
Theorem [The Lovasz Local Lemma]:  
Let	 E1,	 E2,	 …,	 En	 be	 events	 with	 degree	 of	 dependence	 at	 most	 d	
and	P[Ei]	≤	p	for	each	1	≤	i	≤	n,	where	0	<	p	<	1.	If	ep(d+1)	≤	1,	then	
P[E1’	∪ 	 E2’	 ∪ 	 …	∪ 	 En’]	 >	 0,	 where	 Ei’	 denotes	 the	 complement	 of	
event	 Ei.	 In	 other	 words,	 if	 ep(d+1)	 ≤	 1,	 then	 the	 probability	 of	
none of the n events occurring	is	strictly	greater	than	0.	(Here	e	
is	Euler’s	constant.)	
	

The	 Lovasz	 local	 lemma	 hence	 gives	 us	 a	 new	 way	 to	 solve	
problems	 in	 which	 we	 need	 to	 show	 that	 there	 exists	 an	 object	
violating	0	conditions.	Given	n	conditions	that	need	to	hold,	define	
Ei	to	be	the	event	that	the	ith	condition	is	violated.	All	we	need	to	
do	 is	 show	 compute	 p	 and	 d	 for	 these	 events,	 and	 show	 that	
ep(d+1)	≤	1.			

	
Example 17 [Generalization of Russia 2006] 
At	a	certain	party	each	person	has	at	least	δ	friends	and	at	most	∆	
friends	(amongst	the	people	at	the	party),	where	∆	>	δ	>1.	Let	k	be	
an	 integer	 with	 k	 <	 δ.	 The	 host	 wants	 to	 show	 off	 his	 extensive	
wine	collection	by	giving	each	person	one	type	of	wine,	such	that	
each	 person	 has	 a	 set	 of	 at	 least	 (k+1)	 friends	 who	 all	 receive	
different	 types	 of	 wine.	 The	 host	 has	 W	 types	 of	 wine	 (and	
unlimited	supplies	of	each	type).		
	

Show	that	if	W	>	k [e
k+1

(∆
2
−∆+1)]

1/(δ-k)
,	the	host	can	achieve	this	

goal.		
	
Answer: 
Interpret	 the	 problem	 in	 terms	 of	 a	 friendship	 graph	 (as	 usual),	
and	 interpret	 “types	 of	 wine”	 as	 coloring	 vertices.	 Note	 the	
presence	 of	 local	 rather	 than	 global	 information-	 the	 problem	
revolves	around	the	neighbors	and	degrees	of	individual	vertices,	
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but	doesn’t	even	tell	us	the	total	number	of	vertices!	This	suggests	
using	 the	 Lovasz	 Local	 Lemma.	 We	 will	 show	 that	 ep(d+1)	 ≤	 1,	
where	p	is	the	probability	of	a	local	bad event	Ev	(defined	below)	
and	d	is	the	degree	of	dependency	between	these	events.		

Defining Ev and bounding p = P[Ev] 

Randomly	 color	 vertices	 using	 the	 W	 colors	 (each	 vertex	
receives	 a	 particular	 color	 with	 probability	 1/W).	 Let	 Ev	 denote	
the	 event	 that	 vertex	 v	 does	 not	 have	 (k+1)	 neighbors	 each	
receiving	a	different	color.	Hence,		

P[Ev]	≤	��
�
�	×	(

�

�
)��	≤	��

�
�	×	(

�

�
)�≤	(

�

�
)�(

��

�
)�	=	e

k
(
�

�
)���.	

Here	we	used	dv	≥	δ.	

Bounding d 

Ev	and	Eu	will	be	non-independent	if	and	only	if v	and	u	have	a	
common	neighbor	-	in	other	words,	u	must	be	a	neighbor	of	one	of	
v’s	neighbors.	v	has	at	most	∆	neighbors,	and	each	of	these	has	at	
most	(∆−1)	neighbors	apart	from	v.	Hence	for	fixed	v,	there	are	at	

most	 (∆2−∆)	 choices	 for	 u	 such	 that	 Ev	 and	 Eu	 are	 dependent.	 It	

follows	that	d	≤	(∆2−∆).		

