
Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 7

We list some Fibonacci numbers together with their prime factorization.

n fn factorization
0 0 0
1 1 1
2 1 1
3 2 2
4 3 3
5 5 5
6 8 23

7 13 13
8 21 3× 7
9 34 2× 17
10 55 5× 11
11 89 89
12 144 24 × 32

13 233 233
14 377 13× 29
15 610 2× 5× 61
16 987 3× 7× 47
17 1597 1597
18 2584 23 × 17× 19
19 4181 37× 113
20 6765 3× 5× 11× 41
21 10946 2× 13× 421
22 17711 89× 199
23 28657 28657
24 46368 25 × 32 × 7× 23

1. We have

n
∑n

k=1 f2k−1
∑n

k=0 f2k
∑n

k=0(−1)kfk
∑n

k=0 f
2
k

0 0 0 0 0
1 1 1 −1 1
2 3 4 0 2
3 8 12 −2 6 = 2× 3
4 21 33 1 15 = 3× 5
5 55 88 −4 40 = 5× 8
6 144 232 4 104 = 8× 13
7 377 609 −9 273 = 13× 21
n f2n f2n+1 − 1 −1 + (−1)nfn−1 fnfn+1
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2. We have

fn =
Bn − Ln√

5
,

where

B =
1 +
√

5

2
, L =

1−
√

5

2
.

To show that fn is the integer closest to Bn/
√

5, it suffices to show that

−1

2
<
Ln√

5
<

1

2
.

Using 2 <
√

5 < 3 we have −1 < L < −1/2 so −1 ≤ L ≤ 1. Therefore −1 ≤ Ln ≤ 1. Also
1/
√

5 < 1/2. The result follows.

3. For m = 2, 3, 4 consider the Fibonacci sequence f0, f1, . . . modulo m.

n fn fn mod 2 fn mod 3 fn mod 4
0 0 0 0 0
1 1 1 1 1
2 1 1 1 1
3 2 0 2 2
4 3 1 0 3
5 5 1 2 1
6 8 0 2 0
7 13 1 1 1
8 21 1 0 1
9 34 0 1 2
· · · · ·
· · · · ·

The sequence repeats with period 3 (resp. 8) (resp. 6) if m = 2 (resp. m = 3) (resp. m = 4).
The result follows.

4. For an integer n ≥ 5 we have

fn = fn−1 + fn−2

fn−1 = fn−2 + fn−3

fn−2 = fn−3 + fn−4

fn−3 = fn−4 + fn−5.

In the first equation eliminate fn−1 using the second equation and simplify; in the resulting
equation eliminate fn−2 using the third equation and simplify; in the resulting equation
eliminate fn−3 using the fourth equation and simplify. The result is

fn = 5fn−4 + 3fn−5.
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Therefore fn = 3fn−5 (mod 5). Consequently fn = 0 (mod 5) if and only if fn−5 = 0 (mod
5). This together with the initial conditions f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3 shows
that fn = 0 (mod 5) if and only if n is divisible by 5.

5. Consider the Fibonacci sequence f0, f1, . . . modulo 7.

n fn fn mod 7
0 0 0
1 1 1
2 1 1
3 2 2
4 3 3
5 5 −2
6 8 1
7 13 −1
8 21 0
9 34 −1
· · ·
· · ·

The table shows that modulo 7 the Fibonacci sequence will repeat with period 16. The
pattern of zero/nonzero entries shows that fn is divisible by 7 if and only if n is divisible by
8.

6, 7. Claim I: fn, fn+1 are relatively prime for n ≥ 1.
Proof of Claim I: By induction on n. The claim holds for n = 1 since f1 = 1 and f2 = 1.
Next assume n ≥ 2. Let x denote a positive integer such that x|fn and x|fn+1. We show
x = 1. Note that x|fn−1 since fn+1 = fn + fn−1. By induction fn and fn−1 are relatively
prime, so x = 1.
Claim II: For r, s ≥ 0 the expression frfs + fr+1fs+1 depends only on r + s.
Proof of Claim II: Define F (r, s) = frfs + fr+1fs+1. It suffices to show that F (r, s) =
F (r − 1, s+ 1) provided r ≥ 1. Note that

F (r − 1, s+ 1) = fr−1fs+1 + frfs+2

= fr−1fs+1 + fr(fs + fs+1)

= frfs + (fr−1 + fr)fs+1

= frfs + fr+1fs+1

= F (r, s).

Claim III: For r, s ≥ 0 we have

frfs + fr+1fs+1 = fr+s+1.

