
Looking for a Challenge 2
Problems from the Polish Collegiate

Programming Contest 2011–2014

Copyright c
 by
the Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw
Warsaw 2019

Original title: W poszukiwaniu wyzwań 2
Zadania z Akademickich Mistrzostw Polski
w Programowaniu Zespołowym 2011–2014

This translation based on second edition (version 2.1)

Editors
Krzysztof Diks, Tomasz Idziaszek, Jakub Łącki, Jakub Radoszewski

Translation
Tomasz Idziaszek (solution descriptions, additional materials),
Jakub Łącki, Jakub Radoszewski, Łukasz Warakomski (problem statements)

Authors of solution descriptions
Szymon Acedański, Tomasz Idziaszek, Adam Karczmarz, Tomasz Kociumaka,
Eryk Kopczyński, Jakub Łącki, Jakub Radoszewski

Authors of problems and model solutions
Szymon Acedański, Marcin Andrychowicz, Karol Cwalina, Marek Cygan,
Dawid Dąbrowski, Krzysztof Diks, Paweł Gawrychowski, Tomasz Idziaszek,
Adam Karczmarz, Tomasz Kociumaka, Eryk Kopczyński, Karol Kurach,
Jakub Łącki, Jakub Pachocki, Jakub Pawlewicz, Jakub Radoszewski,
Wojciech Rytter, Bartosz Szreder, Wojciech Śmietanka, Jacek Tomasiewicz,
Wojciech Tyczyński, Tomasz Waleń

Introduction
We present our Readers with descriptions of model solutions of problems from the
Polish Collegiate Programming Contest that took place in years 2011–2014. These
four editions of the contest (called in Polish Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym and abbreviated AMPPZ) were organized by the
Faculty of Mathematics, Informatics and Mechanics and the Faculty of Manage-
ment at the University of Warsaw. The main sponsor of the competition was PKO
Bank Polski, and the PKO Bank Polski Foundation supported content-related
preparations of the contest and funded scholarships for the best students.

The success of any programming competition depends primarily on proper se-
lection of competition tasks and efficient conduct of the contest. The problem set
should be chosen so as to give each competing team a chance of solving at least
one task, and at the same time allow to select actual champions. The problems
should be original, interesting, and stimulate to improve the skills of all, who did
not solve them during the competition. The level of the problems in AMPPZ in
years 2011–2014 was watched over by three young scientists from the Faculty of
Mathematics, Informatics and Mechanics at the University of Warsaw — Tomasz
Idziaszek, Jakub Łącki and Jakub Radoszewski — supported by a large num-
ber of students, PhD students and employees of the Faculty. They have prepared
44 original problems. Preparation of each of them required implementing model
and alternative solutions, as well as the proper set of tests verifying the quality of
solutions of the competitors.

Team programming competitions could not take place without proper technical
facilities: computers connected with an efficient network and specialized competi-
tion software that evaluates live solutions sent by the competitors. The creators
of this software, also used in many other programming competitions organized by
the University of Warsaw, are Szymon Acedański and his team from the Faculty
of Mathematics, Informatics and Mechanics at the University of Warsaw.

iii

This book contains detailed discussions of solution to problems from AMPPZ
in years 2011–2014, written by outstanding young scientists working in the field
of algorithmics, who have also achieved significant successes (as competitors and
organizers) in team programming competitions in the national and international
level. The Polish descriptions of model solutions have been prepared as part of
the Masters of Algorithmics project, which the aim was to prepare students of the
Faculty of Mathematics, Informatics and Mechanics at the University of Warsaw
for participation in programming competitions.

In 2015 we published these solutions in printed form, and now we share them
online in electronic form. Moreover, we have decided to prepare English versions
of these descriptions to the benefit of the whole international community. Anyone,
who would like to solve the tasks, can use the portal szkopul.edu.pl (links to the
individual problems are also given inside the book).

Tasks from AMPPZ are an excellent training material for anyone who would
like to improve their algorithmic and programming skills, or explore the arcana
of algorithms for their own satisfaction. We have marked the difficulty level of
each problem with stars, so that every reader should be able to find something
for themselves. One star denotes the simples tasks, whereas the most difficult are
denoted by four stars.

We invite you to read the book, while wishing you a great intellectual experi-
ence.

Acknowledgements
The Polish Collegiate Programming Contest in years 2011–2014, organized in War-
saw by the University of Warsaw, were large organizational undertakings, requiring
non-standard solutions (logistic, technical and content-related) in the field of com-
puter science. Many institutions and people contributed to the realization of these
undertakings. I am grateful to all who have made these competitions so successful.
At the same time, I would like to thank in a special way to the most involved in
the preparations of the Championships.

Warm words of thanks go to Mr. Zbigniew Jagiełło, the President of PKO Bank
Polski, and Mrs. Urszula Kontowska, the President of PKO Bank Polski Founda-
tion, for understanding the importance of such competitions in development of
Polish IT and its promotion in the world. PKO Bank Polski as the main sponsor
of the competition in Warsaw and teams of the University of Warsaw, contributed
significantly to strengthen the rank of the Championships and the successes of
Poles in international programming competitions.

The championships were held at the University of Warsaw with the use of
university infrastructure. I thank the university authorities for kindness and sup-
port in carrying out such a complex organizational project. In particular, words
of gratitude go to the Rectors of the University of Warsaw: Mrs. Prof. Katarzyna
Chałasińska-Macukow, the Rector in years 2005–2012 and Mr. Prof. Marcin Pałys,
the Rector in years 2012–2016, as well as Vice-Rectors: Prof. Tadeusz Tomaszewski
and Prof. Alojzy Nowak. Great understanding and help was given by the deans
of the faculties directly organizing the competitions: Prof. Stanisław Betley and
Prof. Andrzej Tarlecki (from the Faculty of Mathematics, Informatics and Mechan-
ics), as well as Prof. Alojzy Nowak and Prof. Jerzy Turyna (from the Faculty of
Management).

iv

The competition took place at the Faculty of Management at the University of
Warsaw. Each time the Faculty gym was transformed into a great computer labo-
ratory equipped with dozens of computer workstations connected into an efficient
network, with servers and printers in the back room, and the ability to conduct
television and internet broadcasts. The contests required specialized, dedicated
software that enabled their carrying out in real time. It can be said without ex-
aggeration that the technical side of the competition was secured by world-class
professionals, who worked under the leadership of Marek Mossakowski and Jerzy
Rolewicz from the Faculty of Management (room preparation, energy security,
computer network) and Szymon Acedański from the Faculty of Mathematics, In-
formatics and Mechanics (dedicated competition software). I express the highest
words of recognition to everyone working on the technical support of the compe-
tition.

Similarly to the technical, the content-related part of the competition was at
the highest world level. I address words of admiration and gratitude for their
work to Tomasz Idziaszek, Jakub Łącki and Jakub Radoszewski, who together
with a large number of students, PhD students and employees of the Faculty of
Mathematics, Informatics and Mechanics, have put a titanic effort into preparation
of task competition and running a competition itself.

Finally, I would like to thank the people who directly helped me coordinate
the preparation and conduct of the competition in the years 2011–2014. Working
with them was a real pleasure. I thank Prof. Jan Madey for introducing me to
the world of programming competitions and heading with me the competition
in Warsaw. I thank Rafał Sikorski, a lawyer who liked computer science, for all
daily organizational help. I am also grateful to Krzysztof Ciebiera, on whom I could
always count, for his, often priceless, advice regarding organization of competitions
and technical solutions.

Krzysztof Diks

About programming competitions
Team programming contests test the knowledge and skills needed at the work of
every programmer. The work of algorithmists and programmers, thanks to whom
we can store enormous amounts of information, so that we can search them very
quickly and reach out to those just of interest to us, indirectly affects life of ev-
eryone of us. Like all practical IT problems, every competition task boils down to
developing a method (algorithm) of rapid data processing to calculate the desired
results. You need to be aware, that a participant of the competition not only has
to arrange an appropriate algorithm, but also correctly program it in the program-
ming language of their choice (usually C++, C, Java, or Python). It is known that
even experienced programmers have to work hard to write a working program. On
the way to this aim, they first fight with syntactic (compilation) errors, then they
carry out a number of tests to eliminate logical errors, and finally they analyze the
performance of their solutions.

This is the path followed by every participant of an algorithmic and program-
ming competition. On a small scale, he or she passes the stages of implementation
of real programming projects. Team programming contests also teach group work
in a natural way. Typical rules of such competitions state that the contestants are
divided into three-person teams, with only one computer available for each team.
Competitors must skillfully divide the tasks to be solved depending on their com-
petences and together look for solutions to the most difficult tasks. To successfully
compete in team programming contests, you need the following skills:

� ability to precisely analyze algorithmic tasks (knowledge of mathematics and
logical reasoning are extremely helpful here),

� efficiency in programming,

� knowledge of at least one development environment and ability to compile,
debug and execute programs in this environment,

� knowledge of design techniques for algorithms and data structures,

� ability to work in a team.

The best competitors have mastered these skills at levels unmatched by an average
professional IT specialist.

International Collegiate Programming Contest

The International Collegiate Programming Contest (in short ICPC) is the oldest
and most prestigious IT competition in the world. The contest is intended for
students. Each team participating in the competition consists of three people rep-
resenting the same university. The championship has two stages. The first stage is
the regional qualifying rounds, held on six inhabited continents.

Both regionals and final competitions are carried out in the same way. Each
team of three has at its disposal one computer and from several to more than a
dozen algorithmic-programming task to be solved within five hours. A solution to
each task is a computer program that should correctly and efficiently calculate the
results for the data prepared by the organizers of the competition. The solutions
of the tasks are verified in real time and the teams are informed about the result

vii

of the verification: accepted, wrong answer, time-limit exceeded, run-time error. If
the solution is not accepted, it is rejected and the team can send further solutions
for this task. The competition is won by the team with the most accepted (solved)
tasks. In the case of the same number of tasks accepted by more than one team,
their order in the standings is determined by the shorter total time spent during
solving all accepted tasks. In addition, a 20-minute penalty fee is charged for any
previously rejected submission for a task that was ultimately accepted.

The roots of the ICPC date back to 1970, when in Texas a programming com-
petition was held for the first time under the patronage of the Upsilon Pi Epsilon
Computer Science Honor Society (UPE). The year 1977 is considered the first
year of the International Collegiate Programming Contest. For the first time, the
competition was a two-stage one, and the finals were held in Atlanta in conjunc-
tion with the ACM Computer Science Conference. Until the 1988/1989 academic
year, the competition was mainly represented by universities from the USA and
Canada. In 1989/1990 the competition gained global reach. In 1997, IBM started
as the main sponsor of the competition and its rapid development has been ob-
served ever since. In this year 2520 students took part in the qualifying rounds
of the competition, while in the 2018/2019 academic year there were as much as
52 709. Among the 43 world champions to date, we will find teams representing
the best IT universities in the world from four continents, including the University
of Warsaw. The list on the next page provides a full list of all world champions.

Just like the ICPC is inseparably linked with Prof. Bill Poucher from Baylor
University, who was the originator and animator of the competition, the devel-
opment of team programming competitions in Poland and the successes of the
University of Warsaw students are associated with Prof. Jan Madey, who in 1994
formed the first representation and sent it to the regional qualifications in Amster-
dam. The team consisting of Jacek Chrząszcz, Piotr Krysiuk and Tomasz Śmigiel-
ski made a huge surprise by winning the qualifying round and advancing to the
finals in Nashville. At the time, 38 teams took part in the finals and the Polish in-
experienced team took eleventh place — the first not awarded with a medal?. Since
then, teams of the University of Warsaw have been taking part in the competition
finals without interruption. The University of Warsaw is the only university in the
world that can boast such a number of uninterrupted participations in the finals.
The greatest successes of the University of Warsaw (and Poland) were victories in
the finals of the competition in 2003 and 2007. In 2003 won the team consisting of:
Tomasz Czajka, Andrzej Gąsienica-Samek and Krzysztof Onak. In 2007 the world
champions became Marek Cygan, Marcin Pilipczuk and Filip Wolski.

?For several years, 12 medals have been awarded in the finals: 4 gold, 4 silver, and 4 bronze.
Previously, at most 10 medals were awarded. In very rare cases, when team achievements are
similar, additional bronze medals may be awarded.

viii

Year and place of contest World Champions in Col legiate Programming

1 1977 Atlanta (USA) · Michigan State University (USA)
2 1978 Detroit (USA) · · · · · · · · · Massachusetts Institute of Technology (USA)
3 1979 Dayton (USA) · Washington University (USA)
4 1980 Kansas City (USA) · · · · · · · · · · · · · · · · · · · Washington University (USA)
5 1981 St. Louis (USA) · · · · · · · · · · · · · · · · · University of Missouri-Rolla (USA)

6 1982 Indianapolis (USA) · Baylor University (USA)
7 1983 Melbourne (USA) · University of Nebraska (USA)
8 1984 Philadelphia (USA) · · · · · · · · · · · · · · · · · Johns Hopkins University (USA)
9 1985 New Orleans (USA) · Stanford University (USA)

10 1986 Cincinnati (USA) · · · · · · · · · · · California Institute of Technology (USA)

11 1987 St. Louis (USA) · Stanford University (USA)
12 1988 Atlanta (USA) · · · · · · · · · · · · · · California Institute of Technology (USA)
13 1989 Louisville (USA) · · · · · · University of California at Los Angeles (USA)
14 1990 Washington (USA) · · · · · · · · · · · · · · University of Otago (New Zealand)
15 1991 San Antonio (USA) · Stanford University (USA)

16 1992 Kansas City (USA) · · · · · · · · · · · · · · University of Melbourne (Australia)
17 1993 Indianapolis (USA) · Harvard University (USA)
18 1994 Phoenix (USA) · University of Waterloo (Canada)
19 1995 Nashville (USA) · · · · Albert-Ludwigs-Universität Freiburg (Germany)
20 1996 Philadelphia (USA) · · · · · · · University of California at Berkeley (USA)

21 1997 San Jose (USA) · Harvey Mudd College (USA)
22 1998 Atlanta (USA) · · · · · · · · Charles University in Prague (Czech Republic)
23 1999 Eindhoven (Netherlands) · · · · · · · · · · · University of Waterloo (Canada)
24 2000 Orlando (USA) · · · · · · · · · · · · · St. Petersburg State University (Russia)
25 2001 Vancouver (Canada) · · · · · · · · St. Petersburg State University (Russia)

26 2002 Honolulu (USA) · · · · · · · · · · · · · Shanghai Jiao Tong University (China)
27 2003 Beverly Hills (USA) · · · · · · · · · · · · · · · · · · University of Warsaw (Poland)
28 2004 Prague (Czech Republic) · · St. Petersburg ITMO University (Russia)
29 2005 Shanghai (China) · · · · · · · · · · · · Shanghai Jiao Tong University (China)
30 2006 San Antonio (USA) · · · · · · · · · · · · · · · · Saratov State University (Russia)

31 2007 Tokyo (Japan) · University of Warsaw (Poland)
32 2008 Banff (Canada) · · · · · · · · · · · · St. Petersburg ITMO University (Russia)
33 2009 Stockholm (Sweden) · · · · · · · St. Petersburg ITMO University (Russia)
34 2010 Harbin (China) · · · · · · · · · · · · · · Shanghai Jiao Tong University (China)
35 2011 Orlando (USA) · Zhejiang University (China)

36 2012 Warsaw (Poland) · · · · · · · · · · St. Petersburg ITMO University (Russia)
37 2013 St. Petersburg (Russia) · · · · St. Petersburg ITMO University (Russia)
38 2014 Yekaterinburg (Russia) · · · · · St. Petersburg State University (Russia)
39 2015 Marrakech (Morocco) · · · · · · St. Petersburg ITMO University (Russia)
40 2016 Phuket (Thailand) · · · · · · · · · · St. Petersburg State University (Russia)

41 2017 Rapid City (USA) · · · · · · · · · St. Petersburg ITMO University (Russia)
42 2018 Beijing (China) · Moscow State University (Russia)
43 2019 Porto (Portugal) · · · · · · · · · · · · · · · · · · · Moscow State University (Russia)

ix

The following list presents the full list of achievements of Polish students in the
history of participation in International Collegiate Programming Contest (obtained
places and medals). To date, teams from the following universities have advanced
to the finals: University of Warsaw (UW), Jagiellonian University in Krakow (UJ),
University of Wroclaw (UWr), AGH University of Science and Technology (AGH)
and Poznan University of Technology (PP). In total, Polish teams have won six
gold, eight silver and seven bronze medals.

ICPC 1995 (38 teams)

11. UW · Jacek Chrząszcz, Piotr Krysiuk, Tomasz Śmigielski

ICPC 1996 (43 teams)

17. UW · · · · · · · · · · · · · · · · · Marcin Mucha, Krzysztof Sobusiak, Tomasz Śmigielski

ICPC 1997 (50 teams)
11. UW · · · · · · · · · · · · · · · · · · Bartosz Klin, Marcin Mendelski-Guz, Marcin Sawicki

ICPC 1998 (54 teams)
9. (bronze) UW · · · · · · · · · · · · · · · · · Adam Borowski, Jakub Pawlewicz, Krzysztof Sobusiak

ICPC 1999 (62 teams)
11. UW · Bartosz Klin, Marcin Sawicki, Marcin Stefaniak

ICPC 2000 (60 teams)
22. UW · · · · · · · · · · · · · · · · · · Łukasz Anforowicz, Marek Futrega, Eryk Kop czyński

ICPC 2001 (64 teams)
6. (silver) UW · · · · · · · · · · · · Tomasz Cza jka, Andrzej Gąsienica-Samek, Marcin Stefaniak

ICPC 2002 (64 teams)
11. UW · · · · · · · · · · · · · · · · Łukasz Kamiński, Eryk Kop czyński, Tomasz Malesiński

ICPC 2003 (70 teams)
1. (gold) UW · · · · · · · · · · · · · Tomasz Cza jka, Andrzej Gąsienica-Samek, Krzysztof Onak

ICPC 2004 (73 teams)
10. (bronze) UW · Tomasz Malesiński, Krzysztof Onak, Paweł Parys
27. UJ · Grzegorz Gutowski, Arkadiusz Pawlik, Paweł Walter

ICPC 2005 (78 teams)
5. (silver) UWr · · · · · · · · Paweł Gawrychowski, Jakub Łopuszański, Tomasz Wawrzyniak
17. UW · · · · · · · · · · · · · · · · · · Szymon Acedański, Tomasz Idziaszek, Jacek Jurewicz

ICPC 2006 (83 teams)
2. (gold) UJ · Arkadiusz Pawlik, Bartosz Walczak, Paweł Walter
7. (silver) UW · · · · · · · · · · · · · · · · · · Marcin Michalski, Paweł Parys, Bartłomiej Romański

ICPC 2007 (88 teams)
1. (gold) UW · Marek Cygan, Marcin Pilip czuk, Filip Wolski
26. UWr · · · · · · · · Paweł Gawrychowski, Jakub Łopuszański, Tomasz Wawrzyniak

x

ICPC 2008 (100 teams)
13. UW · Marek Cygan, Marcin Pilip czuk, Filip Wolski
31. AGH · · · · · · · · · · · · · · · · · Daniel Cza jka, Andrzej Szombierski, Marcin Wielgus
31. UJ · Rafał Józefowicz, Alan Meller, Bartosz Walczak

ICPC 2009 (100 teams)
9. (bronze) UW · · · · · · · · · · · · · Marcin Andrychowicz, Maciej Klimek, Marcin Kościelnicki
34. UJ · Kamil Kraszewski, Marek Wrób el, Paweł Zab orski

ICPC 2010 (103 teams)
8. (silver) UW · · · · · · · · · · · · · · · · · Karol Kurach, Krzysztof Pawłowski, Michał Pilip czuk
14. UWr · · · · · · Władysław Kwaśnicki, Przemysław Pa jąk, Przemysław Uznański

ICPC 2011 (103 teams)
9. (bronze) UJ · Rob ert Obryk, Adam Polak, Maciej Wawro
13. UW · · · · · · · · · · · · · · Tomasz Kulczyński, Jakub Pacho cki, Wo jciech Śmietanka
42. UWr · · · · · · · · · · · · · · · · · · · Krzysztof Piecuch, Damian Rusak, Łukasz Zatorski

ICPC 2012 (112 teams)

2. (gold) UW · · · · · · · · · · · · · · Tomasz Kulczyński, Jakub Pacho cki, Wo jciech Śmietanka
18. UJ · Rob ert Obryk, Adam Polak, Maciej Wawro
18. UWr · · · · · · · · · · · · · · · · Marcin Dublański, Jarosław Gomułka, Karol Pokorski
36. PP · · · · · · · · · · · · · · · · · Konrad Baumgart, Piotr Żurkowski, Tomasz Żurkowski

ICPC 2013 (120 teams)
6. (silver) UW · · · · · · · · · · · · · Marcin Andrychowicz, Maciej Klimek, Tomasz Ko ciumaka
9. (bronze) UJ · Jakub Adamek, Grzegorz Guśpiel, Jonasz Pamuła
27. UWr · · · · · · · · · · · · · · · · · · Anna Piekarska, Damian Straszak, Jakub Tarnawski

ICPC 2014 (122 teams)
5. (silver) UW · · · · · · · · · · · · · · · · · · Jarosław Błasiok, Tomasz Ko ciumaka, Jakub Oćwieja
13. UWr · Anna Piekarska, Tomasz Syp osz, Jakub Tarnawski
45. UJ · Jakub Adamek, Igor Adamski, Piotr Bejda

ICPC 2015 (128 teams)
12. (bronze) UW · · · · · · · · · · · · · · · · · · · Kamil Dęb owski, Błażej Magnowski, Marek Sommer
13. UWr · · · · · · · · · · · · · · Bartłomiej Dudek, Maciej Dulęba, Mateusz Gołębiewski
15. UJ · Piotr Bejda, Grzegorz Guśpiel, Michał Seweryn

ICPC 2016 (128 teams)
5. (silver) UW · · · · · · · · · · · · · · · · Wo jciech Nadara, Marcin Smulewicz, Marek Sokołowski
9. (bronze) UWr · · · · · · · · · · · · · · · Barłomiej Dudek, Maciej Dulęba, Mateusz Gołębiewski
14. UJ · Krzysztof Maziarz, Michał Za jąc, Szymon Łukasz

ICPC 2017 (133 teams)
2. (gold) UW · · · · · · · · · · · · · · · · Wo jciech Nadara, Marcin Smulewicz, Marek Sokołowski
20. UWr · Paweł Michalak, Tomasz Syp osz, Michał Łowicki
34. UJ · · · · · · · · · · · · · · · · Vladyslav Hlemb otskyi, Krzysztof Maziarz, Michał Za jąc

ICPC 2018 (140 teams)
14. UW · Kamil Dęb owski, Mateusz Radecki, Marek Sommer
31. UJ · · · · · · · · · Vladyslav Hlemb otskyi, Franciszek Stokowacki, Michał Zieliński

ICPC 2019 (135 teams)
4. (gold) UW · Jakub Boguta, Konrad Paluszek, Mateusz Radecki
6. (silver) UWr · · · · · · · · · · · · · · · · · · Anadi Agrawal, Michał Górniak, Jarosław Kwiecień

xi

Central European Regional Contest

Since the 1995/1996 academic year, Polish student teams have been fighting to
advance to the finals in the regional competition — Central European Regional
Contest (in short CERC). In CERC take part student teams from IT departments
of leading universities from the following Central European countries: Austria,
Croatia, Czech Republic, Hungary, Poland, Slovakia and Slovenia. The CERC
region is very strong and often the advancement to the world finals from this region
is a guarantee of success, as evidenced by three championship titles for teams from
this region — the University of Warsaw won twice, and once the Charles University
in Prague. Below is a list of the winners of the Central European Regional Contest.

