Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Host-imposed control mechanisms in legume–rhizobia symbiosis

Abstract

Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Legumes detect and respond to rhizobia of varying benefit via two broad classes of mechanisms.
Fig. 2: Mechanisms of pre-infection control and partner choice.
Fig. 3: Post-infection control via sanctions and other mechanisms across the compartmentalized structure of the nodule.

Similar content being viewed by others

References

  1. Sprent, J. I., Ardley, J. & James, E. K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol. 215, 40–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, Y. et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol. Plant 14, 748–773 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Davies-Barnard, T. & Friedlingstein, P. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Glob. Biogeochem. Cycles 34, e2019GB006387 (2020).

    Article  CAS  Google Scholar 

  4. Smýkal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104 (2015).

    Article  Google Scholar 

  5. Lin, Jshun et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nat. Plants 4, 942–952 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eaad4501 (2017).

    Article  PubMed  Google Scholar 

  7. Zipfel, C. & Oldroyd, G. E. D. Plant signaling in symbiosis and immunity. Nature 543, 328–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Dong, W. et al. An SHR–SCR module specifies legume cortical cell fate to enable nodulation. Nature 589, 586–590 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Fronk, D. C. & Sachs, J. L. Symbiotic organs: the nexus of host–microbe evolution. Trends Ecol. Evol. 37, 599–610 (2022).

    Article  PubMed  Google Scholar 

  10. Soyano, T., Shimoda, Y., Kawaguchi, M. & Hayashi, M. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Science 366, 1021–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Schiessl, K. et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr. Biol. 29, 3657–3668.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quilbé, J. et al. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium–legume symbiosis. Nat. Commun. 12, 829 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poole, P., Ramachandran, V. & Terpolilli, J. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol. 16, 291–303 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Gano-Cohen, K. A. et al. Nonnodulating Bradyrhizobium spp. modulate the benefits of legume–rhizobium mutualism. Appl. Environ. Microbiol. 82, 5259–5268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, F. P. et al. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes—a genome comparison. Sci. Rep. 6, 25858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Porter, S. S., Faber-Hammond, J., Montoya, A. P., Friesen, M. L. & Sackos, C. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. ISME J. 13, 301–315 (2019).

    Article  PubMed  Google Scholar 

  17. Weisberg, A. J. et al. Pangenome evolution reconciles robustness and instability of rhizobial symbiosis. mBio 13, e00074-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frank, S. A. Models of symbiosis. Am. Nat. 150, S80–S99 (1997).

    Article  PubMed  Google Scholar 

  19. Quilbé, J., Montiel, J., Arrighi, J.-F. & Stougaard, J. Molecular mechanisms of intercellular rhizobial infection: novel findings of an ancient process. Front. Plant Sci. 13, 922982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adams, M. A., Simon, J. & Pfautsch, S. Woody legumes: a (re)view from the south. Tree Physiol. 30, 1072–1082 (2010).

    Article  PubMed  Google Scholar 

  21. Peck, M. C., Fisher, R. F. & Long, S. R. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J. Bacteriol. 188, 5417–5427 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Q., Liu, J. & Zhu, H. Genetic and molecular mechanisms underlying symbiotic specificity in legume–Rhizobium interactions. Front. Plant Sci. 9, 313 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boivin, S. & Lepetit, M. in Advances in Botanical Research Vol. 94 (eds Frendo, P. et al.) 323–348 (Elsevier, 2020).

  24. Walker, L., Lagunas, B. & Gifford, M. L. Determinants of host range specificity in legume–rhizobia symbiosis. Front. Microbiol. 11, 585749 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mendoza-Suárez, M. A. et al. Optimizing Rhizobium–legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules. Proc. Natl Acad. Sci. USA 117, 9822–9831 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Denison, R. F. & Layzell, D. B. Measurement of legume nodule respiration and O2 permeability by noninvasive spectrophotometry of leghemoglobin. Plant Physiol. 96, 137–143 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Porter, S. S. & Simms, E. L. Selection for cheating across disparate environments in the legume–rhizobium mutualism. Ecol. Lett. 17, 1121–1129 (2014).

