
Math 475 Text: Brualdi, Introductory Combinatorics 5th Ed.
Prof: Paul Terwilliger
Selected solutions for Chapter 2

1. Case ∅. Fill in the blanks:

# choices : 5 5 5 5

The answer is 54.
Case {a}. Fill in the blanks left to right:

# choices : 5 4 3 2

The answer is 5× 4× 3× 2 = P (5, 4) = 120.
Case {b}. Fill in the blanks:

# choices : 5 5 5 2

The answer is 5× 5× 5× 2 = 250.
Case {a, b}. Fill in the blanks right to left:

# choices : 2 3 4 2

The answer is 2× 3× 4× 2 = 48.

2. We proceed in stages:

stage to do # choices
1 order the suits 4!
2 order the ranks for suit 1 13!
3 order the ranks for suit 2 13!
4 order the ranks for suit 3 13!
5 order the ranks for suit 4 13!

The answer is 4!× (13!)4.

3. If we count the order in which the cards are dealt, the answer is P (52, 5). The number of
different poker hands is

(
52
5

)
.

4. (a) Each divisor has the form 3r × 5s × 7t × 11u where

0 ≤ r ≤ 4, 0 ≤ s ≤ 2, 0 ≤ t ≤ 6, 0 ≤ u ≤ 1.
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We proceed in stages:

stage to do # choices
1 choose r 5
2 choose s 3
3 choose t 7
4 choose u 2

The answer is 5× 3× 7× 2 = 210.
(b) Consider the prime factorization 620 = 22×5×31. Each divisor has the form 2r×5s×31t

where

0 ≤ r ≤ 2, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

We proceed in stages:

stage to do # choices
1 choose r 3
2 choose s 2
3 choose t 2

The answer is 3× 2× 2 = 12.
(c) Consider the prime factorization 1010 = 210×510. Proceeding as above we find the answer
is 11× 11 = 121.

5. (a) Since 10 = 5 × 2 we consider the power of 5 and 2 in the prime factorization of 50!.
Below we list the positive integers at most 50 that are divisible by 5, together with the power
of 5 in their prime factorization:

integer 5 10 15 20 25 30 35 40 45 50
power of 5 1 1 1 1 2 1 1 1 1 2

The table shows that in the prime factorization of 50! the power of 5 is 12. In the prime
factoriztion of 50! the power of 2 is clearly greater than 12, so the answer is 12.
(b) Note that 1000 = 5× 200. Therefore there exist 200 positive integers at most 1000 that
are divisible by 5. Note that 200 = 5 × 40. Therefore there exist 40 positive integers at
most 1000 that are divisible by 52. Note that 40 = 5 × 8. Therefore there exist 8 positive
integers at most 1000 that are divisible by 53. Also 625 is the unique positive integer at most
1000 that is divisible by 54. Therefore in the prime factorization of 1000! the power of 5 is
200 + 40 + 8 + 1 = 249. In the prime factorization of 1000! the power of 2 is greater than
249. Therefore the answer is 249.

6. Consider the set S of integers that meet the requirements. We find |S|. The maximal
integer in S is 98654310, and this has 8 digits. The minimal integer in S is 5401, with 4
digits. For 4 ≤ n ≤ 8 let Sn denote the set of integers in S that have exactly n digits. By
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construction |S| =
∑8

n=4 |Sn|. To find |S8|, we count the number of elements in S8 by filling
in the blanks left to right:

# choices : 7 7 6 5 4 3 2 1

So |S8| = 7× 7!. More generally we find

n 8 7 6 5
|Sn| 7× 7! 7× P (7, 6) 7× P (7, 5) 7× P (7, 4)

To find |S4| we partition S4 into four subsets as follows:

type of element # choices
has form 540∗ 5

has form 54 ∗ ∗ but not 540∗ 5× 5
has form 5 ∗ ∗∗ but not 54 ∗ ∗ 3× 6× 5
has form ∗ ∗ ∗∗ but not 5 ∗ ∗∗ 3× 7× 6× 5

So |S4| = 5 + 5× 5 + 3× 6× 5 + 3× 7× 6× 5 = 5 + 25 + 90 + 630 = 750. Therefore

|S| = 7× 7! + 7× P (7, 6) + 7× P (7, 5) + 7× P (7, 4) + 750.

7. Pick a man and call him H. We proceed in stages:

stage to do # choices
1 order the remaining men clockwise from H 3!
2 order the women clockwise from H 8!

The answer is 3!× 8!.

8. Pick a man and call him H. We proceed in stages:

stage to do # choices
1 order the remaining men clockwise from H 5!
2 order the women clockwise from H 6!

The answer is 5!× 6!.

