Skip to content
yuuki edited this page Jun 12, 2025 · 38 revisions

Proofs

Euler's identities

e i π + 1 = 0 (Euler's identity)

e i θ = cos θ + i sin θ (Euler's formula)

( cos θ + i sin θ ) n = cos n θ + i sin n θ (de Moivre's formula)

Algebraic identities

( a + b ) 2 = a 2 + 2 a b + b 2

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3

( a + b ) n = k = 0 n ( n k ) a n k b k (Binomial theorem)

a 2 b 2 = ( a + b ) ( a b )

a 3 b 3 = ( a b ) ( a 2 + a b + b 2 )

a n b n = ( a b ) k = 0 n 1 a n k 1 b k

Quadratic formula

a x 2 + b x + c = 0

x = b ± b 2 4 a c 2 a

Exponent rules

a m a n = a m + n

( a m ) n = a m n

( a b ) n = a n b n

Logarithm rules

log b ( x y ) = log b x + log b y

log b ( x k ) = k log b x

log b x = log c x log c b

Trigonometric identities

sin 2 θ + cos 2 θ = 1 (Pythagorean identity)

Addition formulas

sin ( α + β ) = sin α cos β + cos α sin β

cos ( α + β ) = cos α cos β sin α sin β

Double-angle formulas

sin 2 θ = 2 sin θ cos θ

cos 2 θ = cos 2 θ sin 2 θ = 1 2 sin 2 θ = 2 cos 2 θ 1

Multiple-angle formulas

sin n θ = k = 0 n 1 2 ( 1 ) k ( n 2 k + 1 ) cos n ( 2 k + 1 ) θ sin 2 k + 1 θ

cos n θ = k = 0 n 2 ( 1 ) k ( n 2 k ) cos n 2 k θ sin 2 k θ