
Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 4

1. The permutation 31524 is followed by 35124 and preceded by 31254. To see this, recall
the display on page 90. In that display the permutations of (1, 2, 3, 4) are listed in 24 rows.
According to the algorithm in Section 4.1, for each row 1, 2, . . . , 24 we insert a 5 in the five
possible locations of the given permutation, working from right to left for odd numbered
rows and left to right for even numbered rows. The permutation 3124 appears on row 9
which is odd, so for this row the 5’s are inserted from right to left.

2. The mobile integers are 8, 3, 7. For these integers the arrow points to an adjacent smaller
integer.

3. Working from left to right across each row,
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4. For 1 ≤ k ≤ n the direction of k changes immediately after we move a mobile integer m
(1 ≤ m < k). For k = 1 there is no such m. For k = 2 the only candidate for m is 1, but 1
is never mobile. Therefore the directions of 1 and 2 never change.

5. The integer k is equal to the total number of inversions for the given permutation. Any
switch of adjacent terms ab → ba either decreases this total by one (if a > b) or increases
this total by one (if a < b). Therefore we cannot bring the given permutation to 12 · · ·n by
fewer than k successive switches of adjacent terms.

6. (a) We have

i 1 2 3 4 5 6 7 8
bi 2 4 0 4 0 0 1 0
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(b) We have

i 1 2 3 4 5 6 7 8
bi 6 5 1 1 3 2 1 0

7. (a) Using algorithm 1,

8

87

867

8657

48657

486573

4865723

48165723

Using algorithm 2,

1
1 2
1 2 3

4 1 2 3
4 1 5 2 3
4 1 6 5 2 3
4 1 6 5 7 2 3
4 8 1 6 5 7 2 3

(b) Using algorithm 1,

8

78

768

7658

76584

736584

7365842

73658412
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Using algorithm 2,

1
1 2

3 1 2
3 4 1 2
3 5 4 1 2
3 6 5 4 1 2

7 3 6 5 4 1 2
7 3 6 5 8 4 1 2

8. (a) For a permutation of {1, 2, 3, 4, 5, 6} the corresponding inversion sequence
(b1, b2, b3, b4, b5, b6) satisfies 0 ≤ bi ≤ 6 − i for 1 ≤ i ≤ 6. The total number of inversions is∑6

i=1 bi. This total is at most 5 + 4 + 3 + 2 + 1 + 0 = 15 with equality if and only if bi = 6− i
for 1 ≤ i ≤ 6. Therefore there is just one permutation with 15 inversions.
(b) The number of permutations with 14 inversions is equal to the number of integral solu-
tions to

0 ≤ bi ≤ 6− i (1 ≤ i ≤ 6),
6∑

i=1

bi = 14.

Each solution (b1, b2, b3, b4, b5, b6) is obtained from (5, 4, 3, 2, 1, 0) by subtracting 1 from one
of the first 5 coordinates. This can be done in 5 ways. Therefore there are 5 permutations
with 14 inversions.
(c) The number of permutations with 13 inversions is equal to the number of integral solutions
to

0 ≤ bi ≤ 6− i (1 ≤ i ≤ 6),
6∑

i=1

bi = 13.

Each solution (b1, b2, b3, b4, b5, b6) is obtained from (5, 4, 3, 2, 1, 0) by subtracting 1 from two
of the first 5 coordinates (

(
5
2

)
ways) or subtracting 2 from one of the first four coordinates (4

ways). Therefore the number of solutions is
(
5
2

)
+ 4 = 14. There are 14 permutations with

13 inversions.

9. For a permutation i1i2 · · · in of {1, 2, . . . , n} an inversion is an ordered pair (ik, i`) such
that k < ` and ik > i`. There are

(
n
2

)
possibilities for (ik, i`). Therefore the number of

inversions is at most
(
n
2

)
. The following are equivalent: (i) there are

(
n
2

)
inversions; (ii)

ik > i` for 1 ≤ k < ` ≤ n; (iii) ik = n − k + 1 for 1 ≤ k ≤ n. Thus n · · · 321 is the unique
permutation with

(
n
2

)
inversions. The permutations of {1, 2, . . . , n} that have exactly

(
n
2

)
−1

inversions are obtained from n · · · 321 by switching a single pair of adjacent terms. There
are n− 1 such permutations.
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10. We have

256143

251643

215643

125643

125634

125364

123564

123546

123456

and

436251

436215

436125

431625

413625

143625

143265

142365

124365

123465

123456

11. (a) The set {x5, x4, x3} corresponds to

coordinate 7 6 5 4 3 2 1 0
entry 0 0 1 1 1 0 0 0

(b) The set {x7, x5, x3, x1} corresponds to

coordinate 7 6 5 4 3 2 1 0
entry 1 0 1 0 1 0 1 0

(c) The set {x6} corresponds to

coordinate 7 6 5 4 3 2 1 0
entry 0 1 0 0 0 0 0 0

12. (a) {x4, x3, x1, x0}; (b) {x6, x4, x2, x0}; (c) {x3, x2, x1, x0}.