Proof of Claim III: By Claim II

frfs + fr+1fs+1 = fr+sf0 + fr+s+1f1

= fr+s+1
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since f0 = 0 and f1 = 1.
Claim IV: For r, s ≥ 1,

fr+s = frfs−1 + fsfr+1

= fsfr−1 + frfs+1.

Proof of Claim IV: This is a reformulation of Claim IV.
Claim V: For r, s ≥ 1 consider

fr, fs, fr+s.

If a positive integer x divides at least two of these, then x divides all three.
Proof of Claim V: Assume that x|fr and x|fs. Then x|fr+s by Claim IV. Next assume that
x|fr and x|fr+s. By Claim IV, x|fsfr+1. But x, fr+1 are relatively prime, since x|fr and
fr, fr+1 are relatively prime. Therefore x|fs.
Claim VI: Given integers m,n ≥ 1 such that n|m. Then fn|fm.
Proof of Claim VI: We use induction on k = m/n. For k = 1 the claim holds. Next assume
k ≥ 2, and consider fn, fm−n, fm. By induction fn|fm−n. Applying Claim V with r = n,
s = m− n, x = fn we find fn|fm.
Claim VII: Given integers m,n ≥ 1 with greatest common divisor d. Then fd is the greatest
common divisor of fm, fn.
Proof of Claim VII: We use induction on min(m,n). The claim holds for min(m,n) = 1.
Next assume min(m,n) ≥ 2. Without loss we may assume m > n. We may also assume
that n does not divide m; otherwise d = n and we are done since fn|fm. Divide m by n and
consider the remainder:

m = qn+ r 1 ≤ r ≤ n− 1.

Observe that

GCD(n, r) = GCD(m,n) = d.

By induction and since r ≤ n− 1,

fd = GCD(n, r).

Since d|m and d|n we have fd|fm and fd|fn. Conversely, let x denote a positive integer such
that x|fm and x|fn. We show x|fd. Consider fm, fqn, fr. By assumption x|fm. Also x|fn
so x|fqn by Claim VI. Now x|fr by Claim V. We have x|fn and x|fr. Therefore x|fd since
fd = GCD(fn, fr). We have shown fd = GCD(fm, fn).

8. By construction h0 = 1 and h1 = 2. We now find hn for n ≥ 2. Consider a coloring of
the 1 × n chessboard. The first square is colored red or blue. If it is blue, then there are
hn−1 ways to color the remaining n− 1 squares. If it is red, then the second square is blue,
and there are hn−2 ways to color the remaining n− 2 squares. Therefore hn = hn−1 + hn−2.
Comparing the above data with the Fibonacci sequence we find hn = fn+2.
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9. By construction h0 = 1 and h1 = 3. We now find hn for n ≥ 2. Consider a coloring of the
1×n chessboard. The first square is colored red or white or blue. If it is white or blue, then
there are hn−1 ways to color the remaining n− 1 squares. If it is red, then the second square
is white or blue, and there are hn−2 ways to color the remaining n − 2 squares. Therefore
hn = 2hn−1 + 2hn−2. To find hn in closed form, consider the quadratic equation x2 = 2x+ 2.
By the quadratic formula x = 1±

√
3. We hunt for real numbers a, b such that

hn = a(1 +
√

3)n + b(1−
√

3)n n = 0, 1, 2, . . .

Setting n = 0, 1 we find

1 = a+ b,

3 = a(1 +
√

3) + b(1−
√

3).

Solving these equations for a, b we find

a =

√
3 + 2

2
√

3
, b =

√
3− 2

2
√

3
.

Therefore

hn =

√
3 + 2

2
√

3
(1 +

√
3)n +

√
3− 2

2
√

3
(1−

√
3)n n = 0, 1, 2, . . .

10. After n months there will be 2fn+1 pairs of rabbits.

11. (a) Define Zn = fn−1 + fn+1 − ln for n ≥ 1. One checks Z1 = 0 and Z2 = 0. Also
Zn = Zn−1 + Zn−2 for n ≥ 3. Therefore Zn = 0 for n ≥ 1. The result follows.
(b) Use induction on n. First assume n = 0. Then each side equals 4. Next assume n ≥ 1.
By induction

l20 + l21 + · · ·+ l2n = ln−1ln + 2 + l2n
= ln(ln−1 + ln) + 2

= lnln+1 + 2.

12. We have

(n− 1)3 = n3 − 3n2 + 3n− 1

so

n3 = (n− 1)3 + 3n2 − 3n+ 1.