9. Declare A to be the head of the table. We proceed in stages:

stage to do # choices
1 pick the person to A’s right 13
2 pick the person to A’s left 12
3 order the remaining people clockwise in the remaining seats 12!

The answer is 13× 12× 12! = 12× 13!.
Now suppose that B only refuses to sit on A’s right. We proceed in stages:
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stage to do # choices
1 pick the person to A’s right 13
2 order the remaining people clockwise in the remaining seats 13!

The answer is 13× 13!.

10. We partition the set of committees according to the number of women:

# women # ways to pick men # ways to pick women # committees

2
(
10
3

) (
12
2

) (
10
3

)(
12
2

)
3

(
10
2

) (
12
3

) (
10
2

)(
12
3

)
4

(
10
1

) (
12
4

) (
10
1

)(
12
4

)
5 1

(
12
5

) (
12
5

)
The answer is (

10

3

)(
12

2

)
+

(
10

2

)(
12

3

)
+

(
10

1

)(
12

4

)
+

(
12

5

)
.

Now assume that a particular man (Adam) and a particular woman (Eve) refuse to serve
together on a committee. We partition the set of committees according to the participation
of Adam and Eve:

Adam on committee? Eve on Committee? # committees

Y N
(
9
2

)(
11
2

)
+
(
9
1

)(
11
3

)
+
(
9
0

)(
11
4

)
N Y

(
9
3

)(
11
1

)
+
(
9
2

)(
11
2

)
+
(
9
1

)(
11
3

)
+
(
9
0

)(
11
4

)
N N

(
9
3

)(
11
2

)
+
(
9
2

)(
11
3

)
+
(
9
1

)(
11
4

)
+
(
9
0

)(
11
5

)
The answer is the sum of the entries in the right-most column of the above table.

11. Let a < b < c denote the elements of the 3-integer set. Define

x = a− 1, y = b− a− 2, z = c− b− 2, w = 20− c.

Then each of x, y, z, w is nonnegative and x + y + z + w = 15. Thus the desired quantity is
equal to the number of integral solutions to

x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0, x + y + z + w = 15.

This number is
(
15+4−1
4−1

)
=
(
18
3

)
by Theorem 2.5.1.

4



12. Let A and B denote the football players that can play in the backfield or on the line. We
partition the set of football teams according to the employment of A and B, in the backfield,
on the line, or on the bench.

location of A location of B # teams

bench bench
(
5
4

)(
8
7

)
bench backfield

(
5
3

)(
8
7

)
bench line

(
5
4

)(
8
6

)
backfield bench

(
5
3

)(
8
7

)
backfield backfield

(
5
2

)(
8
7

)
backfield line

(
5
3

)(
8
6

)
line bench

(
5
4

)(
8
6

)
line backfield

(
5
3

)(
8
6

)
line line

(
5
4

)(
8
5

)
The answer is the sum of the entries in the right-most column of the above table.

13. (a) We proceed in stages:

stage to do # choices

1 fill dorm A
(
100
25

)
2 fill dorm B

(
75
35

)
3 fill dorm C 1

The answer is (
100

25

)(
75

35

)
=

100!

25!× 35!× 40!
.

(b) We proceed in stages:
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stage to do # choices

1 fill dorm A
(
50
25

)
2 fill dorm B

(
50
35

)
3 fill dorm C 1

The answer is (
50

25

)(
50

35

)
.

14. We proceed in stages:

stage to do # choices
1 seat the 5 front-row students P (8, 5)
2 seat the 4 back-row students P (8, 4)
3 seat the remaining 5 students P (7, 5)

The answer is P (8, 5)P (8, 4)P (7, 5).

15. (a) Label the men 1, 2, . . . , 15. We proceed in stages:

stage to do # choices
1 pick the woman for man 1 20
2 pick the woman for man 2 19
· · · · ·
· · · · ·

15 pick the woman for man 15 6

The answer is 20× 19× 18× · · · × 6 = P (20, 15).

(b) We proceed in stages:

stage to do # choices

1 pick 10 men
(
15
10

)
2 pick 10 women

(
20
10

)
3 match the above men and women 10!

The answer is
(
15
10

)
×
(
20
10

)
× 10!.
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16. Let X denote a set with |X| = n. For 0 ≤ r ≤ n let Xr denote the set of r-subsets of X.
Recall |Xr| =

(
n
r

)
. The map Xr → Xn−r, S 7→ S is a bijection. Therefore |Xr| = |Xn−r| so(

n

r

)
=

(
n

n− r

)
.

17. For indistinguishable rooks the answer is 6!. Now suppose that there are 2 red and 4
blue rooks. We proceed in stages:

stage to do # choices
1 select rook locations 6!

2 decide which rooks are red
(
6
2

)
The answer is

6!×
(

6

2

)
=

(6!)2

2!× 4!
.

