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1．はじめに
　近年，航空機部品が積層造形で製造されている。積層
造形は複雑形状の造形が可能であり，部品点数を減らす
ことができる。接合部の肉厚増強を考慮する必要がなく，
部品軽量化に貢献できる。また，製造プロセスの低コス
ト化，短期納期等の面で有利であり，航空機エンジンの
タービン用耐熱材として用いられているNi基超合金の
単結晶についても積層造形による製造が期待されている。
　Ni基超合金は多結晶，一方向凝固材よりも単結晶の方
が高温クリープ強度に優れる。粉末床積層造形で単結晶
を造形するには，種結晶を用いて種結晶と同じ結晶構造
の材料を造形する方法は報告されているものの⑴,⑵，種
結晶を使わない造形方法では粉末床積層造形のレーザ方
式では報告されておらず，電子ビーム方式で2018年以降

に報告されていた⑶-⑸。著者らはレーザ方式でレーザの
照射面強度分布が一様なフラットトップレーザを用い
て，純ニッケルの造形において，大角粒界の形成を抑制
し，単結晶の造形に成功した⑹。しかし，フラットトッ
プレーザを用いた造形のパラメータがミクロ組織や集合
組織の形成に及ぼす影響は不明な点が多い。造形パラ
メータには，レーザパワー，レーザ走査速度，ハッチス
ペース，レイヤー厚さ等が挙げられ，とりわけ走査速度
が結晶方位に及ぼす影響は大きい⑺,⑻。これらの造形パ
ラメータがフラットトップレーザで造形する単結晶の結
晶粒構造の形成に及ぼす影響は報告されていない。本論
文ではフラットトップレーザを用いた粉末床溶融結合法
において，単結晶が得られるパラメータの近傍でレーザ
走査速度が結晶方位に及ぼす影響について報告する。単
結晶の造形では結晶粒界形成の抑制が重要になるが，造
形体の結晶粒界形成やひずみに及ぼす影響についても議
論する。従来のガウス強度分布に従うレーザを使用した
造形体の集合組織，結晶方位や結晶粒界，ひずみと比較
して議論する。
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Fabrication of a Nickel Single Crystal by Controlling Melt Pool Geometry 
in Laser Powder Bed Fusion 

ABSTRACT

　The demand for additive manufacturing of high-temperature components with nickel-base single-crystal superalloy 
is increasing in aircraft and gas-turbine industries. We investigated the effect of laser scan speed on the microstructure 
and texture of pure nickel specimens fabricated via laser powder bed fusion using a flat-top laser beam. The 
<110> texture changed to near-<100> as the scan speed increased. A further increase in the scan speed resulted in 
the closer-<100> texture accompanied with the formation of stray grains. Under the condition in which the most 
uniform texture close to <100> was formed, the density of geometrically necessary dislocation was at a minimum. 
Additionally, the length of the high-angle grain boundary became almost zero, resulting in a single-crystal structure. 
The difference in-between the build direction and grain growth direction in a planer melt pool on the X-Z plane may 
contribute largely to the grain selection before the formation of the single-crystal structure.
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2．材料と実験方法
　高純度の純ニッケル球状粉末（AMPERIT 176， 
HÖGANÄS社）を使用した。D10，D50，D90はそれぞれ
24.6，34.8，51.3 μmであり，平均粒径34.0 μmであっ
た。造形にはSLM 280 HL （SLM Solutions社）を用いた。
造形装置はガウス分布レーザとフラットトップレーザを
搭載しており，それぞれビームの直径は80 μm，700 μ
mである。Fig. 1にガウス分布レーザとフラットトップ
レーザの照射面強度分布の概念図を示す。造形ステー
ジ上にはSUS304プレートを設置し，その上に，各レイ
ヤーごとに粉末を敷いて直径12 mm，高さ30 mmの円
柱を造形した。造形ステージは加熱せず，造形では種結
晶を使用していない。Ar雰囲気下で造形した。本論文
では造形方向をZ方向，レーザの走査方向X方向，ハッ
チ方向をY方向とする。スキャンストラテジーとして
XY面で双方向（ジグザグ）に走査し，レイヤー毎に走
査方向を90度回転させた。造形時のひずみや残留応力を
最小限にするため，レーザの走査方向を67度回転され
るスキャンストラテジーが報告されているが⑼，本研究
では単結晶造形時の結晶粒選択（後述）で重要となる
90度回転を採用した。レーザ直径の異なるガウス分布
レーザとフラットトップレーザのエネルギー密度が同程
度になるTable 1の造形パラメータを使用した。ガウス
分布レーザを使用したパラメータをG，フラットトップ
レーザを使用したものはFTとした。レイヤー厚さは全
て30 μmである。本研究では下記のエネルギー密度EM
の定義式を用いた⑽。
　　　　    ⑴　
ここで，βは吸収係数（0.8），αは熱拡散率（22 mm2/
s），Pはレーザパワー，hはハッチスペース，dbはレー
ザビーム直径，vはレーザ走査速度である。G1とFT2
のレーザ走査速度とレーザ出力の条件で純Niの板材に
レーザを照射して形成した溶融池は，それぞれG1：直
径144.5 μm，深さ148.1 μm，FT2：直径143.7 μm，深
さ20.0 μmである⑹。
　組織の解析では，造形まま材を切断し，樹脂に埋め
込んだ後，#320，#600の研磨紙，9，3，1 μmの ダイ
ヤモンド砥粒，粒径0.06 μm のコロイド状シリカ懸濁
液で研磨を行った。結晶方位，結晶粒界長さ，転位密
度分布を電子線後方散乱回折（EBSD）により解析した。
EBSDデータの解析にはTSL OIM 7を使用した。本論文