13. (a) (1− cx)−1; (b) (1 + x)−1; (c) (1− x)α; (d) ex; (e) e−x.
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14. (a)

(x+ x3 + x5 + · · · )4 = x4(1 + x2 + x4 + · · · )4

= x4(1− x2)−4.

(b)

(1 + x3 + x6 + · · · )4 = (1− x3)−4.

(c)

(1 + x)(1 + x+ x2 + · · · )2 = (1 + x)(1− x)−2.

(d)

(x+ x3 + x11)(x2 + x4 + x5)(1 + x+ x2 + · · · )2 = x3(1 + x2 + x10)(1 + x2 + x3)(1− x)−2.

(e)

(x10 + x11 + x12 + · · · )4 = x40(1 + x+ x2 + · · · )4

= x40(1− x)−4.

15. We evaluate
∑∞

n=0 n
3xn. For n ≥ 0,

n3 = 6

(
n

3

)
+ 6

(
n

2

)
+

(
n

1

)
.

Recall

∞∑
n=0

(
n

3

)
xn =

∞∑
n=3

(
n

3

)
xn

= x3
∞∑
n=3

(
n

3

)
xn−3

= x3
∞∑
n=0

(
n+ 3

3

)
xn

= x3(1− x)−4.

Similarly,

∞∑
n=0

(
n

2

)
xn = x2(1− x)−3,

∞∑
n=0

(
n

1

)
xn = x(1− x)−2.

Therefore

∞∑
n=0

n3xn = 6x3(1− x)−4 + 6x2(1− x)−3 + x(1− x)−2

= x(x2 + 4x+ 1)(1− x)−4.
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16. This is the generating function for the sequence {hn}∞n=0 where hn is the number of
n-combinations of the multiset

{∞ · e1,∞ · e2,∞ · e3,∞ · e4}
such that (i) e1 appears at most twice; (ii) e2 is even and at most 6; (iii) e3 is even; (iv) e4
is nonzero.

17. The generating function is
∞∑
n=0

hnx
n = (1 + x2 + x4 + · · · )(1 + x+ x2)(1 + x3 + x6 + · · · )(1 + x).

Evaluating this using

1 + x2 + x4 + · · · = (1− x2)−1, 1 + x3 + x6 + · · · = (1− x3)−1

and simplifying, we obtain
∞∑
n=0

hnx
n = (1− x)−2

=
∞∑
n=0

(n+ 1)xn.

Therefore hn = n+ 1 for n ≥ 0.

18. Define

E1 = 2e1, E2 = 5e2, E3 = e3, E4 = 7e4.

The scalar hn is the number of nonnegative integral solutions to

E1 + E2 + E3 + E4 = n,

such that (i) E1 is even; (ii) E2 is divisible by 5; (iii) E4 is divisible by 7. The generating
function for {hn}∞n=0 is

(1 + x2 + x4 + · · · )(1 + x5 + x10 + · · · )(1 + x+ x2 + · · · )(1 + x7 + x14 + · · · ).
This simplifies to

1

1− x2
1

1− x5
1

1− x
1

1− x7
.

19. We have
∞∑
n=0

(
n

2

)
xn =

∞∑
n=2

(
n

2

)
xn

= x2
∞∑
n=2

(
n

2

)
xn−2

= x2
∞∑
n=0

(
n+ 2

2

)
xn

= x2(1− x)−3.
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20. We have

∞∑
n=0

(
n

3

)
xn =

∞∑
n=3

(
n

3

)
xn

= x3
∞∑
n=3

(
n

3

)
xn−3

= x3
∞∑
n=0

(
n+ 3

3

)
xn

= x3(1− x)−4.

21. Define g(x) =
∑∞

n=0 hnx
n. We have

∞∑
n=1

hn−1x
n = xg(x),

∞∑
n=0

nxn =
x

(1− x)2
,

∞∑
n=0

(
n+ 1

3

)
xn =

x2

(1− x)4
.

From the given recurrence we find

g(x)− xg(x) =
x2

(1− x)4
+

x

(1− x)2
.

Therefore

g(x) =
x2

(1− x)5
+

x

(1− x)3

=
∞∑
n=0

(
n+ 2

4

)
xn +

∞∑
n=0

(
n+ 1

2

)
xn.

Consequently

hn =

(
n+ 2

4

)
+

(
n+ 1

2

)
n = 1, 2, 3, . . .

