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1．はじめに
　航空用エンジンファン動翼に生じる失速フラッターは，
空力的な不安定であるサージと並び，安定作動域を制限
する代表的な翼振動現象として知られている。特に設計
回転数以下の部分回転数時に生じるものは，発生領域が
サージ線から安定作動域に張り出すように存在し作動線
に接近しやすいため，設計時の予測手法や，発生を抑制
する指針を確立することが重要である⑴-⑸。
　これまで著者らは，流体構造連成解析に基づくフラッ
ター解析手法を構築・検証し，遷音速ファンに生じるフ
ラッター境界の予測を試みてきた⑹-⑺。フラッターが生
じる回転数の範囲では，予測されたフラッター境界は試
験結果と定性的に一致したが，一方で本来フラッターが
生じないはずの低回転数側の作動点でも数値解析ではフ
ラッターが生じた。この差の原因を明らかにし，精度の
よい予測指針を確立するためには，空力・構造双方の面

から包括的な調査が必要である。
　フラッター発生点への影響因子は空力的・構造的要因
双方が存在し，これまで報告されてきた実験的な観測や
数値解析による研究より，次のようにまとめられる。
⑴励振力に寄与する衝撃波のある不始動流れ場⑶-⑸,⑺-⑼

⑵翼列入口・出口ダクト内の音響的特性⑻-⑼

⑶翼振動モード形状（並進・ねじり運動の割合）⑼

⑷翼構造の機械的特性のばらつき⑽-⒀ 
　⑷の機械的特性のばらつきはミスチューニングと呼ば
れ，製造時のばらつきや計測器の取り付けに起因して生
じる。最小減衰率をとるフラッターモードに対しては，
主に減衰率を増し不安定性を抑制する効果があるが，そ
の程度はばらつきのパターンや強度に依存し，振動特性
に個体差が生じる。しかし，CFDを用いた流体・構造
非連成のフラッター解析ではこの効果を含めることがで
きないため，別途影響度の評価が必要になる。
　経験された試験・解析間の差を考える際，設計に依存
する⑶は別にして，⑴⑵は流体解析における乱流モデル
や計算領域の影響が疑われる。そのため，現時点でミス
チューニングの感度を定量的に知ることは，試験・解析
間の差がばらつき由来の偶発的なものか，流体解析に由
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来するかを切り分けるうえで重要な知見となる。
　本研究では，前述したフラッター境界のミスマッチの
原因を検討する一環として，低回転数側でフラッターが
構造側の偶発的な要因で抑制されていた可能性を考察す
るため，ミスチューニングがフラッター境界に及ぼす
影響を定量化し評価する。また，現実にみられるミス
チューン時の振動特性についても詳細に調査する。

2．解析手法
2.1　解析対象と解析指針
　本研究における解析対象はIHI社において高効率・高
比流量を実現すべく研究開発されたCEFS1ファン⒁であ
る。ファンの外観と動翼一次たわみ（1F）モードのモー
ド形状を図1に，仕様を表1に示す。ファンは18枚の動
翼をもち，Ti-6Al-4V合金のブリスクで作成されている。
CEFS1はリグ試験において設計回転数比80%N，82.5％
N（Nは回転数を表す）の失速側作動点で1Fモードのフ
ラッターが発生した。
　図2に，著者らの数値解析で予測されたフラッター
境界⑺と試験でのフラッター発生位置の比較をファン特
性マップ上で示す。フラッターの生じない低回転数側
（75%，77.5%回転数）でもサージ線よりかなり高流量側
にフラッター境界が算出された。本解析は一切の構造減
衰およびミスチューニングを含まずに行われたが，構造
減衰はブリスク構造のため小さく，影響を無視できる。
本研究では，実際の空力的な条件に即した感度解析によ
り，ミスチューニングの影響を抽出することを目的とす
る。解析範囲は，図2中FSI Point と示された，フラッ
ター境界を囲む広い作動範囲にわたる点である。