Year and place of contest European Champions in Col legiate Programming

1 1995 Bratislava · University of Warsaw
2 1996 Bratislava · Comenius University in Bratislava
3 1997 Bratislava · Comenius University in Bratislava
4 1998 Prague · Comenius University in Bratislava
5 1999 Prague · Charles University in Prague
6 2000 Prague · University of Warsaw
7 2001 Warsaw · University of Warsaw
8 2002 Warsaw · University of Warsaw
9 2003 Warsaw · University of Warsaw

10 2004 Budapest · University of Warsaw
11 2005 Budapest · University of Warsaw
12 2006 Budapest · University of Warsaw
13 2007 Prague · University of Warsaw
14 2008 Wroclaw · University of Warsaw
15 2009 Wroclaw · University of Warsaw
16 2010 Wroclaw · University of Warsaw
17 2011 Prague · University of Warsaw
18 2012 Krakow · Comenius University in Bratislava
19 2013 Krakow · Comenius University in Bratislava
20 2014 Krakow · University of Zagreb
21 2015 Zagreb · University of Warsaw
22 2016 Zagreb · University of Warsaw
23 2017 Zagreb · University of Warsaw
24 2018 Prague · University of Warsaw

xii

Polish Collegiate Programming Contest

Although the first starts of Polish teams in programming competitions looked
like an ad-hoc mobilization, since the 1996/1997 academic year, preparations to
participate in the championships and the selection of representative teams have
been systematic. Usually, representation teams from individual universities are
formed in local university qualifying rounds. The best teams compete in the Pol-
ish Collegiate Programming Contest (in Polish Akademickie Mistrzostwa Polski
w Programowaniu Zespołowym ; in short AMPPZ), which usually take place at
the end of October. The first AMPPZ competition was held in 1996 at the Poz-
nan University of Technology. The originators of the competition were Prof. Jerzy
Nawrocki from the Poznan University of Technology and Prof. Jan Madey from
the University of Warsaw. By 2018, 23 editions of AMMPZ were carried out, in
which a team from the University of Warsaw won each time.

Year and place of contest Polish Champions in Col legiate Programming

1 1996 Poznan (PP) · · · · · · Marcin Mucha, Jakub Pawlewicz, Krzysztof Sobusiak
2 1997 Wroclaw (PWr) · · · · Bartosz Klin, Marcin Mendelski-Guz, Marcin Sawicki
3 1998 Warsaw (UW) · · · · · · · · · · Bartosz Klin, Marcin Sawicki, Marcin Stefaniak
4 1999 Warsaw (UW) · · · · · · · Jakub Pawlewicz, Marcin Stefaniak, Tomasz Waleń
5 2000 Warsaw (UW) · Tomasz Czajka, Andrzej Gąsienica-Samek, Marcin Stefaniak

6 2001 Wroclaw (UWr) · · Łukasz Kamiński, Eryk Kopczyński, Tomasz Malesiński
7 2002 Wroclaw (UWr) · · · · · · Łukasz Kamiński, Tomasz Malesiński, Paweł Parys
8 2003 Wroclaw (UWr) · · · · · · · · Tomasz Malesiński, Krzysztof Onak, Paweł Parys
9 2004 Krakow (UJ) · · · · · · Marcin Michalski, Paweł Parys, Bartłomiej Romański

10 2005 Krakow (UJ) · · · · · · · · · · · Marek Cygan, Marcin Pilipczuk, Piotr Stańczyk

11 2006 Krakow (UJ) · · · · · · · · · · · · · Marek Cygan, Marcin Pilipczuk, Filip Wolski
12 2007 Poznan (PP) · · · · · · · · · · · · · Marek Cygan, Marcin Pilipczuk, Filip Wolski
13 2008 Poznan (PP) · · · · · · · · · · Tomasz Kulczyński, Jakub Łącki, Piotr Mikulski
14 2009 Poznan (UAM) · · · · · Jakub Łącki, Piotr Niedźwiedź, Wojciech Śmietanka
15 2010 Poznan (UAM) Tomasz Kulczyński, Jakub Pachocki, Wojciech Śmietanka

16 2011 Warsaw (UW) · Tomasz Kulczyński, Jakub Pachocki, Wojciech Śmietanka
17 2012 Warsaw (UW) · · · · · Jarosław Błasiok, Mirosław Michalski, Jakub Oćwieja
18 2013 Warsaw (UW) · · · · · Jarosław Błasiok, Tomasz Kociumaka, Jakub Oćwieja
19 2014 Warsaw (UW) · · · · Wojciech Nadara, Grzegorz Prusak, Marcin Smulewicz
20 2015 Wroclaw (UWr) · · · · · Kamil Dębowski, Błażej Magnowski, Marek Sommer

21 2016 Wroclaw (UWr) · · Wojciech Nadara, Marcin Smulewicz, Marek Sokołowski
22 2017 Wroclaw (UWr) · · · · · · Kamil Dębowski, Mateusz Radecki, Marek Sommer
23 2018 Wroclaw (UWr) · · · · · · · Jakub Boguta, Konrad Paluszek, Mateusz Radecki

xiii

2011
16th Polish Collegiate Programming Contest

Warsaw, October 28–30, 2011

A
Arithmetic Rectangle FFF
Task author: Jakub Radoszewski
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2011/ary

We are given a grid consisting of n × m unit squares. Each of the unit squares
contains a single integer. In this task we are interested in arithmetic rectangles
lying on the grid, i.e., rectangles composed of unit squares such that numbers in
every row and every column form arithmetic sequences. Recall that an arithmetic
sequence is a sequence in which any two consecutive terms differ by the same
amount.

In addition, we aim to find the largest arithmetic rectangle, i.e., the one covering
the most unit squares. For example, the largest arithmetic rectangle on the grid
below consists of nine unit squares:

6 3 2 4

3 5 3 1

2 4 4 4

5 3 5 7

Input

In the first line of the input there is a single integer t (1 ¬ t ¬ 10 000), specifying
the number of test cases that follow. The description of each test case begins with
a line with two integers n and m (1 ¬ n;m ¬ 3 000). In each of the following n
lines there are m integers from the range [0; 109]. These are numbers contained
in subsequent unit squares of the grid. The size of each input file will not exceed
20 MB.

Output

Your program should output t lines with answers for the consecutive test cases.
The answer for a single test case is one integer equal to the number of unit squares
contained in the largest arithmetic rectangle that can be found on the grid de-
scribed in the test case.

3

https://oi.edu.pl/en/archive/amppz/2011/ary

Example

For the input data:

2
4 4
5 3 5 7
2 4 4 4
3 5 3 1
6 3 2 4
2 3
0 1 2
1 2 3

the correct result is:

9
6

Solution

To describe problem Arithmetic Rectangle we use two helper problems, whose
solutions are more or less known. In the solution we will reduce each subsequent
problem to the previous one.

Air crashes

In this problem we are given an n-element sequence of integers a1, . . . , an. For
each element of the sequence we would like to find the closest smaller element that
lies to the left of it. Formally, for every i ∈ {1, . . . , n} we look for the greatest j,
j < i, such that aj < ai. For the value to be always well-defined, we add to the
sequence a sentinel element a0 = −∞ (see figure 1). The original problem of air
crashes has rather drastic formulation. We are given numbers of casualties in air
crashes which were happening in subsequent years. For each crash we would like to
calculate, what is the period in the past that there was no equally severe crash. In
this version we would find closest larger element to the left. Let’s go back, however,
to our initial formulation.

−∞ 2 6 4 7 5 3

Figure 1. Solution to the air crash problem for the sequence 2, 6, 4, 7, 5, 3.

The air crash problem is easy to solve in linear time, using a method of following
the arrows. The idea is clear: we process the sequence from left to right and we
assign to each element an arrow that leads to the closest smaller element. For
given i we begin with checking if ai−1 < ai. If yes, then we know that the arrow
from ai leads to ai−1. If not, then we go to the first element smaller than ai−1,
that is exactly along the arrow from ai−1. We continue this procedure until we find

4

−∞ 2 6 4 7 5 3

Figure 2. Calculating result from a6 = 3.

an element smaller than ai. For example, figure 2 depicts determining the arrow
from element a6 = 3.

To justify that the algorithm works in linear time, is enough to show that we
move along each arrow at most once. Suppose then that during determining the
arrow for element ai we move along arrow originating in some aj (j < i). That
means that aj ­ ai, since otherwise aj would be a candidate for result to ai. Let’s
denote by ak the resulting element for ai. Later in the algorithm we would consider
elements ai+1, ai+2, . . . We show that for any of them, moving along the arrows,
we will not encounter element aj . To reach element aj we would have, in some
moment, jump over element ai (if we would encounter element ai, then for sure we
would not reach aj in the same round). But the arrow over ai enters an element
smaller than ai, and the earliest such element is ak. Therefore, such arrow cannot
go to aj which is located to the right of ak.

Plot

Now let’s consider the second helper problem. We are given a board (array A)
consisting of n rows and m columns, filled with zeros and ones. We need to find
a rectangular fragment of this board filled with only ones, with the greatest area
(see figure 3). The title of this section comes from the fact that such problem have
appeared on the 9th Polish Olympiad in Informatics as a task Plot. For simplicity
of language we will call our problem as finding the optimal plot.

0 1 1 0 1

1 1 1 1 0

1 1 1 1 0

0 1 1 1 1

1 0 0 1 1

Figure 3. The optimal plot in this case has area of 9.

The problem Plot can be solved in linear time complexity, namely O(nm). We
describe here one such solution, somewhat different than the model solution from
the 9th Olympiad.

We denote by (i, j) a cell of the board which is located on the i-th row from
the top and the j-th column from the left. At the beginning, for each cell (i, j) we
calculate an auxiliary value D[i, j] being the number of subsequent cells filled with
ones located below this cell, including the cell (i, j). It is easy to calculate such

5

values in time O(nm), moving from the bottom to the top of the board. We use
the fact that if A[i, j] = 1, then D[i, j] = D[i + 1, j] + 1, and otherwise of course
D[i, j] = 0 (see figure 4).

0 1 1 0 1

1 2 2 1 0

2 3 3 2 0

0 4 4 3 1

1 0 0 4 2

Figure 4. Auxiliary array D.

Now it is time for the key observation. The optimal plot could be constructed
as follows: we consider some cell (i, j) (in our solution we will test all possibilities
for choosing (i, j)) and we calculate a rectangle containing this cell in its upper
row, of height D[i, j] and reaching to the right and to the left as far as possible,
i.e. until reaching the board’s border or a cell with a zero. Let’s justify that for
some cell (i, j) we will in fact obtain an optimal plot. The resulting plot must be
maximal in the sense that each of its side either coincides with board’s border or
is adjacent to a cell containing a zero. In particular, it applies to the lower side
of the plot. Let (i′, j) denotes a cell located on the lower row of the plot which
is adjacent to a cell with a zero (or any cell if the lower side if it coincides with
board’s border). Let i denotes the number of the top row of the plot. Then the
plot has height D[i, j], contains field (i, j) in its upper row and cannot be extended
neither to the left, nor to the right, which is consistent with the observation. For
example, on figures 3 and 4 cell (i, j) of the optimal plot of area 9 is its top-right
corner.

The above observation can be alternatively formulated as follows: for every cell
(i, j) with non-zero D[i, j] we look for the closest cells in the same row for which
values D are smaller than D[i, j], i.e. such indices j′ and j′′ that

j′ < j < j′′, D[i, j′], D[i, j′′] < D[i, j], j′ is maximal, j′′ is minimal.

The indices j′ and j′′ are numbers of columns which are located just behind the
sides of our plot. We assume for simplicity that D[i, 0] = D[i,m+1] = 0. Then the
answer to the problem is maximum from products of form (j′′− j′− 1) ·D[i, j] for
all cells (i, j). Note, that to calculate j′ and j′′ we can simply use the solution to
air crashes problem, applied to the i-th row of array D, only once from left to right
(calculating j′) and then from right to left (calculating j′′). Using the previous
algorithm row by row, we get an algorithm running in time O(nm).

Arithmetic rectangle

Recall that in the problem from the contest, we have a board of size n×m consisting
of non-negative integers. We are searching in it for an arithmetic rectangle of

6

maximal area, where an arithmetic rectangle is a rectangle in which numbers in
every row and in every column form arithmetic sequences. An example of such
rectangle is depicted on figure 5.

6 3 0 4 8

8 6 4 2 0

5 5 5 5 5

2 4 6 8 10

1 3 7 11 15

Figure 5. Maximal arithmetic rectangle has area of 16.

For a start, we handle rectangles of width 1 (i.e. contained in one row). We see,
that every row of the board can be partitioned on maximal arithmetic sequences,
such that every one has length at least two and every two consecutive ones have
exactly one common element. For instance, the bottom row from the array on
figure 5 can be partitioned into sequences (6, 3, 0) and (0, 4, 8), and the top row
into sequences (1, 3) and (3, 7, 11, 15). Using such representation, in time O(nm)
we can easily find the longest arithmetic rectangle of width 1. Similarly we consider
rectangles of length 1, width 2 (how?) and length 2.

From now on we are interested only in rectangles whose every side has length
at least 3. We will reduce finding such rectangles to the problem Plot.

Let’s mark with a circle every cell on the board such that a square of size 3,
that contains this cell in the center, is an arithmetic rectangle (see figure 6). It
turns out that the rectangle of both sizes no smaller than 3 is arithmetic if and
only if all its cells contained in it (maybe except its interior border of width 1)
are marked. Indeed, if the rectangle is arithmetic, then in particular all squares
of size 3 contained in this rectangle are arithmetic. For the other direction: if
in the rectangle two adjacent cells are marked, then the arithmetic sequences in
their squares 3 × 3 will join in longer arithmetic sequences exactly as needed.
Continuing this reasoning, we can show that every subrectangle of maximal length
and width 3 or maximal width and length 3 is arithmetic. Thus we have that every
row and every column of the rectangle forms an arithmetic sequence, thus the
whole rectangle is arithmetic.

To conclude: we handled narrow arithmetic rectangles separately, and the find-
ing thick enough arithmetic rectangle of maximal area was reduced to finding
maximal rectangles consisting only of marked cells. This last problem corresponds
almost to problem Plot, but there is a little catch here. Namely in that problem we
look for exactly one plot, that with the greatest area. But after our transformation
we no longer can guarantee that such plot, extended by a border of width 1, will
give a rectangle of maximal area. It could happen that for some positive integers
a, b, c, d we have ab > cd, but (a+ 2)(b+ 2) < (c+ 2)(d+ 2) (can you show such
example?). Fortunately, it is easy to get out of this situation. Maybe optimal arith-
metic rectangle does not correspond to an optimal plot, but for sure it corresponds
to some maximal plot, i.e. which cannot be extended in any direction. An now it

7

6 3 0 4 8

8 6 4 2 0

5 5 5 5 5

2 4 6 8 10

1 3 7 11 15

Figure 6. Marked cells are in centers of arithmetic squares 3× 3.

is enough to recall that our solution to problem Plot in fact was considering all
possible maximal plots (when finding this of the greatest area), then we can really
use it for finding optimal arithmetic rectangle. Finally, we get a solution that runs
in optimal time O(nm).

8

B
Bytean Road Race FFFF
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 64 MB
https://oi.edu.pl/en/archive/amppz/2011/baj

The Bytean Road Race is to be held tomorrow in Bytetown city center. The streets
of Bytetown form a regular grid: all of them go from the south to the north or
from the west to the east. The participants of the race are only allowed to use
some given parts of the roads.

Byteasar’s task is to place the event’s sponsors’ banners on some of the cross-
ings, and to do that he has to examine the route map of the race. The map depicts
the segments of streets that the runners are allowed to use. There are n crossings
and m vertical and horizontal road segments marked on it. Every segment starts
and ends at some crossing and does not contain any other crossings. The road
segments may only intersect at the crossings.

The crossings are numbered from 1 to n. The race will start at the crossing
number 1 and finish at the crossing number n. The runners can pick their routes
themselves, however they are required to run only south and east and only along
the segments marked on the map. The road segments on the map are chosen in
such a way that, by running in accordance with the rules, one can get to the finish
from any place, and every place is reachable from the start crossing.

Byteasar wants to place the banners in a way that ensures that no runner will
see a banner of the same sponsor twice. Therefore, for some pairs of crossings,
Byteasar has to check whether it is possible for the route of some participant to
go through both crossings. The race takes place tomorrow, so a program that will
help him do the task is urgently needed.

Input

The first line of the input contains three integers n, m and k (2 ¬ n ¬ 100 000,
1 ¬ m ¬ 200 000, 1 ¬ k ¬ 300 000). They specify the number of crossings on the
race route, the number of marked segments on the map, and the number of pairs
of crossings to be checked, respectively.

The following n lines describe the locations of the crossings. The i-th of these
lines contains the coordinates of the i-th crossing represented by two integers xi, yi
(−109 ¬ xi; yi ¬ 109). Moreover, x1 ¬ xn and y1 ­ yn. There will be at most one
crossing at any given point. The axes of the coordinate system correspond to the
real world cardinal directions in the natural way: the OX axis goes towards the
east, and the OY axis — towards the north.

Each of the following m lines contains a description of a single segment on the
map, consisting of a pair of integers ai, bi (1 ¬ ai; bi ¬ n; ai 6= bi), specifying
the numbers of crossings connected by the segment. All of these segments are
either vertical or horizontal and they may only intersect at common endpoints
(the crossings).

The next k lines contain the descriptions of pairs of crossings to be checked.
The i-th of these lines contains two integers pi, qi (1 ¬ pi; qi ¬ n, pi 6= qi).

9

https://oi.edu.pl/en/archive/amppz/2011/baj

Output

Your program should output k lines. The i-th of these lines should contain the
word TAK (i.e., yes in Polish) if it is possible for the route of some participant to
go through both crossings pi and qi (in any order). Otherwise the output should
be NIE (no in Polish).

Example

For the input data:

9 10 4
1 6
2 6
4 4
1 4
3 4
4 6
6 4
3 1
6 1
1 2
4 1
2 6
3 6
5 4
5 3
5 8
3 7
7 9
9 8
4 8
2 5
8 7
7 6

the correct result is:

TAK
NIE
NIE
TAK

1 2

34
5

6

7

8 9

1

1

2

2

3

3

4

4

5

5

6

6

10

Solution

At the beginning let us rotate the Bytetown’s map by 135◦ to the left. In effect the
start crossing will be positioned at the very bottom of the map, the finish crossing
at the top, and the streets will leave the crossing in two diagonal directions: to
the top-right and to the top-left (see figure 1). The rotation does not change the
answer anyhow, but it will be easier for us to work with such rotated map.

1 2

34
5

6

7

8 9
1

2

3

4

5
6

7 8

9

Figure 1. Bytetown’s map from the task example (left) and the same map after rotating
it by 135◦ (right).

We treat the Bytetown’s map as a directed graph. In this graph we have n
vertices representing the crossings and m edges corresponding to road segments.
Let us fix some vertex v. The left path coming out from vertex v we call a path that
starts in v and from every subsequent vertex, if it is possible, leaves to the left. If
from some vertex there is only edge to the right, then the left path goes along this
edge. The left path ends in the vertex corresponding to the finish. Analogously we
define the right path. The notions of the left and right paths will be a foundation
for our effective solution. Denote by Lv the left path from vertex v, and by Rv

the right path from vertex v. In the example from figure 1 path L4 goes through
vertices 4, 5, 3, 7, 9, and the path R4 through vertices 4, 5, 8, 9.

Suppose that we want to check whether we can go from vertex p = (xp, yp)
to vertex q = (xq, yq). Let us draw a horizontal line h passing through vertex q.
Assume that vertex p lies below the line h, otherwise a path from p to q obviously
does not exist (unless p = q). Let us draw the paths Lp and Rp from vertex p. If
we can go from vertex p to vertex q then the following condition is satisfied:

Condition 1. The path Lp intersects line h in vertex q or to the left from it, and
the path Rp intersects line h in vertex q or to the right from it.

Why is that? We know that there exists a path from p to q (call it Spq) that
intersects line h in point q. The left path from p can never find itself to the right
from Spq. Analogously, the right path starting in p for sure will not be going to
the left of Spq. The example is on the left side of figure 2.

Moreover, the converse fact follows: if the condition 1 is satisfied, then there
exists a path from p to q. To justify that, we consider a path Ssq from the starting

11

h

p

q

Lp

Rp

Spq

h

p

q

s

Lp

Ssq

Spq

Figure 2. Left: paths from condition 1 and the line h. The path Spq must lie in the area
enclosed by paths Lp and Rp. Right: the path Ssq intersects Lp, thus we can
construct a path from p to q.

vertex s to vertex q (the right part of figure 2). Such path exists for sure, since
from the starting vertex s we can go to any other vertex. Moreover, each path
going to vertex q which begins in vertex p or below, must intersect path Lp or Rp.
Assume that path Ssq intersects path Lp. Then, to go from p to q, we follow along
path Lp until it intersects the path Ssq, and then we change to path Ssq and follow
along it to vertex q. All it means that to check whether from p we can go to q, it
is enough to check the condition 1.

The structure of left and right paths

Note that left and right paths have a very strong structure. The left path coming
out from vertex v can be constructed as follows. We go along the first edge (to
the left, if it is possible, otherwise to the right), reaching vertex w, and from this
moment the remaining part of the path Lv coincides with the path Lw.

Now we construct a two-dimensional array left , which will be used to quickly
navigate left paths. We will use a method called binary lifting : for every vertex v
and every i such that 0 ¬ i ¬ blog2 nc, in the cell left [v, i] we want to write the
number of vertex that is reachable from vertex v if we make 2i steps along the
path Lv. Analogous array right is constructed for right paths. For convenience, in
the finish vertex we add an edge that goes from this vertex to the same. Thanks
to that all values in the arrays are well defined.

For every vertex v the value left [v, 0] is calculated easily: it is enough to see
where leads the first edge of path Lv. Next our algorithm runs in blog2 nc phases.
In the i-th phase we assume that we have already calculated values left [·, i − 1],
and on this basis we want to calculate left [·, i]. We follow the idea: to check where
we end up after 2i steps along path Lv, first we make 2i−1 steps along it. The
vertex w which we reach in such way was calculated in the previous phase. Now
from vertex w we make another 2i−1 steps along Lw, which coincides with the rest

12

of Lv. This way we will know where we find ourselves after 2i steps from v. In
other words, it is enough to make an assignment

left [v, i] := left [left [v, i− 1], i− 1].

Since arrays left and right have O(n logn) cells each, we can fill them in total time
O(n logn).

After filling both arrays, we can use them to check the condition 1. To this we
use some kind of binary search. Suppose that we are interested in finding a point
in which the path Lp intersects the line h.

Starting in vertex p we will follow the path Lp, making sure not to cross the
line h. Subsequently for i = blog2 nc, blog2 nc − 1, . . . , 0 we check whether after
making 2i steps along the left path from the current vertex, we end up above the
line h. If yes, then we do nothing, otherwise, we perform these 2i steps.

After this procedure, we will find the topmost vertex w on the path Lp that
lies no higher than line h. Now it is enough to check, on which side of point q the
first edge of path Lw intersects line h. We do similar thing for the path Rp, which
allows us to check condition 1 and answer the query.

We got an algorithm, which after preprocessing in time O(n logn), answers
each query in time O(logn).

Faster solution

Although the above solution is fast enough, we describe here an interesting al-
gorithm working in time O(n). At first we will deal with, it would seem, some
different problem. Later we will show how it relates to our task.

Mutual positions of vertices in a tree

Consider a rooted binary tree in which every vertex has zero, one, or two children.
If a vertex has two children, we assume that they are ordered: we call them left
and right child. Let us distinguish two different vertices of the tree and call them
a and b. How they can be positioned relative to each other?

a

b

(1)

a

b

(2)

Figure 3. Two cases of mutual positions of vertices in a tree: (1) vertex a lies above vertex
b, (2) vertex a lies to the left of vertex b. In two remaining cases we exchange
the roles of vertices a and b.

Denote by Sa and Sb the paths from the root to vertices a and b, respectively.
It turns out that there exist exactly four possible cases: vertex a can lie above

13

vertex b (then it lies on the path Sb), below vertex b (then b lies on the path Sa),
to the left of vertex b (when going from a to the root, we enter the path Sb from
the left), or to the right of vertex b (when going from a to the root, we enter Sb

from the right). It is easy to see that the first two cases are symmetrical, the same
as the latter two cases. These cases are illustrated on figure 3. We show now, how
we can quickly answer queries about mutual positions of the vertices.

