Do data resources managed by EMBL-EBI and our collaborators make a difference to your work?

Please take 10 minutes to fill in our annual user survey, and help us make the case for why sustaining open data resources is critical for life sciences research. Take part in our user survey

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Dimethyl sulfoxide (DMSO) is an important aprotic solvent that can solubilize a wide variety of otherwise poorly soluble polar and nonpolar molecules. This, coupled with its apparent low toxicity at concentrations <10%, has led to its ubiquitous use and widespread application. Here, we demonstrate that DMSO induces retinal apoptosis in vivo at low concentrations (5 μl intravitreally dosed DMSO in rat from a stock concentration of 1, 2, 4, and 8% v/v). Toxicity was confirmed in vitro in a retinal neuronal cell line, at DMSO concentrations >1% (v/v), using annexin V, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and AlamarBlue cell viability assays. DMSO concentrations >10% (v/v) have recently been reported to cause cellular toxicity through plasma membrane pore formation. Here, we show the mechanism by which low concentrations (2-4% DMSO) induce caspase-3 independent neuronal death that involves apoptosis-inducing factor (AIF) translocation from mitochondria to the nucleus and poly-(ADP-ribose)-polymerase (PARP) activation. These results highlight safety concerns of using low concentrations of DMSO as a solvent for in vivo administration and in biological assays. We recommend that methods other than DMSO are employed for solubilizing drugs but, where no alternative exists, researchers compute absolute DMSO final concentrations and include an untreated control group in addition to DMSO vehicle control to check for solvent toxicity.

References 

Citations & impact 

Funding 

  • Get citation

  • Claim to ORCID