Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 8

1. See the solution to Problem 41 in Chapter 7.

2. Let P, denote the set of permutations of the multiset {n - 1,n-—1}. Let M, denote the
set of 2 X n arrays

i1 L2 "0 Tin

T21 T22 -t Ton
containing 1,2, ...,2n such that

T11 < T12 < -+ < Tip, Tol < Toz <+ -+ < Top.

Given a permutation aqas - - - as, in P,, we represent this permutation by an array in M, as
follows. Define the sets

Ry = {jl1 <j <2n, a; =1}, Ry ={jll <j<2n, a;=—1}.

Row 1 (resp. row 2) of the array consists of the elements of R; (resp. Rs), listed in increas-
ing order. The above representations give a bijection P, — M,. Now for a permutation
aias - - - aoy, in P, consider the corresponding array in M,,. The following are equivalent:

(i) the partial sum a1 +as+ -+ a; > 0 for 1 <i < 2n;
(ii) for 1 <4 < n the ith 1 comes before the ith —1 in the sequence ajas - - - agy;
(iii) for 1 <i < mn the (1,7)-entry of the array is less than the (2,4)-entry of the array.

The Catalan number C,, counts the number of permutations ajas - - - as, in P, that satisfy
(i). Therefore C), counts the number of arrays in M, that satisfy (iii). The result follows.

3. The multiplication schemes are

(((ab)e)d),  ((ab)(cd)),  ((albe))d), — (a((be)d)),  (a(bled))).

These are in bijection with the triangular decompositions of a convex 5-gon. The bijection
is described as follows. Pick an edge of the 5-gon, and label the remaining edges clockwise
a, b, ¢, d. Given one of the above multiplication schemes, attach diagonals to the 5-gon as
guided by the parenthesis. The result is a triangular decomposition of the 5-gon.

4. These are readily drawn.

5. We modify the reflection principle discussed in Section 8.1. We first reformulate the
problem in terms of +1 sequences. Let S denote the set of permutations of the multiset



{n-1,m-—1}. Let A denote the set of permutations ajas - - - @y, n, in S such that the partial
suma; +---+a; >0 for 1 <i<m-+n. Weshow

n—m+1/m+n
()

n—+1 m

Assume that m > 1; otherwise the result is trivial. Note that

n—-—m-+1l/m+n _(m+n B m-+n
n+1 m N m m—1/

Let U denote the complement of A in S, so that |S| = |A| + |U|. We show

m-+n
|w—(m_J.

Let T' denote the set of permutations of the multiset {(n 4 1) -1, (m — 1) - —1}. Observe

m-+n
- (7

We now display a bijection f : U — T. Given a permutation ajas--- @y, in U, this
permuation has at least one negative partial sum. Pick the minimal k such that the kth
partial sum is negative. Note that £ is odd and ay = —1. Moreover the sequence ajas - - - ap_1
has (k—1)/2 I's and (k —1)/2 —1’s. Define a sequence bybs - - « b, 1, such that b; = —a; for
1 <i<kandb =a; for k+1<i<m+n. For the sequence b1bs - - - b,,.,, the number of
I’s and —1’s is n + 1 and m — 1, respectively. Therefore this sequence is in T'. This gives
a function f : U — T'. By construction f is injective. We now check that f is surjective.
Consider a permutation bibs - - - b1, in T. For this permutation the number of 1’s and
—1’sis n+ 1 and m — 1 respectively. Therefore the last partial sum n+ 1 — (m — 1) = 2.
Consequently byby - - - b, 1, has at least one positive partial sum. Pick the minimal k& such
that the kth partial sum is positive. Note that k is odd and by = 1. Moreover the sequence
biby - br_1 has (k —1)/2 1's and (k — 1)/2 —1’s. Define a sequence ajas - - @y, such
that a; = —b; for 1 < i < kand a; = b; for K+ 1 < i < m + n. For the sequence
a1as - -+ Ay, the number of 1’s and —1’s is n and m respectively. Moreover the kth partial
sum is —1. Therefore ayas - - - a1y, is contained in U. By construction f sends ajas -« pmin
to b1by - -+ byyn. Therefore f is surjective. We have shown that f : U — T is a bijection, so
|U| = |T|. Now

m+n m+n n—m+1/m+n
Al =181 W =18~ 171 = ("0 < (M) < R (e,

m—1 n+1 m

6. The difference table is

3 4 9 18 31 48 69
1 5 9 13 17 21
4 4 4 4 4 4
00 0 0 0



From the diagonal sequence 3,1,4,0, ... we see that

n n n
n — 1 4 = ,1,2,...
h 3(O)+ (1>+ (2> n=20

- 1 1 1
th:za(”T )+1("‘£ )+4(”‘3F > n=01,2 ...