Perform a depth-first search on the tree and for every vertex v write down time
of enter Iv and time of leave Ov, i.e. the moment when we visit vertex v for the
first time and the moment just after we traverse all vertices below vertex v. Thanks
to that the mutual position of two different vertices a and b can be calculated as
follows:

• a is above b if and only if Ia < Ib and Ob < Oa,

• a is below b if and only if Ib < Ia and Oa < Ob,

• a is to the left of b if and only if Oa < Ib,

• a is to the right of b if and only if Ob < Ia.

Thus after preprocessing in time O(n) we can calculate relative positioning of
vertices in the tree in constant time.

Linear-time solution

Now we are ready to describe a faster solution of our problem. We construct a
graph of left paths which is a sum of left paths coming out from all vertices. It
contains the same n vertices as Bytetown’s map, but from each vertex (except
finish) extends only one edge (it is the left edge if it exists, otherwise the right
edge).

Note that such a graph is a binary tree whose root is a node with finish. That is
why we have rotated the map in such a way that the finish is at the top — thanks
to that the graph of left paths looks like every other decent tree in computer
science: it has the root at the top and grows downwards. Denote this tree by TL.
Analogously we define a graph of right paths and we denote it by TR.

Like before, we want to check, whether we can go from vertex p to vertex q. It
is easy to guess, that our algorithm will check relative positions of these vertices
in trees TL and TR. Once again we use help of a horizontal line h passing through
vertex q.

Consider now possible mutual position of vertices p and q in tree TL. First two
cases are simple. If p lies below q, then the sough path exists. Also we know that
p cannot lie above q in TL, because it must have been above line h.

Assume now that p lies to the left of q in tree TL. That means that if we look
at the left paths Lp and Lq going out from p and q, then to a vertex in which these
paths meet, the path Lp enters from the left, and Lq enters from the right. If we
will backup both paths simultaneously, to cross the line h, then path Lq will go
to q and on path Lp we will be on line h to the left of q. It is not hard to see that
if p lies to the right of q in tree TL, then the left path from p will intersect line h
to the right of vertex q.

Sounds familiar, doesn’t it? Indeed, that is one part of condition 1. If we add
to this checking of relative positioning of vertices p and q in tree TR, then we gen
very effective way to checking condition 1.

14

Let us sum up our algorithm. First we construct trees TL and TR and perform
preprocessing allowing us to check relative positioning of vertices in these trees.
Both steps can be done in time O(n). Next, to answer a query of existence of path
from p to q, we check whether p does not lie above q and we check their relative
positioning in trees TL and TR. All these checks can be done in constant time per
query.

It turns out that the whole problem can be solve optimally. We do a linear-
time preprocessing and later we answer each query in constant time. All of this is
possible thanks to strict structure of our graph: it is planar and acyclic, moreover it
contains exactly one source and one sink. In general graphs this problem is much
harder: the best algorithm known, that answers queries in constant time, needs
preprocessing in time O(n2.38) and uses fast matrix exponentiation algorithm.

15

C
Will It Stop? F
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 64 MB
https://oi.edu.pl/en/archive/amppz/2011/czy

Byteasar was wandering around the library of the University of Warsaw and at one
of its facades he noticed a piece of a program with an inscription “Will it stop?”.
The question seemed interesting, so Byteasar tried to tackle it after returning
home. Unfortunately, when he was writing down the piece of code he made a
mistake and noted:

while n > 1 do
if n mod 2 = 0 then
n := n=2

else
n := 3 · n+ 3

Byteasar is now trying to figure out, for which initial values of the variable n the
program he wrote down stops. We assume that the variable n has an unbounded
size, i.e., it may attain arbitrarily large values.

Input

The first and only line of the input contains one integer n (2 ¬ n ¬ 1014), for
which we need to check whether the given program stops.

Output

In the first and only line of the output you should write a single word TAK (i.e.,
yes in Polish), if the program stops for the given value of n, or NIE (no in Polish)
otherwise.

Example

For the input data:

4

the correct result is:

TAK

16

https://oi.edu.pl/en/archive/amppz/2011/czy

Solution

In the problem statement there is a fragment of a program, whose behaviour we
need to analyze. Since we know the source code, we could just paste it to our
solution and execute. If we run it for a given integer n, and it stops, then we
immediately return an answer. The opposite case is slightly more difficult: how to
be sure that the executed code will not stop? Let’s start with a very brave (and
not necessarily justifiable) assumption. If the code does not stop during, let’s say
100 000 loop iterations, then we assume that it never won’t stop.

Such an approach is easy to put into a solution, but it has two drawbacks.
First of all, how do we know that it is enough to limit ourselves to 100 000 it-
erations? Secondly, if we represent number n as a 64-bit signed integer (e.g. we
declare its type as long long in C++), then we will fall into a trap. It turns
out, that even if the initial value of n, according to the problem statement, does
not exceed 1014, then after some iterations we could get a much bigger number.
For instance, for initial value n = 366 713 142 269 after around 160 iterations n
reaches value 10 010 331 589 553 303 736, that is above 1019, whereas in a 64-bit
signed integer we can represent numbers no larger than 263 − 1 ≈ 9,2234 · 1018.

Let’s approach that task differently. We see how the code behaves for every
n from 1 to 20. It is convenient to get a help from the computer here. We will
notice very quickly that the code stops for values n equal 1, 2, 4, 8 and 16 and
for the remaining values it loops forever, since from some moment n assumes
sequentially values 3, 12, 6, 3, 12, 6, 3, 12, 6, . . . and so on forever. Thus it looks like
the code stops for values being powers of two. Indeed, it requires a little thought
to convince ourselves that if n is a power of two, then our code will divide variable
n by 2 until it ends up with n = 1. Therefore, it n is a power of two, then the code
will stop for sure. We could guess that for the remaining values of n the code will
be running forever. This guess is correct, but why?

If the initial value of n is odd, the we perform the assignment n := 3 · n+ 3.
It is easy to see that the new value of n will be divisible by 3. Moreover, from
now on n will be always divisible by 3. Why is that? If n is divisible by 3, then no
matter if we perform assignment n := n/2 or n := 3 · n+ 3 the new value will be
still divisible by 3. Therefore in this case we will never reach n = 1! It remains to
check what if n is even, but not a power of two. Then we will divide by 2 until it
becomes odd. But we know that it will be an odd number greater than 1 (since we
would end up at one only starting from a power of two). And since n became odd,
then according to the previous analysis the code will not stop.

Therefore the whole problem boils down to testing whether n is a power of two.
This condition can be tested quite easily: as long as n is divisible by 2, we perform
this division. If after this procedure we get n = 1, then we had power of two at
the beginning. Otherwise, given n was not a power of two.

Interestingly, this check can be performed even faster. We will use bitwise oper-
ators here. They perform operations on binary representations of integers and they
are available in almost every popular programming language. The bitwise operator
and (in C++ written using symbol &) works as follows: the result of a and b is
an integer whose binary representation has 1s exactly on these positions on which
both integer a and integer b have 1s. Meanwhile, bitwise operator xor (in C++
denoted by symbol ^) calculates an integer in which 1s stand on these positions
on which binary representations of two arguments differ. To test whether given n

17

is a power of two it suffices to check if

(n xor (n− 1)) and n is equal to n.

Why does this trick work? We left it as an exercise.

Collatz problem

On the facade of the library of the University of Warsaw indeed we can find a
code similar to this presented in the problem statement. However, the problem
statement reveals that Byteasar has made a mistake during copying the code at
the piece of paper. The original code at the library looks as follows:

while n > 1 do
if n mod 2 = 0 then
n := n/2

else
n := 3 · n+ 1

In the last row we have n := 3 · n+ 1 rather than n := 3 · n+ 3. Although the
difference between these two codes looks small, it is in fact significant. In our prob-
lem we were able to show all numbers for which the code stops. Analogous problem
for the code on the library wall is much harder. In 1937 German mathematician
Lothar Collatz formulated a hypothesis that the above code stops for any positive
n. Many mathematicians have worked on this hypothesis, but so far no one was
able to settle it. It was validated using computers for all n < 20 ·258 ≈ 5,7646 ·1018
and is generally believed true, but there is no formal proof that validates it. Thus
if in our problem we would considering the original Collatz problem, the question
Will It Stop? couldn’t be answered for sure.

18

D
Ants FFFF
Task author: Szymon Acedański
Solution description: Szymon Acedański, Tomasz Idziaszek
Available memory: 6 MB
https://oi.edu.pl/en/archive/amppz/2011/drz

Computer geeks like trees. Ants also like trees. Therefore we are given a tree
with two ants walking on it — the Left Ant and the Right Ant — as shown in
the figure above (the ants walk along the path depicted by a dotted line). They
start their journey at the lower and of the trunk, on opposite sides. The Left
Ant needs 2 seconds to walk along a single edge of the tree if walking from the
root (upwards), and 1 second if walking towards the root (downwards). The Right
Ant is two times faster. When the two ants meet, they both turn around and
start walking in the opposite direction. If either of the ants steps from the tree
to the ground, it immediately starts to climb up the opposite side of the trunk.
Apart from that, the ants are so tiny that they would not be visible even under a
microscope (they are intentionally depicted much larger in the figure). Your task
is to write a program that computes the moment when the ants turn around for
the second time.

Input

The first line of the input contains a single integer t (1 ¬ t ¬ 1000) representing
the number of test cases described in the input.

The description of each test case consists of two lines. The first line contains
an even integer n (2 ¬ n ¬ 100 000 000) specifying the number of edges in the
tree. The second line holds a description of the tree. It is a string consisting of
n
2

characters representing a 2n-bit binary number written in a hexadecimal form
(using digits and small letters from a to f). This number shows the Left Ant’s path
around the whole tree, assuming that the Right Ant stands still. The consecutive
bits of this number (starting from the left) denote whether the Left Ant walks

19

https://oi.edu.pl/en/archive/amppz/2011/drz

away from the root of the tree along the corresponding edge (bit 1) or towards
the root along this edge (bit 0). The root has a trunk; that is, there is exactly one
edge leading from the root of the tree.

The size of the input file does not exceed 50 MB, which is much more than the
amount of memory available for your program.

Output

Your program should output t lines containing answers to the consecutive test
cases. Each answer should represent the moment (in seconds) when the ants turn
around for the second time, given as an irreducible fraction p/q (without any white
space around /), where p and q are positive integers. If the answer is integer then,
obviously, q = 1.

Example

For the input data:

1
28
fb1da30d1b7230

the correct result is:

282/5

The sample data corresponds to the figure above, and transforms to the following
sequence of bits:

1111 1011 0001 1101 1010 0011 0000 1101 0001 1011 0111 0010 0011 0000

Solution

Then input specifications are written so as to make it impossible to store the
description of the entire tree in memory. The algorithm from the model solution
reads the description once without storing it. Here is a sketch of the solution:

• We read in the size of the tree; it gives us the number of “up” and “down”
segments.

• While reading the description, we simulate the walk for the Left Ant until
the first meeting with the Right Ant. For each edge, we can check if this
is the place of the meeting since, knowing the distance traveled by the Left
Ant, we know the distance the Right Ant would need to cover to the meeting
point.

• After the meeting, both ants start to walk towards the root. We continue
reading in the input, this time simulating the walk of the Right Ant. It
turns out that the first to reach the root is. . . the Left Ant. This could sound
surprising, since it is the Right Ant who moves faster. We will explain this
phenomenon later.

20

• After the Left Ant reaches the root, we continue to simulate the walk of the
Right Ant, until the second meeting point.

To see that above sketch can be developed into a complete algorithm, let us take
a look at a more formal description of the model solution. A point on the tree can
be described by a pair of real numbers (a, k), where a indicates the total number
of edges traversed by the Left Ant from the root to this point (possibly traversing
some edges in both directions, with those edges counted twice), and k indicates the
height of the point (the number of edges from the root to the point). If it takes the
Left Ant tu seconds to climb “up” edge and td seconds to descend along a “down”
edge, then this ant reaches (a, k) in

[a, k, tu, td] :=
a+ k

2
tu +

a− k
2

td

seconds. Therefore, the first meeting of the Left Ant with the Right Ant, (a1, k1),
happens when

[a1, k1, 2, 1] = [2n− a1, k1, 1, 1
2
]. (1)

Again, we can find this point by simulating the walk of the Left Ant while
reading the tree description edge by edge. When the Left Ant is at point (a, k),
which is the beginning of some edge, we can check if the meeting could happen
on this edge itself. Let b = 1 if this is an “up” edge, and b = −1 otherwise. If the
meeting is to happen after walking an ε piece of the edge then (1) is satisfied for

a1 = a+ ε, k1 = k + bε,

therefore
ε =

6n− 9a− k
9 + b

.

Thus, if 0 ¬ ε < 1, then we have located the first meeting point. The point will be
reached in

t1 = [a1, k1, 2, 1] =
3a1 + k1

2

seconds.
If we let the ants continue and return to the root, then the Left Ant would

reach the root in [a1,−k1, 2, 1] = t1 − k1 seconds, and the Right Ant in

[2n− a1,−k1, 1, 1
2
] = t1 −

k1
2

seconds. So we can see now that the Left Ant would be at the root before the Right
Ant.

Now we can start looking for the second meeting point. We will do so by
simulating the Right Ant’s walk. After the Right Ant walks the distance ε′ on the
edge starting at (a′, k′), it reaches the second meeting point (a2, k2), provided that

a2 = a′ + ε′, k2 = k′ + b′ε′,

[a1,−k1, 2, 1] + [2n− a2, k2, 2, 1] = [a2 − a1, k2 − k1, 1, 1
2
],

thus

ε′ =
12n− 9(a′ − a1) + (k′ − k1)

9− b′ .

21

If 0 ¬ ε′ < 1, then we have found the second meeting point. The time to reach
this point is

t2 = [a2 − a1, k2 − k1, 1, 1
2
] =

3(a2 − a1) + (k2 − k1)
4

seconds. Therefore the total time from the first to the second meeting of the ants
equals

t1 + t2 =
3(a1 + a2) + k1 + k2

4
.

Note that ε is a multiple of 1
9+b

, and simple algebraic manipulations reveal
that ε′ is a multiple of 9−b

(9+b)(9−b′) . This implies that the numbers a1, a2, k1, k2 are
multiples of 1

800
. Therefore, all calculations can be carried out using 64-bit integers

representing values multiplied by 800.
All of this results in an algorithm whose every step consists of reading one

consecutive edge from the input and executing a constant number of operations.
The running time of the algorithm is thus O(n) with constant memory.

22

E
Gophers FF
Task author: Jakub Radoszewski
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2011/eks

Dick Dastardly wants to bedevil poor Bytean gophers. These nice little creatures
live in holes in the upper parts of High Bytemountains.

Dick has found a mountain ridge with n gopher holes located along a straight
line (for simplicity, we number the holes from 1 to n, from west to east). Dick plans
to torture gophers using rock and roll music. He has bought m CD players, put
a different Bytels’ album in each of them and arranged the CD players along the
ridge. It is known that played at full volume, the music from a CD player disturbs
gophers located in holes distant by at most l meters from it.

Feeling troubled, the gophers asked you to check in which holes they will not
be able to sleep well during this winter. They did not know that it was not yet
the end of Dick’s malice. . .

Dick Dastardly wants to make even more mess, and he will move the CD players
from time to time. The gophers were able to steal Dick’s secret plan and now they
know precisely that on the morning of the i-th day Dick will take the CD player
located pi meters from the hole number 1 and will put it at a point located ri
meters from that hole. Help the gophers and count the number of holes in which
they will not be able to fall asleep after each such operation.

Input

The first line of the input contains four integers n, m, d and l (2 ¬ n;m ¬ 500 000,
1 ¬ d ¬ 500 000, 1 ¬ l ¬ 109) representing the number of gophers’ holes, the
number of Dick’s CD players, the number of days, and the range of a CD player,
respectively.

The second line of the input contains n − 1 integers x2; x3; : : : ; xn (0 < x2 <
x3 < : : : < xn ¬ 109) specifying the distances of the holes numbered 2; 3; : : : ; n
from the hole number 1.

The third line contains m integers z1; z2; : : : ; zm (0 ¬ z1 < z2 < : : : < zm ¬
109) specifying the distances of the consecutive CD players from the hole number 1.
All the CD players are located to the east of this hole.

Next, d lines follow; the i-th of these lines contains two integers pi and ri
(0 ¬ pi; ri ¬ 109, pi 6= ri) meaning that in the beginning of the i-th day Dick
is going to move the CD player located pi meters from the hole number 1 to the
point located ri meters to the east from that hole. You may assume that before
such operation there is a CD player at the position pi and there are no CD players
at the position ri.

23

https://oi.edu.pl/en/archive/amppz/2011/eks

Output

Your program should output d + 1 lines. The line number i (for i = 1; 2; : : : ; d)
should contain one integer representing the number of holes in which no gopher
would be able to sleep well during the night before the i-th Dick’s operation. The
last line should contain this number after the last Dick’s operation.

Example

For the input data:

5 3 4 1
2 5 6 11
2 4 8
2 1
4 10
8 6
1 8

the correct result is:

2
3
3
5
3

Solution

The whole action in the problem happens on a line. The positions of gopher holes
are described as points. At the same time, each CD player corresponds to some
range. All ranges have the same length 2l, thus to describe each range we also need
only one point — in the problem statement it is the middle point of the range.
The positions of gopher holes do not change, but Dick changes positions of his
CD players. Our task is to simulate Dick’s behaviour and calculate, after each of d
movements, how many different holes are covered by ranges corresponding to CD
players.

It turns out that the problem boils down to choosing suitable data structures,
which will allow us to perform the simulation. Suitable, that is as simple as possible,
but at the same time fast enough: we aim in time complexity of an operation that
is logarithmical in terms of number of holes and CD players, that is n and m.

The key assumption is that we would like to maintain the number of holes
covered by ranges during the whole time. Then printing the results is trivial. As it
often comes in such problems, movement of a CD players can be divided into two
stages: removal of a CD player and inserting it on a new position. Each of such
stage is in some sense local: which holes will start or vanish to be covered depends
only on ranges which are adjacent directly to the range of inserted or removed CD
player. This is the case, because all ranges have the same length. We will use this
property when constructing an efficient solution.

For keeping track of CD players we need a data structure that provides oper-
ations: insertion and removal of an element and finding the closest left and right
neighbour of the element in the structure. For this aim perfectly fits a dictionary-
like data structure implemented with balanced binary search trees, e.g. set from
the C++ standard library (the problem statement guarantees that no two CD play-
ers will be placed in the same spot). The position of gopher holes do not change,
thus we can simply keep them in an array sorted increasingly — exactly in the

24

same way as they are given in the input. Data structures keeping CD players and
holes will be denoted by M and N , respectively.

Let’s follow what happens when we insert some CD player. Suppose that it
will be placed in position x and its direct neighbours are on positions x′ and x′′

(x′ < x < x′′). The we must insert x into dictionary M , and add to the result all
holes covered by range [x− l, x+ l] that were not covered by ranges [x′ − l, x′ + l]
and [x′′ − l, x′′ + l]. These are exactly holes in the range

[max(x− l, x′ + l + 1), min(x+ l, x′′ − l − 1)]. (1)

Observe that the number of such holes can be found using two binary searches in
array N . Each of this binary searches can be realized using lower bound function
from the standard library.

The operation of removal is analogous: this time we remove appropriate element
from dictionary M and we subtract from the result all holes inside the range of
form (1). In order for every CD player to have a predecessor and successor, we can
add to dictionary M constant sentinels placed at positions − l− 1 and 109 + l+1
(coordinates of points from the problems are in range [0, 109]).

Each of d Dick’s movements is simulated in time complexity of O(logm+logn),
where the first logarithm comes from operations on dictionary M , and the second
one from binary searches in array N . For contestants fluent in using the C++
standard library, the algorithm is quite easy in implementation.

25

F
Laundry FF
Task author: Szymon Acedański
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2011/fra

A few friends have decided to do the laundry together. They are all very neat, so
each day each of the friends wears one clean pair of socks and one clean shirt. The
friends have put all dirty socks and shirts to their washing machine. Now they
have started to plan how they will dry their laundry. To put this in order, they
have decided that:

� every sock will be fastened to the string with a single clothespin,

� each shirt will be fastened with three clothespins,

� one person’s socks should all be fastened with clothespins of the same color,

� one person’s shirts should all be fastened with clothespins of the same color,

� clothes belonging to different persons may not be fastened with clothespins
of the same color,

� apart from that, they wish to use the smallest possible number of clothespin’s
colors.

Now they have scattered all their clothespins on the floor and counted the number
of clothespins of each color. Unfortunately, they were not able to figure out which
colors should each of them use. Write a program that will help them with this
problem.

Input

The first line of the input contains two integers n and k (2 ¬ n; k ¬ 1 000 000)
specifying the number of friends and the number of clothespins’ colors available.
The second line contains n integers d1; d2; : : : ; dn representing the number of days
each friend was collecting laundry (1 ¬ di ¬ 1 000 000). The third line contains k
integers l1; l2; : : : ; lk representing the numbers of clothespins of respective colors
(1 ¬ li ¬ 4 000 000).

Output

Your program should output the minimal number of clothespins needed to dry all
the laundry. If it is not possible to dry all the laundry in the requested manner,
your program should output a single word NIE (i.e., no in Polish).

26

https://oi.edu.pl/en/archive/amppz/2011/fra

Example

For the input data:

2 4
3 4
20 10 8 10

the correct result is:

3

whereas for the input data:

3 8
5 4 3
14 14 14 14 14 14 14 14

the correct result is:

NIE

Explanation of the first example: The first person needs 6 clothespins for her socks
and 9 clothespins for her shirts. The second person needs 8 clothespins for her socks
and 12 clothespins for her shirts. The second person should use the clothespins of
the first color both for her socks and her shirts. The first person may then use,
e.g., the clothespins of the second and the fourth color.

Solution

The task statement tells a story about n persons doing a laundry. For fastening his
or her laundry the i-th person needs 5di clothespins. It could be clothespins of the
same color, or it could be 3di clothespins of one color (shirts) and 2di clothespins
of different color (socks). We have k colors of clothespins, and there are exactly lj
clothespins of color j. The colors assigned to different persons must be different.
We want to assign the clothespins in such a way that we use the smallest possible
number of different colors. It total we will use between n and 2n colors, and the
more people get the only one color of clothespins, the better. We also need to
check, weather the solution actually exists.

We will try to approach this problem in a greedy way, inviting the subsequent
people to choose some clothespins from the set of ones unchosen by previous people.
The people with more laundry are more picky, thus intuitively it would be profitable
to invite them sooner, so they have more choice. It also seems sensible that every
person, if it is possible, should choose one color of clothespins. Moreover, if in some
moment there is more than one way of choosing the clothespins’ colors, then of
course it is better to choose a color which has as few clothespins as possible.

The following intuitions are a foundation to the following algorithm. We exam-
ine people in order of nonincreasing di and for each of them:

• if there is a color which has at least 5di clothespins, then among such colors
we choose the one which has the smallest number of clothespins,

27

• otherwise, if there are two colors containing respectively at least 2di and
3di clothespins, then among these we choose two of the smallest numbers of
clothespins,

• if none of above is true, then we end the algorithm with negative answer.

It turns out that the above algorithm correctly solves our problem.

Prove of correctness

We need to prove that if a solution exists, then our greedy algorithm will find it,
and moreover, it will find a solution using the least possible number of clothespins.

Suppose then that a solution exists, and let OPT be some optimal solution,
that is a solution that uses the least possible number of clothespins. On the other
hand, by ALG we denote the assignment calculated by the greedy algorithm. (In
theory it could be a partial assignment, if it was not possible to assign necessary
number of clothespins for some person, and that was the reason of terminating
the algorithm.) We will show that if OPT 6=ALG, then we can transform OPT
into ALG, keeping its correctness and not changing the number of used colors of
clothespins. That will prove the optimality of solution ALG.

Assume, without loss of generality, that the persons are ordered according to
the order of the greedy algorithm, in particular d1 ­ d2 ­ . . . ­ dn. Our prove
will be done in steps; in each step we will modify the solution OPT, increasing the
number of subsequent people who are treated the same in OPT and ALG.