2.2　ミスチューニングを含む構造モデル
　翼構造の振動パラメタは一般に減衰比のほかモード質
量，モード剛性，モード形状から成り，固有振動数はこ
れらより算出できる。ミスチューニング効果の本質はば
らつきによる系の回転対称性の崩れであるため，本研究
では解析を単純化するために以下の仮定をする。
⑴各翼は空力的にのみ連成し，ディスクを介した翼間の
連成，翼振動モード間の空力的な連成は無視する。
⑵構造振動モード形状はチューン系のものに等しい。
⑶自励空気力の影響係数もチューン系のものに等しい。
　CEFS1ファンは実験機であり，ディスクの剛性が高
く設計されている。したがって，ディスクモードと翼振
動モードの連成は小さく，ディスクの影響を排除しても
大きな問題はないと判断し，仮定⑴を採用する。
　なお，ディスクがある場合，構造の節直径モード同士
の連成が弱まるため，ミスチューニングへの感度が鈍化
する⒂。本研究では仮定⑴によりミスチューニングへの
感度は最大化されている。また，解析上重要な点は，仮
定⑶で空気力の項を凍結することである。これによりミ
スチューンパターンを変えても新たな流体解析の必要は
なく，膨大なサンプル数を扱うモンテカルロ法と統計評
価が可能になる⒃。
　以上の仮定に加え，現実の翼構造に内在する振動特性
の「ばらつき」を固有振動数，モード質量に導入する。
翼番号 j 番に対する，固有振動数とモード質量のチュー
ン系からの相対的な変化をそれぞれ δj, δM,jとし，そ
れぞれ標準偏差ε, εMの正規分布に従う確率変数であ
るとモデル化する。
2.3　翼振動の解析手法
　以上の仮定のもと，1Fモードに対する自励空気力を
含んだ動翼列全体の運動方程式は次のように書ける。

Fig. 1  CEFS1 fan

(a) Full-annulus view
(b) 1F mode shape  

(80% speed)

Number of blades 18

Aspect ratio 1.6

Relative Mach number at tip 1.4

Blade material Ti-6Al-4V
Range of fl utter region and
structural mode shape

80%N, 82.5%N
（1F mode）

Table 1  Specifi cations of CEFS1 fan rotor
Fig. 2   Mismatch of fl utter boundary on low shaft speeds 

in our past numerical prediction ⑺
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ここで，Eq.⑴左辺は構造振動の項，右辺括弧中は翼振
動で誘起される自励空気力項を表す。またNb=18は翼枚
数，Λ, A, B はチューン系のモード剛性行列（角固有振
動数 ω0），自励空気力係数行列の変位・速度比例成分
である。ミスチューニングの効果は，付加的な剛性行列 
ΔΛと質量行列 M でまとめて表わされる。なお，ここ
には現れないが，翼固有モード形状ベクトルはチューン
系のモード質量が1となるよう規格化されており，ミス
チューン時にもチューン時と同じものが用いられている。
このとき，ミスチューン時において空気力係数行列 A, 
B に対するモード質量のスケーリングが不要になる。
　以上の各項を定めれば，ミスチューン系の自由振動に
対する安定性解析（フラッター解析）が，λ, ψ を固有
値，固有ベクトルとして複素固有値問題を解くことで行
える。

　
  ⑵

λ の実部，虚部からは空力弾性モードの減衰率 μAE ，
振動数 fAE がEq. ⑶より，また，ψ からはモード形状で
ある，各翼の振幅比と位相差がそれぞれ求まる。