4



13. The subsets of {x4, x3, x2, x1, x0} are listed in the table below. Each row describes a
subset. For 0 ≤ i ≤ 4 we write 1 (resp. 0) below xi whenever the subset contains (resp. does
not contain) xi.

rank x4 x3 x2 x1 x0
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
20 1 0 1 0 0
21 1 0 1 0 1
22 1 0 1 1 0
23 1 0 1 1 1
24 1 1 0 0 0
25 1 1 0 0 1
26 1 1 0 1 0
27 1 1 0 1 1
28 1 1 1 0 0
29 1 1 1 0 1
30 1 1 1 1 0
31 1 1 1 1 1
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14. The subsets of {x5, x4, x3, x2, x1, x0} are listed in the table below. Each row describes
a subset. For 0 ≤ i ≤ 5 we write 1 (resp. 0) below xi whenever the subset contains (resp.
does not contain) xi.

rank x5 x4 x3 x2 x1 x0
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 0 0 1 0 0
5 0 0 0 1 0 1
6 0 0 0 1 1 0
7 0 0 0 1 1 1
8 0 0 1 0 0 0
9 0 0 1 0 0 1
10 0 0 1 0 1 0
11 0 0 1 0 1 1
12 0 0 1 1 0 0
13 0 0 1 1 0 1
14 0 0 1 1 1 0
15 0 0 1 1 1 1
16 0 1 0 0 0 0
17 0 1 0 0 0 1
18 0 1 0 0 1 0
19 0 1 0 0 1 1
20 0 1 0 1 0 0
21 0 1 0 1 0 1
22 0 1 0 1 1 0
23 0 1 0 1 1 1
24 0 1 1 0 0 0
25 0 1 1 0 0 1
26 0 1 1 0 1 0
27 0 1 1 0 1 1
28 0 1 1 1 0 0
29 0 1 1 1 0 1
30 0 1 1 1 1 0
31 0 1 1 1 1 1

rank x5 x4 x3 x2 x1 x0
32 1 0 0 0 0 0
33 1 0 0 0 0 1
34 1 0 0 0 1 0
35 1 0 0 0 1 1
36 1 0 0 1 0 0
37 1 0 0 1 0 1
38 1 0 0 1 1 0
39 1 0 0 1 1 1
40 1 0 1 0 0 0
41 1 0 1 0 0 1
42 1 0 1 0 1 0
43 1 0 1 0 1 1
44 1 0 1 1 0 0
45 1 0 1 1 0 1
46 1 0 1 1 1 0
47 1 0 1 1 1 1
48 1 1 0 0 0 0
49 1 1 0 0 0 1
50 1 1 0 0 1 0
51 1 1 0 0 1 1
52 1 1 0 1 0 0
53 1 1 0 1 0 1
54 1 1 0 1 1 0
55 1 1 0 1 1 1
56 1 1 1 0 0 0
57 1 1 1 0 0 1
58 1 1 1 0 1 0
59 1 1 1 0 1 1
60 1 1 1 1 0 0
61 1 1 1 1 0 1
62 1 1 1 1 1 0
63 1 1 1 1 1 1
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15. We convert to binary, add 1, and then convert back:

subset {x4, x1, x0} {x7, x5, x3} {x7, x5, x4, x3, x2, x1, x0} {x0}
binary rep 00010011 10101000 10111111 00000001

binary rep + 1 00010100 10101001 11000000 00000010
next subset {x4, x2} {x7, x5, x3, x0} {x7, x6} {x1}

16. We convert to binary, subtract 1, and then convert back:

subset {x4, x1, x0} {x7, x5, x3} {x7, x5, x4, x3, x2, x1, x0} {x0}
binary rep 00010011 10101000 10111111 00000001

binary rep - 1 00010010 10100111 10111110 00000000
prec. subset {x4, x1} {x7, x5, x2, x1, x0} {x7, x5, x4, x3, x2, x1} ∅

17. 150 = 128 + 16 + 4 + 2 has the binary representation 10010110 so the 150th subset is
{x7, x4, x2, x1}. 200 = 128 + 64 + 8 has binary representation 11001000 so the 200th subset
is {x7, x6, x3}. 250 = 128 + 64 + 32 + 16 + 8 + 2 has binary representation 11111010 so the
250th subset is {x7, x6, x5, x4, x3, x1}.

