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4 Hörmander’s Theorem 19
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1 Introduction and Motivation

This series of lectures is devoted to the study of the long-time behaviour of semi-
groups generated by (the appropriate closure of) operators given informally by
the expression:

Lf(x) =
∑

aij(x)
∂2f(x)

∂xi∂xj
+
∑

bi(x)
∂f(x)

∂xi
+ V (x)f(x) , (1.1)

where the functions aij(x), bj(x) and V (x) are smooth and the operator L is
well defined initially on the set of functions f which are smooth and compactly
supported. Any operator of this form will be called a Schrödinger-type operator.
The reason for this comes from physics: in quantum mechanics, the Schrödinger
operator H is the operator

Hf(x) = −
∑ ∂2f(x)

∂x2
i

+ V (x)f(x).

This is of the form (1.1) with b = 0 and aij(x) = −δij for each x, i.e. the
symmetric matrix function aij(x) is uniformly (strictly) negative definite, so that
L is a self-adjoint elliptic operator. Relaxing this condition we may lose both
ellipticity and self-adjointness, but expect that our operator (1.1) will still have
nice properties which enables us to do an interesting analysis. Without any
additional assumption, the class of operators L specified in this way is too large
to be interesting. Throughout these lectures, we will always deal with hypoelliptic
operators (instead of elliptic ones) and we will make further structural ssumptions
further on.

Information about the long-time behaviour of the underlying diffusion pro-
cesses can be captured by the detailed analysis of the generator L. More pre-
cisely, we are going to investigate the resolvent of L and deduce from its properties
relevant features of the spectrum σ(L).

It is worth mentioning some physical context before we start our discussion
of the main issues in the next sections. Operators (1.1) appear in the study of
non-equilibrium statistical physics. As a simplified example, consider first the
system with one particle and the law of motion governed by the Hamiltonian
function HS given by

HS(q, p) =
p2

2
+ V (q) . (1.2)
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1 Introduction and Motivation

The states of the particle are described by points (q, p) in Euclidean space. The
function V (q) describes the potential (external fields acting on the particle). We
now wish to introduce a ‘heat bath’ at some temperature T with which our
particle interacts. This will be done in the spirit of [FKM65, FK87]. We follow
very closely the exposition of [EPR99b].

We introduce the temperature in two steps. First we consider an infinite
reservoir which is deterministic (so no statistical aspects are involved for a while).
The law of motion for the reservoir is given by the Hamiltonian function

HB(ϕ) =
1

2
‖ϕ‖2H ,

where we assumed that the state ϕ of the reservoir takes values in some appropri-
ate Hilbert space H. The equation of motion of the free reservoir can in general
be given by

d

dt
ϕ = Lϕ ,

for some linear operator L : H → H. Since one has the identity

d

dt
HB(ϕ) = 〈Lϕ, ϕ〉+ 〈ϕ,Lϕ〉 = 〈ϕ, (L+ L∗)ϕ〉 ,

we will require L∗ = −L, so that the energy of isolated reservoir is conserved.
To be more specific one can think about ϕ as an electro-magnetic field

ϕ =

(
E
B

)
: R3 −→ R6

in a vacuum, with the additional constraints ∇ · E = 0 and ∇ · B = 0. The
Hilbert space H is given by the scalar product

‖ϕ‖2H =

∫ (
E2 + B2) dx

and the generator of the evolution is given by Maxwell’s equations:

L
(

E
B

)
=

(
∇∧ E
∇∧B

)
.

Finally, we add some interaction between the particle and the heat reservoir. We
assume that the interaction is of dipole form, so that the total Hamiltonian of
the system is given by:

H(q, p, ϕ) =
p2

2
+ V (q) +

1

2
‖ϕ+ qα‖2H .
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Here qα ∈ H can be interpreted as the field which describes the contribution
coming from the charged particle.

Having done this, one can write down the equations for the total system (par-
ticle + reservoir) as follows:

d
dtq = p

d
dtp = −∇V (q)− 〈ϕ+ qα, α〉

d
dtϕ = L(ϕ+ qα)

(1.3)

We want somehow to “forget” about the big system and get an effective law of
motion for our particle. This can be realized by solving the last equation in (1.3)

ϕ(t) = etLϕ(0) +

∫ t

0
q(s) Le(t−s)Lα ds.

We integrate by parts to get

ϕ(t) = etLϕ(0) + q(0)etLα− q(t)α +

∫ t

0
p(s) e(t−s)Lα ds.

We plug this expression into the second equation in (1.3) to get

d

dt
p = −∇V (q)− 〈ϕ(0), e−tLα〉 − q(0)〈etLα, α〉 −

∫ t

0
p(s)〈e(t−s)Lα, α〉ds (1.4)

By a simple change of co-ordinates, we can and do assume q(0) = 0. Then we
have

d

dt
p = −∇V (q)− 〈ϕ(0), e−tLα〉 −

∫ t

0
p(s)〈e(t−s)Lα, α〉ds (1.5)

Up to now, everything has been deterministic, as the equation of motion were
simply derived by the use of Newton’s and Maxwell’s laws. Now, we are in a
position to put the reservoir at temperature T - the second announced step. What
we do is simple: we just postulate that the deterministic field ϕ is replaced by a
random field φ(0) with initial probability distribution describing the statistical
behaviour of the physical reservoir at the temperature T . More precisely, we
assume that the probability distribution of the initial data φ(0) is Gaussian with
the covariance given by

E〈φ(0), f〉H · 〈φ(0), g〉H = T 〈f, g〉H. (1.6)

The measure corresponding to (1.6) describes the distribution of the physical
ensemble (the canonical Gibbs distribution) and has density given informally by
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1 Introduction and Motivation

the expression:

“
e−
‖ϕ‖2H

2T

Z
”

It is natural in view of (1.5) to introduce a centred Gaussian process ξ defined
by

ξ(t) = 〈φ(0), e−tLα〉H .

