
Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 6

1. Define the set S = {1, 2, . . . , 104}. Let A (resp. B) (resp. C) denote the set of integers in
S that are divisible by 4 (resp. 5) (resp. 6). We seek |A ∩B ∩ C|. We have

set size justification

S 104

A 2500 104 = 2500× 4
B 2000 104 = 2000× 5
C 1666 104 = 1666× 6 + 4

A ∩B 500 104 = 500× 20
B ∩ C 333 104 = 333× 30 + 10
A ∩ C 833 104 = 833× 12 + 4

A ∩B ∩ C 166 104 = 166× 60 + 40

By inclusion/exclusion

|A ∩B ∩ C| = 104 − 2500− 2000− 1666 + 500 + 333 + 833− 166

= 5334.

2. Define the set S = {1, 2, . . . , 104}. Let A (resp. B) (resp. C) (resp. D) denote the set of
integers in S that are divisible by 4 (resp. 6) (resp. 7) (resp. 10). We seek |A∩B ∩C ∩D|.
We have

set size justification

S 104

A 2500 104 = 2500× 4
B 1666 106 = 1666× 6 + 4
C 1428 104 = 1428× 7 + 4
D 1000 104 = 1000× 10

A ∩B 833 104 = 833× 12 + 4
A ∩ C 357 104 = 357× 28 + 4
A ∩D 500 104 = 500× 20
B ∩ C 238 104 = 238× 42 + 4
B ∩D 333 104 = 333× 30 + 10
C ∩D 142 104 = 142× 70 + 60

A ∩B ∩ C 119 104 = 119× 84 + 4
A ∩B ∩D 166 104 = 166× 60 + 40
A ∩ C ∩D 71 104 = 71× 140 + 60
B ∩ C ∩D 47 104 = 47× 210 + 130

A ∩B ∩ C ∩D 23 104 = 23× 420 + 340
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By inclusion/exclusion

|A ∩B ∩ C ∩D| = 104 − 2500− 1666− 1428− 1000

+ 833 + 357 + 500 + 238 + 333 + 142

− 119− 166− 71− 47 + 23

= 5429.

3. Define a set S = {1, 2, . . . , 104}. Let A (resp. B) denote the set of integers in S that are
perfect squares (resp. perfect cubes). We seek |A ∩B|. We have

set size justification

S 104

A 100 1002 = 104

B 21 213 = 9261 and 223 = 10648
A ∩B 4 46 = 4096 and 56 = 15625

By inclusion/exclusion

|A ∩B| = 104 − 100− 21 + 4 = 9883.

4. These 12-combinations correspond to the integral solutions for

x+ y + z + w = 12, 0 ≤ x ≤ 4, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4, 0 ≤ w ≤ 5.

Let S denote the set of nonnegative integral solutions to x + y + z + w = 12. Let X (resp.
Y ) (resp. Z) (resp. W ) denote the set of elements in S such that x ≥ 5 (resp. y ≥ 4) (resp.
z ≥ 5) (resp. w ≥ 6). We seek |X ∩ Y ∩ Z ∩W |. We have

set size justification

S
(
15
3

)
15 = 12 + 4− 1

X
(
10
3

)
15− 5 = 10

Y
(
11
3

)
15− 4 = 11

Z
(
10
3

)
15− 5 = 10

W
(
9
3

)
15− 6 = 9

X ∩ Y
(
6
3

)
15− 5− 4 = 6

X ∩ Z
(
5
3

)
15− 5− 5 = 5

X ∩W
(
4
3

)
15− 5− 6 = 4

Y ∩ Z
(
6
3

)
15− 4− 5 = 6

Y ∩W
(
5
3

)
15− 4− 6 = 5

Z ∩W
(
4
3

)
15− 5− 6 = 4

X ∩ Y ∩ Z 0 15− 5− 4− 5 = 1 < 3
X ∩ Y ∩W 0 15− 5− 4− 6 = 0 < 3
X ∩ Z ∩W 0 15− 5− 5− 6 = −1 < 3
Y ∩ Z ∩W 0 15− 4− 5− 6 = 0 < 3

X ∩ Y ∩ Z ∩W 0 15− 5− 4− 5− 6 = −5 < 3
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By inclusion/exclusion

|X ∩ Y ∩ Z ∩W | =
(

15

3

)
−
(

10

3

)
−
(

11

3

)
−
(

10

3

)
−
(

9

3

)
+

(
6

3

)
+

(
5

3

)
+

(
4

3

)
+

(
6

3

)
+

(
5

3

)
+

(
4

3

)
= 34.

