统计学习中的Kernel Function——【Kernel density estimation】【Kernel Regression】

本文探讨统计学习中的Kernel Function,重点介绍了Kernel density estimation(无监督学习)和Kernel Regression(有监督学习)。在Kernel density estimation中,解释了Kernel的思想和参数h的选择,而在Kernel Regression部分,讲解了Local-Constant和Local-Linear Estimator的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开

统计学习中的Kernel Function

0.引入

假设随机变量 X X X来自某个未知分布 F ( X ) F(X) F(X) , 我们有一组 X X X的抽样观测: x 1 , . . . x n x_1,...x_n x1,...xn .
我们的问题是: 该如何估计它背后密度函数 f ( x ) f(x) f(x) ?

1. Kernel density estimation(无监督学习)

1.1思想

我们已经假设分布函数为 F ( x ) F(x) F(x) , 密度函数为 f ( x ) f(x) f(x).
估计 F ( x ) F(x) F(x)的朴素想法就是用样本的经验分布 F n ( x ) F_n(x) Fn(x)去估计 F ( x ) F(x) F(x),这是因为 根据格里文科定理,我们知道 当样本容量 n → ∞ n→∞ n时, F n ( x ) F_n(x) Fn(x)以概率1 一致收敛于 F ( x ) F(x) F(x).

根据定义, F n ( x ) = 1 n ∑ i = 1 n I ( x i ≤ x ) F_n(x)=\frac{1}{n}\sum_{i=1}^nI(x_i\le x) Fn(x)=n1i=1nI(xix)

下面考虑我们的估计目标 f ( x ) f(x) f(x) , 我们知道密度函数是分布函数的导数, 自然地我们有: f ( x ) = l i m h → 0 F ( x + h ) − F ( x − h ) 2 h f(x)=lim_{h\to 0 \frac{F(x+h)-F(x-h)}{2h} } f(x)=limh02hF(x+h)F(xh)

F ( x ) F(x) F(x)的估计 F n ( x ) F_n(x) Fn(x)带入: f ( x ) ≈ F n ( x + h ) − F n ( x − h ) 2 h = 1 n ∑ i = 1 n I ( x − h ≤ x i ≤ x + h ) 2 h = 1 n ∑ i = 1 n 1 2 1 h I ( x − h ≤ x i ≤ x + h ) = 1 n ∑ i = 1 n 1 2 1 h I ( − 1 ≤ x i − x h ≤ 1 ) = 1 n ∑ i = 1 n 1 2 1 h I ( ∣ x i − x h ∣ ≤ 1 ) f(x)≈ \frac{F_n(x+h)-F_n(x-h)}{2h} =\frac{\frac{1}{n}\sum_{i=1}^nI(x-h\le xi\le x+h)}{2h}=\frac{1}{n}\sum_{i=1}^n\frac{1}{2}\frac{1}{h}I(x-h\le x_i \le x+h)=\frac{1}{n}\sum_{i=1}^n\frac{1}{2}\frac{1}{h}I(-1\le \frac{x_i-x}{h} \le 1)=\frac{1}{n}\sum_{i=1}^n\frac{1}{2}\frac{1}{h}I(|\frac{x_i-x}{h}| \le 1) f(x)2hFn(x+h)Fn(xh)=2hn1i=1nI(xhxix+h)=n1i=1n21h1I(xhxix+h)=n1i=1n21h1I(1hxix1)=n1i=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word word

mmMwWLliI0fiflO&1
mmMwWLliI0fiflO&1
mmMwWLliI0fiflO&1
mmMwWLliI0fiflO&1
mmMwWLliI0fiflO&1
mmMwWLliI0fiflO&1
mmMwWLliI0fiflO&1

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部

登录后您可以享受以下权益:

×