　
,   ⑶　

翼振動の安定性は減衰率の正負で判定され， μAE>0 な
らば翼振動は安定，一方 μAE<0 ならば不安定であり，
その空力弾性モードでフラッターが発生する。
　空力弾性系を振動モデルに縮約した係数行列について，
Λ には各回転数の構造解析結果を，また，A, B には各
作動点で実施した流体構造連成解析による翼の自由振動
応答からシステム同定手法によって算出⑺したものをそ
れぞれ用いる。
2.4　モンテカルロ法と統計データ処理
　ミスチューニングは現実の構造では様々なパターン
で存在すると考えられる。そのため，モンテカルロ法 
（MC） により多数の異なるミスチューンパターンについ
て Eq.⑵に基づく安定性解析を実施し，その統計を取る
ことでフラッター境界への影響を評価する。MCのサン
プル数を Nfan=10000 とし，フラッターモードの減衰率，
振動数に対して統計量やヒストグラムを算出する。

　ミスチューニングの減衰率に対する感度は，Eq.⑷の
ように，それぞれのファンに対する1Fモード群の最小
減衰率の，全てのサンプルにわたる平均として定義され
た，平均最小減衰率μmin によって評価する。

　
= 1  

 
⑷　

　μmin は，あるミスチューン量の条件に対する振動安
定性を代表する値であると考えられる。そのためミス
チューニング条件における平均的なフラッター境界を
μmin =0となる点と定め，ファン特性マップ上の圧力比
と流量をμmin のゼロ点周囲の値から求める。

2.5　標準的なミスチューン量とテストケース
　過去の研究例では固有振動数のみのばらつきを考慮
する“frequency mistuning”を扱うものが多く，ミス
チューニングに対する重要なパラメタであると考えられ
る。しかしもう一つの係数である「モード質量」を扱う
ものは少なく，その振動特性への定性的な影響や，減衰
率への感度の大きさは定かではない。そのため本研究で
は，ミスチューン量に対する安定性への感度を系統的に
調査するため，固有振動数，モード質量のばらつき量に
対する標準偏差をパラメタとする。
　対象とするミスチューン量を設定するために，過去の
研究におけるファンに似た種々のリグに対する計測結果
を調査した。May⒄, Beirow⒅, Schnell⒆はそれぞれ遷音
速ファン，航空用エンジン高圧圧縮機初段，二重反転
ファンのリグに対する計測を行っている。表2に，最近
の三つの文献における1Fモードの固有振動数のばらつ
きの計測値を標準偏差で示す。Mayのモデルは22枚中5
枚がピエゾ素子製の加振装置を有し，それらを含めた場

Author Model STDEV［%］

May ⒄ UHBR Fan 0.47 （all）
0.17 （clean）

Beirow ⒅ HPC blisk （1st stage） 0.13

Schnell ⒆ Counter-rotating fan 0.25

No. STDEV［%］ Assumed situation

1 εM=15% Nominal level
2 εM=30% Large deviation

Table 2  Standard deviation of blade-alone frequency in past 
studies （1F mode）

No. STDEV［%］ Assumed situation

1 ε=0.2% Nominal level

2 ε=0.5% Nominal level

3 ε=1.0% Large mistuning
4 ε=1.5% Very large mistuning

Table 3  Test cases for frequency mistuning

Table 4  Test cases for mass mistuning
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合，除いた場合でそれぞれ0.47％，0.17%であった。他
の二者でもおおよそ0.2％程度であった。
　一方，モード質量に関するばらつきの情報が公開され
ているものは少ないが，これもMay⒄の計測によると標
準偏差で約17％であった。ばらつきのオーダーが固有振
動数と大きく異なっているのはおそらく計測手法に起因
するものであろう。一般にモード質量，モード剛性は周
波数応答関数のピーク近辺の値と減衰率から算出するた
め，構造減衰の非常に小さいブリスクでは計測の不確さ
が非常に大きくなると考えられる。また，翼固有振動数
とモード質量のばらつき同士の相関係数は

　 )/ ) = −0.25  ⑸　

と小さいことがわかった。
　以上の調査より，本研究では固有振動数，モード質量
のばらつきを独立な確率変数（つまり，共分散なし）と
して扱っても差し支えないと判断し，遷音速ファンのよ
うなリグで標準的であると考えられる値から非常に大き
な値までを感度解析の対象とした。表3, 表4に，本研
究のテストケースを1Fモードの固有振動数，モード質
量に対する標準偏差としてそれぞれ示す。固有振動数
に対してはε=0.2, 0.5%を標準的な値の範囲と考え，そ