18. We proceed in stages:

stage to do # choices

1 select red rook locations
(
8
2

)(
8
2

)
2!

2 select blue rook locations
(
6
4

)(
6
4

)
4!

The answer is (
8

2

)2

×
(

6

4

)2

× 2!× 4!.

19. (a) We proceed in stages:

stage to do # choices

1 select red rook locations
(
8
5

)(
8
5

)
5!

2 select blue rook locations
(
3
3

)(
3
3

)
3!

The answer is (
8

5

)2

× 5!× 3!.

(b) We proceed in stages:
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stage to do # choices

1 select red rook locations
(
12
5

)(
12
5

)
5!

2 select blue rook locations
(
7
3

)(
7
3

)
3!

The answer is (
12

5

)2

×
(

7

3

)2

× 5!× 3!.

20. The total number of circular permutations of {0, 1, 2, . . . , 9} is 9!. We now compute the
number of circular permutations of {0, 1, 2, . . . , 9} for which 0 and 9 are opposite. Place 0 at
the head of a circular table. Seat 9 opposite 0. The number of ways to seat the remaining 8
is 8!. Therefore the answer is 9!− 8! = 8× 8!.

21. We proceed in stages:

stage to do # choices
1 select A location 9

2 select D locations
(
8
2

)
3 select E locations

(
6
2

)
4 select R location 4

5 select S locations
(
3
3

)
The answer is the product of the entries in the right-most column, which comes to

9!

(2!)2 × 3!
.

Concerning the number of 8-permutations the answer is the same.

22. We partition the set of solutions according to the pattern of ties:

# in 1st place # in 2nd place # in 3d place # in 4th place # choices

1 1 1 1 4!
2 1 1 0 4× 3
1 2 1 0 4× 3
1 1 2 0 4× 3
3 1 0 0 4
2 2 0 0

(
4
2

)
1 3 0 0 4
4 0 0 0 1
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The answer is the sum of the entries in the right-most column, which comes to 75.

23. We proceed in stages:

stage to do # choices

1 choose the hand of player 1
(
52
13

)
2 choose the hand of player 2

(
39
13

)
3 choose the hand of player 3

(
26
13

)
4 choose the hand of player 4 1

The answer is the product of the entries in the right-most column, which comes to

52!

(13!)4
.

24. To clarify the problem, until further notice assume that both the left/right and front/back
seating patterns are important. There are 20! different ways for the ride to begin. Now
suppose that a certain two people want to sit in different cars. Call them A and B. We
proceed in stages:

stage to do # choices
1 choose A’s seat 20
2 fill A’s car 18× 17× 16
3 fill the remaining seats 16!

The answer is the product of the entries in the right-most column, which comes to 20×16×18!.

Now let us solve the problem again, this time assuming that the left/right seating pattern
is unimportant. To answer the initial question we proceed in stages:

stage to do # choices

1 fill car 1, front seats
(
20
2

)
2 fill car 1, back seats

(
18
2

)
3 fill car 2, front seats

(
16
2

)
4 fill car 2, back seats

(
14
2

)
· · · · ·
· · · · ·

10 fill car 10, back seats
(
2
2

)
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The answer is the product of the entries in the right-most column, which comes to

20!

210
.

Now again suppose that persons A and B want to sit in different cars. We proceed in stages:

stage to do # choices
1 select A’s car 5
2 Put A in front or back? 2
3 fill A’s car 18

(
17
2

)
4 select B’s car 4
5 Put B in front or back? 2
6 fill B’s car 15

(
14
2

)
7 fill remaining seats 12!/26

The answer is the product of the entries in the right-most column, which comes to

5× 18!

24
.

25. To clarify the problem, until further notice assume that both the left/right and circular
seating patterns are important. There are 20!/5 ways for the ride to begin. Suppose that a
certain two people want to sit in different cars. Call them A and B. We proceed in stages:

stage to do # choices
1 choose A’s seat 20/5
2 choose B’s seat 16
3 fill remaining seats 18!

The answer is the product of the entries in the right-most column, which comes to 64× 18!.

Now let us solve the problem again, this time assuming that the left/right seating pattern is
unimportant. To answer the initial question, we pick a person A among the 20 and proceed
in stages:

stage to do # choices

1 choose A’s 3 companions
(
19
3

)
2 fill the four seats behind A

(
16
4

)
3 fill the next four seats

(
12
4

)
4 fill the next four seats

(
8
4

)
5 fill the last four seats

(
4
4

)
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The answer is the product of the entries in the right-most column, which comes to

19!

3!× (4!)4
.

Now again suppose that persons A and B want to sit in different cars. We proceed in stages:

stage to do # choices

1 choose A’s 3 companions
(
18
3

)
2 select B’s car 4
3 choose B’s 3 companions

(
15
3

)
4 fill remaining seats 12!/(4!)3

The answer is the product of the entries in the right-most colum, which comes to

18!

