Transient Response of Inductrack Systems for Maglev Transport: Part I—A New Transient Model

General information

Publication type

Journal Article

Journal
2020, Journal of Vibration and Acoustics, № 3
Publisher

ASME International

Authors

Ruiyang Wang, Bingen Yang

Details

Number of citations

2

Number of works in the list of references

39

Indexed in Scopus

Yes

Indexed in Web of Science

Yes

Abstract

AbstractAs a new strategy for magnetic levitation, Inductrack systems with Halbach arrays of permanent magnets have been applied to Maglev trains and intensively researched in various projects. In an Inductrack system, the magnetic interaction forces are coupled with the motion of a moving vehicle carrying Halbach arrays, which in many situations results in complicated transient behaviors of the system. In this two-part paper, a new transient model of two degrees-of-freedom for Inductrack systems is proposed. The highlight of this work is that the transient model is developed based on the fundamental principle of physics, without the assumption of steady-state quantities and averaged magnetic forces and with the finite dimensions of Halbach arrays in consideration. In Part I, the transient model is derived through the establishment of a set of nonlinear integro-differential governing equations, and the magnetic interaction forces in the Inductrack system are determined in analytical form. In Part II, the solution of the governing equations, model validation with the previous results in the literature, and transient response analysis via numerical simulation is presented. Although only two degrees-of-freedom have been considered, the approach of modeling and analysis presented in this paper can be extended to general cases of multi-degrees-of-freedom.

List of references

  1. Lee, Review of Maglev Train Technologies, IEEE Trans. Magn., № 42, с. 1917
    DOI: 10.1109/TMAG.2006.875842
  2. Post, R. F., and Ryutov, D. D. 1996. “The Inductrack Concept: A New Approach to Magnetic Levitation,” LLNL Report No. UCRL-ID-124115.
    DOI: 10.2172/237425
  3. Post, The Inductrack: A Simpler Approach to Magnetic Levitation, IEEE Trans. Magn., № 10, с. 901
  4. Post, Maglev: A New Approach, Sci. Am., № 282, с. 82
    DOI: 10.1038/scientificamerican0100-82
  5. Tung, L. S., Post, R. F., and Martinez-Frias, J., 2001, “Final Progress Report for the NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory,” LLNL Report No. UCRL-ID-144455.
    DOI: 10.2172/15013556
  6. Gurol, Overview of the General Atomics Low Speed Urban Maglev Technology Development Program
  7. Gurol, Status of the General Atomics Low Speed Urban Maglev Technology Development Program
  8. Kratz, A Null-Current Electro-Dynamic Levitation System, IEEE Trans. Magn., № 12, с. 930
  9. Gurol, General Atomics Urban Maglev Test Track Status, с. 251
  10. Smith, The Fifth Mode, Constr. Res. Innov., № 7, с. 12
    DOI: 10.1080/20450249.2016.11874018
  11. Bermudez, Preliminary Experiments on an Eddy Currents Bearing, с. 135
  12. Bird, A Preliminary Investigation of an Electrodynamic Wheel for Simultaneously Creating Levitation and Propulsion, с. 316
  13. Rohacs, Magnetic Levitation Assisted Aircraft Take-Off and Landing (Feasibility Study—GABRIEL Concept), Prog. Aerosp. Sci., № 85, с. 33
    DOI: 10.1016/j.paerosci.2016.06.001
  14. Post, R. F. , 1998, “Inductrack Demonstration Model,” LLNL Report No. UCRL-ID-129664.
    DOI: 10.2172/632505
  15. Murai, Electromagnetic Analysis of Inductrack Magnetic Levitation, Electr. Eng. Jpn., № 142, с. 67
    DOI: 10.1002/eej.10061
  16. Han, Four- and Eight-Piece Halbach Array Analysis and Geometry Optimisation for Maglev, IEE Proc.: Electr. Power Appl., № 152, с. 535
  17. Íñiguez, Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array, Eur. J. Phys., № 30, с. 367
    DOI: 10.1088/0143-0807/30/2/016
  18. Íñiguez, Numerical Simulation of a Simple Low-Speed Model for an Electrodynamic Levitation System Based on a Halbach Magnet Array, J. Magn. Magn. Mater., № 322, с. 1673
    DOI: 10.1016/j.jmmm.2009.04.035
  19. Cho, Characteristic Analysis of Electrodynamic Suspension Device With Permanent Magnet Halbach Array, J. Appl. Phys., № 105, с. 07A314
    DOI: 10.1063/1.3068425
  20. Ham, Study of a Hybrid Magnet Array for an Electrodynamic Maglev Control, J. Magn., № 18, с. 370
    DOI: 10.4283/JMAG.2013.18.3.370
  21. Flankl, Scaling Laws for Electrodynamic Suspension in High-Speed Transportation, IET Electr. Power Appl., № 12, с. 357
    DOI: 10.1049/iet-epa.2017.0480
  22. Han, Q. , 2004, “Analysis and Modeling of the EDS Maglev System Based on the Halbach Permanent Magnet Array,” Ph.D. dissertation, University of Central Florida, Orlando, FL.
  23. Han, A Novel Maglev System, с. 505
  24. Kim, Modeling of Electrodynamic Suspension Systems, с. 667
  25. Kim, Dynamic Modeling of Electromagnetic Suspension System, J. Vib. Control, № 19, с. 729
    DOI: 10.1177/1077546312438601
  26. Ko, W. , 2007, “Modeling and Analysis of the EDS Maglev System with the Halbach Magnet Array,” Ph.D. dissertation, University of Central Florida, Orlando, FL.
  27. Long, Study of EDS & EMS Hybrid Suspension System With Permanent-Magnet Halbach Array, IEEE Trans. Magn., № 47, с. 4717
    DOI: 10.1109/TMAG.2011.2159237
  28. Buth, Dynamic Analysis of Vehicle-Guideway Interaction in a Maglev Cargo Transportation System, с. 1
  29. Pradhan, Vehicle Dynamics of Permanent-Magnet Levitation Based Hyperloop Capsules
    DOI: 10.1115/DSCC2018-9130
  30. Storset, Discrete Track Electrodynamic Maglev Part I: Modelling, IEEE Trans. Magn.
  31. Storset, Electrodynamic Magnetic Levitation With Discrete Track Part II: Periodic Track Model for Numerical Simulation and Lumped Parameter Model, IEEE Trans. Magn.
  32. Wang, A Transient Model of Inductrack Dynamic Systems
    DOI: 10.1115/DETC2019-97166
  33. Xiao-Fan, Analytic Expression of Magnetic Field Distribution of Rectangular Permanent Magnets, Appl. Math. Mech., № 25, с. 297
    DOI: 10.1007/BF02437333
  34. Voltmer, Fundamentals of Electromagnetics 1: Internal Behavior of Lumped Elements, с. 171
    DOI: 10.1007/978-3-031-79414-8
  35. Salam, Fundamentals of Electrical Circuit Analysis, с. 29
    DOI: 10.1007/978-981-10-8624-3
  36. Kelly, Electricity and Magnetism, с. 235
  37. Griffiths, Time-Dependent Generalizations of the Biot-Savart and Coulomb Laws, Am. J. Phys., № 59, с. 111
    DOI: 10.1119/1.16589
  38. Griffiths, Introduction to Electrodynamics, с. 250
  39. Hayt, Engineering Electromagnetics, с. 276

