Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 4

1. The permutation 31524 is followed by 35124 and preceded by 31254. To see this, recall
the display on page 90. In that display the permutations of (1,2,3,4) are listed in 24 rows.
According to the algorithm in Section 4.1, for each row 1,2, ...,24 we insert a 5 in the five
possible locations of the given permutation, working from right to left for odd numbered
rows and left to right for even numbered rows. The permutation 3124 appears on row 9
which is odd, so for this row the 5’s are inserted from right to left.

2. The mobile integers are 8, 3, 7. For these integers the arrow points to an adjacent smaller
integer.

3. Working from left to right across each row,

T99%7T% T%%5%%7 T2%%7 T%5%9%7 $19%
FT2T% TF9Y% T939% OT9UY % OT9UW
T79%% T7%9%% T79%5%% T%57%9% 57%7%
FTT2% Y3798 TTF?E OTT93% OTT9W
TT%%% 7T%%% 7TU%5%% T5T%% FITH
FT4%%2 T 4A4%Y T4E%Y OTI4%FhR OTI4%%
TS79% T%7%% T3%5747%2 1%5%7% $1%7
FT%27 TE%YT T8 LA T899 T OTS9A
ST%7% 8%T957T O %SU5%Y %5T9Y 5%T9
F3TT2 O8FTYY O%TFIT?T O8TYsY? O8STTY
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4. For 1 < k < n the direction of k changes immediately after we move a mobile integer m
(1 <m < k). For k =1 there is no such m. For k = 2 the only candidate for m is 1, but 1
is never mobile. Therefore the directions of 1 and 2 never change.

5. The integer k is equal to the total number of inversions for the given permutation. Any
switch of adjacent terms ab — ba either decreases this total by one (if @ > b) or increases
this total by one (if a < b). Therefore we cannot bring the given permutation to 12---n by
fewer than k successive switches of adjacent terms.

6. (a) We have
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(b) We have
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7. (a) Using algorithm 1,
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Using algorithm 2,
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(b) Using algorithm 1,
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Using algorithm 2,
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8. (a) For a permutation of {1,2,3,4,5,6} the corresponding inversion sequence

(b1, by, b3, by, bs, bg) satisfies 0 < b; < 6 — i for 1 < i < 6. The total number of inversions is
Z?Zl b;. This total is at most 5+4+3+2+41+0 = 15 with equality if and only if b; = 6 —
for 1 < i < 6. Therefore there is just one permutation with 15 inversions.

(b) The number of permutations with 14 inversions is equal to the number of integral solu-
tions to

6
0<b;<6—i (1<i<6), D b =14
=1

Each solution (by, by, bs, by, bs, bg) is obtained from (5,4, 3,2, 1,0) by subtracting 1 from one
of the first 5 coordinates. This can be done in 5 ways. Therefore there are 5 permutations
with 14 inversions.

(¢) The number of permutations with 13 inversions is equal to the number of integral solutions
to

0<b;<6—i (1<i<6), > bi=13.

Each solution (by, b, b3, by, bs, bg) is obtained from (5,4, 3,2,1,0) by subtracting 1 from two
of the first 5 coordinates ((g) ways) or subtracting 2 from one of the first four coordinates (4
ways). Therefore the number of solutions is (g) + 4 = 14. There are 14 permutations with

13 inversions.

9. For a permutation iyig-- -, of {1,2,...,n} an inversion is an ordered pair (i, ;) such
that k& < ¢ and i, > i,. There are (}) possibilities for (iy,i;). Therefore the number of
inversions is at most (3). The following are equivalent: (i) there are (}) inversions; (ii)
ip >idgfor 1 <k <{<m; (i) ir=n—k+1for 1 <k <n. Thus n---321 is the unique
permutation with (%) inversions. The permutations of {1,2,...,n} that have exactly (3) —1
inversions are obtained from n---321 by switching a single pair of adjacent terms. There

are n — 1 such permutations.



