Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 6

L. Define the set S = {1,2,...,10*}. Let A (resp. B) (resp. C) denote the set of integers in
S that are divisible by 4 (resp. 5) (resp. 6). We seek |A N BN C|. We have

set ‘ size ‘ justification

S 10

A 2500 10* = 2500 x 4
B 2000 10* = 2000 x 5
C 1666 | 10* = 1666 x 6 + 4

ANB 500 10* = 500 x 20

BNnC 333 | 10" = 333 x 30 + 10

AncC 833 | 10 =833 x 12+ 4
ANBNC | 166 | 10* =166 x 60 + 40

By inclusion/exclusion

|IANBNC| = 10*— 2500 — 2000 — 1666 + 500 + 333 + 833 — 166
5334.

2. Define the set S = {1,2,...,10*}. Let A (resp. B) (resp. C) (resp. D) denote the set of
integers in S that are divisible by 4 (resp. 6) (resp. 7) (resp. 10). We seek [ANBNC N D|.
We have

set ‘ size ‘ justification
S 10
A 2500 10* = 2500 x 4
B 1666 | 10° = 1666 x 6 + 4
C 1428 | 10* = 1428 x 7+ 4
D 1000 10% = 1000 x 10
ANB 833 | 10* =833 x 12+ 4
ANcC 357 | 10* =357 x 28 +4
AND 500 10* = 500 x 20
BNnC 238 | 10* =238 x 42+ 4
BND 333 | 10* =333 x 30+ 10
cnbD 142 | 10* = 142 x 70 + 60
ANnBncC 119 | 10* =119 x 84 + 4
ANBND 166 | 10* = 166 x 60 + 40
ANCnD 71 10* = 71 x 140 + 60
BNnCND 47 | 10* =47 x 210 + 130
ANBNCND | 23 | 10* =23 x 420 + 340



By inclusion/exclusion

IANBNCND|=10*—2500 — 1666 — 1428 — 1000
+ 833 + 357 + 500 + 238 + 333 + 142
— 119 — 166 — 71 — 47 + 23
= 5429.

3. Define a set S = {1,2,...,10%}. Let A (resp. B) denote the set of integers in S that are
perfect squares (resp. perfect cubes). We seek |[A N B|. We have

set ‘ size ‘ justification

S 10*

A 100 100% = 10*

B 21 | 21% = 9261 and 223 = 10648
ANB | 4 4% = 4096 and 5° = 15625

By inclusion/exclusion

|ANB| = 10" —100 — 21 + 4 = 9883.

4. These 12-combinations correspond to the integral solutions for
r+y+z+w=12, 0<x<4, 0<y<3 0<2<4 0<w<h.

Let S denote the set of nonnegative integral solutions to z +y + 2z + w = 12. Let X (resp.
Y) (resp. Z) (resp. W) denote the set of elements in S such that z > 5 (resp. y > 4) (resp.
z > 5) (resp. w > 6). We seek | X NY NZNW|. We have

set ‘ size ‘ justification
S (%Y) 15=12+4-1
X (Y) 15-5=10
Y (') 15—4=11
Z (g) 15—5=10
w (5) 15-6=9
xXny @) 15-5—-4=6
Xnz (? 15-5-5=5
Xnw @ 15-5-6=4
Yynz g) 15-4-5=6
YNnw @ 15-4-6=5
ZNW (5) 15-5—-6=4
Xnynz 0 15-5—-4-5=1<3
XNynw 0 15-5-4-6=0<3
Xnznw 0 15-5-5—-6=-1<3
YNnzZnw 0 15-4-5-6=0<3
XNYnzZnw| 0 [15-5-4-5-6=-5<3
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By inclusion/exclusion

xavazow - (V)= ()~ (5)

5. These 10-combinations correspond to the integral solutions for
r+y+z+w=10, 0<z, 0<y<4 0<z<h 0wl

Let S denote the set of nonnegative integral solutions to x +y + z +w = 10. Let Y (resp.
Z) (resp. W) denote the set of elements in S such that y > 5 (resp. 2z > 6) (resp. w > 8).
We seek |Y N ZNW|. We have

set ‘ size ‘ justification
S ;) 13=10+4—1
Y ) 13-5=38
z & 13-6=7
W) 13-8=5
YNz 0 13-5-6=2<3
Ynw 0 13-5-8=0<3
Znw 0 13-6-8=-1<3
YNZAW ]| 0 |[13-5-6-8=-6<3

