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delineating the absolute indigeneity of amino acids in fossils.
As AMS iechniques are refined to handle smaller samples, it
may also become possible to date individual amino acid enan-

tiomers by the °C method. If one enantiomer is entirely derived
from the other by racemization during diagenesis, the individual
Dp. and L-enantiomers for a given amino acid should have
identical “C ages.

Older, more poorly preserved fossils may not always prove
amenable to the determination of amino acid indigeneity by the

stable isotope method, as the prospects for complete replace-

ment of indigenous amino acids with non-indigenous amino
acids increases with time. As non-indigenous amino acids
undergo racemization, the enantiomers may have identical
isotopic compositions and still not be related to the original
organisms. Such a circumstance may, however, become easier
to recognize as more information becomes available concerning

the distribution and stable isotopic composition of the amino

acid constituents of modern representatives of fossil organisms.
Also, AMS dates on individual amino acid enantiomers may,
in some cases, help to clarify indigeneity problems, in particular

when stratigraphic controls can be used to estimate a general
age range for the fossil in question.

Finally, the development of techniques for determining the
stable isotopic compasition of amino acid enantiomers may
enable us to establish whether non-racemic amino acids in some

carbonaceous meteorites” are indigenous, or result in part from

terrestrial contamination.
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We describe a mew learning procedure, back-prepagation, for
networks of seurone-like units. The procedure repeatedly adjusts

the weights of the conmections in the metwork se as to minimize a
measure of the difference hetween the actual output vector of the
met and the desired output vector. As a result of the weight

adjustments, internal ‘hidden’ units which are not part of the input

or quiput come to represent important features of the task domain,

and the regularities im the task are captured by the interactions
of these units. The ability te create useful new features distin-
guishes backh-prepagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is te find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for

a particular task domain. The task is specified by giving the
desired state vectar of the output units for each state vector of
the input units. If the input units are directly connected to the
ovtpat units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors’, Learning becomes more interesting but

 

+ To whom correspondence should be addressed.

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (in perceptrons,

there are ‘feature analysers’ between the input and output that

are not true hidden units because their input connections are
fixed by hand, so their siates are completely determined by the

input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden

units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these

unis should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct

appropriate internal representations.
The simplest form of the learning procedure is for layered

networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of Gutput units at
the top. Connections within a layer or from higher to lower

layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer

have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working

upwards until the states of the output units are determined.

The total input, x;, to unit jis a linear function of the outputs,
y,, of the units that are connected to j and of the weights, w,,
on these connections :

x= Zo Vij: (}

Units can be given biases by introducing an extra input to cach

unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of thé

opposite sign. It can be treated just like the other weights.
Acunit has a real-valued output, y,, which is a non-linear

function of its total input

{2}
4 ite
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Fig, A network that has learned to detect mirror syrametry in

the input vector, The numbers on the arcs are weights and the
mumbers inside the nodes are biases. The learning required 1,425

sweeps through the set of 64 possible input vectors, with the weights

being adjusted on the basis of the accumulated gradient after each

sweep. The values of the parameters in equation (9) were e = 0.1

and a «6.9. The initial weights were random and were uniformly

distributed between —0.3 and 0.3. The key property of this solution
is that for a given hidden unit, weights that are symmetric about
the middle of the input vector are equal in magnitude and oppasite
in sign, So if a symmetrical pattern is presented, both hidden units
will receive a net input of 0 from the input units, and, because the

hidden units have a negative bias, both will be off. In this case the
output unit, having a positive bias, will be on. Note that the weights

on each side of the midpoint are in the ratio 1:2:4. This ensures

that each ofthe eight patterns that can occur above the midpoint

sends a unique activation sum to each hidden unit, so the only

pattern below the midpoint that can exactly balance this sum is
the symmetrical one. For all non-symmetrical patterns, both hidden

units will receive non-zero activations from the input units. The

two hidden untis have identical patterns of weights but with
opposite signs, so for every non-symmetric pattern one hidden unit

will come on and suppress the outpul unit.