10. We have

and

11. (a) The set {ws5, x4, 3} corresponds to

256143
251643
215643
125643
125634
125364
123564
123546
123456

436251
436215
436125
431625
413625
143625
143265
142365
124365
123465
123456

coordinate | 7 6
entry 0 0

(b) The set {7, x5, 3,1} corresponds to

coordinate | 7 6

entry 1 0

(c) The set {4} corresponds to

coordinate ‘ 6

7
entry ‘ 0 1

4
0

| Ot

3
0

2
0

1
0

12 (a) {$4,x3,xl,x0}; (b) {$6,I4,SE2,$0}; (C) {x37x27xlux0}'



13. The subsets of {4, x3, 2, 21,20} are listed in the table below. Each row describes a
subset. For 0 <14 <4 we write 1 (resp. 0) below x; whenever the subset contains (resp. does
not contain) ;.

rank | x4 x3 T2 1 Xo
0 0O 0 0 0 O
1 0O 0O 0 0 1
2 0O 0 0 1 0
3 0O 0O 0 1 1
4 0O 0 1 0 O
5 0O 0O 1 0 1
6 0O 0O 1 1 0
7 O o 1 1 1
8 0O 1 0 0 O
9 0O 1 0 0 1
10 O 1 0 1 0
11 o 1 0 1 1
12 0O 1 1 0 O
13 o 1 1 0 1
14 O 1 1 1 0
15 o 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
20 1 0 1 0 0
21 1 0 1 0 1
22 1 0 1 1 0
23 1 0 1 1 1
24 1 1 0 0 0
25 1 1 0 0 1
26 1 1 0 1 0
27 1 1 0 1 1
28 1 1 1 0 0
29 1 1 1 0 1
30 1 1 1 1 0
31 1 1 1 1 1




14. The subsets of {x5, 4, x5, X2, 21,20} are listed in the table below. Each row describes

(resp. 0) below x; whenever the subset contains (resp.

a subset. For 0 <7 < 5 we write 1

does not contain) z;.

T3 To T1 Xo

Xy

rank | zs

T3z T2 T1 Xo

Xy

32

33

34
35

36

37
38

39

40

41

42

43

44
45

46

47
48

49
50
o1

52
23
54
95
o6
57
o8
29
60

61

62

63

rank | xx

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31



15. We convert to binary, add 1, and then convert back:

subset {rg, 2,20} {xr, w523} {27, 25,24, 23, 20, 71, 00) {70}
binary rep 00010011 10101000 10111111 00000001
binary rep + 1 | 00010100 10101001 11000000 00000010

next subset {z4, 20}  {w7, 25,23, 70} {x7, 26} {z1}

16. We convert to binary, subtract 1, and then convert back:

subset {4, 21,70} {z7, 25, 03} {z7, 25, 04, 23, 02, 21,20t {0}
binary rep 00010011 10101000 10111111 00000001
binary rep - 1 | 00010010 10100111 10111110 00000000
prec. subset {zg, 21} g, 25,20, 21,00} {27, 25,24, T3, 2,21 } 0

17. 150 = 128 + 16 + 4 + 2 has the binary representation 10010110 so the 150th subset is
{7, 4,29, 21}. 200 = 128 4+ 64 + 8 has binary representation 11001000 so the 200th subset
is {x7, 26, x3}. 250 = 128 + 64 + 32 + 16 + 8 4+ 2 has binary representation 11111010 so the
250th subset is {z7, xg, T5, T4, T3, T1}.

18. Consider the reflected Gray code of order 4. For 0 < m < 15 the mth term is gsg29190
where

m 193 g2 g1 Yo
0/0 O 0 O
1170 0 0 1
210 0 1 1
310 0 1 O
410 1 1 0
510 1 1 1
6 |0 1 0 1
710 1 0 0
|1 1 0 O
911 1 0 1
01 1 1 1
1171 1 1 0
1211 0 1 0
13(1 0 1 1
411 0 0 1
51 0 0 0

See the course notes for a 4-cube representation.



19. The following is a noncyclic Gray code of order 3:

rank | codeword
0 000
001
011
010
110
100
101
111

N O U= W N+

20. The following is a cyclic Gray code of order 3 that is not the reflected Gray code:

rank | codeword
0 000
001
011
111
101
100
110
010
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21. Consider the reflected Gray code of order 5. For 0 < m < 31 the mth term is 9493929190

where

g3 g2 g1 9o

g4

m

10
11

12
13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30

31



22. Consider the reflected Gray code of order 6. For 0 < m < 63 the mth term is g59493929190

where

gs 93 G2 g1 9o

gs

m

32

gs g3 g2 g1 9o

gs

33
34
35
36

37
38
39
40

41

42

43

44
45

46

47

48

49

20
o1

52
23
o4
95
26

57
o8
29
60
61

62

63

m

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

31
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23. (a) The sum of the entries is 4, which is even, so we change coordinate zero. The
successor is 010100111.

(b) The sum of the entries is 4, which is even, so we change coordinate zero. The successor
is 110001101.

(c) the sum of the entries is 9, which is odd. Coordinate zero is 1 so we change coordinate
one. The successor is 111111101.

24. (a) The sum of the entries is 4, which is even. The sequence ends with 10 so we change
coordinate two. The predecessor is 010100010.

(b) The sum of the entries is 4, which is even. The sequence ends with 100 so we change
coordinate three. The predecessor is 110000100

(¢) The sum of the entries is 9, which is odd. So we change coordinate zero. The predecessor
is 111111110.

25.
26. The lexicographic ordering is 12, 13, 14, 15, 23, 24, 25, 34, 35, 45.

27. The lexicographic ordering is 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235,
236, 245, 246, 256, 345, 346, 356, 456.

28. In the lexicographic order the 6-subset that follows 2,3,4,6,9,10is 2,3,4,7,8,9 and the
6-subset that precedes 2,3,4,6,9,10 is 2, 3,4,6, 8, 10.

29. In the lexicographic order the 7-subset that follows 1,2,4,6,8,14,151is 1,2,4,6,9,10, 11
and the 7-subset that precedes 1,2,4,6,8,14,151s 1,2,4,6, 8,13, 15.

30. In the table below we list the permutations of {1,2,3} according to the lexicographic
order of their inversion sequence.

permutation ‘123 132 213 312 231 321
inversion sequence ‘ 000 010 100 110 200 210

Below we similarly list the permutations of {1,2,3,4}.

1234 1243 1324 1423 1342 1432
0000 0010 0100 0110 0200 0210

2134 2143 3124 4123 3142 4132
1000 1010 1100 1110 1200 1210

2314 2413 3214 4213 3412 4312
2000 2010 2100 2110 2200 2210

2341 2431 3241 4231 3421 4321
3000 3010 3100 3110 3200 3210

11



31. We first generate the 3-subsets of {1,2,3,4,5} in lexicographic order: 123, 124, 125, 134,
135, 145. For each subset we order the elements in all possible ways, using the algorithm
from Section 4.1. This yields the following ordering of the 3-permutations of {1,2,3,4,5}.
Reading left to right,

123 132 312 321 231 213
124 142 412 421 241 214
125 152 512 521 251 215
134 143 413 431 341 314
135 153 513 531 351 315
145 154 514 541 451 415

32. We first generate the 4-subsets of {1,2,3,4,5,6} in lexicographic order. Reading left to
right,

1234 1235 1236 1245 1246
1256 1345 1346 1356 1456
2345 2346 2356 2456 3456

For each subset we order the elements in all possible ways, using the algorithm from Section
4.1. This yields an ordering of the 4-permutations of {1,2,3,4,5,6}. We omit the details
due to length.

33. By convention the first term in the lexicographical order is position 1. The total number
of 4-subsets of {1,2,3,4,5,6,7,8,9} is (2). We now count the number of 4-subsets that come
after 2489 in the lexicographical order. A 4-subset comes after 2489 if and only if it has the
form (i) abed (3 < a<b<ec<d<9)or (i) 2bed (5 < b < ¢ <d<9). The number of
4-subsets of type (i) is (}). The number of 4-subsets of type (ii) is (3). Therefore 2489 is in

4
position

9 _ 7 _ 5)

4 4 3/
34. Consider the lexicographical order of r-subsets for {1,2,...,n}.

(a) The first n — r 4+ 1 terms are

L,2,...,r=1,r,
1,2,...;r—1,r4+1,

1,2,...,r—1,n.
(b) The last r 4+ 1 terms are

n—rn—r+1,...,n—1,

n—r,n—r+1,...,n—2n,

n—r+ln—r+2,....n—1,n.

12



35. Let A and B denote distinct r-subsets of {1,2,...,n}. We show that with respect to
lexicographic order, A < B if and only B < A. Recall that A < B whenever A contains the
minimum element in (AU B)\(AN B). Equivalently A < B whenever the minimum element
of AN B is smaller than the minimum element of B N A. From this version we see that

A < B if and only B < A. The result follows.

36. View X = {1,2,...,n}. (i) There are 2(**) different relations on X. Reason: To
construct a relation R on X, for 1 < z,y < n we must decide whether or not xRy. There
are n? choices for (z,y). The result follows by the multiplication principle.

(ii) There are 2"~V reflexive relations on X. Reason: To construct a reflexive relation R
on X, for distinct 1 < x,y < n we must decide whether or not zRy. There are n(n — 1)
choices for (x,y). The result follows by the multiplication principle.

(ili) Abbreviate N = ("}'). There are 2V symmetric (resp. antisymmetric) relations on X.
Reason: To construct a symmetric (resp. antisymmetric) relation Ron X, for1 <z <y <n
we must decide whether or not zRy. There are N choices for (x,y). The result follows by
the multiplication principle.

(iv) Abbreviate M = (%). There are 2 reflexive symmetric (resp. antisymmetric) relations
on X. Reason: To construct a reflexive symmetric (resp. antisymmetric) relation R on X,
for 1 <x <y <n we must decide whether or not zRy. There are M choices for (z,y). The
result follows by the multiplication principle.

37. Recall that a relation on X is a partial order if and only if it is reflexive, antisymmetric,
and transitive. We now show that the relation R has these features.

R is reflexive: For x € X we show xRx. The relations R’ and R” are reflexive so R’z and
xR"x. Therefore xRx.

R is antisymmetric: For distinct x,y € X such that x Ry, we show that y Rz fails. We assume
xRy so xR'y. The relation R’ is antisymmetric so y R’z fails. Therefore yRx fails.

R is transitive: For x,y, z € X such that xRy and yRz we show zRz. By construction xRy
and yR'z. The relation R’ is transitive so xR’z. Similarly zR"z. Therefore zRz.

38. Recall that a relation on a set is a partial order if and only if it is reflexive, antisymmetric,
and transitive. We show that the relation 7" on the set X; x X, has these features.

T is reflexive: For x € X x Xy we show zTxz. Write x = (x1, z5). The relation <; is reflexive
so 1 <y x1. Similarly zo <5 x9. Therefore zTx.

T is antisymmetric: For distinct x,y € X; x X5 such that 2Ty, we show that yTz fails.
Write = (x1,22) and y = (y1,¥2). Since z,y are distinct, there exists ¢ € {1,2} such that
x; # y;. Since xT'y we have x; <; y;. The relation <; is antisymmetric so y; £; x;. Therefore
yTx fails.

T is transitive: For z,y, z € X;x X, such that 2Ty and yT'z, we show zTz. Write z = (x1, x3)
and y = (y1,92) and z = (21, 29). Pick ¢ € {1,2}. Since 2Ty we have z; <; y;, and since yT'z
we have y; <; z;. By this and since <; is transitive we find x; <; z;. Therefore x7T'z.

39. Define the set J* = J x J x --- x J (n factors). Thus J" consists of the n-tuples of
zeros and ones. For x € J" and 1 < ¢ < n let x; denote the entry in coordinate i of x, so
that © = (21, 9,...,2,). Define a partial order < on J" such that for z,y € J*, = <y
whenever x; < y; for 1 < i < n. By construction the poset (J", <) is the direct product of n

13



copies of the poset (J,<). We show that the poset (J", <) can be identified with the poset
(P(X),<). View X ={1,2,...,n}. Define a function f: J* — P(X) by

flz) ={i € X|x; =1}, x e J"

The function f is a bijection. We show that for =,y € J", x <y if and only if f(z) C f(y).
Let x,y be given and note that the following assertions are equivalent:

(v) f(z) € f(y).
We have shown that the poset (J", <) can be identified with the poset (P(X), Q).

40. For each integer r > 0 define a poset [r] as follows. The poset consists of the set
{0,1,...,7} together with the total order 0 < 1 < --- < r. We will be discussing the direct
product [nq] X [ng] X - -+ X [n,,]. Consider the multiset X = {nq-ay,ns-as,..., Ny - ap}. Let
P(X) denote the set of all multisubsets of X. An element x € P(X) has the form

r=A{x1-a;, T2 a9, ..., T Ap}, 0<z;<n; (1<j<m).
For z,y € P(X) the following are equivalent:
(i) z Sy
(ii) z; <y; for 1 <j<my
(iil) (21,22, Zm) < (Y1,Y2,- - -, Ym) in the poset [nq] X [ng] X « -+ X [ny,].
Therefore the poset [nq] X [ng] X « -+ X [n,;,] can be identified with the poset (P(X), C).

41. We show that a partial order < on a finite set X is uniquely determined by its cover
relation. This is a consequence of the following lemma.

Lemma The following are equivalent for all distinct x,y € X:

(i) = <y;

(ii) there exists an integer r > 2 and a sequence (x1, T, ..., x,) of elements in X such that
r =z and x, =y and x; covers x;_1 for 2 < i <r.

14



Proof: (i) = (ii) Consider the set S consisting of the finite sequences (xy,xs,...,x,) such
that 1 =z and x, = y and x;_1 < x; for 2 < i <r. The set S is finite since X is finite. The
set S is nonempty since (z,y) € S. Pick an element (z1,xs,...,x,) in S with r maximal.
By construction r > 2. By the maximality of » we see that x; covers x;_ for 2 <1 <.

(ii) = (i) The relation < is transitive.

42. The diagram of the cover relation is essentially the n-cube, where n = | X|.

43. The linear extensions are

abecfd, abe fed, aebefd, aebfed, abcefd, ae fbed.

44. Recall that a relation is an equivalence relation whenever it is reflexive and symmetric
and transitive. We show that R has these features.

R is reflexive: For x € X, x and x are in the same part of the partition.

R is symmetric: For x,y € X, x and y are in the same part of the partition if and only if y
and x are in the same part of the partition.

R is transitive: For z,y,z € X, if x,y are in the same part of the partition, and y, z are in
the same part of the partition, then z, z are in the same part of the partition.

45. The relation R is an equivalence relation. To verify this, one checks that R is reflexive,
symmetric, and transitive. For the equivalence relation R one equivalence class consists of
0. Every other equivalence class consists of a positive integer and its opposite.

46. We show that R is an equivalence relation.

R is reflexive: For an integer a, certainly a and a have the same remainder when divided by
m.

R is symmetric: For integers a, b suppose a and b have the same remainder when divided by
m. Then b and a have the same remainder when divided by m.

R is transitive: For integers a, b, ¢ suppose a, b have the same remainder when divided by m,
and b, ¢ have the same remainder when divided by m. Then a,c have the same remainder
when divided by m. We have shown that R is an equivalence relation. The equivalence
classes are [0], [1],...,[m — 1] where [r] = {r+im|i € Z} for 0 <r <m — 1. The relation R
has m equivalence classes.

47. (a) It is routinely checked that < is a partial order on II,,.
(b) Given equivalence relations R and S on {1,2,...,n} we have R < S whenever xRy
implies xSy for all z,y € {1,2,...,n}.

48. Consider the prime factorizations for a and b:
a = 213%25% . .. b=2t13k5b ...
Then

c=20325% ... d=213%5% ...

15



where ¢; = min{a;, b;} for i > 1 and d; = max{a;,b;} for i > 1. The integer ¢ (resp. d) is
the greatest common factor (resp. least common multiple) of a,b.

49. It is routinely checked that RN S is an equivalence relation. In general R U S is not an
equivalence relation.

50. There are 48 linear extensions.

51. For a permutation 7 of {1,2,...,n} let Inv(7) denote the set of inversions of 7. Let o
denote a permutation of {1,2,...,n}. By definition 7 < ¢ whenever Inv(7) C Inv(o). We
show that for the partial order < the following are equivalent:

(i) o covers m;
(ii) o is obtained from 7 by applying a transposition ab — ba with a < b.

Proof: (i) = (ii) By assumption 7 < o so Inv(7) C Inv(o). The containment is proper since
a permutation is determined by its inversions. Pick an inversion ba (a < b) that is contained
in Inv(o) but not Inv(w). Then 7 and o have the form

ﬂ':...a...b... J:...b...a...

Of all the inversions ba that meet the above requirement, pick one for which the distance
betwen the symbols b, a in ¢ is minimal. We show that b, a are adjacent in 0. Suppose that
this is not the case. Then ¢ has the form

O':...b...c...a...

By the minimality condition neither of bc and ca is an inversion that is contained in Inv(o)
but not in Inv(7w). Consequently in 7 the ¢ lies to the left of a and to the right of b. This
is a contradiction so ¢ does not exist. We have shown that b, a are adjacent in 0. In other
words o has the form

c=---ba---
Apply the transposition ba — ab to o and let p denote the resulting permutation. Thus
p — ab “ ..

The set Inv(p) is obtained from Inv(o) by removing the inversion ba. Consequently 7 < p <
0. By assumption o covers m so m = p. Therefore 7 is obtained from o by applying the
transposition ba — ab. Consequently o is obtained from 7 by applying the transposition
ab — ba.

(ii) = (i) The permutations o and 7 have the form

m=---qgb--- o=---ba---

with agreement in all coordinates except the two shown. The set Inv(c) is obtained from
Inv(m) by adding the inversion ba. Thus Inv(r) C Inv(o) so 7 < o. Also |Inv(o)| =

16



|Inv(7)| +1 so there does not exist a permutation 7 such that 7 < 7 < . Therefore o covers
.

Before solving problems 52 and 53 we recall a few points from the text.

Problem B For an integer m > 0 consider the base 2 representation of m as a sequence of
zeros and ones. (i) Describe how to adjust this sequence to get the corresponding representa-
tion of m + 1. (ii) For m > 1, describe how to adjust this sequence to get the corresponding
representation of m — 1.

Sol Write the base 2 representation of m as - - - baby by, so that m = >"7° ;2" with b; € {0, 1}
for ¢ > 0.

(i) To get the corresponding representation of m + 1 we specify which coordinates to change.
For i > 0 change b; if and only if each of by, by, ..., b;_1 is 1. Thus by always gets changed; b,
gets changed if and only if by is 1; by gets changed if and only if each of by, by is 1, and so on.
(ii) Assume m > 1. To get the corresponding representation of m — 1 we specify which
coordinates to change. For ¢ > 0 change b; if and only if each of by, by,...,b;_1 is 0 . Thus
by always gets changed; b; gets changed if and only if by is 0; by gets changed if and only if
each of by, by is 0, and so on.

Problem G Let - - g2g19o denote a term in the reflected Gray code. (i) Describe the next
term in the code. (ii) Assume that there exists an integer ¢ > 0 such that g; = 1. Describe
the preceding term in the code.

Sol (i) We specify which coordinate to change. First assume that ) °¢; is even. Then
change go. Next assume that Z;’io g; is odd. Change g, for the unique integer s > 1 such
that g1 = 1 and each of g9, g1,...,9s 2 is 0.

(ii) First assume that >~ ¢; is odd. Then change go. Next assume that ) >°, g; is even.
Change g, for the unique integer s > 1 such that g,_; = 1 and each of gg, g1,...,gs_2 is 0.

52. For an integer m > 0 let - - - boby by denote the base 2 representation of m and let - - - g2g1 9o
denote term m in the reflected Gray code. We show that for + > 0, b; = 0if g; + giv1 + - - -
is even, and b; = 1 if g; + g;+1 + - -+ is odd. For ¢ > 0 define B; =0 if g; + g;21 + - - - is even,
and B; = 11if g; + g;v1 + - -+ is odd. We show B; = b;. Call the sequence --- By B Bj the
B-sequence for m. For the purpose of this proof call the sequence - - - bybibg the b-sequence
for m. Note that for m = 0 the B-sequence and b-sequence are both equal to ---000. To
finish the proof, it suffices to show that for m > 0 the B-sequence of m + 1 is related to the
B-sequence of m in the same way that the b-sequence of m + 1 is related to the b-sequence of
m. It is explained in Problem B(i) how the b-sequence of m + 1 is related to the b-sequence
of m. Now consider the B-sequences. First assume ) .°,g; is even, so that By = 0. By
Problem G, term m+1 in the reflected Gray code is obtained from - - - g2g1 g9 by changing go.
Therefore the B-sequence for m + 1 is obtained from - - - By B; By by changing By to 1. Next
assume » .~ ¢g; is odd, so that By = 1. Consider the unique integer s > 1 such that g,_; =1
and each of gg, g1,...,9s—2 is 0. By construction By =0 and B, =1 for 0 <i < s—1. By
Problem G, term m + 1 in the reflected Gray code is obtained from - - - g.g1g9 by changing
gs. Therefore the B-sequence for m + 1 is obtained from - -- By B By by changing B to 1
and B; to 0 for 0 < i < s—1. We have shown that the B-sequence of m + 1 is related to the
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B-sequence of m in the same way that the b-sequence of m + 1 is related to the b-sequence
of m. The result follows.

53. For an integer m > 0 let - - - bob1 by denote the base 2 representation of m and let - - - g2g1 90
denote term m in the reflected Gray code. We show that for ¢ > 0, g; = 0 if b; + b;;1 is
even and ¢g; = 1 if b; + b;41 is odd. For ¢ > 0 define G; = 0 if b; + b;11 is even and G; = 1
if b; + bj11 is odd. We show G; = g;. Call the sequence - -- GoG1G( the G-sequence for m.
For the purpose of this proof call the sequence - - - g2g19¢ the g-sequence for m. Note that
for m = 0 the G-sequence and g-sequence are both equal to ---000. To finish the proof, it
suffices to show that for m > 0 the G-sequence of m + 1 is related to the G-sequence of m in
the same way that the g-sequence of m + 1 is related to the g-sequence of m. It is explained
in Problem G(i) how the g-sequence of m+ 1 is related to the g-sequence of m. Now consider
the G-sequences. First assume by = 0, so that Y .~ G, is even. The base 2 representation
of m + 1 is obtained from - - - byb1by by changing by to 1. Therefore the G-sequence of m + 1
is obtained from --- GoG1Gy by changing Gy. Next assume that by = 1, so that Zio G is
odd. There exists a unique integer s > 1 such that by =0 and b, =1 for 0 <7 < s—1. By
construction G,_; = 1 and each of Gy, Gy, ...,Gs_5 is 0. The base 2 representation of m + 1
is obtained from - - - byb1bg by changing bs to 1 and b; to 0 for 0 < i < s — 1. Therefore the
G-sequence of m + 1 is obtained from - - - GoG1Gqy by changing G5. We have shown that the
G-sequence of m + 1 is related to the G-sequence of m in the same way that the g-sequence
of m + 1 is related to the g-sequence of m. The result follows.

54. We augment the covering relation for < by declaring that b covers a. View the augmented
covering relation as the covering relation of a new partial order <’. The partial order <’ has
a linear extension by Theorem 4.5.2. This linear extension has the desired features.

55. This is a routine consequence of 54.

56. It is routine to check that R is a partial order. Assume that iqis - - - 7, is not the identity
permutation. We show that R has dimension 2. Define a partial order <; on X such that
(a,b) <; (¢,d) whenever a < ¢. Observe that <; is a linear extension of R. Define a partial
order <5 on X such that (a,b) <5 (¢, d) whenever b < d. Observe that <, is a linear extension
of R. The relation R is the intersection of <; and <,. Therefore R has dimension at most
2. The partial orders <; and <, are not identical so R is not a total order; consequently R
has dimension at least 2. By these comments R has dimension 2.

o7.

58. The following are equivalent: (i) the relation is an equivalence relation; (ii) K, is
partitioned into complete graphs such that any two distinct vertices of K,, are connected by
a red edge if and only if they are in the same complete subgraph.

59. Let T denote the total number of inversions for all n! permutations of {1,2,... n}.
Thus T is the number of triples (r,s;ajas---a,) such that ajas---a, is a permutation of
{1,2,...,n} and (r,s) is an inversion of ajas---a,. To count these triples we proceed in
stages:
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stage to do # choices
1 select the values of r, s (;‘)
2 select the location of r, s among aqas - - - a, (Z)
3 | choose the remaining n — 2 terms among aas - --a, | (n —2)!

T is the product of the entries in the right-most column above, which comes to n!n(n—1)/4.
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