Publications that cite this publication

Dynamic Modeling and Transient Response of a Rigid-Body Inductrack Maglev System
Journal Article Scopus WoS Crossref: 1
Ruiyang Wang, Bingen Yang
Abstract The Inductrack system provides a novel way to achieve magnetic levitation by using Halbach arrays of permanent magnets (PMs). Due to the complexities of the nonlinear electro-magneto-mechanical coupling in the system, most previous analyses of the Inductrack system rely on steady-state results and consequently cannot fully capture the dynamic behaviors of the system in transient scenarios. In this article, a new three degrees-of-freedom (3DOF) transient model of the Inductrack system is proposed. This model describes the rigid-body motion of the Inductrack vehicle with axial (longitudinal) and vertical (transverse) displacements and pitch rotation, and it is derived without any assumption of steady-state quantities. Compared to a recently available 2DOF lumped-mass model developed by the authors, the inclusion of the pitch rotation in the new model results in a much more complicated mechanism of electro-magneto-mechanical coupling. Numerical results show that the pitch rotation can have a significant effect on the dynamic response and stability of the Inductrack system, which necessities vibration control for the safe operation of the Inductrack system.
2022, Journal of Vibration and Acoustics, № 1
Passive Multi-Degree-of-Freedom Stabilization of Ultra-High-Speed Maglev Vehicles
Journal Article Scopus WoS Crossref: 6
Salvatore Circosta, Renato Galluzzi, Nicola Amati, Andrea Tonoli, Angelo Bonfitto, Torbjörn A. Lembke, Milan Kertész
Abstract Over the last decades, the search for fast and efficient transportation systems has raised the interest toward maglev technologies. In this scenario, the Hyperloop paradigm is regarded as a breakthrough for future mobility. However, its practical implementation requires the solution of key shortcomings. Among these, the stability of the electrodynamic levitation system remains partially unexplored. The state of the art presents numerous attempts to attain stable behavior. In recent works, the stabilization of maglev vehicles has been addressed only for the vertical dynamics. Nevertheless, stable operation of all degree-of-freedom is required for a successful implementation of these transportation systems. The present paper addresses the full stabilization of a downscaled vehicle where levitation and guidance are provided by electrodynamic means. To this end, a design methodology supported by analytical modeling is proposed, where the degree-of-freedom are stabilized by suitably introducing secondary suspension elements. The design of the secondary suspension and the guidance system is obtained through the optimization of stability and dynamic performance. Then, a multibody model is developed. Both numerical approaches are compared in the frequency domain for validation purposes. Finally, the multibody model is simulated in the time domain to assess system performance in the presence of track irregularities and evaluate coupling effects between the degree-of-freedom.
2021, Journal of Vibration and Acoustics, № 6
Find all citations of the publication