 

It is not necessary to use exactly the functions given in equations
(1) and (2). Any input-output function which has a bounded

derivative will do. However, the use of a linear function for
combining the inputs to 2 unit before applying the nonlinearity

greatly simplifies the learning procedure.
The aim is to find a set of weights that ensure that for each

input vector the output vector produced by the network is the

same as (or sufficiently close to) the desired output vector. If
there is a fixed, finite set of input-output cases, the total error

inthe performance ofthe network with a particular set of weights

can be computed by comparing the actual and desired output
vectors for every case. The total error, B, is defined as

B=3EE Oe 7 hel (3)
cj

where ¢ is an index over cases (input-output pairs), j is an
index over output units, y is the actual state of an output unit

and d is its desired state. To minimize & by gradient descent
it is necessary to compute the partial derivative of E with respect
to each weight in the network. This is simply the sum of the
partial derivatives for each of the input-output cases. For a
given case, the partial derivatives of the error with respect to
each weight are computed in two passes. We have already

described the forward pass in which the units in each layer have
their states determined by the input they receive from units in

lower layers using equations (1) and (2). The backward pass
which propagates derivatives from the top layer back to the

bottom one is more complicated.

Roberto = Maria Pierro = Francesca

f{ t;

Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonse Sophia

Fig. 2 Two isomorphic family trees. The information can be

expressed as 4 set of triples of the form (person 1)relationship)
(person 2), where the possible relationships are {father, mother,

husband, wife, son, daughter, uncle, aunt, brother, sister, nephew,

niece}. A layered net can be said to ‘know’ these triples if it can

produce the third term of each triple when given the first two. The
first two terms are encoded by activating two of the input units,

and the network must then complete the proposition by activating

the output unit that represents the third term.

 

Fig. 3 Activity levels in a five-laver network after it has learned.

The bottom layer has 24 input units on the left for representing

{person 1) and 12 input units on the right for representing the
relationship. The white squares inside these two groups show the

activity levels of the units. There is one active unit in the first group

representing Colin and one in the secand group representing the
relationship ‘has-aunt’. Each of the two input groups is totally

connected to its own group of 6 units in the second layer. These
groups learn to encode peaple and relationships as distributed
patterns of activity. The second Jayer is totally connected to the
central layer of 12 units, and these are connected to the penultimate

layer of 6 units. The activity in the penultimate layer must activate
the correct output units, each of which stands for a particular

(person 2). In this case, there are two correct answers (marked by

black dots) because Colin has two aunts. Both the input units and

the output units are laid out spatially with the English people in
one row and the isomorphic Italians immediately below.

The backward pass starts by computing @&/ay for each of
the output units. Differentiating equation (3) for a particular
case, c, and suppressing the index ¢ gives

BE/dy; = yj4; (4)
We can then apply the chain rule to compute dE/3x,

BEfax, = dhfay, dy,/dx;

Differentiating equation (2) to get the value of dy,/dx, and
substituting gives

dE/dx, = a8fayy-¥) {3}

This means that we know how a change in the total input x to
an output unit will affect the error. But this total input is just a
linear function of the states of the lower level units and it is

also a linear function of the weights on the connections, 50 it
is easy to compute how the error will be affected by changing

these states and weights. For a weight w,, from i ia j the
derivative is

BE/Bwy OBfx; x,/aw

= BELax; ¥; {6}

and for the output of the i ynit the contribution to 2E/ay;

©          Nature Publishing Group1986



NATURE VOL. 323 9 OCTOBER 1986

C
h
r
i
s
t
i
n
e

3 _&

=

Fig. 4 The weights from the 24 input units that represent people
to the 6 units in the second layer that learn distributed representa-
tions of people. White rectangles, excitatory weights; black rec-

tangles, inhibitory weights; area of the rectangle encodes the mag-
nitude of the weight. The weights from the 12 English people are

in the top row of each unit. Unit 1 is primarily concerned with the

distinction between English and Italian and mostof the otherunits

ignore this distinction. This means that the representation of an
English person is very similar to the representation of their Italian
equivalent. The network is making use of the isomorphism between

the two family treesto allow it to share structure andit will therefore

tend to generalize sensibly from one tree to the other. Unit 2

encodes which generation a person belongsto, and unit 6 encodes
which branch of the family they come from. The features captured

by the hidden units are notat all explicit in the input and output
encodings, since these use a separate unit for each person. Because
the hidden features capture the underlying structure of the task

domain, the network generalizes correctly to the four triples on

whichit was not trained. Wetrained the network for 1500 sweeps,

using « = 0.005 and a =0.5 for thefirst 20 sweeps and « = 0.01 and
a =0.9 for the remaining sweeps. To makeit easier to interpret