れから離れた値であるε=1.0, 1.5%を大きなミスチュー
ン量として設定する。モード質量についてはMayの計
測と同レベルのεM=15%, その倍のεM=30% を設定する。
モード質量の標準偏差の大きさは非現実的かもしれない
が，May⒄の計測結果を尊重し，本研究での感度調査範
囲に設定した。なお，ここに示している値は正規乱数の
標準偏差であるので，この値のおよそ3倍近くのずれを
もつ翼まで生じうることに注意されたい。

3．減衰率とフラッター境界への影響
3.1　確率密度分布と振動数，モード質量の影響
　まず，翼構造特性の確率的なばらつきを導入した場合
に，フラッターモードの減衰率がどのような確率分布を
示すかを評価し，翼固有振動数およびモード質量それぞ
れの影響について考察する。
　図3に，異なるモード質量，翼固有振動数のミス
チューン量εM, εに対する1Fモード群最小減衰率の累
積確率分布と，平均値μmin のチューン系からの変化を，
80%回転数作動点Cについて代表として示す。図3⒜の
累積確率分布において，どのεMに対してもεが大きく
なると分布は全体的に右寄りにシフトしていることから，
異なるファン間の個体差が大きくなるとともに，系が全

(a) Cumulative probability (b) Change in averaged minimum damping rate

µ 
   

  [
1/

s]
m

in

µ 
   

  [
1/

s]
m

in
(Point C: Aerodynamic coefficients could not 
fully converge due to flow instability    )7)

Fig. 3  Eff ects of mass and frequency mistuning on the statistics of damping rate in the fl utter mode （80%N, OP: C）

Fig. 4  Change in averaged minimum damping rate due to frequency mistuning on each rotational speed
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体的に安定化することがわかる。また，モード質量の影
響は主に振動数のばらつきが低い場合に限られている。
このことは，図3⒝に示すεとμmin の関係からも確認
できる。以上より，モード質量のばらつきが大きい場合
でもその影響は限定的であり，固有振動数のばらつきで
ほぼ系の安定化挙動が把握できると考えて差し支えない
といえる。そのため，以降の議論では翼固有振動数のば
らつきのみを考慮し，モード質量はεM=0 とした結果
を用いる。
3.2　作動点ごとの減衰率への影響
　図4に，各回転数におけるミスチューン量が平均最
小減衰率に及ぼす影響をファン流量に対して示す。な
お，ここではε=0.2%のケースはほとんどチューン系と
同じ値であったため除外している。まずチューン系の
ケースでは，フラッターが生じない72.5%回転数では失
速側でも減衰率は横ばいで翼振動は安定である。また，
75.0% ～ 82.5%回転数では流量に対して急激に減衰率が
低下するようになり，その近辺で正減衰から負減衰に転
じることでフラッターが発生する。ミスチューン量を大
きくしていくと，どの回転数でも全体的に減衰率が大き
くなっていく。しかし，標準的な量であると考えられる
ε=0.5% とその倍の大きさであるε=1.0% まではミス
マッチが見られた75%回転数で依然としてフラッターが
生じる結果となっている。これより，標準またはその倍
程度のミスチューン量による安定化効果は，本対象にお
けるフラッター境界付近の急激な空力減衰低下を打ち消
すほどの効果はないといえる。
3.3　フラッター境界の変化
　図5に，図4中の減衰率と流量の関係に基づき，それ
ぞれのミスチューン量に対してフラッター境界の位置を
算出し，ファン特性マップ上に描いたものを示す。ミス
チューン量を増すと，高流量側から低流量側にむけて，
平均的なフラッター境界は移動していく。しかし，ε
=1.0%までは依然としてフラッター境界が高流量側に位
置している。