では小角粒界と大角粒界の結晶方位差をそれぞれ5～15
°，>15°と定義した。

3．結果及び考察
3.1　集合組織の形成
　Fig. 2に造形後の試料外観写真を示す。Fig. 3にガウ
ス分布レーザを使用した造形まま材の高さ25mmにおけ
る組織のIPF（Inverse Pole Figure）マップを示す。黒
の実線は大角粒界である。また，それぞれのIPFマップ
における結晶方位分布を逆極点図に示す。G1 ～ G3の積
層方向（BD）に垂直な面で”レーザ走査跡”を確認で
きる。積層方向に平行な面において積層方向に大角粒界
が伸び，レーザ走査跡がわかる。ガウス分布レーザの照
射ではYZ面で半楕円形の溶融池が生じるため⑹，溶融
池の固液界面で温度勾配が最大となる方向が最深部から
エッジにかけて連続的に変化する。これにより，溶融池
のYZ面において<100>と<110>のセルの競争成長が起
こるが，溶融池の両側の固液界面でエピタキシャル成長
し，その後，競争成長して凝固セルがぶつかり大角粒界
を形成する⑾。同様の結晶粒界の形成は溶接溶融池にお
いても観察されている⑿。溶融池の両側から結晶粒が溶
接センターラインに向かって成長してぶつかり形成する。
G1，G2では主に<110>集合組織を形成しているが，G3
に走査速度が上がると<100>に近い集合組織が増加する。
　フラットトップレーザを使用したFT1，FT2，FT3で
は上記のガウス分布レーザを使用した場合と同じスキャ
ンストラテジーであるが，積層方向に垂直な面と平行な

Fig. 1   Schematics of the intensity distribution of ⒜ Gaussian 
and ⒝ fl at-top laser beams.

Laser
power
［W］

Laser scan 
speed 

［mm/s］

Hatch
space
［μm］

Energy 
density
［J/mm3］

G1 300 600 80 46.16

G2 300 900 80 37.89

G3 300 1200 80 32.64

FT1 500 100 100 50.96

FT2 500 140 100 43.07

FT3 500 200 100 36.04

Table 1  Fabrication parameters in this study.

