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1．緒言
　 熱 遮 蔽 コ ー テ ィ ン グ（TBCs : Thermal Barrier 
Coatings, 以下TBCsと記す）は発電用・航空機エンジ
ン用ガスタービンの静止部品及び動翼などの高温部分
に適用されており，耐熱金属基材を高温過酷な環境か
ら保護する役割を持っている⑴-⑶。TBCを施工した部材
では，使用時にZrO2系のTBC層とAl元素を含むPtAlや
CoNiCrAlYなどのボンドコート層の間にAl2O3を主成分
とする酸化物を生成する⑷,⑸。この酸化物の熱膨張係数
はZrO2及びボンドコート，基材よりも小さく冷却時に
大きな圧縮残留応力が発生することが知られている。こ
の残留応力により，Al2O3系のTGO（Thermally Grown 
Oxide）層が面外の変形を生じ，TBC層の基材からの剥
離を生じさせる大きな要因になることが明らかになっ
ている⑷,⑸。このために，熱と力学負荷を組み合わせた
種々の環境下でのTGOの生成現象を知ることは重要で
ある。

　これまでの研究から，TGO層の生成厚さは力学負荷
の影響は少ないが，熱履歴に大きく依存することが知ら
れている⑹,⑺。実際のTBCsの使用環境下では，表面は
高温になるが，基材は冷却されているためにコーティン
グ層中では，TBC層内に温度勾配を持つことになるの
で熱履歴の影響には温度勾配の影響を考えなければなら
ない。これまでに，TBCsの恒温熱曝露試験や熱サイク
ル試験などが数多く行われ，TGOの生成機構に関して
も調べられてきた⑷-⑺。しかし，実環境で発生する温度
勾配が付与されている条件下でのTGO層の成長挙動に
関しては限られた範囲のデータしか得られていない。そ
こで，本研究ではTBC層に温度勾配が生じる条件下で
熱疲労試験を行い，種々の温度及び温度勾配条件下にお
けるTGO層の成長挙動を調べることを目的とした。

2．実験方法
2.1　装置の構成
　熱サイクル試験に用いた装置はすでに報告したものと
同じである⑻。試験片の加熱及び冷却システムの概略図
を図1に示す。高周波発振器（出力10 kW, 周波数80±
30kHz）により試験片のTBC層側に配置されたコイルに
電流を流し，Al2O3ホルダー内のMoSi2製サセプターを
加熱し，Al2O3ホルダー表面からの輻射熱によりTBC層
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表面を加熱した。このとき，試験片表面が加熱される部
分は直径～ 20mmの円形であり，TBC層表面とサセプ
ターとの距離は～4mmである。冷却時は，加熱源であ
るサセプターを冷却するとともに，試験片の基材側に設
置したピンホールを設けたエアノズルを用いて圧縮空気
を基材に吹き付けた。なお，加熱時には圧縮空気の供給
は停止した。
　TBC層表面温度は，ファイバ式放射温度計（IR-FAI，
㈱チノー）によりサセプター中央部の円筒状穴を介し
て測定した。TBC層表面での温度測定領域直径は～ 3.4 
mmである。この際，サセプターからの熱も放射温度計
は測定しているため実際の試験片表面の温度と誤差が生
じる。この誤差の補正方法を付録Aに示す。
2.2　温度勾配下での熱サイクル試験
　厚さ～ 200μmのTBC層を厚さ～ 200μmボンドコー
ト層（BC層）の上に電子ビーム物理蒸着法（以後，EB-
PVDと記す）によりコーティングした試験片を用いた。
TBC層は8mass%Y2O3-ZrO2であり，BC層は減圧プラ
ズマ溶射法にてコーティングした化学組成が（mass%） 
32.0-Ni, 21.0-Cr, 8.0-Al, 0.5-Y, 残りはCoのものである。基
材には厚さ≈3mmのInconel 738LCを用いた。基材の
化学組成（mass%）は 16.0-Cr, 8.5-Co, 3.4-Al, 3.4-Ti, 1.7-
Mo, 2.6-W, 1.75-Ta, 0.9-Nb, 0.11-C， 残りはNiである。以
後，基材にBC層及びTBC層がコーティングされたもの
を「TBCシステム」と記述する。試験前のTBC層とBC
層間に生成していたTGO層の厚さはhtgo ≈ 0.7μmである。
なお，実験に用いたTBCシステムは，すでに種々の特
性を報告したものと同じである⑼-⑾。
　TBCシステム試験片の形状及び寸法を図2に示す。
熱負荷のみを加えるために，TBCシステム試験片は上
側掴み部のみを試験機に固定し，もう一方の端部は自由
に変形できる状態にした。加熱速度は5℃/s，冷却速度
は20℃/sとした。 熱サイクル中のTBC層表面の最低温
度はTmin=300℃，最高温度はTh=1150℃で1h保持とした。
最大繰り返し数はN=250回とした。
　加熱時に，試験片には長手方向に温度分布が発生す
る。そのため，熱サイクル試験前にあらかじめTBCシ