The covariance of ξ can be computed easily from (1.6):

Eξ(s)ξ(t) = T 〈e−tLα, e−sLα〉H = T 〈α, e(t−s)Lα〉H ,

which shows that ξ is a stationary stochastic process.
Using this notation, the system of equations (1.3) can be rewritten as:

d
dtq = p

d
dtp = −∇V (q)− ξ(t)−

∫ t
0 p(s)C(t− s)ds

with C(t− s) = 1
TEξ(t)ξ(s)

(1.7)

Here, the fact that the covariance of ξ also appears in the memory kernel of the
‘friction term’ is the celebrated fluctuation - dissipation theorem.

The last simplification we consider is

C(t) ∼ 2γδ(t) (1.8)

where δ(t) - is the Dirac “delta function” and a constant γ > 0. Thus ξ corre-
sponds just to the white noise.

One can argue that (1.8) is a reasonable assumption since the covariance C(t)
corresponds to the scalar product of particle fields taken at time 0 and t where
the initial field of the particle is subjected to the free dynamics; hence the Dirac
delta function is a good approximation to C(t) as soon as the field generated by
the particle at time 0 is strongly localized in space directions, so that the time
it takes for this field to radiate away from the particle is small compared to any
other timescale of the system.

Summarizing we have
d
dtq = p

d
dtp = −∇V (q) + ξ(t)− γp(t)

with C(t− s) = 1
TEξ(t)ξ(s) = 2γ

T δ(t− s)

(1.9)
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It is convenient to introduce properly re-scaled process ξ −→
√

2γTξ. After this
modification the equation (1.9) reads

d
dtq = p

d
dtp = −∇V (q)− γp(t) +

√
2γTξ(t)

with Eξ(t)ξ(s) = δ(t− s)

(1.10)

i.e. ξ(t) is the standard white noise. Note that the equation of motion (1.10) is
stochastic even though it was derived from a deterministic model with random
initial conditions. The fact that ‘new randomness’ gets injected into (1.10) for
all times is a consequence of the fact that we assumed C to decay (quickly) for
large times, which implies that the free fields sends disturbances out to infinity.
The counterpart of this statement is that ‘fresh randomness’ can also come in
from infinity.

Finally, we remark that the physical model described above can easily be
generalized to two (or more) heat baths at different temperatures T

L
, T

R
and

moreover one can consider arbitrary many (but finite) number of particles instead
of one. Let us consider a very simple model of heat conduction for which the
Hamiltonian is given by

H ≡ H(q, p) =
∑
i

(
p2
i

2
+ V1(qi) + V2(qi+1 − qi)

)
.

The potential V1 is a ‘pinning term’ that keeps the particles around their equi-
librium position, whereas the potential V2 is an ‘interaction term’ which is re-
sponsible for the transmission of energy / information along the chain. The
corresponding system of stochastic equations is as follows (in the case of two
heat baths)

d
dtqi = pi for i ∈ {1, .., N}

d
dtp0 = −∇0V1(q0)−∇0V2(q1 − q0)− γp0(t) +

√
2γT

L
ξ0(t)

d
dtpi = −∇iV1(qi)−∇iV2(qi+1 − qi)−∇iV2(qi − qi−1) for i ∈ {1, .., N − 1}

d
dtpN = −∇NV1(qN)−∇NV2(qN − qN−1)− γpN(t) +

√
2γT

R
ξN(t)

with Eξk(t)ξl(s) = δklδ(t− s) k, l = 0, N
(1.11)

The only directions, in which the ellipticity appears, are p0 and pN . In the
remaining directions the dynamic is only deterministic hence we have a “big”
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1 Introduction and Motivation

non-ellipticity. The system of stochastic equations (1.11) provides us with an
example of the operator L of the type (1.1) which is hypoelliptic.
One of the surprising features of this type of operators is that their spectral
properties are extremely sensitive to the fine structure of their first-order part.
In particular, we will see that if we choose{

V1(q) = q2

V2(q) = q4

it is possible to show that the generator L of (1.11) has compact resolvent in a
suitably chosen Hilbert space. This will allow us to conclude the existence of a
unique stationary distribution for (1.11) and establish the exponential conver-
gence to it. On the other hand, if one were to choose{

V1(q) = q4

V2(q) = q2

it is still an open problem to show the existence of a stationary solution. In
particular, it is possible to show that if the chain is long enough, the generator L
does not have compact resolvent in any of the natural spaces associated with it.
Intuitively, the reason behind this fact is that at high energies, the interaction
between neighbouring particles becomes weaker and weaker, so that the chain
appears more and more ‘broken’.
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2 The Strategy of our Analysis

Let Pt be the Markov semi-group generated by the system of stochastic differen-
tial equations (1.11). In other words, for any bounded and measurable function

ψ : R2(N+1) −→ R

we define
(Ptψ) (x) = E [ψ (x(t)) ; x(0) = x] (2.1)

where E is the mean value with respect to the Wiener measure on the sample
space of Brownian motion (in R2(N+1)).

The family of operators {Pt} satisfies the following list of properties which are
easy to verify

Pt ◦ Psψ = Pt+sψ Markov property

∂tPtψ = LPtψ

L = XH − γp0
∂
∂p0

+ γT
L

∂2

∂p2
0
− γpN ∂

∂pN
+ γT

R

∂2

∂p2
N

XHH = 0 (conservation of energy)

XH =
∑

i
∂H
∂pi

∂
∂qi
− ∂H

∂qi
∂
∂pi

(Liouville operator)

Let us introduce now the concept of an invariant measure. A probability measure
µ on R2(N+1) is invariant with respect to semi-group Pt iff∫

(Ptψ)(x)µ(dx) =

∫
ψ(x)µ(dx) (2.2)

holds true for any t > 0 and any ψ as described in (2.1) above. We also write
this as µPt = µ for any t > 0.