(3!)3 × (4!)2
.

26. (a) Name the teams 1, 2, . . . ,m. We proceed in stages:

stage to do # choices

1 select team 1
(
mn
n

)
2 select team 2

(
mn−n

n

)
3 select team 3

(
mn−2n

n

)
· · · · ·
· · · · ·

m select team m
(
n
n

)
The answer is the product of the entries in the right-most colum, which comes to

(mn)!

(n!)m
.

(b) To get the answer, divide the answer to (a) by m!. The answer is

(mn)!

m!(n!)m
.

27. By assumption there is a rook in the first row; suppose it is in column r. By assumption
there is a rook in the first column; suppose it is in row s. Note that either (i) r = s = 1;
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or (ii) r 6= 1, s 6= 1. The number of solutions for case (i) is equal to the number of ways to
place 4 nonattacking rooks on a 7× 7 chessboard. Concerning (ii), there are 7 choices for r
and 7 choices for s. For each r, s the number of solutions is equal to the number of ways to
place 3 nonattacking rooks on a 6× 6 chessboard. Therefore the answer is

4!×
(

7

4

)2

+ 72 × 3!×
(

6

3

)2

.

28. (a) Represent each route by a sequence of length 17 consisting of 9 E’s and 8 N’s. The
number of these sequences is

(
17
9

)
.

(b) Denote the intersections by (i, j) with 0 ≤ i ≤ 9 and 0 ≤ j ≤ 8. Thus a route starts at
intersection (0, 0) and ends at intersection (9, 8). Note that the underwater block has corners
(4, 3), (4, 4), (5, 4), (5, 3). Consider the set U of routes that use the underwater block. We
partition U as follows:

route passes through # routes

(4, 3), (4, 4), (5, 4)
(
7
3

)(
8
4

)
(4, 3), (5, 3), (5, 4)

(
7
3

)(
8
4

)
(4, 3), (4, 4), (4, 5)

(
7
3

)(
8
3

)
(3, 4), (4, 4), (5, 4)

(
7
3

)(
8
4

)
(5, 2), (5, 3), (5, 4)

(
7
2

)(
8
4

)
(4, 3), (5, 3), (6, 3)

(
7
3

)(
8
3

)
(3, 4), (4, 4), (4, 5)

(
7
3

)(
8
3

)
(5, 2), (5, 3), (6, 3)

(
7
2

)(
8
3

)
Thus |U | is the sum of the entries in the right-most column. Our answer is

(
17
9

)
− |U | which

comes to (
17

9

)
− 3

(
7

3

)(
8

3

)
− 3

(
7

3

)(
8

4

)
−
(

7

2

)(
8

3

)
−
(

7

2

)(
8

4

)
.

29. Routine.

30. We proceed in stages:

stage to do # choices
1 pick gender to the parent’s right 2
2 order the girls clockwise 5!
3 order the boys clockwise 5!
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The answer is 2× (5!)2.

Now assume that there are two parents, labelled P and Q. Suppose we move clockwise around
the table from P to Q. Let n denote the number of seats between the two. Thus n = 0 (resp.
n = 10) if Q sits next to P at P’s left (resp. right). We now partition the set of solutions
according to the value of n.

n # seatings
0 2(5!)2

1 2(5!)2

2 4(5!)2

3 2(5!)2

4 4(5!)2

5 2(5!)2

6 4(5!)2

7 2(5!)2

8 4(5!)2

9 2(5!)2

10 2(5!)2

The answer is the sum of the entries in the right-most column, which comes to 30× (5!)2.

31. We proceed in stages:

stage to do # choices
1 award the gold 15
2 award the silver 14
3 award the bronze 13
4 choose the 3 losers

(
12
3

)
The answer is the product of the entries in the right-most column, which comes to

15!

3!
.

32. Since the multiset S has 12 elements, the number of 11-permutations of S is equal to
the number of permutations of S, which is

12!

3!× 4!× 5!
.

33. Each 10-permutation of S involves all but two elements of S. We partition the set of
solutions according to the missing two elements:
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missing elements # solutions

a, a 10!
1!4!5!

b, b 10!
3!2!5!

c, c 10!
3!4!3!

a, b 10!
2!3!5!

a, c 10!
2!4!4!

b, c 10!
3!3!4!

The answer is the sum of the entries in the right-most column, which comes to

85× 10!

3!× 4!× 5!

34. Since the multiset S has 12 elements, the number of 11-permutations of S is equal to
the number of permutations of S, which is

12!

(3!)4
.

