Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 7

We list some Fibonacci numbers together with their prime factorization.

n fn factorization

0 0 0

1 1 1

2 1 1

3 2 2

4 3 3

) 5) )

6 8 23

7 13 13

8 21 3xT7

9 34 2 x 17

10 55 5x 11

11 89 89

12| 144 24 x 32

13| 233 233

14 | 377 13 x 29

15 ] 610 2 x5Hx61

16 | 987 3 X 7 x47

17 | 1597 1597

18 | 2584 23 x 17 x 19

19 | 4181 37 x 113

20 | 6765 3 x5 x 11 x41

21 | 10946 2 x 13 x 421

22 | 17711 89 x 199

23 | 28657 28657

24 | 46368 2° x 32 x 7 x 23

1. We have

nl Y S Yofe 3 o(=D >iofi
0 0 0 0 0
1 1 1 -1 1
2 3 4 0 2
3 8 12 -2 6=2x3
4 21 33 1 15=3x5
5) 55 88 —4 40 =5 x 8
6 144 232 4 104 =8 x 13
7 377 609 -9 273 =13 x 21
n an f2n+1 -1 -1+ (—1)”]“”71 fnfn+1




2. We have

where

To show that f, is the integer closest to B"/+/5, it suffices to show that

1 _ L _ 1

2 5 2
Using 2 < V5 <3 we have —1 < L < —1/2s0 =1 < L < 1. Therefore —1 < L™ < 1. Also
1/4/5 < 1/2. The result follows.

3. For m = 2, 3,4 consider the Fibonacci sequence fy, f1,... modulo m.
n|fn fomod2 f, mod3 f, mod4
0] 0 0 0 0
111 1 1 1
211 1 1 1
3] 2 0 2 2
41 3 1 0 3
5| 5 1 2 1
6| 8 0 2 0
7113 1 1 1
8121 1 0 1
9134 0 1 2

The sequence repeats with period 3 (resp. 8) (resp. 6) if m = 2 (resp. m = 3) (resp. m = 4).
The result follows.

4. For an integer n > 5 we have

o = Joc1t fa2
Jn1 = fa2t fu-s
Jo2 = Jfaz+t fa-a
Jn-s Jn—a+ fas.

In the first equation eliminate f,,_; using the second equation and simplify; in the resulting
equation eliminate f, o using the third equation and simplify; in the resulting equation
eliminate f,_3 using the fourth equation and simplify. The result is

fn - 5fn—4 + 3fn—5-
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Therefore f,, = 3f,_5 (mod 5). Consequently f,, = 0 (mod 5) if and only if f, 5 = 0 (mod
5). This together with the initial conditions fo = 0, f1 = 1, fo = 1, f3 = 2, f4 = 3 shows
that f,, =0 (mod 5) if and only if n is divisible by 5.

5. Consider the Fibonacci sequence fy, fi, ... modulo 7.
n| fn fomodT7
00 0
1] 1 1
211 1
3| 2 2
41 3 3
51 5 -2
6|8 1
7113 —1
8|21 0
9|34 -1

The table shows that modulo 7 the Fibonacci sequence will repeat with period 16. The
pattern of zero/nonzero entries shows that f,, is divisible by 7 if and only if n is divisible by

8.

6, 7. Claim I: f,, f,11 are relatively prime for n > 1.

Proof of Claim I: By induction on n. The claim holds for n = 1 since f; = 1 and f; = 1.
Next assume n > 2. Let x denote a positive integer such that z|f,, and z|f,+1. We show
x = 1. Note that x|f,_1 since f,1 1 = fu + fu_1. By induction f, and f, ; are relatively

prime, so x = 1.

Claim II: For r, s > 0 the expression f,fs + fr+1fs+1 depends only on r + s.
Proof of Claim II: Define F(r,s) = f.fs + frt1fs+1. It suffices to show that F(r,s) =

F(r—1,s+1) provided » > 1. Note that
Fir—1,s+1) =

Claim III: For r, s > 0 we have

fr—1fst1 + frfote
fr—lfs+1 + fr(fs + fs+1)
fos + (frfl + fr)ferl

frfs + fr+1fs+1
F(r,s).

frfs + fr+1fs+1 = fr+s+1-

Proof of Claim III: By Claim II
frfs + fr+1fs+1

fr+sf0 + fr—l—s—i—lfl

- fr+s+1



since fo =0 and f; = 1.
Claim IV: For r,s > 1,

fr+s = frfs—1+fsfr+1
= fsfrfl‘i_frferl'

Proof of Claim IV: This is a reformulation of Claim IV.
Claim V: For r, s > 1 consider

fr7f57fr+s~

If a positive integer x divides at least two of these, then x divides all three.