By inclusion/exclusion

pozom-(3)-()-()- () e

6. We seek the number of integral solutions for
r+y+z=12, 0<x<6, 0<y<6, 0<2<3.

Let S denote the set of nonnegative integral solutions to = + y + z = 12. Let X (resp. Y)

(resp. Z) denote the set of elements in S such that z > 7 (resp. y > 7) (resp. 2z > 4). We
seek [ X NY N Z|. We have

set ‘ size ‘ justification

S () 14=12+3-1

X (9 4-7=7

Y (5) 14-7=7

Z () 14—4=10
Xny 0 4—7-7=0<2
Xnz (? 14-7-4=3
ynz | () 14-7-4=3

XNYNZ| 0 [4—-7T-T—4=-4<2
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By inclusion/exclusion

IXNnYnZ

(960 ()-()+()-»

7. Let S denote the set of nonnegative integral solutions for x; + - + x5+ 24 :_14. _For
1 <i <4 let A; denote the set of elements in S with z; > 9. We seek |A; N Ay N Az N Ayl.
We have

set ‘ size ‘ justification
S (g) 17=14+4-1
A; (5) 17-9=8

ANA; | 0 |[17-9-9=—-1<3

By inclusion/exclusion

- = = = 1

8. Let S denote the set of positive integral solutions for z1 + x5 + x3 + 24 + x5 = 14. For
1 <i < 5let A; denote the set of elements in S with z; > 6. We seek |[A;NA;NA3NALNA5|
We have

set ‘ size ‘ justification
S (?)13:14—5+5—1
A; ( 4) 13-5=8

ANA; | 0 | 13-5-5=3<4

By inclusion/exclusion

- 13 8

9. We make a change of variables
y1=x1 — 1, Yo = To, ys = x3 — 4, Yy = T4 — 2.
We seek the number of integral solutions to
Y1+ y2 +ys +ys =13, 0<y; <5, 0<y, <7, 0<y3<4, 0<y, <4

Let S denote the set of nonnegative integral solutions to y; +y2 +y3 +ys = 13. Let Ay (resp.
A) (resp. Aj) (resp. Ay) denote the set of elements in S such that y; > 6 (resp. y» > 8)
(resp. y3 > 5) (resp. ys > 5). We seek |A; N Ay N Az N Ayl. We have



set ‘ size ‘ justification

S (%9 16=13+4—1
Ay (g) 16 — 6 =10
A, (3) 16 —8 =38
As () 16 —5 =11
Ay () 16 —5 =11
AN A, 0 16-6—-8=2<3
A1 N A; @) 16-6-5=5
A NA %) 16-6-5=5
Ay N As %) 16-8-5=3
Ay M Ay %) 16-8—-5=3
Az N Ay (5) 16—-5-5=6
AiNA;NA [ 0 |[16-6-5-5=0<3

By inclusion/exclusion

oo (9-(4)-()-(2)-()
“0-0-0-0-0

10. The r-combinations of S correspond to the integral solutions for
Z%‘:ﬂ 0<z;<n; (1<i<k).

We assume that there exists at least one solution, so r < Zle n;. Let U denote the set
of nonnegative integral solutions to Zle x; =71. For 1 <1 < k let A; denote the set of
elements in U such that z; > n;. To get our answer, we would apply inclusion/exclusion to
the sets {A4;}%_,. Note that A; N AyN---N Ay consists of the elements in U such that x; > n;

for 1 < ¢ < k. For such an element r = Zle T; > Zle n; > r, a contradiction. Hence
AiNAynN---NA,=0.