35. We list the 3-combinations:

example # a’s # b’s # c’s
1 2 1 0
2 2 0 1
3 1 1 1
4 1 0 2
5 0 1 2
6 0 0 3

We now list the 4-combinations:

example # a’s # b’s # c’s
1 2 1 1
2 2 0 2
3 1 1 2
4 1 0 3
5 0 1 3

36. The combinations correspond to the sequences (x1, x2, . . . , xk) such that 0 ≤ xi ≤ ni for
1 ≤ i ≤ k. We proceed in stages:
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stage to do # choices
1 pick x1 n1 + 1
2 pick x2 n2 + 1
· · · · ·
· · · · ·
k pick xk nk + 1

The answer is (n1 + 1)(n2 + 1) · · · (nk + 1).

37. Suppose that for 1 ≤ i ≤ 6 we choose ni pastries of the ith kind. Each of {ni}6i=1 is
nonnegative and

∑6
i=1 ni = 12. The number of ways to pick the {ni}6i=1 is(

12 + 6− 1

6− 1

)
=

(
17

5

)
.

Now suppose that we choose at least one pastry of each type. In other words ni ≥ 1 for
1 ≤ i ≤ 6. Define mi = ni − 1 for 1 ≤ i ≤ 6. Then each of {mi}6i=1 is nonnegative and∑6

i=1mi = 6. The answer is equal to the number of ways to pick the {mi}6i=1, which is(
6 + 6− 1

6− 1

)
=

(
11

5

)
.

38. We make a change of variables. Define

y1 = x1 − 2, y2 = x2, y3 = x3 + 5, y4 = x4 − 8.

Note that {xi}4i=1 is a solution to the original problem if and only if

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0, y1 + y2 + y3 + y4 = 25.

Therefore the number of solutions is(
25 + 4− 1

4− 1

)
=

(
28

3

)
.

39. (a) There are
(
20
6

)
ways to choose six sticks from the twenty available sticks.

(b) Label the sticks 1, 2, . . . , 20. Suppose we choose six sticks labelled {xi}6i=1 with x1 <
x2 < · · · < x6. Define

y1 = x1 − 1, y2 = x2 − x1 − 2, y3 = x3 − x2 − 2, y4 = x4 − x3 − 2,

y5 = x5 − x4 − 2, y6 = x6 − x5 − 2, y7 = 20− x6.

Observe that the solutions {xi}6i=1 to the original problem correspond to the integral solutions
{yi}7i=1 for

yi ≥ 0 (1 ≤ i ≤ 7),
7∑

i=1

yi = 9.
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Therefore the number of solutions {xi}6i=1 to the original problem is(
9 + 7− 1

7− 1

)
=

(
15

6

)
.

(c) We proceed as in (b) with the modification

y1 = x1 − 1, y2 = x2 − x1 − 3, y3 = x3 − x2 − 3, y4 = x4 − x3 − 3,

y5 = x5 − x4 − 3, y6 = x6 − x5 − 3, y7 = 20− x6.

The solutions {xi}6i=1 to the original problem correspond to the integral solutions {yi}7i=1 for

yi ≥ 0 (1 ≤ i ≤ 7),
7∑

i=1

yi = 4.

Therefore the number of solutions {xi}6i=1 to the original problem is(
4 + 7− 1

7− 1

)
=

(
10

6

)
.

40. (a) There are
(
n
k

)
ways to choose k sticks from the n available sticks.

(b) Label the sticks 1, 2, . . . , n. Suppose we choose k sticks labelled {xi}ki=1 with x1 < x2 <
· · · < xk. Define

y1 = x1 − 1, yi = xi − xi−1 − 2 (2 ≤ i ≤ k), yk+1 = n− xk.

Observe that the solutions {xi}ki=1 to the original problem correspond to the integral solutions
{yi}k+1

i=1 for

yi ≥ 0 (1 ≤ i ≤ k + 1),
k+1∑
i=1

yi = n− 2k + 1.

Therefore the number of solutions {xi}ki=1 to the original problem is(
n− 2k + 1 + k

k

)
=

(
n− k + 1

k

)
.

(c) We proceed as in (b) with the modification

y1 = x1 − 1, yi = xi − xi−1 − `− 1 (2 ≤ i ≤ k), yk+1 = n− xk.

The solutions {xi}ki=1 to the original problem correspond to the integral solutions {yi}k+1
i=1 for

yi ≥ 0 (1 ≤ i ≤ k + 1),
k+1∑
i=1

yi = n− k − `k + `.
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Therefore the number of solutions {xi}ki=1 to the original problem is(
n− k − `k + ` + k

k

)
=

(
n− `k + `

k

)
.

41. We proceed in stages:

stage to do # choices
1 hand out the orange 3
2 give one apple to each of the other children 1
3 distribute remaining 10 apples to 3 children

(
12
2

)
The answer is 3×

(
12
2

)
.