ステム試験片の長手方向の温度分布を測定した。図2に
示した加熱領域中央部のA点と試験片長手方向にA点か
ら5mm及び10mm離れた位置（B及びC点）のTBC層表
面と基材裏面にR熱電対を取り付けA点のTBC層表面を
1150℃まで加熱して保持した。その時のそれぞれの温度
を読み取り，A，B及びC点でのコーティング層厚さ方
向の温度勾配を確認した。熱サイクル試験後に試験片の
厚さ方向の断面を切断研磨し，A，B及びC点の断面組
織観察を走査型電子顕微鏡（SEM）にて行った。また，
TGO層の厚さはSEMにて観察した写真を用いて測定し
た。

3．実験結果及び考察
3.1　試験片の温度分布及び温度勾配
　1サイクル中の試験片中A点のTBC層表面と基材裏面
の温度履歴を図3⒜に示す。温度の上昇とともに温度勾
配も徐々に増加し，最高温度ではほぼ一定の温度勾配を
示した。最高温度でTBC層表面温度はTtbc＝1150±2℃
の範囲内で保持された。一方，冷却時では圧縮空気が試
験片に吹き付けた際に急激に一旦冷却された。熱サイク
ル中の最高保持温度（TBC層表面温度Ttbc＝1150℃）で
のA，B及びC点のTBC層表面温度Ttbc，基材裏面温度Ts
及びその温度勾配ΔT（＝Ttbc－Ts）を図3⒝に示す。熱
サイクル中の最高保持温度では，試験片A点のTBC層表
面温度はTtbc＝1150℃（制御温度）であり，その基材裏
面温度はTs＝1020℃でΔT＝130℃の温度勾配が発生し
ていた。B点ではTBC層表面温度はTtbc＝1115℃であり，
基材裏面温度はTs＝985℃でΔT＝130℃であった。また，
C点ではTBC層表面温度はTtbc＝1065℃であり，基材裏
面温度はTs＝885℃でΔT＝180℃であった。これらの温
度データとTBC層，BC層，及び基材の熱伝導率を用い
た定常熱伝導計算により，おおよそのTBC/BC層界面の

Fig. 1   Schematic drawing of the specimen heating and cooling 
system.
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Fig. 2  Shape and dimensions of the specimen.
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温度Tiは次式で求まる。
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ここで，λは各層及び基材の熱伝導率，hは各層及び基
材の厚さである。各層及び基材の熱伝導率⑿を用いて計
算すると，試験片A点のTBC/BC層界面の温度はTi＝
1090℃，B点ではTi＝1050℃，C点ではTi＝980℃である。
これより，加熱領域中央部A点から長手方向に離れるに
従い試験片の温度は低下するが，コーティング層厚さ方
向の温度勾配は増加していることが明らかになった。こ
のことより，温度分布と同様に試験片長手方向に温度勾
配分布が存在し，一度の試験で異なった温度勾配下の
TGO層の生成現象が観察できるものと考えられる。
3.2　TGO層の成長挙動
　図4に熱サイクル試験後のA及びC点の断面組織写真
を示す。A及びC点ともにTBC層とBC層の間に試験前に
比較してTGO層が成長する現象が観察された。生成し
たTGO層の厚さはC点よりもA点の方がおよそ2倍厚い
ことがわかる。また，C点ではTGO層の厚さのばらつき
が大きく，その形態のランプリング（Rumpling）と呼
ばれるうねりが顕著に観察される。また，C点ではBC
層に「D」で示した濃灰色の相が観察された（図4⒝,
⒟）。本研究とほぼ同様な組成のBC層を調べた報告⒀,⒁