5. These 10-combinations correspond to the integral solutions for

x+ y + z + w = 10, 0 ≤ x, 0 ≤ y ≤ 4, 0 ≤ z ≤ 5, 0 ≤ w ≤ 7.

Let S denote the set of nonnegative integral solutions to x + y + z + w = 10. Let Y (resp.
Z) (resp. W ) denote the set of elements in S such that y ≥ 5 (resp. z ≥ 6) (resp. w ≥ 8).
We seek |Y ∩ Z ∩W |. We have

set size justification

S
(
13
3

)
13 = 10 + 4− 1

Y
(
8
3

)
13− 5 = 8

Z
(
7
3

)
13− 6 = 7

W
(
5
3

)
13− 8 = 5

Y ∩ Z 0 13− 5− 6 = 2 < 3
Y ∩W 0 13− 5− 8 = 0 < 3
Z ∩W 0 13− 6− 8 = −1 < 3

Y ∩ Z ∩W 0 13− 5− 6− 8 = −6 < 3

By inclusion/exclusion

|Y ∩ Z ∩W | =
(

13

3

)
−
(

8

3

)
−
(

7

3

)
−
(

5

3

)
= 185.

6. We seek the number of integral solutions for

x+ y + z = 12, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, 0 ≤ z ≤ 3.

Let S denote the set of nonnegative integral solutions to x + y + z = 12. Let X (resp. Y )
(resp. Z) denote the set of elements in S such that x ≥ 7 (resp. y ≥ 7) (resp. z ≥ 4). We
seek |X ∩ Y ∩ Z|. We have

set size justification

S
(
14
2

)
14 = 12 + 3− 1

X
(
7
2

)
14− 7 = 7

Y
(
7
2

)
14− 7 = 7

Z
(
10
2

)
14− 4 = 10

X ∩ Y 0 14− 7− 7 = 0 < 2
X ∩ Z

(
3
2

)
14− 7− 4 = 3

Y ∩ Z
(
3
2

)
14− 7− 4 = 3

X ∩ Y ∩ Z 0 14− 7− 7− 4 = −4 < 2
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By inclusion/exclusion

|X ∩ Y ∩ Z| =
(

14

2

)
−
(

7

2

)
−
(

7

2

)
−
(

10

2

)
+

(
3

2

)
+

(
3

2

)
= 10.

7. Let S denote the set of nonnegative integral solutions for x1 + x2 + x3 + x4 = 14. For
1 ≤ i ≤ 4 let Ai denote the set of elements in S with xi ≥ 9. We seek |A1 ∩ A2 ∩ A3 ∩ A4|.
We have

set size justification

S
(
17
3

)
17 = 14 + 4− 1

Ai

(
8
3

)
17− 9 = 8

Ai ∩ Aj 0 17− 9− 9 = −1 < 3

By inclusion/exclusion

|A1 ∩ A2 ∩ A3 ∩ A4| =
(

17

3

)
− 4

(
8

3

)
= 456.

8. Let S denote the set of positive integral solutions for x1 + x2 + x3 + x4 + x5 = 14. For
1 ≤ i ≤ 5 let Ai denote the set of elements in S with xi ≥ 6. We seek |A1∩A2∩A3∩A4∩A5|.
We have

set size justification

S
(
13
4

)
13 = 14− 5 + 5− 1

Ai

(
8
4

)
13− 5 = 8

Ai ∩ Aj 0 13− 5− 5 = 3 < 4

By inclusion/exclusion

|A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5| =
(

13

4

)
− 5

(
8

4

)
= 365.

9. We make a change of variables

y1 = x1 − 1, y2 = x2, y3 = x3 − 4, y4 = x4 − 2.