Fig. 2  Fabricated cylindrical specimens.
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面でレーザ走査跡が見られない。フラットトップレーザ
を使用した場合，溶融池の形状は浅くて幅が広い平面状
に近くなる⑹。FT1では<110>集合組織を形成し，大角
粒界が存在する（Fig. 4）。一方，レーザ走査速度を上
げたFT2では大角粒界の形成が抑制され，<100>に近い
集合組織を有し，単結晶化していることがわかる。こ
の集合組織は<710>であり，積層方向から±8°のずれ
である。さらにレーザ走査速度を上げたFT3では，よ
り<100>に近い集合組織を形成したものの，大角粒界
を形成し，結晶方位<210>付近（Fig. 4標準ステレオ三
角形の丸印）等，<100>から離れた方位の漂遊結晶粒
（Fig. 4矢印）が出現した。レーザ走査速度が増加すると，
集合組織の結晶方位が<110>から<100>に変わり，さら
に速度が上がると，ランダムな方位の結晶粒が増加して
いくことが報告されている⑺。本研究においても同様の
傾向となった。
　集合組織の形成は溶融池形状の影響を受け，その溶融
池形状は造形パラメータの影響を受ける⒀。Fig. 5にガ
ウス分布レーザを高速走査，低速走査で使用した場合の
XY面，XZ面，YZ面の溶融池形状の模式図を示す。条

件によってXZ面で柱状晶が成長する “軸方向成長（axial 
growth）”が起こる⑿,⒁,⒂。そのときの模式図もFig. 5 
⒢, ⒣に示し，軸方向成長を矢印で示した。レーザ走査
速度が速い場合，XY面では溶融池がレーザ走査方向に
伸び，Teardrop形状になる。溶融池の固液界面の両側
から結晶粒が成長し，溶融池センターライン付近でそれ
らがぶつかり結晶粒界を形成する。溶融池の深さは浅
いが，YZ面で正規分布のような形状は維持され，結晶
粒はFig. 5 ⒠のように溶融池表面に向かって成長する⑺。
また，XZ面では凝固セルの成長方向が造形方向により
近く，細かい結晶粒が増加する⒃。一方でレーザ走査速
度が遅い場合，溶融池形状はXY面で楕円形に近くなり，
溶融池センターライン付近でも固液界面に対して垂直方
向に競争成長する。また，YZ面において溶融池は深く
なり，結晶粒の成長方向の曲率が上がる。XZ面におい
ても結晶粒の成長方向が湾曲し，成長方向の角度が造形
方向から外れて45°方向に近づく⒃。これらは溶接，ガ
ウス強度分布レーザを使った粉末床溶融結合法で報告さ
れている。
　フラットトップレーザを用いた粉末床溶融結合法で

Fig. 3   IPF maps and textures of Gaussian-laser fabricated 
specimens （G1, G2, G3） on the cross-sections 
perpendicular to and transverse to the build direction. 
All IPF maps were set along the build-direction axis.

Fig. 4   IPF maps and textures of flat-top-laser fabricated 
specimens （FT1, FT2, FT3） on the cross-sections 
perpendicular to and transverse to the build direction. 
All IPF maps were set along the build-direction axis.
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スーパーガウシアンと呼ばれるなだらかな正規分布状
と平面状の溶融池形状が確認された⑹。スーパーガウ
シアンはレーザ走査速度が遅い条件で観察され，YZ面
の溶融池形状はガウス分布レーザを高速走査した条件
のFig. 5 ⒠に近くなり，溶融池のXY面，XZ面はガウ
シアン分布レーザを低速走査した条件の結晶成長挙動
（Fig. 5 ⒝，⒟）に近くなると考えられる。したがって，
YZ面とXZ面で結晶成長方向の曲率が上昇し，<110>集
合組織が優勢になると考えられる。しかし，YZ面はガ
ウス分布レーザ照射によりできる溶融池の形状に比べて
なだらかであり，センターライン付近で凝固セルがぶ
つかる程の成長角度の分布ではなく，Fig. 4のFT1のよ
うにレーザ走査跡を確認できない。レーザ走査速度を速
くし，Fig. 6 ⒞のようにYZ面で溶融池の形状が平面状
になるとエピタキシャル成長を経て凝固セルが造形方向
に成長し，軸方向成長（Fig. 5 ⒣）のように結晶方位が
揃った結晶粒の成長が起こる（Fig. 6）。さらにレーザ
走査速度が速くなると，XZ面で凝固セルはさらに造形