    Article  PubMed  Google Scholar 

  28. Hahn, M. & Studer, D. Competitiveness of a nif Bradyrhizobium japonicum mutant against the wild‐type strain. FEMS Micro. Lett. 33, 143–148 (1986).

    Google Scholar 

  29. Cevallos, M. A., Encarnacion, S., Leija, A., Mora, Y. & Mora, J. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-β-hydroxybutyrate. J. Bacteriol. 178, 1646–1654 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ratcliff, W. C., Kadam, S. V. & Denison, R. F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol. Ecol. 65, 391–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M. & Giller, K. E. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41, 1233–1244 (2009).

    Article  CAS  Google Scholar 

  32. Song, L., Carroll, B. J., Gresshoff, P. M. & Herridge, D. F. Field assessment of supernodulating genotypes of soybean for yield, N2 fixation and benefit to subsequent crops. Soil Biol. Biochem. 27, 563–569 (1995).

    Article  CAS  Google Scholar 

  33. Nishida, H. et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus. Nat. Commun. 9, 499 (2018).

    Article  PubMed  Google Scholar 

  34. Quides, K. W., Salaheldine, F., Jariwala, R. & Sachs, J. L. Dysregulation of host‐control causes interspecific conflict over host investment into symbiotic organs. Evolution 75, 1189–1200 (2021).

    Article  PubMed  Google Scholar 

  35. Kiers, E. T., Ratcliff, W. C. & Denison, R. F. Single-strain inoculation may create spurious correlations between legume fitness and rhizobial fitness. New Phytol. 198, 4–6 (2013).

    Article  PubMed  Google Scholar 

  36. Heath, K. D., Stock, A. J. & Stinchcombe, J. R. Mutualism variation in the nodulation response to nitrate: variation in the nodule nitrate response. J. Evolut. Biol. 23, 2494–2500 (2010).

    Article  CAS  Google Scholar 

  37. Heath, K. D. et al. Light availability and rhizobium variation interactively mediate the outcomes of legume–rhizobium symbiosis. Am. J. Bot. 107, 229–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat. Plants 4, 655–661 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).

    Article  PubMed  Google Scholar 

  40. Perret, X., Staehelin, C. & Broughton, W. J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Pahua, V. J. et al. Fitness variation among host species and the paradox of ineffective rhizobia. J. Evolut. Biol. 31, 599–610 (2018).

    Article  CAS  Google Scholar 

  42. Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Ehinger, M. et al. Specialization–generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts. BMC Ecol. 14, 8 (2014).

    Article  PubMed  Google Scholar 

  44. Heath, K. D. Intergenomic epistasis and coevolutionary constraint in plants and rhizobia. Evolution 64, 1446–1458 (2010).

    CAS  PubMed  Google Scholar 

  45. Barrett, L. G., Zee, P. C., Bever, J. D., Miller, J. T. & Thrall, P. H. Evolutionary history shapes patterns of mutualistic benefit in Acacia–rhizobial interactions. Evolution 70, 1473–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Q. et al. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc. Natl Acad. Sci. USA 114, 6854–6859 (2017).

  47. Younginger, B. S. & Friesen, M. L. Connecting signals and benefits through partner choice in plant–microbe interactions. FEMS Microbiol. Lett. 366, fnz217 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Frederickson, M. E. Rethinking mutualism stability: cheaters and the evolution of sanctions. Q. Rev. Biol. 88, 269–295 (2013).

    Article  PubMed  Google Scholar 

  49. Bull, J. J. & Rice, W. R. Distinguishing mechanisms for the evolution of co-operation. J. Theor. Biol. 149, 63–74 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Regus, J. U., Gano, K. A., Hollowell, A. C. & Sachs, J. L. Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization. Proc. R. Soc. B 281, 20132587 (2014).

    Article  PubMed  Google Scholar 

  51. Heath, K. D. & Tiffin, P. Stabilizing mechanisms in a legume–rhizobium mutualism. Evolution 63, 652–662 (2009).

    Article  PubMed  Google Scholar 

  52. Queller, D. C. Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection. Phil. Trans. R. Soc. B 369, 20130423 (2014).