the weights we introduced ‘weight-decay’ by decrementing every
weight by 0.2% after each weight change. After prolonged iearning,
the decay was balanced by 9E/aw,so the final magnitude of each
weight indicates its usefulness in reducing the error. To prevent

the network needing large weights to drive the outputs to 1 or 0,
the error was considered to be zero if output units that should be

on had activities above 0.8 and output units that should be off had
activities below 0.2.
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Fig. 5 A synchronousiterative net that is run for three iterations
and the equivalent layered net. Each time-step in the recurrent net
correspondsto a layer in the layered net. The learning procedure

for layered nets can be mapped into a learning procedure for

iterative nets. Two complicationsarise in performing this mapping:
first, in a layered net the outputlevels of the units in the intermedi-

ate layers during the forward pass are required for performing the
backward pass (see equations (5) and (6)). So in an iterative net

it is necessary to store the history of output states of each unit.

Second, for a layered net to be equivalent to an iterative net,

corresponding weights between different layers must have the same

value. To preserve this property, we average 9E/dw forall the
weights in each set of corresponding weights and then change each
weightin the set by an amountproportionalto this average gradient.

With these two provisos, the learning procedure can be applied
directly to iterative nets. These nets can theneither learn to perform

iterative searches or learn sequential structures’.
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resulting from the effect of i on j is simply

JE/0x;-Ax;/dy; = OE/Ox; Wj
so taking into accountall the connections emanating from unit
i we have

dE/ay, =OE/x;" wi (7)

Wehave now seen how to compute dF/déy for any unit in the

penultimate layer when given 0E/ay for all units in the last
layer. We can therefore repeat this procedure to compute this
term for successively earlier layers, computing dE/dw for the

weights as we go.
One wayof using dE/dw is to change the weights after every

input-output case. This has the advantage that no separate
memory is required for the derivatives. An alternative scheme,
which we used in the research reported here, is to accumulate
dE/dw over all the input-output cases before changing the

weights. The simplest version of gradient descent is to change
each weight by an amount proportional to the accumulated

dE/aw

Aw=—edE/aw (8)

This method does not converge as rapidly as methods which
make use of the second derivatives, but it is much simpler and

can easily be implemented by local computations in parallel

hardware. It can be significantly improved, without sacrificing
the simplicity and locality, by using an acceleration method in

which the current gradient is used to modify the velocity of the
point in weight space instead ofits position

Aw(t)=—eadE/aw(t)+ aAw(t—1) (9)

where ¢ is incremented by 1 for each sweep through the whole

set of input-output cases, and @ is an exponential decay factor
between 0 and 1 that determinestherelative contribution of the

current gradient and earlier gradients to the weight change.
To break symmetry we start with small random weights.

Variants on the learning procedure have been discovered
independently by David Parker (personal communication) and

by Yann Le Cun’.
One simple task that cannot be done by just connecting the

input units to the output units is the detection of symmetry. To
detect whether the binary activity levels of a one-dimensional
array of input units are symmetrical about the centre point, it
is essential to use an intermediate layer because the activity in
an individual input unit, considered alone, provides no evidence
about the symmetry or non-symmetry of the whole input vector,

so simply adding up the evidence from the individual input
units is insufficient. (A more formal proof that intermediate

units are required is given in ref.2.) The learning procedure

discovered an elegant solution using just two intermediate units,
as shownin Fig.1.

Anotherinteresting task is to store the information in the two
family trees (Fig. 2). Figure 3 shows the network we used, and
Fig. 4 showsthe ‘receptive fields’ of some of the hidden units

after the network wastrained on 100 of the 104 possible triples.
So far, we have only dealt with layered, feed-forward

networks. The equivalence between layered networksand recur-
rent networks that are run iteratively is shown in Fig.5.

The most obvious drawbackof the learning procedureis that
the error-surface may contain local minima so that gradient
descent is not guaranteed to find a global minimum. However,
experience with many tasks showsthat the network very rarely

gets stuck in poor local minimathatare significantly worse than
the global minimum. We have only encountered this undesirable
behaviour in networks that have just enough connections to
perform the task. Adding a few more connectionscreates extra
dimensions in weight-space and these dimensions provide paths
around the barriers that create poor local minima in the lower
dimensional subspaces.