方向に近い成長となり，集合組織はさらに<100>に近づ
くが，ランダムな結晶方位を持つ細かい漂遊結晶粒が増
加すると考えられる。単結晶化する条件については3.3
節で議論する。
3.2　造形体のひずみおよびGN転位分布
　造形時，溶融池に近い領域ではレーザ照射による発熱
の影響を受け，急速加熱，急速冷却を繰り返す。造形体
中の小角粒界や大角粒界の形成はこの熱サイクル時に
生成されるひずみや転位形成の影響を受ける⒄。このひ
ずみ量をKAM（Kernel Average Misorientation）値で
議論する。KAM値とはEBSDで対象となる測定点とそ
の周囲の測定点との間の結晶方位差の平均値であり，こ
の値が大きいと結晶中の歪が大きいことを示す。Fig. 7
にKAMマップを示す。また，KAM値は塑性変形後の
形状を成立させるために幾何学的に必要な転位（GN転
位）の転位密度にほぼ比例することが報告されており⒅，
EBSDデータからGN転位密度をPantleonらのモデル⒆を
用いて算出した。図中に四角で囲んだ領域のGN転位密
度（単位：×1014 /m2）を示す。G1，G2，G3では，レー
ザ照射したがレーザ走査跡で値が大きく，溶融池のエッ
ジ部分に近いところでは値が小さい。一方でフラット
トップレーザではKAMマップでレーザ走査跡を確認で
きなかった。フラットトップレーザを用いた場合，ガウ
ス分布レーザに比べてGN転位密度の値が小さい。造形
中に生成するひずみと残留応力は，各レイヤーで往来す
るレーザ照射部の熱サイクルが影響し，その繰り返し数
が多いほどひずみが増大する⒇。ガウス分布レーザは溶
融池が深く，フラットトップレーザよりもレイヤーに影
響する積層方向の領域が広く，造形中，各レイヤーの熱
サイクルが増大することが考えられる。さらに，前述の
とおり，ガウス分布レーザの照射では半楕円形の溶融池
が形成するが，溶融池のレーザ走査跡（センターライ
ン付近）で凝固セルがぶつかり，大角粒界を形成し，そ
の部分でのひずみは大きい21。フラットトップレーザで
は溶融池が平面状であるため，優先成長する凝固セルが

Fig. 5   Schematic grain morphologies at high and low laser-scan 
speeds on X-Y, X-Z, Y-Z planes. Grain morphologies with 
axial growth on X-Y plane are also shown in ⒢ and ⒣.

Fig. 7   Kernel average misorientation（KAM）maps of G1, G2, 
G3, FT1, FT2 and FT3 specimens.

Fig. 6   Schematic grain morphologies under the FT2 condition 
on X-Y, X-Z, Y-Z planes.
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同じ方向であり，ひずみが分散する21。フラットトップ
レーザを使用した造形体で大角粒界の形成が抑えられる
のは，この生成ひずみが小さいことも理由の一つとして
考えられる。GN転位密度とレーザ走査速度の関係につ
いては，それらの相関はないものの，Fig. 7に示す通り，
集合組織の結晶方位が比較的揃っているG2の溶融池
エッジ部とFT2全体において，それぞれG1とG3，FT1
とFT3と比較して，わずかに値が小さいように見受けら
れる。

3.3　単結晶構造の形成
　Fig. 3とFig. 4で示した造形方向に垂直な面のG1～ G3，
FT1 ～ FT3の大角粒界と小角粒界の長さをFig. 8に示す。
フラットトップレーザを使用した場合ではガウス分布
レーザに比べて小角粒界と大角粒界の形成が抑制される。
また，それぞれのレーザにおいて，集合組織の結晶方位
が揃っているほど小角粒界長さと大角粒界長さの値は小
さい。つまりG2の値はG1，G3よりも小さく，FT2の値
はFT1，FT3よりも小さい。FT2の大角粒界長さはゼロ
であり，単結晶構造であることがわかる。本研究では造
形ステージにSUS304プレートを使用しており，造形開
始初期は，高さ6mmほどまで<100>と<110>方位の結
晶粒の選択が起こっている。
　3.1節の集合組織形成の議論を踏まえ，単結晶化に
は下記の2つの条件を満たす必要があると考えられる。
⒜ レーザ走査中，溶融池が安定な形状を維持し，溶融
池のYZ面の固液界面で凝固セルの成長方向が造形方向
に近く，造形方向と凝固セルの成長方向の角度差がある
範囲内に入る。
⒝ スキャンストラテジーでレイヤー毎の走査方向の回
転角度は90°の倍数である（例えば180°）。 
　⒜で「<100>凝固セルの成長方向が造形方向に近くな
る」としたが，レーザ走査速度が速い場合は集合組織の
結晶方位が<100>に近づくものの，ランダムな結晶方位
の細かい結晶粒が出現する。しかし，⒜と⒝は基本的に
結晶粒成長の第一方向（造形方向）と第二方向（XY面
内方向）に関する条件である。