Assume that µ(dx) = ρ(x)dx, then the condition (2.2) reads ∂t〈ρ,Ptψ〉 = 0
where 〈 , 〉 is the scalar product with respect to Lebesgue measure. Therefore

〈L∗ρ,Ptψ〉 = 〈ρ,LPtψ〉 = 0

for all t > 0 and all ψ as above. This means that

L∗ρ = 0 .
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2 The Strategy of our Analysis

The question of the existence of an invariant measure now becomes: can we find ρ
such that the condition above is satisfied? This leads us naturally to the question
of the behaviour of the spectrum of L, i.e. does 0 belong to the spectrum? But
even if 0 belongs to the spectrum, this doesn’t guarantee eigenfunctions to exist
which correspond to probability densities. Our strategy is then as follows:

(1) find a Hilbert space H such that all bounded (measurable) functions ψ
belong to H;

(2) Show that Pt can be extended to C0-semi-group of bounded operators on
H;

(3) Show that H is such that 0 is an isolated eigenvalue with finite multiplicity
for the generator L of the extension of Pt to H.

This strategy does have a good chance of being useful since we have the following:

Proposition
If there exists a Hilbert space H such that 1-3 hold true, then there exists a Pt-
invariant measure µ.

Proof:
Let L denote the generator of the extension of Pt to H, and denote by L∗ the
adjoint of L in the Hilbert space H. Since, by assumption, 0 is an isolated
eigenvalue with finite multiplicity for L, it is also so for L∗.
Let now g ∈ H be such that L∗g = 0. By Riesz’s representation theorem, g can
be considered as a linear bounded functional on H. Since we assumed that H
contained all measurable bounded functions, this shows that g can be identified
with a signed measure with bounded variation ‖g‖V ar < +∞. We want to show
that one can find a nonnegative g such that 〈g,Ptψ〉 = 〈g, ψ〉.
Let us recall Jordan’s decomposition theorem for signed measures. Any signed
measure with bounded variation can be written uniquely as

µ = µ+ − µ− ,

where the positive measures µ− and µ+ are mutually singular.
We also use the following.
Fact: If µ = µ̃+ − µ̃−, with µ̃+ and µ̃− positive (not necessarily mutually sin-
gular), then there exists a nonnegative measure δ such that: µ+ = µ̃+ − δ and
µ− = µ̃− − δ.
After these preparations we come back to the proof of proposition. Writing
g = g+ − g−, since L∗g = 0 we have

P∗t g = P∗t g+ − P∗t g− = g
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where P∗t g+, P∗t g− correspond to non-negative measures since P∗t is Markov. In
this way we get a new decomposition of the density g and we can apply the fact
above to infer that there exists a non-negative measure δ such that

g+ = P∗t g+ − δ and g− = P∗t g− − δ . (2.3)

Using again the fact that Pt is a Markov operator, we have

mass (P∗t g+) = mass (g+) .

If we now insert this in (2.3), we get

mass (g+) = mass (g+)−mass(δ) ,

which implies δ = 0, so that P∗t g± = g±. Since g 6= 0, one of the two positive
measures g− and g+ must be non-vanishing, so that we found the requested
invariant measure.

13



2 The Strategy of our Analysis
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3 Some Remarks on Compactness

As we remember from the previous section, the structure of our generator is as
follows

L = XH − γp0
∂

∂p0
+ γT

L

∂2

∂p2
0
− γp

N

∂

∂p
N

+ γT
R

∂2

∂p2
N

,

where XH is the first order operator which corresponds to deterministic Hamilto-
nian dynamics, the second and third terms together represent the generator of the
Ornstein-Uhlenbeck process at the temperature T

L
, and the forth and fifth term

represent the generator of the Ornstein-Uhlenbeck process at the temperature
T
R
.
How shall we choose the auxiliary Hilbert space H in a proper way? Again,

physical intuition is helpful. Observe that if T
L

= T
R

= T , the invariant measure
for our system is given by the Gibbs measure

µ(dqdp) ∼ e−
1
TH(q,p)dqdp

This measure is also invariant with respect to Hamiltonian evolution as the energy
is conserved, i.e. we also get XHµ = 0.

For different temperatures T
R
6= T

L
it is not possible to guess an explicit

formula for the invariant measure. A natural Ansatz for the Hilbert space H is
the following family of weighted spaces

Hβ = L2
(
R2(N+1); e−βHdqdp

)
for some β ≡ 1

T which will be chosen later.
We will deal with adjoint operators, so to make the calculations simpler we

use a unitary equivalence between Hβ and the ‘flat’ space L2(dx). Namely, we
introduce the unitary transformation K : L2(dx) −→ Hβ given by the formula

(Kg) (x) =
1√
Z
e
β
2Hg(x)

and consider L = K−1LK, the image of our generator in the “flat” space L2(dx).
This transformation does not change the overall form of the operator L, but it
slightly modifies the ‘Ornstein-Uhlenbeck’ parts and adds a zero-order term. We
get

L = XH − α0p0
∂

∂p0
+ α0

∂2

∂p2
0
− α

N
p
N

∂

∂p
N

+ α
N

∂2

∂p2
N

− c0p2
0 − cNp2

N
+ c ,
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3 Some Remarks on Compactness

for some appropriate constants αi, ᾱi and ci. To secure the right bound for norms
of our semi-group Pt, we would like to have

Re〈ϕ,Lϕ〉 ≤ C‖ϕ‖2 for any ϕ ∈ D(L) ≡ domain of L (3.1)

with some constant C ∈ (0,∞) independent of the function ϕ. The condition
(3.1) means that the constants c0 and c

N
are (strictly) positive which turns out

to be equivalent to the following bound we need to impose on β:

β < 2 min

{
1

T
L

,
1

T
R

}
Reminder: Recall the following points

• L is m-accretive iff it satisfies (3.1) and there is no extension of L satisfying
(3.1);

• The resolvent is defined byRλ = (L−λ)−1 for all λ 6∈ σ(L) ≡ spectrum of L;

• A bounded operator A : H −→ H is compact iff the set {Af : ‖f‖ ≤ 1}
is pre-compact (i.e. its closure is compact);

• If we can show that Rλ is compact for one λ then it is compact for all λ
from the resolvent set;

• Also, Rλ being compact implies that its spectrum consists of countably
many eigenvalues of finite multiplicities accumulating only at 0.