And finally… 

ep(d+1)	≤	e	×	ek(
�

�
)���	×	(∆2−∆+1).	Rearranging	the	condition	

in	the	problem	(namely	W	≥	k [e
k+1

(∆
2
−∆+1)]

1/(δ-k)
)	shows	that	

this	expression	is	at	most	1.	Hence	proved.	■ 
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Exercises 
 

1. [Max cut revisited] 
Give	a	probabilistic	argument	showing	that	the	vertex	set	V	of	
a	graph	G	with	edge	set	E	can	be	partitioned	into	two	sets	V1	
and	V2	such	that	at	least	|E|/2	edges	have	one	endpoint	in	V1	
and	one	endpoint	in	V2.		

2. [Hypergraph coloring] 
Let	F	be	a	family	of	sets	such	that	each	set	contains	n	elements	

and	|F|	<	2
n-1

.	Show	that	each	element	can	be	assigned	either	
the	 color	 red	 or	 the	 color	 blue,	 such	 that	 no	 set	 in	 F	 is	
monochromatic	(contains	elements	of	only	one	color).		

3. [A Bound on Ramsey Numbers] 
The	 Ramsey number	 R(k,	 j)	 is	 defined	 as	 the	 least	 number	 n	
such	 that	 for	 any	 graph	 G	 on	 n	 vertices,	 G	 either	 contains	 a	
clique	 of	 size	 k	 or	 an	 independent	 set	 of	 size	 j.	 Show	 that	

R(k,	k)	≥	2
k/2

	for	each	k.		

4. [Stronger version of IMO Shortlist 1999, C4] 

Let	A	be	a	set	of	n	different	residues	mod	n
2
.	Then	prove	that	

there	exists	a	set	B	of	n	residues	mod	n
2
	such	that	the	set	A+B	

=	{a+b	|a	є	A,	b	є	B}	contains	at	 least	(e–1)/e	of	 the	residues	

mod	n
2
.	

 
5. [Another hypergraph coloring problem] 

Let	 F	 be	 a	 family	 of	 sets	 such	 that	 each	 set	 contains	 n	

elements.	Suppose	each	set	 in	F	 intersects	 at	most	2
n-3

	other	
sets	 in	 F.	 Show	 that	each	 element	can	 be	 assigned	 either	 the	
color	 red	 or	 the	 color	 blue,	 such	 that	 no	 set	 in	 F	 is	

monochromatic.	Improve	this	bound	(that	is,	replace	2
n-3

	by	a	
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larger	number	and	prove	the	result	for	this	number).		

6. [Based on Russia 1999] 
Let	 G	 be	a	 bipartite	 graph	 with	 vertex	set	 V	 =	 V1	∪ 	 V2.	Show	
that	 G	 has	 an	 induced	 subgraph	 H	 containing	 at	 least	 |V|/2	
vertices,	such	that	each	vertex	in	V1	⋂ � 	has	odd	degree	in	H.		

7. [USAMO 2012, Problem 2] 
A	circle	is	divided	into	432	congruent	arcs	by	432	points.	The	
points	 are	 colored	 in	 four	 colors	 such	 that	 some	 108	 points	
are	 colored	 Red,	 some	 108	 points	 are	 colored	 Green,	 some	
108	points	are	colored	Blue,	and	the	remaining	108	points	are	
colored	Yellow.	Prove	that	one	can	choose	three	points	of	each	
color	 in	 such	 a	 way	 that	 the	 four	 triangles	 formed	 by	 the	
chosen	points	of	the	same	color	are	congruent.	

8. [List coloring] 
Each	vertex	of	an	n-vertex	bipartite	graph	G	is	assigned	a	list	
containing	more	than	log2n	distinct	colors.	Prove	that	G	has	a	
proper	coloring	such	that	each	vertex	 is	colored	with	a	color	
from	its	own	list.	 

	
9. Let	A	be	an	n	×	n	matrix	with	distinct	entries.	Prove	that	there	

exists	 a	 constant	 c	 >	 0,	 independent	 of	 n,	 with	 the	 following	
property:	it	is	possible	to	permute	the	rows	of	A	such	that	no	
column	 in	 the	 permuted	 matrix	 contains	 an	 increasing	

subsequence	of	 length	c√�.	(Note	that	consecutive	terms	in	a	
subsequence	 need	 not	 be	 adjacent	 in	 the	 column;	
“subsequence”	is	different	from	“substring.”) 