　造形中，レーザ走査により熱源がXY面を移動し，結
晶成長方向は造形方向と完全に一致しない。フラット
トップレーザを用いた造形では，溶融池の形状が平面状
に近づくにつれ，YZ面での結晶粒成長方向が造形方向
に近くなるため，XZ面での造形方向と結晶成長方向の
ずれが最終的な結晶粒の成長方向の和と造形方向のずれ
の大部分を占めると考えられる。
　単結晶の種結晶を用いない本研究では，上記の通り，
造形開始初期に結晶粒の選択（grain selection）を経て
単結晶に成長する。一方向凝固精密鋳造では，溶湯がチ
ルプレートに接触する底面で不均質核生成により多数の
結晶粒が生成し，鋳型を低温室に引下げることでデンド
ライトが上方向に成長する。その際，セレクターと呼ぶ
螺旋階段状の部分を凝固フロントが通過して，柱状晶の
一つが物理的に選択されて，単結晶に成長する。このセ
レクターで成長する結晶粒をあらかじめ選択することは
できず，最終的に残った結晶粒のXY面（引き上げ方向
に垂直な面）の結晶方位を前もって選択することはでき
ない。本研究では，XZ面において，造形方向と温度勾
配が最大となる方向に角度差を持った何層ものレイヤー
が積み重なる（Fig. 6 ⒝）。その角度差に従って凝固セ
ルが成長していく過程で<100>に近い方位の結晶粒が選
択されて，単結晶になると考えられる。この角度の範囲
については今後の課題である。
　同じレイヤー内でレーザをハッチスペースの距離を空
けて平行に走査していくが，YZ面の溶融池外側（Fig. 6 
⒞）では，その前に凝固したレイヤーの結晶構造から造
形方向と垂直面内方向にエピタキシャル成長を起こして
いると考えられる。これはガウス分布レーザによる造形
でも確認されている⑾。従って，造形方向とそれと垂直
面内方向で四面体の結晶方位が決まっており，それをエ
ピタキシャル成長しながらZ方向に成長していく。つま
り，造形が次のレイヤーに移る際には下部の四面体構造
（面心立方格子）の結晶方位と一致するように走査方向
を回転させなければ，単結晶格子の連続性が途切れる⑷。
従って，レイヤー毎の走査方向の回転角度は90°の倍数
であることが必要である。この走査方向の回転角度の影
響については詳細な実験的検証が期待される。

4．まとめ
　これまで電子ビームの粉末床溶融結合法で単結晶造形
が報告されていた。本研究ではフラットトップレーザを
用いたレーザ方式で純ニッケル単結晶を造形し，レーザ
走査速度が集合組織の形成，GN転位密度，大角粒界長
さに及ぼす影響を調査した。また，単結晶の造形に必要
な条件について考察した。
　フラットトップレーザを用いた造形においてレーザ走
査速度が速くなると<110>集合組織から<100>集合組織
に変わる。しかし，さらに速度が大きくなると，<100>
に近い集合組織が増加するが，漂遊結晶粒が出現する。

Fig. 8   High and low angle grain boundaries （HAGB, LAGB） 
lengths of G1, G2, G3, FT1, FT2 and FT3 specimens.
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集合組織の結晶方位が揃う条件において，GN転位密度
が最小になり，大角粒界長さがほぼゼロになるとともに，
単結晶構造が得られた。フラットトップレーザを用いて
単結晶を造形した条件では溶融池形状がYZ面で平面状
になり，XZ面における造形方向と結晶成長方向のずれ
は結晶粒の選択に大きく寄与すると考えられる。
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