
Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 8

1. See the solution to Problem 41 in Chapter 7.

2. Let Pn denote the set of permutations of the multiset {n · 1, n · −1}. Let Mn denote the
set of 2× n arrays (

x11 x12 · · · x1n
x21 x22 · · · x2n

)
containing 1, 2, . . . , 2n such that

x11 < x12 < · · · < x1n, x21 < x22 < · · · < x2n.

Given a permutation a1a2 · · · a2n in Pn, we represent this permutation by an array in Mn as
follows. Define the sets

R1 = {j|1 ≤ j ≤ 2n, aj = 1}, R2 = {j|1 ≤ j ≤ 2n, aj = −1}.

Row 1 (resp. row 2) of the array consists of the elements of R1 (resp. R2), listed in increas-
ing order. The above representations give a bijection Pn → Mn. Now for a permutation
a1a2 · · · a2n in Pn consider the corresponding array in Mn. The following are equivalent:

(i) the partial sum a1 + a2 + · · ·+ ai ≥ 0 for 1 ≤ i ≤ 2n;

(ii) for 1 ≤ i ≤ n the ith 1 comes before the ith −1 in the sequence a1a2 · · · a2n;

(iii) for 1 ≤ i ≤ n the (1, i)-entry of the array is less than the (2, i)-entry of the array.

The Catalan number Cn counts the number of permutations a1a2 · · · a2n in Pn that satisfy
(i). Therefore Cn counts the number of arrays in Mn that satisfy (iii). The result follows.

3. The multiplication schemes are

(((ab)c)d), ((ab)(cd)), ((a(bc))d), (a((bc)d)), (a(b(cd))).

These are in bijection with the triangular decompositions of a convex 5-gon. The bijection
is described as follows. Pick an edge of the 5-gon, and label the remaining edges clockwise
a, b, c, d. Given one of the above multiplication schemes, attach diagonals to the 5-gon as
guided by the parenthesis. The result is a triangular decomposition of the 5-gon.

4. These are readily drawn.

5. We modify the reflection principle discussed in Section 8.1. We first reformulate the
problem in terms of ±1 sequences. Let S denote the set of permutations of the multiset
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{n · 1,m ·−1}. Let A denote the set of permutations a1a2 · · · am+n in S such that the partial
sum a1 + · · ·+ ai ≥ 0 for 1 ≤ i ≤ m+ n. We show

|A| = n−m+ 1

n+ 1

(
m+ n

m

)
.

Assume that m ≥ 1; otherwise the result is trivial. Note that

n−m+ 1

n+ 1

(
m+ n

m

)
=

(
m+ n

m

)
−
(
m+ n

m− 1

)
.

Let U denote the complement of A in S, so that |S| = |A|+ |U |. We show

|U | =
(
m+ n

m− 1

)
.

Let T denote the set of permutations of the multiset {(n+ 1) · 1, (m− 1) · −1}. Observe

|T | =
(
m+ n

m− 1

)
.

We now display a bijection f : U → T . Given a permutation a1a2 · · · am+n in U , this
permuation has at least one negative partial sum. Pick the minimal k such that the kth
partial sum is negative. Note that k is odd and ak = −1. Moreover the sequence a1a2 · · · ak−1
has (k − 1)/2 1’s and (k − 1)/2 −1’s. Define a sequence b1b2 · · · bm+n such that bi = −ai for
1 ≤ i ≤ k and bi = ai for k + 1 ≤ i ≤ m + n. For the sequence b1b2 · · · bm+n the number of
1’s and −1’s is n + 1 and m − 1, respectively. Therefore this sequence is in T . This gives
a function f : U → T . By construction f is injective. We now check that f is surjective.
Consider a permutation b1b2 · · · bm+n in T . For this permutation the number of 1’s and
−1’s is n + 1 and m − 1 respectively. Therefore the last partial sum n + 1 − (m − 1) = 2.
Consequently b1b2 · · · bm+n has at least one positive partial sum. Pick the minimal k such
that the kth partial sum is positive. Note that k is odd and bk = 1. Moreover the sequence
b1b2 · · · bk−1 has (k − 1)/2 1’s and (k − 1)/2 −1’s. Define a sequence a1a2 · · · am+n such
that ai = −bi for 1 ≤ i ≤ k and ai = bi for k + 1 ≤ i ≤ m + n. For the sequence
a1a2 · · · am+n the number of 1’s and −1’s is n and m respectively. Moreover the kth partial
sum is −1. Therefore a1a2 · · · am+n is contained in U . By construction f sends a1a2 · · · am+n