42. We proceed in stages:

stage to do # choices
1 hand out lemon drink 4
2 hand out lime drink 3
3 give one orange drink to each of the remaining two students 1
4 distribute remaining 8 orange drinks to 4 students

(
11
3

)
The answer is the product of the entries in the right-most column, which comes to 12×

(
11
3

)
.

43. For an r-combination in question, either it contains a1 or it does not. The number of
r-combinations that contain a1 is equal to the number of (r − 1)-combinations of

{∞ · a2, . . . ,∞ · ak},

which comes to
(
r+k−3
k−2

)
. The number of r-combinations that do not contain a1 is equal to

the number of r-combinations of

{∞ · a2, . . . ,∞ · ak},

which comes to
(
r+k−2
k−2

)
. The answer is(

r + k − 2

k − 2

)
+

(
r + k − 3

k − 2

)
.

44. Label the objects 1, 2, . . . , n. We proceed in stages:

stage to do # choices
1 distribute object 1 k
2 distribute object 2 k
· · · · ·
· · · · ·
n distribute object n k

17



The answer is the product of the entries in the right-most column, which comes to kn.

45. (a) For 1 ≤ i ≤ 5 let xi denote the number of books on shelf i. We seek the number of
integral solutions to

xi ≥ 0 (1 ≤ i ≤ 5),
5∑

i=1

xi = 20.

The answer is (
20 + 5− 1

5− 1

)
=

(
24

4

)
.

(b) We proceed in stages:

stage to do # choices
1 put book 1 on a shelf 5
2 put book 2 on a shelf 5
· · · · ·
· · · · ·

20 put book 20 on a shelf 5

The answer is the product of the entries in the right-most column, which comes to 520.

(c) We proceed in stages:

stage to do # choices
1 order the books 20!
2 pick a solution {xi}5i=1 to part (a)

(
24
4

)
3 put the first x1 books on shelf 1 1
4 put the next x2 books on shelf 2 1
5 put the next x3 books on shelf 3 1
6 put the next x4 books on shelf 4 1
7 put the last x5 books on shelf 5 1

The answer is the product of the entries in the right-most column, which comes to

20!×
(

24

4

)
.

46. (a) Call this number Mn. To find Mn, we pick a person at the party and proceed in
stages:

stage to do # choices
1 choose the person’s partner 2n− 1
2 match the remaining 2n− 2 people Mn−1

18



This shows that Mn = (2n− 1)Mn−1. We also have M1 = 1. Therefore

Mn = 1× 3× 5× · · · × (2n− 1).

(b) We proceed in stages:

stage to do # choices
1 choose the loner 2n + 1
2 match the remaining 2n people 1× 3× · · · × (2n− 1)

The answer is the product of the entries in the right-most column, which comes to

1× 3× 5× · · · × (2n + 1).

47. Observe that no shelf can hold more than n books. Imagine that we start with 3n books,
n books per shelf. Remove a total of n− 1 books to leave 2n+ 1 books. For i = 1, 2, 3 let bi
denote the number of books removed from shelf i. We seek the number of integral solutions
to

b1 ≥ 0, b2 ≥ 0, b3 ≥ 0, b1 + b2 + b3 = n− 1.

The answer is
(
n+1
2

)
.

48. Let P denote the set of permutations of m A’s and at most n B’s. We show

|P | =
(
m + n + 1

m + 1

)
.

Let Q denote the set of permutations of m + 1 A’s and n B’s. We have

|Q| =
(
m + n + 1

m + 1

)
.

We show |P | = |Q|. To do this we display a bijection Q → P . For x ∈ Q obtain x′ from x
by deleting from x the right-most A along with the B’s to its right. Observe that the map
Q→ P , x 7→ x′ is a bijection. The result follows.

49. Let R denote the set of permutations of at most m A’s and at most n B’s. We show

|R| =
(
m + n + 2

m + 1

)
− 1.

Let S denote the set of permutations of m + 1 A’s and n + 1 B’s. We have

|S| =
(
m + n + 2

m + 1

)
.

Obtain S∨ from S by deleting the permutation AA · · ·ABB · · ·B. Of course |S∨| = |S| − 1.
We show |R| = |S∨|. To do this we display a bijection S∨ → R. For x ∈ S∨ obtain x′ from

19



x by (i) deleting from x the left-most B along with all A’s to its left; (ii) deleting from x
the right-most A along with all B’s to its right. Observe that the map S∨ → R, x 7→ x′ is a
bijection. The result follows.

50. We proceed in stages:

stage to do # choices

1 choose 2 rows for horiz. sides of rectangle
(
8
2

)
2 choose 2 columns for vert. sides of rectangle

(
8
2

)
3 place the 5th rook 64− 4

The answer is the product of the entries in the right-most column, which comes to(
8

2

)2

× 60.