22. The exponential generating function is

ge(x) =
∞∑
n=0

n!
xn

n!
=
∞∑
n=0

xn =
1

1− x
.
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23. The exponential generating function is

ge(x) =
∞∑
n=0

α(α− 1) · · · (α− n+ 1)
xn

n!
=
∞∑
n=0

(
α

n

)
xn = (1 + x)α.

24. (a) We have ge(x) = G(x)k where

G(x) = x+
x3

3!
+
x5

5!
+ · · · = ex − e−x

2
.

(b) We have ge(x) = G(x)k where

G(x) =
x4

4!
+
x5

5!
+ · · · = ex − 1− x− x2

2!
− x3

3!
.

(c) We have ge(x) = G1(x)G2(x) · · ·Gk(x) where for 1 ≤ r ≤ k,

Gr(x) =
xr

r!
+

xr+1

(r + 1)!
+ · · · = ex − 1− x− x2

2!
− · · · − xr−1

(r − 1)!
.

(d) We have ge(x) = G1(x)G2(x) · · ·Gk(x) where

Gr(x) = 1 + x+
x2

2!
+ · · ·+ xr

r!
(1 ≤ r ≤ k).

25. For an integer n ≥ 0, hn is equal to the number of n-permutations of the multiset

{∞ ·R,∞ ·W,∞ ·B,∞ ·G}

such that both (i) R appears an even number of times; (ii) W appears an odd number of
times. The exponential generating function is ge(x) = G1(x)G2(x)G3(x)G4(x), where

G1(x) = 1 +
x2

2!
+
x4

4!
+ · · · = ex + e−x

2
,

G2(x) = x+
x3

3!
+
x5

5!
+ · · · = ex − e−x

2
,

G3(x) = G4(x) = 1 + x+
x2

2!
+ · · · = ex.

Using this we obtain

ge(x) =
e4x − 1

4
= x+

4x2

2!
+

42x3

3!
+ · · ·

Therefore hn = 4n−1 if n ≥ 1 and h0 = 0.

26. For an integer n ≥ 0, hn is equal to the number of n-permutations of the multiset

{∞ ·R,∞ ·B,∞ ·G,∞ ·O}
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such that both R and G appears an even number of times. The exponential generating
function is ge(x) = G1(x)G2(x)G3(x)G4(x), where

G1(x) = G3(x) = 1 +
x2

2!
+
x4

4!
+ · · · = ex + e−x

2
,

G2(x) = G4(x) = 1 + x+
x2

2!
+ · · · = ex.

Using this we obtain

ge(x) =
(e2x + 1)2

4
=
e4x + 2e2x + 1

4
.

Therefore hn = 4n−1 + 2n−1 if n ≥ 1 and h0 = 1.

27. Call the number hn. Then hn is equal to the number of n-permutations of the multiset

{∞ · 1,∞ · 3,∞ · 5,∞ · 7,∞ · 9}

such that 1 and 3 occur a nonzero even number of times. The exponential generating function
is ge(x) = G1(x)G3(x)G5(x)G7(x)G9(x) where

G1(x) = G3(x) =
x2

2!
+
x4

4!
+ · · · = ex + e−x

2
− 1,

G5(x) = G7(x) = G9(x) = ex.

Using this we obtain

ge(x) =
ex(ex − 1)4

4
=
e5x − 4e4x + 6e3x − 4e2x + ex

4
.

Therefore

hn =
5n − 4× 4n + 6× 3n − 4× 2n + 1

4
.

28. The exponential generating function is ge(x) =
∏9

r=4Gr(x) where

G4(x) = G6(x) = 1 +
x2

2!
+
x4

4!
+ · · · = ex + e−x

2
,

G5(x) = G7(x) = x+
x2

2!
+
x3

3!
+ · · · = ex − 1,

G8(x) = G9(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · = ex.

Using this we obtain

ge(x) =
(ex − 1)2(e2x + 1)2

4
=
e6x − 2e5x + 3e4x − 4e3x + 3e2x − 2ex + 1

4
.
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Therefore

hn =
6n − 2× 5n + 3× 4n − 4× 3n + 3× 2n − 2× 1

4

if n ≥ 1 and h0 = 0.

29. Let hn, rn, sn, tn denote the number of n-digit numbers that have each digit odd, and
the multiplicity of 1 and 3 as shown below:

variable mult. of 1 mult. of 3
hn even even
rn even odd
sn odd even
tn odd odd

For n ≥ 1, consider what happens if we remove the first digit of an n-digit number. We find

hn = rn−1 + sn−1 + 3hn−1,

rn = tn−1 + hn−1 + 3rn−1,

sn = tn−1 + hn−1 + 3sn−1,

tn = rn−1 + sn−1 + 3tn−1.