to b1b2 · · · bm+n. Therefore f is surjective. We have shown that f : U → T is a bijection, so
|U | = |T |. Now

|A| = |S| − |U | = |S| − |T | =
(
m+ n

m

)
−
(
m+ n

m− 1

)
=
n−m+ 1

n+ 1

(
m+ n

m

)
.

6. The difference table is

3 4 9 18 31 48 69 · · ·
1 5 9 13 17 21 · · ·

4 4 4 4 4 4 · · ·
0 0 0 0 0 · · ·
· · ·
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From the diagonal sequence 3, 1, 4, 0, . . . we see that

hn = 3

(
n

0

)
+ 1

(
n

1

)
+ 4

(
n

2

)
n = 0, 1, 2, . . .

Therefore

n∑
k=0

hk = 3

(
n+ 1

1

)
+ 1

(
n+ 1

2

)
+ 4

(
n+ 1

3

)
n = 0, 1, 2, . . .

7. The difference table is

1 − 1 3 10 · · ·
−2 4 7 · · ·

6 3 · · ·
−3 · · ·

0 · · ·
· · ·

From the diagonal sequence 1,−2, 6,−3, 0, 0, . . . we find

hn =

(
n

0

)
− 2

(
n

1

)
+ 6

(
n

2

)
− 3

(
n

3

)
n = 0, 1, 2, . . .

Therefore

n∑
k=0

hk =

(
n+ 1

1

)
− 2

(
n+ 1

2

)
+ 6

(
n+ 1

3

)
− 3

(
n+ 1

4

)
n = 0, 1, 2, . . .

8. For the sequence {n5}∞n=0 the difference table is

0 1 32 243 1024 3125 · · ·
1 31 211 781 2101 · · ·

30 180 570 1320 · · ·
150 390 750 · · ·

240 360 · · ·
120 · · ·

0 · · ·

From the diagonal sequence 0, 1, 30, 150, 240, 120, 0, 0, . . . we see that

n5 =

(
n

1

)
+ 30

(
n

2

)
+ 150

(
n

3

)
+ 240

(
n

4

)
+ 120

(
n

5

)
n = 0, 1, 2, . . .
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So for n ≥ 0,

n∑
k=0

k5 =

(
n+ 1

2

)
+ 30

(
n+ 1

3

)
+ 150

(
n+ 1

4

)
+ 240

(
n+ 1

5

)
+ 120

(
n+ 1

6

)
=

n2(n+ 1)2(2n2 + 2n− 1)

12
.

9. This is readily checked using Pascal’s identity and induction on k.

10. By construction

hn =
m∑
i=0

ci

(
n

i

)
n = 0, 1, 2, . . .

Suppose we are given constants {c′i}mi=0 such that

hn =
m∑
i=0

c′i

(
n

i

)
n = 0, 1, 2, . . .

We show c′i = ci for 0 ≤ i ≤ m. We assume this is not the case, and get a contradiction.
Define

r = max{i|0 ≤ i ≤ m, c′i 6= ci}.

Taking the difference between the above equations,

0 =
r∑

i=0

(c′i − ci)
(
n

i

)
n = 0, 1, 2, . . .

Consider the polynomial

f(x) =
r∑

i=0

(c′i − ci)
(
x

i

)
.

By construction 0 = f(n) for n = 0, 1, 2, . . .. The polynomial
(
x
i

)
has degree exactly i for

i ≥ 0. Therefore the polynomial f(x) has degree exactly r. In particular f(x) is nonzero.
A nonzero polynomial has finitely many roots, for a contradiction. Therefore c′i = ci for
0 ≤ i ≤ m.