Proof of Claim V: Assume that z|f,. and z|f;. Then z|f, s by Claim IV. Next assume that
z|f. and z|f,1s. By Claim IV, z|fsf,41. But z, f,.,1 are relatively prime, since z|f, and
fr, fr+1 are relatively prime. Therefore x| f;.

Claim VI: Given integers m,n > 1 such that n|m. Then f,|f,.

Proof of Claim VI: We use induction on k = m/n. For k = 1 the claim holds. Next assume
k > 2, and consider f,, fin_n, fm. By induction f,|f,—n. Applying Claim V with r = n,
s=m-—mn,z = f, we find f,|fn.

Claim VII: Given integers m,n > 1 with greatest common divisor d. Then f,; is the greatest
common divisor of f,,, fa-

Proof of Claim VII: We use induction on min(m,n). The claim holds for min(m,n) = 1.
Next assume min(m,n) > 2. Without loss we may assume m > n. We may also assume
that n does not divide m; otherwise d = n and we are done since f,|f,,. Divide m by n and
consider the remainder:

m=qn-+r I1<r<n-1
Observe that
GCD(n,r) = GCD(m,n) =d.
By induction and since r < n — 1,
fa=GCD(n,r).

Since d|m and d|n we have f4|f,, and fy|f,. Conversely, let x denote a positive integer such
that x|f,, and x|f,. We show z|f;. Consider f,,, fon, fr. By assumption z|f,,. Also z|f,
s0 Z|fyn by Claim VI. Now z|f, by Claim V. We have z|f, and z|f.. Therefore x|f; since
fa = GCD(fn, fr). We have shown f; = GCD(fm, frn)-

8. By construction hyg = 1 and h; = 2. We now find h,, for n > 2. Consider a coloring of
the 1 x n chessboard. The first square is colored red or blue. If it is blue, then there are
h,_1 ways to color the remaining n — 1 squares. If it is red, then the second square is blue,
and there are h,_, ways to color the remaining n — 2 squares. Therefore h,, = h,_1 + h,_s.
Comparing the above data with the Fibonacci sequence we find h,, = f,1».



9. By construction hy = 1 and hy = 3. We now find h,, for n > 2. Consider a coloring of the
1 x n chessboard. The first square is colored red or white or blue. If it is white or blue, then
there are h,,_; ways to color the remaining n — 1 squares. If it is red, then the second square
is white or blue, and there are h,_» ways to color the remaining n — 2 squares. Therefore
hy = 2hp_1 + 2h,_o. To find h,, in closed form, consider the quadratic equation z? = 2z + 2.
By the quadratic formula z =1+ V3. We hunt for real numbers a, b such that

b = a(1 4+ V3)" + b(1 — V/3)" n=0,12,...
Setting n = 0,1 we find

= a-+b,
3 = a(l+V3)+b(1—V3).

Solving these equations for a, b we find

L V342 y_ V32
23] 2V/3

Therefore

V342 . V3—2 ) B
By = W (14+V3)" + (1—+/3) n=0,1,2,...

10. After n months there will be 2f,, 1 pairs of rabbits.

11. (a) Define Z,, = fu—1 + fox1 — I, for n > 1. One checks Z; = 0 and Z = 0. Also
Ly = L1+ Zp_o for n > 3. Therefore Z,, = 0 for n > 1. The result follows.

(b) Use induction on n. First assume n = 0. Then each side equals 4. Next assume n > 1.
By induction

B+l+- 412 = Ll +2+012
ln(lp—1 + 1) + 2
- lnln+1 + 2
12. We have
(n—17°=n*-3n*>+3n-1
SO

n®=(n—17>+3n>—-3n+1.

