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Statistical Sensitivity Study of Mistuning Effect on Transonic Fan Flutter
Vi B 0 A IRy P
TATEISHI Atsushi WATANABE Toshinori HIMENO Takehiro
HIR ik 1 v
AOTSUKA Mizuho MUROOKA Takeshi
ABSTRACT

This paper presents a detailed investigation of the effect of mistuning on transonic fan flutter, which is conducted as
part of comprehensive efforts to find reasons for the mismatch in the flutter boundary in our past numerical prediction.
The flutter boundary of a full-annulus fan assembly with different mistuning levels is statistically evaluated based on
eigenvalue analysis and Monte-Carlo simulation. Nominal levels of mistuning due to manufacturing tolerance have
little effect to the flutter boundary because the decline in aerodynamic damping is very steep. Therefore, the accuracy
associated with the computational fluid dynamics is likely to have caused the mismatch in the flutter boundary.
Detailed observations of modal properties show that the mode shape in flutter modes can be highly deviated from pure

traveling wave mode, even if the level of mistuning is nominal. For largely mistuned cases, highly-localized, single-

blade dominant modes appear due to the escape from aerodynamic coupling.
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(b) 1F mode shape

(a) Full-annulus view (80% speed)

Fig.1 CEFSI fan

Table 1 Specifications of CEFSI fan rotor

Number of blades 18
Aspect ratio 16
Relative Mach number at tip 14
Blade material Ti-6Al-4V
Range of flutter region and 80%N, 82.5%N
structural mode shape (1IF mode)
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Fig. 2 Mismatch of flutter boundary on low shaft speeds
in our past numerical prediction ”
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Table 2 Standard deviation of blade-alone frequency in past
studies (1F mode)

Author Model STDEV [%]
17 047 (all)
May UHBR Fan 0.17 (clean)
Beirow ® HPC blisk (1st stage) 0.13
Schnell % Counter-rotating fan 0.25

Table 3 Test cases for frequency mistuning

No. STDEV [%] Assumed situation
1 & =0.2% Nominal level
2 & =0.5% Nominal level
3 e =1.0% Large mistuning
4 £ =15% Very large mistuning

Table 4 Test cases for mass mistuning

No. STDEV [%] Assumed situation
1 e n=15% Nominal level
2 & u=30% Large deviation
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(b) Change in averaged minimum damping rate

Fig. 3 Effects of mass and frequency mistuning on the statistics of damping rate in the flutter mode (80%N, OP: C)
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Fig. 4 Change in averaged minimum damping rate due to frequency mistuning on each rotational speed
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Fig. 5 Flutter boundary obtained from averaged
minimum damping rate
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(14 modes from the lowest damping, real part, only aeroelastic modes for Im( A )>0 are shown)
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Fig. 8 Typical aeroelastic modeshape of the flutter mode
(80%N, OP: C, € =05%),
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Fig. 9 Typical aeroelastic modeshape of the flutter mode
(80%N, OP: C, £ =15%) ,
solid bars: fan No. 720, thin lines: other 20 fans

0
-180 -140 -100 -60 -20 20 60 100 140 180
IBPA [deg]
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