The initial conditions are

h0 = 1, r0 = 0, s0 = 0, t0 = 0.

Using the above data one checks using induction on n that

hn =
5n + 2× 3n + 1

4
,

rn = sn =
5n − 1

4
,

tn =
5n − 2× 3n + 1

4

for n ≥ 0. The result follows.

30. Let Rn (resp. rn) denote the number of ways to color the 1× n chessboard with colors
red, white, and blue, such that red appears with even multiplicity and there is no restriction
on blue (resp. blue does not appear). So hn = Rn − rn. We have R0 = 1, r0 = 1, h0 = 0.
Now suppose n ≥ 1. We show rn = 2n−1. To see this, consider the number of ways to color
the 1× n chessboard with red and white, such that red appears with even multiplicity. We
could color squares 2, 3, . . . , n arbitrarily red or white, and then color square 1 red or white
in order to make the multiplicity of red even. This shows rn = 2n−1. Now consider what
happens if we remove square 1 of the chessboard. We find

Rn = 3n−1 +Rn−1.
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Therefore

Rn = R0 + 1 + 3 + 32 + · · ·+ 3n−1 = 1 +
3n − 1

3− 1
=

3n + 1

2
.

Therefore

hn = Rn − rn =
3n − 2n + 1

2

for n ≥ 1.

31. One checks by induction on n that hn = 0 if n is even and hn = 2n−1 if n is odd.

32. One checks by induction on n that hn = (n+ 2)! for n ≥ 0.

33. Observe

x3 − x2 − 9x+ 9 = (x− 3)(x+ 3)(x− 1).

Therefore the general solution is

hn = a3n + b(−3)n + c n = 0, 1, 2, . . .

Using h0 = 0, h1 = 1, h2 = 2 we obtain

0 = a+ b+ c,

1 = 3a− 3b+ c,

2 = 9a+ 9b+ c.

Solving this system we find

a = 1/3, b = −1/12, c = −1/4.

Therefore

hn =
4× 3n − (−3)n − 3

12
n = 0, 1, 2, . . .

34. Observe

x2 − 8x+ 16 = (x− 4)2.

Therefore the general solution is

hn = (a+ bn)4n n = 0, 1, 2, . . .

Using h0 = −1, h1 = 0 we obtain

a = −1, b = 1.
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Therefore

hn = (n− 1)4n n = 0, 1, 2, . . .

35. Observe

x3 − 3x+ 2 = (x+ 2)(x− 1)2.

Therefore the general solution is

hn = a(−2)n + bn+ c n = 0, 1, 2, . . .

Using h0 = 1, h1 = 0, h2 = 0 we obtain

1 = a+ c,

0 = −2a+ b+ c,

0 = 4a+ 2b+ c.

This yields

a = 1/9, b = −2/3, c = 8/9.

Therefore

hn =
(−2)n − 6n+ 8

9
n = 0, 1, 2, . . .

36. Observe

x4 − 5x3 + 6x2 + 4x− 8 = (x− 2)3(x+ 1).

Therefore the general solution is

hn = (an2 + bn+ c)2n + d(−1)n n = 0, 1, 2, . . .

Using h0 = 0, h1 = 1, h2 = 1, h3 = 2 we obtain

0 = c+ d,

1 = 2a+ 2b+ 2c− d,
1 = 16a+ 8b+ 4c+ d,

2 = 72a+ 24b+ 8c− d.

This yields

a = −1/24, b = 7/72, c = 8/27, d = −8/27.
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Therefore

hn =
(−9n2 + 21n+ 64)2n − 64(−1)n

216
n = 0, 1, 2, . . .

37. First note that a0 = 1 and a1 = 3. Now assume that n ≥ 2. We show that an =
2an−1 + an−2. Let Tn denote the set of ternary strings of length n that are counted by an.
For each ternary string s in Tn−2 the string 22s is contained in Tn. Given a ternary string
r in Tn−1 we obtain two ternary strings in Tn as follows: (i) if r begins with 0, then each of
1r, 2r is contained in Tn; (ii) if r begins with 1, then each of 0r, 2r is contained in Tn; (iii) if
r begins with 2, then each of 0r, 1r is contained in Tn. Each ternary string in Tn is obtained
in exactly one way by the above procedure. Therefore an = 2an−1 + an−2. The roots of
x2 − 2x− 1 are 1±

√
2. Therefore the general solution for an is

an = a(1 +
√

2)n + b(1−
√

2)n n = 0, 1, 2, . . .