Let i be the number of the first person, for whom OPT and ALG assigned
clothespin’s colors differently. We will show that we can change the solution OPT
in such a way, that all people 1, . . . , i are treated the same as in ALG.

Since OPT assigned some colors to person i, then it is not possible that ALG
was not able to assign colors. Indeed, the greedy algorithm could choose the same
colors that OPT chose. Similarly, it is not possible that OPT assigned only one
color and ALG assigned two.

On the other hand, we know that these two solutions differ on the i-th person.
First we will consider a case in which both solutions assign the same number of
colors, but these colors are different. We assume that it is only one color in both
solutions; a proof for two colors in analogous. Let in OPT it will be color p and
in ALG color a. Since ALG always choose a suitable color of the smallest number
of clothespins, then la ¬ lp. If solution OPT does not use color a, we can swap in
this solution for the i-th person color p to a. If OPT uses clothespins of color a by
assigning them to some person j, then we have j > i (since for j < i OPT assigns
the same colors as ALG) and we can swap in OPT colors for people i and j. The
number of clothespins of color p is sufficient for the j-th person, because from
j > i we have dj ¬ di. On the other hand, the number of clothespins of color a is
sufficient for the i-th person, because ALG makes such assignment.

We are left with the last case in which solution OPT assigns to the i-th person
two colors, let’s say p and q (for shirts and socks, respectively), and in ALG it
assigns only one color, let’s say a. If in OPT color a was free, then we could assign
it to the i-th person instead of colors p and q, reducing the number of used colors
in effect — thus it is not possible, because it would contradict the optimality of
OPT. That means that color a in solution OPT must have been used, let’s say by
person j (again j > i). Like before, we want to assign this color to person i. We

28

have different cases, depending on how many clothespins of color a the j-th person
has. If it is 2dj clothespins, we can instead of color a give this person clothespins
of color q (since dj ¬ di). If it is 3dj , then instead of color a, we give him or
her color p. Note, that in both cases the number of used colors decreased, which
contradicts the optimality of OPT. Therefore both of these cases cannot happen
(but we could handle them anyway). In the only situation that could take place,
the j-th person has in OPT 5dj clothespins of color a. Then we assign to him or
her 3dj clothespins of color p and 2dj of color q. In the effect the number of used
colors does not increase and the i-th person has the same assignment as in ALG.
That concludes the proof.

Implementation

At the end let’s think a little bit, how to implement this solution efficiently. We
need to sort people in the problem nonincreasingly by values di; we do it in time
O(n logn). To represent clothespins of various colors, we need a data structure
that provides two types of operations:

• find a color with smallest number of clothespins, but having at least x of
them,

• remove all clothespins of certain color.

Both container set from C++ standard library and a static range tree (or counting
tree, or Fenwick tree) allows performing these operations in time O(log k). Initial-
izing the data structure takes time O(k). Therefore we get an implementation of
the greedy solution in total running time O(k + n(log k + logn)).

29

G
Bits Generator FFFF
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 64 MB
https://oi.edu.pl/en/archive/amppz/2011/gen

Byteasar likes to play with his random (well, actually pseudorandom) bits gener-
ator, which he has found on his computer. This generator works in a very simple
way. The moment the computer is turned on, an integer in the range between 0
and m−1 is chosen automagically. This integer is called the seed of the generator;
we will use variable z to represent it. Then, in order to generate a random bit,
the following function is called. It computes a new value of the seed which is then
used to generate a single bit:

z := b(z · a+ c)=kc mod m
if z < bm=2c then

return 0
else

return 1

The numbers a, c, k are some constants. Byteasar has called this function n times
and has thus obtained a sequence of bits b1; b2; : : : ; bn. Now he is wondering what
is the number of different possible values of the initial seed.

Input

The first line of the input contains five integers a, c, k, m and n (0 ¬ a; c < m,
1 ¬ k < m, 2 ¬ m ¬ 1 000 000, 1 ¬ n ¬ 100 000). The second line contains an
n-character string consisting of digits 0 and 1; the i-th digit of the string represents
the bit bi.

Output

You should output one integer representing the number of integers from the range
between 0 and m− 1 which could have been the initial seed of the generator.

Example

For the input data:

3 6 2 9 2
10

the correct result is:

4

Explanation of the example: The initial seed of the generator could have been
equal to 1, 2, 7 or 8.

30

https://oi.edu.pl/en/archive/amppz/2011/gen

Solution

Although it could not be visible at the first sight, but in the solution we will use
some knowledge from graph theory and text algorithms. We will use graphs to
describe the state space of the generator, whereas for finding the initial seed of
the generator we will use a dictionary of basic factors or (in a faster solution) an
automaton for finding pattern in text.

The state of the bits generator is described by one integer z in range from 0 to
m − 1. Every time the function from the problem statement is called, it changes
the state to f(z) = b(z · a + c)/kc mod m and generates a bit b(z). The bit b(z)
is equal to 0 if f(z) < bm/2c, or equal to 1 otherwise. Since numbers a, c and k
which describe the function f are fixed, both values, the generated bit b(z) as well
as the new state f(z), depend only on the current state z.

Therefore the bits generator can be represented as a directed graph (see fig-
ure 1). It has m vertices v0, v1, . . . , vm−1 corresponding to possible states of the
generator, and from every vertex vi there is exactly one directed edge to ver-
tex vf(i). Additionally, each vertex vi has a label b(i).

0

3

7

4
6

8

215

Figure 1. Directed graph with 9 vertices, which models the bits generator from the sample
input. The vertices with labels 1 have been marked.

Let us denote by p(vi, n) a sequence of labels on a n-vertex path starting in
vertex vi. Note that the path is determined uniquely, since from every vertex we
have exactly one outgoing edge. Our problem can be formulated as follows: we
need to count the number of such vertices vi that the sequence of labels p(vi, n) is
identical with the sequence of bits b1, . . . , bn given in the input.

An algorithm of time complexity O(nm) is obvious here (and it does not even
need the above reduction for graph representation). For every vertex vi it is enough
to generate sequence p(vi, n) and test whether it is equal to b1, . . . , bn.

Dictionary of basic factors

We will obtain a faster algorithm by using a data structure called dictionary of
basic factors. For every power of two 2j , where 0 ¬ j ¬ N and N = blog2 nc
we will be assigning identifiers to sequences of labels of length 2j in such a way
that two sequence will be assigned with the same identifier if and only if they are
equal. The identifiers will be integers in range from 0 to m−1, therefore sequences
of length 2j could be compared in constant time. We denote by ident [vi, 2

j] the
identifier corresponding to the sequence of labels p(vi, 2j).

Since the basis for our data structure is not a single string, but a graph, we
need an effective method of finding the further vertices on paths. We denote by
step[vi, l] a vertex in which we end up after following l edges, starting from the

31

vertex vi. In the first phase we will calculate values step[vi, l] for l being powers of
two, using a method called binary lifting.

We construct the dictionary of basic factors as follows. For j = 0 we simply
assign ident [vi, 1] = b(i) and step[vi, 1] = f(vi). For j = 1, . . . , N we assign identi-
fiers for sequences of length 2j based on identifiers for sequences two times shorter.
We start by assigning a temporary identifier for every vertex vi and sequence of
labels p(vi, 2j). The identifier is(

ident [vi, 2
j−1], ident [step[vi, 2

j−1], 2j−1]
)
,

which is a pair of integers in range from 0 to m− 1. Note that the second number
in this pair is an identifier of a fragment of sequence p(vi, 2j) which has length 2j−1

and starts exactly after 2j−1 elements of this sequence. In the second step we sort
all these pairs lexicographically in time O(m) (we can use radix sort here) and
iterate over sorted list, assigning the final identifiers which are single integers — it
is only important that to the same pairs we assign the same integer in range from
0 to m − 1. At the same time, the values step[·, 2j] are assigned according to the
following formula:

step[vi, 2
j] = step[step[vi, 2

j−1], 2j−1].

The dictionary of basic factors allows us for efficient assignment of identi-
fiers for sequences of labels of length n. The identifier for a sequence p(vi, n) is
a pair of integers. The first number in this pair is the identifier of a sequence
consisting of initial 2N elements of p(vi, n). The second number is the identifier
of a sequence consisting of trailing 2N elements of p(vi, n). Since 2N + 2N > n,
such a pair uniquely identifies the sequence. Formally, the identifier for p(vi, n) is
(ident [vi, 2

N], ident [step[vi, n− 2N], 2N]). In this case n− 2N does not have to be
a power of two, therefore we calculate the value step[vi, n− 2N] in time O(logn):
we start from vertex v = vi and for each power of two 2j in binary expansion of
number n− 2N we perform v := step[v, 2j].

It remains to show how to use the dictionary of basic factors in finding the
initial seeds of the bits generator. For simplicity of description, we add n vertices
u1, . . . , un to the graph, where vertex ui has label bi and an outgoing edge to
vertex umin(i+1,n). Calculating identifiers for all m + n vertices in the graph can
be performed in time complexity of O((m+ n) logn). Next, it is enough to count
vertices vi for which the identifiers for sequences of labels p(vi, n) and p(u1, n) are
equal.

The above algorithm has time complexity of O((m + n) logn). Unfortunately,
the memory complexity of it is the same, which given the memory constraints in
the problem, results in exceeding the memory. However, we can easily reduce the
memory consumption to O(m + n). For this purpose, during the construction of
the dictionary of basic factors we will store in the memory only the last two rows of
the table (corresponding to powers 2j−1 and 2j) and calculate values step[·, n−2N]
on the fly.

32

Automaton for finding pattern in trees

The problem could be solved in time complexity of O(m+ n). To this end we use
some tools from the theory of text algorithms.

For a fixed string x = x1x2 . . . xn (pattern) we could build a pattern-matching
automaton for finding it in string y = y1y2 . . . ym (text). The automaton reads
subsequent letters from the text y and at every moment it is in one of n + 1
states s0, . . . , sn. To be more specific: the automaton after reading sequence of
letters y1 . . . yj is in state si, if, speaking informally, we managed to match exactly
i letters of the pattern to the ending of the read sequence. In other words, the
longest suffix of this sequence that is at the same time a prefix of pattern x has
length i (i.e. yj−i+1 . . . yj = x1 . . . xi and there is no larger i with such property).
All the information needed by the automaton to work are stored in a transition
table δ: the automaton which is in state si, after reading letter a from the input,
goes to state δ(si, a). For instance for 0 ¬ i < n we have δ(si, xi+1) = si+1.

Now, to find a pattern x in text y, it is enough to set the current state of
the automaton to s0, and then read subsequent letters of string y. Every time the
automaton finds itself in state sn, we know that we have found a new occurrence of
word x (to be more precise: the last read letter is the last letter in this occurrence).

Such an automaton can be constructed in O(nA) time, where A is the number
of different letters which can appear in the pattern and the text. It should not
pose any problem to anyone who knows the Knuth–Morris–Pratt algorithm. This
pattern-matching algorithm maintains a state of the automaton during its runtime,
however it does not explicitly construct the transition table of the automaton. The
pattern matching in text of length m runs in time O(m).

The pattern-matching automaton could be used to effectively finding a pattern
in a tree. The problem is as follows: we have a rooted tree of m vertices, which
are labeled using letters. We want to find every path that begins in any vertex
and goes downward the tree, and whose subsequent labels spell the word x. The
solution using the automaton is simple: we assign states of the automaton to the
vertices. If the label of the root is a, then the root will have a state of δ(s0, a).
Next, a vertex labeled a, whose parent has assigned a state si, will be assigned a
state δ(si, a). The number of occurrences of pattern x in the tree is the number of
vertices with state sn. The whole algorithm runs in time O(nA+m) and the same
memory complexity?.

We are ready to return to our problem. Recall, that we need to find all occur-
rences of a string of length n in a labeled graph of m vertices, in which from every
vertex there is exactly one outgoing edge. The possible letters are 0 and 1, then
here A = 2.

Note that we can separately consider every weakly connected component of the
graph, and at the end sum the obtained results. Since from every vertex there is
exactly one outgoing edge, then a single connected component is a cycle with trees

?A tempting idea would be to use the Knuth–Morris–Pratt algorithm directly on the tree.
After all, it also allows to find the states of the pattern-matching automaton and runs in linear
time. However, there is a catch here: the total runtime of this algorithm is in fact linear, but
calculating a single transition after matching k letters of the pattern can take Θ(k) time. For
trees of specific shape such a slow step could take place at the same time for many vertices
on the same level the tree. In such situation, although on every path downwards the tree the
runtime is linear, the total runtime on the whole tree could be quadratic on the size of the tree.
Thus the Knuth–Morris–Pratt algorithm alone is not sufficient and in fact we need to construct
the pattern-matching automaton.

33

“attached” to it. Consider a single component and assume that its cycle consists
of ` vertices, which have labels y1, y2, . . . , y`. Let us denote by Ti a tree attached
to the i-th vertex on the cycle. We assume that the root of the tree is the vertex
on the cycle, thus in every vertex of the cycle there is attached a tree (possibly
consisting of this vertex only).

For a moment let us fix a tree Ti and say that we want to find all vertices in
this tree that can be an initial seed of the bits generator. Since the edges of the tree
are directed “upwards”, in order to use the method described before, we will find
in it a reversed pattern x = bnbn−1 . . . b1. The method will work for all occurrences
of pattern x which are completely contained in tree Ti. To also find occurrences
that partially overlap with the cycle, we need to properly initialize the state of the
automaton in the root of the tree.

For this purpose we find the longest suffix of sequence . . . y` . . . y1y` . . . y1y` . . . yi
(i.e. infinite sequence of labels on the cycle cut after the label yi), that is at the
same time a prefix of pattern x. Let us denote its length by j. Then the initial
state of the automaton in the root of tree Ti is sj .

It remains to show how to efficiently calculate initial states. Note that if the
initial state for tree Ti is sj , then for tree Ti−1 the initial state is δ(sj , yi−1) (except
of special case i = 1, when instead of i−1 we have `). Thus we only need to calculate
the initial state for one tree.

We describe now how to do it effectively for tree T1, i.e. how to find the length
of the longest suffix of infinite sequence . . . y` . . . y1y` . . . y1y` . . . y1 that is at the
same time a prefix of the pattern x. Similarly as before, we denote this value
by j. The value j can be calculated, by running the pattern-matching automaton
with pattern x on text Y = (y` . . . y1)

k (the cycle unrolled k times) for sufficiently
large k. There is a small problem here: even if we know the smallest value of k for
which we could correctly calculate j, this approach of simulating the automaton
could be too time-consuming, since the calculations for a single cycle must be done
in time proportional to its length.

We will tackle this problem as follows. First, we run the pattern-matching
automaton for x on text y` . . . y1y` . . . y1 resulted in unrolling the cycle twice and
we examine the final state si of the automaton. If i ¬ `, then we can assume that
j = i.

For i > ` the matter is more difficult, since it means that the string x can
go around the cycle multiple times. We know that a prefix of length ` of string x
overlaps the cycle (possibly cyclically shifted). Let C be the greatest number for
which a prefix of length C` of string x overlaps with the cycle (i.e. x can be wound
onto the cycle C times, but not C+1 times). That means that if we run the pattern-
matching automaton for pattern x in text Y = (y` . . . y1)

C+1, then the last state
of the automaton would be sj (the value we try to calculate). Suppose then than
C ­ 2. We know that after reading initial 2` letters of text Y the automaton will
be in state si, thus from the periodicity of the prefix of pattern x, after reading
C` letters of text Y , the automaton will end up in state si+(C−2)`. It is enough to
initiate the automaton with this state and finish the simulation, by reading final `
letters of text Y .

We need to effectively calculate the value C. Here we will find useful an array
Pref (also know as z-array), in which Pref[i] denotes the length of the longest
prefix of string x that occurs in this word at position i. The array Pref can be
calculated in linear time in respect to the length of the word. Having this array,

34

the value C is obtained in constant time, since C = bPref[`+ 1]/`c+ 1.
To sum it up, the algorithm works as follows: first in time O(n) we build an

automaton for matching a pattern x = bn . . . b1 and we calculate the array Pref.
Next we partition the graph into weakly connected components. In each component
we find the pattern in time proportional to the sum of sizes of trees attached to
the cycle and the size of the cycle, that is simply in time proportional to the size
of the component. Thus the time complexity of the whole algorithm is O(m+ n).

35

H
Afternoon Tea F
Task author: Tomasz Idziaszek
Solution description: Jakub Łącki
Available memory: 32 MB
https://oi.edu.pl/en/archive/amppz/2011/her

During his visit to the Bytic Islands, Byteasar really enjoyed the national beverage
of Byteans: that is, tea with milk. This drink is always prepared in a strictly
determined manner, which is as follows. Firstly the teacup is filled with tea mixed
half and half with milk. Then an n-letter ceremonial word consisting of letters H
and M is chosen. Now, for i = 1; 2; : : : ; n, the following action is performed: if the
i-th letter of the ceremonial word is H, one should drink half of the teacup, add
tea until the teacup is full, and stir. On the other hand, if the i-th letter of the
word is M, one should perform a similar action, but milk should be added instead
of tea. After such action is performed for each letter of the ceremonial word, the
remaining liquid is disposed of.

Each time Byteasar performs the ceremony, he wonders which of the ingredients
he has drunk more of: tea or milk. Help Byteasar to answer this question.

Input

The first line of the input holds an integer n (1 ¬ n ¬ 100 000). The second line
contains an n-letter word consisting of the letters H and M; this is the ceremonial
word used by Byteasar.

Output

Your program should output a single letter H if Byteasar has drunk more tea than
milk; a single letter M if he has drunk more milk than tea; or the word HM if he has
drunk equal amounts of tea and milk.

Example

For the input data:

5
HMHHM

the correct result is:

H

Explanation of the example: Byteasar has drunk 1 37
64

teacups of tea and 59

64
teacups

of milk in total.

36

https://oi.edu.pl/en/archive/amppz/2011/her

Solution

It gets a bit easier if we change our perspective a little. Instead of calculating the
amount of tea and milk that were poured into the glass, let us consider the amount
that Byteasar does not drink. In other words, we focus on calculating what remains
in the cup after the ceremony. Since we know how many cups of each beverage were
poured into the cup during the ceremony, this information is enough to answer the
question. Moreover, in order to avoid working with fractions, we assume that the
volume of the cup is 2n+1 milliliters and it is initially filled with 2n milliliters of
milk and the same amount of tea.

Let us focus on the case when, in the first turn, Byteasar pours in 2n milliliters
of tea. How much of this tea will remain in the cup until the end of the ceremony?
In the second turn, Byteasar drinks half of this tea, so there are 2n−1 milliliters
remaining. After the third turn, 2n−2 milliliters remain, and so on. After n turns
(that is, n−1 dilutions) in the cup there will be 2 milliliters of tea that come from
the first turn.

The liquid poured in the second turn is diluted n − 2 times, so it determines
4 milliliters of the final contents of the cup. In general, from the i-th portion,
2i milliliters last until the end. Apart from that, there is also 1 milliliter of tea and
1 milliliter of milk, which were both poured at the very beginning. For the sample
ceremonial word HMHHM, at the end there are 1 + 21 + 23 + 24 milliliters of tea and
1 + 22 + 25 milliliters of milk in the cup.

This allows us to express the final contents of the cup as a sum of powers of 2.
We then have to add all these numbers, which in some programming languages
requires implementing big-integer arithmetic. Similarly, we can count the amount
of tea and milk that Byteasar pours into the cup. At the end, it is sufficient to
perform two subtractions to discover how much of each beverage Byteasar has
drunk.

This allows us to reach the solution. However, it turns out that we do not have
to perform complicated calculations. Recall that we only have to determine which
beverage Byteasar has drunk more of, so we do not have to calculate the exact
numbers.

A better solution

For the description, assume that Byteasar does not perform the last pouring, so the
cup is half empty after the ceremony. This does not change anything, as Byteasar
does not drink what he pours at the end. Therefore, let us remove the last letter
from the ceremonial word, and assume from now on that it has length of n− 1.

Let us denote by tp and tc the amount of tea poured into the cup an the amount
that remained in the end. Similarly, let mp and mc denote equivalent values with
regard to milk. We know that Byteasar has drunk tp − tc milliliters of tea and
mp −mc milliliters of milk. At the end, the cup is half full, so tc +mc = 2n.

We first focus on the case where there are more letters of one kind that the
other in the ceremonial word. It turns out that in such a situation Byteasar drinks
more of the beverage that was poured into the cup more often. Assume that he
poured more tea, so tp is larger than mp by at least half of the cup (2n milliliters),
so tp ­ mp + 2n. To compute the amount drunk by Byteasar, we have to subtract
the final contents of the cup: that is, tc and mc. The cup, however, is half empty,

37

and we know that it contains at least 1 milliliter of each beverage (coming from the
first pouring). In particular, there are at most 2n − 1 milliliters of tea remaining
in the cup (tc ¬ 2n − 1). Hence, the amount of tea drunk by Byteasar is bounded
as follows:

tp − tc ­ tp − 2n + 1 ­ mp + 2n − 2n + 1 = mp + 1.

This means that the amount of tea Byteasar has drunk is greater that the total
amount of milk he has poured into the cup. Consequently, when the ceremonial
word contains more Hs that Ms, Byteasar drinks more tea. Analogously, it the word
contains more Ms, Byteasar drinks more milk.

It remains to consider the case where the number of Hs and Ms are equal, so
the cup is filled with the same amount of each of the beverages. In particular, this
happens when n = 1. This is a special case, in which Byteasar drinks only half of
the cup containing tea mixed half an half with milk. So he drinks an equal amount
of each beverage.

Let us now assume that n > 1. If the amounts of milk and tea poured into the
cup are equal, Byteasar drinks more of the beverage whose remaining amount in
the cup is smaller. We know that half of the final cup contents comes from the
next-to-last pouring (the last that we have not ignored). Assume that Byteasar
poured milk then. In addition, in the cup there is 1 milliliter of milk poured at the
very beginning. We infer that there has to be more milk than tea in the cup, so
Byteasar has drunk more tea.

Therefore, the entire algorithm boils down to three simple cases. If n = 1,
Byteasar drinks an equal amount of both beverages. If one letter is more com-
mon than the other in the ceremonial word (not considering its last letter), then
Byteasar drinks more of the beverage represented by the more common letter. If
the two letters appear in the same quantities, then we know that Byteasar drinks
less of the beverage that he poured in the next-to-last turn.

38

I
Intelligence Quotient FFF
Task author: Marek Cygan
Solution description: Eryk Kopczyński
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2011/ilo

At the University of Byteland one can only study maths and computer science.
Currently there are n maths students and m computer science students. These
majors are so hard to study that nobody studies both of them at the same time.

Byteasar is the rector of the university. He would like to form a team of students
which will solve all the hardest problems of mankind. Since he knows the IQ of
each student, he has decided to form a team with the largest possible sum of IQs
of its members.

However, IQ is not everything. That is why the rector would like all members
of the team to know each other. It is known that all maths students know each
other. And similarly, each computer science student knows every other student
majoring in computer science.

Help the rector by writing a program that will help him form a team of students
with the largest possible sum of IQs in which all the members know each other.

Input

The first line of the input contains three integers n, m and k (1 ¬ n;m ¬ 400,
0 ¬ k ¬ n · m) which specify the number of maths students, the number of
computer science students, and the number of pairs of students from different
majors that know each other, respectively.

Each of the following k lines describes one pair of acquaintances: the i-th of
these lines contains two integers ai and bi (1 ¬ ai ¬ n, 1 ¬ bi ¬ m) specifying a
number of a maths student and a number of a computer science student from the
i-th pair. The maths students are numbered with integers starting from 1 and so
are the computer science students.

The following line contains n integers in the range [1; 109], which represent
the IQs of the subsequent maths students. The next line contains m integers
representing the IQs of the computer science students, in a similar format.

Output

The first line of the output should contain one integer equal to the maximum sum
of IQs in a team satisfying Byteasar’s requirements.

The second line should contain one integer — the number of maths students
that Byteasar should choose. The third line should contain the numbers of these
students, listed in any order. If there are no maths students in the team, an empty
line should be printed.

The following two lines should describe the numbers of computer science stu-
dents assigned to the team, in a similar format.

If there are multiple solutions, your program should output any one of them.