18. Consider the reflected Gray code of order 4. For 0 ≤ m ≤ 15 the mth term is g3g2g1g0
where

m g3 g2 g1 g0
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 0 1 0
4 0 1 1 0
5 0 1 1 1
6 0 1 0 1
7 0 1 0 0
8 1 1 0 0
9 1 1 0 1
10 1 1 1 1
11 1 1 1 0
12 1 0 1 0
13 1 0 1 1
14 1 0 0 1
15 1 0 0 0

See the course notes for a 4-cube representation.
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19. The following is a noncyclic Gray code of order 3:

rank codeword
0 000
1 001
2 011
3 010
4 110
5 100
6 101
7 111

20. The following is a cyclic Gray code of order 3 that is not the reflected Gray code:

rank codeword
0 000
1 001
2 011
3 111
4 101
5 100
6 110
7 010
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21. Consider the reflected Gray code of order 5. For 0 ≤ m ≤ 31 the mth term is g4g3g2g1g0
where

m g4 g3 g2 g1 g0
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 1
3 0 0 0 1 0
4 0 0 1 1 0
5 0 0 1 1 1
6 0 0 1 0 1
7 0 0 1 0 0
8 0 1 1 0 0
9 0 1 1 0 1
10 0 1 1 1 1
11 0 1 1 1 0
12 0 1 0 1 0
13 0 1 0 1 1
14 0 1 0 0 1
15 0 1 0 0 0
16 1 1 0 0 0
17 1 1 0 0 1
18 1 1 0 1 1
19 1 1 0 1 0
20 1 1 1 1 0
21 1 1 1 1 1
22 1 1 1 0 1
23 1 1 1 0 0
24 1 0 1 0 0
25 1 0 1 0 1
26 1 0 1 1 1
27 1 0 1 1 0
28 1 0 0 1 0
29 1 0 0 1 1
30 1 0 0 0 1
31 1 0 0 0 0
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22. Consider the reflected Gray code of order 6. For 0 ≤ m ≤ 63 the mth term is g5g4g3g2g1g0
where

m g5 g4 g3 g2 g1 g0
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 1
3 0 0 0 0 1 0
4 0 0 0 1 1 0
5 0 0 0 1 1 1
6 0 0 0 1 0 1
7 0 0 0 1 0 0
8 0 0 1 1 0 0
9 0 0 1 1 0 1
10 0 0 1 1 1 1
11 0 0 1 1 1 0
12 0 0 1 0 1 0
13 0 0 1 0 1 1
14 0 0 1 0 0 1
15 0 0 1 0 0 0
16 0 1 1 0 0 0
17 0 1 1 0 0 1
18 0 1 1 0 1 1
19 0 1 1 0 1 0
20 0 1 1 1 1 0
21 0 1 1 1 1 1
22 0 1 1 1 0 1
23 0 1 1 1 0 0
24 0 1 0 1 0 0
25 0 1 0 1 0 1
26 0 1 0 1 1 1
27 0 1 0 1 1 0
28 0 1 0 0 1 0
29 0 1 0 0 1 1
30 0 1 0 0 0 1
31 0 1 0 0 0 0

m g5 g4 g3 g2 g1 g0
32 1 1 0 0 0 0
33 1 1 0 0 0 1
34 1 1 0 0 1 1
35 1 1 0 0 1 0
36 1 1 0 1 1 0
37 1 1 0 1 1 1
38 1 1 0 1 0 1
39 1 1 0 1 0 0
40 1 1 1 1 0 0
41 1 1 1 1 0 1
42 1 1 1 1 1 1
43 1 1 1 1 1 0
44 1 1 1 0 1 0
45 1 1 1 0 1 1
46 1 1 1 0 0 1
47 1 1 1 0 0 0
48 1 0 1 0 0 0
49 1 0 1 0 0 1
50 1 0 1 0 1 1
51 1 0 1 0 1 0
52 1 0 1 1 1 0
53 1 0 1 1 1 1
54 1 0 1 1 0 1
55 1 0 1 1 0 0
56 1 0 0 1 0 0
57 1 0 0 1 0 1
58 1 0 0 1 1 1
59 1 0 0 1 1 0
60 1 0 0 0 1 0
61 1 0 0 0 1 1
62 1 0 0 0 0 1
63 1 0 0 0 0 0
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23. (a) The sum of the entries is 4, which is even, so we change coordinate zero. The
successor is 010100111.
(b) The sum of the entries is 4, which is even, so we change coordinate zero. The successor
is 110001101.
(c) the sum of the entries is 9, which is odd. Coordinate zero is 1 so we change coordinate
one. The successor is 111111101.