　さらに，比較的ばらつきの大きいε=1.0%の場合につ
いて，フラッター境界のミスマッチが見られた75.0%, 
77.5%回転数作動点Bにおける「フラッターが発生する
確率」（累積確率分布におけるμmin=0 切片）は，それ
ぞれ0.925, 0.862であり，非常に高くなっていることが確
認できた。
　以上のことより，フラッター境界の位置は，ミス
チューン量が製造公差や計測器の取り付けで生じる程
度であればほとんど影響を受けないといえる。さらに，
ディスクは十分剛でありモード解析への影響が小さいこ
と，構造減衰が小さく影響を無視できることから，翼構
造の数値的取扱いは妥当であると考えられる。
　フラッターの予測において構造モデル以外の要因は，
運動方程式Eq.⑴中で空気力の項のみである。改めて図
4に示した通り，75.0%, 77.5%回転数では空力減衰がフ
ラッター境界前後で急激に低下し，負に転じている。し
かし，この挙動は75.0%, 77.5%回転数でフラッターが発
生しなかったこととは矛盾する。したがって，チューン
系の解析でフラッター境界が75.0%, 77.5%回転数でも検
出された原因は，構造特性の不確かさに起因した偶発的
なものではなく，自励空気力を算出する際に用いた流体
解析に起因したものである可能性が高い。

4．固有値分布とモード形状の変化
　ここまでは，減衰率やフラッターの発生に着目してミ
スチューニングの影響を評価してきた。本章からは，ば
らつきを含む場合における系の固有値構造や振動形態の
変化について着目し，現実に発生しうるフラッターの特
徴を，理想的な場合と対比して結果を分析する。ここで
得られる知見は，翼振動の計測に関わるとき，即ち実際
のリグ試験におけるフラッターの計測計画を立てる際や，
取得されたデータを評価する際に重要となる。なお，本
章では80%回転数作動点Cを代表として取り上げる。
4.1　固有値分布の定性的な変化
　図6に，各ミスチューン量のケースについて，モンテ
カルロ法で用いた全サンプルに対する固有値分布を，振
動数と減衰率を用いた二次元ヒストグラムに可視化して
示す。なおチューン系の場合には，各固有値成分はたっ
た一点のみで値を持ち，それらは翼枚数によって定まる
隣接翼間位相差一定のTraveling Wave Mode （TWM） 
のいずれかに対応する。
　ミスチューン量が最も小さいε=0.2%の場合には，各
固有値成分はほとんど良好に分離しており，固有値分布
は限りなくチューン系に近いものとなっている。ここか
らばらつきが大きくなっていくと，徐々に分布に定性的
な変化が現れてくる。ε=0.5%のケースでは，不安定な
モードについて，各ピークの中間部分に位置する固有値
をもつモードが現れるようになる。
　さらにばらつきをε=1.0, 1.5%と大きくしていくと，
固有値分布が縦方向に全体的に縮小していくとともに，

Fig. 5  Flutter boundary obtained from averaged 
minimum damping rate
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分布に定性的な変化が現れる。これらでは，元々不安定
であった固有値成分は完全に融合し，大きなスポット領
域を形成している。さらに，μAE=25［1/s］付近にばら
つきの小さい場合には存在しない新たな集合が形成さ
れるようになる。この減衰率は，翼列中の1枚の翼が他
の翼と全く独立に振動する（例えば，Eq.⑴でq1以外を
0とおく場合）の減衰率に相当するため，単一の翼の
運動が支配的なモード （Single-Blade Dominant Mode, 
SBDM） と呼ぶことにする。
4.2　特定の個体中のモード形状の俯瞰
　このように空力弾性モード固有値分布に見られた定性
的変化が，どのようにモード形状と対応しているかを，
特定の個体に着目してモード形状を俯瞰する形で示す。
図7は，チューン系と各ばらつきケースでのモード形状
を，減衰率の低い順に左から並べたものである。ここで
は視認性の都合上，Im（λ）>0 であるもののうち，減衰
率の下位14個を，最大振幅の翼変位の実部が1となるよ
うに示している。
　左側に位置するのは不安定なモードであり，ばらつき
を大きくするとその数は減少していく。また，チューン
系では節直径2であったフラッターモード形状が変化し，