• This implies that eigenvalues of L are discrete and can only accumulate at
infinity

• In particular, if we know that the resolvent of L is compact, 0 is an isolated
eigenvalue which coincides with condition (3) of our general strategy.

Proposition
Assume that the resolvent set of L is non-empty. Then L has compact resolvent
iff the set

{f : ‖Lf‖+ ‖f‖ ≤ 1} (3.2)

is pre-compact.

Proof: Assume without loss of generality that 0 6∈ σ(L) (otherwise we consider
L− λ instead of L). We want to show that the condition (3.2) is equivalent to{

L−1f : ‖f‖ ≤ 1
}

is pre-compact
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But the set above is the same as the set

{g : ‖Lg‖ ≤ 1}

and this is equivalent to the re-scaled set (the scaling sends compact sets into
compact sets)

{f : ‖Lf‖+ ‖f‖ ≤ 1} .
Indeed, if ‖Lg‖ ≤ 1, then ‖Lg‖+ ‖g‖ ≤ ‖Lg‖+ ‖L−1Lg‖ ≤ C‖Lg‖ ≤ C. On the
other hand, if ‖Lg‖+ ‖g‖ ≤ 1, then of course ‖Lg‖ ≤ 1.

Corollary: If we know that Λ has compact resolvent and that there exists a
constant c such that

‖Λf‖ ≤ c (‖Lf‖+ ‖f‖)
for every f ∈ D(L), then L has compact resolvent, provided that its resolvent set
is not empty.

This gives us a recipe for showing that L has a compact resolvent by comparing
it to an operator Λ which can be better understood. Let us now discuss what
it actually means for a subset of a Hilbert space to be compact. The following
result is well known:

Arzela-Ascoli Theorem
If X is a compact space and Σ ⊂ C(X). Then Σ is precompact iff it is equi-
bounded and equi-continuous.

Corollary: Let Σ ⊂ C(Rn). Suppose there exists V : Rn −→ R+ such that

lim
x→∞

V (x) = 0

and for any g ∈ Σ
|g(x)| < |V (x)|

If Σ is equi-continuous on every compact set, then Σ is precompact.

The moral of the Arzela-Ascoli Theorem is that in order to obtain compactness,
one needs both confinement and regularity. In view of this, the following criterion
for compactness in L2 should not come as a surprise:

Rellich’s criterion:
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3 Some Remarks on Compactness

Take V , W : Rn −→ [1,∞) such that lim|x|→∞ V (x) = +∞ (decay)

lim|x|→∞W (x) = +∞ (regularity)

Then the set {
f : ‖V f‖ ≤ 1 and ‖Wf̂‖ ≤ 1

}
is pre-compact in L2(Rn). Here, we denoted by f̂ the Fourier transform of f .

Corollary:
Consider Λ = −∆ + V (x) with V continuous and V (x) → +∞ as |x| → +∞.
Then Λ has compact resolvent.

The following example shows that although the above growth condition is
sufficient, it is not necessary to obtain compactness of the resolvent.
Example:
Consider the Schrödinger operator

Λ = −∂2
x − ∂2

y + x2y2 .

The potential V (x, y) = x2y2 doesn’t grow to infinity in all directions but it is
nevertheless possible to show that Λ has compact resolvent. To see this we can
rewrite the operator Λ in the following way

Λ = −1

2
∆ +

(
−1

2
∂2
x +

y2

2
x2
)

+

(
−1

2
∂2
y +

x2

2
y2
)
≥ −1

2
∆ + |y|+ |x| ≡ A

where the last inequality is understood in the quadratic forms sense. (Think of the
two operators in the brackets as one dimensional quantum harmonic oscillators
for which the bottom of spectrum is given by the two expressions on the right
hand side of the inequality.)

This shows that one has the bound

‖A1/2f‖ =
√
〈f, Af〉 ≤

√
〈f,Λf〉 ≤ 1

2
(‖Λf‖+ ‖f‖) .

By Rellich’s criterion, A (and therefore also A1/2) has compact resolvent, and
hence Λ has compact resolvent.
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4 Hörmander’s Theorem

There are two main problems with the operator L that we wish to analyse.
First, it is not elliptic, so that it is not obvious a priori how we can obtain the
regularity estimates. Second, the ‘potential’ p2

0 + p2
N does not tend to infinity in

all directions, so that it is not obvious how to obtain the necessary confinement
bounds. In this section, we show how to address the first problem.

First we introduce the appropriate notion of regularity. Let L : S ′ −→ S ′ be
a linear operator defined on the space of tempered distributions S ′. We say that
L is hypoelliptic if, whenever Lf = g and g ∈ C∞, then f is in C∞.

To become more familiar with this notion we study two examples:

1. L1f(x, y) = ∂2f(x,y)
∂x2 ,

2. L2f(x, y) = ∂f(x,y)
∂y + ∂2f(x,y)

∂x2 .

Both examples are similar. The property they have in common is that they
have second order derivatives only in one of the two spatial directions. The
first example is not a hypoelliptic operator: if f(x, y) is an arbitrary measurable
function depending only on the y-coordinate, then Lf = 0, which is clearly a
smooth function, even though f itself is not smooth. In the case of L2 however,
we can interpret the y-coordinate as a ‘time’, so that the equation L2f = g can
be viewed as a heat equation with a source term. We know from the theory of
parabolic PDEs that the solutions to such an equation are smooth, provided that
the source term is smooth.

In general, it turns out that the first example is, up to change of coordinates,
pretty close to being the only way in which a second-order differential opera-
tor can fail to be hypoelliptic. The precise answer is given by the Hörmander
Theorem which we are going to study in this section.

Before we state this Theorem let us look at an intuitive geometrical picture
which is behind the Frobenius Theorem described below. Let M be a smooth
finite dimensional manifold and let E be a smooth sub-bundle M 3 p → Ep ⊂
TpM of the tangent bundle TM . We say that E is integrable iff for any two
vectors fields X1 and X2 such that Xi

∣∣
p
∈ Ep, i = 1, 2 one has [X1, X2]

∣∣
p
∈ Ep
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4 Hörmander’s Theorem

for any p ∈ M . Here, we denote by [X1, X2] the Lie bracket of the two vector
fields X1 and X2.