13. (a) (L —cx)™h (b) (L+2)7 % (¢) (1 —2)% (d) e7; (e) e



(z+2*+2°+-- ) = 2'(Q 422+ +--)

= (1 —-2%)""
(1+2°4+2°+--) = (1-2%"

I+z)1l+z+2*°+--)* = (1+a2)(1—2)2
(d)
(z+2* +o') 2+t + ) A+ o +22+-)? = 22 +22 + 20+ 22 + 281 —2)2
(e)

(04" 2 = 0t

= 201 —2)*

15. We evaluate Y - n3z". For n > 0,

o) o)+ ()

Recall
= /n = /n
S0 - 50
n=0 (3> n=3 3
— 3 Z (7;) 3
n=3
_ 3 - n+ 3 n
- 3 ("3 7)
= 2°(1—a)™*
Similarly,
(7 _ 2 -3 (7 _ -2
Z(Q)x =z°(1—x)", Z(l)x =z(1 —x)
n=0 n=0
Therefore
Z ndr" = 621 —2) *+62°(1 —2) P+ (1l —2)?
n=0



16. This is the generating function for the sequence {h,}°, where h,, is the number of
n-combinations of the multiset

{00 -e1,00€9,00€3,00- €4}

such that (i) e; appears at most twice; (ii) eg is even and at most 6; (iii) es is even; (iv) ey
1s nonzero.

17. The generating function is
Y b= (1427 a2t + )1 +ata?) (142" + 2 ) (1),
n=0

Evaluating this using
I+ +at+ =1 -2 T+a® a8+ =1 —2%)7!

and simplifying, we obtain

Zhnx” = (1—2)7?
= Z(n—i—l)x”.

Therefore h,, = n+ 1 for n > 0.

18. Define
E = 2ey, Ey = bes, Es =e3, Ey = Tey.
The scalar h,, is the number of nonnegative integral solutions to
Ey+ FEy+ E3+ Ey=n,
such that (i) Ej is even; (ii) E» is divisible by 5; (iii) Ej is divisible by 7. The generating
function for {h,}2, is
A4+22+2*+ - )A4+2° +20+ - YA+ a4+ 22+ )L +2"+ 2™+,
This simplifies to
1 1 1 1
l—a221—-2°1—21—27

19. We have
>(5) = X (5)s
n=0 n=2
— g2 Z (Z) 2
n=2
> 2
n=0
- 2*(1-a)”



20. We have

21. Define g(z) = >, hna™. We have
j{:fuk4a” = xg(x),
Z na" = $)

From the given recurrence we find

g(x) — zg(x) =

I—a)  (1—a)

Therefore
(2) x? n x
) —
g (I—2p  (1—a)
= (n+2 n n+1
-2 (") (s
n=0 n=0
Consequently

n+2 n+1
m= (") (") n=123

22. The exponential generating function is

Zn' Zx x‘




23. The exponential generating function is

9°(x) = nzoa(a— 1)---(04—n+1)% = ; (3)9&" =(1+ax)~
24. (a) We have ¢g°(x) = G(x)* where
3 $5 et — e T
(b) We have g¢(x) = G(z)* where
zt 2f . 2 28
(c) We have ¢°(x) = G1(z)Ga(x) - - - Gy () where for 1 <r <k,
x" 2t 72 1
(r) =" el .
Glo) =T+t ST =1
(d) We have ¢°(z) = G1(2)Ga(x) - - - Gi(x) where
x? x"
Gr(z) =l+z+ o5+ 4 (1<r<k).

25. For an integer n > 0, h,, is equal to the number of n-permutations of the multiset
{00+ R,00-W,00- B,oo -G}

such that both (i) R appears an even number of times; (ii) W appears an odd number of
times. The exponential generating function is ¢¢(z) = G1(x)Ga(2)G3(x)G4(x), where

Gl(x):1+§+ﬂ+”':T’
3 45 e
Golt) =a4+ =+ o= =
2@) =7+ o <
22
G3($):G4($)=1—I—x+§+...:€x‘
Using this we obtain
N A2 4248
9 (z) = 1 —x+7+ 3

Therefore h,, = 4" ' if n > 1 and hy = 0.
26. For an integer n > 0, h,, is equal to the number of n-permutations of the multiset

{0+ R,00-B,00-G,00-0}

9



such that both R and G appears an even number of times. The exponential generating
function is g°(x) = G1(z)Ga(x)Gs(x)Gy(x), where

2t er+e*
G =G — 1T =
(7)) = Golw) =1+ 5+ + 2
22
GQ(x):G4(x):1+x+§+---:ex.