振幅の高い領域に周方向の偏りが生じる。この傾向は他
のモード，例えば節直径0に近いモード形状にも共通し
てみられる。さらに，固有値同士の確率的な融合が激し
いε=1.0, 1.5%のケースでは，ほとんどのモードで周方
向に振幅の高い位置が偏在しており，ミスチューン系に
特徴的な“mode localization”⑿が顕著にみられる。
　ε=1.5%のケースでは，2つのSBDMが生じている。
これらのモードはmode localizationのかなり終局的な場
合で，空気力による翼間の連成からほとんど外れた翼が
該当しているのだと考えられる。
4.3　標準的なばらつき量の場合のモード形状
　以上のように全体のモード形状を俯瞰したので，個別
の重要なモード形状をより詳細に見ていく。モード形状
を分析するうえで重要な視点は，そのモード形状がどれ
だけチューン系の特性を引き継いでいるかであると考
えられる。ミスチューン時のモード形状がどのような
TWMから構成されるかは，各TWMに対する変位ベク
トル s と，TWMを縦に並べた複素モード形状行列Wを
用い，以下の関係を用いて算出できる。ここでHは共役
転置行列を表す。
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Fig. 6  Histogram of aeroelastic eigenvalues in the 1F mode family （80%N, OP: C）

Fig. 7  Examples of aeroelastic modeshapes in the 1F mode family with diff erent mistuning levels
（14 modes from the lowest damping, real part, only aeroelastic modes for Im（λ）>0 are shown）
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　図8に，ε=0.5%のフラッターモードについて各翼の
ミスチューンパターン，隣接した2枚の翼から算出した
局所的な翼間位相差 θi+1－θi，各翼の振幅|qi|，そし
て各TWMの振幅|si|を示す。議論は棒で示したデータ
について行うが，他の20サンプルの結果も個体間のばら
つき度合いを示すため示してある。
　図8では，局所的な翼間位相差は-10 ～ 80［deg］の
範囲で大きくばらついてしまっており，標準的なミス
チューン量でも大きく影響を受けることがわかる。しか
し，TWMの振幅|si|を見ると翼間位相差40［deg］のも
のが支配的であり，これはチューン系でのフラッター
モードに対応する。また，変位をTWMに変換すると翼
間位相差や振幅に見られていたサンプル間のばらつきが
減り，どの個体も翼間位相差40または60［deg］が支配
的であることがわかる。ここからいえるのは，標準的な
ミスチューニング量であっても特定の2枚の翼のみから
算出された翼間位相差にはミスチューニングの影響が大
きく現れるため，フラッターに支配的なTWMを正確に
知るには全ての翼の振幅と位相（qの複素数表現）を求
めたのち，TWMに変換することが望ましいということ
である。
4.4　非常に大きなばらつきに対するモード形状
　図9に，ε=1.5% のケースに対するフラッターモード
を示す。この個体は図7で示したものと同一である。翼
振幅の分布を見ると翼4～ 10までの翼の振幅が大きく，

ほかは殆どモードに参加していない。ミスチューンパ
ターンを見ると，翼1～3，10 ～ 11の間で翼の振動数
が急激に変化している。この周方向の急激な振動数変化
が隣接翼間の空力的連成を弱めることで，翼4～ 10が
部分系のように振舞っているのではないかと考えられる。
このようにモード形状が部分的に非常に高い振幅をも
つことは，全周の翼が均一に励振されるチューン系の
フラッターとは全く様子が異なっている。いっぽう各
TWMの寄与を見ると40［deg］を中心に幅広い成分が
関わっており，最も寄与の大きなTWMについてはε
=0.5%のものに比べ個体差が大きくなっている。
　最後に，チューン系では見られないSBDMのモード形
状を図10に示す。このモードでは翼11の振幅が突出して
高く，他の翼はほとんどモードに参加していないことが
改めて確認できる。他の個体に対しても振幅最大以外の
翼では振幅が小さくなるという，同様の傾向が見いだせ