Frobenius Theorem:
E is integrable iff it arises from tangent sub-bundles generated by a (regular)
family of submanifolds.

Keeping in mind this geometrical picture we see that the following criterion of
hypoellipticity due to Hörmander is “almost” iff:

Hörmander’s Theorem:
Let M be a smooth finite-dimensional manifold. Suppose that at each point x ∈M
the tangent space TxM can be spanned by the fields X0, X1, . . . , Xn together with
their Lie brackets, i.e.

TxM = Span
{
Xj

∣∣
x
, [Xj, Xk]

∣∣
x
, [Xj, [Xk, Xl]]

∣∣
x
, ...
}

(Hö)

with indices j, k, l, ... ∈ {0, 1, ..., n}. Then the operator

L = X0 +
n∑
i=1

X2
i

is hypoelliptic.

In the sequel, an operator L which satisfies the condition described in the Theo-
rem above will be called a Hörmander operator. Note that we do not impose any
restriction on n; in particular one can give non-trivial examples of Hörmander
operators with n = 2 on Rd for arbitrary d.

The main subject of this section is to give an idea of the proof that Hörmander
operators are hypoelliptic. To get started with the proof of this statement we
need some preliminaries: we introduce pseudo-differential operators. To make
the discussion less technical at this point one can forget about general manifolds
and just think about Rd since the statement of Hörmander’s Theorem has a local
character.

Given a smooth function a : R2d −→ C we define a pseudo-differential operator
Opa : S −→ S by

(Opa u) (x) =
1

(2π)d

∫
ei〈x,ξ〉a(x, ξ)û(ξ)dξ
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The function a(x, ξ) is called the symbol of the operator Opa.

We say that a ∈ Sm (or that a is of order m) with m ∈ R if ∀α, β ∈ N ∩ {0}∣∣∣∂αx∂βξ a(x, ξ)
∣∣∣ ≤ Cα,β (1 + ‖ξ‖)m−|β| .

The classes of symbols have the following properties:

• If a ∈ Sm and b ∈ Sn, then the symbol of Opa · Opb, (which is just the
composition of operators), belongs to Sm+n and

Opa ·Opb = Opab +Opc ,

with c ∈ Sm+n−1. In particular the commutator [Opa, Opb] has a symbol
in the space Sm+n−1, i.e. is of one order less.

• If a ∈ S0, then Opa is a bounded operator in L2.

• Finally, we have the following rule for the adjoint operator. If a ∈ Sm, then

(Opa)∗ = Opa +Opc ,

where c ∈ Sm−1.

In the considerations below we use Λ = (1−∆)
1
2 . Obviously, the symbol of Λα

belongs to Sα for every α ∈ R.

Main Step in the Proof of Hörmander Theorem:
For every compact set K, there exists ε > 0 and a constant c > 0 such that

‖Λεu‖ ≤ c (‖Lu‖+ ‖u‖) (∗)

for every u ∈ C∞0 (K)

Overall strategy: Suppose that we can find smooth vector fields {Yj(x)} such
that

1◦ span {Yj(x)} = Rd for every x ∈ K and

2◦ there exists 0 < ε < 1 and c > 0 such that ∀u ∈ C∞0 (K) and ∀j

‖Λε−1Yju‖ ≤ c (‖Lu‖+ ‖u‖) .
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4 Hörmander’s Theorem

Then the inequality (∗) holds.

Note that since we only care about what happens in the compact set K, we
can modify L outside K to have all of its co-efficient and all their derivatives
bounded for all x whenever we need this. We assume from now one that we have
performed this modification, so that L has a symbol in S2.

Proof :
Before we start the proof we introduce the following convention:
After the symbol � we omit all expressions of the type λ

(
‖Lu‖2 + ‖u‖2

)
with

some positive constant λ independent of u.

By 1◦, there exists a function aij assuming values in the set of matrices, which
is smooth and such that

Λ2 =
∑
i,j

aij(x)YiYj + 1.

Given this, with some constant C > 0, one has

‖Λεu‖2 = 〈u,Λ2ε−2Λ2u〉 ≤ C ‖u‖2 +
∑
〈u,Λ2ε−2aijYiYju〉

In order to use 2◦, we intend to put Yi in the front of the first u in the second
term of the expression above to bound it by

�
∑
−〈Yiu,Λ2ε−2aijYju〉+ 〈u, TYju〉

with commutator T ≡
[
Λ2ε−2aij, Yi

]
∈ OpS2ε−2. The last expression can be

rewritten as follows

= −
∑
〈Λε−1Yiu,

(
Λε−1aijΛ

1−ε)Λε−1Yju〉+ 〈u,
(
TΛ1−ε)Λε−1Yju〉 � 0

The operators
(
Λε−1aijΛ

1−ε) and
(
TΛ1−ε) are bounded (to check this use the

rules for pseudo-differential operators). Thus we need to bound the expression
‖Λ1−εYiu‖ which we can do by using (2◦). From that the inequality (∗) follows.

To prove the Hörmander’s Theorem we need only to prove 2◦ and we do this
below by induction. The idea will be to chose the fields as in the condition (Hö).

Proof of (2◦) :
The proof is divided into several steps. Since by the Hörmander condition (Hö),
the first part of the family of spanning fields Yj is given by the basic fields
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X0, Xi, i = 1, .., n, in the first two steps we prove 2◦ for them. The remaining
steps provide inductive machinery which allows us to prove the desired condition
for a field which is given as a commutator of a basic field and a field for which
2◦ is known (possibly at a cost of taking smaller ε > 0).

STEP 1. Note that L =
∑
X∗iXi + X̃0 with X̃0 ≡

∑
i fiXi + X0 for some smooth

functions fi; (the antisymmetric part of X̃0 really does not matter while
the symmetric part of the operator X̃0 corresponds to the multiplication
by a bounded function and hence the contribution coming from this part
can be bounded by c‖u‖ ). We therefore have for i 6= 0:

‖Xiu‖2 = 〈u,X∗iXiu〉 ≤
∑
i

〈u,X∗iXiu〉 ≤ Re〈u, Lu〉+ c‖u‖2

with some constant c > 0, and using Cauchy-Schwartz inequality, we get

‖Xiu‖ ≤ C (‖Lu‖+ ‖u‖)

with some constant C > 0.