Using this we obtain

(€2z+1)2 _ e4z+2€2$+1
4 B 4 '

9°(x) =
Therefore h, = 4" ' +2"1if n > 1 and hg = 1.
27. Call the number h,,. Then h,, is equal to the number of n-permutations of the multiset
{o0-1,00-3,00 5,007,009}

such that 1 and 3 occur a nonzero even number of times. The exponential generating function

is g°(z) = G1(x)G3(x)G5(x)G7(x)Gy(z) where

Using this we obtain

9°(z) = 1 - 1

Therefore

" —4 x4" +6x3"—4x 2"+ 1

hy, =
4

28. The exponential generating function is ¢¢(x) = [[_, G,(z) where

vt e’ +e "
G4(x):G6(x):1+§+Z+”':T’
2 3 )
G5(I):G7(x):x+§+§+...:e 1,
2 3
GS(l’):G9($)21+$—|—§+§+..,:€x'

Using this we obtain

(e —1)%(e* +1)% €5 — 2e7 + 3e*™ — 4e3 + 3e** — 2e” + 1

9°(z) = 1 = 1

10



Therefore

6" —2 x5 +3x4" —4x3+3x2"-2x1

hy, = 1

if n>1and hg =0.

29. Let hy,, 7, Sn, t, denote the number of n-digit numbers that have each digit odd, and
the multiplicity of 1 and 3 as shown below:

variable | mult. of 1 mult. of 3
hy, even even
) even odd
Sy, odd even
tn odd odd

For n > 1, consider what happens if we remove the first digit of an n-digit number. We find

h, = 7Tp_1+ Sp—1+ 3h,_1,
th1+ hp_1+3r,_1,
th1+ hp1+ 35,1,
ln = Th1+ Sp—1+ 3tn_1.

Tn

Sn

The initial conditions are
h():l, ’I"():O7 SOIO, tOIO

Using the above data one checks using induction on n that

57+ 2 x 37+ 1
hn: ’
4
5" —1
'n = Sn = )
4
y 9" =2x3"+1
" 4

for n > 0. The result follows.

30. Let R, (resp. r,) denote the number of ways to color the 1 X n chessboard with colors
red, white, and blue, such that red appears with even multiplicity and there is no restriction
on blue (resp. blue does not appear). So h, = R, —r,. We have Ry =1, ry = 1, hg = 0.
Now suppose n > 1. We show 7, = 2"~1. To see this, consider the number of ways to color
the 1 x n chessboard with red and white, such that red appears with even multiplicity. We
could color squares 2,3, ..., n arbitrarily red or white, and then color square 1 red or white
in order to make the multiplicity of red even. This shows 7, = 2""!. Now consider what
happens if we remove square 1 of the chessboard. We find

R,=3"14+R, 1.

11



Therefore

3"—1 3"+1
R,=Ry+1+34+3+---+3""=1+ 2T
3—1 2
Therefore
3 —-2"+1
NP
2
for n > 1.

31. One checks by induction on n that h, = 0 if n is even and h,, = 2"~ if n is odd.
32. One checks by induction on n that h, = (n + 2)! for n > 0.
33. Observe
? — 2 —9r+9=(z—3)(x+3)(x—1).
Therefore the general solution is
hp = a3" +b(=3)" + ¢ n=0,1,2,...
Using hg =0, hy = 1, ho = 2 we obtain

0 = a+b+ec,
= 3a—3b+c,
2 = 9a+9+c.

Solving this system we find
a=1/3, b=—-1/12, c=—1/4.

Therefore

_Ax3"—(=3)" -3
a 12

hn, n=0,1,2,...
34. Observe
2? — 8z +16 = (v — 4)%
Therefore the general solution is
hy, = (a + bn)4" n=0,1,2,...

Using hg = —1, hy = 0 we obtain



Therefore

hp, = (n—1)4" n=20,1,2,...