39

https://oi.edu.pl/en/archive/amppz/2011/ilo

Example

For the input data:

3 2 3
1 1
2 1
2 2
1 3 1
1 2

the correct result is:

6
1
2
2
1 2

Solution

Let’s formulate our problem in the language of graph theory. We are given a bipar-
tite graph G = (V1, V2, E), where V1 denotes math students, V2 denotes computer
science students, and E is a relation of acquaintance between students of different
majors. Each vertex v has a nonnegative weight w(v) (IQ of the student). A bipar-
tite clique is a bipartite graph in which every two vertices from different sets are
connected with an edge. The problem from the statement boils down to finding in
graph G a heaviest bipartite clique, i.e. bipartite clique which has greatest possible
sum of vertices’ weights. Formally, if we denote by W the set of vertices of the
bipartite clique, it should be (W ∩ V1)× (W ∩ V2) ⊆ E and the sum of weights of
vertices in V must be as big as possible.

Simplified variant

We begin with a simpler problem: we assume that all weights are equal to 1. In
this case maximising the sum of vertices’ weights of bipartite clique boils down to
maximising the number of its vertices. Thus we are looking for a largest bipartite
clique.

Let E′ = V1 × V2 \E, i.e E′ is the relation of non-acquaintance. We show now
that the problems of finding the following sets of vertices are equivalent (see also
figure 1):

• Set of vertices of a largest bipartite clique W .

• Largest independent set W ′ in graph G′ = (V1, V2, E
′). Independent set is a

set of vertices, between which there are no edges:

((W ′ ∩ V1)× (W ′ ∩ V2)) ∩ E′ = ∅.

40

• Smallest vertex cover P in graph G′. Vertex cover is a subset P ⊆ V1 ∪ V2,
such that for every edge (v1, v2) ∈ E′ either v1 ∈ P or v2 ∈ P .

• Largest matching in graph G′. Matching is a subset of graph’s edges such
that no edges share a common vertex.

Figure 1. Left: sample bipartite graph G with a largest bipartite clique (colored vertices).
Right: bipartite graph G′ (complement of graph G) with a largest matching
(thick edges), a minimal vertex cover (black vertices) and a largest independent
set (colored vertices).

Equivalence of the first two problems follows directly from the definition of E′;
in the second case we simply have W = W ′. Equivalence of the second and the
third comes from the fact that the set of vertices is independent if and only if its
complement is a vertex cover. The last equivalence is König’s Theorem.

Theorem 1 (König). In a bipartite graph the size of a largest matching is equal
to the number of vertices in the smallest vertex cover.

The proof of König’s Theorem is constructive and thanks to it we can find
in linear time (on the size of the graph) a smallest vertex cover in G′, given a
largest matching in this graph. On the other hand, a maximal matching can be
found in time complexity of O(|V | · |E′|) (where V denotes the set of all vertices in
the graph) with a classic algorithm using alternating paths or in time O(|E′|

√
|V |)

using Hopcroft–Karp algorithm. This means that this special variant of the problem
can be solved in time O(|E|+ |E′|

√
|V |).

The original problem

Now we get back to the general version of the problem, with different weights of
vertices.

How can we generalize the previous reasoning? Observe, that we can do it easily,
however not efficiently, as follows: we replace each vertex v with w(v) copies of this
vertex and we use the previous algorithm. It can be shown that in the optimal
solution either we take all the copies of a given vertex or we take no copy at all.
Thus in such way we get an optimal solution of the original problem. Experienced
contestants will also easily restore the effectiveness in searching for the matching
— it is known that the problem of finding a largest matching is a special case of
the problem of finding a maximal flow. In a flow network we obtain here we can
merge back copies of a given vertex and sum the capacities of merged edges, again
obtaining a small graph.

It turns out that we can solve the whole problem differently, without having to
reduce to the special case of unary weights. Some contestants applied this approach,
thus we have decided to present it in this book. Algorithmically this solution is
equivalent to the above (in particular, it hides a constructive proof of König’s
Theorem).

41

Algorithm

From the previous analysis we know that our problem is equivalent to finding a
vertex cover of the smallest sum of vertices weights (we simply call it a lightest
vertex cover). We reduce this problem to finding a maximal flow in a network.

We construct a flow network H = (VH , EH) based on graph G′ = (V1, V2, E
′);

see the left part of figure 2. Each edge in E′ is given a capacity of ∞. Next we
add source s and we connect it with every vertex v1 ∈ V1 with an edge of capacity
w(v1). We also add sink t and connect every vertex v2 ∈ V2 with it with an edge
of capacity w(v2). We show that the following values are equal:

• Weight of a lightest vertex cover in graph G′.

• Value of a minimal cut in flow network H. Cut in a flow network is a set of
edges, that after removing it there is no path from s to t in the network; the
value of a cut is the sum of capacities of removed edges.

• Value of a maximal flow in network H.

1
1 1

1

1
1 1

1

∞ ∞
∞

∞

1

1

∞ ∞ ∞

∞

∞

s

t

1 1

1 1

1
1

1

1 1 1

∞ ∞
∞

∞∞ ∞ ∞

∞

∞

s

t

Figure 2. Left: flow network H with a maximal flow (thick edges) constructed for the
bipartite graph G′ from figure 1. Since vertex weights in this example are unary,
the maximal flow corresponds to the maximal matching from this figure. Right:
the minimal cut in network H (of value 4) corresponding to the minimal vertex
cover from figure 1.

The equivalence of the last two follows from the fundamental theorem which
characterizes flows in networks.

Theorem 2 (About maximal flow and minimum cut). In any flow network
a minimal cut and a maximal flow have the same value.

We will show now equivalence of the first two values. It is enough to note that
there is a one-to-one correspondence between cuts in H of weight less that ∞ and
vertex covers in G′. Indeed, for any such cut we remove from network H some
edges that connect the source with vertices from V1 and some edges that connect
vertices from V2 with the sink, such that after removal there is no path coming
from the source to the sink. Equivalently, for every edge v1v2 ∈ E′ in the cut
must be present an edge sv1 or edge v2t. We interpret removal of edge sv1 or v2t as
choosing vertex v1 or v2, respectively, to the vertex cover. In this way the condition

42

of a cut means exactly that for every edge E′ at least one of its endpoints must
belong to the vertex cover, which essentially is the definition of such cover (see the
right side of figure 2). Moreover, the weight of the cut is exactly the weight of the
corresponding vertex cover. This shows the needed equality.

Implementation

To solve our problem, we need not only the weight of a lightest vertex cover of
graph G′, but also a vertex cover itself. We will obtain it immediately, if we know
a minimal cut in the flow network H. As the last piece of the puzzle, we need the
way to obtain a minimal cut from the structure of a maximal flow.

s

t

Figure 3. Residual network (without weights on edges) constructed for the maximal flow
for the network from figure 2. Marked set X of vertices reachable from the source
(black circles, thick edges) and set of edges whose counterparts in the original
flow network consist the minimal cut (colored).

Fortunately, there is a simple algorithm for this, based on the residual network.
Recall that the residual network is a weighted directed graph based on a flow
network and some flow in this network. If in the flow network we have an edge uv
with capacity c, through which flow f flows, then the residual network contains two
edges: uv of weight c− f and vu of weight f . We ignore edges of weight zero. Let
X be the set of vertices that in the residual network constructed for a maximal
flow are connected with the source with edges of positive weights. Then one of
minimal cuts is the set of edges in the original network coming from X to VH \X;
see figure 3.

Finally, it is worthwhile to think about the time complexity of our solution.
The flow network has |VH | = |V | + 2 vertices and |EH | = |E′| + 2 · |V | edges.
Edmonds–Karp algorithm of complexity O(|VH | · |EH |2) will probably exceed the
time limit. It is better to use Dinitz algorithm of complexity O(|VH |2 · |EH |) (it is
always useful to have this implementation ready for use on the contest) or quite
simple in implementation scaling algorithm, whose outline we present below.

In the scaling algorithm we assume that all finite capacities are from the range
[0, 2B). At the beginning we set all finite capacities to zeros. Next we perform B
phases for i from B−1 to 0. Before the i-th phase we increase the capacity of edge
e by 2i if and only if the i-th bit of the original capacity of this edge was equal

43

to 1. In this approach in the i-th phase we will find at most O(|VH |) augmenting
paths, each in time O(|VH |2), therefore everything will work in time O(B · |VH |3).

44

J
Cave FFF
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2011/jas

Byteasar has discovered a cave. It appears that the cave contains n chambers
connected with passages in such a way that there exists a single way of getting
from any chamber to any other chamber.

The cave should now be examined more thoroughly, so Byteasar has asked his
friends for help. They have all arrived at the cave and they are willing to divide
themselves into groups. Each group should examine the same number of chambers,
and each chamber should be examined by exactly one group. Additionally, for the
groups not to interfere with each others’ work, the members of each group should
be able to move between the assigned chambers without passing through chambers
assigned to other groups.

How many groups can the explorers be divided into?

Input

The first line of the input contains one integer n (2 ¬ n ¬ 3 000 000) specifying
the number of chambers in the cave. The chambers are numbered 1 through n.

The following n − 1 lines describe connections between the chambers. The
i-th of these lines contains an integer ai (1 ¬ ai ¬ i) which represents a passage
connecting chambers number i+ 1 and ai.

Output

Your program should output a single line containing all integers k, such that the
chambers can be divided into k disjoint sets of equal size, and one can move be-
tween any two chambers belonging to the same set passing only through chambers
from this set. The numbers should be written in an ascending order and separated
with single spaces.

Example

For the input data:

6
1
2
3
3
5

the correct result is:

1 3 6

1 2 3 5 6

4

1 2 3 5 6

4

1 2 3 5 6

4

45

https://oi.edu.pl/en/archive/amppz/2011/jas

Solution

Let us use terminology of graph theory. The cave described in the problem state-
ment is a connected graph without cycles, that is a tree. We begin with an obvious
observation: in order to partition a tree into pieces of size k (i.e. containing k ver-
tices each), then number k must be a divisor of n. Moreover, if we partition a tree
into pieces of size k, then we will get exactly n

k
pieces. Finally, if we want to break

a tree of n vertices into n
k

trees of size k, we must remove exactly n
k
− 1 edges.

These simple observations immediately guide us to a first solution. As it often is,
this first algorithm will not be good enough, but we deal with it afterwards.

Assume that k is a divisor of n and we want to check, whether we can partition
a tree into pieces of size k. On the first sight it could not be obvious, however,
such a partition is uniquely determined (as long as it exists). A sketch of a proof of
this fact could be as follows: consider any partition of the tree on pieces of size k,
where k < n. In such a partition there is a piece P which is connected to the rest
of the tree with exactly one edge e. In every partition of the tree for this value of k
the edge e must connect two pieces, since otherwise we could get instead of P a
piece of size less or greater than k. Now we can cut piece P from the rest of the
tree and similarly prove that the rest of the tree can also be partitioned in exactly
one way.

In our first solution we will use recursive approach. We run DFS on the input
tree, and every time we return from recursive calls, we calculate the sizes of subtrees
rooted in vertices. When we find a vertex in which a subtree of size k is rooted,
we remove the edge that connects this subtree with the rest of the tree. Removed
vertices no longer are taken into account when calculating sizes of subsequent
subtrees. It should be clear, that if the whole tree can be partitioned into pieces
of size k, then exactly n

k
− 1 times we will claim than we need to remove an edge,

and at the end only the piece of size k containing the root of the tree will remain.
The converse implication is also true. If n

k
− 1 times we cut a tree of size k, then

we have found a partition of whole tree into n
k

pieces of size k.
This recursive procedure can be implemented in such a way that for a fixed k it

will work in time O(n). Therefore, the whole algorithm has the time complexity of
O(n · d(n)), where d(n) is the number of divisors of n. Note that at the beginning
of the algorithm we could iterate over all integers from 1 to n and test which of
them divides n, since it only takes O(n) time.

The question remains how big could d(n) be. Among integers from 1 to 3 · 106
the largest number of divisors, namely 336, has number 2 882 880. Thus in the
pessimistic case (which obviously was included in the tests to the problems) this
solution will be to slow.

Faster solution

To speed up our solution, we consider all possible values of k during one DFS pass.
Let us fix an edge e and answer the following question: how to test that edge e is
removed during partitioning the tree into pieces of size k? For sure e must partition
the tree into pieces of sizes divisible by k. In general the following fact holds:

Fact 1. A tree can be partitioned into pieces of size k if and only if there exist
exactly n

k
− 1 edges which connects subtrees of sizes being multiples of k.

46

Why is that? If we demand for an existence of a partition, then we remove
exactly n

k
− 1 edges, and at both sides of each removed edge there is some number

of pieces of size k. Therefore, the number of vertices on both sides of each removed
edge is divisible by k. For the opposite direction: suppose that there exist n

k
− 1

edges satisfying the above condition. It is easy to see that if we remove from the
tree these edges, then every subtree we obtain along will have size divisible by k.
At the end, we get n

k
non-empty pieces, which sizes are divisible by k. Their total

size is n, thus every piece must contain k vertices.
Fact 1 allows us to think about solution in simpler terms. It is sufficient to

count how many edges satisfies certain properties. To be more precise, we iterate
through all edges of the tree and for each k we calculate value edg [k], that is the
number of edges that connects subtrees of sizes being multiples of k.

Let us consider an edge that connects subtrees of sizes a and n− a. For which
values of k should we increment the value edg [k]? It is easy to see that we should do
this for all integers k that divides both a and n− a. In other words, we increment
edg [k] for all integers k that are divisors of GCD(a, n− a). This algorithm will be
easier to realise “lazily”. Instead immediately updating proper cells in array edg ,
we note on the side that we want to increment values in cells which indices are
divisors of GCD(a, n− a), and final values in array edg will be calculated later.

For this purpose we will use yet another array which we denote by t. To note
that we want to increment by 1 values edg [k] for all integers k that are divisors
of i, we will add 1 to cell t[i]. Thus when considering an edge connecting subtrees
of sizes a and n − a we will be incrementing by 1 the value t[GCD(a, n − a)].
After going over all edges, we can calculate values edg [k] by realizing changes from
array t. Such a lazy approach will let us better estimate time complexity, since for
every index i in array t we will go through all divisors of i only once. We also can
calculate the final contents of array edg a little bit simpler. It is enough to note
that we can obtain value edg [k] by summing t[i] over all i that are multiples of k.

In what time we could calculate array edg based on array t? By calculating
edg [k] we consider all multiples of k, which needs bn

k
c steps. Remember, that we

need values in array edg only for divisors of n. The time complexity can be then
expressed as

∑
k|n

n
k

. Observe, that we sum here all divisors of n, since if k iterates
over divisors from the smallest, then n

k
also iterates over divisors of n, but from

the greatest. Therefore, this step requires time O(D(n)), where D(n) is the sum
of divisors of n. Fortunately, D(n) is a function which grows very slowly, since
D(n) = O(n log log n).

The most costly operation of our algorithm is therefore calculating the greatest
common divisor of integers from range 1 to n. Using Euclid’s algorithm, one such
calculation can be done in time O(logn). Since we perform it n times, the the total
running time of the algorithm is O(n logn).

Even faster solution

This is enough to solve the problem. However, we can show a little bit more efficient
method. It turns out that all values GCD(i, n−i) for i = 1, . . . , n can be calculated
beforehand in time complexity of O(n log logn). Note that if integer d is divides
both i and n− i, then it also divides n. To calculate GCD(i, n− i) it is sufficient
to find the greatest divisor of n which divides i and n− i.

We will fill up an array gcd , in such a way that gcd [i] at the end will be equal

47

to GCD(i, n− i). We iterate over all divisors of n in increasing order and for every
divisor d we consider all its multiples j · d. For each such multiple we update
value gcd [j ·d] for d. Thus, the algorithm goes over all multiples of all divisors of n,
similarly like the algorithm calculating array edg based on array t. Using the former
analysis, we conclude that the array gcd can be calculated in time O(n log logn).
Thanks to that we managed to reduce the time complexity of the whole solution
to O(n log log n). However, we should state that in practice such improvement will
be rather unnoticeable.

How many divisors can integer have?

At the end let us go back to function d(n), which counts divisors of n. We showed
a limit for values of this function for n ¬ 3 ·106, but we did not say anything about
asymptotical limit. It is easy to prove that d(n) < 2

√
n, since every number can

have at most
√
n divisors not greater that

√
n, and every divisor greater than

√
n

is paired up with a divisor smaller than
√
n. But there is even stronger estimation,

namely d(n) = nO(1/ log logn).
At the first sight it does not really tell us how much it is. Note that log log n

function grows very slowly. If we assume that logn is a binary logarithm, then
log log(232) = 5, and log log(264) = 6. But for the needs of calculating running time
of algorithmic problems, in which we usually deal with integers not bigger than
264 it is convenient to assume that in pessimistic case value d(n) is roughly 3

√
n.

From mathematical point of view this is a heresy, but such approximation works
quite well in practice.

48

K
Cross Spider FF
Task author: Szymon Acedański
Solution description: Tomasz Idziaszek
Available memory: 32 MB
https://oi.edu.pl/en/archive/amppz/2011/krz

The Bytean cross spider (Araneida baitoida) is known to have an amazing ability.
Namely, it can instantly build an arbitrarily large spiderweb as long as all of its
threads are contained in a single plane. This ability gives the spider an opportunity
to use a fancy hunting strategy. It does not need to wait until a fly is caught in
an already built spiderweb; if only the spider knows the current position of a fly,
it can instantly build a spiderweb to catch the fly.

A cross spider has just spotted n flies in Byteasar’s garden. Each fly is flying
still in some point of a three-dimensional space. The spider is wondering if it
can catch all the flies with a single spiderweb. Write a program that answers the
spider’s question.

Input

The first line of the input contains an integer n (1 ¬ n ¬ 100 000). The following n
lines contain a description of the flies in space: the i-th line contains three integers
xi, yi, zi (−1 000 000 ¬ xi; yi; zi ¬ 1 000 000) giving the coordinates of the i-th fly
(a point in the three-dimensional Euclidean space). No two flies are located in the
same point.

Output

Your program should output a single word TAK (i.e., yes in Polish) if the spider can
catch all the flies with a single spiderweb. Otherwise your program should output
the word NIE (no in Polish).

Example

For the input data:

4
0 0 0
-1 0 -100
100 0 231
5 0 15

the correct result is:

TAK

49

https://oi.edu.pl/en/archive/amppz/2011/krz

whereas for the input data:

4
0 1 0
-1 0 -100
100 0 231
5 0 15

the correct result is:

NIE

Solution
The aim of the problem Cross Spider was to check, whether the contestants know
the basic tools of computational geometry. For the given n points in the three-
dimensional space, one has to check whether all of them lie on a single plane. To
fix the notation, we denote the i-th point by pi = (xi, yi, zi).

Any three non-collinear points (i.e. such points that do not lie on a single line)
uniquely determine a plane in the space. The solution is divided into two parts:
first we find three non-collinear points (if they exist), and later we check whether
the remaining points lie on the plane given by these three points. Note that for
n ¬ 3 the answer is obviously positive, thus from now on we assume that we have
at least four points.

We cannot simply take any three points (e.g. p1, p2 and p3), since it could turn
out that they lie on one line. But if it is not the case that all n points lie on a single
line, then we can take two of them (e.g. p1 and p2) and search among remaining
points some point which is non-collinear with them. To check whether point pi
(for i = 3, . . . , n) lies on a line designated by points p1 and p2, we calculate the
cross product ti := (p2 − p1)× (pi − p1). Recall, that the cross product of vectors
v = (xv, yv, zv) and w = (xw, yw, zw) is a vector defined as follows:

v × w := (yv · zw − yw · zv, zv · xw − zw · xv, xv · yw − xw · yv).

Point pi lies on a line containing points p1 and p2 if and only if all coordinates of
vector ti are equal 0.

If all vectors ti corresponding to points p3, . . . , pn are zeros, then all points lie
on a single line (thus on a common plane) and the answer is positive. On the other
hand, if for some i we got a non-zero vector ti, then the triplet of points p1, p2 and pi
uniquely determines a plane. In such a situation the cross product ti is a vector
perpendicular to the plane containing points p1, p2 and pi. To check whether some
other point pj lies in this plane, we only have to check whether vector pj − p1 is
perpendicular to ti. This can be done by calculating a dot product ti · (pj − p1).
Recall that the dot product of two vectors v = (xv, yv, zv) and w = (xw, yw, zw) is
a number defined as

v · w := xv · xw + yv · yw + zv · zw.

Two non-zero vectors are perpendicular if and only if their dot product is equal
to 0. Thus point pj lies on a plane determined by points p1, p2 and pi if the dot
product of ti and pj − p1 is equal to 0.

The above solution can be implemented in such a way that each point is checked
only once. The time complexity of the whole solution is O(n).

50

Watch out for constraints

One of decisions that should be made during the implementation of the above cal-
culations, is choice of suitable data type. To avoid subtle troubles with operations
on floating-point numbers, it is good to use integer types (fortunately it is possible
here, since the input data are integers and we only perform on them operations of
addition, subtraction and multiplication).

If we write down the dot product from our solution, it will turn out that it is a
sum of six addends. Each addend is a product of three values, which are differences
of point coordinates. The absolute value of each coordinate is limited by 106, thus
the absolute value of each addend does not exceed (2 · 106)3 = 8 · 1018. This is just
enough, so that each addend fit in a 64-bit signed variable.

Unfortunately, estimation 48 · 1018 on the sum of these addends exceeds the
range of 64-bit integer. We can cope with this in several ways. The easiest way is to
use 128-bit integers, as long as our compiler supports them (e.g. the GCC compiler
used during the contest provides int128 extension). One could also implement
such integers, especially that it only needs to implement operations of addition and
comparing with zero. The third way is to calculate this sum twice: once modulo
m1 and then modulo m2, where m1 and m2 are relatively prime numbers whose
product exceeds 48 ·1018. From the Chinese remainder theorem we know that both
results will be zero if and only if the sum of addends is equal to 0.

51

2012
17th Polish Collegiate Programming Contest

Warsaw, October 26–28, 2012

A
Vending Machine FFF
Task author: Jakub Pachocki
Solution description: Eryk Kopczyński
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/aut

Byteasar studies computer science at the University of Bytetown. There is a snack
vending machine at his faculty that sells n types of snacks, numbered 1 through n.
Snacks of different types may have different price, since they differ in size and
flavor.

Recently Byteasar discovered that the vending machine is broken. If one buys
a snack of type i, the vending machine additionally dispenses one snack of each
of the types 1, 2, . . . , i − 1, provided that snacks of these types are available (if
there are no snacks of some of the types 1; 2; : : : ; i−1, simply no snack of this type
is dispensed). Buying snack of type i is possible only if at least one snack of this
type is available.

Byteasar decided to take advantage of the fault he discovered. He would like
to find out what is the maximum total value (that is, the sum of prices) of snacks
that he can obtain in the vending machine using a given amount of money. He
does not have to use all the money.

Input

The first line of the input contains two integers n and k (1 ¬ n ¬ 40, 1 ¬ k ¬
64 000) specifying the number of types of snacks and the amount of money that
Byteasar has at his disposal. The second line holds n integers c1; : : : ; cn (1 ¬
ci ¬ 40), the prices of snacks of respective types. The third line holds n integers
l1; : : : ; ln (0 ¬ li ¬ 40), the quantities of snacks of respective types that are
available in the vending machine.

Output

The only line of the output should contain one integer: the total price of snacks
that Byteasar can obtain in the vending machine using at most k units of money.

Example

For the input data:

6 8
7 2 3 5 7 2
1 3 0 3 2 1

the correct result is:

30

Explanation of the example: We buy a snack of type 6; the vending machine also
dispenses one snack of each of the types 1, 2, 4 and 5. We buy a snack of type 4;
in addition to this snack, the vending machine dispenses one snack of type 2.

55

https://oi.edu.pl/en/archive/amppz/2012/aut

Solution

Translation in progress. . .

56

B
Bus Trip FFF
Task author: Jakub Radoszewski
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/biu

Byteasar works as a teacher in a primary school in Byteburg. The weather is
currently really nice, so Byteasar would like to take his class for a bus trip to
Bytetown — the capital of Byteland. Byteasar has decided to hire a travel agency
to plan the trip.