STEP 2. For ε ∈ (0, 1
2 ], using X0 = L−

∑
X2
i , one has

‖Λε−1X0u‖2 = 〈Λ2ε−2X0u,
(
L−

∑
X2
i

)
u〉 ≤

≤ c‖u‖ · ‖Lu‖ −
∑
〈Λ2ε−2X0u,X

2
i u〉 � ...

(in the first term, to bound the norm of Λ2ε−2X0u we used ε ≤ 1
2),

... � −
∑
〈Λ2ε−2X0Xiu,Xiu〉+ |〈Tu,Xiu〉|

with Λ2ε−2X0 and the commutator T ≡
[
X∗i ,Λ

2ε−2X0
]
∈ OpS2ε−1, and

hence bounded for ε ≤ 1
2 . We conclude using estimates from Step 1 (to

bound ‖Xju‖ and ‖X∗j u‖).

STEP 3. Suppose that, for some ε < 1
2 , one has ‖Λ2ε−1Y u‖2 � 0. We show that this

implies that ‖Λε−1[Xi, Y ]‖2 � 0 for i = 1, ..., n (i 6= 0). Given i, we set
Z ≡ [Xi, Y ]. Then

‖Λε−1Zu‖2 = 〈Λ2ε−2Zu,XiY u〉 − 〈Λ2ε−2Zu, Y Xiu〉

The first term in this equation can be rewritten as

〈Λ2ε−2Zu,XiY u〉 = 〈X∗i Λ2ε−2Zu, Y u〉 =

= 〈Λ2ε−2ZX∗i u, Y u〉+ 〈
[
X∗i ,Λ

2ε−2Z
]
u, Y u〉 =
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4 Hörmander’s Theorem

= 〈Λ−1ZX∗i u,Λ
2ε−1Y u〉+ 〈Λ−2ε+1 [X∗i ,Λ2ε−2Z

]
u,Λ2ε−1Y u〉 .

Setting T = Λ−2ε+1
[
X∗i ,Λ

2ε−2Z
]

and performing similar manipulations for
the second term, we get

‖Λε−1Zu‖2 = 〈Λ−1ZX∗i u,Λ
2ε−1Y u〉+ 〈Tu,Λ2ε−1Y u〉 (4.1)

− 〈
(
Λ2ε−2ZΛ1−2ε) (Λ2ε−1Y

)
u,Xiu〉+ 〈T ′u,Xiu〉

with Λ−1Z ∈ OpS0 and appropriate commutators T ∈ OpS0 and T ′ ∈
OpS2ε−1. Using Cauchy-Schwartz and using the bounds on the terms
‖X∗i u‖ and ‖Xiu‖ obtained in Step 1, we get the required bound.

STEP 4. Commuting with X0 is more difficult. Assume that there exists ε ∈ (0, 1
4)

such that ‖Λ4ε−1Y u‖2 � 0. We will show that such a bound implies that
‖Λε−1[X0, Y ]u‖2 � 0. We remark that after inequality � we can drop the
adjoint applied to a vector field, if the expression we get after dropping
the field is itself � 0. We shall use this property to make the notation
simpler (in the previous steps we were more explicit and we didn’t use this
property). Setting Z ≡ [X0, Y ], we have as before

‖Λε−1Zu‖2 = 〈Λ2ε−2Zu, Y X0u〉 − 〈Λ2ε−2Zu,X0Y u〉. (4.2)

Again as in the Step 3, we focus our attention on the first term using the
results of the Step 2. Writing X0 = L−

∑
X2
i as in Step 2, we have

〈Λ2ε−2Zu, Y X0u〉 = −
∑
i

〈Λ2ε−2Zu, Y X2
i u〉+ 〈Λ2ε−2Zu, Y Lu〉 (4.3)

First we show how to manage the ‘easy’ term, usig the remark above

|〈Λ2ε−2Zu, Y Lu〉| � |〈Y Λ2ε−2Zu,Lu〉| =

= 〈
(
Λ2ε−2ZΛ−4ε+1)Λ4ε−1Y u, Lu〉+ 〈

[
Y,Λ2ε−2Z

]
u, Lu〉 � 0.

The operator
(
Λ2ε−2ZΛ−4ε+1

)
in the first term is bounded and the commu-

tator
[
Y,Λ2ε−2Z

]
in the second term is also bounded. Hence we can use the

Cauchy-Schwartz inequality and the inductive assumption ‖Λ4ε−1Y u‖2 � 0
to conclude estimates of this term.

Below we will treat all “L”-terms in the similar manner without mentioning
this. From the bound we just obtained, the first term in (4.2) can be
estimated as follows

〈Λ2ε−2Zu, Y X0u〉 � −
∑
i

〈Λ2ε−2Zu, Y X2
i u〉 .
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We have here the square of the fields Xi and that means that we will have
more difficulties than in Step 3. We estimate each term of the sum above
separately:

−〈Λ2ε−2Zu, Y X2
i u〉 = −〈X∗i Y ∗Λ2ε−2Zu,Xiu〉 � ‖X∗i Y ∗Λ2ε−2Zu‖ · ‖Xiu‖

We estimate the term containing the square of X∗i Y
∗ as follows.