Using a0 = 1 and a1 = 3 we routinely find

a =
1 +
√

2

2
, b =

1−
√

2

2
.

Therefore

an =
(1 +

√
2)n+1 + (1−

√
2)n+1

2
n = 0, 1, 2, . . .

38. (a) hn = 3n; (b) hn = (4 + 5n− n2)/2; (c) hn = 0 if n is even and hn = 1 if n is odd; (d)
hn = 1; (e) hn = 2n+1 − 1.

39. Note that h0 = 1, h1 = 1, h2 = 2. Now assume that n ≥ 3. We show hn = hn−1 + hn−3.
Let Tn denote the set of perfect covers of the 1 × n chessboard counted by hn. For each
element of Tn−1 we can attach a monomino at the left to get an element of Tn that begins
with a monomino. For each element of Tn−3 we can attach a domino followed by a monomino,
to get an element of Tn that begins with a domino. Each element of Tn is obtained exactly
once by the above procedure. Therefore hn = hn−1 + hn−3.

40. One checks a0 = 1 and a1 = 3. Now assume that n ≥ 2. We show that an = an−1+2an−2.
Let An denote the set of ternary strings of length n counted by an. Given a ternary string s
in An−1 the string 2s is contained in An. Given a ternary string t in An−2, each of the strings
02t, 12t are contained in An. Each element of An is obtained exactly once by the above
procedure. Therefore an = an−1 + 2an−2. We have x2 − x − 2 = (x − 2)(x + 1). Therefore
the general solution for an is

an = a2n + b(−1)n n = 0, 1, 2, . . .

Using a0 = 1 and a1 = 3 we find

a = 4/3, b = −1/3.
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Therefore

an =
2n+2 + (−1)n+1

3
n = 0, 1, 2, . . .

41. We have h0 = 1. Now assume that n ≥ 1. Label the points 1, 2, . . . , 2n clockwise around
the circle. Let M = Mn denote the set of matchings of the 2n points counted by hn. For a
matching in M let t denote the point matched to point 1. Note that t is even. For 1 ≤ s ≤ n
let M(s) denote the set of matchings in M such that point 1 is matched with point 2s. The
sets {M(s)}ns=1 partition M , so |M | =

∑n
s=1 |M(s)|. For 1 ≤ s ≤ n we compute |M(s)|. To

construct a matching in M(s), there are hs−1 ways to match points 2, 3, . . . , 2s−1 and there
are hn−s ways to match points 2s+ 1, 2s+ 2, . . . , 2n. Therefore |M(s)| = hs−1hn−s. By these
comments hn =

∑n
s=1 hs−1hn−s. We now show

hn =
1

n+ 1

(
2n

n

)
n = 0, 1, 2, . . .

Consider the generating function

g(x) =
∞∑
n=0

hnx
n.

Using the recursion we obtain

xg(x)2 = g(x)− 1.

Using the quadratic formula

g(x) =
1± (1− 4x)1/2

2x
.

In other words

xg(x) =
1± (1− 4x)1/2

2
.

Using Newton’s binomial theorem this becomes

xg(x) =
1±

∑∞
n=0

(
1/2
n

)
(−4)nxn

2
.

For this equation at x = 0 the left-hand side is zero so the right-hand side is zero. Therefore

xg(x) =
1−

∑∞
n=0

(
1/2
n

)
(−4)nxn

2
,

= −
∑∞

n=1

(
1/2
n

)
(−4)nxn

2
.

15



So

g(x) = −
∑∞

n=1

(
1/2
n

)
(−4)nxn−1

2

= −
∑∞

n=0

(
1/2
n+1

)
(−4)n+1xn

2
.

Consequently for n ≥ 0,

hn = −
(

1/2

n+ 1

)
(−4)n+1

2

=
1

n+ 1

(
2n

n

)
.

We note

hn =

(
2n

n

)
−
(

2n

n− 1

)
n = 1, 2, 3, . . .

42. We have h0 = 3 and h1 = 16. For n ≥ 2,

hn − 8hn−1 + 16hn−2 = 4hn−1 + 4n − 8hn−1 + 16hn−2

= 4n − 4hn−1 + 16hn−2

= 4n − 4(4hn−2 + 4n−1) + 16hn−2

= 0.