51. We construct the desired n-combinations in stages:

stage to do # choices
1 choose a subset x of {1, 2, . . . , n} 2n

2 add n− |x| a’s to x 1

The number of n-combinations is 2n.

52. For each of the n-combinations in question let the index be the number of elements
used among 1, 2, . . . , n + 1. For 0 ≤ i ≤ n the number of n-combinations with index i is(
n+1
i

)
(n + 1− i). Therefore the number of n-combinations is

n∑
i=0

(
n + 1

i

)
(n + 1− i).

We evaluate the sum as follows. By the binomial theorem

(x + 1)n+1 =
n+1∑
i=0

(
n + 1

i

)
xn+1−i.

In this equation take the derivative of each side with respect to x:

(n + 1)(x + 1)n =
n∑

i=0

(
n + 1

i

)
(n + 1− i)xn−i.

In this equation set x = 1 to get

(n + 1)2n =
n∑

i=0

(
n + 1

i

)
(n + 1− i).
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The answer is (n + 1)2n.

53. Let x1x2 · · ·xn denote a permutation of {1, 2, . . . , n}. For 0 ≤ k ≤ n define Ak =
{x1, x2, . . . , xk}. The desired one-to-one correspondence sends x1x2 · · ·xn to the tower

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An.

54. For 0 ≤ k ≤ n there are
(
n
k

)
subsets B of {1, 2, . . . , n} such that |B| = k. For each such

B there are 2k choices for A. Therefore the number of solutions is

n∑
k=0

(
n

k

)
2k.

We evaluate this sum. By the binomial theorem

(x + 1)n =
n∑

k=0

(
n

k

)
xk.

Setting x = 2 we obtain

3n =
n∑

k=0

(
n

k

)
2k.

The answer is 3n.

55. (a) The word has 17 letters with repetitions

letter A B D E H I K O P R S T
mult 3 1 1 1 1 3 2 1 1 1 1 1

The number of permutations is

17!

2!× (3!)2
.

(b) The word has 29 letters with repetitions

letter A C F H I L N O P T U
mult 2 4 2 1 9 3 3 2 1 1 1

The number of permutations is

29!

(2!)3 × (3!)2 × 4!× 9!
.

(c) The word has 45 letters with repetitions
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letter A C E I L M N O P R S T U V
mult 2 6 1 6 3 2 4 9 2 2 4 1 2 1

The number of permutations is

45!

(2!)5 × 3!× (4!)2 × (6!)2 × 9!
.

(d) The number of permutations is 15!.

56. The number of poker hands is
(
52
5

)
. This is the denominator. To obtain the numerator

we proceed in stages:

stage to do # choices
1 pick the suit 4
2 pick 5 cards of that suit

(
13
5

)
The numerator is 4×

(
13
5

)
. The desired probability is

4×
(
13
5

)(
52
5

) .

57. The number of poker hands is
(
52
5

)
. This is the denominator. To compute the numerator

we proceed in stages:

stage to do # choices

1 pick the rank of the pair 13

2 pick 2 suits for the pair
(
4
2

)
3 pick the ranks for remaining 3 cards

(
12
3

)
4 pick the suits for remaining 3 cards 43

The numerator is the product of the entries in the right-most column. The desired probability
is

13×
(
4
2

)
×
(
12
3

)
× 43(

52
5

) .

58. The number of poker hands is
(
52
5

)
. This is the denominator. We now compute the

numerator. The number of straights is 10 × 45. The number of flushes is
(
13
5

)
× 4. The

number of straight flushes is 10× 4. The numerator is(
13

5

)
× 45 − 10× 45 −

(
13

5

)
× 4 + 40.
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The desired probability is (
13
5

)
× 45 − 10× 45 −

(
13
5

)
× 4 + 40(

52
5

) .

59. For the reduced deck the number of poker hands is
(
40
5

)
. This is the denominator for

each of (1)–(5) below.
(1) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the three-card rank 10
2 pick the missing suit among previous three cards 4
3 pick the two-card rank 9
4 pick the 2 suits for the previous two cards

(
4
2

)
The numerator is the product of the entries in the right-most column. The desired probability
is

10× 4× 9×
(
4
2

)(
40
5

) .

(2) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the lowest rank in the straight 7
2 pick the suits 45

The numerator is 7× 45. The desired probability is

7× 45(
40
5

) .

(3) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the lowest rank in the straight flush 7
2 pick the suit 4

The numerator is 7× 4. The desired probability is

7× 4(
40
5

) .

