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1．緒言 
　世界のCO2排出量の約3％は航空輸送によるものであ
り，航空業界においては環境負荷を低減するような航空
機の研究開発が進められている⑴。民間用航空機のター
ボファンエンジンにおいては，バイパス流量を増加させ
る高バイパス比化により燃費の向上及び騒音の抑制が図
られ，今後もバイパス比が増加すると予想される。最新
鋭のエンジンはバイパス比10以上のものが登場し⑵，将
来的にバイパス比15以上の超高バイパス比エンジンが実
用されると予想されている⑶。エンジンの高バイパス比
化ではナセル直径拡大のため，ナセルの空力抵抗及び重
量が増大する。このような理由から，ナセルの設計では
インテークを短くすることで高バイパス比化のデメリッ
トを軽減するショートインテークが採用される傾向にあ
る。一方で，ショートインテークは整流距離が短く，流
路断面積の変化率が大きいためインレットディストー
ションを増大させる。インレットディストーションは，
ファンの失速セルの増大⑷，ファンの強制振動⑸，流入
角歪みによるファン効率の低下⑹などファン性能を悪化

させる。インレットディストーションの発生要因は，横
風発生時，離着離陸時の高インシデンス，地上運転時の
グランドボルテックス，機体表面から吸引される渦など
多岐に渡る。特に横風によるインレットディストーショ
ンの発生は地上運転時，離着陸時及び巡行時において想
定する必要がある現象である。横風によりインテーク内
の流れが傾くことで強制的に高インシデンス状態となり
境界層はく離を引き起こす。Fig. 1に示すようなはく離
による渦は，インテーク内の横風上流側に大きなディス
トーションを発生させる。そのため，横風発生時のイン
テーク内のディストーションの把握は，ナセル設計及び
ファンの作動条件を予測する上で重要である。
　これまでにも横風発生時を想定したインレットディス
トーションに関する研究は多くなされている。Nichols
らは，横風条件下のインテーク内壁面に発生するはく離
泡についてオイルフローによる可視化と受動デバイスに
よるはく離制御方法を提案した⑺。Colinらは，横風条件
下でのインテーク内の亜音速はく離と超音速はく離に
ついて実験的に明確化し，CFD（Computational Fluid 
Dynamics）による予測を行った⑻。成勢らは，実験的
研究により横風によるディストーションとファンとの干
渉騒音の関係性について示した⑼。しかし，これまでイ
ンテーク長さのディストーション発生の影響に関する研
究事例は少ない。また，インテーク内に発生するはく離
流れにおいては，横風流速や流入角度，吸気流量の増減
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時で流れ構造に相違が生じるヒステリシス現象が発生す
ることが示されている⑽。インテーク内で発生するはく
離のヒステリシス現象は，発生原理が不明であり，数値
解析では限定的な再現しかできないため，インレット
ディストーションの正確な予測において課題となってい
る⑾。また，はく離流れのヒステリシスについては原因
が解明されておらず，航空エンジンのインテーク内の流
れに限定すると先行研究例も少ない。
　本報では，横風発生時のインレットディストーション
に着目し，横風流速とレイノルズ数を変化させた時の
ディストーション発生位置と大きさ，はく離のヒステリ
シス性，またそれぞれについてインテーク長さの相違が
与える影響を明確化することを目的として実験を行った。

2．実験装置及び実験方法
2.1　実験装置 
　Fig. 2に試験装置の写真を示す。またFig. 3に小型ファ
ン回転試験装置及びナセルインテーク装置の断面図を示
す。小型ファン回転試験装置は，ナセルインテーク装置
に接続し，吸引装置として使用した。小型ファン回転試
験装置の動翼，静翼はDGEN380エンジン⑿のサブスケー
ルモデルとなっている。ファンの直径D = 150 mmであ
り，動翼14枚，静翼40枚で構成される。ファンはモータ
駆動である。