The characteristic polynomial is x2 − 8x+ 16 = (x− 4)2. Therefore the general solution is

hn = (an+ b)4n n = 0, 1, 2, . . .

Using h0 = 3 and h1 = 16 we find a = 1 and b = 3. Therefore

hn = (n+ 3)4n n = 0, 1, 2, . . .

43. We have h0 = 1 and h1 = 10. Now suppose n ≥ 2. Using the recursion twice we obtain

hn − 6hn−1 + 8hn−2 = 0.

The characteristic polynomial is x2− 6x+ 8 = (x− 4)(x− 2). Therefore the general solution
is

hn = a4n + b2n n = 0, 1, 2, . . .

Using h0 = 1 and h1 = 10 we find a = 4 and b = −3. Therefore

hn = 4n+1 − 3× 2n n = 0, 1, 2, . . .
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44. Examining the first few values, it appears that hn = 1 for n = 0, 1, 2 . . . This is verified
by induction.

45. We hunt for solutions of the form

hn = a2n + bn+ c n = 0, 1, 2, . . .

Using h0 = 1, h1 = 3, h2 = 8 we find that

a = 3, b = −1, c = −2.

We now verify that

hn = 3× 2n − n− 2 n = 0, 1, 2, . . .

For n ≥ 0 define Hn = 3× 2n − n− 2. One checks that H0 = 1 and

Hn = 2Hn−1 + n n = 1, 2, 3, . . .

Therefore hn = Hn for n ≥ 0.

46. Noting that x2 − 6x+ 9 = (x− 3)2 we hunt for solutions of the form

hn = (an+ b)3n + cn+ d n = 0, 1, 2, . . .

Using h0 = 1, h1 = 0, h2 = −5, h3 = −24 we find

a = −1/6, b = −1/2, c = 1/2, d = 3/2.

Using these values we conjecture

hn =
(3− 3n)(3 + n)

6
n = 0, 1, 2, . . .

For n ≥ 0 let Hn denote the expression on the right-hand side in the above line. One checks
H0 = 1, H1 = 0 and

Hn = 6Hn−1 − 9Hn−2 + 2n n = 2, 3, . . .

Therefore hn = Hn for n = 0, 1, 2, . . ..

47. Noting that x2 − 4x+ 4 = (x− 2)2 we hunt for solutions of the form

hn = (an+ b)2n + cn+ d n = 0, 1, 2, . . .

Using h0 = 1, h1 = 2, h2 = 11, h3 = 46 we find

a = 5, b = −12, c = 3, d = 13.

Using these values we conjecture

hn = (5n− 12)2n + 3n+ 13 n = 0, 1, 2, . . .
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For n ≥ 0 let Hn denote the expression on the right-hand side in the above line. One checks
H0 = 1, H1 = 2 and

Hn = 4Hn−1 − 4Hn−2 + 3n+ 1 n = 2, 3, . . .

Therefore hn = Hn for n = 0, 1, 2, . . ..

48. Define g(x) =
∑∞

n=0 hnx
n. Note that xrg(x) =

∑∞
n=r hn−rx

n for r ≥ 0.
(a) Using the given information on hn we find

g(x) = x+ 4x2g(x).

Therefore

g(x) =
x

1− 4x2

=
1

4(1− 2x)
− 1

4(1 + 2x)

=
∞∑
n=0

2n − (−2)n

4
xn.

Therefore

hn =
2n − (−2)n

4
n = 0, 1, 2, . . .

(b) Abbreviate

r =
1 +
√

5

2
, s =

1−
√

5

2
.

Using the given information on hn we find

g(x)(1− x− x2) = 1 + 2x.

Therefore

g(x) =
1 + 2x

1− x− x2

=
r

1− rx
+

s

1− sx

=
∞∑
n=0

(rn+1 + sn+1)xn.

Therefore

hn = rn+1 + sn+1 n = 0, 1, 2, . . .

(c) Using the given information on hn we find

g(x)(1− x− 9x2 + 9x3) = x+ x2.

18



Consequently

g(x) =
x+ x2

1− x− 9x2 + 9x3

=
1

3(1− 3x)
− 1

12(1 + 3x)
− 1

4(1− x)

=
∞∑
n=0

4× 3n − (−3)n − 3

12
xn.

Therefore

hn =
4× 3n − (−3)n − 3

12
n = 0, 1, 2, . . .

(d) Using the given information on hn we find

g(x)(1− 8x+ 16x2) = 8x− 1.