(4) To compute the numerator we proceed in stages:
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stage to do # choices

1 pick the ranks for the 2 pairs
(
10
2

)
2 pick the suits for the previous cards

(
4
2

)2
3 pick the rank of the remaining card 8
4 pick the suit of the previous card 4

The numerator is the product of the entries in the right-most column. The desired probability
is

(
10
2

)
×
(
4
2

)2 × 8× 4(
40
5

) .

(5) The number of hands that contain no ace is
(
36
5

)
. The desired probability is(

40
5

)
−
(
36
5

)(
40
5

) .

60. The number of ways to pick the 15 bagels is equal to the number of integral solutions
for

xi ≥ 0 (1 ≤ i ≤ 6),
6∑

i=1

xi = 15

which comes to
(
15+6−1
6−1

)
=
(
20
5

)
. This is the denominator. We now compute the numerator

for the first probability. The number of ways to pick the 15 bagels so that you get at least
one bagel of each kind is equal to the number of integral solutions for

yi ≥ 0 (1 ≤ i ≤ 6),
6∑

i=1

yi = 9

which is
(
9+6−1
6−1

)
=
(
14
5

)
. The first desired probability is(

14
5

)(
20
5

) .
We now compute the numerator for the second probability. The number of ways to pick
the 15 bagels so that you get at least three sesame bagels is equal to the number of integral
solutions for

zi ≥ 0 (1 ≤ i ≤ 6),
6∑

i=1

zi = 12

which is
(
12+6−1
6−1

)
=
(
17
5

)
. The second desired probability is(

17
5

)(
20
5

) .
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61. The sample space S satisfies

|S| = 9!×
(

9

4

)
.

The first event E satisfies

|E| = 9!.

The first desired probability is |E|/|S| which comes to
(
9
4

)−1
. The second event F satisfies

|F | = 5!× 4!.

The second desired probability is |F |/|S| which comes to

5!× 4!

9!×
(
9
4

) .
62. The sample space has cardinality

(
52
7

)
. This will be the denominator for each of (a)–(f).

(a) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the lowest rank in the straight 8
2 pick the suits 47

The answer is

8× 47(
52
7

) .

(b) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the four-card rank 13
2 pick the three-card rank 12
3 pick the missing suit among the previous three cards 4

The answer is

13× 12× 4(
52
7

) .

(c) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the three-card rank 13
2 pick the missing suit among previous three cards 4
3 pick the 2 two-card ranks

(
12
2

)
4 pick the suits for previous four cards

(
4
2

)2
25



The answer is

13× 4×
(
12
2

)
×
(
4
2

)2(
52
7

) .

(d) To compute the numerator we proceed in stages:

stage to do # choices

1 pick the 3 two-card ranks
(
13
3

)
2 pick the suits for previous six cards

(
4
2

)3
3 pick the one-card rank 10
4 pick the suit for previous card 4

The answer is (
13
3

)
×
(
4
2

)3 × 10× 4(
52
7

) .

(e) To compute the numerator we proceed in stages:

stage to do # choices
1 pick the three-card rank 13
2 pick the missing suit among previous three cards 4
3 pick the 4 one-card ranks

(
12
4

)
4 pick the suits for previous four cards 44

The answer is

13× 4×
(
12
4

)
× 44(

52
7

) .

(f) To compute the numerator we proceed in stages:

stage to do # choices

1 pick the 7 ranks
(
13
7

)
2 pick the suits 47

The answer is (
13
7

)
× 47(

52
7

) .

63. The size of the sample space is 64. This is the denominator for (a)–(e) below.

(a) The die numbers must be some permutation of 3, 1, 1, 1 (4 ways) or 2, 2, 1, 1 (
(
4
2

)
ways).

The numerator is 4 + 6 = 10. The desired probability is 10/64.

26



(b) One dot occurs either once (4× 53 ways) or twice (
(
4
2

)
× 52 ways) or not at all (54 ways).

The desired probability is

54 + 4× 53 +
(
4
2

)
× 52

64
.

(c) The desired probability is 54/64.

(d) The desired probability is P (6, 4)/64.

(e) The die numbers must be some permutation of i, i, i, j (4×6×5 ways) or i, i, j, j (
(
6
2

)
×
(
4
2

)
ways). Here we mean i 6= j. The desired probability is

4× 6× 5 +
(
6
2

)
×
(
4
2

)
64

.

64. (a) The desired probability is(
n

2

)
×
(
n−2
2

)(
n
2

)(
n−2
2

)
(n− 4)! + (n− 2)

(
n
3

)
(n− 3)!

nn
.

(b) The desired probability is(
n

3

)
×

(n− 3)
(
n
4

)
(n− 4)! + (n− 3)(n− 4)

(
n
3

)(
n−3
2

)
(n− 5)! +

(
n−3
3

)(
n
2

)(
n−2
2

)(
n−4
2

)
(n− 6)!

nn
.
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