k=0

Therefore

7. The difference table is

1 -1 3 10
-2 4 7
6 3

From the diagonal sequence 1,—-2,6,—3,0,0,... we find

n n n n
hn_(o)—2<1)+6<2)—3(3> n=0.12,
Therefore
u 1 1 1 1
th—("JF )—2("+ )+6(”+ >—3<”+ ) n=012,...
prt 1 2 3 4

8. For the sequence {n’°}°°, the difference table is

0 1 32 243 1024 3125
1 31 211 781 2101
30 180 570 1320
150 390 750
240 360
120
0

From the diagonal sequence 0, 1, 30, 150, 240, 120, 0,0, ... we see that

5 n n n n n
= 1 24 12 =0,1,2,...
= (1) +50(3) +150(;) +210(7) + 1207 =012



So for n > 0,

- 1 1 1 1 1
Sk = (”+')-+3ocl+ )+swo("+')-%zm(”+ >+~mo<”+ )
£ 9 3 4 5 6

n*(n+1)%(2n?+2n — 1)
12 '

9. This is readily checked using Pascal’s identity and induction on k.
10. By construction
“ n
b= ¢ =0,1,2,...
Meli) o

Suppose we are given constants {c;}", such that

s n
hy, = ¢ n=0,1,2,...
()
We show ¢, = ¢; for 0 < i < m. We assume this is not the case, and get a contradiction.
Define
r=max{i|0 <i<m, ¢ # ¢}
Taking the difference between the above equations,
OZZ(C{—Q)(n) n=0,1,2,...
‘ 7 /[/ Y Y )
=0
Consider the polynomial
d x
x) = c—c )
o =3 —e(;)

By construction 0 = f(n) for n = 0,1,2,.... The polynomial (f) has degree exactly i for
i > 0. Therefore the polynomial f(z) has degree exactly r. In particular f(x) is nonzero.
A nonzero polynomial has finitely many roots, for a contradiction. Therefore ¢, = ¢; for
0<i1<m.

11. We have
2® = [z]; + 127[x]y + 966[x]3 + 1701[z]4 + 1050[x]5 + 266[x]6 + 28[z]7 + []s,
where we recall [z], = z(x — 1)(x —2)--- (x — k + 1). Therefore

ko1 2 3 4 5 6 7 8
S(8,k) |0 1 127 966 1701 1050 266 28 1
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12. In each case use induction on n along with the recurrence

S(n,k)=Sn—-1,k—1)+kS(n—1,k) (0 <k <n).

13. Write X = {1,2,...,p} and Y = {1,2,...,k}. Let F denote the set of surjective
functions f : X — Y. We show |F| = klS(n,k). To do this we invoke (the proof of)
Theorem 8.2.5. Let the set P consist of the partitions of X into k£ distinguishable boxes
{B;}¥_, such that no box is left empty. By the proof of Theorem 8.2.5, |P| = k!S(n, k). To
finish the proof, we display a bijection FF — P. Let f € F. So f : X — Y is a surjective
function. Let f denote the partition of X into the boxes {B;}*_; such that for 1 < i < k,
box B; gets every element of X that f sends to 7. No box is left empty since f is surjective;
therefore f € P. Consider the function F — P, f — f. We show that this map is bijective.
By construction the map is injective. We check that this map is surjective. Given a partition
p of X into boxes {B;}%_, such that no box is left empty. Define a function f : X — Y such
that for j € X, f(j) is the label of the box in which p puts j. The function f is surjective
since p leaves no box empty. Therefore f € F, and by construction f = p. We have shown
that the function F' — P, f — f is surjective and hence a bijection. The result follows.

14. We have

p

=) Sp,t)al,
t=0
p
= Y S t)t!( )

t=0 t

So for n > 0,

oo S S(p,t)t!(?).

Now by Theorem 8.2.3 in the text,

ko= S(p,t)t!(n+1).
e t41

15. Write X = {1,2,...,n}. Recall that for 0 < k < n, k!S(n,k) counts the number of
partitions of X into k distinguishable boxes {B;}%_,, such that no box is left empty. Let P
denote the set of partitions of X into k distinguishable boxes {B;}¥_, (some of which may
be left empty). Note that |P| = k™. For 0 <t < k let P, denote the set of partitions in P
that leave exactly ¢ boxes nonempty. Then the sets { P,}}_, partition P so |P| = 3¢ |P].
For 0 <t < k we find |P;|. To construct an element of P, we proceed in stages:



stage to do # choices

1 select ¢ boxes from {B;}F_, (k)

2 partitition X into the above ¢ boxes, leaving none empty | t!5(n,t)

Therefore || = (¥)1S(n, t). By these comments

k" =|P| = tzk; 1P| = zk: (lz)t!S(n,t) - tn <];)t!5(n,t).

t=0 =0

16. Using Problem 11,

8
Bs = Y S(8k)
k=0

= O_—i—l—i— 127 4966 + 1701 + 1050 + 266 + 28 + 1
= 4140.