    Article  PubMed  Google Scholar 

  53. Gubry-Rangin, C., Garcia, M. & Béna, G. Partner choice in Medicago truncatulaSinorhizobium symbiosis. Proc. R. Soc. B 277, 1947–1951 (2010).

    Article  PubMed  Google Scholar 

  54. Montoya, A. P. et al. Hosts winnow symbionts with multiple layers of absolute and conditional discrimination mechanisms. Proc. R. Soc. B. 290, 20222153 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Rahman, A. et al. Competitive interference among rhizobia reduces benefits to hosts. Curr. Biol. 33, 2988–3001.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Amarger, N. Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biol. Biochem. 13, 475–480 (1981).

    Article  Google Scholar 

  57. Bailly, X., Olivieri, I., De Mita, S., Cleyet-Marel, J. C. & Bena, G. Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium spassociated to Medicago. Mol. Ecol. 15, 2719–2734 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Cannon, S. B. et al. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc. Natl Acad. Sci. USA 103, 18026–18026 (2006).

    Article  CAS  Google Scholar 

  59. Geddes, B. A., Kearsley, J., Morton, R., diCenzo, G. C. & Finan, T. M. in Advances in Botanical Research Vol. 94 (eds Frendo, P. et al.) 213–249 (Elsevier, 2020).

  60. Grillo, M. A., Stinchcombe, J. R. & Heath, K. D. Nitrogen addition does not influence pre-infection partner choice in the legume–rhizobium symbiosis. Am. J. Bot. 103, 1763–1770 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Spoerke, J. M., Wilkinson, H. H. & Parker, M. A. Nonrandom genotypic associations in a legume—Bradyrhizobium mutualism. Evolution 50, 146–154 (1996).

    PubMed  Google Scholar 

  62. Heath, K. D., Batstone, R. T., Cerón Romero, M. & McMullen, J. G. MGEs as the MVPs of partner quality variation in legume–Rhizobium symbiosis. mBio 13, e00888-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weisberg, A. J., Sachs, J. L. & Chang, J. H. Dynamic interactions between mega symbiosis ICEs and bacterial chromosomes maintain genome architecture. Genome Biol. Evol. 14, evac078 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Devine, T. E., Kuykendall, L. D. & O’Neill, J. J. The Rj4 allele in soybean represses nodulation by chlorosis-inducing bradyrhizobia classified as DNA homology group II by antibiotic resistance profiles. Theor. Appl. Genet. 80, 33–37 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Devine, T. E. & Kuykendall, L. D. in Current Issues in Symbiotic Nitrogen Fixation (eds Elkan, G. H. & Upchurch, R. G.) 173–187 (Springer, 1996).

  66. Tang, F., Yang, S., Liu, J. & Zhu, H. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol. 170, 26–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Oldroyd, G. E. D., Mitra, R. M., Wais, R. J. & Long, S. R. Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant J. 28, 191–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Bisseling, T. & Geurts, R. Specificity in legume nodule symbiosis. Science 369, 620–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science 369, 663–670 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Oldroyd, G. E. D. & Downie, J. A. Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell Biol. 5, 566–576 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Bozsoki, Z. et al. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc. Natl Acad. Sci. USA 114, E8118–E8127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gough, C., Cottret, L., Lefebvre, B. & Bono, J.-J. Evolutionary history of plant LysM receptor proteins related to root endosymbiosis. Front. Plant Sci. 9, 923 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kawaharada, Y. et al. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523, 308–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Kelly, S., Radutoiu, S. & Stougaard, J. Legume LysM receptors mediate symbiotic and pathogenic signaling. Curr. Opin. Plant Biol. 39, 152–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Cao, Y., Halane, M. K., Gassmann, W. & Stacey, G. The role of plant innate immunity in the legume–rhizobium symbiosis. Annu. Rev. Plant Biol. 68, 535–561 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J. J. & Ronson, C. W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 54, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Bernal, P., Llamas, M. A. & Filloux, A. Type VI secretion systems in plant-associated bacteria. Environ. Microbiol. 20, 1–15 (2018).