‖X∗i Y ∗Λ2ε−2Zu‖2 � ‖XiY
∗Λ2ε−2Zu‖2 + C‖Y ∗Λ2ε−2Zu‖2

� ‖XiY
∗Λ2ε−2Zu‖2 + C‖Y Λ2ε−2Zu‖2 (4.4)

with some constant C > 0. The estimate of the second term goes as follows

‖Y Λ2ε−2Zu‖2 ≤ ‖
[
Λ2ε−2ZΛ−4ε+1]Λ4ε−1Y u‖2 + ‖

[
Y,Λ2ε−2Z

]
u‖2 � 0

where we have used our current inductive assumption ‖Λ4ε−1Y u‖2 � 0. To
estimate the first term in (4.4) it is sufficient to estimate ‖XiY Λ2ε−2Zu‖,
(since the difference is of lower order). We have

‖XiY Λ2ε−2Zu‖2 � Re〈LY Λ2ε−2Zu, Y Λ2ε−2Zu〉

where we pass from Xi to L, (see the similar reasoning in Step 1). Hence

� Re〈
(
Λ−2εY Λ2ε−2Z

)
Lu,

(
Λ4ε−2ZΛ1−4ε)Λ4ε−1Y u〉+

+ terms containing commutators with X0 and X2
i

The operators
(
Λ−2εY Λ2ε−2Z

)
and

(
Λ4ε−2ZΛ1−4ε

)
are bounded and we can

use our inductive assumption to get that for the first term � 0. Finally we
need to consider the commutator terms. We consider only commutators
with X2

i , (the analysis for X0 is simpler as X0 is a first order operator). We
have

〈[X2
i , Y Λ2ε−2Z]u,Λ2ε−2ZY u〉 = 2〈[Xi, Y Λ2ε−2Z]Xiu,Λ

2ε−2ZY u〉 (4.5)

+ 〈[Xi, [Xi, Y Λ2ε−2Z]]u,Λ2ε−2ZY u〉 .
The first term on the r.h.s. of (4.5) is ‘good’, as we have

〈Λ−4ε+1Z∗Λ2ε−2 [Xi, Y Λ2ε−2Z]Xiu,Λ
4ε−1Y u〉 � 0 .

The last term (4.5) can be represented as follows

〈Λ−4ε+1Z∗Λ2ε−2 [Xi, [Xi, Y Λ2ε−2Z]]u,Λ4ε−1Y u〉 � 0 .

This completes the proof of 2◦.
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4 Hörmander’s Theorem

FINAL STEP IN THE PROOF OF HÖRMANDER’S THEOREM
We just showed that one has the bound

‖Λεu‖ ≤ c (‖Lu‖+ ‖u‖) .

If we make the substitution u −→ Λαu, α ∈ R and use similar arguments to
bound the commutator [Λα, L], it is possible to get bounds of the type

‖Λε+αu‖ ≤ C (‖ΛαLu‖+ ‖Λαu‖)

for every α > 0. It is at this stage possible to use a bootstrapping argument to get
smoothness of u from the smoothness of Lu. That is, if we know that Lu = g with
a smooth function g, starting from some negative K for which ‖ΛK

u‖ < ∞, we
can use the above inequality inductively to get that for any m ∈ N, ‖Λmu‖ <∞.
Thus u must be smooth and this ends the proof of Hörmander Theorem.

The key references for the above route to Hörmander’s theorem include [Koh78]
and [OR73]. See also the recent book [HN05] for a clear exposition of this and
related problems.

In our model one can verify that the property V ′′2 6= 0 implies that the Hörmander
condition holds. Intuitively, just because the chain is connected, taking commu-
tators gives derivatives in all directions q1, ..., qn, p1, ..., pn; (think what happens
when the chain is broken).
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5 Hörmander-like Estimates in

Non-Compact Domains

The purpose of this section is the study of Hörmander type estimates, but in non-
compact regions (actually the whole Euclidean space). The Hörmander Theorem
give us bounds of the type

‖Λεu‖ ≤ CK (‖Lu‖+ ‖u‖)

for each u ∈ C∞(K). It is reasonable to expect that if the coefficients of L are
nicely behaved, the constant CK can grow at most polynomially in the size of the
region K. Let us denote by {Yk}k≥0 the collection of all the vector fields X0, {Xj}
making up the differential operator L, together with all their Lie brackets. The
following assumption is natural in view of obtaining control over the growth of
CK :

Assumption:The polynomial Hörmander condition.

All coefficients of the vector fields Xi (and their derivatives) are bounded by

multiples of some polynomial (1 + |x|)N . Furthermore, there exists r > 0 and a
constant C such that ∑

j≤r
〈Yj(x), ξ〉2 ≥ C

1 + |x|N
|ξ|2 ,

for every pair x, ξ ∈ Rd. In short we will refer to this condition as the poly -
Hörmander condition.

One can show that if L satisfies the poly-Hörmander condition, then there exist
positive constants C, ε and N such that

‖Λεu‖ ≤ C(1 + |x|N) (‖Lu‖+ ‖u‖) (5.1)

for each u ∈ C∞0 (B(x, 1)), where B(x, 1) is a unit ball centred at the point x.
We do not enter into a detailed proof of this fact, but it can be proven essentially
by retracing the argument of the previous section and keeping track of constants.

For further study we need the following Sobolev spaces. We say that u ∈ Sα,β iff
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5 Hörmander-like Estimates in Non-Compact Domains

‖u‖α,β ≡ ‖Λ
β
Λαu‖ < +∞ where Λ is as before and Λ(x) ≡

(
1 + |x|2

) 1
2 ≡ 〈x〉.

The most important property of these spaces is that Sα′,β′ ⊂ Sα,β for α′ ≥ α,
β′ ≥ β and that this embedding is compact if and only if both inequalities are

strict. In particular, Λα ◦Λ
β

has compact resolvent in all of these spaces, as soon
as α > 0 and β > 0.

Proposition
If L satisfies the poly-Hörmander condition, then for each ε > 0 there exists
δ > 0 and a constant C ∈ (0,∞) such that

‖u‖δ,δ ≤ C (‖Lu‖+ ‖u‖0,ε) ,

for each u ∈ C∞0 (Rn)

Proof:
We divide the whole space Rd into cubes centred around Zd and we consider
a partition of unity {φx}x∈Zd. In this way, we can write an arbitrary smooth
function u as

u =
∑
x∈Zd

ϕxu =
∑
x∈Zd

ũx , (5.2)

where ũx ∈ C∞0 (B(x, 1)). The crucial step is to prove the inequality

‖ũ‖δ,δ ≤ c (‖Lũ‖+ ‖ũ‖) + C〈x〉ε‖ũ‖ (5.3)

for all ũ ∈ C∞0 (B(x, 1)). Given this inequality, it is relatively easy exercise to
conclude the proof of the proposition.

