

Develop a cost-effective 3D printing solution for educational institutions

Kushal Bhamre

Dept. of Electrical Engineering,
Atharva college of Engineering, Malad,
Mumbai
kushbhamre29@gmail.com

Anudeep Dhaware

Dept. of Electrical Engineering,
Atharva college of Engineering, Malad,
Mumbai
Anudeepdhaware01@gmail.com

Pranav Bhargav

Dept. of Electrical Engineering,
Atharva college of Engineering, Malad,
Mumbai
pranavbhargav2003@gmail.com

Priyanka Tripathi

Assistant professor
Atharva college of Engineering, Malad,
Mumbai

Suraj Bhimra

Dept. of Electrical Engineering,
Atharva college of Engineering, Malad,
Mumbai
surajbhimra0005@gmail.com

Abstract—

This project was oriented for the design and construction of a functional 3D printer, through an analytical study of 3D printing technologies. Finds design parameters for efficient prototyping and combines mechanical, electrical and software systems. Mechanical aspects are mainly frame geometry, movement systems, print head and extruder design. Highlighting the electrical design which features the motor drivers, heater control, power supply, and electronics housing. Depending on how far you want to go, this may include firmware, integrating current slicers, and maybe a user interface. (The entire system is tested and calibrated to make sure it is a reliable printing tool.) Building a 3D printer is the goal of this project, which provides real experience in applying mechanical, electrical, and software engineering principles as well as filling in the gaps in various components through an understanding of how to integrate and optimize their systems. The Design and Fabrication of a 3D Printer project describes the many kinds of 3D printers available on the market as well as the final analysis of the numerous input and output factors that have been taken into account. It also discusses the current uses and potential applications of 3D printers.

I. Introduction

Definition of 3D Printing: Additive manufacturing, more commonly known as 3D printing, is a transformative technology that constructs three-dimensional objects through a layer-by-layer formation based on digital designs. Traditional manufacturing

techniques usually have material wastage or expensive Molds, while 3D printing reduces both costs and resources. It allows for the production of complex, tailored parts with high accuracy, which is why it has broad applications in areas like automotive, aerospace, and medical technologies. 3D printing is revolutionizing the conception, design, and manufacturing of products by enabling rapid prototyping and personalized production.

Transformative Role in Manufacturing and Design: The transformative powers of 3D printing lie in doing away with the constraints of conventional manufacturing. Highly complex geometries are created through the use of this technology that normally would not be possible to replicate. It provides designers with flexibility and freedom to design while dramatically shortening the cycles of production costs. For manufacturers, 3D printing reduces wastage of materials and enables on-demand production that is central for sustainability and scalability. It finds applications in the creation of prototypes, tooling, and final products, with efficiency driving mass customization across a wide range of industries.

Need for a Functional, Cost-Effective 3D Printer: Even though 3D printing has made tremendous progress, commercial 3D printers remain expensive and are not accessible for students, hobbyists, or small-scale industries. The device designed and constructed here is a solution that bridges this gap by working efficiently at an affordable price. It will be possible to investigate the applications of additive manufacturing for educational purposes, prototyping, and even small-scale production. It's meant to democratize 3D printing

technology with a focus on optimizing mechanical stability, precise motor control, and reliable material handling, so this project is envisioned for widespread adoption in areas such as education, healthcare, and product design.

II. HISTORY

3D printing or additive manufacturing transformed manufacturing and design since its beginning in the 1980s. It all started in 1981 with the invention of Dr. Hideo Kodama who had developed a system using UV light to solidify materials in a layer by layer manner. Then in 1986, Chuck Hull developed the first commercial 3D printing technology, which is stereo lithography, or SLA for short. Later, in 1989, Scott Crump developed Fused Deposition Modelling (FDM), which was an inexpensive and accessible technology and made 3D printing popular. Among all the 3D printing technologies, FDM is still used because it is simple and suitable for materials like PLA and ABS. It uses heated filament to extrude it through a nozzle to build the object layer by layer. Although FDM has several benefits, it suffers from limitations such as layer lines that are easily noticeable, strength loss in printed parts, and the dependency on support structures for intricate designs. The abovementioned shortcomings can be overcome by increased precision, stronger materials, and improved software. The objective of this project is to build upon previous designs to produce a low-cost, efficient 3D printer that can be used in educational institutions and small-scale industries.

A. Revolutionary Impact:

This has revolutionized manufacturing and design, enabling rapid prototyping, cost-effective customization, and complex geometries that traditional methods cannot achieve. Its widespread applications, from healthcare to aerospace, and its potential for reducing waste and decentralizing production, make it a transformative force across industries.