The streets in Bytetown form a regular grid of east–west and north–south
streets. The distance between any pair of adjacent parallel streets is equal to 1 kilo-
meter. There are tourist attractions located at several junctions. Bytean guides
have assigned attractiveness coefficient to each tourist attraction: the greater the
attractiveness, the more interesting is the attraction for the visitors. Byteasar
knows that the pupils in the class he teaches get bored easily, thus he requires
that the attractions visited on the trip have increasing attractiveness.

The travel agency has agreed to Byteasar’s requirements, but at the same time
the agency would like to earn as much money as possible for organizing the trip.
The agency gets a fixed rate of 1 bythaler for each kilometer of the trip. The
bus always chooses the shortest route along the streets of Bytetown when driving
between the attractions on the trip. Moreover the agency gets additional money
from the managers of attractions that are visited along the trip.

Help the agency plan a trip that satisfies Byteasar’s requirements and grants
the agency the highest profit. Please note that driving next to a tourist attraction
(without stopping) does not count as visiting the attraction.

Input

The first line of the input contains two integers n and m (2 ¬ n;m ¬ 1000), the
number of east–west streets and the number of north–south streets.

Following n lines describe the tourist attractions in Bytetown. The i-th of
these lines holds m integers wi;j (0 ¬ wi;j ¬ 106) specifying the attractiveness of
each of the attractions located at the junctions of the i-th east–west street with
the respective north–south streets. Attractiveness 0 means that there is no tourist
attraction at the respective junction. You can assume that there is at least one
tourist attraction in Bytetown.

Each of the following n lines holds n integers ci;j (0 ¬ ci;j ¬ 109). The number
ci;j , that is, the j-th number in the i-th of the considered lines, represents the
amount of money (in bythalers) that the agency receives for making a trip lead
through the tourist attraction described by the attractiveness wi;j . If there is no
tourist attraction at a junction, the corresponding number ci;j equals 0.

Output

The only line of the output should contain one integer: the maximum profit (in
bythalers) that the agency can make for organizing a trip leading through a number

57

https://oi.edu.pl/en/archive/amppz/2012/biu

of attractions with strictly increasing attractiveness.

Example

For the input data:

4 5
1 2 6 0 2
1 3 4 0 4
0 0 4 0 3
2 2 0 0 4
1 3 5 0 2
2 8 1 0 2
0 0 3 0 4
0 5 0 0 3

the correct result is:

39

1 2 6 0 2

1 3 4 0 4

0 0 4 0 3

2 2 0 0 4

1 3 5 0 2

2 8 1 0 2

0 0 3 0 4

0 5 0 0 3

Explanation of the example: The numbers in the junctions represent the attrac-
tiveness of the respective attractions. The numbers written in italic represent the
profit of the travel agency for making a trip lead through the respective attrac-
tions. The most profitable trip for the agency is highlighted with circles: the agency
receives 2, 2, 8, 3 and 5 bythalers for these attractions respectively, and moreover
it receives 19 bythalers as the bus fare.

Solution

Translation in progress. . .

58

C
Sequence FF
Task author: Jakub Radoszewski
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/cia

We say that an integer sequence a1; a2; : : : ; an is k-even if the sum of any k con-
secutive terms of the sequence is even.

For a given sequence we would like to find out how many of its terms need to
be changed so that the sequence becomes k-even.

Input

The first line of the input contains two integers n and k (1 ¬ k ¬ n ¬ 1 000 000)
specifying the length of the sequence and the “evenness” parameter. The second
line contains a sequence composed of n integers a1; a2; : : : ; an; each of them satisfies
0 ¬ ai ¬ 1 000 000 000.

Output

The only line of the output should hold one integer: the minimum number of terms
of the sequence that need to be changed so that it becomes k-even.

Example

For the input data:

8 3
1 2 3 4 5 6 7 8

the correct result is:

3

whereas for the input data:

8 3
2 4 2 4 2 4 2 4

the correct result is:

0

Solution

Translation in progress. . .

59

https://oi.edu.pl/en/archive/amppz/2012/cia

D
DNA FF
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/dna

The mad scientist Byteasar would like to give birth to a new kind of creatures.
For this, he has decided to modify the genome of a Bytean mouse.

A DNA can be described as a sequence of letters A, C, G and T. Byteasar’s master
plan is quite simple: using the DNA of a mouse, he is going to create a new DNA
of the same length that is as little similar to the mouse’s DNA as possible. The
similarity of two DNAs is the length of their longest common subsequence. The
longest common subsequence of two words x, y is defined as the longest word that
can be obtained from each of x, y by removing some (possibly none) letters from
both words. (Note that two words may have several longest common subsequences.
For example, the longest common subsequences of the words CACCA and CAAC are
CAA and CAC.) Write a program that computes the requested DNA.

Input

The first line of the input contains one integer n (1 ¬ n ¬ 10 000) specifying the
length of the DNA of a Bytean mouse. The second line contains mouse’s DNA as
a sequence of n uppercase letters from the set {A; C; G; T}.

Output

The first line of the output should contain one integer: the similarity of the Bytean
mouse’s DNA and the DNA computed by your program. The second line should
hold a sequence of n letters A, C, G, T. This should be a DNA that is as little similar
to the DNA from the input as possible. Should there be many correct answers,
your program may output any one of them.

Example

For the input data:

4
GACT

one of the correct results is:

1
TCAG

60

https://oi.edu.pl/en/archive/amppz/2012/dna

Solution

Translation in progress. . .

61

E
Evaluation of an Expression FFFF
Task author: Jakub Radoszewski
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/ewa

Consider an expression E, containing integer constants from 0 to 9, variables from
a to z, and the following operations: addition, multiplication, and exponentiation
with a constant exponent. Quite surprisingly, each of the variables a; b; : : : ; z ap-
pears in the expression E at most once. For a given prime number p, we would like
to know how many roots modulo p the polynomial represented by this expression
has. In other words, we want to count the number of ways in which integers from
0 to p− 1 can be assigned to the variables in E, so that the value of E is divisible
by p. Since the number of such roots can turn out large, it suffices to output it
modulo 30 011.

For example, the polynomial represented by the expression

E = ((a+ y) · (z + 8))2

has 15 roots modulo p = 3, among which the roots:

(a = 0; y = 0; z = 0); (a = 1; y = 2; z = 0); (a = 2; y = 0; z = 1)

can be found.
More formally, an expression is defined as follows:

� Each integer constant 0, 1, . . . , 9 is an expression.

� Each variable a, b, . . . , z is an expression.

� If A and B are any expressions, then each of (A+B) and (A*B) is also an
expression: the first is the sum of expressions A and B, and the second is
their product.

� If A is any expression, and B is an integer constant from 2, 3, . . . , 9, then
(A^B) is also an expression: the expression A raised to the power of B.

Input

The first line of the input contains one prime number p (2 ¬ p < 15 000). The
second line contains an expression E as specified above, described by a sequence
of at most 300 characters 0, 1, . . . , 9, a, b, . . . , z, +, *, ^, (,), without any white
space.

Output

Let k denote the number of roots modulo p of the polynomial E. Your program
should output one non-negative integer, remainder of dividing k by 30 011.

62

https://oi.edu.pl/en/archive/amppz/2012/ewa

Example

For the input data:

3
(((a+y)*(z+8))^2)

the correct result is:

15

Solution

Translation in progress. . .

63

F
Formula One FFFF
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/for

Little Bytie really enjoys watching Formula One races which are held annually on
a track between Bytetown and Byteburg. The most exciting moments for him are
overtakes. He would like to see as many of them as possible.

Bytie is dreaming of a race in which n Formula One cars compete and the car
that started the race at the i-th position (for each 1 ¬ i ¬ n) performs ai overtakes
during the race. We assume for simplicity that at each moment of time at most
one overtaking takes place, in which exactly two cars participate (that is, one car
goes past another car).

Bytie is wondering whether such a race is possible at all. Could you help him
figure this out?

Input

The first line of the input contains one integer t that represents the number of test
cases that follow.

Each test case is described in two lines. The first line contains one integer n
(1 ¬ n ¬ 1 000 000) specifying the number of cars that participate in the race. The
second line holds a sequence of n integers a1; a2; : : : ; an (0 ¬ ai ¬ 109) that gives
the number of overtakes performed by the respective cars.

The size of a single input file does not exceed 20 MB.

Output

Your program should output t lines containing answers to the respective test cases.
Each line should hold a single word TAK (i.e., yes in Polish) or NIE (no in Polish)
depending on whether the race described by Bytie is possible or not.

Example

For the input data:

3
2
0 1
3
0 1 4
3
1 1 3

64

https://oi.edu.pl/en/archive/amppz/2012/for

the correct result is:

TAK
NIE
TAK

Solution

Translation in progress. . .

65

G
Save the Dinosaurs FFFF
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/gen

Breaking news from Bytetown: the archaeologists have discovered fossil remains
of dinosaurs near the city! After hearing the news, several citizens of Bytetown
wanted to pick up a bone or two for themselves. To save the priceless remains of
dinosaurs, the mayor of Bytetown has decided to protect the excavation area and
hired army for this purpose.

General Byteasar has located n soldiers in several strategic positions of the
excavation area. (The soldiers can not stand just anywhere and hinder archaeolo-
gists’ work. In addition, they must have good visibility to protect the excavation
site.) We say that a point of the area is protected if moving from that point in any
direction one unavoidably reduces the distance to at least one of the soldiers.

Byteasar has just been assigned a new rookie soldier. The general has decided
to place the soldier in one of the m remaining vacant strategic positions. For each
of the possible placements he would like to know what is the total area of the
protected part of the excavations.

Input

The first line of the input contains two integers n and m (3 ¬ n ¬ 100 000, 1 ¬
m ¬ 100 000) specifying the number of soldiers that are already stationed in the
excavation area and the number of vacant strategic positions. The following n lines
provide a description of the soldier’s positions: the i-th of those lines contains two
integers xi; yi (−108 ¬ xi; yi ¬ 108) that represent the coordinates of the position
occupied by the i-th soldier (in a Cartesian coordinate system). The following m
lines provide a description (in the same format) of the vacant strategic positions.
All the points listed in the input are distinct.

You may assume that the area of the part of the excavations protected by the
n soldiers is positive.

Output

Your program should output exactly m lines. The i-th line should contain the total
area of the protected part of the excavations after the rookie soldier is located in
the i-th previously vacant strategic position. All numbers should be written with
a single digit after the decimal dot.

66

https://oi.edu.pl/en/archive/amppz/2012/gen

Example

For the input data:

3 2
0 0
2 -1
1 2
3 1
1 0

the correct result is:

5.0
2.5

Solution

Translation in progress. . .

67

H
Hydra FF
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/hyd

Little Bytie got a gift for his birthday. The gift contained a computer game called
The Amazing Adventures of Knight Byteasar. The purpose of this game is to
lead the knight through numerous challenges to defeat villains and evil witches
and rescue damsels in distress. Bytie managed to complete almost all levels of the
game. Now he is stuck at the last level in which Byteasar needs to fight a giant
serpent, the Bytean Hydra.

Byteasar will use his sword to fight the monster. Two sword strokes are available
in the game: Byteasar can either cut off the serpent’s head or slaughter the head
(the latter stroke, obviously, requires more effort). Cutting the head off is simpler,
however, it results in new heads growing back from the serpent’s neck. Hydra is
defeated only when it has no more heads and no new heads can grow back from
its neck.

The Bytean Hydra may have n types of heads that we number from 1 to n. In
the beginning the serpent has one head of type 1. A head of type i (for 1 ¬ i ¬ n)
has the following characteristics: the number of sword swipes necessary to cut a
head of this type off, ui, the number of sword swipes necessary to slaughter a head
of this type, zi, and a list of ri types of heads that grow back in place of a head of
this type if it is cut off, gi;1; : : : ; gi;ri .

Help Bytie compute the minimum number of sword swipes that are necessary
to defeat the Hydra.

Input

The first line of the input contains one integer n (1 ¬ n ¬ 200 000), specifying the
number of types of heads of the Hydra. The following n lines hold a description of
the respective types of heads; the i-th of those lines describes heads of type i. It
starts with three integers ui, zi, ri (1 ¬ ui < zi ¬ 109, 1 ¬ ri) followed by a list
of integers gi;1; : : : ; gi;ri (1 ¬ gi;j ¬ n). The sum of all integers ri does not exceed
1 000 000.

Output

The only line of the output should contain one integer: the minimum number of
sword swipes that are necessary to complete the game.

68

https://oi.edu.pl/en/archive/amppz/2012/hyd

Example

For the input data:

4
4 27 3 2 3 2
3 5 1 2
1 13 2 4 2
5 6 1 2

the correct result is:

26

Solution

Translation in progress. . .

69

I
Inversions F
Task author: Krzysztof Diks
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/inw

Byteasar discovered a new family of undirected graphs that can be represented
using inversions. Let V = {1; 2; : : : ; n} be the set of vertices, and a1; a2; : : : ; an
some sequence of pairwise distinct numbers from set V . The vertices ai and aj are
connected by an edge if the pair (i; j) forms an inversion in this sequence, that
is, i < j and ai > aj .

For example, let n = 4 and consider the sequence 2; 3; 1; 4. We obtain the
following graph:

2 3 1 4

Byteasar would like to check if the representation that he invented is useful
indeed. He has decided to write a program that finds all the connected components
of the graph. Recall that two vertices u; v ∈ V belong to the same connected
component if there exists a sequence of vertices starting with u and ending with v
such that every two subsequent vertices in the sequence are connected by an edge.
In our example we have two connected components: {1; 2; 3} and {4}.

Help Byteasar!

Input

The first line of the input contains one integer n (1 ¬ n ¬ 1 000 000) specifying the
number of vertices of the graph. The second line contains n integers a1; a2; : : : ; an.

Output

The first line of the output should contain the number of connected components in
the graph; denote this number by m. Each of the following m lines should hold a
description of one connected component. First a number k should be written, the
size of the component, and then an increasing sequence of k vertex numbers of
the component. The components should be listed in such order that the numbers
of the first vertices of the components form an increasing sequence. In other words,
if S and S′ are two connected components, u ∈ S, v ∈ S′ are their vertices with
the smallest number and u < v, then the component S should be listed earlier
than S′.

70

https://oi.edu.pl/en/archive/amppz/2012/inw

Example

For the input data:

4
2 3 1 4

the correct result is:

2
3 1 2 3
1 4

Solution

Translation in progress. . .

71

J
Do It Tomorrow F
Task author: Tomasz Idziaszek
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2012/jut

procrastination (Latin procrastinatio, from pro cras — for tomorrow)
— a perpetual habit of putting off important tasks to a later time

Byteasar tends to postpone all the tasks he needs to perform. You could say that
procrastination is his middle name. However, if he promises to do something, you
can certainly count on him.

Byteasar woke up early today and prepared a list of n tasks that he needs to
perform in near future. The i-th task will take him di consecutive days to perform
and has to be completed within the next ti days, starting from today. Byteasar
would like to know how much time he can spend doing nothing until he really has
to start performing some tasks. Could you write a program that will help him find
that out? Byteasar could also write such a program himself, however this would
be against his nature.

Input

The first line of the input contains one integer n (1 ¬ n ¬ 1 000 000), specifying
the number of tasks that Byteasar has to perform. The following n lines hold a
description of the tasks: the i-th of those lines contains two integers di and ti
(1 ¬ di; ti ¬ 109). We assume that Byteasar is able to perform all the tasks on
time.

Output

Your program should output one integer k: the maximum number of days during
which Byteasar can avoid working. In other words, on the day number k + 1 at
latest Byteasar must start performing one of the tasks in order to be able to
eventually complete all the tasks on time.

Example

For the input data:

3
2 8
1 13
3 10

the correct result is:

5

Explanation of the example: For the first five days Byteasar rests. On the following
five days he performs the first and the third task (in that order). Afterwards he
uses one of next three days to perform the second task.

72

https://oi.edu.pl/en/archive/amppz/2012/jut

Solution

Translation in progress. . .

73

K
Rabbits FFF
Task author: Tomasz Idziaszek
Solution description: Jakub Radoszewski
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2012/kro

Byteasar has decided to go green and grow lettuce in his garden. As you can
imagine, Bytean rabbits simply love lettuce, thus it’s not surprising at all that
they instantly arrived in Byteasar’s garden.

In the garden there are n beds of lettuce numbered 1 through n. Every two
subsequent beds are adjacent, that is, for each i = 1; 2; : : : ; n− 1 the beds number
i and i + 1 are adjacent and, moreover, the bed number n is adjacent to the bed
number 1. Right now there are ai rabbits staying at the bed number i and eating
away Byteasar’s lettuce.

Byteasar wants to chase out of the garden as many rabbits as possible. For
this he is going to use his good old gun. The gun has k bullets inside. Rabbits are
extremely timid, so whenever Byteasar shoots towards the bed number i, all the
rabbits from that bed leave Byteasar’s garden for good. What is more, the rabbits
from both adjacent beds are so frightened that they all move to the adjacent bed
(obviously, we mean the adjacent bed different from the one towards which was
the shot).

Help Byteasar to find the maximum number of rabbits that he can chase out
of his garden with at most k shots.

Input

The first line of the input contains two integers n and k (5 ¬ n ¬ 2000, 1 ¬ k ¬ n)
specifying the number of beds of lettuce in the garden and the number of bullets
Byteasar has in his gun. The second line holds n integers a1; a2; : : : ; an (0 ¬ ai ¬
1 000 000) representing the number of rabbits staying at the subsequent beds.

Output

Your program should output one integer: the maximum number of rabbits that
can be chased out of Byteasar’s garden using at most k shots.

Example

For the input data:

5 2
6 1 5 3 4

the correct result is:

13

Explanation of the example: First, Byteasar chases out the 6 rabbits from the
bed number 1 (as a result, the rabbits from the bed number 5 move to the bed
number 4, whereas the rabbits from the bed number 2 move to the bed number 3).
Next, Byteasar chases out the 7 rabbits from the bed number 4.

74

https://oi.edu.pl/en/archive/amppz/2012/kro

Solution

Translation in progress. . .

75

2013
18th Polish Collegiate Programming Contest

Warsaw, October 25–27, 2013

A
The Motorway FFF
Task author: Jakub Radoszewski
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/aut

Autobyte Company is involved in the construction of one of Byteland motorways.
Until recently the company collected toll charges only at the starting point of the
motorway. However, Byteasar, the new chairman in charge of the company, noticed
that in such a case the charged amount does not depend on the distance covered
by customers in bytemiles. Therefore, the company plans to build toll-collecting
points along the entire length of the motorway.

Byteasar, during his motorway trip, with the help of the odometer in his car,
put down the location of all the n entry points (the position of an entry point
is its distance from the start of the motorway). The company decided to locate
n + 1 toll-collecting points evenly along the motorway. That means the distance
between each two subsequent toll-collecting points would be the same. At the
same time between each two such points there should be a motorway entry point
and there should be a toll-collecting point between each two subsequent motorway
entries. Luckily, it turned out that the existing location of entry points makes such
arrangement possible.

Your task would be to calculate the minimum and maximum distance between
toll-collecting points. Formally speaking, we are seeking the lowest and highest
value for l, for which there exists a position b0 of first toll-collecting point, such
that the consecutive points should be located in b0+ l; b0+2l; : : : ; b0+nl positions.
It may be so that the location of a given toll-collecting point, determined by the
above procedure, falls in exactly the same position, as the location of an entry
point. In this case the toll booth would be positioned in close vicinity of an entry
point, either just before or just after it. In other words, the position of the j-th
entry point should be included in the following interval [b0 + (j − 1)l; b0 + jl].

Input

The first line of the input contains one integer n (3 ¬ n ¬ 1 000 000) specifying
the number of motorway entry points. The second line of the input contains an
increasing sequence of n integers a1; a2; : : : ; an (0 ¬ ai ¬ 109). The following
sequence elements are the positions of subsequent motorway entry points.

Output

Your program should produce two real numbers presenting smallest and largest
possible distance between two subsequent toll collecting points in bytemiles. You
can assume that the difference between these values is not less than 10−9.

Your result will be considered as being correct in case it is included in the
interval [x(1 − ") − "; x(1 + ") + "], where x is the correct answer and " = 10−8.
Therefore both relative error and absolute error of the answer equal to " will be
accepted.

79

https://oi.edu.pl/en/archive/amppz/2013/aut

Example

For the input data:

6
2 3 4 5 6 7

the correct result is:

0.833333333333 1.250000000000

Solution

Translation in progress. . .

80

B
Bytehattan FFF
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/baj

Bytehattan is one of the islands in the capital of Byteland. The island is a witness
to parades, outings and processions organized frequently. In fact these are so per-
sistent, that street closing and serious traffic congestion result. Byteasar, employed
at the town hall, has been appointed to monitor the city traffic.

The streets of Bytehattan form a regular n×n grid. Let us look at the map of
Bytehattan as if it were grid coordinates: for each pair of integers x; y, such that
1 ¬ x; y ¬ n, at point defined by its coordinates (x; y) there is an intersection.
Each two street crossings 1 unit away are joined by a street measuring 1 unit.

Byteasar receives messages concerning street closures. Each message informs
that a particular street will be closed from now on. After receiving such information
concerning the closure of a given street, Byteasar should determine whether it
would be still possible to commute between two intersections which are located at
the ends of such a closed street, using roads which have not yet been closed. Help
him and create a program helping him with his job.

Input

The first line of the input contains two integers n and k (2 ¬ n ¬ 1500, 1 ¬ k ¬
2n(n− 1)). They specify number of streets in Bytehattan and the number of mes-
sages concerning closed streets, respectively. Each of the following k lines contains
information concerning the closure of one of the streets; information is provided
in chronological order. Each of these lines consists of two streets described, one
after the other. In practice exactly one of the streets becomes closed?. In case it is
still possible to commute between two intersections which are located at the ends
of such a closed street, described in the previous line, the first of these streets be-
comes closed. In case it is not possible, the second one is closed. The first closure,
out of those k closures described in the input, applies to the first one out of the
two streets listed. Each street can only be closed once.

The description of a given street is a pair of integers ai, bi (1 ¬ ai; bi ¬ n)
followed by a letter ci (ci ∈ {N; E}). Such a triple determines a street, with one of
its ends is positioned at an intersection described by coordinates (ai; bi). In case
ci = N, the other end of the street is positioned at an intersection described by
coordinates (ai; bi + 1). In case ci = E, the other end of the street is positioned
at an intersection described by coordinates (ai + 1; bi). If ci = N, then bi < n,
similarly if ci = E, then ai < n.

?The intention of the jury is that such an atypical input format would create the need for
processing each street closure before starting the processing of subsequent street closures.

81

https://oi.edu.pl/en/archive/amppz/2013/baj

Output

Exactly k lines should be contained in the output. In case after the i-th street
closure it is still possible to commute between the intersections on a closed street
from the input, in the i-th line of output there should be the word TAK (i.e., yes
in Polish). Otherwise the i-th line should contain word NIE (no in Polish).

Example

For the input data:

3 4
2 1 E 1 2 N
2 1 N 1 1 N
3 1 N 2 1 N
2 2 N 1 1 N

the correct result is:

TAK
TAK
NIE
NIE

Solution

Translation in progress. . .

82

C
The Carpenter FFFF
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/cie

Byteasar would fancy a game of checkers, however his chessboard got lost some-
where. He only managed to find a wooden board, sized n ×m, divided into nm
equal in size, square fields. Each field is painted either white or black, however
the arrangement of the colors on this board not necessarily matches the proper
chessboard pattern. In such a case Byteasar has decided to utilise his carpentry
experience and with the help of a saw he plans to cut out a chessboard, which is
a square consisting of certain number of fields, where two fields sharing sides have
alternate colors.

It is not clear whether Byteasar manages to find out a properly sized square
on the board. So, he decided to cut out two triangular pieces from the board in
order to glue them together in such a way that a chessboard would be created.
(The pieces must be separable, however they may be turned around in any way
after cutting out.) Help Byteasar and calculate the largest chessboard size that
he is able to obtain by using this method. The figure below presents the board
sized 4× 5 and the two triangles, which could be glued together in order to form
chessboard sized 3× 3:

Input

The first line of the input contains two integers n and m (1 ¬ n;m ¬ 1000)
specifying the board size. The following n lines contains m integers each: the j-th
number from the i-th line (1 ¬ i ¬ n, 1 ¬ j ¬ m) describes the color positioned on
the intersection of the j-th column and the i-th row of the board. Digit 0 describes
white field and digit 1 — black field.