    Article  PubMed  Google Scholar 

  79. Teulet, A. et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc. Natl Acad. Sci. USA 116, 21758–21768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Skorupska, A., Janczarek, M., Marczak, M., Mazur, A. & Król, J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5, 7 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Arnold, M. F. F., Penterman, J., Shabab, M., Chen, E. J. & Walker, G. C. Important late-stage symbiotic role of the Sinorhizobium meliloti exopolysaccharide succinoglycan. J. Bacteriol. 200, e00665-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Herczeg, R. et al. Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides. Proc. Natl Acad. Sci. USA 114, 5041–5046 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pan, H. & Wang, D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nat. Plants 3, 17048 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Oono, R., Schmitt, I., Sprent, J. I. & Denison, R. F. Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol. 187, 508–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, M. et al. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl Acad. Sci. USA 112, 15238–15243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Price, P. A. et al. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc. Natl Acad. Sci. USA 112, 15244–15249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wendlandt, C. E. et al. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume–rhizobium mutualism. Evolution 75, 731–747 (2021).

    Article  PubMed  Google Scholar 

  88. diCenzo, G. C., Zamani, M., Ludwig, H. N. & Finan, T. M. Heterologous complementation reveals a specialized activity for BacA in the Medicago–Sinorhizobium meliloti symbiosis. Mol. Plant Microbe Interact. 30, 312–324 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Moura, F. T., Ribeiro, R. A., Helene, L. C. F., Nogueira, M. A. & Hungria, M. So many rhizobial partners, so little nitrogen fixed: the intriguing symbiotic promiscuity of common bean (Phaseolus vulgaris L.). Symbiosis 86, 169–185 (2022).

    Article  CAS  Google Scholar 

  90. Porter, S. S. & Sachs, J. L. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol. Evol. 35, 426–439 (2020).

    Article  PubMed  Google Scholar 

  91. Kiers, E. T., Hutton, M. G. & Denison, R. F. Human selection and the relaxation of legume defences against ineffective rhizobia. Proc. R. Soc. B 274, 3119–3126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zarrabian, M. et al. A promiscuity locus confers Lotus burttii nodulation with rhizobia from five different genera. Mol. Plant Microbe Interact. 35, 1006–1017 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Boivin, S. et al. Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae. New Phytol. 226, 555–568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bellabarba, A. et al. Competitiveness for nodule colonization in Sinorhizobium meliloti: combined in vitro-tagged strain competition and genome-wide association analysis. mSystems 6, e0055021 (2020).

    Article  Google Scholar 

  95. Ren, B., Wang, X., Duan, J. & Ma, J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919–922 (2019).

  96. Westhoek, A. et al. Policing the legume–Rhizobium symbiosis: a critical test of partner choice. Sci. Rep. 7, 1419 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Westhoek, A. et al. Conditional sanctioning in a legume–Rhizobium mutualism. Proc. Natl Acad. Sci. USA 118, e2025760118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pueppke, S. G. & Broughton, W. J. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant Microbe Interact. 12, 293–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Sachs, J. L., Quides, K. W. & Wendlandt, C. E. Legumes versus rhizobia: a model for ongoing conflict in symbiosis. New Phytol. 219, 1199–1206 (2018).

  100. Porter, S. S., Faber-Hammond, J. J. & Friesen, M. L. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes. FEMS Microbiol. Ecol. 94, fix168 (2018).

    Article  Google Scholar 

  101. Naamala, J., Jaiswal, S. K. & Dakora, F. D. Antibiotics resistance in Rhizobium: type, process, mechanism and benefit for agriculture. Curr. Microbiol 72, 804–816 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Hollowell, A. C. et al. Native California soils are selective reservoirs for multidrug-resistant bacteria. Environ. Microbiol. Rep. 7, 442–449 (2015).

    Article  PubMed  Google Scholar 

  103. Archetti, M. et al. Let the right one in: a microeconomic approach to partner choice in mutualisms. Am. Nat. 177, 75–85 (2011).

    Article  PubMed  Google Scholar 

  104. Wheatley, R. M. et al. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proc. Natl Acad. Sci. USA 117, 23823–23834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Denison, R. F. Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am. Nat. 156, 567–576 (2000).