24. (a) The sum of the entries is 4, which is even. The sequence ends with 10 so we change
coordinate two. The predecessor is 010100010.
(b) The sum of the entries is 4, which is even. The sequence ends with 100 so we change
coordinate three. The predecessor is 110000100
(c) The sum of the entries is 9, which is odd. So we change coordinate zero. The predecessor
is 111111110.

25.

26. The lexicographic ordering is 12, 13, 14, 15, 23, 24, 25, 34, 35, 45.

27. The lexicographic ordering is 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235,
236, 245, 246, 256, 345, 346, 356, 456.

28. In the lexicographic order the 6-subset that follows 2, 3, 4, 6, 9, 10 is 2, 3, 4, 7, 8, 9 and the
6-subset that precedes 2, 3, 4, 6, 9, 10 is 2, 3, 4, 6, 8, 10.

29. In the lexicographic order the 7-subset that follows 1, 2, 4, 6, 8, 14, 15 is 1, 2, 4, 6, 9, 10, 11
and the 7-subset that precedes 1, 2, 4, 6, 8, 14, 15 is 1, 2, 4, 6, 8, 13, 15.

30. In the table below we list the permutations of {1, 2, 3} according to the lexicographic
order of their inversion sequence.

permutation 123 132 213 312 231 321
inversion sequence 000 010 100 110 200 210

Below we similarly list the permutations of {1, 2, 3, 4}.

1234 1243 1324 1423 1342 1432
0000 0010 0100 0110 0200 0210

2134 2143 3124 4123 3142 4132
1000 1010 1100 1110 1200 1210

2314 2413 3214 4213 3412 4312
2000 2010 2100 2110 2200 2210

2341 2431 3241 4231 3421 4321
3000 3010 3100 3110 3200 3210
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31. We first generate the 3-subsets of {1, 2, 3, 4, 5} in lexicographic order: 123, 124, 125, 134,
135, 145. For each subset we order the elements in all possible ways, using the algorithm
from Section 4.1. This yields the following ordering of the 3-permutations of {1, 2, 3, 4, 5}.
Reading left to right,

123 132 312 321 231 213
124 142 412 421 241 214
125 152 512 521 251 215
134 143 413 431 341 314
135 153 513 531 351 315
145 154 514 541 451 415

32. We first generate the 4-subsets of {1, 2, 3, 4, 5, 6} in lexicographic order. Reading left to
right,

1234 1235 1236 1245 1246
1256 1345 1346 1356 1456
2345 2346 2356 2456 3456

For each subset we order the elements in all possible ways, using the algorithm from Section
4.1. This yields an ordering of the 4-permutations of {1, 2, 3, 4, 5, 6}. We omit the details
due to length.

33. By convention the first term in the lexicographical order is position 1. The total number
of 4-subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9} is

(
9
4

)
. We now count the number of 4-subsets that come

after 2489 in the lexicographical order. A 4-subset comes after 2489 if and only if it has the
form (i) abcd (3 ≤ a < b < c < d ≤ 9) or (ii) 2bcd (5 ≤ b < c < d ≤ 9). The number of
4-subsets of type (i) is

(
7
4

)
. The number of 4-subsets of type (ii) is

(
5
3

)
. Therefore 2489 is in

position (
9

4

)
−
(

7

4

)
−
(

5

3

)
.

34. Consider the lexicographical order of r-subsets for {1, 2, . . . , n}.
(a) The first n− r + 1 terms are

1, 2, . . . , r − 1, r,

1, 2, . . . , r − 1, r + 1,

· · ·
1, 2, . . . , r − 1, n.

(b) The last r + 1 terms are

n− r, n− r + 1, . . . , n− 1,

n− r, n− r + 1, . . . , n− 2, n,

· · ·
n− r + 1, n− r + 2, . . . , n− 1, n.
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35. Let A and B denote distinct r-subsets of {1, 2, . . . , n}. We show that with respect to
lexicographic order, A < B if and only B < A. Recall that A < B whenever A contains the
minimum element in (A∪B)\(A∩B). Equivalently A < B whenever the minimum element
of A ∩ B is smaller than the minimum element of B ∩ A. From this version we see that
A < B if and only B < A. The result follows.