Output

The first and only line of the output should contain one integer, representing the
largest chessboard size, which is obtainable by cutting two triangular pieces from
the board and pasting them together.

83

https://oi.edu.pl/en/archive/amppz/2013/cie

Example

For the input data:

4 5
1 1 0 1 1
0 1 0 1 0
1 0 1 0 0
0 0 1 1 0

the correct result is:

3

whereas for the input data:

3 3
1 1 1
1 1 0
0 1 0

the correct result is:

2

Solution

Translation in progress. . .

84

D
Demonstrations FF
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/dem

This Sunday, The Byte Day will be celebrated in Bytetown, one of the most
important annual Bytelandian celebrations. However, everything indicates that
this year jubilation will not only be an idyllic family fete.

Well, Bytetown citizens are strongly divided concerning one crucial matter.
Some believe that in line with tradition, the byte should always be equal to eight
bits. However there are progress supporters who would rather go for more capa-
cious, 16-bit bytes. Others see the whole matter much more rigidly and would
eagerly like to declare that the byte should always have only four bits. Finally
there are less significant subversive movements in Bytetown, whose members ad-
vocate that the count of bits in the byte should not be the power of two, or yet it
must not necessarily be an even number! All of these societies plan to hold their
own manifestation in order to convince Bytetown citizens to their cases.

Many Bytetown citizens are afraid that such a number of demonstrations might
interfere with the The Byte Day celebrations. The Lord Major of Bytetown sensed
a significant public support could be gained, by forbidding some of the demon-
strations. Due to the fact that such decisions raise controversy, the Lord Mayor
decided he would only cancel two demonstrations. But at the same time, he would
like to be able to choose such demonstrations for cancellation, that would result
in the total time taken by any other possible demonstrations taking place in the
city after the cancellation, to possibly be shortest. Help the Lord Mayor and give
him a clue how much time in the city without a demonstration he can achieve.

Input

The first line of the input contains one integer n (2 ¬ n ¬ 500 000) specifying the
number of planned demonstrations. Each of the subsequent n lines describes one
demonstration: the i-th of those lines contains two integers ai and bi (0 ¬ ai <
bi ¬ 109), which mean that the i-th demonstration begins ai byteminutes after
sunrise and ends bi byteminutes after sunrise.

Output

Your program should produce exactly one non-negative integer, describing by how
much time demonstrations taking place could possibly be shortened, in case the
Lord Mayor of Bytetown cancels maximum two demonstrations.

85

https://oi.edu.pl/en/archive/amppz/2013/dem

Example

For the input data:

5
0 9
1 4
2 5
7 9
6 7

the correct result is:

4

Explanation of the example: Lord Mayor of Bytetown should not issue permits for
the first and the fourth demonstration.

Solution

Translation in progress. . .

86

E
The Exam F
Task author: Jakub Łącki
Solution description: Tomasz Idziaszek
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/egz

Professor Byteoni is preparing Bit & Byte Theory exam. He has already prepared
n questions. Each of these questions has been ranked by the professor with an
expected difficulty coefficient, that is a natural number ranging from 1 to n. Each
of the questions holds a different coefficient.

Now the professor is considering the exam questions sequence. Professor wishes
to determine whether his students are able to judge the question difficulty by
themselves. For this purpose he plans to line up his questions in such a way, that
coefficients of subsequent questions differ at least by k. Help the professor to find
such a sequence.

Input

The first and only line of the input contains two integers n and k (2 ¬ n ¬
1 000 000, 1 ¬ k ¬ n) specifying the number of questions prepared by the professor
and the lower limit of the difficulty difference of subsequent exam questions.

Output

Your program should output one line containing sought question difficulty coeffi-
cients sequence, in other words a sequence of n pairwise distinct natural numbers
ranging from 1 to n, where each two subsequent numbers differ at least by k. If
there are multiple correct answers, your program should write any one of these. In
case the sought sequence does not exist, your program should write only one word
NIE (i.e., no in Polish).

Example

For the input data:

5 2

one of the correct results is:

2 4 1 5 3

whereas for the input data:

5 4

the correct result is:

NIE

87

https://oi.edu.pl/en/archive/amppz/2013/egz

Solution

Translation in progress. . .

88

F
Speed Cameras FF
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2013/fot

The Lord Mayor of Bytetown plans to locate a number of radar speed cameras
in the city. There are n intersections in Bytetown numbered from 1 to n, and
n − 1 two-way street segments. Each of these street segments stretches between
two intersections. The street network allows getting from each intersection to any
other.

The speed cameras are to be located at the intersections (maximum one per
intersection), wherein the Lord Mayor wants to maximise the number of speed
cameras. However, in order not to aggravate Byteland motorists too much, he
decided that on every route running across Bytetown roads that does not pass
through any intersection twice there can be maximum k speed cameras (including
those on endpoints of the route). Your task is to write a program which will
determine where the speed cameras should be located.

Input

The first line of the input contains two integers n and k (1 ¬ n; k ¬ 1 000 000)
specifying the number of intersections in Bytetown and maximum number of speed
cameras which can be set up on an individual route. The n − 1 lines that follow
describe Bytetown street network: the i-th line contains two integers ai and bi
(1 ¬ ai; bi ¬ n), meaning that there is a two-way street segment which joins two
intersections numbered ai and bi.

Output

The first line of the output should produce m: the number describing the maximum
number of speed cameras, that can be set up in Bytetown. The second line should
produce a sequence of m numbers describing the intersections where the speed
cameras should be located. Should there be many solutions, your program may
output any one of them.

Example

For the input data:

5 2
1 3
2 3
3 4
4 5

one of the correct results is:

3
1 2 4

89

https://oi.edu.pl/en/archive/amppz/2013/fot

Solution

Translation in progress. . .

90

G
Marbles FFFF
Task author: Jakub Radoszewski
Solution description: Jakub Radoszewski
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/gra

Byteted and Bited decided to play marbles. There is an ever number of marbles
in the urn. Each marble has been marked by exactly one digit. The rules of the
game are very simple: the players take on random one marble each from the urn
in turns. The game ends when the urn is empty. The player who has accumulated
a set of marbles with a larger product of digits, wins.

The boys very much got to like this game. They are both very ambitious and
they really like to win, so a draw makes nobody happy. Byteted and Bited are
determined to avoid such an ending situation at all costs. Write a program which
will check if for a given initial set of marbles in the urn, the game can end up
drawn.

Input

The first line of the input contains one integer t (1 ¬ t ¬ 1000), specifying the
number of test cases to be considered.

Each of the following t lines contains ten non-negative integers k0; : : : ; k9 (0 ¬
ki ¬ 1015), where ki specifies the number of marbles marked with digit i. The sum
of the numbers ki is even and positive in each test case.

Output

Your program should produce t lines containing answers to respective test cases.
The result for each test case that can end with a draw is word TAK (i.e., yes in
Polish). In the opposite case the result should be NIE (no in Polish).

Example

For the input data:

5
0 1 0 1 1 4 1 0 5 1
0 1 1 0 3 0 0 0 0 3
1 1 0 4 0 0 2 0 0 2
100000 100000 100000 100000 100000 100000 100000 100000 100000 100000
0 99999 99999 100000 100000 100000 100000 100000 100000 100000

91

https://oi.edu.pl/en/archive/amppz/2013/gra

the correct result is:

TAK
NIE
NIE
TAK
NIE

Solution

Translation in progress. . .

92

H
The Hero FFF
Task author: Tomasz Idziaszek
Solution description: Jakub Łącki
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2013/her

Byteotheus, most famous Byteotian hero, once again emerged victorious from the
battle. While his crew are loading the ship up with the acquired valuables, in his
cabin, Byteotheus plans his way back to his homeland island — the Bitaca. It is not
an easy task. Many gods envy Byteotheus popularity among the people and gladly
would take him down a peg or two. Fortunately, some of them look favourably on
him, especially goddess Bythena. It was none other but her that sent Byteotheus
a dream last night, warning him of the dangers that he could encounter.

There are n islands on the Byteonian Sea. It will be convenient to number
those from 1 to n. Presently Byteotheus’s ship is at island 1, and its destination
is the Bitaca — island n. Some pairs of islands are joined by one-way sea routes,
although each of those islands is a start point for maximum of 10 sea routes. We
are numbering the sea routes from 1 to m; the i-th route leads from island ai to
island bi, and it takes exactly di days to cover it. In case the ship set sail on the
i-th route, starting from island ai at dawn on day j, it will reach its destination
island bi at dawn, at day j + di. The ship can stop at any island for an indefinite
period before moving on again. However, before reaching a successive island, it
cannot deviate off the set path, and sail no longer that is required to cover the
particular route. Byteotheus can start his voyage from island 1 at dawn on the
first day, at the earliest.

The goddess Bythena warning has been very precise. She provided Byteotheus
an exact list of p traps, prepared by the gods. Every trap is situated on a certain
island and is active for a certain time period. To be more precise, the i-th trap is
located on island wi and is active from day si until day ki (inclusive). The traps
are really dangerous — in case Byteotheus’s ship finds itself on an island with an
active trap, no one will survive. Luckily his homeland Bitaca is free from traps,
and no traps on the island 1 are active on the first day.

Obviously Byteotheus wants to plan his way home, to avoid all traps. He won-
ders, however, how much longer he would need for his voyage because of them.
Help him and indicate the minimum number of days necessary to safely return to
Bitaca.

Input

The first line of the input contains two integers n and m (2 ¬ n ¬ 100 000,
1 ¬ m ¬ 1 000 000) specifying the number of islands and the number of sea routes.
Subsequent m lines describe the sea routes: the i-th line contains three integers
ai, bi, di (1 ¬ ai; bi ¬ n, ai 6= bi, 1 ¬ di ¬ 109), indicating that the i-th route
leads from island ai to island bi and it takes di days. All routes are one way. Every
island is a start point for maximum of 10 sea routes.

The next line contains integer p (0 ¬ p ¬ 100 000), describing the number of
the traps. Next p lines hold the description of the traps: in the i-th line there are

93

https://oi.edu.pl/en/archive/amppz/2013/her

three integers wi, si, ki (1 ¬ wi < n, 1 ¬ si ¬ ki ¬ 109), indicating that the
i-th trap is located on the island wi and is active from day si until and including
day ki. If wi = 1, then si > 1.

Output

In case it is not possible to plan the route avoiding all the traps, the one and only
line should output word NIE (i.e., no in Polish). In the opposite case, an integer
d should be output, describing the minimum number of days required to finalise
the voyage (the ship reaches Bitaca on day d+ 1 at sunrise).

Example

For the input data:

5 6
1 2 3
1 4 13
2 3 1
2 4 2
3 2 2
4 5 1
5
1 2 4
1 8 8
2 6 7
2 10 11
4 6 7

the correct result is:

10

Explanation of the example: Byteotheus set sail from island 1 on the first day, at
sunrise. He arrives on island 2 on the fourth day. There he waits one day and starts
off for island 3. After getting there on the sixth day, he immediately turns back to
island 2, where from he travels in the direction of island 4 on the eighth day. He
arrives there on the tenth day and finally reaches Bitaca on the eleventh day.

Solution

Translation in progress. . .

94

I
Genetic Engineering FF
Task author: Tomasz Idziaszek
Solution description: Jakub Łącki
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/inz

Byteotian paleoarchaeologists recently unearthed a few pieces of amber, which
had trapped ancient mosquitoes inside. After analysing the samples of insects it
turned out that they come from the Jurassic period, and therefore likely to have
been in contact with large reptiles that dominated the Byteotian lands. This gave
geneticists a quaint idea: to try to recover byteoraptor genetic material from the
blood of mosquitoes.

Byteoraptor genome, as in all Bytean organisms, is a chain consisting of a num-
ber of byteo-aminoacids. For simplicity we denote the types of byteo-aminoacids
by natural numbers. Redundancy occurs in a genome — every type of byteo-
aminoacid is repeated k times (specifically, the length of each valid genome is a
multiple of k). In other words, if we divide the genome into blocks consisting of
subsequent k byteo-aminoacids, each block will contain byteo-aminoacids of the
same kind.

Geneticists were able to isolate a suspected chain consisting of byteo-aminoacids,
from the blood of a mosquito, being n in length. Unfortunately, the chain may not
be a valid genome — scientists suspect that it may have been contaminated by
foreign byteo-aminoacids. Presently they want to test their hypothesis and remove
the least byteo-aminoacids from that chain, such that a valid genome emerges.
In case of many equally good possibilities, the researchers are interested in the
genome that is the earliest in lexicographical order?. Your task is to help them to
make a breakthrough discovery.

Input

The first line of the input contains two integers n and k (1 ¬ n ¬ 1 000 000,
2 ¬ k ¬ 1 000 000) specifying the length of extracted chain of byteo-aminoacids
and redundancy degree of a valid genome. The second line contains a sequence of
n integers g1; : : : ; gn (1 ¬ gi ¬ 1 000 000), representing the types of subsequent
byteo-aminoacids in the chain.

Output

The output should contain two lines. The first one should contain the number m
(0 ¬ m ¬ n) specifying the length of the longest valid genome, which may arise
by removing some byteo-aminoacids from the specified chain.

The second line should contain a sequence of m numbers describing the types
of subsequent byteo-aminoacids in the valid genome. In case there are multiple

?Let l1 and l2 be two different chains of the same length, consisting of byteo-aminoacids. To
determine which one is earlier in lexicographical order, it is necessary to find the first position
where the chains differ. The chain earlier in the lexicographical order is the one which has
byteo-aminoacid marked with a lower number in this position.

95

https://oi.edu.pl/en/archive/amppz/2013/inz

solutions, your program should output the smallest lexicographically. If m = 0
(i.e. geneticists have failed to isolate any nonempty valid genome), the second line
of output should be empty.

Example

For the input data:

16 3
3 2 3 1 3 1 1 2 4 2 1 1 2 2 2 2

the correct result is:

9
1 1 1 2 2 2 2 2 2

Solution

Translation in progress. . .

96

J
Jánoš́ık F
Task author: Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/jan

Jánoš́ık, otherwise known as Robin Hood, takes from the rich to give to the poor.
Together with his gang they robbed a convoy carrying gold to the counts’ castle
and n caskets fell prey to robbers. After transporting their loot to the cave it
turned out that the i-th casket (for i = 1; 2; : : : ; n) contains exactly i money-bags
full of gold.

In case a poor man comes to Jánoš́ık asking for a few gold ducats, Jánoš́ık
utilises the following procedure. First he chooses a nonempty casket that contains
the smallest number of money-bags with gold. In case the casket contains exactly
one money-bag, Jánoš́ık hands it to the man in need, and sees him go away happily.
Otherwise, if the casket contains an odd number of money-bags, Jánoš́ık puts one
of the money-bags in his pocket, and starts the whole process again. However, in
case there is an even number of money-bags, Jánoš́ık takes exactly half of them out
and puts them in an empty casket (luckily the empty caskets are plentiful in the
cave) and begins the whole procedure anew. Therefore if a penniless man comes
to Jánoš́ık, and in case he still will be in a possession of at least one nonempty
casket, as a result of (possibly multiple) employment of Jánoš́ık’s procedure, the
poor man is sure to get a money-bag full of gold. The poor would come to the
Jánoš́ık’s cave until all the caskets are empty.

Fellow robbers from Jánoš́ık’s gang wonder if their leader does not ruin the
good name of thugs with his behaviour. They want to know how many looted
money-bags remain in Jánoš́ık’s pocket when all the caskets are empty.

Input

The first and only line of the input contains one integer n (1 ¬ n ¬ 109) specifying
the number of caskets robbed by Jánoš́ık’s gang.

Output

The first and only line of output should contain an integer representing the number
of money-bags, which will remain in Jánoš́ık’s pocket after emptying all the caskets.

Example

For the input data:

5

the correct result is:

2

97

https://oi.edu.pl/en/archive/amppz/2013/jan

Solution

Translation in progress. . .

98

K
Blankets FFF
Task author: Jakub Łącki
Solution description: Eryk Kopczyński
Available memory: 128 MB
https://oi.edu.pl/en/archive/amppz/2013/koc

This summer, Byteburg citizens are turning out in droves at the city beach down
by the Byteotian Lake to experience the joy of sunbathing. Every Byteburg citizen
arrives at the beach equipped with the blanket manufactured by Byteasar & Son,
the trendiest this season. All blankets are of equal size a× b (although of different
patterns), and each sunbather sets out his or her blanket in such a way that its
longer side is always perpendicular to the lake.

One of this year’s sunbathers is professor Byteoni. After a few days of sun-
bathing professor noticed, that all the people who come to the beach always set
out their blankets in their own favourite individual places. Although people come
to the beach and leave it at different times, the professor never heard that any
sunbather had taken over somebody else’s favourite place by putting the blanket
there. This observation made the professor so curious, he decided to study this
phenomenon.

For that purpose he set a coordinate system on the beach, and for every of the
n Byteburgians noted down the coordinates of each of the spots where individual
citizens always put their blankets. The system is devised in such a way that the
OX-axis is parallel to a sides, and the OY-axis to b sides of all of the blankets. The
professor initially wanted to calculate the area of intersection of the areas occupied
by the blankets for each pair of them. But then he realized that it is enough for
further research that he has only the average of these values. In other words, he
is interested in the expected value of the area of intersection of the fields occupied
by blankets belonging to two different random people of Byteburg. Using the data
provided by the professor, help him do the calculation.

Input

The first line of the input contains three integers n, a and b (2 ¬ n ¬ 200 000,
1 ¬ a; b ¬ 1 000 000) specifying the number of Byteburg inhabitants and the sizes
of the blankets, respectively. Each of the subsequent n lines contains two integers
xi and yi (0 ¬ xi; yi ¬ 1 000 000) indicating the coordinates of the point where
the i-th Byteburg citizen always puts the lower left corner of his or her blanket.

Output

Your program should print one real number: the average area of intersection of the
areas occupied by the blankets belonging to pairs of Byteburg inhabitants. Your
result will be deemed valid if it is in the range [x− "; x+ "], where x is the correct
answer and " = 10−2.

99

https://oi.edu.pl/en/archive/amppz/2013/koc

Example

For the input data:

4 3 5
0 0
2 1
3 3
0 5

the correct result is:

1.833333333

Explanation of the example: The exact result is 4+0+0+1+6+0

6
= 1 5

6
:

Solution

Translation in progress. . .

100

2014
19th Polish Collegiate Programming Contest

Warsaw, October 24–26, 2014

A
The Lawyer F
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/adw

Byteasar is an advocate, co-owner of the law firm Byteasar & Associates. He is
one of the most sought-after members of the Byteotian Bar. Not surprisingly, he
is always extremely busy. Every day he is involved in a number of meetings and
has long since ceased to control whether he will be able to participate in all of
them. Therefore he has hired a secretary, whose job is to help him to control this
chaos. Byteasar decided that every day he will be taking part in two meetings only,
however his participation would be complete, that is, from the very beginning to
the very end. The remaining meetings will be taken care of by assistants, who are
quite plentiful at Byteasar’s office.

Unfortunately, it is sometimes difficult even to find two meetings which do not
overlap in Byteasar’s busy schedule. We assume that two meetings do not over-
lap, if one of them starts strictly after the previous has finished. Help Byteasar’s
secretary and write a program that can deal with this problem.

Input

The first line of the input contains two integers n and m (2 ¬ n ¬ 500 000,
1 ¬ m ¬ 20) specifying the number of meetings in Byteasar’s schedule and the
number of days included in it.

Each of the next n lines describes one meeting. Description of the meeting
consists of three integers ai; bi; di (1 ¬ ai < bi ¬ 80 000 000, 1 ¬ di ¬ m) which
indicate that on the day di Byteasar has a meeting scheduled that starts exactly
ai milliseconds after midnight and ends bi milliseconds after midnight.

Output

Your program should output m lines. The i-th of these lines should contain infor-
mation, whether Byteasar is able to attend two meetings on the i-th day. In case
it is not possible, one word NIE (i.e., no in Polish) should be produced. Otherwise,
the word TAK (yes in Polish) should be output, followed by the numbers of the two
meetings in which Byteasar can participate. Meetings are numbered from 1 to n,
in accordance to their order at the input. The first of these two meetings should
start earlier. The second meeting should start at least a millisecond after the first
one is finished.

If there are multiple correct answers, your program should output any one of
them.

103

https://oi.edu.pl/en/archive/amppz/2014/adw

Example

For the input data:

6 3
3 5 1
2 4 2
1 8 1
6 7 3
3 5 2
7 12 1

the correct result is:

TAK 1 6
NIE
NIE

Solution

Translation in progress. . .

104

B
Petrol FFF
Task author: Jakub Łącki
Solution description: Adam Karczmarz
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/ben

Byteasar is employed in the logistics department of Byteonian petroleum giant
Byteoil. His job is to plan fuel deliveries to petrol stations.

There are n intersections in Byteotia (marked by numbers from 1 to n) and m
two-way roads connecting certain pairs of intersections. There are Byteoil petrol
stations located at some intersections.

Byteoil transport fleet consists of petrol tankers with various capacities of fuel
tanks. Each tanker consumes 1 litre of petrol per kilometre of distance travelled. It
can therefore be assumed that a tanker having tank capacity of b litres can cover a
maximum distance of b kilometres without the need to refuel. Drivers cannot use
the fuel carried by the tanker in the main tank, however they can refuel at any
Byteoil petrol stations free of charge.

Byteasar’s work consists of repeatedly answering the following queries: Is a
petrol tanker with a fuel tank of capacity of b litres capable of covering the distance
from a petrol station located at the intersection x to a petrol station located at
the intersection y? Tanker with a fuel tank of capacity of b litres cannot cover a
distance of more than b kilometres, during which there will be no Byteoil petrol
station. Tankers starting point is always located at an intersection where Byteoil
petrol station is present, and also all the trips end at an intersection with Byteoil
petrol station.

Help Byteasar to provide an automated reply to his logistic queries.

Input

The first line of the input contains three integers n, s and m (2 ¬ s ¬ n ¬ 200 000,
1 ¬ m ¬ 200 000), specifying the number of intersections, the number of petrol
stations and the number of roads in Byteotia, respectively. The second line contains
a sequence of s pairwise distinct integers c1; c2; : : : ; cs (1 ¬ ci ¬ n), specifying the
intersections where Byteoil stations are located.

The next m lines describe the roads in Byteotia; the i-th of these lines contains
three integers ui, vi and di (1 ¬ ui; vi ¬ n, ui 6= vi, 1 ¬ di ¬ 10 000), indicating
that the i-th road has a length of di kilometres and connects the intersection ui
with the intersection vi. Each pair of intersections is connected by at most one
road.

The next line contains one integer q (1 ¬ q ¬ 200 000), specifying the number
of queries. The consecutive q lines hold the descriptions of queries; the i-th of these
lines contains three integers xi, yi and bi (1 ¬ xi; yi ¬ n, xi 6= yi, 1 ¬ bi ¬ 2 · 109)
indicating query concerning the possibility of a tanker with a capacity of bi litres
to cover the distance from a petrol station at the intersection xi to the station at
the intersection of yi. It can be assumed that at both intersections xi, yi Byteoil
petrol stations are located.

105

https://oi.edu.pl/en/archive/amppz/2014/ben

Output

Your program should output exactly q lines. The i-th of these lines should contain
one word TAK (i.e., yes) or NIE (i.e., no), depending on whether the tanker with
a fuel tank with a capacity of bi is able to travel from the intersection xi to the
intersection yi.

Example

For the input data:

6 4 5
1 5 2 6
1 3 1
2 3 2
3 4 3
4 5 5
6 4 5
4
1 2 4
2 6 9
1 5 9
6 5 8

the correct result is:

TAK
TAK
TAK
NIE

Solution

Translation in progress. . .