11. We have

x8 = [x]1 + 127[x]2 + 966[x]3 + 1701[x]4 + 1050[x]5 + 266[x]6 + 28[x]7 + [x]8,

where we recall [x]k = x(x− 1)(x− 2) · · · (x− k + 1). Therefore

k 0 1 2 3 4 5 6 7 8
S(8, k) 0 1 127 966 1701 1050 266 28 1
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12. In each case use induction on n along with the recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) (0 ≤ k ≤ n).

13. Write X = {1, 2, . . . , p} and Y = {1, 2, . . . , k}. Let F denote the set of surjective
functions f : X → Y . We show |F | = k!S(n, k). To do this we invoke (the proof of)
Theorem 8.2.5. Let the set P consist of the partitions of X into k distinguishable boxes
{Bi}ki=1 such that no box is left empty. By the proof of Theorem 8.2.5, |P | = k!S(n, k). To
finish the proof, we display a bijection F → P . Let f ∈ F . So f : X → Y is a surjective
function. Let f denote the partition of X into the boxes {Bi}ki=1 such that for 1 ≤ i ≤ k,
box Bi gets every element of X that f sends to i. No box is left empty since f is surjective;
therefore f ∈ P . Consider the function F → P , f 7→ f . We show that this map is bijective.
By construction the map is injective. We check that this map is surjective. Given a partition
p of X into boxes {Bi}ki=1 such that no box is left empty. Define a function f : X → Y such
that for j ∈ X, f(j) is the label of the box in which p puts j. The function f is surjective
since p leaves no box empty. Therefore f ∈ F , and by construction f = p. We have shown
that the function F → P , f 7→ f is surjective and hence a bijection. The result follows.

14. We have

xp =

p∑
t=0

S(p, t)[x]t

=

p∑
t=0

S(p, t)t!

(
x

t

)
.

So for n ≥ 0,

np =

p∑
t=0

S(p, t)t!

(
n

t

)
.

Now by Theorem 8.2.3 in the text,

n∑
k=0

kp =

p∑
t=0

S(p, t)t!

(
n+ 1

t+ 1

)
.

15. Write X = {1, 2, . . . , n}. Recall that for 0 ≤ k ≤ n, k!S(n, k) counts the number of
partitions of X into k distinguishable boxes {Bi}ki=1, such that no box is left empty. Let P
denote the set of partitions of X into k distinguishable boxes {Bi}ki=1 (some of which may
be left empty). Note that |P | = kn. For 0 ≤ t ≤ k let Pt denote the set of partitions in P
that leave exactly t boxes nonempty. Then the sets {Pt}kt=0 partition P so |P | =

∑k
t=0 |Pt|.

For 0 ≤ t ≤ k we find |Pt|. To construct an element of Pt we proceed in stages:
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stage to do # choices

1 select t boxes from {Bi}ki=1

(
k
t

)
2 partitition X into the above t boxes, leaving none empty t!S(n, t)

Therefore |Pt| =
(
k
t

)
t!S(n, t). By these comments

kn = |P | =
k∑

t=0

|Pt| =
k∑

t=0

(
k

t

)
t!S(n, t) =

n∑
t=0

(
k

t

)
t!S(n, t).

16. Using Problem 11,

B8 =
8∑

k=0

S(8, k)

= 0 + 1 + 127 + 966 + 1701 + 1050 + 266 + 28 + 1

= 4140.

17. Using the recursion

s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k) (0 ≤ k ≤ n)

we find that for 0 ≤ k ≤ n the number s(n, k) is the kth entry in row n of the following
table:

1
0 1

0 1 1
0 2 3 1

0 6 11 6 1
0 24 50 35 10 1

0 120 274 225 85 15 1
0 720 1764 1624 735 175 21 1

18. We have

[n]5 = n(n− 1)(n− 2)(n− 3)(n− 4)

= 24x− 50x2 + 35x3 − 10x4 + x5

and

[n]6 = n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

= −120x+ 274x2 − 225x3 + 85x4 − 15x5 + 1x6

6



and

[n]7 = n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

= 720x− 1764x2 + 1624x3 − 735x4 + 175x5 − 21x6 + x7.

19. In each case use induction on n along with the recurrence

s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k) (0 ≤ k ≤ n).