 
10. [IMO Shortlist 2006, C3] 

Let	 S	 be	 a	 set	 of	 points	 in	 the	 plane	 in	 general	 position	 (no	
three	lie	on	a	line).	For	a	convex	polygon	P	whose	vertices	are	
in	S,	define	a(P)	as	the	number	of	vertices	of	P	and	b(P)	as	the	
number	of	points	of	S	that	are	outside	P.	(Note:	an	empty	set	,	
point	and	 line	segment	are	considered	convex	polygons	with	
0,	 1	 and	 2	 vertices	 respectively.)	 Show	 that	 for	 each	 real	
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number	x,	
∑ ��(�)(1 − �)�(�)	=	1,	

	
where	the	sum	is	taken	over	all	convex	polygons	P.		

	
11. [Bipartite Expanders]	

A	bipartite	graph	G	with	vertex	set	V	=	�� ⋃ ��	is	said	to	be	an	
(n,	m,	d,	β)	bipartite expander	if	the	following	holds:	
	
(i) |��|	=	n	and	|��|	=	m	
(ii) Each	vertex	in	V1	has	degree	d	
(iii) For	 any	 subset	 S	 of	V	 with	 |S|	 ≤	 n/d,	 there	 are	 at	 least	

β|S|	vertices	in	��	that	have	a	neighbor	in	S	
	
Show	that	 for	any	 integers	n	>	d	≥	4,	 there	exists	an	(n,	n,	d,	
d/4)	bipartite	expander.	

	
12. [Sphere packing]	

Let	n	be	a	given	positive	integer.	Call	a	set	S	of	binary	strings	
of	length	n	α-good	if	for	each	pair	of	strings	in	S,	there	exist	at	
least	 nα	 positions	 in	 which	 the	 two	 differ.	 For	 instance,	 if	
n	=	100	and	α	=	0.1,	then	any	pair	of	strings	in	S	must	differ	in	
at	 least	 10	 positions.	 Show	 that	 for	 each	 integer	 n	 and	 real	
number	0	<	α	<	0.5,	there	exists	an	α-good	set	S	of	cardinality	

at	least	�√2��(�.��	�)
�
�.		

	
As	 a	 (rather	 remarkable)	 corollary,	 deduce	 that	 the	 unit	

sphere	in	n	dimensions	contains	a	set	of	�√2��/���	points	such	

that	 no	 two	 of	 these	 points	 are	 closer	 than	 one	 unit	
(Euclidean)	distance	from	each	other.	

	
Remark:	The	problem	of	finding	large	sets	of	binary	strings	of	
a	 given	 length	 such	 that	 any	 two	 differ	 in	 sufficiently	 many	
positions	 is	 one	 of	 the	 central	 problems	 of	 coding	 theory.	
Coding	theory	is	a	remarkable	field	lying	in	the	intersection	of	
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mathematics	and	computer	science,	and	uses	techniques	from	
combinatorics,	 graph	 theory,	 field	 theory,	 probability	 and	
linear	algebra.	Its	applications	range	from	file	compression	to	
mining	large	scale	web	data.	Coding	theory	is	also	the	reason	
your	 CDs	 often	 work	 even	 if	 they	 get	 scratched.	 While	 this	
exercise	 asks	 for	 an	 existence	 proof,	 finding	 constructive	
solutions	 to	 several	 similar	 problems	 remains	 an	 active	
research	area	with	high	practical	relevance.	

	
13. Let	F	be	a	collection	of	k-element	subsets	of	{1,	2,	…,	n}	and	let	

x	=	|F|/n.	Then	there	is	always	a	set	S	of	size	at	least		
�

���/(���)	

which	does	not	completely	contain	any	member	of	F.		
 
14. [Another list coloring theorem] 

Each	vertex	of	an	n-vertex	graph	G	is	assigned	a	list	containing	
at	 least	 k	 different	 colors.	 Furthermore,	 for	 any	 color	 c	
appearing	 on	 the	 list	 of	 vertex	 v,	 c	 appears	 on	 the	 lists	 of	 at	
most	 k/2e	 neighbors	 of	 v.	 Show	 that	 there	 exists	 a	 proper	
coloring	 of	 the	 vertices	 of	 G	 such	 that	 each	 vertex	 is	 colored	
with	a	color	from	its	list.		