    Article  PubMed  Google Scholar 

  106. Regus, J. U. et al. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. Am. J. Bot. 104, 1299–1312 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Engelhardt, S. C., Taborsky, M., Ågren, J. A., Davies, N. G. & Foster, K. R. Reply to: Broad definitions of enforcement are unhelpful for understanding evolutionary mechanisms of cooperation. Nat. Ecol. Evol. 4, 323 (2020).

    Article  Google Scholar 

  108. Ågren, J. A., Davies, N. G. & Foster, K. R. Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol. 3, 1018–1029 (2019).

    Article  PubMed  Google Scholar 

  109. Steidinger, B. S. & Bever, J. D. Host discrimination in modular mutualisms: a theoretical framework for meta-populations of mutualists and exploiters. Proc. R. Soc. B 283, 20152428 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives the evolution of symbiotic cooperation: compartmentalisation drives symbiosis. Phil. Trans. R. Soc. B 375, 20190602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. R. Soc. Lond. B 269, 685–694 (2002).

    Article  Google Scholar 

  112. Van Berkum, P., Elia, P., Song, Q. & Eardly, B. D. Development and application of a multilocus sequence analysis method for the identification of genotypes within genus Bradyrhizobium and for establishing nodule occupancy of soybean (Glycine max L. Merr). Mol. Plant Microbe Interact. 25, 321–330 (2012).

    Article  PubMed  Google Scholar 

  113. Simms, E. L. et al. An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction. Proc. Biol. Sci. 273, 77–81 (2006).

    PubMed  Google Scholar 

  114. Moawad, M. & Schmidt, E. L. Occurrence and nature of mixed infections in nodules of field-grown soybeans (Glycine max). Biol. Fertil. Soils 5, 112–114 (1987).

    Article  Google Scholar 

  115. Sachs, J. L. et al. Host control over infection and proliferation of a cheater symbiont. J. Evolut. Biol. 23, 1919–1927 (2010).

    Article  CAS  Google Scholar 

  116. Gage, D. J. Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol. 184, 7042–7046 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bromfield, E. S. P. & Jones, D. G. Studies on double strain occupancy of nodules and the competitive ability of Rhizobium trifolii on red and white clover grown in soil and agar. Ann. Appl. Biol. 94, 51–59 (1980).

    Article  Google Scholar 

  118. Brockwell, J., Schwinghamer, E. A. & Gault, R. R. Ecological studies of root-nodule bacteria introduced into field environments—V. A critical examination of the stability of antigenic and streptomycin-resistance markers for identification of strains of Rhizobium tripolii. Soil Biol. Biochem. 9, 19–24 (1977).

    Article  Google Scholar 

  119. Labandera, C. A. & Vincent, J. M. Competition between an introduced strain and native Uruguayan strains of Rhizobium trifolii. Plant Soil 42, 327–347 (1975).

    Article  Google Scholar 

  120. Johnston, A. W. B. & Behringer, J. E. Identification of the rhizobium strains in pea root nodules using genetic markers. J. Gen. Microbiol. 87, 343–350 (1975).

    Article  CAS  PubMed  Google Scholar 

  121. Daubech, B. et al. Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. eLife 6, e28683 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hammer, E. C., Pallon, J., Wallander, H. & Olsson, P. A. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol. Ecol. 76, 236–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Sheehy, J. E., Minchin, F. R. & Witty, J. F. Biological control of the resistance to oxygen flux in nodules. Ann. Bot. 52, 565–571 (1983).

    Article  Google Scholar 

  125. Schulte, C. C. M. et al. Metabolic control of nitrogen fixation in rhizobium–legume symbioses. Sci. Adv. 7, eabh2433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. King, B. J. & Layzell, D. B. Effect of increases in oxygen concentration during the argon-induced decline in nitrogenase activity in root nodules of soybean. Plant Physiol. 96, 376–381 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jiang, S. et al. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science 374, 625–628 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Hunt, S. & Layzell, D. B. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 483–511 (1993).