We can show (5.3) starting with (5.1), knowing that roughly ‖ũ‖δ,δ ≈ 〈x〉δ‖ũ‖δ,0.
Using the Jensen inequality (applied to the first two factors) one can write

〈x〉N+δ‖Λδũ‖ = 〈x〉N+δ‖Λδũ‖
‖ũ‖

‖ũ‖ ≤ C
‖Λδũ‖J

‖ũ‖J−1 + c̃〈x〉(N+δ)(1+ 1
J−1 )‖ũ‖.

On the other hand for any self-adjoint positive operator A and any J > 0 one
has

‖Aũ‖J ≤ ‖AJ ũ‖‖ũ‖J−1.

Inserting this into our estimate, we have

〈x〉N+δ‖Λδũ‖ ≤ ‖ΛδJ ũ‖+ c̃〈x〉(N+δ)(1+ 1
J−1 )‖ũ‖

≤ C
{

(‖Lũ‖+ ‖ũ‖) + c̃〈x〉(N+δ)(1+ 1
J−1 )‖ũ‖

}
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For any fixed J , we can choose δ small enough such that Jδ is smaller than the
ε from (5.1). This leads to

〈x〉δ‖Λδũ‖ ≤ C (‖Lũ‖+ ‖ũ‖) + C〈x〉δ(1+ 1
J−1)+ N

J−1‖ũ‖ .

Since J can be made arbitrarily large (at the expense of making δ very small),
the exponent δ

(
1 + 1

J−1

)
+ N

J−1 can be made arbitrarily small and hence (5.3)
follows.

Now we go back to our physical model of a chain of oscillators coupled to two
heat baths at different temperatures. Since the above results apply (under mild
growth conditions on the potentials V1 and V2), it is sufficient in order to show
compactness of the resolvent of L, to obtain a bound of the type

‖u‖0,ε ≤ C(‖Lu‖+ ‖u‖) . (5.4)

We should note that the operator Λ is not a good choice - the technique just
does not work. A more convenient choice is the operator of multiplication by the
Hamiltonian H of the system, instead of the previous Λ. The useful property
is that the energy operator H commutes with Liouville operator which makes
the analysis possible, i.e. [XH , H] = 0. We are therefore going to argue that for
some choices of the pinning and the coupling potentials, one can obtain a bound
of the type

‖Hεu‖ ≤ C(‖Lu‖+ ‖u‖) , (5.5)

which then implies (5.4) because H grows at least polynomially in all directions.

We introduce the spaces

Fk
α =

{
f : |Dif | ≤ Ci〈x〉α−min{|i|,k}

}
.

The main result is as follows

Theorem
If V1 ∈ F2

α and V2 ∈ F2
β with β > α > 2 and moreover V1 ≥ c〈x〉α, V2 ≥ c〈x〉β,

xV ′1 ≥ c〈x〉α − c̃, xV ′2 ≥ c〈x〉β − c̃ and finally (V ′′2 )−1 ∈ F0 , then the inequality
(5.4) holds true.

Some Comments
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5 Hörmander-like Estimates in Non-Compact Domains

• If the conditions V1 ≥ c〈x〉α, V2 ≥ c〈x〉β are not satisfied then the pinning
potential dominates and there is no sufficient transport of energy and the
bound (5.4) does not hold in general.

• The condition (V ′′2 )−1 ∈ F0 is not necessary.

• The condition β > α > 2 can be relaxed and it is sufficient to assume
β ≥ α ≥ 2.

Idea of the Proof:
Our generator has the form

L = XH + LOU + cp2
0 + cp2

N

(where LOU is an Ornstein-Uhlenbeck operator). As before in the Step 1, it is
straightforward to get the bound

‖p0u‖ ≤ c (‖Lu‖+ ‖u‖) .

We would like to mimic Step 4 of the proof of the Hörmander theorem to get
bounds on

〈Hε−1 [X0, f ] , gu〉 ,
where g is some function with well-controlled growth (use a priori bounds), and
f is a function on which we obtained bounds from a previous step (induction).
Starting with f = p0 and g = q1 − q0, we get

〈Hε−1∇V2(q1 − q0)u, (q1 − q0)u〉 = 〈Hε−1 [X0, p0]u, (q1 − q0)u〉+ (5.6)

+〈Hε−1∇V1(q0)u, (q1 − q0)u〉 ,
where

H =
∑ p2

i

2
+
∑

V1(qi) +
∑

V2(qi − qi−1) .

The term involving X0 can be bounded in pretty much the same way as before.
Concerning the other term, if we would like to bound

〈Hε−1∇V1(q0)u, q1u〉

and
〈Hε−1∇V1(q0)u, q0u〉

separately, we would need
Hε−1∇V1(q0)q0
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bounded for some ε. This is not realistic since, if V1 behaves like a polynomial
at infinity, ∇V1(q0)q0 ∼ V1(q0) at infinity and at the same time H ∼ V1(q0) in
the direction q0.

On the other hand, we have

∇V1(q0)(q1 − q0) ≤
|q1 − q0|p

p
+
|∇V1(q0)|p

′

p′

with 1
p + 1

p′ = 1. Now, if we can choose p and p′ in such way that

|q1 − q0|p

p
� V2(q1 − q0) (5.7)

and
|∇V1(q0)|p

′

p′
� V1(q0) (5.8)

are both satisfied, then we get a bound on the second term in (5.6).
Supposing that V1(q) ∼ qn and V2(q) ∼ qm, then using (5.7) and (5.8), we have

to take
p < m and p′ <

n

n− 1

i.e.
1

p
>

1

m
and

1

p′
> 1− 1

n
.

Hence
1

p
+

1

p′
> 1 +

1

m
− 1

n

which implies n < m.
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[Hor67] L. HÖRMANDER. Hypoelliptic second order differential equations.
Acta Math. 119, (1967), 147–171.
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