によると，濃灰色領域はβ相あるいはγ'相，その他の
薄灰色領域はγ相であり，それぞれはAlに富む相及び
Al欠乏相であることが報告されている。また，TGO/
BC層界面から数μm以内のBC層内において濃灰色のβ
相はA点では観察されなかった。従って，A点ではBC
層内のAlがTBC層側に拡散しβ相が消滅してγ相のみ
となっており，C点ではAl濃度が高いβ相が残っている。
このことから，TGO層を形成するために消費されたBC
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Fig. 4   SEM images of the TGO morphology after thermal cycling, ⒜ N=50 times, position A, 
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層内のAlはA点よりもC点の方が少なかったと考えるこ
とができる。
　TGO層の厚さを定量的に求めるために，平均TGO層
厚さhtgoを
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i
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で定義した。ここで，hitgoは測定したTGO層厚さ，Nmは
測定値の数を示している。hitgoは研磨された断面SEM写
真（倍率×3000）において3μm間隔で界面に対して垂
直に50箇所測定した。図5にA，B及びC点における平
均TGO層厚さhtgoと熱サイクル数Nの関係を示す。図中
のエラーバーは，測定したTGO厚さの最大及び最小値
を意味する。熱サイクル数の増加に伴い，TGO層厚さ
が増加している。一般的に，TGO層の平均厚さ（htgo）
と熱曝露時間（t）の関係は

　　　
n

ptgo tkh ≈ 　　　  　     ⑶　
で表されることが知られている。ここで，kpは速度定
数，t は熱曝露時間（熱サイクルの場合，最高温度での
保持時間）を表す。速度定数kpは熱曝露温度や曝露条件
によって異なるが，熱サイクル負荷と力学負荷が同時に
加わる熱機械疲労試験においては負荷荷重に依存しない
ことが報告されている⒂。しかしながら，温度一定の静
的クリープ試験では負荷荷重に依存することが報告され
ている⒃。さらに，本研究で用いたTBCシステムと同じ
材料系でのTGO層生成時のnの値は0.33程度であること
が報告されている⒄。本実験で得られたデータを最小二
乗法によりnを求めたところ，A点ではn=0.29，B点では
n=0.26，C点ではn=0.14であった。C点のnの値がA及び
B点に比較して小さいのは，TBC層内の大きな温度勾配
により内方向への酸素の拡散速度がTBC層内で大きな
分布を持つことに関係していると推察される。これより，
TBCシステムにおいてTGO層は温度及び温度勾配条件
によって異なった成長挙動を示すことが本実験の結果よ
り明らかとなった。

　TBCシステム断面から観察したTGO層のランプリ
ングを定量的に評価するために，A，B及びC点で生成
したTGO層のランプリングの振幅及び屈曲度を求めた。
TGO層厚さ測定に用いた写真において，TBC/TGO層
界面のランプリング形状をデジタイザーを用いて，面内
方向をx，膜厚方向をyとして二次元座標化した。このと
きの座標間間隔は0.08μmで，データ数は500点である。
座標化したTBC/TGO層界面形状データから次式により
定義したランプリング形状の振幅δを求めた。

　　　 =

=
n

i
iyn 1

21δ
　   

⑷
　

ここで，nは測定したデータ数， yiは膜厚方向座標の平
均値とそれぞれの測定値との差である。また，ランプリ
ングの屈曲度Ωは，界面に沿った方向の測定範囲及びラ
ンプリングの生じた界面の長さをそれぞれL0及びLとし，
Ω=L/L0で定義した。ランプリングの生じた界面の長さ
Lは，次式により算出した。

　　　 dxxfL
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′+= 0
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ここで， f（x）はデジタイザーにより座標化したデータ
から求めたものである。
　図6に熱サイクル回数とTGO層のランプリングの振
幅及び屈曲度の関係を示す。熱サイクル回数N=50回で
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Fig. 5   Plots of TGO layer thickness vs. number of cycles at 
position A, B and C.
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は，すべての場所において～ 0.6μm程度の振幅を示し
た。その後，熱サイクル回数の増加によりA及びB点に
おいては振幅が僅かに減少する傾向を示したが，C点
においては逆に振幅が増加する傾向を示した。これよ
り，TBCシステムが曝される温度が本実験条件内（Ttbc
＝1065 ～ 1150℃）においては，低温度且つ大きい温度
勾配条件であると熱サイクル回数の増加に伴いTGO層
のランプリングの振幅が増加することが明らかになっ
た。本実験により生成したTGO層の屈曲度はΩ=1.04－
1.08であった。N=50回では，A点においてΩ=1.04を示
し，B及びC点へとTBC表面温度の低下に伴いTGO層の
屈曲度は増加した。その後，N=250回においてA及びB
点ではΩ～ 1.06に収束したが，C点においては熱サイク
ル数の増加に伴い屈曲度が僅かに増加した。N=50回に
おいて，ランプリングの振幅は全ての温度条件でほぼ同
じであるが，屈曲度は大きく異なる。ここで，TGO層
のランプリング形状を正弦波であると仮定すると，その
波長Wは以下の式で表せる。