35. Observe
=3 +2=(z+2)(x—1)>
Therefore the general solution is
hy, =a(=2)"+bn+c n=0,1,2,...

Using hg = 1, hy =0, ho = 0 we obtain

This yields

Therefore

hy, = n=0,1,2,...

36. Observe
ot —52% + 62° + 40 — 8 = (v — 2)*(x + 1).
Therefore the general solution is
hn = (an® 4+ bn + ¢)2" + d(—1)" n=01,2...

Using hg =0, hy = 1, hy = 1, h3 = 2 we obtain

0 = c+d,

1 = 2a+2b+2c—d,
1 = 16a+ 8b+ 4c+d,
2 = T2a+ 24b+ 8c —d.

This yields

a=-1/24, b=7/72, ¢=8/27, d=—82T.

13



Therefore

—9n2 + 21n + 64)2" — 64(—1)"
p, = 9 "216) (=1) n=01,2,...

37. First note that ap = 1 and a; = 3. Now assume that n > 2. We show that a, =
20,1 + a,_o. Let T,, denote the set of ternary strings of length n that are counted by a,.
For each ternary string s in 7;,_» the string 22s is contained in T,,. Given a ternary string
r in T,,_1 we obtain two ternary strings in 7T,, as follows: (i) if r begins with 0, then each of
1r,2r is contained in T),; (ii) if 7 begins with 1, then each of Or, 2r is contained in T,,; (iii) if
r begins with 2, then each of Or, 1r is contained in 7T,,. Each ternary string in 7}, is obtained
in exactly one way by the above procedure. Therefore a, = 2a,_1 + a,_>. The roots of
22 — 22 — 1 are 1 + /2. Therefore the general solution for a,, is

an = a(l+vV2)" 4+ b(1 —V2)" n=0,1,2,...
Using ag = 1 and a; = 3 we routinely find

14++2 1—+2

2 2

Therefore

n+1 _ n+1
an:(Hﬂ) ;(1 v2) n=0,1,2,...

38. (a) h, = 3" (b) h, = (4+5n—n?)/2; (¢c) h, = 0 if n is even and h,, = 1 if n is odd; (d)
h, =1; (e) h, = 2" — 1.

39. Note that hg = 1, hy = 1, ho = 2. Now assume that n > 3. We show h,, = h,_1 + h,,_3.
Let T,, denote the set of perfect covers of the 1 x n chessboard counted by h,. For each
element of T, _; we can attach a monomino at the left to get an element of T, that begins
with a monomino. For each element of T},_35 we can attach a domino followed by a monomino,
to get an element of T,, that begins with a domino. Each element of 7T, is obtained exactly
once by the above procedure. Therefore h,, = h,,_1 + h,_3.

40. One checks ag = 1 and a; = 3. Now assume that n > 2. We show that a,, = a,_1 +2a,,_».
Let A,, denote the set of ternary strings of length n counted by a,. Given a ternary string s
in A, the string 2s is contained in A,,. Given a ternary string ¢ in A,,_5, each of the strings
02t, 12t are contained in A,,. Each element of A, is obtained exactly once by the above
procedure. Therefore a,, = a,_1 + 2a,_o. We have 2> —x — 2 = (x — 2)(z + 1). Therefore
the general solution for a,, is

a, = a2" +b(—1)" n=0,1,2,...
Using ag = 1 and a; = 3 we find

a=4/3, b=—1/3.

14



Therefore

- 2n+2 + (_1)n+1
B 3

n=20,1,2,...

Qn

41. We have hg = 1. Now assume that n > 1. Label the points 1,2, ..., 2n clockwise around
the circle. Let M = M,, denote the set of matchings of the 2n points counted by h,,. For a
matching in M let t denote the point matched to point 1. Note that ¢ is even. For 1 < s <n
let M(s) denote the set of matchings in M such that point 1 is matched with point 2s. The
sets { M (s)}7_, partition M, so [M|=""_,|M(s)|. For 1 < s < n we compute |[M(s)|. To
construct a matching in M (s), there are hs_; ways to match points 2, 3,...,2s—1 and there
are h,_s ways to match points 2s+1,2s42,...,2n. Therefore |M(s)| = hs_1hn—s. By these
comments h, =Y - hs 1h,_s. We now show

s=1
1 2
hy, = (”) n=01,2,...
n+1\n

Consider the generating function

o

g(x) = Z hpx".