20. By definition

[x]n =
n∑

k=0

(−1)n−ks(n, k)xk.

Setting x = n we get

n! =
n∑

k=0

(−1)n−ks(n, k)nk.

For n = 6 this becomes

6! = 0× 1− 120× 6 + 274× 62 − 225× 63 + 85× 64 − 15× 65 + 1× 66.

21. Routine.

22. (a) The partitions of 6 are

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.

Therefore p6 = 11.
(b) The partitions of 7 are

7, 61, 52, 511, 43, 421, 4111, 331, 322, 3211, 31111, 2221, 22111, 211111, 1111111.

Therefore p7 = 15.

23. The maximal partition is n and the minimal partition is n = 1 + 1 + · · ·+ 1.

24. One checks that the partition n majorizes each partition of n, and the partition n =
1 + 1 + · · ·+ 1 is majorized by each partition of n. The result follows.

25. We show

m∏
k=1

(1− xtk)−1 =
∞∑
n=0

qnx
n.
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Note that for n ≥ 0, qn is equal to the number of nonnegative integral solutions n1, n2, . . . , nm

to

n1t1 + n2t2 + · · ·+ nmtm = n.

Recall that for 1 ≤ k ≤ m,

(1− xtk)−1 = 1 + xtk + x2tk + · · ·

Therefore

m∏
k=1

(1− xtk)−1 =
m∏
k=1

(1 + xtk + x2tk + · · · )

=

(
∞∑

n1=0

xn1t1

)(
∞∑

n2=0

xn2t2

)
· · ·

(
∞∑

nm=0

xnmtm

)

=
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

xn1t1+n2t2+···+nmtm

=
∞∑
n=0

qnx
n.

26. The conjugates are
(a) 12 = 4 + 3 + 2 + 2 + 1;
(b) 15 = 5 + 3 + 3 + 2 + 1 + 1;
(c) 20 = 4 + 4 + 4 + 4 + 2 + 2;
(d) 21 = 6 + 5 + 4 + 3 + 2 + 1;
(e) 29 = 6 + 6 + 5 + 4 + 3 + 3 + 1 + 1.

27. For n odd the parts are (n + 1)/2 (one copy) and 1 ((n − 1)/2 copies). For n even the
parts are n/2 (one copy), 2 (one copy), and 1 (n/2− 2 copies).

28. Let us view the Ferrers diagram for λ and µ as contained in a n × n box and justified
to the North-West. Consider the 2n− 1 NW-SE diagonals in this box. One checks that the
following are equivalent:

(i) λ is majorized by µ;

(ii) for each NW-SE diagonal the number of dots in µ that lie on or above the diagonal is
at least the number of dots in λ that lie on or above the diagonal.

The result follows from this equivalence.

29. We list the partitions of n into parts each at most 2. For even n = 2r they are

1n, 211n−2, 221n−4, . . . , 2r10
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for a total of r + 1 partitions. For odd n = 2r + 1 they are

1n, 211n−2, 221n−4, . . . , 2r11

for a total of r + 1 partitions. In either case the total comes to bn/2c+ 1.

30. Let Pn denote the set of partitions of n. Given a partition in Pn−1, we can add 1 to
the first part to get a partition in Pn. This procedure gives an injection Pn−1 → Pn. The
injection is not surjective, because it sends no partition in Pn−1 to the partition in Pn all of
whose parts are 1. It follows that pn−1 < pn.

Appendix. The entries of S are Stirling numbers of the second kind:

S =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 1 3 1 0 0 0 0 0
0 1 7 6 1 0 0 0 0
0 1 15 25 10 1 0 0 0
0 1 31 90 65 15 1 0 0
0 1 63 301 350 140 21 1 0
0 1 127 966 1701 1050 266 28 1


The absolute values of the entries of S−1 are Stirling numbers of the first kind:

S−1 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 2 −3 1 0 0 0 0 0
0 −6 11 −6 1 0 0 0 0
0 24 −50 35 −10 1 0 0 0
0 −120 274 −225 85 −15 1 0 0
0 720 −1764 1624 −735 175 −21 1 0
0 −5040 13068 −13132 6769 −1960 322 −28 1


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