    Article  CAS  Google Scholar 

  129. Layzell, D. B. in Nitrogen Fixation: From Molecules to Crop Productivity (eds Pedrosa, F. O. et al.) 367–368 (Kluwer Academic, 2005).

  130. Kiers, E. T., Rousseau, Robert, A. & Denison, R. F. Measured sanctions: legume hosts detect quantitative variation in rhizobium cooperation and punish accordingly. Evolut. Ecol. Res. 8, 1077–1086 (2006).

    Google Scholar 

  131. Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Quides, K. W., Stomackin, G. M., Lee, H.-H., Chang, J. H. & Sachs, J. L. Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation. PLoS One 12, e0185568 (2017).

    Article  PubMed  Google Scholar 

  133. Oono, R., Anderson, C. G. & Denison, R. F. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc. Biol. Sci. 278, 2698–2703 (2011).

    PubMed  Google Scholar 

  134. Muller, K. E. & Denison, R. F. Prolonged absence of soybean in the field selects for rhizobia that accumulate more polyhydroxybutyrate during symbiosis. Agron. J. https://doi.org/10.1002/agj2.21578 (2024).

  135. Oono, R., Muller, K. E., Ho, R., Jimenez Salinas, A. & Denison, R. F. How do less-expensive nitrogen alternatives affect legume sanctions on rhizobia? Ecol. Evol. 10, 10645–10656 (2020).

    Article  PubMed  Google Scholar 

  136. Schwember, A. R., Schulze, J., del Pozo, A. & Cabeza, R. A. Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 8, 333 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. White, J., Prell, J., James, E. K. & Poole, P. Nutrient sharing between symbionts. Plant Physiol. 144, 604–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Udvardi, M. K. & Day, D. A. Metabolite transport across symbiotic menbranes of legume nodules. Annu Rev. Plant Physiol. Plant Mol. Biol. 48, 493–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Lodwig, E. & Poole, P. Metabolism of Rhizobium bacteroids. Crit. Rev. Plant Sci. 22, 37–78 (2003).

    Article  CAS  Google Scholar 

  140. Williams, P. M. & De Mallorca, M. S. Abscisic acid and gibberellin-like substances in roots and root nodules of Glycine max. Plant Soil 65, 19–26 (1982).

    Article  CAS  Google Scholar 

  141. Liu, H., Zhang, C., Yang, J., Yu, N. & Wang, E. Hormone modulation of legume–rhizobial symbiosis. J. Integr. Plant Biol. 60, 632–648 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Mortier, V., De Wever, E., Vuylsteke, M., Holsters, M. & Goormachtig, S. Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J. 70, 367–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Dangar, T. K. & Basu, P. S. Seasonal changes and metabolism of plant hormones in root nodules of Lens sp. Biol. Plant. 26, 253–259 (1984).

    Article  CAS  Google Scholar 

  144. Fisher, J., Gaillard, P., Fellbaum, C. R., Subramanian, S. & Smith, S. Quantitative 3D imaging of cell level auxin and cytokinin response ratios in soybean roots and nodules. Plant Cell Environ. 41, 2080–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Van De Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126 (2010).

    Article  PubMed  Google Scholar 

  146. Wang, C. et al. Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvl and its phenotypic characteristics. Mol. Plant Microbe Interact. 23, 153–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Haag, A. F. et al. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol. 9, e1001169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Oono, R. & Denison, R. F. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiol. 154, 1541–1548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thomas, H. Senescence, ageing and death of the whole plant. New Phytol. 197, 696–711 (2013).

    Article  PubMed  Google Scholar 

  150. Muller, J. et al. Redifferentiation of bacteria isolated from Lotus japonicus root nodules colonized by Rhizobium sp. NGR234. J. Exp. Bot. 52, 2181–2186 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Gogorcena, Y. et al. N2 fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol. 113, 1193–1201 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gonzalez, E. M. et al. Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J. Exp. Bot. 49, 1705–1714 (1998).

    Article  CAS  Google Scholar 

  153. Banba, M., Siddique, A.-B. M., Kouchi, H., Izui, K. & Hata, S. Lotus japonicus forms early senescent root nodules with Rhizobium etli. Mol. Plant Microbe Interact. 14, 173–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Guerra, J. C. P. et al. Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol. 152, 1574–1584 (2010).