　　　 1
2

0 −
⋅⋅

≈
LL

W δπ

　 
⑹
　

式⑹を用いて求めたランプリング波長は，N=50回にお
けるA, B及びC点でそれぞれW=12.3, 10.5及び9.5μmで
あり，温度及び温度勾配条件によりランプリングの波
長が異なることが明らかになった。また，N=250回で
は，A及びB点の振幅と屈曲度はほぼ同じであるが，C
点では大きく異なる。したがって，温度勾配が大きい場
合，TGO層のランプリングが顕著であることが示唆さ
れた。なお，TGO/BC層界面形状についてもTGO層の
振幅及び屈曲度を測定したところ同様な結果が得られた。
TBC層は熱曝露に伴い焼結が進行し，弾性率が増大す
ることが知られている⒅。本実験のようにTBC層内に温
度勾配が存在する場合，TBC層の表層側とBC層側では
弾性率の増大率が異なることが予想され，TGO層近傍
において熱サイクル時にかかる局所的な熱応力は，温度
勾配が存在しない場合と異なることが考えられる。これ
より，TBCシステム内の温度勾配が大きい場合，TGO
層のランプリングが顕著になったと考えられる。
　上述したように，低温度且つ大きい温度勾配条件であ
ると熱サイクル回数の増加に伴いTGO層のランプリン
グの振幅が増加する。しかしながら，ランプリング挙動
に及ぼす支配的因子が温度であるか温度勾配であるかは，
完全には明確になっていない。今後，定常熱伝導計算に
より推定したTBC/BC層界面の温度を最高保持温度とし
て，板厚方向に温度勾配を付与しない熱サイクル試験を
実施し，TGO層のランプリング挙動を検証する予定で
ある。

4．結論
　EB-PVD法により作製されたTBC試験片を用いて
TBC層と基材間に温度勾配が生じる条件下での熱サイ
クル試験を行った。その結果，コーティング層の厚さ
方向に温度勾配を付与した場合，温度及び温度勾配の
条件によってTGO層の成長挙動が大きく異なることが
明らかになった。特に，温度勾配が大きい場合（ΔT＝
180℃），TGO層のランプリングが顕著となり，TGO層
内に膜厚方向の応力が発生するため，TGO層の応力や
組織変化などからTBCシステムの使用限界を議論する
場合は注意が必要である。
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付録A
　図A1にモデルを示した。表面がT ℃の試験片から放
射される輻射熱エネルギーは次式で表わせる。
　　　　　　　ε×R（T）    （A1）
また，Ts℃のサセプター表面から放射された熱エネル
ギーが試験片から反射されたものは，
　　　　　（1－ε）×R（Ts）    （A2）
で表わせ，最終的に放射温度計に入力される反射エネル
ギーは，
　　　　　β（1－ε）×R（Ts）    （A3）
となる。ここで，βは光学補正係数である。（A1）及び
（A3）式から放射温度計に入る総エネルギーR（Tt）は，
　　　　　R（Tt）＝ε×R（T）+β（1－ε）×R（Ts）  （A4）
となる。よって，試験片表面の真温度T℃は

　　　　　 ε
εβ )()1()(

)( st TRTRTR ×−−
=

  
（A5）

式より求めることができる。

　実際には，反射補正付変換器（IR-GBG，㈱チノー）
を用いて式（A1）～（A5）で与えられる式より補正を行
い，試験片表面の正確な温度情報を検出した。温度校正
作業として試験片表面とサセプターにR熱電対を取りつ
け，試験片表面の熱電対から出力される温度情報と放射
温度計から出力される温度情報が一致するように放射
温度計の放射率値と反射補正付変換器の光学補正係数
値を調整した後に実験を行った。この温度校正作業は，
300℃，600℃，900℃及び1200℃にて一定の温度で行っ
た。その結果，放射温度計の放射率値をε＝0.5，反射
補正付変換器の光学補正係数値をβ＝0.95と決定した。

Specimen

TBC Substrate

Pyrometer
①

②

)(TR×ε

)()1( sTR×−ε

)()1( sTR×−εβ

Constant:β

Susceptor

Fig. A1  Correction of the temperature detected by pyrometer.

Download service for the GTSJ member of ID , via 160.16.140.208, 2025/05/28. 

Powered by TCPDF (www.tcpdf.org)

                               6 / 6

http://www.tcpdf.org