We seek the number of integral solutions to

y1 + y2 + y3 + y4 = 13, 0 ≤ y1 ≤ 5, 0 ≤ y2 ≤ 7, 0 ≤ y3 ≤ 4, 0 ≤ y4 ≤ 4.

Let S denote the set of nonnegative integral solutions to y1 +y2 +y3 +y4 = 13. Let A1 (resp.
A2) (resp. A3) (resp. A4) denote the set of elements in S such that y1 ≥ 6 (resp. y2 ≥ 8)
(resp. y3 ≥ 5) (resp. y4 ≥ 5). We seek |A1 ∩ A2 ∩ A3 ∩ A4|. We have
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set size justification

S
(
16
3

)
16 = 13 + 4− 1

A1

(
10
3

)
16− 6 = 10

A2

(
8
3

)
16− 8 = 8

A3

(
11
3

)
16− 5 = 11

A4

(
11
3

)
16− 5 = 11

A1 ∩ A2 0 16− 6− 8 = 2 < 3
A1 ∩ A3

(
5
3

)
16− 6− 5 = 5

A1 ∩ A4

(
5
3

)
16− 6− 5 = 5

A2 ∩ A3

(
3
3

)
16− 8− 5 = 3

A2 ∩ A4

(
3
3

)
16− 8− 5 = 3

A3 ∩ A4

(
6
3

)
16− 5− 5 = 6

Ai ∩ Aj ∩ Ak 0 16− 6− 5− 5 = 0 < 3

By inclusion/exclusion

|A1 ∩ A2 ∩ A3 ∩ A4| =
(

16

3

)
−
(

10

3

)
−
(

8

3

)
−
(

11

3

)
−
(

11

3

)
+

(
5

3

)
+

(
5

3

)
+

(
3

3

)
+

(
3

3

)
+

(
6

3

)
= 96.

10. The r-combinations of S correspond to the integral solutions for

k∑
i=1

xi = r, 0 ≤ xi ≤ ni (1 ≤ i ≤ k).

We assume that there exists at least one solution, so r ≤
∑k

i=1 ni. Let U denote the set

of nonnegative integral solutions to
∑k

i=1 xi = r. For 1 ≤ i ≤ k let Ai denote the set of
elements in U such that xi > ni. To get our answer, we would apply inclusion/exclusion to
the sets {Ai}ki=1. Note that A1∩A2∩· · ·∩Ak consists of the elements in U such that xi > ni

for 1 ≤ i ≤ k. For such an element r =
∑k

i=1 xi >
∑k

i=1 ni ≥ r, a contradiction. Hence
A1 ∩ A2 ∩ · · · ∩ Ak = ∅.
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11. Let the set S consist of the permutations of {1, 2, . . . , 8}. For i ∈ {2, 4, 6, 8} let Ai denote
the set of permutations in S for which i is in its natural position. We seek |A2∩A4∩A6∩A8|.
We have

set size
S 8!
Ai 7!

Ai ∩ Aj 6!
Ai ∩ Aj ∩ Ak 5!

Ai ∩ Aj ∩ Ak ∩ A` 4!

By inclusion/exclusion

|A2 ∩ A4 ∩ A6 ∩ A8| = 8!− 4× 7! + 6× 6!− 4× 5! + 4! = 24024.

12. Let X denote the set of permutations of {1, 2, . . . , 8} for which exactly four integers are
in their natural position. We compute |X|. To do this we construct an element of X in
stages:

stage to do # choices

1 select the four fixed integers
(
8
4

)
2 select a derangement of the remaining four integers D4

Therefore |X| =
(
8
4

)
D4. We have

(
8
4

)
= 70 and

D4 = 4!− 4× 3! + 6× 2!− 4× 1! + 1 = 9

so |X| = 70× 9 = 630.

13. Let the set S consist of the permutations of {1, 2, . . . , 9}. For i ∈ {1, 3, 5, 7, 9} let
Ai denote the set of permutations in S for which i is in its natural position. We seek
|S| − |A1 ∩ A3 ∩ A5 ∩ A7 ∩ A9|. We have

set size
Ai 8!

Ai ∩ Aj 7!
Ai ∩ Aj ∩ Ak 6!