Fig. 1   Schematic view of intake fl ow separation caused by 
crosswind 

Fig. 2  Experiment apparatus

Fig. 3  Nacelle intake and fan test rig

Fig. 4  Pressure measurement point

⒜ Nominal intake

⒝ Short intake

Fig. 5  Schematic view of crosswind measurement test
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　ナセルインテーク装置は，インテークと全圧測定用
ダクトで構成される。インテークの形状はAIAA CFD 
Prediction Workshop⒀にて公開された形状を参考にイ
ンテーク長さを変えて作成した。Fig. 2においてリップ
先端からディフーザ部までの距離をLintakeとしたときに，
Lintake / D = 0.50となる基準供試体（ノミナルインテーク）
とLintake / D = 0.35となるショートインテークの2つの供
試体を用いた。インテークは，巡行時の機体姿勢に合わ
せて気流が吸入できるように，ドループ角が5 deg設け
られ，Bottom側のリップが厚くなるように設計が施さ
れる⑹。Fig. 2よりインテークのリップ先端（x /D = 0）
半径 rlip，スロート部（x /D = 0.11）半径 rthとしたとき
に，Top側（θ= 0 deg）はrlip /rth = 1.11, Bottom側（θ 
= 180 deg）はrlip /rth = 1.16の非軸対称型であり，ドルー
プ角は5 degと両供試体で同一と設定した。インテーク
のリップ，スロート部及びファン直径が同一であり，軸
方向長さが異なるため，ショートインテークの方がリッ
プ部の曲率が大きく，スロートからディフューザにかけ
て流路断面積の変化率が大きい形状である。リップ先端
からファン面までの距離は，ノミナルインテークがL/
D = 1.26, ショートインテークがL/D = 1.11となる。ダク
トの中心には直径Dnose = 48 mmのノーズ部が設けられ，
θ= 270及び330 deg位置の翼形状のストラットにより片
持ち支持をしている。インテークの形状によるディス
トーションのみ特性の評価をするため，ノーズ部はファ
ンまで同一ハブ径で接続している。全圧測定用ダクトは
ファン前方の円周方向θ= 0 ～ 240 degに15 deg間隔で
櫛形全圧管の挿入可能な孔が設けられている。Fig. 4に
両供試体の静圧及び全圧の測定位置を示す。両供試体の
インテーク内壁面には円周方向に45 deg間隔に8点，軸
方向に6点の合計48点の静圧孔が設けられている。全圧
の測定位置は全圧測定用ダクト内に挿入した櫛形全圧管
の孔である。櫛形全圧管は，ディフューザ後方の吸気流
れの全圧が測定可能な孔が半径方向に9点設けられてい
る。試験毎に櫛形全圧管を入れ替えることで，各周方向
での圧力測定を行った。静圧孔及び櫛形全圧管に加わっ
た圧力は，ウレタンチューブを通して多点圧力スキャナ
により試験開始時から試験終了時までスキャニングレー
ト100 Hzで時系列データの収録を行った。Fig. 5に試験
形態の概要図を示す。本実験では，JAXA所有の多目的
低騒音風洞⒁を使用した。試験装置は風洞内中央に固定
して，ファン排気流れの方向は風洞出口方向に配置した。
横風用軸流送風機によりファンの吸気軸方向と垂直とな
る方向に送風することで横風を発生させた。横風は，送
風機出口にノズルを装着し，ノズル内の整流金網とハニ
カムを通過することで一様流となっている。横風流速は，
インテーク中心位置（x/D = 0, r/D = 0）でUc = 1.6, 2.0 
m/sとした。
2.2　実験方法および実験条件
　本実験では，横風の送風を行った状態で小型ファン回

転試験装置の運転を行い，圧力を測定した。吸気質量
流量及びレイノルズ数は両供試体で同一となるように，
ファンの回転数を調整した。吸気質量流量 m・  から式⑴
で得られた管内の平均流速Uを求めて，式⑵に示したレ
イノルズ数Reの算出を行った。ここで，ρは管内の空
気密度，μは粘性係数，Aは流路断面積，Dはファン直
径である。 

　　　  ⑴　

　　　  ⑵　

ノミナルインテークが m・  = 0.35, 0.46及び0.75 kg/sのそ
れぞれに対して，Re = 1.7×10 5，2.2×10 5及び3.6×10 5

である。ショートインテークでは，ヒステリシスが発
生する条件を詳細に調べるために，m・  = 0.35, 0.46, 0.54, 
0.66及び0.75 kg/sのそれぞれに対して，Re = 1.7×10 5，
2.2×10 5，2.6×10 5，3.2×10 5及び3.6×10 5とした。イン
テーク内の流れのヒステリシス性の確認のために，レイ
ノルズ数の増加過程と減少過程でそれぞれ圧力測定した。
以降レイノルズ数増加過程をup，減少過程をdownと略
記する。圧力測定時間における圧力の時系列データは集
合平均することで圧力値を算出した。また，各圧力測定
位置で複数回測定を行うことで，再現性を確認した。