n=0

Using the recursion we obtain

Using the quadratic formula

In other words

14 (1—4x)Y/?

zg(r) = 5

Using Newton’s binomial theorem this becomes

12y, () (Aran
: |

zg(x)

For this equation at = = 0 the left-hand side is zero so the right-hand side is zero. Therefore
13000 (11/12)(_4)”%7I
2 Y

e (D) (e
. |

zg(z)

15



So

Consequently for n > 0,

()

B 1 2n
 on+1\n)

hn_<2”>—(2”) n=1,2,3,...
n n—1

42. We have hg = 3 and h; = 16. For n > 2,

We note

hn - 8hn,1 + 16]7,”,2 == 4]7,”,1 -+ 4n - 8hn,1 —+ 16hn,2
= 4" —4h,,_1 + 16h,_»
= 4" — 4(4h,_o +4"1) + 16k, 9
= 0.

The characteristic polynomial is 2% — 8z + 16 = (x — 4)2. Therefore the general solution is
hn, = (an + b)4" n=20,1,2,...
Using hg = 3 and h; = 16 we find a = 1 and b = 3. Therefore

hy, = (n+3)4" n=0,1,2,...

43. We have hy = 1 and h; = 10. Now suppose n > 2. Using the recursion twice we obtain
hn - 6hn_1 + 8hn_2 — 0

The characteristic polynomial is 22 — 6z + 8 = (x —4)(x — 2). Therefore the general solution
1s

hy, = ad™ + 02" n=0,1,2,...
Using hg = 1 and h; = 10 we find a = 4 and b = —3. Therefore

h, = 4" — 3 x 2" n=0,1,2,...

16



44. Examining the first few values, it appears that h, = 1 for n = 0,1,2... This is verified
by induction.

45. We hunt for solutions of the form
h, =a2" +bn+c n=0,1,2,...

Using hg = 1, hy = 3, hy = 8 we find that

We now verify that
hy=3x2"—n—2 n=0,1,2,...
For n > 0 define H,, = 3 x 2" —n — 2. One checks that Hy = 1 and
H,=2H, 1+n n=1273,...

Therefore h,, = H,, for n > 0.
46. Noting that 22 — 6z +9 = (z — 3)* we hunt for solutions of the form

hnp = (an+b)3" + cn +d n=0,1,2,...
Using hg =1, hy =0, ho = =5, hy3 = —24 we find

a=—1/6, b=-1/2, c=1/2, d=3/2.

Using these values we conjecture

3-3")(3+n)
6

For n > 0 let H,, denote the expression on the right-hand side in the above line. One checks
H():l,Hl:Oand

hn:( n=0,1,2,...

H,=6H,1 —9H,_2+2n n=23,...
Therefore h, = H, forn =0,1,2,....
47. Noting that 22 — 4x + 4 = (z — 2)? we hunt for solutions of the form
hn = (an+b)2" + cn +d n=20,1,2,...

Using hg = 1, hy = 2, ho = 11, hy = 46 we find

Using these values we conjecture

hy = (5n—12)2" + 3n + 13 n=0,1,2...

17



For n > 0 let H,, denote the expression on the right-hand side in the above line. One checks
H0:17H1:2and

H,=4H, | —4H, o +3n+1 n=23,...
Therefore h, = H, forn =10,1,2,....

48. Define g(x) = Y~ hpa". Note that z"g(x) = Y " h,_.a™ for r > 0.
(a) Using the given information on h, we find

9(x) = 7+ 4a%g(x).

Therefore
z

B 1 1

41 —2x)  4(1+22)

I =)

n=0
Therefore
on _ (_9)n
h, = i ) n=20,1,2,...

(b) Abbreviate

Using the given information on h, we find

g(2)(1 — 2 —2*) =1+ 2.

Therefore
(z) 142z
) = —m—
g 1—2—22
B r s
ol —rzr  1-—sx
— Z(rn-‘rl + Sn—i—l)mn
n=0
Therefore
hy, = "t 4 gt n=20,1,2,...