    Article  CAS  Google Scholar 

  155. Puppo, A. et al. Legume nodule senescence: roles for redox and hormone signaling in the orchestration of the natural aging process. New Phytol. 165, 683–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Van De Velde, W. et al. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol. 141, 711–720 (2006).

    Article  PubMed  Google Scholar 

  157. Gavrin, A. et al. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in medicago. Plant Cell 26, 3809–3822 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Pierre, O. et al. Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell Environ. 36, 2059–2070 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Dupont, L. et al. The legume root nodule: from symbiotic nitrogen fixation to senescence. Senescence https://doi.org/10.5772/34438 (2012).

    Article  Google Scholar 

  160. Li, Y. et al. A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol. 180, 185–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Loscos, J., Matamoros, M. A. & Becana, M. Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol. 146, 1282–1292 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Lopez-Gomez, M., Sandal, N., Stougaard, J. & Boller, T. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Tóth, K. & Stacey, G. Does plant immunity play a critical role during initiation of the legume–rhizobium symbiosis? Front. Plant Sci. 6, 401 (2015).

    PubMed  Google Scholar 

  165. Nakagawa, T. et al. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume–Rhizobium symbiosis. Plant J. 65, 169–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Arthikala, M. K. et al. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytol. 202, 886–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Bourcy, M. et al. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol. 197, 1250–1261 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Parniske, M., Zimmermann, C., Cregan, P. B. & Werner, D. Hypersensitive reaction of nodule cells in the Glycine sp./Bradyrhizobium japonicum‐symbiosis occurs at the genotype‐specific level. Botan. Acta 103, 143–148 (1990).

    Article  Google Scholar 

  169. Simonsen, A. K. & Stinchcombe, J. R. Standing genetic variation in host preference for mutualist microbial symbionts. Proc. R. Soc. B 281, 20142036 (2014).

    Article  PubMed  Google Scholar 

  170. Checcucci, A. et al. Mixed nodule infection in Sinorhizobium meliloti–Medicago sativa symbiosis suggest the presence of cheating behavior. Front. Plant Sci. 7, 835 (2016).

    Article  PubMed  Google Scholar 

  171. Yasuda, M. et al. Effector-triggered immunity determines host genotype-specific incompatibility in legume–rhizobium symbiosis. Plant Cell Physiol. 57, 1791–1800 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Ortiz‐Barbosa, G. S. et al. No disruption of rhizobial symbiosis during early stages of cowpea domestication. Evolution 76, 496–511 (2022).

    Article  PubMed  Google Scholar 

  173. Foster, K. R. & Kokko, H. Cheating can stabilize cooperation in mutualisms. Proc. R. Soc. B. 273, 2233–2239 (2006).

    Article  PubMed  Google Scholar 

  174. Mergaert, P. et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc. Natl Acad. Sci. USA 103, 5230–5235 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Paau, A. S., Bloch, C. B. & Brill, W. J. Developmental fate of Rhizobium meliloti bacteroids in alfalfa nodules. J. Bacteriol. 143, 1480–1490 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.S.P. was supported by NSF DEB-1943239 and IOS-1755454 and by DOE BER-RDPP-DE-SC0023150. E.T.K. was supported by an Ammodo grant, NWO VICI grant (VI.C.202.012) and NWO Gravity grant MICROP. S.E.D. was supported by an NWO open competition grant (819.01.007). J.L.S. was supported by NSF DEB 1738009, NIFA-USDA Award 2022-67019-36500 and a USDA Hatch Grant CA-R-EEOB-5200-H.

Author information

Authors and Affiliations

Authors

Contributions

S.S.P., S.E.D., R.F.D., E.T.K. and J.L.S. conceived, wrote and edited the paper together.

Corresponding author

Correspondence to Joel L. Sachs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, S.S., Dupin, S.E., Denison, R.F. et al. Host-imposed control mechanisms in legume–rhizobia symbiosis. Nat Microbiol 9, 1929–1939 (2024). https://doi.org/10.1038/s41564-024-01762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01762-2

This article is cited by

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing