
Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 3

1. For 1 ≤ k ≤ 22 we show that there exists a succession of consecutive days during which
the grandmaster plays exactly k games. For 1 ≤ i ≤ 77 let bi denote the number of games
played on day i. Consider the numbers {b1 + b2 + · · · + bi + k}76i=0 ∪ {b1 + b2 + · · · + bj}77j=1.
There are 154 numbers in the list, all among 1, 2, . . . , 153. Therefore the numbers {b1 + b2 +
· · ·+ bi + k}76i=0 ∪ {b1 + b2 + · · ·+ bj}77j=1. are not distinct. Therefore there exist integers i, j
(0 ≤ i < j ≤ 77) such that bi+1 + · · ·+ bj = k. During the days i+ 1, . . . , j the grandmaster
plays exactly k games.

2. Let S denote a set of 100 integers chosen from 1, 2, . . . , 200 such that i does not divide
j for all distinct i, j ∈ S. We show that i 6∈ S for 1 ≤ i ≤ 15. Certainly 1 6∈ S since
1 divides every integer. By construction the odd parts of the elements in S are mutually
distinct and at most 199. There are 100 numbers in the list 1, 3, 5, . . . , 199. Therefore each of
1, 3, 5, . . . , 199 is the odd part of an element of S. We have 3× 5× 13 = 195 ∈ S. Therefore
none of 3, 5, 13, 15 are in S. We have 33× 7 = 189 ∈ S. Therefore neither of 7, 9 is in S. We
have 11×17 = 187 ∈ S. Therefore 11 6∈ S. We have shown that none of 1, 3, 5, 7, 9, 11, 13, 15
is in S. We show neither of 6, 14 is in S. Recall 33×7 = 189 ∈ S. Therefore 32×7 = 63 6∈ S.
Therefore 2×32×7 = 126 ∈ S. Therefore 2×3 = 6 6∈ S and 2×7 = 14 6∈ S. We show 10 6∈ S.
Recall 3 × 5 × 13 = 195 ∈ S. Therefore 5 × 13 = 65 6∈ S. Therefore 2 × 5 × 13 = 130 ∈ S.
Therefore 2× 5 = 10 6∈ S. We now show that none of 2, 4, 8, 12 are in S. Below we list the
integers of the form 2r3s that are at most 200:

1, 2, 4, 8, 16, 32, 64, 128,

3, 6, 12, 24, 48, 96, 192,

9, 18, 36, 72, 144,

27, 54, 108,

81, 162.

In the above array each element divides everything that lies to the southeast. Also, each
row contains exactly one element of S. For 1 ≤ i ≤ 5 let ri denote the element of row i that
is contained in S, and let ci denote the number of the column that contains ri. We must
have ci < ci−1 for 2 ≤ i ≤ 5. Therefore ci ≥ 6 − i for 1 ≤ i ≤ 5. In particular c1 ≥ 5 so
r1 ≥ 16, and c2 ≥ 4 so r2 ≥ 24. We have shown that none of 2, 4, 8, 12 is in S. By the above
comments i 6∈ S for 1 ≤ i ≤ 15.

3. See the course notes.

4, 5, 6. Given integers n ≥ 1 and k ≥ 2 suppose that n + 1 distinct elements are chosen
from {1, 2, . . . , kn}. We show that there exist two that differ by less than k. Partition
{1, 2, . . . , nk} = ∪ni=1Si where Si = {ki, ki − 1, ki − 2, . . . , ki − k + 1}. Among our n + 1
chosen elements, there exist two in the same Si. These two differ by less than k.
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7. Partition the set {0, 1, . . . , 99} = ∪50i=0Si where S0 = {0}, Si = {i, 100− i} for 1 ≤ i ≤ 49,
S50 = {50}. For each of the given 52 integers, divide by 100 and consider the remainder.
The remainder is contained in Si for a unique i. By the pigeonhole principle, there exist two
of the 52 integers for which these remainders lie in the same Si. For these two integers the
sum or difference is divisible by 100.

8. For positive integers m,n we consider the rational number m/n. For 0 ≤ i ≤ n divide
the integer 10im by n, and call the remainder ri. By construction 0 ≤ ri ≤ n − 1. By the
pigeonhole principle there exist integers i, j (0 ≤ i < j ≤ n) such that ri = rj. The integer
n divides 10jm − 10im. For notational convenience define ` = j − i. Then there exists a
positive integer q such that nq = 10i(10`−1)m. Divide q by 10`−1 and call the remainder r.
So 0 ≤ r ≤ 10`−2. By construction there exists an integer b ≥ 0 such that q = (10`−1)b+r.
Writing θ = m/n we have

10iθ = b+
r

10` − 1

= b+
r

10`
+

r

102`
+

r

103`
+ · · ·

Since the integer r is in the range 0 ≤ r ≤ 10` − 2 this yields a repeating decimal expansion
for θ.

9. Consider the set of 10 people. The number of subsets is 210 = 1024. For each subset
consider the sum of the ages of its members. This sum is among 0, 1, . . . , 600. By the
pigeonhole principle the 1024 sums are not distinct. The result follows. The following
argument shows that the result still holds for 9 people. Without loss we many assume that
all the ages are distinct; otherwise we are done. Now in the above argument, the sum of the
ages is at most 504. Then the number of subsets is 29 = 512. By the pigeonhole principle
the 512 sums are not distinct.

10. For 1 ≤ i ≤ 49 let bi denote the number of hours the child watches TV on day i.
Consider the numbers {b1 + b2 + · · · + bi + 20}48i=0 ∪ {b1 + b2 + · · · + bj}49j=1. There are
98 numbers in the list, all among 1, 2, . . . , 96. By the pigeonhole principle the numbers
{b1 + b2 + · · ·+ bi + 20}48i=0 ∪ {b1 + b2 + · · ·+ bj}49j=1. are not distinct. Therefore there exist
integers i, j (0 ≤ i < j ≤ 49) such that bi+1 + · · ·+ bj = 20. During the days i+ 1, . . . , j the
child watches TV for exactly 20 hours.

11. For 1 ≤ i ≤ 37 let bi denote the number of hours the student studies on day i. Consider
the numbers {b1+b2+· · ·+bi+13}36i=0∪{b1+b2+· · ·+bj}37j=1. There are 74 numbers in the list,
all among 1, 2, . . . , 72. By the pigeonhole principle the numbers {b1 + b2 + · · ·+ bi + 13}36i=0 ∪
{b1 + b2 + · · · + bj}37j=1 are not distinct. Therefore there exist integers i, j (0 ≤ i < j ≤ 37)
such that bi+1 + · · · + bj = 13. During the days i + 1, . . . , j the student will have studied
exactly 13 hours.

12. Take m = 4 and n = 6. Pick a among 0, 1, 2, 3 and b among 0, 1, 2, 3, 4, 5 such that a+ b
is odd. Suppose that there exists a positive integer x that yields a remainder of a (resp. b)
when divided by 4 (resp. by 6). Then there exist integers r, s such that x = 4r + a and
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x = 6s+ b. Combining these equations we obtain 2x− 4r− 6s = a+ b. In this equation the
left-hand side is even and the right-hand side is odd, for a contradiction. Therefore x does
not exist.

13. Since r(3, 3) = 6 there exists a K3 subgraph of K6 that is red or blue. We assume that
this K3 subgraph is unique, and get a contradiction. Without loss we may assume that the
above K3 subgraph is red. Let x denote one of the vertices of this K3 subgraph, and let
{xi}5i=1 denote the remaining five vertices of K6. Consider the K5 subgraph with vertices
{xi}5i=1. By assumption this subgraph has no K3 subgraph that is red or blue. The only
edge coloring of K5 with this feature is shown in figure 3.2 of the text. Therefore we may
assume that the vertices {xi}5i=1 are labelled such that for distinct i, j (1 ≤ i, j ≤ 5) the
edge connecting xi, xj is red (resp. blue) if i− j = ±1 modulo 5 (resp. i− j = ±2 modulo
5). By construction and without loss of generality, we may assume that each of x1, x2 is
connected to x by a red edge. Thus the vertices x, x1, x2 give a red K3 subgraph. Now
the edge connecting x and x3 is blue; otherwise the vertices x, x2, x3 give a second red K3

subgraph. Similarly the edge connecting x and x5 is blue; otherwise the vertices x, x1, x5
give a second red K3 subgraph. Now the vertices x, x3, x5 give a blue K3 subgraph.

14. After n minutes we have removed n pieces of fruit from the bag. Suppose that among
the removed fruit there are at most 11 pieces for each of the four kinds. Then our total n
must be at most 4 × 11 = 44. After n = 45 minutes we will have picked at least a dozen
pieces of fruit of the same kind.

15. For 1 ≤ i ≤ n+1 divide ai by n and call the reminder ri. By construction 0 ≤ ri ≤ n−1.
By the pigeonhole principle there exist distinct integers i, j among 1, 2, . . . , n + 1 such that
ri = rj. Now n divides ai − aj.

16. Label the people 1, 2, . . . , n. For 1 ≤ i ≤ n let ai denote the number of people aquainted
with person i. By construction 0 ≤ ai ≤ n − 1. Suppose the numbers {ai}ni=1 are mutually
distinct. Then for 0 ≤ j ≤ n− 1 there exists a unique integer i (1 ≤ i ≤ n) such that ai = j.
Taking j = 0 and j = n− 1, we see that there exists a person aquainted with nobody else,
and a person aquainted with everybody else. These people are distinct since n ≥ 2. These
two people know each other and do not know each other, for a contradiction. Therefore the
numbers {ai}ni=1 are not mutually distinct.

17. We assume that the conclusion is false and get a contradiction. Label the people
1, 2, . . . , 100. For 1 ≤ i ≤ 100 let ai denote the number of people aquainted with person i.
By construction 0 ≤ ai ≤ 99. By assumption ai is even. Therefore ai is among 0, 2, 4, . . . , 98.
In this list there are 50 numbers. Now by our initial assumption, for each even integer j
(0 ≤ j ≤ 98) there exists a unique pair of integers (r, s) (1 ≤ r < s ≤ 100) such that ar = j
and as = j. Taking j = 0 and j = 98, we see that there exist two people who know nobody
else, and two people who know everybody else except one. This is a contradiction.

18. Divide the 2× 2 square into four 1× 1 squares. By the pigeonhole principle there exists
a 1× 1 square that contains at least two of the five points. For these two points the distance
apart is at most

√
2.
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19. Divide the equilateral triangle into a grid, with each piece an equilateral triangle of side
length 1/n. In this grid there are 1 + 3 + 5 + · · · + 2n − 1 = n2 pieces. Suppose we place
mn = n2 + 1 points within the equilateral triangle. Then by the pigeonhole principle there
exists a piece that contains two or more points. For these two points the distance apart is
at most 1/n.

20. Color the edges of K17 red or blue or green. We show that there exists a K3 subgraph
of K17 that is red or blue or green. Pick a vertex x of K17. In K17 there are 16 edges that
contain x. By the pigeonhole principle, at least 6 of these are the same color (let us say red).
Pick distinct vertices {xi}6i=1 of K17 that are connected to x via a red edge. Consider the
K6 subgraph with vertices {xi}6i=1. If this K6 subgraph contains a red edge, then the two
vertices involved together with x form the vertex set of a red K3 subgraph. On the other
hand, if the K6 subgraph does not contain a red edge, then since r(3, 3) = 6, it contains a
K3 subgraph that is blue or green. We have shown that K17 has a K3 subgraph that is red
or blue or green.

21. Let X denote the set of sequences (a1, a2, a3, a4, a5) such that ai ∈ {1,−1} for 1 ≤ i ≤ 5
and a1a2a3a4a5 = 1. Note that |X| = 16. Consider the complete graph K16 with vertex
set X. We display an edge coloring of K16 with colors red, blue, green such that no K3

subgraph is red or blue or green. For distinct x, y in X consider the edge connecting x and
y. Color this edge red (resp. blue) (resp. green) whenever the sequences x, y differ in exactly
4 coordinates (resp. differ in exactly 2 coordinates i, j with i − j = ±1 modulo 5) (resp.
differ in exactly 2 coordinates i, j with i − j = ±2 modulo 5). Each edge of K16 is now
colored red or blue or green. For this edge coloring of K16 there is no K3 subgraph that is
red or blue or green.

22. For an integer k ≥ 2 abbreviate rk = r(3, 3, . . . , 3) (k 3’s). We show that rk+1 ≤
(k + 1)(rk − 1) + 2. Define n = rk and m = (k + 1)(n− 1) + 2. Color the edges of Km with
k + 1 colors C1, C2, . . . , Ck+1. We show that there exists a K3 subgraph with all edges the
same color. Pick a vertex x of Km. In Km there are m − 1 edges that contain x. By the
pigeonhole principle, at least n of these are the same color (which we may assume is C1).
Pick distinct vertices {xi}ni=1 of Km that are connected to x by an edge colored C1. Consider
the Kn subgraph with vertices {xi}ni=1. If this Kn subgraph contains an edge colored C1,
then the two vertices involved together with x give a K3 subgraph that is colored C1. On
the other hand, if the Kn subgraph does not contain an edge colored C1, then since rk = n,
it contains a K3 subgraph that is colored Ci for some i (2 ≤ i ≤ k + 1). In all cases Km has
a K3 subgraph that is colored Ci for some i (1 ≤ i ≤ k + 1). Therefore rk ≤ m.

23. We proved earlier that

r(m,n) ≤
(
m+ n− 2

n− 1

)
.

Applying this result with m = 3 and n = 4 we obtain r(3, 4) ≤ 10.

24. We show that rt(t, t, q3) = q3. By construction rt(t, t, q3) ≥ q3. To show the reverse
inequality, consider the complete graph with q3 vertices. Let X denote the vertex set of this
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graph. Color the t-element subsets of X red or blue or green. Then either (i) there exists a
t-element subset of X that is red, or (ii) there exists a t-element subset of X that is blue, or
(iii) every t-element subset of X is green. Therefore rt(t, t, q3) ≤ q3 so rt(t, t, q3) = q3.

25. Abbreviate N = rt(m,m, . . . ,m) (k m’s). We show rt(q1, q2, . . . , qk) ≤ N . Consider
the complete graph KN with vertex set X. Color each t-element subset of X with k colors
C1, C2, . . . , Ck. By definition there exists a Km subgraph all of whose t-element subsets are
colored Ci for some i (1 ≤ i ≤ k). Since qi ≤ m there exists a subgraph of that Km with qi
vertices. For this subgraph every t-element subset is colored Ci.

26. In the m×n array assume the rows (resp. columns) are indexed in increasing order from
front to back (resp. left to right). Consider two adjacent columns j − 1 and j. A person
in column j − 1 and a person in column j are called matched if they occupy the same row
of the original formation. Thus a person in column j is taller than their match in column
j − 1. Now consider the adjusted formation. Let L and R denote adjacent people in some
row i, with L in column j − 1 and R in column j. We show that R is taller than L. We
assume that L is at least as tall as R, and get a contradiction. In column j − 1, the people
in rows i, i+ 1, . . . ,m are at least as tall as L. In column j, the people in rows 1, 2, . . . , i are
at most as tall as R. Therefore everyone in rows i, i + 1, . . . ,m of column j − 1 is at least
as tall as anyone in rows 1, 2, . . . , i of column j. Now for the people in rows 1, 2, . . . , i of
column j their match stands among rows 1, 2, . . . , i − 1 of column j − 1. This contradicts
the pigeonhole principle, so L is shorter than R.

27. Let s1, s2, . . . , sk denote the subsets in the collection. By assumption these subsets are
mutually distinct. Consider their complements s1, s2, . . . , sk. These complements are mutu-
ally distinct. Also, none of these complements are in the collection. Therefore s1, s2, . . . , sk,
s1, s2, . . . , sk are mutually distinct. Therefore 2k ≤ 2n so k ≤ 2n−1. There are at most 2n−1

subsets in the collection.

28. The answer is 1620. Note that 1620 = 81 × 20. First assume that
∑100

i=1 ai < 1620.
We show that no matter how the dance lists are selected, there exists a group of 20 men
that cannot be paired with the 20 women. Let the dance lists be given. Label the women
1, 2, . . . , 20. For 1 ≤ j ≤ 20 let bj denote the number of men among the 100 that listed
woman j. Note that

∑20
j=1 bj =

∑100
i=1 ai so (

∑20
j=1 bj)/20 < 81. By the pigeonhole principle

there exists an integer j (1 ≤ j ≤ 20) such that bj ≤ 80. We have 100− bj ≥ 20. Therefore
there exist at least 20 men that did not list woman j. This group of 20 men cannot be paired
with the 20 women.
Consider the following selection of dance lists. For 1 ≤ i ≤ 20 man i lists woman i and no
one else. For 21 ≤ i ≤ 100 man i lists all 20 women. Thus ai = 1 for 1 ≤ i ≤ 20 and ai = 20
for 21 ≤ i ≤ 100. Note that

∑100
i=1 ai = 20 + 80 × 20 = 1620. Note also that every group of

20 men can be paired with the 20 women.

29. Without loss we may assume |B1| ≤ |B2| ≤ · · · ≤ |Bn| and |B∗
1 | ≤ |B∗

2 | ≤ · · · ≤ |B∗
n+1|.

By assumption |B∗
1 | is positive. Let N denote the total number of objects. Thus N =∑n

i=1 |Bi| and N =
∑n+1

i=1 |B∗
i |. For 0 ≤ i ≤ n define

∆i = |B∗
1 |+ |B∗

2 |+ · · ·+ |B∗
i+1| − |B1| − |B2| − · · · − |Bi|.
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We have ∆0 = |B∗
1 | > 0 and ∆n = N−N = 0. Therefore there exists an integer r (1 ≤ r ≤ n)

such that ∆r−1 > 0 and ∆r ≤ 0. Now

0 < ∆r−1 −∆r = |Br| − |B∗
r+1|

so |B∗
r+1| < |Br|. So far we have

|B∗
1 | ≤ |B∗

2 | ≤ · · · ≤ |B∗
r+1| < |Br| ≤ |Br+1| ≤ · · · ≤ |Bn|.

Thus |B∗
i | < |Bj| for 1 ≤ i ≤ r + 1 and r ≤ j ≤ n. Define

θ = |(B∗
1 ∪B∗

2 ∪ · · · ∪B∗
r+1) ∩ (Br ∪Br+1 ∪ · · · ∪Bn)|.

We show θ ≥ 2. Using ∆r−1 > 0 we have

|B∗
1 |+ |B∗

2 |+ · · ·+ |B∗
r | > |B1|+ |B2|+ · · ·+ |Br−1|

= |B1 ∪B2 ∪ · · · ∪Br−1|
≥ |(B1 ∪B2 ∪ · · · ∪Br−1) ∩ (B∗

1 ∪B∗
2 ∪ · · · ∪B∗

r+1)|
= |B∗

1 ∪B∗
2 ∪ · · · ∪B∗

r+1| − θ
= |B∗

1 |+ |B∗
2 |+ · · ·+ |B∗

r+1| − θ
≥ |B∗

1 |+ |B∗
2 |+ · · ·+ |B∗

r |+ 1− θ.

Therefore θ > 1 so θ ≥ 2.
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