B. Increased Range:

This encompasses rapid prototyping, on-demand production, and even the impossible intricacies created using traditional means. Its scope reaches into fields like healthcare, aerospace, construction, and education to provide sustainable cost-effectiveness with unprecedented degrees of customization.

C. Cost saving:

These significantly reduce costs by eliminating the need for expensive Molds, tooling, and material waste, as it builds objects layer by layer using only the required material. It enables affordable prototyping and production, making advanced manufacturing accessible to businesses, educators, and hobbyists alike.

D. Industrial automation:

It increases production efficiency through the integration of automatic systems that obtain precise control and faster output while reducing human intervention. It encompasses scalable and repeatable

manufacturing processes of high-quality complex parts with minimal downtime.

E. Standardization:

Standardization in 3D printing provides consistency, interoperability, and quality among various printers and materials. It helps to standardize design, manufacturing processes, and material specifications that can be used more easily by industries.

F. Addressing the challenges:

Challenges in 3D printing include material deficiencies, high manufacturing costs, and slow printing. To overcome such issues, innovation in material science is essential and would provide sturdier and more versatile, yet cost-effective, materials. Similarly, optimizing processes by using newer technologies and faster software can accelerate efficiency, accuracy, and scaling. These enable industries to extract the full capability of 3D printing for reduced costs without compromising on high-quality outputs while making more complicated designs possible.

III. Proposed Methodology

A. 3D Printer Frame:

This is the structural foundation for all other parts, providing support and stability. It is often made of materials such as aluminium, steel, or acrylic to give it rigidity and precise alignment during printing.

B. Stepper motor:

They provide precise control of movement along the X, Y, and Z axes, ensuring accurate positioning of the print head. They are critical for achieving fine resolution and repeatability in 3D printing.

C. Print bed:

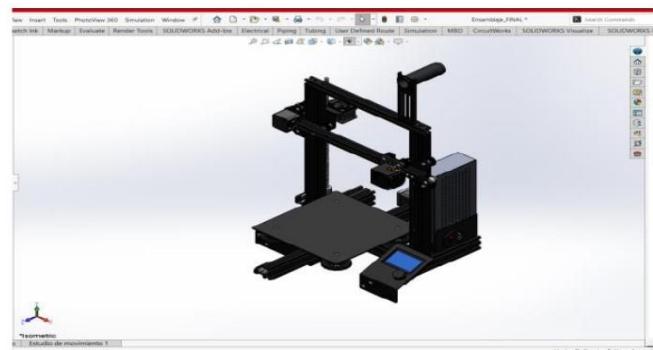
The surface where the 3D print is created provides adhesion for the initial layers of the print. Heat beds are frequently used to avoid warping and increase layer bonding.

D. Display Screen:

The user interface, which facilitates control and monitoring of the functionality of the 3D printer. Therefore, it may feature options like touch capabilities or buttons for changing preset settings and initiating or stopping a print.

E. Temperature Sensors:

Temperature sensors are also used to regulate the temperature of the hot end and print bed to maintain the consistency in the extrusion of material as well as adhesion. Maintaining accurate temperatures ensures that quality prints are produced without defects such as clogging or warping.


Construction of 3D Printer:

A. Design and Assemble the Frame: For that we can prove the frame provides the foundation for the printer, ensuring stability and precision during printing. It should be rigid and well-aligned to minimize errors in movement.

B. Install Stepper Motors and Drives: The stepper motors control the movement of the print head and bed along the X, Y, and Z axes. Precise motion to accurately deposit the layers is provided by the drive mechanisms, like belts or lead screws.

C. Mount the Print Bed and Hot end: The print bed needs to be levelled and, if heated, provide the best adhesion for the printed layers. The hot end must be well attached to accurately melt and extrude the filament.

D. Integrate the Controller Board and Power Supply: The micro controller board, for example, Arduino controls the motors, temperature, and the whole process of printing. The power supply ensures that there is a steady power supply to all the components, including the motors and heaters.

Fig.2 Construction of 3D Printer

(1) Petri dish. (2) Dish holder upper. (3) Dish holder base. (4) Spring. (5) Axis motor. (6) Coupler. (7) Guide rail. (8) Carriage. (9) Lead screw. (10) Print base mount. (11) M5 retention screw. (12) Dish holder retention screw. (13) Extrusion motor. (14) Carriage. (15) Extrusion mechanism mount. (16) Extrusion lead screw. (17) Syringe and emitter mount. (18) UV light emitter module. (19) Conical syringe tip. (20) Syringe barrel. (21) Syringe plunger. (22) Plunger flange retainer. (23) Support extruder frame. (24) Carriage guiding rails. (25) Syringe. (26) Carriage. (27) Step up geared motor

E. Calibrate and Test: Calibration ensures accurate movement, proper temperature control, and layer bonding. Test prints help identify and correct issues related to print quality and mechanical precision.