36. View X = {1, 2, . . . , n}. (i) There are 2(n2) different relations on X. Reason: To
construct a relation R on X, for 1 ≤ x, y ≤ n we must decide whether or not xRy. There
are n2 choices for (x, y). The result follows by the multiplication principle.
(ii) There are 2n(n−1) reflexive relations on X. Reason: To construct a reflexive relation R
on X, for distinct 1 ≤ x, y ≤ n we must decide whether or not xRy. There are n(n − 1)
choices for (x, y). The result follows by the multiplication principle.
(iii) Abbreviate N =

(
n+1
2

)
. There are 2N symmetric (resp. antisymmetric) relations on X.

Reason: To construct a symmetric (resp. antisymmetric) relation R on X, for 1 ≤ x ≤ y ≤ n
we must decide whether or not xRy. There are N choices for (x, y). The result follows by
the multiplication principle.
(iv) Abbreviate M =

(
n
2

)
. There are 2M reflexive symmetric (resp. antisymmetric) relations

on X. Reason: To construct a reflexive symmetric (resp. antisymmetric) relation R on X,
for 1 ≤ x < y ≤ n we must decide whether or not xRy. There are M choices for (x, y). The
result follows by the multiplication principle.

37. Recall that a relation on X is a partial order if and only if it is reflexive, antisymmetric,
and transitive. We now show that the relation R has these features.
R is reflexive: For x ∈ X we show xRx. The relations R′ and R′′ are reflexive so xR′x and
xR′′x. Therefore xRx.
R is antisymmetric: For distinct x, y ∈ X such that xRy, we show that yRx fails. We assume
xRy so xR′y. The relation R′ is antisymmetric so yR′x fails. Therefore yRx fails.
R is transitive: For x, y, z ∈ X such that xRy and yRz we show xRz. By construction xR′y
and yR′z. The relation R′ is transitive so xR′z. Similarly xR′′z. Therefore xRz.

38. Recall that a relation on a set is a partial order if and only if it is reflexive, antisymmetric,
and transitive. We show that the relation T on the set X1 ×X2 has these features.
T is reflexive: For x ∈ X1×X2 we show xTx. Write x = (x1, x2). The relation ≤1 is reflexive
so x1 ≤1 x1. Similarly x2 ≤2 x2. Therefore xTx.
T is antisymmetric: For distinct x, y ∈ X1 × X2 such that xTy, we show that yTx fails.
Write x = (x1, x2) and y = (y1, y2). Since x, y are distinct, there exists i ∈ {1, 2} such that
xi 6= yi. Since xTy we have xi ≤i yi. The relation ≤i is antisymmetric so yi 6≤i xi. Therefore
yTx fails.
T is transitive: For x, y, z ∈ X1×X2 such that xTy and yTz, we show xTz. Write x = (x1, x2)
and y = (y1, y2) and z = (z1, z2). Pick i ∈ {1, 2}. Since xTy we have xi ≤i yi, and since yTz
we have yi ≤i zi. By this and since ≤i is transitive we find xi ≤i zi. Therefore xTz.

39. Define the set Jn = J × J × · · · × J (n factors). Thus Jn consists of the n-tuples of
zeros and ones. For x ∈ Jn and 1 ≤ i ≤ n let xi denote the entry in coordinate i of x, so
that x = (x1, x2, . . . , xn). Define a partial order ≤ on Jn such that for x, y ∈ Jn, x ≤ y
whenever xi ≤ yi for 1 ≤ i ≤ n. By construction the poset (Jn,≤) is the direct product of n
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copies of the poset (J,≤). We show that the poset (Jn,≤) can be identified with the poset
(P(X),⊆). View X = {1, 2, . . . , n}. Define a function f : Jn → P(X) by

f(x) = {i ∈ X|xi = 1}, x ∈ Jn.

The function f is a bijection. We show that for x, y ∈ Jn, x ≤ y if and only if f(x) ⊆ f(y).
Let x, y be given and note that the following assertions are equivalent:

(i) x ≤ y;

(ii) xi ≤ yi for 1 ≤ i ≤ n;

(iii) xi = 1 implies yi = 1 for 1 ≤ i ≤ n;

(iv) i ∈ f(x) implies i ∈ f(y) for 1 ≤ i ≤ n;

(v) f(x) ⊆ f(y).

We have shown that the poset (Jn,≤) can be identified with the poset (P(X),⊆).

40. For each integer r ≥ 0 define a poset [r] as follows. The poset consists of the set
{0, 1, . . . , r} together with the total order 0 < 1 < · · · < r. We will be discussing the direct
product [n1]× [n2]× · · ·× [nm]. Consider the multiset X = {n1 · a1, n2 · a2, . . . , nm · am}. Let
P(X) denote the set of all multisubsets of X. An element x ∈ P(X) has the form

x = {x1 · a1, x2 · a2, . . . , xm · am}, 0 ≤ xj ≤ nj (1 ≤ j ≤ m).