©          Nature Publishing Group1986
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The learning procedure, in its current form, is not a plausible
model of learning in brains. However, applying the procedure
to various tasks shows that interesting internal representations
can be constructed by gradient descent in weight-space, and
this suggests that it is worth looking for more biologically
plausible ways of doing gradient descent in neural networks.
We thank the System Development Foundation and the Office

of Naval Research for financial support.
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The majority of meurenes in the visual cortex of both adult cats

and kittens can be excited by visual stimulation ef either eye.
Nevertheless, if one eye is deprived of patterned vision early in

life, most cortical cells cam only be activated by visual stimuli

presented to the nondeprived eye and behaviowrally the deprived
eye is appareatly useless”, Although the cousequences of
monocular deprivation can be severe, they can in many ciroum-

stances be rapidly reversed with the early implementation of reverse
occlusion which forces the use of the initially deprived eye”*,
However, by Hself reverse occlusion dees mot restore a normal

distribution of cortical occular dominance’ and only promotes

visual recovery in one eye™*. In an effort to find a procedure that
might restore good binocular vision, we have examined the eects
on acuity and cortical ocular dominance of a short, but physiclogi-

cally optimal period of reverse occlusion, followed by a period of
binocular vision beginning at 7.5 weeks of age. Surprisingly, despite
the early introduction of binocular vision, both eyes attained
acuities that were only approximately 1/3 of mormal acuity levels.
Despite the severe bilateral amblyopia, cortical ocular dominance

appeared similar to that of normal cats. This is the first demonstra-
tion of severe bilateral amblyopia followiag consecutive periods

of monocular occlusion.
Nine kittens were used, of which eight were monocularly

deprived by eyelid suture from about the time of natural eye
opening (6 to 11 days} until 5 weeks of age, at which time the
initially deprived eye was opened and the other eye was sutured

clesed for 18 days. Physiological recordings from area 17 were
made from one normal control and from five monocularly-
deprived kittens, one immediately after reverse occlusion {as a
control}: the remaining four after a further 4 weeks at least

(range 4-8 weeks} of normal binocular vision. Grating acuity
thresholds were determined for both eyes of a further three

kittens (subjected to the same regime--manocular deprivation,
18 days reverse suturing, followed by normal binocular vision)

by use of a jumping stand*’. None of the kittens tested
behaviourally were examined physiologically. Single unit
recordings were made in area 17 of the anaesthetized, paralysed

kittens (one normal, five experimental) with glass coated
platinum-iridium electrodes. Anaesthesia was induced by
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Fig. i. Changes in visual acuity during the period of binocular

vision for two kittens (C155 and C164) that were previously

monocularly deprived until 5 weeks of age, and then reverse

occluded for 18 days. @, Acuity of the initially deprived eye: O,
acuity of the initially nondeprived eve.

intravenous pentothal and maintained byartificial respiration

with 70% N.O and 30% O, supplemented with intravenous

Nembutal; REG, EKG, body temperature, and expired CO,
levels were monitored.The eyes were brought to focus on a
tangent screen 137 cm distant from the kitten using contact

lenses with 3mm artificial pupils. Single units were recorded
along one long penetration in area 17 down the medial bank of
the postlateral gyrus in each hemisphere, always beginning in
the hemisphere contralateral to the initially open eye. Receptive

fields were sampled according to established procedures®, every
100 4m along the penetration in a cortical region corresponding

to the horizontal meridian ofvisual space. All units were located
within 15° of the area centralis, with the majority within 5°,

The longitudinal changes in visual acuity of both eves follow-
ing introduction of binocular vision are shown in Fig. 1 for two
representative kittens. At the end of 18 days of reverse occlusion
the vision of the initially deprived eye had recovered to only
rudimentary levels (1-2.5 cycles per degree} while at the same

time the initially nondeprived eye had been rendered blind.

During the subsequent period of binocular visual exposure the
vision of both eyes improvedslightly, but only to a very limited
extent (to between 1.7 and 3.4 cycles per degree}. The results

from the third animal were very similar. After more than 2
months of binocular exposure the acuities of the initially

deprived and nondeprived eyes were respectively, 2.54 and 3.35
cycles per degree. Surprisingly, after 2 months of binocular

vision, the acuity of both eyes of these animals remained at

about one-third to one-half of normal levels’. Although the
initially deprived eye was opened at the peak of the sensitive

period (5 weeks of age) and the initially nondeprived eye was

closed for a relatively brief periodoftime (18 days), this depriva-
tion regimen had a devastiating and permanent effect upon the
visual acuity of both eyes.
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