3．実験結果及び考察
3.1　インテーク内壁面静圧 
　得られた各計測位置の静圧値は，スロート部静圧で無
次元化した静圧係数Cp ⒂により評価をした。ここで，　
P∞は環境大気圧，psはインテーク壁面静圧値，psthはス
ロート部（x/D = 0.11）の周方向平均静圧値である。Cp
の算出を式⑶に示す。

　　　  ⑶　

Cpの周方向分布について，Fig. 6（Re = 2.2×10 5（up）, 
Uc = 0, 2.0 m/s）に示す。横風が無い条件（Fig. 6 ⒜,
⒞）では，インテーク内の壁面近傍の流れは，イン
テークの入口後方のナセル外壁からリップ部に回り込
んだ際に加速することで静圧が下がり，リップ部（x/
D = 0.030）からディフューザ（x/D = 0.44）にかけて静
圧回復が発生する⒃。ノミナルインテークの横風が無い
条件（Fig. 6 ⒜）では，インテークのドループ角によ
り，ディフューザのTop側（θ= 0 deg）は流路が拡大，
Bottom側（θ= 180 deg）は縮小するような形状のため，
Top側の方が減速することで静圧回復しやすいことが確
認できる。一方，ショートインテーク（Fig. 6 ⒞）では，
インテークのリップ部（x/D = 0.036）から周方向の上
下で静圧分布が大きく偏在している。ショートインテー
クのリップ部の曲率はノミナルインテークよりも大きく，
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特に周方向でTop側は大きく設定されているため，リッ
プ部を回り込む流れがx/D = 0.036より上流側で急減速
することで静圧が高くなる。
　横風がある条件（Fig. 6 ⒝,⒟）では，両供試体にお
いて横風上流側（θ= 90, 135 deg）と横風下流側（θ
= 270 deg）で偏在している。横風上流側では，吸気方
向（x方向）のリップからスロート部（x/D = 0.030,0.036
～ 0.11）にかけて，一定値をとることが確認できる。こ
れは，インテーク内壁面周辺で吸気流れがはく離する
ことで死水域が形成されているためである。スロート
部（x/D = 0.11）後流側は，ノミナルインテーク（Fig. 
7 ⒝）ではわずかに静圧回復していることから再付着に
近づいている部分に相当し⒄，ショートインテーク（Fig. 
6 ⒟）では静圧が一定値を取り続ける。ショートイン
テークにおいては，ディフューザの流路形状の変化率が
大きいため，はく離の再付着を遅らせている。
　続いて，Fig. 7に各レイノルズ数条件及び横風条件に
おける，横風上流側θ= 90 degでの吸気軸方向（x方向）
の静圧分布を示す。ショートインテークの横風が無い
条件（Fig. 7 ⒞）では，レイノルズ数の増加に伴いス
ロート部（x/D = 0.11）以降の静圧回復が大きくなって
いることが確認できる。大庭らの研究では，ショートイ
ンテークでは，スロート部以降の流れで乱流運動エネ
ルギーが増大することがわかっている⒃。そのため，ス
ロート部以降でレイノルズ数増大に伴い乱流境界層が発
達することで，壁面部分の静圧回復を促進させたと考え
られる。
　横風がある条件（Fig. 7 ⒝,⒟）では，ノミナルイン
テークがレイノルズ数Re = 1.7×10 5（up），ショートイ
ンテークがRe = 1.7×10 5（up）, 2.2×10 5（up）におい
てCpが x方向に不変となり，ショートインテークの方が
より高いレイノルズ数ではく離が発生しやすいことがわ
かる。これは，ショートインテークの方がリップ部の曲
率が大きく，横風上流側の気流が，リップ部の壁面に沿
わずはく離を誘起しやすいためと考えられる。また，レ
イノルズ数増減時に着目すると，Fig. 7 ⒝よりノミナル
インテークのRe = 1.7×10 5において，はく離発生の有
無について相違な圧力分布が確認できる。

Fig. 6  Distributions of static pressure coeffi  cient Cp

⒟ Short, Re = 2.2×10 5, Uc = 2.0 m/s

⒝ Nominal, Re = 2.2×10 5, Uc = 2.0 m/s

⒜ Nominal, Re = 2.2×10 5, Uc = 0 m/s

⒞ Short, Re = 2.2×10 5, Uc = 0 m/s

Download service for the GTSJ

                               4 / 8

member of ID , via 160.16.212.192, 2025/05/28. 