Ai ∩ Aj ∩ Ak ∩ A` 5!
Ai ∩ Aj ∩ Ak ∩ A` ∩ Am 4!

By inclusion/exclusion

|S| − |A1 ∩ A3 ∩ A5 ∩ A7 ∩ A9| = 5× 8!− 10× 7! + 10× 6!− 5× 5! + 1× 4!.
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14. Let X denote the set of permutations of {1, 2, . . . , n} for which exactly k integers are in
their natural position. We compute |X|. To do this we construct an element of X in stages:

stage to do # choices

1 select the k fixed integers
(
n
k

)
2 select a derangement of the remaining n− k integers Dn−k

Therefore |X| =
(
n
k

)
Dn−k.

15. (a) D7; (b) 7!−D7; (c) 7!− 7D6 −D7.

16. We use combinatorial reasoning to show

n! =
n∑

i=0

(
n

i

)
Dn−i.

Let S denote the set of permutations of {1, 2, . . . , n}. For 0 ≤ i ≤ n let Si denote the set of
permutations in S for which exactly i integers are in their natural position. The sets {Si}ni=0

partition S, so |S| =
∑n

i=0 |Si|. We have |S| = n! and by Problem 14 |Si| =
(
n
i

)
Dn−i for

0 ≤ i ≤ n. The result follows.

17. Let X denote the set of permutations of S. Let A (resp. B) (resp. C) denote the set of
elements in X such that aaa (resp. bbbb) (resp. cc) are consecutive. We seek |A ∩ B ∩ C|.
Using Theorem 2.4.2,

set size

X
(

9
3 4 2

)
A

(
7

1 4 2

)
B

(
6

3 1 2

)
C

(
8

3 4 1

)
A ∩B

(
4

1 1 2

)
A ∩ C

(
6

1 4 1

)
B ∩ C

(
5

3 1 1

)
A ∩B ∩ C

(
3

1 1 1

)
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By inclusion/exclusion

|A ∩B ∩ C| =

(
9

3 4 2

)
−
(

7

1 4 2

)
−
(

6

3 1 2

)
−
(

8

3 4 1

)
+

(
4

1 1 2

)
+

(
6

1 4 1

)
+

(
5

3 1 1

)
−
(

3

1 1 1

)
= 871.

18. View (n− 1)! = (n− 1)× (n− 2)!.

19. Using Problem 18 and Theorem 6.3.1,

Dn − (n− 1)(Dn−2 +Dn−1)

= n!
n∑

i=0

(−1)i

i!
− (n− 1)(n− 2)!

n−2∑
i=0

(−1)i

i!
− (n− 1)(n− 1)!

n−1∑
i=0

(−1)i

i!

= n!
(−1)n−1

(n− 1)!
+ n!

(−1)n

n!
− (n− 1)(n− 1)!

(−1)n−1

(n− 1)!

= n(−1)n−1 + (−1)n − (n− 1)(−1)n−1

= (−1)n−1(n− 1− (n− 1))

= 0.

20. We show

Dn = n!
n∑

i=0

(−1)i

i!
n = 1, 2, . . .

We use induction on n. The above equation holds for n = 1 since each side is zero. Next
assume n ≥ 2. By induction

Dn−1 = (n− 1)!
n−1∑
i=0

(−1)i

i!
.

Therefore

Dn = nDn−1 + (−1)n

= (−1)n + n(n− 1)!
n−1∑
i=0

(−1)i

i!
.

= (−1)n + n!
n−1∑
i=0

(−1)i

i!
.

= n!
n∑

i=0

(−1)i

i!
.
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21. We show that Dn is even if and only if n is odd. We use induction on n. First assume
n = 1. In this case the result holds since D1 = 0 is even and 1 is odd. Next assume n ≥ 2.
Recall Dn = nDn−1 + (−1)n. If n is even then n − 1 is odd, so by induction Dn−1 is even.
Therefore nDn−1 is even so Dn = nDn−1 + 1 is odd. If n is odd then n − 1 is even, so by
induction Dn−1 is odd. Therefore nDn−1 is odd so Dn = nDn−1 − 1 is even.

22. Using Theorem 6.5.1,

Qn =
n−1∑
i=0

(
n− 1

i

)
(−1)i(n− i)!

=
n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
(−1)i(n− i)!

= (n− 1)!
n−1∑
i=0

(−1)i(n− i)
i!

23. Using Problem 22 and a change of variables j = i− 1,

Qn = (n− 1)!
n−1∑
i=0

(−1)i(n− i)
i!

= (n− 1)!
n∑

i=0

(−1)i(n− i)
i!

= (n− 1)!
n∑

i=0

(−1)in

i!
− (n− 1)!

n∑
i=0

(−1)ii

i!
.

= n!
n∑

i=0

(−1)i

i!
− (n− 1)!

n∑
i=1

(−1)ii

i!

= n!
n∑

i=0

(−1)i

i!
+ (n− 1)!

n∑
i=1

(−1)i−1

(i− 1)!

= n!
n∑

i=0

(−1)i

i!
+ (n− 1)!

n−1∑
j=0

(−1)j

j!

= Dn +Dn−1.

24. For 0 ≤ k ≤ 6 let rk denote the number of ways to place k nonattacking rooks in the
forbidden positions. Consider the number of ways to place six nonattacking rooks on the
chessboard such that no rook is in a forbidden position. By Theorem 6.4.1, this number is

6∑
k=0

rk(−1)k(6− k)!.
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For case (a),

k 0 1 2 3 4 5 6
rk 1 6 12 8 0 0 0

For case (b),

k 0 1 2 3 4 5 6
rk 1 12 54 112 108 48 8

For case (c),

k 0 1 2 3 4 5 6
rk 1 8 22 24 9 1 0

25. We interpret this problem in terms of placing six nonattacking rooks on a 6×6 chessboard.
The answer is

∑6
k=0 rk(−1)k(6− k)! where

k 0 1 2 3 4 5 6
rk 1 8 20 20 7 0 0

26. We interpret this problem in terms of placing six nonattacking rooks on a 6×6 chessboard.
The answer is

∑6
k=0 rk(−1)k(6− k)! where

k 0 1 2 3 4 5 6
rk 1 9 26 26 8 0 0

27. Choose a circular labelling 1, 2, . . . , 8 of the seats in order around the carousel, with seat
i facing seat i + 1 for 1 ≤ i ≤ 7 and seat 8 facing seat 1. For 1 ≤ i ≤ 8 the girl in seat i
moves to a new seat, labelled si. Then s1s2 · · · s8 is a permutation of {1, 2, . . . , 8} such that
seat si does not face seat si+1 for 1 ≤ i ≤ 7 and seat s8 does not face seat s1. We compute
the number of such permutations. Let P denote the set of permutations of {1, 2, . . . , 8}. For
1 ≤ i ≤ 7 let Ai denote the set of permutations s1s2 · · · s8 in P such that seat si faces seat
si+1. Let A8 denote the set of permutations s1s2 · · · s8 in P such that s8 faces s1. We seek
|A1 ∩A2 ∩ · · · ∩A8|. For each subset s ⊆ {1, 2, . . . , 8} define As = ∩i∈sAi. We routinely find
|As| = 8(7− |s|)! if |s| ≤ 7. Moreover |A1 ∩ A2 ∩ · · · ∩ A8| = 8. By inclusion/exclusion

|A1 ∩ A2 ∩ · · · ∩ A8| =
∑

s⊆{1,2,...,8}

|As|(−1)|s|

=
7∑

k=0

(
8

k

)
8(7− k)!(−1)k + 8

= 13000.

Now assume that the seats are indistinguisable. In this case, any two of the original seating
arrangements become indistinguishable whenever one is obtained from the other by a circular
permutation. Under the new assumption the answer is 13000/8 = 1625.
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28. Choose a circular labelling 1, 2, . . . , 8 of the seats in order around the carousel. Note that
seats labelled i, i+ 4 are opposite for 1 ≤ i ≤ 4. For 1 ≤ i ≤ 8 the boy in seat i moves to a
new seat, labelled si. Then s1s2 · · · s8 is a permutation of {1, 2, . . . , 8} such that seats si, si+4

are not opposite for 1 ≤ i ≤ 4. We compute the number of such permutations. Let P denote
the set of permutations of {1, 2, . . . , 8}. For 1 ≤ i ≤ 4 let Ai denote the set of permutations
s1s2 · · · s8 in P such that seats si, si+4 are opposite. We seek |A1 ∩ A2 ∩ A3 ∩ A4|. For each
subset s ⊆ {1, 2, 3, 4} define As = ∩i∈sAi. We routinely find

|s| 0 1 2 3 4
|As| 8! 8× 6! 8× 6× 4! 8× 6× 4× 2! 8× 6× 4× 2× 0!

By inclusion/exclusion

|A1 ∩ A2 ∩ A3 ∩ A4|
=

∑
s⊆{1,2,...,4}

|As|(−1)|s|

= 8!− 4× 8× 6! + 6× 8× 6× 4!− 4× 8× 6× 4× 2! + 8× 6× 4× 2× 0!

= 23040.

Now assume that the seats are indistinguisable. In this case, any two of the original seating
arrangements become indistinguishable whenever one is obtained from the other by a circular
permutation. Under the new assumption the answer is 23040/8 = 2880.

29. Label the people on the platform 1, 2, . . . , 10. For 1 ≤ i ≤ 10 let si denote the stop
where person i exits the subway. Thus 1 ≤ si ≤ 6. Let S denote the set of sequences of
integers s1s2 · · · s10 such that 1 ≤ si ≤ 6 for 1 ≤ i ≤ 10. For 1 ≤ j ≤ 6 let Aj denote the set
of sequences s1s2 · · · s10 in S such that si 6= j for 1 ≤ i ≤ 10. We seek |A1 ∩ A2 ∩ · · · ∩ A6|.
For each subset s ⊆ {1, 2, . . . , 6} define As = ∩i∈sAi. We routinely find |As| = (6 − |s|)10.
By inclusion/exclusion

|A1 ∩ A2 ∩ · · · ∩ A6| =
∑

s⊆{1,2,...,6}

|As|(−1)|s|

=
6∑

k=0

(
6

k

)
(6− k)10(−1)k.

30. (Problem statement is suspect) If we accept the problem statement verbatim, then the
answer is 0. Reason: Since d appears in the multiset with multiplicity one, it is vacuously
true that for any circular permutation of the multiset, all occurrences of d will appear
consecutively. We now adjust the problem statement to read ..for each type of letter except
d, all letters of that type do not appear consecutively.. Let S denote the set of circular
permutations of

{3 · a, 4 · b, 2 · c, 1 · d}.

Let A (resp. B) (resp. C) denote the set of elements in S such that all occurrences of a
(resp. b) (resp. c) are consecutive. We seek |A ∩B ∩ C|. We have
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set X X contains CP of |X|
S {3 · a, 4 · b, 2 · c, 1 · d} 9!

3!4!2!1!

A {1 · aaa, 4 · b, 2 · c, 1 · d} 7!
1!4!2!1!

B {3 · a, 1 · bbbb, 2 · c, 1 · d} 6!
3!1!2!1!

C {3 · a, 4 · b, 1 · cc, 1 · d} 8!
3!4!1!1!

A ∩B {1 · aaa, 1 · bbbb, 2 · c, 1 · d} 4!
1!1!2!1!

A ∩ C {1 · aaa, 4 · b, 1 · cc, 1 · d} 6!
1!4!1!1!

B ∩ C {3 · a, 1 · bbbb, 1 · cc, 1 · d} 5!
3!1!1!1!

A ∩B ∩ C {1 · aaa, 1 · bbbb, 1 · cc, 1 · d} 3!
1!1!1!1!

By inclusion/exclusion

|A ∩B ∩ C| = 9!

3!4!2!1!
− 7!

1!4!2!1!
− 6!

3!1!2!1!
− 8!

3!4!1!1!

+
4!

1!1!2!1!
+

6!

1!4!1!1!
+

5!

3!1!1!1!
− 3!

1!1!1!1!
.

31. Let S denote the set of circular permutations of

{2 · a, 3 · b, 4 · c, 5 · d}.

Let A (resp. B) (resp. C) (resp. D) denote the set of elements in S such that all occurrences
of a (resp. b) (resp. c) (resp. d) are consecutive. We seek |A ∩B ∩ C ∩D|. We have

set X X contains CP of |X|
S {2 · a, 3 · b, 4 · c, 5 · d} 13!

2!3!4!5!

A {1 · aa, 3 · b, 4 · c, 5 · d} 12!
1!3!4!5!

B {2 · a, 1 · bbb, 4 · c, 5 · d} 11!
2!1!4!5!

C {2 · a, 3 · b, 1 · cccc, 5 · d} 10!
2!3!1!5!

D {2 · a, 3 · b, 4 · c, 1 · ddddd} 9!
2!3!4!1!

A ∩B {1 · aa, 1 · bbb, 4 · c, 5 · d} 10!
1!1!4!5!

A ∩ C {1 · aa, 3 · b, 1 · cccc, 5 · d} 9!
1!3!1!5!

A ∩D {1 · aa, 3 · b, 4 · c, 1 · ddddd} 8!
1!3!4!1!

B ∩ C {2 · a, 1 · bbb, 1 · cccc, 5 · d} 8!
2!1!1!5!

B ∩D {2 · a, 1 · bbb, 4 · c, 1 · ddddd} 7!
2!1!4!1!

C ∩D {2 · a, 3 · b, 1 · cccc, 1 · ddddd} 6!
2!3!1!1!

A ∩B ∩ C {1 · aa, 1 · bbb, 1 · cccc, 5 · d} 7!
1!1!1!5!

A ∩B ∩D {1 · aa, 1 · bbb, 4 · c, 1 · ddddd} 6!
1!1!4!1!

A ∩ C ∩D {1 · aa, 3 · b, 1 · cccc, 1 · ddddd} 5!
1!3!1!1!

B ∩ C ∩D {2 · a, 1 · bbb, 1 · cccc, 1 · ddddd} 4!
2!1!1!1!

A ∩B ∩ C ∩D {1 · aa, 1 · bbb, 1 · cccc, 1 · ddddd} 3!
1!1!1!1!
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By inclusion/exclusion

|A ∩B ∩ C ∩D| = 13!

2!3!4!5!
− 12!

1!3!4!5!
− 11!

2!1!4!5!
− 10!

2!3!1!5!
− 9!

2!3!4!1!

+
10!

1!1!4!5!
+

9!

1!3!1!5!
+

8!

1!3!4!1!
+

8!

2!1!1!5!
+

7!

2!1!4!1!
+

6!

2!3!1!1!

− 7!

1!1!1!5!
− 6!

1!1!4!1!
− 5!

1!3!1!1!
− 4!

2!1!1!1!
+

3!

1!1!1!1!
.

32. Let S denote the set {1, 2, . . . , n}. For 1 ≤ i ≤ k let Ai denote the set of integers in
S that are divisible by pi. Note that φ(n) = |A1 ∩ A2 ∩ · · · ∩ Ak|. To find φ(n) we use
inclusion/exclusion. For each subset s ⊆ {1, 2, . . . , k} define As = ∩i∈sAi. For notational
convenience define ps =

∏
i∈s pi. Note that |As| = np−1s . By inclusion/exclusion

φ(n) =
∑

s⊆{1,2,...,k}

|As|(−1)|s|

= n
∑

s⊆{1,2,...,k}

p−1s (−1)|s|

= n
k∏

i=1

(1− p−1i ).

33. (Problem statement contains typo) For an n×n chessboard define a set F of “forbidden”
locations, consisting of (1, 1), (2, 2), . . . , (n, n) and (1, 2), (2, 3), . . . , (n− 1, n), (n, 1). For 0 ≤
k ≤ n let a(n, k) denote the number of ways to place k nonattacking rooks on the chessboard,
such that each rook is contained in F . We show that

a(n, k) =
2n

2n− k

(
2n− k
k

)
.

Order the elements of F in a circular fashion

n 1 2 3 4 · · · 2n− 2 2n− 1 2n
nth location (1, 1) (1, 2) (2, 2) (2, 3) · · · (n− 1, n) (n, n) (n, 1)

with the first location following the last one. Given two locations in F , they are adjacent in
the circular ordering if and only if they are in the same row or column of the chessboard.
Thus a(n, k) represents the number of k-subsets of the set F , such that no two elements
of the subset are adjacent in the circular ordering. Denote such a k-subset by {ai}ki=1 with
1 ≤ a1 < a2 < · · · < ak ≤ 2n. Define

x1 = a1 − 1, x2 = a2 − a1 − 2, . . . , xk = ak − ak−1 − 2, xk+1 = 2n− ak.

Then

xi ≥ 0 (1 ≤ i ≤ k + 1),
k+1∑
i=1

xi = 2n− 2k + 1, (1)
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with x1, xk+1 not both zero. Initially ignoring the constraint on the pair (x1, xk+1), the
number of integral solutions to (1) is

(
2n−k+1

k

)
. Now consider the number of integral solutions

to (1) such that x1 = 0 and xk+1 = 0. This number is
(
2n−k−1

k−2

)
. Therefore

a(n, k) =

(
2n− k + 1

k

)
−
(

2n− k − 1

k − 2

)
=

2n

2n− k

(
2n− k
k

)
.

We now compute the number of ways to place n nonattacking rooks on the chessboard, such
that no rook is contained in F . By Theorem 6.4.1 this number is

n∑
k=0

(−1)k(n− k)! a(n, k) =
n∑

k=0

(−1)k(n− k)! 2n

2n− k

(
2n− k
k

)
. (2)

We evaluate the sum (2) for small values of n:

n 2 3 4 5 6 7 8 9
sum 0 1 2 13 24 × 5 3× 193 2× 23× 103 43× 1009

The large prime factors in the above table suggest that the sum (2) cannot be easily expressed
in closed form.

34. The convolution product is matrix multiplication in disguise.

35. F (1) = G(1) and F (m) = G(m)−G(m− 1) for 2 ≤ m ≤ n.

36. The answer is 6. We suppress the details of the calculation.

37. The inverse f−1 is defined just like f , with the sequence 1, 2, 1,−1 replaced by 1,−2, 7,−35.

38. Given a partition in Πn, define its type to be the sequence consisting of the cardinalities
of the sets that make up the partition, listed in nonincreasing order. For n = 3 the possible
types are

111, 21, 3.

In Π3 there is one element of type 111, three elements of type 21, and one element of type
3. Consider the Mobius funtion µ for Π3. Given elements A,B of Π3 we have µ(A,B) = 1
if A = B, µ(A,B) = −1 if B covers A, and µ(A,B) = 2 A has type 111 and B has type 3.
We have µ(A,B) = 0 for all other A,B.
For n = 4 the possible types are

1111, 211, 22, 31, 4.

In Π4 there is one element of type 1111, six elements of type 211, three elements of type 22,
four elements of type 31, and one element of type 4. Consider the Mobius funtion µ for Π4.
Given elements A,B in Π4 we have
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case µ(A,B)
A = B 1

B covers A −1
B has type 4 and A has type 211 2
B has type 4 and A has type 1111 −6
B has type 22 and A has type 1111 1
B has type 31 and A has type 1111 2

other 0

39. Let [a, b] denote the set of elements in the poset which are both divisible by a and divide
b. View [a, b] as a poset with the inherited partial order. Then the map [a, b] → [1, b/a],
x 7→ x/a is a bijection which preserves the partial order. In other words the poset [a, b] is
the poset [1, b/a] in disguise. It follows that µ(a, b) = µ(1, b/a).

40. Let (P,≤) denote the poset described in the problem. Pick k distinct primes {pi}ki=1 and
define n =

∏k
i=1 p

ni
i . Let (Q, |) denote the poset consisting of the positive integer divisors of

n, with partial order given by divisibility. Then the map P → Q, {m1 · a1, . . . ,mk · ak} 7→
pm1
1 · · · p

mk
k is a bijection which preserves the partial order. In other words the poset (P,≤)

is the poset (Q, |) in disguise. The Mobius function for (Q, |) is the classical one given above
Theorem 6.6.4, so the Mobius function for (P,≤) is the same.
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