(c) Using the given information on h,, we find

g(x)(1 — 2 — 92° + 92%) = x + 2°.

18



Consequently

x + x?
1—2—92%2 4+ 923
1 1 1

3(1—3z) 12(1+3z) 4(1—=x)

> 4 n__ (_9\n _
12

n=0
Therefore

4x3"—(=3)"—3

hy =
12

n=20,1,2,...

(d) Using the given information on h,, we find

g(x)(1 — 8z + 162%) = 8x — 1.

Consequently
( ) 8r —1
z) = ——mM8M——
g 1— 8z + 1622
B Sr —1
(1 —4x)?
= (z—1)) (n+1)4"a"
n=0
= ) (n—1)4"a",
n=0
Therefore
hn = (n — 1)4" n=01,2,...

49. For n > 0 define

We show

he = (2 +9)(z + qy) (@ + ¢%y) - (x + ¢" ).
Since hg = 1 it suffices to show

ho = (. + ¢ ') hpy n=123,...
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This is obtained using the identity

n n—1> _1<n—1)
— +q" 1<k<n-1.
(k‘)q (k‘—l . k- /,

The above identity is routinely verified.

50. Let E denote the set of extraordinary subsets of {1,2,...,n}. For 1 < k < n let Ej
denote the set of elements in £ that have cardinality k. The sets {Ej}}_, partition E so
|E| =31, |Ek|. For1l <k < n we compute |E;|. Consider an element S € Ej. The minimal
element of S is k. Therefore S consists of k and a (k — 1)-subset of {k + 1,k +2,...,n}.

There are (Z:’f) ways to choose this (k — 1)-subset, so |Ey| = (Z:’f) Therefore

5= (1)

Comparing this formula with Theorem 7.1.2 we find |E| = f,.

51. Define g(z) = Y 7, hya™. Observe

i Rpq2" = Z hpz"tt = 2g(1).
n=1 n=0

Recall
n_ n_ n—1 _ n_ 7T
;nm —;m: —mgn:v —x;(n—i-l)x BRCETE
Observe
4o
g(x) — 3zg(x) + =) =hg=2
Thus
gle)(1=30) =2 =
So
2 4o
9@ = T3 T as 32)(1 — 1)2

-1 n 3—x
1-3z (1—ux)?

— —f:?,”x" +3§:(n—}- 1)z" — inx”
n=0 n=0 n=0

= Z(Zn +3—3")z".

n=0
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Therefore
hy,=2n+3—-3" n=0,1,2,...
52. (a) Note that hy = 11. We have
5 = h, —2h,_1 n>1.
Replacing n by n — 1,
5770 = a1 — 2h,o n>2.
Combining the above equations we obtain

0 - hn - 2hn,1 - 5(hn,1 - 2hn,2)
= hn - 7hn_1 + 10hn_2 n Z 2.

For the above homogeneous recurrence the characteristic polynomial is 22 — 7z + 10 =
(x — 5)(x — 2), so it has general solution

By = a5" + b2" n=0,1,2,...

Using hg = 3 and h; = 11 we find

a=5/3, b=4/3.
Therefore
n+1 2n+2
hn:5+ n=20,1,2,...

(b) Note that hy = 20. We have
5" = h, —5h,_1 n > 1.
Replacing n by n — 1,
5" = hp_1 —5hyos n>2.
Combining the above equations we obtain

O - hn - 5hn_1 - 5(hn—1 - 5hn—2)
= hyp —10hp_1 + 25N, 9 n > 2.

For the above homogeneous recurrence the characteristic polynomial is 2% — 10z 4 25 =
(z —5)2, so it has general solution

hn, = (an + b)5" n=20,1,2,...
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Using hg = 3 and h; = 20 we find

a=1, b=3
Therefore
hp = (n+3)5" n=012,...
53. For n > 0 we have
n—1

hy, = 500(1.06)" + ) 100(1.06)"
k=0

(1.06)" — 1

= 500(1.06)" + 100
(1.06)" + .06

The generating function g(z) = Y, h,z" satisfies

100 1 100
— (500 + —~ - :
g(x) ( + .06) 1-1.06z  .06(1—ux)
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