We read every piece of feedback, and take your input very seriously.
Proofs
e i π + 1 = 0 (Euler's identity)
e i θ = cos θ + i sin θ (Euler's formula)
( cos θ + i sin θ ) n = cos n θ + i sin n θ (de Moivre's formula)
( a + b ) 2 = a 2 + 2 a b + b 2
( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k (Binomial theorem)
a 2 − b 2 = ( a + b ) ( a − b )
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 )
a n − b n = ( a − b ) ∑ k = 0 n − 1 a n − k − 1 b k
a x 2 + b x + c = 0
⟹ x = − b ± b 2 − 4 a c 2 a
a m a n = a m + n
( a m ) n = a m n
( a b ) n = a n b n
log b ( x y ) = log b x + log b y
log b ( x k ) = k log b x
log b x = log c x log c b
sin 2 θ + cos 2 θ = 1 (Pythagorean identity)
sin ( α + β ) = sin α cos β + cos α sin β
cos ( α + β ) = cos α cos β − sin α sin β
sin 2 θ = 2 sin θ cos θ
cos 2 θ = cos 2 θ − sin 2 θ = 1 − 2 sin 2 θ = 2 cos 2 θ − 1
sin n θ = ∑ k = 0 ⌊ n − 1 2 ⌋ ( − 1 ) k ( n 2 k + 1 ) cos n − ( 2 k + 1 ) θ sin 2 k + 1 θ
cos n θ = ∑ k = 0 ⌊ n 2 ⌋ ( − 1 ) k ( n 2 k ) cos n − 2 k θ sin 2 k θ