                               4 / 8



85航空機エンジンのショートインテーク内のディストーション計測Vol. 53　No. 2　2025.3

ー 39 ー

3.2　ファン前方全圧
　得られた全圧値は，無次元全圧σを用いて評価を行っ
た⒅。ここで，P∞は環境大気圧，Pt は全圧測定値である。
無次元全圧の算出は式⑷に示す。

　　　
  ⑷　

　横風が無い条件のσの断面分布をFig. 8に示す。ノミ
ナルインテーク（Fig. 8 ⒜,⒝）では，周方向に均一な
全圧分布を取り，レイノルズ数増大に伴い壁面におけ
るせん断力が強くなることで，壁面付近に全圧損失が
確認できる。ショートインテーク（Fig. 8 ⒞,⒟）では，
Top側（θ= 0 deg）でディストーションが発生している。
3.1節で述べたように，曲率が大きいTop側のインテー
クリップでは，気流がリップ部で急減速することで境界
層を発達させ，ディストーションを増大させる。
　横風がある条件についてFig. 9に示す。両供試体にお
いて横風上流側（θ= 90, 135 deg）にディストーショ
ンが発生している。これは，3.1節で示したインテーク
リップにおいて発生したはく離により発生したディス
トーションが，ファン前方の全圧計測点まで残留して
いると言える。また，両供試体でレイノルズ数増大に
つれてσが減少している。これは，インテークの吸気流
量が増大すると，乱れが大きい流れ場が形成されること
で⒆，圧力損失が大きくなるためである。また，全圧損
失の最大値はショートインテークの方が大きい。ショー

トインテークはディフューザの流路形状の変化率が大き
いため，ディストーションが改善されづらいことが示
された。Fig. 9 ⒜,⒟よりディストーションの発生位置
は，レイノルズ数が低い条件（Re = 1.7×10 5（up））で
はインテークのBottom側（θ= 135 deg近傍）を中心に
発生している。吸気流れに対して横風の影響が大きい場
合は，Fig. 10のように横風上流側のインテーク入口後
方のナセル外壁を回り込み吸気される。リップ先端の位
置は，ドループ角によりTop側が前方（x 軸負方向）に，
Bottom側が後方（x 軸正方向）となっている。そのため，
インテークのBottom側では，入口後方からリップまで
近く，横風上流側のナセル外壁の気流が吸入しやすく，
はく離を発生させる。レイノルズ数が増加するとディ
ストーションの発生位置は，ノミナルインテーク（Fig. 
9 ⒝）ではBottom側（θ= 135 deg近傍）中心である
が，ショートインテーク（Fig. 9 ⒠,⒡）ではTop側（θ
= 90 deg近傍）である。吸気流れに対して横風の影響が
小さくなると，Fig. 11のようにインテーク前方側の気
流が吸引される。そのため，横風上流側に近い気流は，
Top側とBottom側で均一にインテークリップに吸入す
ると予想される。気流はリップを通過する際にリップ曲
率が大きいTop側ではく離が発生し，ディストーション
の位置が変化した原因と考えられる。Fig. 7  Axial distribution of static pressure（at θ= 90deg）

Fig. 8  Distribution of normalized total pressure σ 
（without crosswind）

⒜ Nominal, Uc = 0 m/s ⒝ Nominal, Uc = 1.6 m/s

⒞ Short
　 Re = 2.2×10 5（up）
　 Uc = 0 m/s

⒟ Short
　 Re = 3.6×10 5（up）
　 Uc = 0 m/s

⒜ Nominal
　 Re = 2.2×10 5（up）
　 Uc = 0 m/s

⒝ Nominal
　 Re = 3.6×10 5（up）
　 Uc = 0 m/s

⒞ Short, Uc = 0 m/s ⒟ Short, Uc = 1.6 m/s
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3.3　ヒステリシス現象
　各レイノルズ数Reおよび横風流速Ucにおけるディス
トーションを評価するために，ディストーション指数
DC60を用いる⒇。DC60は，ファン前方の断面全体の全圧
について，最もディストーションが大きくなる60 deg範
囲に区切って評価する係数である。ここで，Pt は測定
点における全圧の集合平均値，Pt,60,minは周方向60 deg
範囲で区切った際の平均全圧値の中の最小値，qt は全
ての全圧計測点において算出した動圧の平均値である。
DC60の算出を式⑸に示す。

　　　
 