Consequently

g(x) =
8x− 1

1− 8x+ 16x2

=
8x− 1

(1− 4x)2

= (8x− 1)
∞∑
n=0

(n+ 1)4nxn

=
∞∑
n=0

(n− 1)4nxn.

Therefore

hn = (n− 1)4n n = 0, 1, 2, . . .

49. For n ≥ 0 define

hn =
n∑
k=0

(
n

k

)
q

xn−kyk.

We show

hn = (x+ y)(x+ qy)(x+ q2y) · · · (x+ qn−1y).

Since h0 = 1 it suffices to show

hn = (x+ qn−1y)hn−1 n = 1, 2, 3, . . .
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This is obtained using the identity(
n

k

)
q

=

(
n− 1

k − 1

)
q

+ qn−1
(
n− 1

k

)
q

1 ≤ k ≤ n− 1.

The above identity is routinely verified.

50. Let E denote the set of extraordinary subsets of {1, 2, . . . , n}. For 1 ≤ k ≤ n let Ek
denote the set of elements in E that have cardinality k. The sets {Ek}nk=1 partition E so
|E| =

∑n
k=1 |Ek|. For 1 ≤ k ≤ n we compute |Ek|. Consider an element S ∈ Ek. The minimal

element of S is k. Therefore S consists of k and a (k − 1)-subset of {k + 1, k + 2, . . . , n}.
There are

(
n−k
k−1

)
ways to choose this (k − 1)-subset, so |Ek| =

(
n−k
k−1

)
. Therefore

|E| =
n∑
k=1

(
n− k
k − 1

)
.

Comparing this formula with Theorem 7.1.2 we find |E| = fn.

51. Define g(x) =
∑∞

n=0 hnx
n. Observe

∞∑
n=1

hn−1x
n =

∑
n=0

hnx
n+1 = xg(x).

Recall

∞∑
n=0

nxn =
∞∑
n=1

nxn = x
∞∑
n=1

nxn−1 = x
∞∑
n=0

(n+ 1)xn =
x

(1− x)2
.

Observe

g(x)− 3xg(x) +
4x

(1− x)2
= h0 = 2.

Thus

g(x)(1− 3x) = 2− 4x

(1− x)2
,

So

g(x) =
2

1− 3x
− 4x

(1− 3x)(1− x)2

=
−1

1− 3x
+

3− x
(1− x)2

= −
∞∑
n=0

3nxn + 3
∞∑
n=0

(n+ 1)xn −
∞∑
n=0

nxn

=
∞∑
n=0

(2n+ 3− 3n)xn.
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Therefore

hn = 2n+ 3− 3n n = 0, 1, 2, . . .

52. (a) Note that h1 = 11. We have

5n = hn − 2hn−1 n ≥ 1.

Replacing n by n− 1,

5n−1 = hn−1 − 2hn−2 n ≥ 2.

Combining the above equations we obtain

0 = hn − 2hn−1 − 5(hn−1 − 2hn−2)

= hn − 7hn−1 + 10hn−2 n ≥ 2.

For the above homogeneous recurrence the characteristic polynomial is x2 − 7x + 10 =
(x− 5)(x− 2), so it has general solution

hn = a5n + b2n n = 0, 1, 2, . . .

Using h0 = 3 and h1 = 11 we find

a = 5/3, b = 4/3.

Therefore

hn =
5n+1 + 2n+2

3
n = 0, 1, 2, . . .

(b) Note that h1 = 20. We have

5n = hn − 5hn−1 n ≥ 1.

Replacing n by n− 1,

5n−1 = hn−1 − 5hn−2 n ≥ 2.

Combining the above equations we obtain

0 = hn − 5hn−1 − 5(hn−1 − 5hn−2)

= hn − 10hn−1 + 25hn−2 n ≥ 2.

For the above homogeneous recurrence the characteristic polynomial is x2 − 10x + 25 =
(x− 5)2, so it has general solution

hn = (an+ b)5n n = 0, 1, 2, . . .
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Using h0 = 3 and h1 = 20 we find

a = 1, b = 3.

Therefore

hn = (n+ 3)5n n = 0, 1, 2, . . .

53. For n ≥ 0 we have

hn = 500(1.06)n +
n−1∑
k=0

100(1.06)k

= 500(1.06)n + 100
(1.06)n − 1

.06
.

The generating function g(x) =
∑∞

n=0 hnx
n satisfies

g(x) =

(
500 +

100

.06

)
1

1− 1.06x
− 100

.06(1− x)
.
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