For x, y ∈ P(X) the following are equivalent:

(i) x ⊆ y;

(ii) xj ≤ yj for 1 ≤ j ≤ m;

(iii) (x1, x2, . . . , xm) ≤ (y1, y2, . . . , ym) in the poset [n1]× [n2]× · · · × [nm].

Therefore the poset [n1]× [n2]× · · · × [nm] can be identified with the poset (P(X),⊆).

41. We show that a partial order ≤ on a finite set X is uniquely determined by its cover
relation. This is a consequence of the following lemma.

Lemma The following are equivalent for all distinct x, y ∈ X:

(i) x < y;

(ii) there exists an integer r ≥ 2 and a sequence (x1, x2, . . . , xr) of elements in X such that
x = x1 and xr = y and xi covers xi−1 for 2 ≤ i ≤ r.

14



Proof: (i) ⇒ (ii) Consider the set S consisting of the finite sequences (x1, x2, . . . , xr) such
that x1 = x and xr = y and xi−1 < xi for 2 ≤ i ≤ r. The set S is finite since X is finite. The
set S is nonempty since (x, y) ∈ S. Pick an element (x1, x2, . . . , xr) in S with r maximal.
By construction r ≥ 2. By the maximality of r we see that xi covers xi−1 for 2 ≤ i ≤ r.
(ii)⇒ (i) The relation ≤ is transitive.

42. The diagram of the cover relation is essentially the n-cube, where n = |X|.

43. The linear extensions are

abecfd, abefcd, aebcfd, aebfcd, abcefd, aefbcd.

44. Recall that a relation is an equivalence relation whenever it is reflexive and symmetric
and transitive. We show that R has these features.
R is reflexive: For x ∈ X, x and x are in the same part of the partition.
R is symmetric: For x, y ∈ X, x and y are in the same part of the partition if and only if y
and x are in the same part of the partition.
R is transitive: For x, y, z ∈ X, if x, y are in the same part of the partition, and y, z are in
the same part of the partition, then x, z are in the same part of the partition.

45. The relation R is an equivalence relation. To verify this, one checks that R is reflexive,
symmetric, and transitive. For the equivalence relation R one equivalence class consists of
0. Every other equivalence class consists of a positive integer and its opposite.

46. We show that R is an equivalence relation.
R is reflexive: For an integer a, certainly a and a have the same remainder when divided by
m.
R is symmetric: For integers a, b suppose a and b have the same remainder when divided by
m. Then b and a have the same remainder when divided by m.
R is transitive: For integers a, b, c suppose a, b have the same remainder when divided by m,
and b, c have the same remainder when divided by m. Then a, c have the same remainder
when divided by m. We have shown that R is an equivalence relation. The equivalence
classes are [0], [1], . . . , [m− 1] where [r] = {r+ im|i ∈ Z} for 0 ≤ r ≤ m− 1. The relation R
has m equivalence classes.

47. (a) It is routinely checked that ≤ is a partial order on Πn.
(b) Given equivalence relations R and S on {1, 2, . . . , n} we have R ≤ S whenever xRy
implies xSy for all x, y ∈ {1, 2, . . . , n}.

48. Consider the prime factorizations for a and b:

a = 2a13a25a3 · · · b = 2b13b25b3 · · ·

Then

c = 2c13c25c3 · · · d = 2d13d25d3 · · ·
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where ci = min{ai, bi} for i ≥ 1 and di = max{ai, bi} for i ≥ 1. The integer c (resp. d) is
the greatest common factor (resp. least common multiple) of a, b.

49. It is routinely checked that R ∩ S is an equivalence relation. In general R ∪ S is not an
equivalence relation.

50. There are 48 linear extensions.

51. For a permutation π of {1, 2, . . . , n} let Inv(π) denote the set of inversions of π. Let σ
denote a permutation of {1, 2, . . . , n}. By definition π ≤ σ whenever Inv(π) ⊆ Inv(σ). We
show that for the partial order ≤ the following are equivalent:

(i) σ covers π;

(ii) σ is obtained from π by applying a transposition ab→ ba with a < b.