106

C
The Prices FF
Task author: Jakub Radoszewski
Solution description: Jakub Radoszewski
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/cen

Byteasar works as a purchasing manager at one of Byteotian restaurants. Every
evening he receives a shopping list from his manager. Food products must be
purchased the next day, in the morning. Byteasar should buy exactly one piece of
each product from the list. Manager is always pressing that the total costs are as
little as possible.

Byteasar sits down in the evening with his computer and checks the prices of
all needed products at local grocery wholesalers. He also knows the cost of the
trips from the restaurant to each wholesale and back. Now Byteasar must decide
which products are to be purchased at each of the warehouses.

For each wholesale, where Byteasar decided to buy some products, he does as
follows. He goes from the restaurant to the warehouse, does the shopping, and im-
mediately brings the purchased products back to the restaurant. Luckily, the boot
of his car is big enough that it eliminates the need to visit any of the warehouses
more than once, as all the purchased goods can be delivered in one go. Food prod-
ucts are highly perishable, so during one trip Byteasar can make purchases only
at one warehouse.

Write a program that will help Byteasar to calculate the cheapest way of making
all the purchases.

Input

The first line of the input contains two integers n and m (1 ¬ n ¬ 100, 1 ¬
m ¬ 16) specifying the number of wholesalers and the number of products that
Byteasar should buy. Next n lines contain descriptions of the prices at individual
wholesalers.

The first number in the i-th of these lines, di (1 ¬ di ¬ 1 000 000), describes
the trip cost from the restaurant to the i-th warehouse (including the return cost).
It is followed by a sequence of m integers ci;1; ci;2; : : : ; ci;m (1 ¬ ci;j ¬ 1 000 000):
number ci;j specifies the price of j-th product in the i-th warehouse.

Output

Your program should output a single line containing a single integer: the sum of
the product prices and the cost of the trips to warehouses selected by Byteasar in
the cheapest possible purchase plan.

107

https://oi.edu.pl/en/archive/amppz/2014/cen

Example

For the input data:

3 4
5 7 3 7 9
2 1 20 3 2
8 1 20 1 1

the correct result is:

16

Explanation of the example: Byteasar buys the product number 2 in the first
warehouse, and all the other products in the second one. So he does not have to
visit the third warehouse.

Solution

Translation in progress. . .

108

D
Divisors F
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/dzi

You are given a sequence of n integers a1; a2; : : : ; an. You should determine the
number of such ordered pairs (i; j), that i; j ∈ {1; : : : ; n}, i 6= j and ai is a divisor
of aj .

Input

The first line of the input contains one integer n (1 ¬ n ¬ 2 000 000). The second
line contains a sequence of n integers a1; a2; : : : ; an (1 ¬ ai ¬ 2 000 000).

Output

The first and only line of the output should contain one integer: the number of
pairs sought.

Example

For the input data:

5
2 4 5 2 6

the correct result is:

6

Explanation of the example: There are 6 pairs with the specified properties: (1; 2),
(1; 4), (1; 5), (4; 1), (4; 2), (4; 5).

Solution

Translation in progress. . .

109

https://oi.edu.pl/en/archive/amppz/2014/dzi

E
Euclidean Nim FF
Task author: Tomasz Idziaszek
Solution description: Adam Karczmarz
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/euk

Euclid and Pythagoras are pseudonyms of two Byteotians known for their love
of mathematical puzzles. Lately, they spend evenings playing the following game.
There is a heap of n stones on the table. Friends perform alternating moves.
Euclid’s move consists of taking any positive multiple of p stones from the heap
(providing the heap contains at least p stones) or adding exactly p stones to the
heap — adding the stones is possible, however, only in case the heap contains
less than p stones. Pythagoras’ move is analogous, except that either he takes a
multiple of q stones, or adds exactly q stones. The winner is the player who empties
the heap. Euclid begins the game.

Friends wonder whether they have worked out this game perfectly. Help them
and write a program that will state what should be the result of the game, pro-
viding both players are making optimal moves.

Input

The first line of the input contains one integer t (1 ¬ t ¬ 1000) specifying the
number of test cases described in the following part of the input. Description of one
test case consists of one line containing three integers p, q and n (1 ¬ p; q; n ¬ 109).

Output

The output should include exactly t lines containing answers to the subsequent
test cases from the input. The answer should be one letter E (if Euclid could bring
about his victory, regardless of the Pythagoras’ movements), P (if Pythagoras could
bring about his victory, regardless of Euclid’s moves) or R (for remis, i.e. draw in
Polish, if the game will be played infinitely).

Example

For the input data:

4
3 2 1
2 3 1
3 4 5
2 4 3

the correct result is:

P
P
E
R

Explanation of the example: In the game from the first test case Euclid must add
three stones to the heap in his move. Thanks to that Pythagoras can collect all 4
stones in his move and thus win.

110

https://oi.edu.pl/en/archive/amppz/2014/euk

Solution

Translation in progress. . .

111

F
Pillars FFFF
Task authors: Jakub Radoszewski, Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/fil

Byteasar is the administrating manager at a large warehouse. Anticipating a severe
winter, he decided to install underfloor heating system in the warehouse.

The plan of the warehouse is a rectangle of even dimensions n×m divided into
unit squares. Most of the unit squares comprise warehouse space, but some of them
are occupied by massive pillars providing additional constructional support for the
warehouse structure. Each pillar occupies a square 2 × 2 on the warehouse plan,
composed of unit squares. Pillars are not arranged too densely — centers of any
two of them are located at least 6 units away (in Euclidean metric). Additionally,
the centre of each pillar is located at least 3 units away from each of the outer
warehouse walls.

Heating will be accomplished by using one heating pipe installed under the
floor of the warehouse. The pipe is to run through the centres of all unit squares
except the unit squares occupied by pillars. Each pipe section must run parallel
to one of the walls of the hall and the turns could be located only at the centres
of the unit squares. The pipe must begin and end in the same place. At this point
the cold water would be discharged outside and hot water fed into the pipe.

Byteasar has asked you to plan the pipe layout in the warehouse. To help you,
he introduced Cartesian coordinate system onto the warehouse plan, where the
abscissae belong to the interval [0; n], and ordinates to the interval [0;m]. The
coordinates of the centres of all unit squares are numbers in the form k + 1

2
for

k ∈ N.

Input

The first line of the input contains three integers n, m and f (1 ¬ n;m ¬ 1000
and n and m are even) indicating the warehouse dimensions and the number of
the pillars. Each of the next f lines contains two integers xi and yi (0 ¬ xi ¬ n,
0 ¬ yi ¬ m) specifying the coordinates of the centre of the i-th pillar.

Output

In the first line of the output your program should produce one word TAK (i.e., yes)
or NIE (i.e., no) depending on whether the implementation of floor heating in line
with Byteasar’s requirements is achievable, or not. In case the answer is TAK, the
second line should contain a description of the exemplary plan of the pipe layout
in the form of a string of nm− 4f letters. We agree to assume that the beginning
of the pipe is located at the point with the coordinates (1

2
; 1
2
). Following parts of

the pipe are marked as follows: transition by the vector [0; 1] is denoted by a letter
G, by the vector [0;−1] is denoted by D, by the vector [1; 0] is denoted by P, and
by the vector [−1; 0] is denoted by L. In case there are multiple correct answers,
your program should output any of them.

112

https://oi.edu.pl/en/archive/amppz/2014/fil

Example

For the input data:

12 6 2
3 3
9 3

the correct result is:

TAK
PPPPPPPPPPPGGGLDDLLLLLGPPGLLLDDLLLGGGPPPPPPPPPPGLLLLLLLLLLLDDDDD

Example output corresponds to the following figure:

Solution

Translation in progress. . .

113

G
Global Warming FFF
Task authors: Jacek Tomasiewicz, Tomasz Idziaszek
Solution description: Tomasz Idziaszek
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/glo

Professor Byteoni prepares a report for Interbyteotian Commission for Climate
Change. This report should demonstrate clearly, unambiguously, and without any
doubt, the impact of Byteotian population on climate changes in the region. Al-
though the professor has a lot of empirical data, but to pervade the mainstream
media, it not enough to present substantive arguments. Equally important is to
present data clearly and correctly targeted. To this end, he wants to select the data,
to be presented on the main chart in the report, thoughtfully and in a deliberate
way.

The key graph will contain information about the average air temperature
throughout the years. The professor has data available concerning the mean an-
nual temperatures for the last n years. He wants to describe this graph using the
following comment: “in the year rmin the temperature was the lowest, and in the
year rmax it was the highest, therefore, it is clear that. . . ”. Unfortunately, he fears
that the same minimum or maximum temperature can occur several times through-
out this period, and therefore such information could undermine the strength of
his statement.

The professor has therefore decided to present only part of the data on his chart.
His idea is to select the year range in such a way that this interval will include
exactly one year with a minimum temperature within that range and exactly one
year with a maximum temperature also within that range. The selected range may
not include the year with the globally maximum or minimum average temperature
in the last n years (or none of them). Of course, the professor would like to put as
much data as possible on this chart, so he is interested in the longest year span.

Input

The first line of the input contains one integer n (1 ¬ n ¬ 500 000), specifying
the number of years for which the professor knows the average temperatures. The
second line contains a sequence of n integers t1; t2; : : : ; tn (−109 ¬ ti ¬ 109). The
number ti specifies the average temperature in the i-th year.

Output

The output should contain two integers l and k. They indicate that the longest
interval satisfying the professor’s conditions is of length of l years, and the earliest
year in which such an interval may begin is k.

114

https://oi.edu.pl/en/archive/amppz/2014/glo

Example

For the input data:

10
8 3 2 5 2 3 4 6 3 6

the correct result is:

6 4

Explanation of the example: The chart will present temperatures 5, 2, 3, 4, 6, 3.
This interval contains exactly one year with a minimum temperature of 2 and one
year with a maximum temperature of 6.

Solution

Translation in progress. . .

115

H
Hit of the Season FFFF
Authors: Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń
Solution description: Tomasz Kociumaka
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/hit

Byteotian Printing Factory (BPF) has received a large production order for striped
wallpaper. Striped wallpaper is the hit of the season in interior design. Each wall-
paper has n equal width vertical stripes colored red, green and blue. BPF is to
take care of the design and printing of wallpapers. The customer has described the
color of certain wallpaper stripes; for the remaining stripes, the customer allowed
BPF a complete freedom.

BPF uses matrices to print a certain number of consecutive stripes on the
wallpaper. The matrix has a specific color of each of the printed stripes. The matrix
may be shorter than the entire wallpaper. With each application, the matrix stripes
must match and overlay the wallpaper stripes; then printing of all the matrix
stripes takes place. In this way, a single wallpaper stripe can be printed over more
than once. In case a given stripe is printed over using different colors, the final
color is a blend of these colors. The matrix prints only in one orientation and must
not in any way be rotated.

BPF employees, irrespective of their sense of aesthetics, would primarily like
to design the shortest possible matrix that will allow printing the entire wallpaper.
They must bear in mind that in the case of stripes defined by the customer they
must use pure color, without any addition of any other color. In other words, for
each matrix application printing over such a single-color stripe, the matrix stripe
color must be exactly as defined by the client. No stripe on the wallpaper can
remain colorless.

Input

The first line of the input contains one integer t (1 ¬ t ¬ 10) specifying the
number of test cases. Each of the next t lines describes a single test case and
contains a string of upper-case letters R, G, B and asterisks (*), specifying the
desired wallpaper appearance. The letters specify the color of the stripes, and the
asterisks mark the stripes, the color of which has not been specified by the client.
A string is not empty, it consists of a maximum of 3000 characters and contains
at most 19 asterisks.

Output

For each of the test cases your program should output one line containing a string
of characters R, G, B: minimum length matrix that allows printing the desired
wallpaper. If for a given test case, there are many correct solutions, your program
should output any of them.

116

https://oi.edu.pl/en/archive/amppz/2014/hit

Example

For the input data:

1
RRG*R*BRR**B

the correct result is:

RRGB

Solution

Translation in progress. . .

117

I
The Staging FFFF
Task author: Adam Karczmarz
Solution description: Adam Karczmarz
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/ins

Steven Byteberg is a movie director, specialising in action movies. Presently he is
working on a new movie, whose theme is Byteonian Mafia wars. Byteberg won-
ders what should be the final shape of the movie climax scenes, which will be a
spectacular gunfire exchange.

There are n gangsters participating in this scene, numbered, for simplicity,
using consecutive numbers from 1 to n. When the tension reaches its critical point,
each gangster pulls out his weapon and takes aim at another gangster. Nobody
gets aimed at by more than one gangster. Gangsters are poor, but well trained —
each can shoot only once, however this shot is always accurate and always deadly.

At some point, one of the thugs cannot withstand the tension any longer and
the shooting starts.

The director has determined the initial order in which gangsters have to pull
the triggers. Namely, the gangster i shoots towards the gangster pi at the precise
moment ti, unless gangster i already has been killed by that time. The gangster
is killed exactly at the same moment when someone shoots in his direction.

The director would like to know how many gangsters will be alive at the end
of this scene. Byteberg is not yet completely certain concerning the order in which
the gangsters have to shoot. From time to time he commands to change one of the
values ti. After every such change he would like to know the number of gangsters
who would survive, referring to the new order in which gangsters shoot (taking
into account all changes made so far).

Input

The first line of the input contains one integer n (2 ¬ n ¬ 200 000), specifying
the number of gangsters involved in the scene. The second line contains n integers
p1; p2; : : : ; pn (1 ¬ pi ¬ n, pi 6= i, pi 6= pj for i 6= j) describing whom successive
gangsters intend to shoot at.

The third line contains n integers u1; u2; : : : ; un (1 ¬ ui ¬ 109), describing the
initial order in which the gangsters are shooting: the initial value ti is equal to ui.

The fourth line contains one integer q (0 ¬ q ¬ 200 000), specifying the number
of the changes of the values of t1; : : : ; tn as planned by Byteberg. Next q lines
contain a description of these changes. The i-th line contains two integers ki and
vi (1 ¬ ki ¬ n; 1 ¬ vi ¬ 109), describing that the i-th change consists in setting
the value of tki to vi. Numbers u1; u2; : : : ; un; v1; v2; : : : ; vq are pairwise distinct.

118

https://oi.edu.pl/en/archive/amppz/2014/ins

Output

Your program should produce exactly q + 1 lines. The first line should contain
the number of gangsters who survive the shooting, assuming the initial order of
shooting. The i-th of the following q lines should present the number of survived
gangsters, assuming that the order of shooting is determined by the sequence
t1; : : : ; tn after performing all the changes from the first to the i-th.

Example

For the input data:

4
2 3 4 1
1 2 3 4
3
1 8
2 7
3 6

the correct result is:

2
2
1
1

Solution

Translation in progress. . .

119

J
The Cave FFF
Task author: Tomasz Idziaszek
Solution description: Jakub Łącki
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/jas

A group of speleologists plans to explore a recently discovered cave. The cave
consists of n chambers numbered from 1 to n. The chambers are connected by
n − 1 corridors in such a way that any chamber can be reached from any other.
Each corridor connects exactly two chambers.

The cave will be explored by a group of m speleologists; for simplicity we num-
ber them by integers from 1 to m. Each speleologist presented some requirements
concerning the area of the cave which he or she would like to explore. Speleologist i
would like to begin the exploration in chamber ai, finish exploring in chamber bi
and traverse a maximum of di corridors on the way (passing the same corridor each
time is to be counted separately). Byteasar, head of the expedition, would like all
the researchers to be able to meet at a certain point in time in order to exchange
their observations. For this reason, he is wondering whether he could choose one
of the chambers of the cave, and plan the routes of all the speleologists in such
a way, that they all pass through the selected chamber. Of course planned routes
must meet the requirements described initially by the researchers.

Input

The first line of the input contains one integer t (1 ¬ t ¬ 1000) that specifies
the number of test cases. It is followed by the descriptions of the individual cases.
Description of a single case begins with a line including two integers n and m
(2 ¬ n;m ¬ 300 000), which describe the number of chambers in the cave and
the number of speleologists, respectively. The next n − 1 lines describe the cave
corridors. Each of them contains two integers ui, wi (1 ¬ ui; wi ¬ n), which
indicate that chambers ui and wi are connected by a direct corridor.

Next m lines describe the speleologists’ requirements. The i-th of these lines
contains three integers ai, bi, di (1 ¬ ai; bi ¬ n, 1 ¬ di ¬ 600 000). They indicate
that the speleologist i will begin by starting to explore chamber ai, finish in cham-
ber bi, and moving between chambers passes through at most di corridors. You
may always assume that it is possible to move from chamber ai to bi traversing
not more than di corridors. Both the sum of values n for all the test cases, as well
as the total value of m does not exceed 300 000.

Output

Your program should output exactly t lines. The i-th line should contain the answer
to the i-th test case from the input. In case it is possible to set speleologists’ routes
is such a manner, so that they all run through one common chamber, one word TAK
(i.e., yes in Polish) should be produced, followed by the number of the chamber
where the meeting is to take place. Otherwise, your program should output only

120

https://oi.edu.pl/en/archive/amppz/2014/jas

one word NIE (no in Polish). If there are multiple correct answers, your program
should output any of them.

Example

For the input data:

2
5 3
1 2
2 3
2 4
3 5
1 4 2
5 5 5
3 2 1
3 2
1 2
2 3
1 1 2
3 3 1

the correct result is:

TAK 2
NIE

Solution

Translation in progress. . .

121

K
The Captain FF
Task author: Jakub Łącki
Solution description: Jakub Łącki
Available memory: 256 MB
https://oi.edu.pl/en/archive/amppz/2014/kap

Captain Byteasar sails the waters of Byteic Sea together with his irreplaceable First
Officer Bytec. There are n islands in the Byteic Sea, which we numbered from 1
to n. Captain’s ship has docked at the island number 1. Captain’s expedition plan
is to sail to the island number n.

During the voyage, the ship always moves in one of four directions of the world:
north, south, east, or west. At any time it is either the Captain or the First Officer
standing at the helm. Every time the ship will perform 90◦ turn, they would change
at the helm.

Along its way, the vessel may stop at other islands. After each stop, the Captain
can decide whether he takes control of the helm first, or not. In other words, for
each route leg, leading from an island to another one, one of the sailors stands
at the helm while the ship is travelling north or south, and the other controls it
while it is moving east or west. In particular, if a given fragment of the route runs
exactly in one of the four directions of the world, the ship is controlled by only
one of the sailors.

The captain is now considering how to plan a route of the forthcoming voyage
and how to divide labour in such a way to spend as little time at the helm. At the
same time the Captain does not care how long the calculated route would be. It
is assumed that the vessel is sailing at a constant rate of one unit per hour.

Input

The first line of the input contains a single integer n (2 ¬ n ¬ 200 000) specifying
the number of islands in the sea. For simplicity, we introduce a coordinate system
onto Byteic Sea with axes parallel to the directions of the world. Every island is
represented as a single point. Subsequent n lines contain descriptions of the islands:
the i-th line contains two integers xi, yi (0 ¬ xi; yi ¬ 1 000 000 000) specifying the
coordinates of the i-th island in the sea. Each island bears different coordinates.

Output

Your program should output a single integer: the least number of hours the Captain
will have to steer the ship on the route from the island number 1 to the island
number n.

122

https://oi.edu.pl/en/archive/amppz/2014/kap

Example

For the input data:

5
2 2
1 1
4 5
7 1
6 7

the correct result is:

2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Explanation of the example: The Captain may designate a route that is indicated
in the figure. During the voyage from island 1 (of coordinates (2; 2)) to island 4
(of coordinates (7; 1)) the Captain controls the ship only for an hour, while the
ship is sailing south. During the second leg of the trip the Captain controls the
vessel only when it is moving east.

Solution

Translation in progress. . .

123

Literature
L. Banachowski, K. Diks, W. Rytter, Algorytmy i struktury danych.

WN PWN, Warsaw, 2019

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
Introduction to Algorithms. The MIT Press, 2009

R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics.
Addison-Wesley Professional, 1994

P. Stańczyk, Algorytmika praktyczna. Nie tylko d la mistrzów.
WN PWN, Warsaw, 2009

Looking for a Chal lenge? The Ultimate Problem Set from the University
of Warsaw Programming Competitions. K. Diks, T. Idziaszek,
J. Łącki, J. Radoszewski (red.). WN PWN, Warsaw, 2018

Przygody Bajtazara. 25 lat Olimpiady Informatycznej – wybór zadań.
K. Diks, T. Idziaszek, J. Łącki, J. Radoszewski (red.).
WN PWN, Warsaw, 2018

Netography

deltami.edu.pl — web page of the popular science monthly Delta

oi.edu.pl — “blue books” from the Polish Olympiad in Informatics

was.zaa.mimuw.edu.pl — practical algorithms video courses

The descriptions of problems Arithmetic Rectangle, Speed Cameras and Pil lars were based on
articles in the popular science monthly Delta (from issues 3/2012, 1/2015 and 3/2015, respec-
tively). The descriptions of problems Ants and Afternoon Tea were taken from the book Looking
for a Chal lenge?

Contents

2011
Arithmetic Rectangle FFF · · · · · 3
Bytean Road Race FFFF · · · · · 9
Will It Stop? F · · · · · · · · · · · · · · · · 16
Ants FFFF · · · · · · · · · · · · · · · · · · 19
Gophers FF · · · · · · · · · · · · · · · · · · · 23
Laundry FF · · · · · · · · · · · · · · · · · · 26
Bits Generator FFFF · · · · · · · · 30
Afternoon Tea F · · · · · · · · · · · · · · · 36
Intelligence Quotient FFF · · · · 39
Cave FFF · 45
Cross Spider FF · · · · · · · · · · · · · · 49

2013
The Motorway FFF · · · · · · · · · · 79
Bytehattan FFF · · · · · · · · · · · · · · 81
The Carpenter FFFF · · · · · · · · 83
Demonstrations FF · · · · · · · · · · · 85
The Exam F · · · · · · · · · · · · · · · · · · · 87
Speed Cameras FF · · · · · · · · · · · · 89
Marbles FFFF · · · · · · · · · · · · · · · 91
The Hero FFF · · · · · · · · · · · · · · · 93
Genetic Engineering FF · · · · · · · 95
Jánoš́ık F · 97
Blankets FFF · · · · · · · · · · · · · · · · 99

.

2012
Vending Machine FFF · · · · · · · · 55
Bus Trip FFF · · · · · · · · · · · · · · · · 57
Sequence FF · · · · · · · · · · · · · · · · · · 59
DNA FF · 60
Evaluation of an Expression FFFF 62
Formula One FFFF · · · · · · · · · · 64
Save the Dinosaurs FFFF · · · · 66
Hydra FF · 68
Inversions F · · · · · · · · · · · · · · · · · · · 70
Do It Tomorrow F · · · · · · · · · · · · · 72
Rabbits FFF · · · · · · · · · · · · · · · · · 74

2014
The Lawyer F · · · · · · · · · · · · · · · · 103
Petrol FFF · · · · · · · · · · · · · · · · · · 105
The Prices FF · · · · · · · · · · · · · · · 107
Divisors F · 109
Euclidean Nim FF · · · · · · · · · · · 110
Pillars FFFF · · · · · · · · · · · · · · · 112
Global Warming FFF · · · · · · · · 114
Hit of the Season FFFF · · · · · 116
The Staging FFFF · · · · · · · · · · 118
The Cave FFF · · · · · · · · · · · · · · 120
The Captain FF · · · · · · · · · · · · · 122

	Introduction
	About programming competitions
	2011
	Arithmetic Rectangle
	Bytean Road Race
	Will It Stop?
	Ants
	Gophers
	Laundry
	Bits Generator
	Afternoon Tea
	Intelligence Quotient
	Cave
	Cross Spider

	2012
	Vending Machine
	Bus Trip
	Sequence
	DNA
	Evaluation of an Expression
	Formula One
	Save the Dinosaurs
	Hydra
	Inversions
	Do It Tomorrow
	Rabbits

	2013
	The Motorway
	Bytehattan
	The Carpenter
	Demonstrations
	The Exam
	Speed Cameras
	Marbles
	The Hero
	Genetic Engineering
	Jánošík
	Blankets

	2014
	The Lawyer
	Petrol
	The Prices
	Divisors
	Euclidean Nim
	Pillars
	Global Warming
	Hit of the Season
	The Staging
	The Cave
	The Captain

	Literature
	Contents