 
15. [Due to Furedi and Khan] 

Let	 F	 be	 a	 family	 of	 sets	 such	 that	 each	 set	 in	 F	 contains	 at	
most	n	elements	and	each	element	belongs	to	at	most	m	sets	
in	 F.	 Show	 that	 it	 is	 possible	 to	 color	 the	 elements	 using	 at	
most	1+(n–1)m	colors	such	that	no	set	in	F	is	monochromatic.		

 
16. [Due to Paul Erdos] 

A	set	S	of	distinct	integers	is	called	sum-free	if	there	does	not	
exist	a	triple	{x,	y,	z}	of	integers	in	S	such	that	x	+	y	=	z.	Show	
that	for	any	set	X	of	distinct	integers,	X	has	a	sum-free	subset	
Y such	that	|Y|	>	|X|/3.		

	
17. [IMO 2012, Problem 3] 

The	 liar's guessing game	 is	 a	 game	 played	 between	 two	
players	A	and	B.	The	rules	of	the	game	depend	on	two	positive	
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integers	k	and	n	which	are	known	to	both	players.	

A	begins	by	choosing	integers	x	and	N	with	1	≤	x	≤	N.	Player	
A	 keeps	 x	 secret,	 and	 truthfully	 tells	 N	 to	 player	 B.	 Player	 B	
now	 tries	 to	 obtain	 information	 about	 x	 by	 asking	 player	 A	
questions	as	follows:	each	question	consists	of	B	specifying	an	
arbitrary	 set	 S	 of	 positive	 integers	 (possibly	 one	 specified	 in	
some	previous	question),	and	asking	A	whether	x	belongs	to	S.	
Player	B	may	ask	as	many	questions	as	he	wishes.	After	each	
question,	player	A	must	immediately	answer	it	with	yes	or	no,	
but	 is	 allowed	 to	 lie	 as	 many	 times	 as	 she	 wants;	 the	 only	
restriction	 is	 that,	 among	 any	 (k+1)	 consecutive	 answers,	 at	
least	one	answer	must	be	truthful.		

After	B	has	asked	as	many	questions	as	he	wants,	he	must	
specify	a	set	X	of	at	most	n	positive	integers.	If	x	belongs	to	X,	
then	B	wins;	otherwise,	he	loses.	Prove	that:	

1. If	n	≥	2k,	then	B	can	guarantee	a	win.	

2. For	all	sufficiently	large	k,	there	exists	an	integer	n	≥	1.99k	
such	that	B	cannot	guarantee	a	win.	

	
18. [Johnson-Lindenstrauss Lemma]	

(i) Let	 X1,	 X2,	 …,	 Xd	 be	 d	 independent	 Gaussian	 random	
variables.	 Let	 X	 =	 (X1,	 X2,	 …,	 Xd)	 be	 the	 d-dimensional	
vector	whose	coordinates	are	X1,	X2,	…,	Xd.	Let	k	<	d	and	let	
X’	be	the	k-dimensional	vector	(X1,	X2,	…,	Xk).		Show	that:	

	
a) If	α	is	a	constant	greater	than	1,			

Prob[	||Xk||	≥	α k/d ]	≤	exp(	
�(��	�	�	���)

�
)	

	
b) If	α	is	a	constant	smaller	than	than	1,		

Prob[	||Xk||	≤	α k/d ]	≤	exp(	
�(��	�	�	���)

�
)	

(ii) Part	 (i)	 says	 that	 the	 norm	 of	 a	 vector	 of	 independent	
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randomly	 distributed	 Gaussian	 variables	 projected	 onto	
its	 first	 k	 coordinates	 is	 sharply	 concentrated	 around	 its	
expectation.	 Equivalently,	 the	 norm	 of	 a	 fixed	 vector	
projected	 onto	 a	 random	 k-dimensional	 subspace	 is	
sharply	 concentrated	 around	 its	 expectation.	 Use	 this	
result	 to	 show	 that	 given	 a	 set	 S	 of	 n	 points	 in	 a	 d-
dimensional	space,	 there	 is	 a	mapping	 f	 to	 a	 subspace	 of	
dimension	O(n	log	n/��)	such	that	for	all	points		u,	v	in	S,		

(1–ε)	dist(u,	v)	≤	dist(f(u),	f(v))	≤	(1+ε)	dist(u,	v).	

 