Fig. 8  Typical aeroelastic modeshape of the fl utter mode 
（80%N, OP: C, ε=0.5%）, 

Solid bars: fan No. 57, thin lines: other 20 fans

Fig. 9  Typical aeroelastic modeshape of the fl utter mode 
（80%N, OP: C, ε=1.5%）, 

solid bars: fan No. 720, thin lines: other 20 fans

Fig. 10  Typical aeroelastic modeshape of the single-blade 
dominant mode （80%N, OP: C, ε=1.5%）, 

solid bars: fan No. 720, thin lines: other 20 fans
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る。このような場合には，|si|の分布から見て取れるよ
うに，ほとんど全てのTWMが空力弾性モードの形成に
寄与している。

5．結論
　遷音速失速フラッター解析における試験結果と解析結
果のミスマッチの原因を模索する取り組みの一環として，
ミスチューニングがフラッター特性に与える影響を統計
的に定量化し，フラッター境界の変化と空力弾性モード
の特徴について議論した。得られた知見を以下にまとめ
る。
⑴ミスチューニングによる振動特性の変化について，
モード質量の感度は小さく，翼固有振動数のばらつきが
支配的な影響を及ぼす。
⑵製造公差や計測器の取り付けで生じる程度のミス
チューン量では，フラッター境界はほとんど変化せず，
低回転数側のミスマッチも依然として残っていた。その
ため，このミスマッチは現実の構造特性の不確かさに起
因した偶発的なものではなく，自励空気力を算出する際
に用いた流体解析に起因したものである可能性が高い。
⑶ミスチューン量を増加させた際の系の固有モード構造
の変化として，まずフラッターモードを含む低減衰の
モードの融合が生じたのち，他翼との空気力による連成
が小さい，単翼の振動が支配的なモードが現れる。
⑷ミスチューン量が標準的な場合にもフラッターモード
形状はチューン系のものとは大きく異なる。特に隣接翼
間の位相差は翼ごとに大きくばらついてしまうため，精
度の良い計測には全ての翼を観測することが望ましい。

謝辞
　本研究はJSPS科研費14J10312の助成を受けた。また，
IHIはCEFS1の開発に際し，経済産業省の航空機・宇宙
産業イノベーションプログラム基本計画による「環境適
応型小型航空機用エンジン研究開発」の一環として独立
行政法人新エネルギー・産業技術総合開発機構からの助
成を受けた。ここに記して謝意を表する。

参考文献
⑴　Platzer, M. F. and Carta, F. O. E., AGARD Manual on 
Aeroelasticity in Axial-Flow Turbomachines Volume 1: 
Unsteady Turbomachinery Aerodynamics, AGARDo- 
graph No. 298, Vol. 1, （1988）.

⑵　Jeff ers, J. D. and Meece, C. E., F100 Fan Stall Flutter 
Problem Review and Solution, Journal of Aircraft Vol. 
12, No. 4 （1975）, pp. 350-357.

⑶　Stargardter, H., Subsonic/Transonic Stall Flutter Study 
Final Report, NASA-CR-165256, Pratt and Whitney 
Aircraft Group, （1979）.

⑷　 Isomura ,  K .  and  G i l e s ,  M .  B . ,  A  Numer i ca l 
Study of Flutter in a Transonic Fan, Journal of 
Turbomachinery, No. 120 （3）, （1998）, pp.500-507.

⑸　Kontos, K., Weir, D., and Ross, D., Quiet High Speed 
Fan II （QHSF II）: Final Report, NASA CR-2012-
217451, （2012）.