Proof: (i)⇒ (ii) By assumption π < σ so Inv(π) ⊆ Inv(σ). The containment is proper since
a permutation is determined by its inversions. Pick an inversion ba (a < b) that is contained
in Inv(σ) but not Inv(π). Then π and σ have the form

π = · · · a · · · b · · · σ = · · · b · · · a · · ·

Of all the inversions ba that meet the above requirement, pick one for which the distance
betwen the symbols b, a in σ is minimal. We show that b, a are adjacent in σ. Suppose that
this is not the case. Then σ has the form

σ = · · · b · · · c · · · a · · ·

By the minimality condition neither of bc and ca is an inversion that is contained in Inv(σ)
but not in Inv(π). Consequently in π the c lies to the left of a and to the right of b. This
is a contradiction so c does not exist. We have shown that b, a are adjacent in σ. In other
words σ has the form

σ = · · · ba · · ·

Apply the transposition ba→ ab to σ and let p denote the resulting permutation. Thus

p = · · · ab · · ·

The set Inv(p) is obtained from Inv(σ) by removing the inversion ba. Consequently π ≤ p <
σ. By assumption σ covers π so π = p. Therefore π is obtained from σ by applying the
transposition ba → ab. Consequently σ is obtained from π by applying the transposition
ab→ ba.
(ii)⇒ (i) The permutations σ and π have the form

π = · · · ab · · · σ = · · · ba · · ·

with agreement in all coordinates except the two shown. The set Inv(σ) is obtained from
Inv(π) by adding the inversion ba. Thus Inv(π) ⊆ Inv(σ) so π ≤ σ. Also |Inv(σ)| =
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|Inv(π)|+1 so there does not exist a permutation τ such that π < τ < σ. Therefore σ covers
π.

Before solving problems 52 and 53 we recall a few points from the text.

Problem B For an integer m ≥ 0 consider the base 2 representation of m as a sequence of
zeros and ones. (i) Describe how to adjust this sequence to get the corresponding representa-
tion of m+ 1. (ii) For m ≥ 1, describe how to adjust this sequence to get the corresponding
representation of m− 1.

Sol Write the base 2 representation of m as · · · b2b1b0, so that m =
∑∞

i=0 bi2
i with bi ∈ {0, 1}

for i ≥ 0.
(i) To get the corresponding representation of m+1 we specify which coordinates to change.
For i ≥ 0 change bi if and only if each of b0, b1, . . . , bi−1 is 1. Thus b0 always gets changed; b1
gets changed if and only if b0 is 1; b2 gets changed if and only if each of b0, b1 is 1, and so on.
(ii) Assume m ≥ 1. To get the corresponding representation of m − 1 we specify which
coordinates to change. For i ≥ 0 change bi if and only if each of b0, b1, . . . , bi−1 is 0 . Thus
b0 always gets changed; b1 gets changed if and only if b0 is 0; b2 gets changed if and only if
each of b0, b1 is 0, and so on.

Problem G Let · · · g2g1g0 denote a term in the reflected Gray code. (i) Describe the next
term in the code. (ii) Assume that there exists an integer i ≥ 0 such that gi = 1. Describe
the preceding term in the code.

Sol (i) We specify which coordinate to change. First assume that
∑∞

i=0 gi is even. Then
change g0. Next assume that

∑∞
i=0 gi is odd. Change gs for the unique integer s ≥ 1 such

that gs−1 = 1 and each of g0, g1, . . . , gs−2 is 0.
(ii) First assume that

∑∞
i=0 gi is odd. Then change g0. Next assume that

∑∞
i=0 gi is even.

Change gs for the unique integer s ≥ 1 such that gs−1 = 1 and each of g0, g1, . . . , gs−2 is 0.

52. For an integer m ≥ 0 let · · · b2b1b0 denote the base 2 representation of m and let · · · g2g1g0
denote term m in the reflected Gray code. We show that for i ≥ 0, bi = 0 if gi + gi+1 + · · ·
is even, and bi = 1 if gi + gi+1 + · · · is odd. For i ≥ 0 define Bi = 0 if gi + gi+1 + · · · is even,
and Bi = 1 if gi + gi+1 + · · · is odd. We show Bi = bi. Call the sequence · · ·B2B1B0 the
B-sequence for m. For the purpose of this proof call the sequence · · · b2b1b0 the b-sequence
for m. Note that for m = 0 the B-sequence and b-sequence are both equal to · · · 000. To
finish the proof, it suffices to show that for m ≥ 0 the B-sequence of m+ 1 is related to the
B-sequence of m in the same way that the b-sequence of m+1 is related to the b-sequence of
m. It is explained in Problem B(i) how the b-sequence of m+ 1 is related to the b-sequence
of m. Now consider the B-sequences. First assume

∑∞
i=0 gi is even, so that B0 = 0. By

Problem G, term m+1 in the reflected Gray code is obtained from · · · g2g1g0 by changing g0.
Therefore the B-sequence for m+ 1 is obtained from · · ·B2B1B0 by changing B0 to 1. Next
assume