17. Using the recursion
s(nk)=s(n—1,k—1)4+ (n—1)s(n —1,k) (0<k<n)

we find that for 0 < k£ < n the number s(n, k) is the kth entry in row n of the following
table:

0 24 50 35 10 1
0 120 274 225 8 15 1
0 720 1764 1624 735 175 21 1

18. We have

n]s = n(n—1)(n—2)(n—3)(n—4)
= 24z — 5022 4 3523 — 102" + 2°

and

nle = n(n—1)(n—2)(n—3)(n—4)(n—2>5)
= —120x + 2742% — 22523 + 852* — 152° + 12°



and
n]7 = n(n—1)n—2)(n—3)(n—4)(n—5)(n—6)
= 720z — 17642% + 16242> — 7352* + 1752° — 2125 + 27.

19. In each case use induction on n along with the recurrence

s(nk)=s(n—1,k—1)4+ (n—1)s(n —1,k) (0 <k <n).

20. By definition
Setting x = n we get

For n = 6 this becomes

6l =0x1—120x 6+274 x 62 — 225 x 6% + 85 x 6* — 15 x 6° + 1 x 6°.

21. Routine.
22. (a) The partitions of 6 are
6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111

Therefore pg = 11.
(b) The partitions of 7 are

7, 61, 52, 511, 43, 421, 4111, 331, 322, 3211, 31111, 2221, 22111, 211111, 1111111.
Therefore p; = 15.
23. The maximal partition is n and the minimal partitionisn=1+14---+ 1.

24. One checks that the partition n majorizes each partition of n, and the partition n =
14+ 1+ ---41is majorized by each partition of n. The result follows.

25. We show
[T =27 =>" g™
k=1 n=0

7



Note that for n > 0, g, is equal to the number of nonnegative integral solutions ny,ng, ..., n,
to

n1t1 + n2t2 + -+ nmtm =nNn.
Recall that for 1 < k < m,
(1—a%) ' =148 4 22 ...

Therefore

(1_xtk;)—1 _ H<1+$tk —l—:L’th—F"')

=1

oo o0 o0
— ‘;L.nltl E antz . § xnmtm
ni =0 ng =0 N, =0

[o.¢] [o.¢] oo
— E E .. E xn1t1+n2t2+~~+nmtm

n1:O 7L2=0 TLmZO

00
n
n=0

k=1

o

26. The conjugates are
(a) 12=44+3+2+2+1;

(b)15=5+3+34+2+1+1;

(c)20=44+4+4+4+2+2;

(d)21=6+5+4+3+2+1;

(€)29=6+6+5+4+3+3+1+1.

27. For n odd the parts are (n + 1)/2 (one copy) and 1 ((n — 1)/2 copies). For n even the
parts are n/2 (one copy), 2 (one copy), and 1 (n/2 — 2 copies).

28. Let us view the Ferrers diagram for A\ and p as contained in a n X n box and justified
to the North-West. Consider the 2n — 1 NW-SE diagonals in this box. One checks that the
following are equivalent:

(i) A is majorized by u;

(ii) for each NW-SE diagonal the number of dots in p that lie on or above the diagonal is
at least the number of dots in A that lie on or above the diagonal.

The result follows from this equivalence.
29. We list the partitions of n into parts each at most 2. For even n = 2r they are

1,2t =2 92n=4 . 2r1Y



for a total of r + 1 partitions. For odd n = 2r 4 1 they are
1,22 o2n—4 . oryt
for a total of r 4 1 partitions. In either case the total comes to |n/2] + 1.

30. Let P, denote the set of partitions of n. Given a partition in P,_;, we can add 1 to
the first part to get a partition in P,. This procedure gives an injection P, ; — P,. The
injection is not surjective, because it sends no partition in P,_; to the partition in P, all of
whose parts are 1. It follows that p,_1 < p,.

Appendix. The entries of S are Stirling numbers of the second kind:

10 0 0 0 0 0 0 0
01 O 0 0 0 0 0 0
01 1 0 0 0 0 0 0
01 3 1 0 0 0 0 0
S=101 7 6 1 0 0 0 0
01 15 25 10 1 0 0 0
01 31 90 65 15 1 0 0
01 63 301 350 140 21 1 O
0 1 127 966 1701 1050 266 28 1

The absolute values of the entries of S™! are Stirling numbers of the first kind:

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0o -1 1 0 0 0 0 0 0
0o 2 -3 1 0 0 0 0 0
St=|0 -6 11 —6 1 0 0 0 0
0 24 —50 35 —-10 1 0 0 0
0 —120 274  —225 85 —-15 1 0 0
0 720 —1764 1624 =735 175 —-21 1 0
0 —5040 13068 —13132 6769 —1960 322 —28 1