⑸　

　横風流速Uc = 1.6 m/s及び2.0 m/sでのレイノルズ数
増加過程及び減少過程におけるディストーション指
数をFig. 12に示す。レイノルズ数増加過程（up）で
は，ショートインテークの方がはく離を誘起させやすく，
ディストーションを増大させるため，DC60が高い。また，
両供試体においてレイノルズ数が下がるにつれて，吸気
流れに対しての横風の影響が大きくなり，圧力分布の不
均一性を増加させ，DC60が高くなる。一方で，レイノ
ルズ数減少過程（down）では，ノミナルインテークで
は増加過程（up）と比較してDC60が低くなる条件があ
り，ヒステリシス性が確認できる。ショートインテー
クにおいてヒステリシスが発生した条件は，Re = 2.6×
10 5, Uc = 1.6 m/sのみであり，両供試体でヒステリシス
が発生する条件に相違が生じる。
　ここでヒステリシスが確認された条件について，ノミ
ナルインテークはRe = 2.2×10 5, Uc = 2.0 m/s，ショー
トインテークはRe = 2.6×10 5, Uc = 1.6 m/sにおける，
無次元全圧σの断面分布図をそれぞれFig. 13および14
に示す。Fig. 13よりノミナルインテークでは，レイノ
ルズ数増加過程（up）において横風上流側のはく離に
よりディストーションが発生し，減少過程（down）で
は付着流れとなり均一な全圧分布となり，異なる流れ
構造となる。レイノルズ数の増加過程では，Re = 1.7×
10 5より低いレイノルズ数において吸気流れに対して横

Fig. 9  Distribution of normalized total pressure σ
（with crosswind）

Fig. 10  Schematic view of the fl ow structure 

Fig. 11  Schematic view of the fl ow structure

⒜ Nominal
　 Re = 1.7×10 5（up）
　 Uc = 2.0 m/s

⒝ Nominal
　 Re = 2.2×10 5（up）
　 Uc = 2.0 m/s

⒞ Nominal
　 Re = 3.6×10 5（up）
　 Uc = 2.0 m/s

⒟ Short
　 Re = 1.7×10 5（up）
　 Uc = 2.0 m/s

⒠ Short
　 Re = 2.2×10 5（up）
　 Uc = 2.0 m/s

⒡ Short
　 Re = 2.6×10 5（up）
　 Uc = 2.0 m/s
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風の影響が大きいため，インテーク内でははく離を発生
させやすい。そのため，凸曲面を回り込む流れのはく離
が付着状態へ移行せず，直前の状態を維持するような流
れとなった21。減少過程ではレイノルズ数が高い条件で
流れが付着状態であったため，はく離が発生しづらく，
ヒステリシスを発生させた要因と考えられる。一方で，
Fig. 14よりショートインテークでは，減少過程（down）
においてもディストーションが発生している。ショート
インテークにおいてはリップ曲率が大きいため，減少過
程においてもはく離を励起させ，ヒステリシスが発生し
づらく，ノミナルインテークと異なるヒステリシス性を
示した。

4．結言
　本研究では，ナセルインテーク装置と小型ファン回転
試験装置を用いた実験により以下の知見を得た。
⑴　 ショートインテークは，横風が無い条件で，曲率が

大きいTop側においてディストーションを発生する。
また，横風がある条件では，横風上流側にはく離を
誘起しやすく，ディフューザの整流性能が低いため
ディストーションを増大させる。

⑵　 横風に対してレイノルズ数が低い条件では，ドルー
プ角の存在によりインテーク内のBottom側（θ
= 135 deg）を中心にディストーションが発生する。
レイノルズ数を増加させると，両供試体でディス
トーション発生位置に相違が見られた。ノミナルイ
ンテークでは，レイノルズ数及び横風流速によら
ずBottom側を中心にディストーションが発生する。
一方で，ショートインテークでは，レイノルズ数増
加に伴い，ディストーションの中心位置がTop側と
なる。

⑶　 横風により発生したインテーク内のはく離流れにつ
いて，レイノルズ数増加過程と減少過程で異なる流
れ構造を示し，ヒステリシス性が確認された。また，

⒜ Nominal
　 Re = 2.2×10 5（up）
　 Uc = 2.0 m/s

⒝ Nominal
　 Re = 2.2×10 5（down）
　 Uc = 2.0 m/s

⒜ Short
　 Re = 2.6×10 5（up）
　 Uc = 1.6 m/s

⒝ Short
　 Re = 2.6×10 5（down）
　 Uc = 1.6 m/s

Fig. 12  Variation of DC60 versus Reynold number Re

⒜ Uc = 1.6 m/s

⒝ Uc = 2.0 m/s

Fig. 14   Distribution of normalized total pressure σ 
for example of hysteresis（Short intake）

Fig. 13   Distribution of normalized total pressure σ 
for example of hysteresis（Nominal intake）
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供試体ごとに異なる性質を示し，ノミナルインテー
クの方がヒステリシスを発生させやすい。
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