∑∞
i=0 gi is odd, so that B0 = 1. Consider the unique integer s ≥ 1 such that gs−1 = 1

and each of g0, g1, . . . , gs−2 is 0. By construction Bs = 0 and Bi = 1 for 0 ≤ i ≤ s − 1. By
Problem G, term m + 1 in the reflected Gray code is obtained from · · · g2g1g0 by changing
gs. Therefore the B-sequence for m + 1 is obtained from · · ·B2B1B0 by changing Bs to 1
and Bi to 0 for 0 ≤ i ≤ s− 1. We have shown that the B-sequence of m+ 1 is related to the
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B-sequence of m in the same way that the b-sequence of m + 1 is related to the b-sequence
of m. The result follows.

53. For an integer m ≥ 0 let · · · b2b1b0 denote the base 2 representation of m and let · · · g2g1g0
denote term m in the reflected Gray code. We show that for i ≥ 0, gi = 0 if bi + bi+1 is
even and gi = 1 if bi + bi+1 is odd. For i ≥ 0 define Gi = 0 if bi + bi+1 is even and Gi = 1
if bi + bi+1 is odd. We show Gi = gi. Call the sequence · · ·G2G1G0 the G-sequence for m.
For the purpose of this proof call the sequence · · · g2g1g0 the g-sequence for m. Note that
for m = 0 the G-sequence and g-sequence are both equal to · · · 000. To finish the proof, it
suffices to show that for m ≥ 0 the G-sequence of m+ 1 is related to the G-sequence of m in
the same way that the g-sequence of m+ 1 is related to the g-sequence of m. It is explained
in Problem G(i) how the g-sequence of m+1 is related to the g-sequence of m. Now consider
the G-sequences. First assume b0 = 0, so that

∑∞
i=0Gi is even. The base 2 representation

of m+ 1 is obtained from · · · b2b1b0 by changing b0 to 1. Therefore the G-sequence of m+ 1
is obtained from · · ·G2G1G0 by changing G0. Next assume that b0 = 1, so that

∑∞
i=0Gi is

odd. There exists a unique integer s ≥ 1 such that bs = 0 and bi = 1 for 0 ≤ i ≤ s− 1. By
construction Gs−1 = 1 and each of G0, G1, . . . , Gs−2 is 0. The base 2 representation of m+ 1
is obtained from · · · b2b1b0 by changing bs to 1 and bi to 0 for 0 ≤ i ≤ s − 1. Therefore the
G-sequence of m+ 1 is obtained from · · ·G2G1G0 by changing Gs. We have shown that the
G-sequence of m+ 1 is related to the G-sequence of m in the same way that the g-sequence
of m+ 1 is related to the g-sequence of m. The result follows.

54. We augment the covering relation for ≤ by declaring that b covers a. View the augmented
covering relation as the covering relation of a new partial order ≤′. The partial order ≤′ has
a linear extension by Theorem 4.5.2. This linear extension has the desired features.

55. This is a routine consequence of 54.

56. It is routine to check that R is a partial order. Assume that i1i2 · · · in is not the identity
permutation. We show that R has dimension 2. Define a partial order ≤1 on X such that
(a, b) ≤1 (c, d) whenever a ≤ c. Observe that ≤1 is a linear extension of R. Define a partial
order ≤2 on X such that (a, b) ≤2 (c, d) whenever b ≤ d. Observe that ≤2 is a linear extension
of R. The relation R is the intersection of ≤1 and ≤2. Therefore R has dimension at most
2. The partial orders ≤1 and ≤2 are not identical so R is not a total order; consequently R
has dimension at least 2. By these comments R has dimension 2.

57.

58. The following are equivalent: (i) the relation is an equivalence relation; (ii) Kn is
partitioned into complete graphs such that any two distinct vertices of Kn are connected by
a red edge if and only if they are in the same complete subgraph.

59. Let T denote the total number of inversions for all n! permutations of {1, 2, . . . , n}.
Thus T is the number of triples (r, s; a1a2 · · · an) such that a1a2 · · · an is a permutation of
{1, 2, . . . , n} and (r, s) is an inversion of a1a2 · · · an. To count these triples we proceed in
stages:
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stage to do # choices

1 select the values of r, s
(
n
2

)
2 select the location of r, s among a1a2 · · · an

(
n
2

)
3 choose the remaining n− 2 terms among a1a2 · · · an (n− 2)!

T is the product of the entries in the right-most column above, which comes to n!n(n−1)/4.
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