⑹　立石敦，渡辺紀徳，姫野武洋，流体構造連成とシステム
同定による複合モード翼列フラッター解析手法, 日本ガ
スタービン学会誌 Vol. 44, No. 4 （2016）, pp. 282-291.

⑺　立石敦，渡辺紀徳，姫野武洋，青塚瑞穂，室岡武，遷音
速ファンの部分回転数時に失速点近傍で生じるフラッ
ターのFSI解析，日本ガスタービン学会誌 Vol. 44, No. 4 
（2016）, pp. 292-301.

⑻　Vahdati, M., Smith, N. H. S., and Zhao, F., Influence 
o f  In take  on  Fan B lade  F lu t ter ,  Journa l  o f 
Turbomachinery, No. 137 （8）, （2015）, 081002.

⑼　Vahdati, M. and Cumpsty, N., Aeroelastic Instability 
in Transonic Fans, Journal of Engineering for Gas 
Turbine and Power, Vol. 138 （2）, （2015）, 022604.

⑽　Pierre, C., and Murthy, D. V., Aeroelastic Modal 
Characteristic of Mistuned Blade Assemblies: Mode 
Localization and Loss of Eigenstructure, AIAA Journal, 
Vol. 30, No. 10 （1992）, pp. 2483-2496.

⑾　Srinivasan, A. V., Flutter and Resonant Vibration 
Character ist ics o f  Engine Blades ,  Journal  o f 
Engineering for Gas Turbine and Power, Vol. 119 （4）, 
（1997）, pp. 742-775.

⑿　Castanier, M. P. and Pierre, C., Modeling and Analysis 
of Mistuned Bladed Disk Vibration: Status and 
Emerging Directions, Journal of Propulsion and Power, 
Vol. 22, No. 2 （2006）, pp. 384-396.

⒀　Salles, L. and Vahdati, M., Comparison of Two 
Numerical Algorithms for Computing the Effects of 
Mistuning of Fan Flutter, ASME Paper GT2016-57324, 
（2016）.

⒁　Murooka, T., Goto, S., Mizuta, I., and Kodama, H. New 
Concept Design and Development of an Advanced 
Transonic Fan Rotor, IGTC2007 Tokyo, TS-053, （2007）.

⒂　Kielb, R. E. ,  Feiner , D. M. ,  Griff in ,  J .  H. ,  and 
Miyakozawa, T., Flutter of Mistuned Bladed Disks 
and Blisks with Aerodynamic and FMM Structural 
Coupling, ASME Paper GT2004-54315, （2004）.

⒃　Kielb, R. E., Hall, K. C., Hong, E., and Pai, S. S., 
Probabilistic Flutter Analysis of a Mistuned Bladed 
Disk, ASME Paper GT2006-90847, （2006）

⒄　May, M., Model Updating for the Aeroelastic ROM of 
a Modern Blisk, Proceedings of the 13th International 
Symposium on Unsteady Aerodynamics, Aeroacoustics 
and Aeroelasticity of Turbomachines, I13-S13-7, （2012）.

⒅　Beirow, B., Giersch, T., Kuhhorn, A., and Nipkau, J., 
Forced Response Analysis of a Mistuned Compressor 
Blisk, Journal of Engineering for Gas Turbine and 
Power, Vol. 136 （6）, （2014）, 062507.

⒆　Schnell, R., Lengyel-Kampmann, T., and Nicke, E., 
On the Impact of Geometric Variability on Fan 
Aerodynamic Performance, Unsteady Blade Row 
Interaction, and Its Mechanical Characteristics, Journal 
of Turbomachinery, Vol. 136 （9）, （2014）, 091005.

技術論文_立石様.indd   56技術論文_立石様.indd   56 2018/01/06   14:59:462018/01/06   14:59:46

Download service for the GTSJ member of ID , via 160.16.140.208, 2025/05/28. 

Powered by TCPDF (www.tcpdf.org)

                               8 / 8

http://www.tcpdf.org