F. Software and Control: They are crucial for translating digital designs into physical objects. The process begins with firmware, which runs on the printer's controller board to manage motors, heaters, and sensors during printing. The slicer software then converts 3D models (usually in STL format) into machine-readable G-code, defining how the printer should move, the print speed, temperature, and layer height. The controller interface, an LCD or touch screen, lets users interact with the printer and control settings as well as check the print progress. The connection between the printer and the slicer is mostly achieved via SD cards, USB, or direct connections in which the G-code file is transferred for execution. Another crucial component is the calibration software for levelling the bed, calibrating the extruder, and making other settings so that good quality prints can be obtained. These software components work collectively, providing for precise control and monitoring of a 3D print process with accurate, reliable results.



IV. PRINTING

The first phase, known as the "fixup," is to check the model for "errors" after it has been translated to STL. The majority of CAD programs generate output STL files with problems such as inappropriate holes, self intersection, and face normal that need to be fixed. After being converted to STL, the file must be processed by a program known as "slicer," which divides the model into layers and creates a G-code file with instructions for a particular kind of 3D printer.

In order to create a model from a sequence of cross sections, a 3D printer uses G-code instructions to apply consecutive layers of liquid, powder, paper, or sheet material.

The such as plastic, sand, metal etc. can be used through a print nozzle. These layers, which correspond to the virtual cross sections from the CAD model, are joined or automatically Fused to create the final shape

V. Future:

The future horizon of this project is its upgradeability and applicability in other aspects of life. There is the 3D printing machine that, in this particular project, would be enhanced into a multi-useable filaments 3D printer. As such, various types of material can be utilised in print. This therefore opens new venues in healthcare medicine, for modelled medical works. Prosthetics can be printed, or in manufacturing, where the printer can be used for rapid prototyping and production of custom parts. Additionally, the development in the field with regard to integrating IoT for remote monitoring and control or even the usage of AI for optimizing print, this will help make the functionality and user experience much better with this 3D printer. Constant improvement in the design, introduction of new technologies, and further developing the capabilities of the material that this 3D printer uses end Potential to meet the growing demand for affordable, efficient, and versatile printing solutions in both educational and industrial sectors.

ACKNOWLEDGMENT

We extend our heartfelt thanks to Professor Priyanka Tripathi, our invaluable research advisor, whose guidance and expertise significantly shaped this paper. Thanks to friends and family for their unwavering support. Gratitude to the anonymous reviewers for their valuable feedbacks.

Conclusion

Both papers successfully demonstrated how optimizing FDM parameters affects machining efficiency and product quality. While document 1 provides updated insights into cutting-edge applications. Document 2 offers a foundational understanding for educational and prototype scale implementations. Depending on your focus be it innovation or groundwork either can serve as a robust reference.

Reference

- 1) Ativya Gupta , Garima Gupta, Harshit Srivastava, "Design and Fabrication of 3D Printer," International Journal of Applied Sciences and Technology, July 2021
- 2) Anketa Jandyal, Ikshita Chaturvedi, Ishika Wazir, Ankush Raina, PhD, Mir Irfan Ul Haq, PhD, "3D Printing – A Review of Processes, Materials, and Applications in Industry 4.0," KeAi Publishing, October 2021
- 3) Rajesh Kannan Megalingam, Shreerajesh Ragula, Sarweshwara Reddy Sathi, Bhanu Teja Pula, P Souraj Vishnu, Vishnu Sasikumar, "Cost-Effective, Custom-Made, 3D Printer Design and Fabrication for Educational Purposes," IEEE Institute of Electrical and Electronics Engineers, May 2018
- 4) T. H. M. Siddique, I. Sami, M. Z. Nisar, M. Naeem, A. Karim and M. Usman, "Low Cost 3D Printing for Rapid Prototyping and its Application," IEEE 2019 Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), 2019
- 5) V. W. Sahana and G. T. Thampi, "3D printing technology in industry," IEEE 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, 2018
- 6) V. Romero-Alva, W. Alvarado-Diaz and A. Roman-Gonzalez, "Design of a3D Printer and Integrated Supply System," IEEE International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2018
- 7) P. Sivasankaran and B. Radjaram, "3D Printing and Its Importance in Engineering - A Review," IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), 2020
- 8) A. Sameer, L. Ahmad, M. Qawareeq and M. Salah, "Low-Cost 3D Printing Machine: Design, Implementation, Calibration, and Testing," IEEE International Joint Conference on Electrical Engineering and Information Technology (JEEIT), 2021
- 9) Dayakar Renukuntla and N. Sudheer Kumar, " The Design and Manufacturing of 3D Printing using FDM," IRJETS International Research Journal of Modernization in Engineering Technology and Science, 2023