11. Let the set S consist of the permutations of {1,2,...,8}. Fori € {2,4, @8}let A; denote
the set of permutations in S for which i is in its natural position. We seek |A2N AN AgN Agl.
We have

set size
S 8!
A; 7!
AiNA; 6!
A;NA; N A 5!
ANANANA | 4

By inclusion/exclusion
Ay N AN Ag N Ag| =8l — 4 x 7'+ 6 x 6! — 4 x 5! + 4] = 24024,
12. Let X denote the set of permutations of {1,2,...,8} for which exactly four integers are

in their natural position. We compute |X|. To do this we construct an element of X in
stages:

stage to do # choices
1 select the four fixed integers (i)
2 select a derangement of the remaining four integers Dy

Therefore |X| = (})Ds. We have (5) = 70 and

Dy=4—4x31+6x21—4x11+1=9
so |X| =170 x 9 = 630.

13. Let the set S consist of the permutations of {1,2,...,9}. For i € {1,3,5,7,9} let
A; denote the set of permutations in S for which ¢ is in its natural position. We seek
|S’ — ‘Al N A3 N A5 N A7 N A9| We have

set size
A; ]!
AiNA; 7!
A;NA; N A 6!
AiNANANA, 5!
AiNANANANA, | 4

By inclusion/exclusion

IS| = [AiNAsNAs N A; N Ay =5 x 8 —10 x T+ 10 x 6! — 5 x 5! + 1 x 4l.



14. Let X denote the set of permutations of {1,2,...,n} for which exactly k integers are in
their natural position. We compute |X|. To do this we construct an element of X in stages:

stage to do # choices
1 select the k fixed integers (Z)
2 select a derangement of the remaining n — k integers D,y

Therefore | X| = (}) Dy

16. We use combinatorial reasoning to show

nl = Zn: (?) Da_i.

=0

Let S denote the set of permutations of {1,2,...,n}. For 0 <i < n let S; denote the set of
permutations in .S for which exactly ¢ integers are in their natural position. The sets {S;}7,
partition S, so [S| = 3" ]5;|. We have |S| = n! and by Problem 14 |S;| = (%) D,; for
0 < i < n. The result follows.

17. Let X denote the set of permutations of S. Let A (resp. B) (resp. C') denote the set of
elements in X such that aaa (resp. bbbb) (resp. cc) are consecutive. We seek |A N BN C|.
Using Theorem 2.4.2,

set ‘ size

X (512)

A (112)

B (512)

C (511)
ANB | (i1,)
AnC | (14y)
BNC | (37,)
AnBnC|(,3)



By inclusion/exclusion

et = (o12) (o) - (a72) - (3)

18. View (n — 1)l = (n—1) x (n —2)\.
19. Using Problem 18 and Theorem 6.3.1,

D, —(n—1)(Dp_o+ Dp_1)

_ ol ; (_i!w SURPLELDS <_Z.!1)l RS DY (_Z-!l)z
- oy S -0
= n(=1)""+ (=1)" = (n - 1)(=1)""
- (—1)"*1(71 —1—-(n—-1))
= 0.
20. We show
D, =n! ” (_2'1)1 n=1,2,

We use induction on n. The above equation holds for n = 1 since each side is zero. Next
assume n > 2. By induction

Therefore




21. We show that D, is even if and only if n is odd. We use induction on n. First assume
n = 1. In this case the result holds since D; = 0 is even and 1 is odd. Next assume n > 2.
Recall D,, = nD,, 1 + (—1)". If n is even then n — 1 is odd, so by induction D,,_; is even.
Therefore nD,,_; is even so D, = nD,_1 + 1 is odd. If n is odd then n — 1 is even, so by
induction D,,_; is odd. Therefore nD,,_; is odd so D,, = nD,,_; — 1 is even.

22. Using Theorem 6.5.1,

Q. - ("7

n—1 (n 1) |
) i=0 ilfn —1 - @)l(_1> (n—a)!
= (n— 1)!2_: (_1)Z§!n—z)

23. Using Problem 22 and a change of variables j =17 — 1,

— (=1)(n —1i)

Qn = (=11, il
SR S L
_ m—1y§:“?m:4n_ny (ZV?

1
;<
n—1 1
};L__

- Dn -+ anl'

24. For 0 < k < 6 let r; denote the number of ways to place k nonattacking rooks in the
forbidden positions. Consider the number of ways to place six nonattacking rooks on the
chessboard such that no rook is in a forbidden position. By Theorem 6.4.1, this number is

> r(=1)F(6 — k)L

k=0



For case (a),

1 2
6 12

k|0 3456
e | 1 8 00 0

For case (b),

kK]0 1 2 3 4 5 6
re |1 12 54 112 108 48 8

For case (c),

kK]0 1 2 3 456
e |1 8 22 24 9 1 0

25. We interpret this problem in terms of placing six nonattacking rooks on a 6 x6 chessboard.
The answer is S0_ 7,(—1)*(6 — k)! where

k|0
1

Tk‘

1 2 3 4 5 6
8 20 20 7 0 O
26. We interpret this problem in terms of placing six nonattacking rooks on a 6 x6 chessboard.
The answer is 3 p_o 7x(—1)*(6 — k)! where

k|0
1

2 3 4
Tk‘ 8

1 5 6
9 26 26 0 0
27. Choose a circular labelling 1,2, ..., 8 of the seats in order around the carousel, with seat
1 facing seat 1 + 1 for 1 < ¢ < 7 and seat 8 facing seat 1. For 1 < ¢ < 8 the girl in seat ¢
moves to a new seat, labelled s;. Then s1s5 - - - sg is a permutation of {1,2,...,8} such that
seat s; does not face seat s;;; for 1 < i < 7 and seat sg does not face seat s;. We compute
the number of such permutations. Let P denote the set of permutations of {1,2,...,8}. For
1 <1 <7let A; denote the set of permutations s;8s---sg in P such that seat s; faces seat
siv1- Let Ag denote the set of permutations s;ss---sg in P such that sg faces s;. We seek
|A; N AyN---N Agl|. For each subset s C {1,2,...,8} define A, = N A;. We routinely find
|As| = 8(7 — [s|)! if |s| < 7. Moreover |A; N Ay N ---N Ag| = 8. By inclusion/exclusion

[AinAyn- Al = > JAJ(-DM
sC{1,2,...,.8}
/8
— 2:@)&7—mm4ﬁ+8
k=0
= 13000.

Now assume that the seats are indistinguisable. In this case, any two of the original seating
arrangements become indistinguishable whenever one is obtained from the other by a circular
permutation. Under the new assumption the answer is 13000/8 = 1625.
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28. Choose a circular labelling 1,2, ..., 8 of the seats in order around the carousel. Note that
seats labelled 7,7 + 4 are opposite for 1 <7 < 4. For 1 < < 8 the boy in seat ¢ moves to a
new seat, labelled s;. Then s1s5 - - sg is a permutation of {1,2,...,8} such that seats s;, $;14
are not opposite for 1 <7 < 4. We compute the number of such permutations. Let P denote
the set of permutations of {1,2,...,8}. For 1 <7 <4 let A; denote the set of permutations
S189 - -+ 8g in P such that seats s;, s;14 are opposite. We seek |X1 NAyN AN 24\. For each
subset s C {1,2,3,4} define A; = N;esA;. We routinely find

s| |0 1 2 3 4
[Ag] [ 8! 8x 6! 8x6x4l 8x6x4x2l 8x6x4x2x0

By inclusion/exclusion
|A; N Ay N Az N Ay
= 3 Al
sC{1,2,...,4}
=8 —4x8XOBI+6xXx8Xx6x4—4x8x6x4x204+8x6x4x2x0!
= 23040.

Now assume that the seats are indistinguisable. In this case, any two of the original seating
arrangements become indistinguishable whenever one is obtained from the other by a circular
permutation. Under the new assumption the answer is 23040/8 = 2880.

29. Label the people on the platform 1,2,...,10. For 1 < i < 10 let s; denote the stop
where person i exits the subway. Thus 1 < s; < 6. Let S denote the set of sequences of
integers s1sg - - - 810 such that 1 <s; <6 for 1 <¢ <10. For 1 <j <6 let A; denote the set
of sequences s155 - - - s19 in S such that s; # j for 1 <7 < 10. We seek \Zl NAyN--- HZGL
For each subset s C {1,2,...,6} define A, = Njc A;. We routinely find |A,| = (6 — |s])*.
By inclusion/exclusion

[AinAyn-nAgl = > A=
sC{1,2,...,6}
5. /6
_ Z(k>(6—k)10(—1)k.
k=0

30. (Problem statement is suspect) If we accept the problem statement verbatim, then the
answer is 0. Reason: Since d appears in the multiset with multiplicity one, it is vacuously
true that for any circular permutation of the multiset, all occurrences of d will appear
consecutively. We now adjust the problem statement to read ..for each type of letter except
d, all letters of that type do not appear consecutively.. Let S denote the set of circular
permutations of

{3-a,4-b,2-¢,1-d}.

Let A (resp. B) (resp. C) denote the set of elements in S such that all occurrences of a
(resp. b) (resp. c) are consecutive. We seek |A N BN C|. We have
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set X | X contains CP of | X

S {3-a,4-b,2-¢,1-d} 314%11!

A {1 ~aaa,4-0,2-¢,1- d} ‘114!211!

B Balmh2clod} | gy

C {3-a,4-b,1-cc,1-d} G

ANB [ {1-aaa,T-000b,2- ¢, 1-d} | iy

ANC {1-aaa,4-b,1-cc,1-d} _114?];!1!

BNnC {3-a,1-0bbb,1-cc,1-d} | snm

ANBNC [ {1 aaa,1-0bbb, 1 ce,1-d} | i

By inclusion/exclusion

o 9! 7! 6! 8!
ANBNC= g~ el 32 3
41 6! 5! 3!

+ + T

1112010 14 gl

31. Let S denote the set of circular permutations of
{2-a,3-0,4-¢,5-d}.

Let A (resp. B) (resp. C) (resp. D) denote the set of elements in S such that all occurrences
of a (resp. b) (resp. ¢) (resp. d) are consecutive. We seek |A N BN C N D|. We have

set X ‘ X contains CP of ‘ |X|
S {2-a,3-b,4-¢,5-d} .

A {1-aa,3-b,4-¢,5-d} ﬁi‘,y

B {2-a,1-bbb,4-¢,5-d} I

C {2-a,3-0,1-cccc,b5-d} #0},5.

D {2-a,3-b,4-c,1-ddddd} ST
ANB {1-aa,1-bbb,4-c,5 d} T
ANC {1-aa,3-b,1-cccc,5-d} ﬁm.
AND {1-aa,3-b4-c,1-ddddd} |
BNnC {2-a,1-bbb, 1 cccc,5 - d} %},5.
BND {2-0,1-0bb,4 - ¢,1-ddddd} | 555
cnD {2-a,3-b,1-ccce,1-ddddd} | 553
ANBNC {1-aa,1-bbb,1-cccc,b-d} %}r,s,
ANBND {1-aa,1-bbb,4-¢,1-ddddd} | s
AnCnD | {l-aa3-b1-ccee,1-ddddd} | 5
BNnCND {2-a,1-bbb,1- ccee, 1 - ddddd} | 5t
ANBNCND [ {1l aa,1-bbb,1-ccce,1-ddddd} | timm
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By inclusion/exclusion

13 191 11! 10! 9!
ANBOCN D= oo ~ T3~ 245 2305 2134
10! 0! | | 7l 6!
st T mmsl s 2l T 2 o2
7 6! 51 41 31

T OTmmsl 1Ml isnn o o

32. Let S denote the set {1,2,...,n}. For 1 < i < k let A; denote the set of integers in
S that are divisible by p;. Note that ¢(n) = [A; N Ay N ---N A, To find ¢(n) we use
inclusion /exclusion. For each subset s C {1,2,...,k} define A, = N;csA4;. For notational
convenience define p, = [[,., pi. Note that |A,| = np,;'. By inclusion/exclusion

o) = > |AI=D"

sC{1,2,...k}

=n > pl(=F

sC{1,2,....k}
k
= ][ -
i1

33. (Problem statement contains typo) For an n x n chessboard define a set F' of “forbidden”
locations, consisting of (1,1),(2,2),...,(n,n) and (1,2),(2,3),...,(n—1,n),(n,1). For 0 <
k < nlet a(n, k) denote the number of ways to place k nonattacking rooks on the chessboard,
such that each rook is contained in F'. We show that

2n 2n — k
“(”’k)_zn—k< 2 >

Order the elements of F' in a circular fashion

n |1 2 3 4 -+ 2n—2 2n—-1 2n
nth location | (1,1) (1,2) (2,2) (2,3) -+ (n—1,n) (n,n) (n,1)

with the first location following the last one. Given two locations in F', they are adjacent in
the circular ordering if and only if they are in the same row or column of the chessboard.
Thus a(n, k) represents the number of k-subsets of the set F', such that no two elements
of the subset are adjacent in the circular ordering. Denote such a k-subset by {a;}*_, with
1<a; <ag < <ap <2n. Define

r1=a1—1, xy=as—a1—2, ..., Tp=0a— Qk_1 — 2, Tpy1 = 2N — Q.
Then
k+1
;>0 (1<i<k+1), > m=2n—2k+1, (1)
i=1
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with 21, 25,1 not both zero. Initially ignoring the constraint on the pair (zq,xgy1), the
number of integral solutions to (1) is (2”_kk+1). Now consider the number of integral solutions

to (1) such that x; = 0 and 2441 = 0. This number is (2",;_]“2_1) Therefore

2n—k+1 n—k—1

oy = (") - ()
B 2n 2n — k
- n—k k )

We now compute the number of ways to place n nonattacking rooks on the chessboard, such
that no rook is contained in F'. By Theorem 6.4.1 this number is

= L " (=D*(n—k)!'2n (2n —k
S (=Dfn—K)ank) = Y or— ( A ) (2)

k=0 k=0

We evaluate the sum (2) for small values of n:

3 4 5 6 7 8 9
1 2 13 2*x5 3x193 2x23x103 43 x 1009

The large prime factors in the above table suggest that the sum (2) cannot be easily expressed
in closed form.

34. The convolution product is matrix multiplication in disguise.

35. F(1) = G(1) and F(m) = G(m) —G(m — 1) for 2 <m < n.

36. The answer is 6. We suppress the details of the calculation.

37. The inverse f~!is defined just like f, with the sequence 1,2, 1, —1 replaced by 1, —2, 7, —35.

38. Given a partition in II,,, define its type to be the sequence consisting of the cardinalities
of the sets that make up the partition, listed in nonincreasing order. For n = 3 the possible
types are

111, 21, 3.

In II3 there is one element of type 111, three elements of type 21, and one element of type
3. Consider the Mobius funtion p for II3. Given elements A, B of II3 we have pu(A, B) =1
if A= B, u(A,B) = —1if B covers A, and p(A, B) =2 A has type 111 and B has type 3.
We have p(A, B) = 0 for all other A, B.

For n = 4 the possible types are

111, 211, 22, 31, 4

In II4 there is one element of type 1111, six elements of type 211, three elements of type 22,
four elements of type 31, and one element of type 4. Consider the Mobius funtion p for Ily.
Given elements A, B in II; we have
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case w(A, B)

A=B 1

B covers A -1

B has type 4 and A has type 211 2
B has type 4 and A has type 1111 —6

B has type 22 and A has type 1111 1
B has type 31 and A has type 1111 2
other 0

39. Let [a, b] denote the set of elements in the poset which are both divisible by a and divide
b. View [a,b] as a poset with the inherited partial order. Then the map [a,b] — [1,b/a],
x +— x/a is a bijection which preserves the partial order. In other words the poset [a,b] is
the poset [1,b/a] in disguise. It follows that p(a,b) = u(1,b/a).

40. Let (P, <) denote the poset described in the problem. Pick & distinct primes {p;}*_; and
define n = Hle p;it. Let (Q,]) denote the poset consisting of the positive integer divisors of
n, with partial order given by divisibility. Then the map P — Q, {mq - a1,...,my - ar} —
pi"t---pp* is a bijection which preserves the partial order. In other words the poset (P, <)
is the poset (@, ) in disguise. The Mobius function for (@, |) is the classical one given above
Theorem 6.6.4, so the Mobius function for (P, <) is the same.
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